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Abstract

Intel® Trust Domain Extensions (TDX) has emerged as a
crucial technology aimed at strengthening the isolation and
security guarantees of virtual machines, especially as the de-
mand for secure computation is growing largely. Despite the
protections offered by TDX, in this work, we dig deep into
the security claims and uncover an intricate observation in
TDX. These findings undermine TDX’s core security guaran-
tees by breaching the isolation between the Virtual Machine
Manager (VMM) and Trust Domains (TDs). In this work
for the first time, we show through a series of experiments
that these performance counters can also be exploited by the
VMM to differentiate between activities of an idle and active
TD. The root cause of this leakage is core contention. This
occurs when the VMM itself, or a process executed by the
VMM, runs on the same core as the TD. Due to resource
contention on the core, the effects of the TD’s computations
become observable in the performance monitors collected by
the VMM. This finding underscore the critical need for en-
hanced protections to bridge these gaps within these advanced
virtualized environments.

1 Introduction

Intel® introduced Software Guard Extensions (SGX) [9], a
set of processor instructions that create secure enclaves iso-
lated memory regions for executing sensitive code and data
securely, even in compromised environments. SGX quickly
became popular in applications like secure cloud computing
and privacy-preserving machine learning due to its strong
security guarantees. However, despite its robust design, SGX
has proven vulnerable to various attacks that exploit hard-
ware and software weaknesses. SGX has been successfully
targeted by various attack categories, including cache, branch
prediction, DVFS-based, address translation-based attacks,
and software vulnerabilities [3–8, 12–17].

Following the shortcomings of SGX, Intel® introduced a
new secure world execution environment known as Intel®

Trust Domain Extensions (TDX) [10]. TDX is an advanced se-
curity technology designed to isolate virtual machines, called
TDs, from the underlying system software, including the hy-
pervisor or Virtual Machine Manager (VMM). TDX enhances
confidentiality and integrity for both memory and CPU state,
offers address-translation integrity, and supports secure in-
terrupt and exception delivery. It also includes features like
remote attestation and live migration of TDs for protecting
workloads in virtualized environments. Unlike SGX, TDX
does not just ensure the secure execution of a part of the
process but secures the entire environment for the process
execution from the host system or the VMM. Although Intel®

has significantly enhanced TDX to be more robust against
a wide range of attack vectors, making it much more secure
than SGX, no system can be entirely impervious to all threats.

In this work, we uncover a vulnerability in TDX’s (Per-
formance Monitoring Counters) PMC virtualization that not
only compromises the isolation between the VMM and TD
but also breaches the isolation between different TDs, thereby
undermining the core guarantees of TDX. To expand on this,
a primary objective of the TDX module is to ensure complete
isolation of any processing within a TD from both the VMM
and other TDs running concurrently on the same system. This
isolation extends to concealing or obfuscating the Hardware
Performance Counters (HPCs) of the TDs from the VMM,
even when the VMM operates with root privileges [11] to
monitor these events. However, in a particular scenario where
the VMM and a TD are co-located on the same core, resource
contention arises, exposing the TD’s computation patterns on
PMCs collected by the VMM for its own processes making
PMC virtualization ineffective.

We demonstrate in this work that when a TD is launched
with the perf command added to its prefix, we can clearly
distinguish between an idle TD and an active one with some
ongoing processing and this was seen through most com-
mon avaliable HPCs through the perf tool. In addition we
also demonstrate successful process fingerprinting and class-
leakage attack by exploiting this vulnerability.



2 Background

2.1 Intel® Trust Domain Extensions (TDX)

In the initial stages of virtualization, the focus was on op-
timizing resource utilization and reducing operational costs
by consolidating multiple VMs on a single physical server,
with the hypervisor, managing VM execution and resource
allocation. However, the hypervisor’s privileged position
introduced substantial security vulnerabilities. As cloud com-
puting and multi-tenant environments grew in popularity, the
need for stronger isolation between VMs became apparent.

To mitigate these challenges, Intel® initiated the develop-
ment of a novel architectural extension aimed at safeguarding
sensitive operations within virtualized environments, even in
the presence of a compromised VMM named as Intel® Trust
Domain Extensions (TDX) .

The Intel® TDX module is a CPU-attested software mod-
ule that which enhances Virtual Machine Extensions (VMX)
and Multi-Key Total Memory Encryption (MKTME) by in-
troducing a novel type of virtual machine guest known as a
Trust Domain (TD). It is responsible for managing and pro-
tecting TDs. The TDX module leverages Secure Arbitration
Mode (SEAM) to create a secure environment where it can
run without being exposed to potentially malicious software
outside the SEAM context.

