
Triple Ratchet: A Bandwidth Efficient
Hybrid-Secure Signal Protocol

Yevgeniy Dodis1, Daniel Jost1, Shuichi Katsumata2,3, Thomas Prest2, and
Rolfe Schmidt4

1 New York University
{dodis, daniel.jost}@cs.nyu.edu

2 PQShield
{shuichi.katsumata, thomas.prest}@pqshield.com

3 AIST
4 Signal Messenger
rolfe@signal.org

Abstract. Secure Messaging apps have seen growing adoption, and are
used by billions of people daily. However, due to imminent threat of a
“Harvest Now, Decrypt Later” attack, secure messaging providers must
react know in order to make their protocols hybrid-secure: at least as
secure as before, but now also post-quantum (PQ) secure. Since many of
these apps are internally based on the famous Signal’s Double-Ratchet
(DR) protocol, making Signal hybrid-secure is of great importance.

In fact, Signal and Apple already put in production various Signal-based
variants with certain levels of hybrid security: PQXDH (only on the initial
handshake), and PQ3 (on the entire protocol), by adding a PQ-ratchet to
the DR protocol. Unfortunately, due to the large communication overheads
of the Kyber scheme used by PQ3, real-world PQ3 performs this PQ-
ratchet approximately every 50 messages. As we observe, the effectiveness
of this amortization, while reasonable in the best-case communication
scenario, quickly deteriorates in other still realistic scenarios; causing
many consecutive (rather than 1 in 50) re-transmissions of the same
Kyber public keys and ciphertexts (of combined size 2272 bytes!).

In this work we design a new Signal-based, hybrid-secure secure messag-
ing protocol, which significantly reduces the communication complexity
of PQ3. We call our protocol “the Triple Ratchet” (TR) protocol. First,
TR uses erasure codes to make the communication inside the PQ-ratchet
provably balanced. This results in much better worst-case communication
guarantees of TR, as compared to PQ3. Second, we design a novel “variant”
of Kyber, called Katana, with significantly smaller combined length of
ciphertext and public key (which is the relevant efficiency measure for
“PQ-secure ratchets”). For 192 bits of security, Katana improves this key
efficiency measure by over 37%: from 2272 to 1416 bytes. In doing so, we
identify a critical security flaw in prior suggestions to optimize communi-
cation complexity of lattice-based PQ-ratchets, and fix this flaw with a
novel proof relying on the recently introduced hint-MLWE assumption.

During the development of this work we have been in discussion with
the Signal team, and they are actively evaluating bringing a variant of it
into production in a future iteration of the Signal protocol.

Table of Contents

1 Introduction . 4
1.1 Triple Ratchet Design Overview . 6
1.2 Lattice-based Katana RKEM Overview . 8

2 Preliminary . 10
3 Hybrid Secure Messaging . 11
4 The Triple Ratchet . 13

4.1 Construction . 13
4.2 Correctness and Security . 19

5 From Ratcheting Key Encapsulation Mechanism to CKA 20
5.1 Definition of Forward-Secure Ratcheting KEM 20
5.2 A Generic Construction of CKA from Ratcheting KEM 22

6 Katana: An Efficient Ratcheting KEM from Lattices 23
6.1 Construction of Katana . 23
6.2 Security of Katana . 24
6.3 Optimizing Katana with Bit-Dropping . 26
6.4 Concrete Parameter Selection . 26

7 Efficiency Analysis of Triple Ratchet . 28
7.1 Effect of Our RKEM on Communication Costs 28
7.2 Effect of Chunk Encoding on Communication Costs 29

A Omitted Preliminary . 33
A.1 Lattices and Hardness Assumption . 33
A.2 Rounding . 33
A.3 CKA Security . 34
A.4 Chunk Encoding . 35
A.5 Cryptographic Primitives . 35

B More Details on Hybrid Messaging . 36
C Triple Ratchet: Security Proof . 39
D Details on the CKA from RKEM . 44

D.1 Omitted Definition of RKEM . 44
D.2 Protocol Description . 45
D.3 Security . 45

E More Details on Our Lattice-based RKEM Katana 50
E.1 Correctness . 50
E.2 FS-IND-CPA Security . 51
E.3 Ratchet Simulatability . 54
E.4 Details on Optimized RKEM . 59
E.5 Details on Concrete Parameter Selection . 60

F Additional RKEM instantiation . 61
F.1 Generic Construction . 61
F.2 Non-Forward-Secure Lattice-based Construction 62
F.3 Diffie-Hellman Constructions . 62

G Remark on Bad Randomness . 64

3

1 Introduction

The Signal Protocol, used by Signal, WhatsApp, Google RCS, and Facebook
Messenger to protect the communications of billions of people worldwide, has
widely been considered to be a benchmark for secure messaging. At its core, it uses
a famous Double Ratchet protocol [31] to provide important security properties
called forward secrecy (FS) and post-compromise security (PCS). Signal (and the
Double Ratchet protocol) has been widely deployed with heavily scrutinized open
source implementations, and has been formally analyzed in [13,1,9,11,25,7,14] to
show that it provides many desirable properties, including FS, PCS, but also
mutual authentication and even certain form of deniability [36].

Post-Quantum Security. While this gives us confidence in the protocol today,
these security guarantees are contingent on Diffie-Hellman (DH) assumptions
for elliptic curves that can be broken by a quantum computer using Shor’s
algorithm [34]. This is not only a future threat, since protocol transcripts collected
today can be recorded and saved until a quantum computer is available, then
decrypted in a Harvest Now, Decrypt Later (HNDL) attack. Motivated by
these concerns, the work by Alwen et al. [1] showed how to generalize Signal
protocol to work with any key encapsulation mechanism (KEM). As a result, one
could potentially replace the DH-based Signal with a post-quantum variant; for
example, using recently standardized Kyber (i.e., ML-KEM) [33]. Unfortunately,
the resulting protocol is not sufficient for practical use, for two reasons. First, we
do not want to lose the original DH-based security of Signal. Thus, practically
relevant post-quantum extensions of Signal should provide what is called hybrid
security, and meaningfully combine the DH-based Double Ratchet with some
post-quantum variant. Second, the use of Kyber has noticeable costs in the
communication complexity, making it often impractical in the real world.