The SEAM, is an extension to the existing Virtual Ma-
chine Extensions (VMX) architecture. SEAM introduced a
paradigm shift by enabling the establishment of a secure exe-
cution environment within the CPU, isolated from the rest of
the system, including the VMM. SEAM defined two distinct
operational modes:

SEAM VMX Root Operation: A secure mode in which
CPU-attested software modules can operate, fully iso-
lated from the VMM and other software.

SEAM VMX Non-Root Operation: A mode allowing
secure VMs, referred to as TDs, to execute with their
memory and CPU state safeguarded from the VMM.

Building upon SEAM’s foundation, Intel® developed
Intel® Trust Domain Extensions (TDX) to extend SEAM’s
security capabilities to a broader area. Leveraging SEAM’s
architecture, TDX ensures that TDs execute securely, with
their memory contents and CPU state shielded from all other
software, including a potentially compromised VMM.

At the core of TDX architecture is the SEAM Range Reg-
ister (SEAMRR), which defines a protected memory region,
accessible solely by SEAM VMX root operations. This se-
cure environment hosts two pivotal CPU-attested modules:
the Intel® TDX module and the Intel® Persistent SEAMLDR
(P-SEAMLDR) module. This architecture ensures that the
memory and CPU state of TDs remain protected from unau-
thorized access, thereby establishing a robust security foun-

dation for the execution of sensitive workloads in virtualized
environments.

The role of the Intel® TDX module can be summarized as:

1 The TDX module enforces strict access control poli-
cies, ensuring that only the TD has access to its memory
and CPU state. The hypervisor and other VMs cannot
access the TDs resources unless explicitly allowed by
the TD.

2 The TDX module ensures that the memory allocated
to a TD cannot be tampered with. It tracks the memory
pages assigned to the TD and ensures that no unautho-
rized modifications can occur.

3 The TDX module supports attestation policies that
allow external parties to verify the integrity and security
of the TD. By measuring the TDs firmware and provid-
ing cryptographic proofs, the TDX module enables the
creation of a trusted execution environment.

4 The TDX module enforces policies that ensure the
TD is securely initialized and that its resources are se-
curely wiped during shutdown. This prevents any resid-
ual data from being accessed after the TD is no longer
in operation.

2.2 Trust Domain (TD)
Trust Domains (TDs) are the secure VMs that are managed
by the TDX module. These TDs operate in SEAM VMX
non-root mode, meaning they are isolated from the regular
VMX root environment (where the VMM operates). This
isolation ensures that the memory and CPU state of the TDs
are protected from the VMM and other external software. The
process of launching of a TD from the VMM can be described
as below:
The VMM initiates the creation and launch of a TD by prepar-
ing the TDVF image, which contains essential boot code,
security configurations, and initialization components. The
VMM employs the Intel® TDX module to perform an initial
cryptographic measurement of the TDVF image, storing the
resulting hash in the TD Measurement Register (MRTD) to
ensure firmware integrity. Subsequently, the VMM initializes
and encrypts the memory allocated to the TD, ensuring its
isolation from other software, including the VMM itself. Vir-
tual CPUs (vCPUs) are also set up, with one designated as
the Bootstrap Processor responsible for initial system setup.

The TDVF is launched in 32-bit protected mode, with
the BSP transitioning the system to 64-bit long mode, en-
abling modern OS and application support. The memory
paging system is configured, and the stack is set up to support
more complex firmware execution. The TDVF establishes
the Unified Extensible Firmware Interface (UEFI) environ-
ment, bypassing the Pre-EFI Initialization (PEI) phase due to
pre-configured memory settings. The BSP then initializes the
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Driver Execution Environment (DXE) Core, responsible for
loading and initializing necessary drivers, and prepares the
final memory map and ACPI tables.

Finally, the TDVF loads the operating system (OS) loader,
transitioning control to the OS and completing the secure
launch of the TD. The TD operates in a fully isolated and
secure environment, with the VMM providing necessary re-
sources while remaining isolated from the TD’s internal oper-
ations.