PQXDH and PQ3. As a result, the industry transition to post-quantum Signal
has been somewhat slower. First, Signal Messenger recently deployed PQXDH [26],
an update to the X3DH [32] handshake component of the Signal Protocol, and
formally verified that the updated protocol provides HNDL protection without
removing any of the previous DH-based security guarantees [8]. Since this was only
an update to the initial protocol handshake, it does not provide any post-quantum
PCS, one of the key features of the original Double Ratchet protocol.

To address this issue, Apple recently deployed PQ3 [4], — a protocol similar
to Signal, — that continuously adds Kyber-768 freshly shared secrets to the “root
secrets” of the Double Ratchet protocol. Simplifications of the resulting PQ3
protocol have been analyzed by [35] and machine verified by [29], but they do
not fully capture what is done in the real world. Concretely, [35] only models
Kyber public keys and ciphertexts as being sent with every asymmetric ratchet
message. As we mentioned above, this is quite expensive, and Apple decided to
perform a post-quantum ratchet approximately every 50 messages (or whenever
they have not sent a fresh Kyber public key within a week), in order to amortize
the large communication cost of Kyber keys and ciphertexts [22]. Heuristically
(and somewhat oversimplifying), this means that users have 50 “cheap” epochs

4

(which do not help with post-quantum PCS), followed by 1 “expensive” epoch
(which gives post-quantum PCS, but at a much slower rate than DH-based PCS).5

Communication Efficiency of PQ3. While the deployment of PQ3 was an
amazing, and greatly celebrated advance of post-quantum cryptography in the
real-world, there are at least two avenues where it can be substantially improved
in terms of its communication efficiency. (And we address these deficiencies in
this work, as our main contribution.)

First, while PQ3’s “amortization trick” might provide a reasonable trade-off
in the best-case scenario, when the communication pattern between the users
is roughly balanced, the effectiveness of this amortization quickly deteriorates
in less balanced, but still realistic real-world scenarios. This is because each
of Signal’s sending epochs lasts roughly until the peer responds (and advances
the public ratchet). So it might be possible — and certainly happens from
time to time — that the “expensive epoch” happens exactly when one of the
users is offline for an extended period of time,6 resulting in many consecutive
re-transmissions repeating the same (long!) Kyber public keys and ciphertexts.
In particular, from a theoretical perspective one can easily define (adversarial)
communication scenarios where the “expensive epochs” last for a long time, and
PQ3’s amortization heuristics do not offer any asymptotic saving, as compared
to the simplified protocol analyzed by [35].7

Second, we already mentioned that Kyber’s public key and ciphertext (and
each “expensive epoch” message in PQ3 sends both) is much larger than the single
DH group element sent by classical Signal. Concretely, (1088+1184=2272) bytes
compared to 32 bytes, which is 71 times longer! Thus, any concrete efficiency
improvement over using the generic (post-quantum) KEM advocated by [1] will
likely result in much faster PCS. For example, it allows reduction of the number
50 in PQ3’s heuristic amortization, while maintaining similar communication
complexity. In that regard, [1,17,27] already described lattice-based protocols
(either directly for Kyber, or equivalent variants over other rings) which seemingly
achieve this goal. Unfortunately, the protocol of [17] achieves almost no saving
(less than 2%, as noticed by the authors) as compared to using the generic Kyber,
while the protocols of [1,27] contain a critical subtle security flaw (as we show
below) invalidating these analyses. Thus, prior to this work we did not have
optimized variants of Kyber which would significantly reduce the communication
complexity of post-quantum Signal or its variants.

Our Contributions. In this work, we provide a practical hybrid-secure Double
Ratchet protocol called the Triple Ratchet protocol.8 Our name is taken from
the fact that we use (1) a post-quantum public ratchet, (2) a classical public
ratchet, and (3) symmetric ratchet. Compared to PQ3, it addresses both of the
communication deficiencies mentioned above.
5 This heuristics is related to “on-demand” ratcheting suggested by [10].
6 E.g., when using devices which are periodically turned off.
7 [29] explicitly models this optional sending behavior, but does not model the repetition

of KEM public key and ciphertext messages required for immediate decryption [22].
8 This should not be confused with the protocol by [9] with the same name.

5

First, it uses erasure codes to evenly distribute the communication inside the
“post-quantum” ratchet, without any amortization heuristics. At a high level,
instead of sending one long message every 50 epochs, we encode the resulting
message using an erasure code, and send a fresh chunk of this encoding with
every message. For example, we could set parameters so that the long message
will be decoded from any 50 chunks. Then, in a fully balanced setting we would
still achieve PCS in 50 epochs and same communication as PQ3, but without any
amortization. However, we start getting big savings in the unbalanced cases, when
some epochs are long-lasting. For such epochs, PQ3’s strategy could be viewed as
using a hugely inefficient repetition code, leading to a big communication penalty;
e.g., a factor of up to 50 in our “PQ3-inspired” example. We detail this in Sec. 7,
and give an overview of some of the technical challenges we resolved in Sec. 1.1.

Second, we design a novel Continuous Key Agreement (CKA) protocol based on
Kyber, which we call Katana-CKA, which could be used inside our Triple Ratchet
protocol. Recall, CKA was a generic building block used by [1] to abstract out the
design of the Double Ratchet Protocol. [1] then presented a generic KEM-based
CKA, where every message contained a KEM public key and ciphertext. When
applied to Kyber at security level 192 bits, this gives CKA messages of size 2272
bytes. In contrast, for the same security level Katana-CKA uses messages of size
1416 bytes, saving over 37% over the generic construction.