TDs are instantiated by the host VMM through a sequence
of SEAMCALL instructions, integral to the Intel® TDX mod-
ule architecture. The TDX module enforces strict memory
isolation between the TDs by leveraging Secure Extended
Page Tables (SEPT), ensuring that each TD’s memory space
is cryptographically protected and inaccessible to other TDs.
Each TD operates with its own set of virtual CPUs, and the
TDX module guarantees that the CPU state, including control
registers, Model-Specific Registers (MSRs), and other critical
execution contexts, remains completely isolated across TDs.
This robust isolation is critical in ensuring that even in the
presence of a compromised TD, the execution environment of
the TDy remains secure and free from interference, maintain-
ing the integrity of sensitive operations within clearly defined
and isolated boundaries.

Victim 
VMM

Launches Trust Domain

Victim Process Executing
 inside Trust Domain

Eavesdroping

Attacker measures 
the HPC values 

Figure 1: Threat Model: Isolation Breach between TD and
VMM

3 Threat Model

We now discuss adversarial assumptions that we follow
throughout the rest of the paper. We assume an adversary with
access to an Intel Xeon Sapphire Rapids system with TDX
enabled. All the data within a TD remains encrypted. When
a user performs tasks inside the TD, the data gets decrypted
and upon exiting the TD the data is re-encrypted to safe-
guard the sensitive information [10]. The Trusted Computing
Base (TCB) of Intel TDX, is the set of hardware/software
components within the trust boundary of a single TD. Con-
cretely, each TD trusts only the TDX Module, Attestation
software, hardware, and Authenticated Code Modules. The
adversary is either the VMM itself. We assume that the vic-
tim TD is configured with both ATTRIBUTES.PERFMON1 and

1Allows PMC profiling inside the TD. By default, TD is prohibited from
explicit PMC profiling.

ATTRIBUTES.DEBUG2 disabled. The adversary is allowed to
execute arbitrary code outside the TCB of victim TD, and
collect its PMC traces. The objective of this adversary is to
probe the PMC virtualization boundary between a victim TD
and the VMM, which is guaranteed to be protected by Intel
TDX Module [10]. Refer Fig. 1 for a graphical representation.

4 Isolation Breach between TD and VMM

The Intel® TDX module is integral to managing and uphold-
ing security properties within a TD. It enforces rigorous ac-
cess control policies, ensuring that only the TD can access its
associated memory and CPU state while maintaining a strict
isolation boundary between the TD and the VMM. However,
in this work, we aim to show that there is a breach in the
isolation between the TD and the VMM.

We start by utilizing HPCs to facilitate a side-channel leak-
age from within the TD. HPCs, which track various low-level
events such as cache misses, branch instructions, and CPU cy-
cles, are critical for optimizing system performance. However,
when exposed or misused, these counters can serve as pow-
erful side-channel sources [1, 2]. By carefully analyzing the
patterns in these metrics, an attacker can extract sensitive in-
formation, such as identifying the type of computation being
performed, the execution flow of cryptographic algorithms,
or even specific data-dependent operations.

In a TD where confidentiality and integrity are critical, the
capability to monitor hardware performance metrics from
the VMM represents a significant security vulnerability. Al-
though the VMM is designed to be isolated from the TD,
it can nonetheless collect these metrics, facilitating the cre-
ation of a detailed profile of the processes within the TD and
thereby undermining its security guarantees.

Our aim is to prove that despite these stringent measures,
we demonstrate that it remains possible for the VMM to
observe HPCs of processes executing within a TD, thereby
posing a significant risk of information leakage from the TD
and leading to the isolation breach between TD and VMM

Our Objective

Methodology: Each TD is instantiated from the VMM, using
the command:

./start-qemu.sh -i TD_image.qcow2 -k

kernel_file.rpm

TD launch command

To measure the HPCs for processes running inside the Trust
Domain (TD), we utilized the perf stat command-line tool
in Linux, which is widely used for performance analysis and

2Allows the VMM to debug the TD by disabling several protection fea-
tures in TDX.
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monitoring. The TD was initiated from the Virtual Machine
Manager (VMM) using the command:

sudo perf stat -e cycles, instructions, L1-dcache-

load-misses,L1-dcache-loads, branches, branch-

misses -I 50 -o output.txt ./start-qemu.sh -i

TD_image.qcow2 -k kernel_file.rpm

perf command

This command enables the monitoring and collection of
detailed performance statistics, such as CPU cycles, instruc-
tions, cache load misses, branch instructions, and branch
misses, while the TD is operational. These statistics were cap-
tured at sampling mode and saved to a designated output file
throughout the execution of the TD. By analyzing the metrics
recorded in the output file, we were able to gain insights into
the processes executed within the TD.