We notice that Katana-CKA is closely related to what previous works called
“optimized” lattice-based CKA [1,27], but instantiated with a carefully chosen
variant of Kyber. As we mentioned, however, we identify a critical flaw in the
previous analyses of this “optimized” KEM, and non-trivially fix them with a
novel proof relying on the recently introduced hint-MLWE assumption [24,18].

In more detail, we first generalize the KEM-based CKA from [1] to work
with what we call a Ratcheted KEM (RKEM). On a high level, RKEM abstracts
KEM properties in a way which allows a freshly sampled ciphertext also be used
as “part” of a different KEM public key. In essence, this is precisely why the
original DH-based CKA of Signal saved a factor of 2 in communication, when
compared to the generic KEM-based DH construction. And this is why RKEM is
precisely fitted for the use inside a CKA. Once we define RKEM and show that it
generically implies CKA, it allows us to focus on a cleaner RKEM primitive, which
we then construct from the hint-MLWE assumption. We call the resulting RKEM
Katana,9 which explains the name Katana-CKA for our new CKA. We expand on
our technique in Sec. 1.2.

During the development of this work we have been in discussion with the Signal
team, and they are actively evaluating bringing a variant of it into production in
a future iteration of the Signal protocol.

1.1 Triple Ratchet Design Overview

As we mentioned, the Triple Ratchet protocol could be used as the generalization
of the Double Ratchet paradigm from [1] to allow the use of a third “post-quantum

9 Similar to Kyber, Katana is a certain type of an ancient (Japanese) sword.

6

ratchet”. Formally, instead of composing a (classical) CKA protocol with the stan-
dard symmetric ratchet, we will compose the symmetric ratchet with two different
CKA protocols. (In practice, we envision using the standard “optimized” DH-based
CKA with our new Katana-CKA, but the composition is stated generically.) The
key difference is that the second (post-quantum) CKA will use erasure codes to
send its (potentially) long messages in “chunks”. This seemingly simple optimiza-
tion creates complications in the protocol, security model, modular choices of
primitives/abstractions, and search for practical optimization.

First, the classical and post-quantum ratchets are no longer synchronized,
and there are situations where one ratchet moves forward and the other does
not. As the result, we can no longer use a single “root key” where we hash the
new key material whenever one of the ratchets move forward. We resolve it by
having two root keys, carefully deriving two separate message keys (also using
two separate10 symmetric ratchets), and finally combine those message keys to
encrypt the application message. In contrast, PQ3 could use a single root key,
since the two ratchets were always synchronized.

Second, unlike the classical ratchet, the sender cannot immediately use the
newly derived PQ key material (from CKA) to encrypt the message (although
it will hash it to the appropriate “root key”). Indeed, since it could take several
chunks for the recipient to get the new PQ CKA message, the recipient would
not be able to immediately decrypt the message with just one chunk. Instead,
the receiver now has to continuously acknowledge how many chunks it received
so far. And the sender will only use the already updated root key to derive the
message key only if it knows that the receiver is missing at most one chuck
to decode the CKA message. This also creates other “book-keeping challenges”,
which are carefully resolved in our design. (For example, we need to remember
the number of sent messages in the last two epochs, rather than only one.) An
interested reader can fast-forward to Figs. 3 and 4 to look at our final Triple
Ratchet protocol. The left column of both figures roughly corresponds to the DH
ratchet, while the right figure — to the PQ ratchet with erasure codes. Despite
the necessary extra complexity in the code, the actual protocol is quite fast and
elegant, resulting in very efficient instantiations.

Third, we have to generalize the notion of “epochs” from [1], as they do not
necessarily correspond to a single “change of communication direction”. In fact,
there are separately evolving classical and post-quantum epochs, needed for the
hybrid security guarantees. We resolve by providing a single protocol, but then
parameterize its (either classical or post-quantum) security by a corresponding
epoch function, which roughly models when the party fully communicated its
fresh key material (e.g., a single CKA message, in a concrete instantiation) to its
peer. And then providing concrete properties of the two resulting epoch functions,
stating how quickly the (classical or PQ) epochs increase, based on the actual
communication pattern.

10 In this sense we have four ratchets going on, but since the same symmetric ratchet is
used twice, we stuck with the “Triple Racthet” acronym.

7

With these important changes, our resulting protocol could be viewed as a
natural, and still very modular, generalization of the Double Ratchet abstraction
from [1]. In particular, one can get many concrete instantiations by varying the
two underlying CKA s, and the length of the “chunk” in the PQ-CKA.

1.2 Lattice-based Katana RKEM Overview

In theory, instantiating RKEMs from lattices is trivial, as standard KEMs are
special cases of RKEMs. Indeed, the CKA built from such RKEMs is exactly
the generic construction of CKA based on KEMs by [1]. The true strength of
RKEM lies in enabling a more efficient CKA construction, like the Double Ratchet
protocol used in Signal. Assume Alice holds a P Zp and Bob holds ga P G. In
Signal, Bob samples b $

Ð Zp and sends gb to Alice. The shared key K is then
updated by mixing gab into K, ratcheting the stateforward. Importantly, gb holds
two purposes: it acts as an “encryption/ciphertext” for the Diffie-Hellman key
exchange while also serving to be a new “public key” for the next ratchet (i.e.,
Alice will generate a1 $

Ð Zp and update the state by ga
1b). While this reusing of gb

for two purposes has an immediate benefit on efficiency, one downside compared to
the KEM-based construction is that it achieves a weaker FS guarantee. Recently,
[9] showed a simple trick to make it as secure, with almost no overhead.