To demonstrate the capability of distinguishing between
different processes running inside a TD, we conducted an
experiment using two distinct types of processes: a) Process
1 a simple idle operation where the code instructs the system
to sleep for 10 minutes and, b) Process 2 a computation-
ally intensive process, involving the execution of complex
matrix multiplication. The experiment was carried out as
follows: TD Executing Process 1: We initiated the TD
environment using the perf stat command and executed
Process 1 within this TD. The collected data was then saved
into a designated file for subsequent analysis.

TD Executing Process 2: Similarly, we initiated the TD a
second time using the perf stat command, but this time
Process 2 was executed within the TD. As with Process 1,
the performance metrics were recorded at 50 millisecond
intervals and saved to a separate output file.

Results: By comparing the performance metrics gathered
from the two processes, we were able to identify significant
differences in the recorded HPCs. The clear distinction be-
tween the performance profiles of Process 1 and Process 2,
as observed in the recorded metrics, underscores the ability
to differentiate between different types of workloads run-
ning inside a TD based on HPCs. This differentiation is
crucial for analyzing the behavior of processes within se-
cure environments and for identifying potential side-channel
characteristics that may arise from such performance discrep-
ancies. Figure 2 shows the comparison between Process 1
and Process 2, where Process 2 consistently shows higher
values across all metrics compared to Process 1. Therefore,
we assert that the security and confidentiality of processes ex-
ecuting within the TD are at serious risk, and the current TDX
architecture fails to provide a robust guarantee of isolation
between the TD and the VMM.
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Figure 2: A comparative visualization of different hardware
performance metrics of Process 1 (No operation) and Process
2 (Matrix multiplication) executed inside a TD

4.1 Process Fingerprinting

Initially, we employed a foundational approach, leveraging
HPC metrics to differentiate between two processes running
within the TD, as illustrated in Figure 2. Building on this
foundational insight, we now explore more sophisticated case
studies that reveal the extended risks of this vulnerability.
Specifically, we aim to profile multiple processes within the
TD by monitoring the HPC metrics from the VMM.

We assume the VMM to be a potentially malicious entity.
With the necessary control structures and memory encryption
mechanisms established, we initiate the TD from the VMM
using the aforementioned perf command. Once launched,
the TD operates within a completely isolated environment,
where its memory and state are safeguarded by hardware-
enforced encryption and access controls.

Inside the TD we execute the UnixBench benchmark suite
designed to measure the performance of systems. UnixBench
performs a variety of tests to evaluate different components
of the system. The different benchmark processes that the
UnixBench suite consists of are: a© dhry2reg, b© whetstone-
double, c© syscall, d© pipe, e© context1, f© spawn, g© execl,
h© fstime, and i© shell16.

We sequentially execute all nine benchmarks within the
TD. For each benchmark, the TD is launched from the VMM,
and the benchmark is executed. Simultaneously, the perf
stat command collects hardware performance metrics in a
sampling mode with a 50ns interval. Upon completion of
each benchmark, the TD is exited, and the process is repeated
for the remaining eight benchmarks.

We systematically gathered the HPC values for all of the
nine benchmarks. By performing a comprehensive analysis
of this HPC data, we successfully generated distinctive finger-
prints for each benchmark. As illustrated in Figure 4, branch
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Figure 3: Classification accuracies for different Benchmarks

Figure 4: Branch miss values across different Benchmarks

Figure 5: L1-dcache-load-miss values across different Bench-
marks

miss values are pivotal in distinguishing between benchmarks
running within the TD. We observe that the shell16 bench-
mark has the highest range of branch miss values because
shell16, executing 16 concurrent shell instances, likely in-
curs higher branch miss rates due to increased conditional
branches, and frequent context switches. Similarly, Figure 5,
describes how the different benchmarks can be distinguished

with their respective L1-dcache-load-miss values.
To validate our findings further, we collected approximately

20 HPC data files per benchmark. We constructed a CNN
classifier model that can classify between all these nine bench-
marks executing inside the TD based on the HPC data. CNNs
are highly effective for classification tasks involving struc-
tured data due to their ability to learn hierarchical feature
representations through convolutional layers. They excel at
capturing local patterns and spatial dependencies, allowing
the model to automatically extract meaningful features from
raw data. Figure 3 presents the confusion matrix evaluating
the model’s classification accuracy. The diagonal entries in
the matrix signify the model’s precision in correctly iden-
tifying each benchmark, whereas the off-diagonal entries
represent misclassifications, indicating instances where the
model incorrectly labels one benchmark as another.

4.2 Class Leakage Attack

In prior work, we have demonstrated the effectiveness of
utilizing perf stat command to classify and distinguish
between multiple processes executing within a TD. To further
emphasize the gravity of this isolation breach, we extend our
analysis by targeting the fine-grained profiling of a single
process within the TD. In particular, we focus on extracting
detailed information about the specific image class being
inferred by a machine learning model operating within the
TD, thereby revealing a critical vulnerability in the isolation
guarantees of such environments.

During the inference operation, a trained machine learning
model uses its learned parameters to compute outputs such as
class probabilities, regression values, etc. While the primary
goal of inference is to make accurate predictions, this can in-
advertently reveal sensitive information through information
leaks. These leaks can be quantified by various performance
metrics, including execution time, branch misses, cache ac-
cesses, cycles, etc. The study presented in [18] demonstrates
that timing values can be exploited to infer the class predicted
by a CNN model by monitoring timing variations, named
class leakage attack. The attack exploits a timing side-channel
vulnerability found in the PyTorch framework, particularly in
the Max Pooling operation of CNNs. This vulnerability arises
from the non-constant time implementation of the Max Pool-
ing function. Specifically, the function relies on a conditional
branching operation (if statement) to determine and update
the maximum value within a pooling window. The frequency
of this conditional branch being executed varies depending
on the specific input data. This variance leads to differences
in the execution time of the Max Pooling operation, which
can be exploited to infer the class labels of input data.

In our scenario, the host VMM is assumed to be the adver-
sary. We launch the TD from the compromised host VMM
and inside the TD, a trained CNN model is deployed. The
CNN model is trained on two widely recognized image clas-
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Figure 6: Distinguishable Class Pairs Identified via HPCs in
the VMM during CNN Inference on CIFAR-10 (45 Total) and
CIFAR-100 (4950 Total) within the Trust Domain

sification benchmarking datasets: CIFAR-10 and CIFAR-100,
after training it we exit the TD.

We again launch the TD, from the VMM with the perf
stat command and we execute inference operations using the
CNN model within the TD while simultaneously monitoring
various performance counter metrics from the VMM. For the
CIFAR-10 dataset, the CNN model performs the inferencing
operation of 10 images, belonging to one of the ten distinct
classes. The performance counter events are recorded for each
inference operation. This process is repeated 10 times, once
for each of the 10 classes, yielding a detailed performance
profile for each class. We repeat the same procedure for the
CIFAR 100 dataset.

By analyzing HPCs, we can effectively differentiate be-
tween the class images undergoing inference within the TD.
Specifically, Figure 6 demonstrates that, for CIFAR-10, 42
out of 45 class pairs are distinguishable, while for CIFAR-100,
4,489 out of 4,950 class pairs are distinguishable depending
on the branch misses values. The vertical axis of the figure
quantifies the total number of distinguishable class pairs for
CIFAR-10 (represented in red) and CIFAR-100 (represented
in blue). This data underscores the high efficacy of HPCs in
revealing class distinctions during CNN inference operations
within the TD, highlighting a significant vulnerability. The
distinguishability of class pairs across the majority of models
in CIFAR-10 and CIFAR-100 using HPC data emphasizes the
potential risk of side-channel attacks exploiting these metrics
to infer sensitive information, thereby posing a substantial
threat to the confidentiality of the inferences performed within
the TD.

Although the Intel® TDX module introduces substantial
security improvements to protect the TD, our investigation
reveals that these measures are inadequate to ensure com-
plete isolation between the TD and the VMM.

Takeaway

5 Conclusion

In this paper, we have put forward a critical vulnerability
in Intel® TDX module, which compromises its fundamental
security promise of isolation between the VMM and TDs. Our
findings illustrate that performance counters, despite Intel®’s
obfuscation mechanisms, can still be exploited to discern the
activity states of TDs in scenario of co-location of VMM
processes with TDs, introducing serious side-channel risks.
Through process fingerprinting we showcased the real-world
implication of such vulnerabilities. These results underscore
the urgent need for stronger safeguards in TDX to prevent
such covert information leaks and protect sensitive data in
virtualized environments.
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