There have been efforts to port the above efficient classical construction
to the post-quantum setting [1,17,27]. Notably, [1,27] proposes a lattice-based
equivalent to the Double Ratchet protocol used in Signal. At a high level, it
goes as a follows, where Rq :“ ZqrXs{pX

n ` 1q and D P Rkˆk
q is a public

matrix. Assume Alice holds sA P Rk
q and Bob holds uA “ D ¨ sA ` eA P Rk

q ,
where sA and eA are short. Bob samples short vectors sB, eB P R

k
q and ẽB P Rq

from appropriate distributions, and a random seed $
Ð t0, 1un Ă Rq. It then sends

puB, vAq :“ pD
J ¨sB`eB,u

J
A ¨sB` ẽB`seed ¨tq{2sq to Alice.11 Alice first interprets

puB, vAq as a ciphertext and decrypts seed by rounding vA´uJ
B ¨ sA to the nearest

multiple of tq{2s. The seed is then mixed into the shared key K to ratchet the
state forward. Alice then interprets part of the ciphertext uB as Bob’s public key
so that it can perform similar ratcheting. As uB is the dominant component in
terms of size, this effectively almost halves the communication size, giving us the
same benefit as Signal’s Double Ratchet.
Flaw in Previous Analyses. While the construction is intuitive and simple,
we observe that the security proof is subtle. Indeed, we identify that both previous
works [1,27] contain the same flaw in the CKA security proof, rendering their
scheme insecure for certain parameter regime. Recall that Signal’s Double Ratchet
is proven to satisfy PCS by arguing two things even if Alice’s secret key a P Zp

is compromised:

(C.1) gab can be simulated without Bob’s secret key b.
11 Note that while [1] bases their construction on FrodoKEM, our explanation is based

on a Kyber-like KEM as in [27]. These differences will have no importance to our
argument.

8

(C.2) pg, ga
1

, gb, ga
1bq is indistinguishable from pg, ga

1

, gb, gcq for c $
Ð Zp.

Item (C.2) stipulates that once Alice updates its key to ga
1

, while Bob’s key gb

is uncompromised, then the state heals since ga
1b is mixed into the shared key.

While seemingly unimportant, Item (C.1) is a vital property to formally invoke
the DDH assumption in Item (C.2) — if not for Item (C.1), the reduction cannot
embed gb given by the DDH challenge into the CKA protocol. To imitate this
proof for the aforementioned lattice-based scheme, we have to argue the following,
even if Alice’s secret key sA P R

k
q is compromised:

(L.1) vA :“ uJ
A ¨ sB ` ẽB ` seed ¨ tq{2s can be simulated without Bob’s secret key

sB.
(L.2) pu1

A,uB, v
1
Bq “ pD ¨ s1

A ` e1
A,D

J ¨ sB ` eB,u
J
B ¨ s

1
A ` ẽ1

A ` seed1
¨ tq{2sq is

indistinguishable from pu1
A,uB, vq for v $

Ð Rq.

It turns out that this Item (L.1) is where the subtlety lies. Unlike in the
classical setting, we no longer have clear symmetry. Indeed, observe that vA
is identically expressible as vA “ pD ¨ sA ` eAq

J ¨ sB ` ẽB ` seed ¨ tq{2s “

uJ
B ¨ sA´ eJ

B ¨ sA ` eJ
A ¨ sB ` ẽB` seed ¨ tq{2s, where we plug in uB “ DJ ¨ sB` eB.

Denoting the underlined value as h, it is clear that h cannot be simulated only us-
ing Alice’s secret sA (and eA). In fact, an adversary with sA can directly compute
h to infer statistical knowledge of sB and eB. Even worse, since the adversary
learns slight information about sB, we can inductively see that the adversary also
learns no information even on the updated key s1

A, creating a vicious cycle.
Previous work has overlooked this issue and falsely invoked Item (L.2). We

note that technically, we can statistically prove Item (L.1) by sampling ẽB from a
distribution super-polynomially larger than ´eJ

B ¨sA`eJ
A ¨sB (i.e., noise flooding).

However, this renders the scheme unusable in practice, and defeats the purpose
of using the optimization.
Our Solution. At the core of our technical contribution, we use the recent
hint-MLWE problem by [24,18] to computationally prove Item (L.1), and carefully
argue Item (L.2). hint-MLWE in essence stipulates that the standard MLWE
remains hard even if some noisy linear leakage of the secret is given to the
adversary. In fact, we go one step further and show that our new proof strategy
is key to make the recent trick by Bienstock et al. [9] improving FS to work in
the lattice-setting. The main idea of [9] was for Alice to run the same Signal’s
Double Ratchet protocol, but to store pa :“ a1 ` Hpga

1bq as opposed to a1. The
intuition is that even if pa is compromised, ga

1b remains secure assuming H is a
random oracle (or ElGamal encryption is circular secure), hence offering better
FS. In the lattice-setting however, the updated psA :“ s1

A ` Hpseed1
q must still

remain short for decryption to work, and as such, leaking psA again statistically
leaks information on s1

A. For more detail of the proof, we refer to Sec. 6.2.
While hint-MLWE reduces from MLWE, this is not without a slight degra-

dation in the parameters. We wrap up everything by performing cryptanalysis
on hint-MLWE based on the reduction from hint-MLWE to MLWE, and set con-
crete parameters for our RKEM called Katana. We conclude that the ratcheting
information is «40 % better than naively using Kyber as the KEM-based CKA [1].

9

2 Preliminary

Notations. When S is a finite set, we let UpSq denote the uniform distribution
over S, and abbreviate x $

Ð S for x $
Ð UpSq. Given a positive integer N and a

distribution D of support included in an additive group, we let rN s ¨D denote
the convolution of N independent copies of D. In other words, rN s ¨ D is the
distribution of x “

ř

iPrNs xi, where @i P rN s, xi
$
Ð D. Given two distributions

X,Y over a multiplicative group, we also let X ¨Y denote the product distribution
of X and Y . Lastly, we may write x $

Ð Dtrandu to make explicit the randomness
used to sample from the distribution D. In protocol descriptions, whenever a req
statement fails or an error statement is output by an algorithm, all changes to
the algorithm state is assumed to be discarded and undone. With an overload in
notations, in security game descriptions, req means restricting the class of valid
adversaries to those not violating the condition.

Lattices and Hardness Assumption. We recall the standard notion of lattices
and the definition of module learning with errors (MLWE) problem in App. A.1.
In our work, we rely on a generalization of the recent hint MLWE problem by
Kim et al. [24], stating that MLWE remains hard even if some leakage of the
secret is provided. The following is based on [18].

Definition 2.1 (hint-MLWE). Let k, ℓ, q be integers, χ and χ̃ be probability
distributions over Rk

q and Rℓ
q, respectively, and F be a probability distribution

over Rℓˆ2k
q . The advantage of an adversary A against the Hint Module Learning

with Errors hint-MLWEq,k,ℓ,χ,χ̃,F problem is defined as:

Advhint-MLWE
A p1λq “

ˇ

ˇ

ˇ
Pr

”

A
´

D,D ¨ s` e,M, h
¯

“ 1
ı

´ Pr
”

A
´

D,b,M, h
¯

“ 1
ı
ˇ

ˇ

ˇ
,

where pD,b, s, e,Mq $
Ð Rkˆk

q ˆRk
q ˆχˆχˆF . Moreover, the hint is defined as

h “M

„

s
e

ȷ

` z where z $
Ð χ̃. The hint-MLWEq,k,ℓ,χ,χ̃,F assumption states that

any efficient adversary A has negligible advantage.

The hint-MLWE problem is known to be as hard as the MLWE problem with
appropriately set parameters. We include the formal statement in App. A.1.

Chunk Encoding. We use a standard erasure code instantiated using Reed-
Solomon erasure codes to implement our “chunking” strategy of post-quantum
CKA messages. The details are given in App. A.4.

Cryptographic Primitives. We use an authenticated enryption with associated
data (AEAD) scheme AEAD “ pEnc,Decq as well as a number of key derivation
functions KDF. The latter is assumed to be variable input and output length.
The details are given in App. A.5.

Continuous Key Agreement. We follow the abstraction of continuous key
agreement (CKA) put forth by Alwen, Coretti, and Dodis [1]. A CKA is a two-
party protocol between parties A and B that enables them to exchange a sequence

10

of shared symmetric keys — roughly abstracting the public-ratchet of the Signal
protocol. A CKA is a two-party protocol between parties A and B, where without
loss of generality we assume A to be the initiating party of the communication.

Definition 2.2. A continuous key agreement pCKAq protocol ΠCKA with initial
key space ICKA, key space K consists of PPT algorithms

`

CKA-Init-KeyGen,
pCKA-Init-P,CKA-Send-P,CKA-Rec-PqPPtA,Bu

˘

defined as follows:

CKA-Init-KeyGenp1λq Ñ ICKA : It takes as input the security parameter 1λ and
outputs an initial key ICKA P ICKA.

CKA-Init-ApICKAq Ñ stA : It takes as input an initial key ICKA P ICKA and outputs
an initial state stA for party A.

CKA-Send-ApstAq Ñ pK, ρ, stAq : It takes as input a state stA of party A and
outputs a key KCKA P K, a message ρ and an updated state stA.

CKA-Rec-ApstA, ρq Ñ pK, stAq : It takes as input a state stA of party A and a
message ρ, and outputs a key K P K Y tKu, and an updated state stA. This
algorithm is assumed to be deterministic.

In the above, we define algorithms CKA-Init-B, CKA-Send-B, and CKA-Rec-B
analogously with roles of parties A and B swapped.

Remark 2.1 (Alternating Communication). Following Alwen, Coretti, and
Dodis [1], we always assume parties A and B execute the sending and receiv-
ing algorithms in an alternating order. That is, CKA-Send-A Ñ CKA-Rec-B Ñ
CKA-Send-BÑ CKA-Rec-AÑ ¨ ¨ ¨ . For instance, this restriction suffices to capture
Signal’s double ratchet protocol. Moreover, we assume without loss of generality
that party A is always the first to send a message.

Security. A CKA scheme’s correctness and security are formalized as in [1] with
the latter phrased as a real-or-random experiment for a (fixed) challenge epoch pt˚.
For this epoch, the attacker is either given the real key output by the protocol, or
an independent and fresh key. The game considers passive attacker that cannot
modify or reorder the messages being delivered. The adversary can leak a party’s
protocol state as long as the party’s epoch is not too close to the challenge epoch
pt˚. More concretely, a party must recover from a state compromise within ∆PCS

epochs and a state compromise must not endanger keys more than ∆FS epochs
from the past. See App. A.3 for a formal version of the game.

3 Hybrid Secure Messaging

In this work, we consider two-party secure messaging (SM) schemes that allow
parties A and B to communicate securely. We will first recap the notion of a
secure messaging protocol introduced by [1], a two-party asynchronous interactive
protocol allowing to securely exchange messages. This was originally used to
formally model the Double Ratchet protocol by Signal. Later, in Sec. 4, we will
instantiate this primitive with a hybrid secure messaging protocol.

11

Syntax. To define the syntax of a secure messaging scheme, we mostly follow [1].
However, since we will consider a hybrid secure messaging protocol, we slightly
generalize the syntax. Instead of having the receive algorithm output the epoch
number and period of the message, we allow it to output a general message index
that establishes an order on the received messages. (Recall that we generalize
the Double Ratchet protocol which supports immediate decryption, i.e., the
out-of-order receiving of messages.) In the following we only make the minimal
assumption on the index set to have a partial order that allows to totally order
all messages sent by each party — more expressive information encoding like
causality between send and receive events can be supported as studied in [12].

Definition 3.1. A secure messaging pSMq protocol ΠTR with initial key space
IK, message space M, and index space pIdx,ďq consists of PPT algorithms
`

SM-Init-KeyGen, pSM-Init-P,SM-Send-P,SM-Rec-PqPPtA,Bu

˘

defined as follows:

SM-Init-KeyGenp1λq Ñ IK : It takes as input the security parameter 1λ and
outputs an initial key IK P IK.

SM-Init-ApIKq Ñ stA : It takes as input an initial key IK P IK and outputs an
initial state stA for party A.

SM-Send-ApstA,Mq Ñ pct, st1
Aq : It takes as input a state st of party A and a

message M PM, and outputs a ciphertext ct and an updated state stA.
SM-Rec-ApstA, ctq Ñ pM, idx, st1

Aq : It takes as input a state st of party A and a
ciphertext ct, and outputs a message M PM, a message index idx P Idx, and
an updated state st1

A.

We define algorithms SM-Init-B, SM-Send-B, and SM-Rec-B analogously with
roles of parties A and B swapped. For simplicity, we assume the state stA to store
A’s current index idxpstAq, and analogously for user B.12

Security. We formalize correctness and security as part of a combined security
game. For space reasons, we defer to App. B for the formal game. On a high level,
the game allows the adversary to execute a protocol session by issuing send and
receive commands. Furthermore, the attacker can try to break confidentiality
by issuing challenges where either message M0 or M1 is sent depending on the
game’s challenge bit b, and can try to break authenticity by injecting their own
ciphertexts. In a bit more detail, the game ensures the following properties:

Correctness. In the absence of an active attacker, B must output the message
sent by A (and vice versa). Importantly, we require the protocol to support
immediate decryption of incoming ciphertexts, even if ciphertexts are reordered
on the network and some ciphertexts are dropped altogether. In addition, we
require B to output the message index that matches the one stored as A’s state
just after the send operation, and we require the index stored in each party’s
state to strictly increase with each operation. Jointly, those properties allow the
receiver to put all received messages into correct order.
12 Alternatively, SM-Init-A, SM-Send-A, and SM-Rec-A could each output this index.

12

Authenticity. The attacker cannot make a party accept ciphertexts that have not
been sent, as long as neither party has been corrupted. After a state compromise,
authenticity restores as long as the attacker remains passive and the compromised
party has access to fresh randomness. We refer to this property as post-compromise
security (PCS) and the game requires for PCS to restore security within ∆PCS

epochs. Here, we measure epochs using an (efficiently computable) epoch function
τpidxq of the message indices. The epoch function is a parameter of the security
game, and looking ahead, will depend on whether the classical or the post-
quantum part of the protocol will be assumed secure.

Privacy. While the parties’ states are uncompromised, the attacker obtains no
information about the messages sent. Analogously to authenticity, privacy is
required to restore after ∆PCS epochs after a state compromise. Furthermore,
forward secrecy (FS) dictates that messages sent as least ∆FS epochs prior to a
state compromise also remain secure. In other words, a state compromise may
reveal messages of the last ∆FS and the next ∆PCS epochs.

Note that our game generalizes the one by Alwen et al. [1] to hybrid messaging
and deviates in the following ways:

Message indices: Whereas the game in [1] kept track of epochs and periods
in a predetermined manner — with epochs changing on every change in
communication direction and periods incrementing for each message within
an epoch — we use the more general message indices to formalize correctness.

Epoch function: Along the same line, our game makes use of the abstract epoch
function τ to formalize FS and PCS. We remark that for our concrete
scheme the two choices of τ , for classical and post-quantum security, will
be unambiguous. Intuitively, the post-quantum part will utilize a slower
incrementing epoch function translating into slower FS and PCS.

Randomness leakage: Whereas [1] considered adversarially chosen randomness,
we consider honstely sampled but leaked randomness only (cf. App. G).

4 The Triple Ratchet

4.1 Construction

We now present the Triple Ratchet protocol, building on the seminal Double
Ratchet protocol for secure messaging. The Triple Ratchet protocol combines a
classically secure CKA with a post-quantum secure CKA protocol. The classically
secure part of the protocol directly follows the modularization of the Double
Ratchet put forth by [1]. Since the post-quantum CKA messages are significantly
larger than their classical counterparts, however, each post-quantum CKA message
is split into nchunk many chunks and sent alongside multiple (application) messages.
To retain immediate decryption, i.e., to ensure functioning of the protocol even
if individual messages are dropped, an erasure code is used. The protocol is
presented in Figs. 1 to 4. To ease presentation, we use the following conventions:
We depict the classical part in the left column with the post-quantum part in

13

Epochs

tR The epoch under which received messages are encrypted.
tS The key epoch under which sent messages are encrypted.

Invariant: tS P ttR, tR` 1u
tCurr The epoch for which key material is being exchanged.

Invariant: tCurr P ttS, tS` 1u

Periods
iS The number of messages sent in epoch tS.

iS91, iS92 The number of messages sent in epochs tS´ 1 and tS´ 2.
iR The number of messages received in epoch tR.

Keys

Kroot The current root key of the asymmetric ratchet.
KS The current sending key for epoch tS.

KS`1 The sending key for epoch tS` 1 (if already known)
KR The current receiving key for epoch tR.

KR`1,KR`2 The receiving keys for epoch tR ` 1 and tR ` 2 (if already
known).

StoredKeysrt, is Stored keys for processing out-of-order messages.

Chunks

cR The number of chunks received for tCurr (for receiving epochs).
cS The number of chunks sent for tCurr (for sending epochs).
cAck The number of chunks acknowledged tCurr (for receiving

epochs). Invariant: cAck ď cS.
L The set of chunk-period pairs received of the next CKA message.

Table 1: Protocol variables used by the post-quantum part of the Triple Ratchet
protocol, by each party. For simplicity Q superscripts have been omitted.

the right column.13 Shared parts run before and after the two sub-protocols are
depicted in the center. The two sub-protocols are independent of each other
and can, in prinicple, be run in parallel. In particular, they use disjoint sets of
variables, with corresponding variables either denoted with a superscript C (for
classical) or Q (for post-quantum) — for example, tCurrC and tCurrQ denote the
two independent epoch counters of the two CKAs. Finally, to reduce clutter we
omit those superscripts whenever clear from the context which protocol part
they refer to. In the following, we mainly describe the post-quantum part of the
protocol, refering to [1] for an in-depth discussion of the classical part.

Exchanging CKA messages. Analogous to the original Double Ratchet, parties
take turns in exchanging CKA messages. If a party wants to send an application
message while the other party is distributing chunks of their CKA message, the
party will simply acknowledge the number of chunks they already received without
sending their own chunks. As such, we still say that A acts as the sender in odd
epochs and as the receiver in even epochs. More concretely,

– In TR-Send-A, on line 17 the party A checks whether they are currently in a
sender or receiver epoch.

13 Note that the classical part technically can be seen as a simplification of the post-
quantum protocol for nchunk “ 1 with certain optimizations applied.

14

TR-Init-KeyGenp1λq

1 : ICKA
$
Ð CKA-Init-KeyGenCp1λq

2 : pKroot,KCKAq
$
Ð KPP ˆKC

CKA

3 : ICK Ð pICKA,Kroot,KCKAq

4 : ICKA
$
Ð CKA-Init-KeyGenQp1λq

5 : pKroot,KCKAq
$
Ð KPP ˆKQ

CKA

6 : IQK Ð pICKA,Kroot,KCKAq

7 : return IK :“ pICK, I
Q
Kq

TR-Init-ApIKq

1 : parse pICK, I
Q
Kq Ð IK

2 : parse pICKA,Kroot,KCKAq Ð ICK

3 : pKroot,KRq Ð KDF1pKroot,KCKAq

4 : KSÐ K

5 : ptCurr, iR, iS, iS92q Ð 0

6 : stA
$
Ð CKA-Init-ApICKAq

7 : ρÐ K

8 : StoredKeysCr¨s :“ K

9 : parse pICKA,Kroot,KCKAq Ð IQK

10 : pKroot,KS,KR`1q Ð KDF1pKroot,KCKAq

11 : pKS`1,KR,KR`2q Ð K

12 : ptCurr, tS, iR, iS, iS91, iS92q Ð 0

13 : tRÐ ´1

14 : pcS, cAck, cRq Ð p0, 0, nchunkq

15 : stA
$
Ð CKA-Init-ApICKAq

16 : ρÐ K

17 : StoredKeysQr¨s :“ K

TR-Init-BpIKq

1 : parse pICK, I
Q
Kq Ð IK

2 : parse pICKA,Kroot,KCKAq Ð ICK

3 : pKroot,KSq Ð KDF1pKroot,KCKAq

4 : KRÐ K

5 : ptCurr, iR, iS, iS92q Ð 0

6 : stB
$
Ð CKA-Init-BpICKAq

7 : ρÐ K

8 : StoredKeysCr¨s :“ K

9 : parse pICKA,Kroot,KCKAq Ð IQK

10 : pKroot,KR`1,KSq Ð KDF1pKroot,KCKAq

11 : pKS`1,KR,KR`2q Ð K

12 : ptCurr, tS, iR, iS, iS91, iS92q Ð 0

13 : tRÐ ´1

14 : pcS, cAck, cRq Ð pnchunk, nchunk, 0q

15 : stB
$
Ð CKA-Init-BpICKAq

16 : ρÐ K

17 : StoredKeysQr¨s :“ K

Fig. 1: Setup algorithms of the Triple Ratchet protocol. The classical part (left-
hand side) and the post-quantum part (right-hand side) use disjoint variables,
indicated by superscripts C and Q, respectively. For ease of reading, we omit
those superscripts whenever clear from the context.

skipXpt, iR1
q // for X P tC,Qu

1 : while iRX
ă iR1

2 : iRX
`“ 1

3 : pKRX,KX
aeadq Ð KDF2pKR

X
q

4 : StoredKeysXrt, iRX
s Ð Kaead

try-skippedXpt, iq // for X P tC,Qu

1 : KX
aead Ð StoredKeysrt, is

2 : StoredKeysXrt, is Ð K

3 : return KX
aead

Fig. 2: Helper algorithms of the Triple Ratchet protocol.

15

TR-Send-ApMq

1 : if JtCurr is evenK then

2 : tCurr `“ 1

3 : pKCKA, ρ, stAq
$
Ð CKA-Send-ApstAq

4 : pKroot,KSq Ð KDF1pKroot,KCKAq

5 : piS, iS92q Ð p0, iSq

6 : endif

7 : iS `“ 1

8 : hC :“ ptCurr, iS, ρ, iS92q

9 : pKS,KC
aeadq Ð KDF2pKSq

10 : if JtS “ tCurrK^ JtCurr is evenK then

11 : tCurr `“ 1 // start sending next key

12 : pKCKA, ρ, stAq
$
Ð CKA-Send-ApstAq

13 : pKroot,KS`1,KR`2q Ð KDF1pKroot,KCKAq

14 : if JtR “ tSK then

15 : pKR`1,KR`2q Ð pKR`2,Kq

16 : pcS, cAckq Ð p0, 0q

17 : if JtCurr is oddK then // sending chunks

18 : ρenc Ð Encodepρ, cSq

19 : cS `“ 1

20 : if JtS ă tCurrK^ JcAck ` 1 ě nchunkK then

21 : tSÐ tCurr // start using next key

22 : piS, iS91, iS92q Ð p0, iS, iS91q

23 : pKS,KS`1q Ð pKS`1,Kq

24 : iS `“ 1

25 : hQ :“ ptS, iS, tCurr, ρenc,K, iS91, iS92q

26 : else // acknowledging chunks

27 : iS `“ 1

28 : hQ :“ ptS, iS, tCurr,K, cR, iS91, iS92q

29 : pKS,KQ
aeadq Ð KDF2pKSq

30 : Kaead Ð KDF3pK
C
aead,K

Q
aeadq

31 : hÐ phC, hQ
q

32 : e $
Ð AEAD.EncpKaead, h,Mq

33 : return ct :“ ph, eq

Fig. 3: The send algorithm of A. The TR-Send-B algorithm is defined analogously,
except for (1) even and odd exchanged and (2) in the post-quantum part the
output order of KDF1 swapped with the output becoming pKroot,KR,KSq for
consistency.

– In the former case (lines 18-25) A sends an additional CKA chunk ρenc to the
receiver. It keeps track of the number of chunks sent for the current CKA
message ρ using cS. (Note that cS is not necessarily equal to the sending
period iS, as the sending epoch can change while sending ρ.)

– In the latter case (lines 27 and 28) A simply acknowledges the number of
chunks received cR of ρ sent by the other party. The other party B then
uses this information (as stored in cAck) to deduce when the new CKA key
becomes usable an TR-Rec-B and TR-Send-B (as discussed later).

16

TR-Rec-Apctq

1 : parse ph, eq Ð ct

2 : parse phC, hQ
q Ð h

3 : parse pt, i, ρ, i92q Ð hC

4 : req Jt ď tCurr ` 1K

5 : if Jt “ tCurr ` 1K then

6 : skippt´ 2, i92q

7 : ptCurr, iRq Ð pt, 0q

8 : pKCKA, stAq
$
Ð CKA-Rec-ApstA, ρq

9 : pKroot,KRq Ð KDF1pKroot,KCKAq

10 : endif

11 : Kaead Ð try-skippedpt, iq
12 : if Kaead “ K then

13 : skippt, i´ 1q

14 : iR `“ 1

15 : pKR,KC
aeadq Ð KDF2pKRq

16 : parse pt, i, tCurr1, ρenc, c
1
Ack, i91, i92q Ð hQ

17 : req JtCurr1
ď tCurr ` 1K^ Jt ď tR` 2K

^ JtCurr1
´ 1 ď t ď tCurr1K

18 : if Jt “ tR` 2K then

19 : skippt´ 2, i92q

20 : pKR,KR`1,KR`2q Ð pKR`1,KR`2,Kq

21 : if Jt ą tRK then

22 : skippt´ 1, i91q

23 : pKR,KR`1,KR`2q Ð pKR`1,KR`2,Kq

24 : ptR, iRq Ð pt, 0q

25 : if JtCurr1
“ tCurr ` 1K then

26 : if JtS ă tCurrK then

27 : tSÐ tCurr

28 : piS, iS91, iS92q Ð p0, iS, iS91q

29 : pKS,KS`1q Ð pKS`1,Kq

30 : ptCurr, cRq Ð ptCurr1, 0q

31 : if JtCurr1
“ tCurrK^ JtCurr is evenK then

32 : cR `“ 1

33 : L
`
Ð pi, ρencq

34 : if JcR ě nchunkK^ JtCurr ą tSK then

35 : tSÐ tCurr

36 : piS, iS91, iS92q Ð p0, iS, iS91q

37 : ρÐ DecodepLq

38 : pKCKA, stAq
$
Ð CKA-Rec-ApstA, ρq

39 : if JtR “ tSK then

40 : pKroot,KS,KRq Ð KDF1pKroot,KCKAq

41 : else

42 : pKroot,KS,KR`1q Ð KDF1pKroot,KCKAq

43 : LÐH

44 : elseif JtCurr1
“ tCurrK then

45 : cAck Ð c1
Ack

46 : Kaead Ð try-skippedpt, iq
47 : if Kaead “ K then

48 : skippt, i´ 1q

49 : iR `“ 1

50 : pKR,Kaeadq Ð KDF2pKRq

51 : Kaead Ð KDF3pK
C
aead,K

Q
aeadq

52 : MÐ AEAD.DecpKaead, h, eq

53 : if M “ K then error

54 : return pM, ptCurrC, iSC, tSQ, iSQ
qq

Fig. 4: The receive algorithm of A. TR-Rec-B is defined analogously with the
roles of even and odd swapped and in the post-quantum part the output order
of KDF1 swapped with the output becoming pKroot,KR,KSq for consistency. skip
and try-skipped are defined in Fig. 2.

17

Key schedule. Splitting the post-quantum CKA messages has several implications.
One of them is that the classical and the post-quantum CKA advance at different
speeds. In particular, there a some subtle cases where the switch to the next epoch
on the classical and the post-quantum protocol can happen in swapped order
for the two parties A and B. As a result, the Triple Ratchet uses two separate
root keys into which the corresponding CKA keys are mixed, and symmetric
ratchet is applied to each one. Only then, the two keys get combined to use the
combined key to encrypt the application message, and authenticate the header,
using AEAD. Concretely, TR-Send-A derives separate AEAD keys KC

aead and KQ
aead

in lines 9 and 29, respectively, before combining them on line 30. TR-Rec-A
proceeds analogously with the algorithm determining the two separate keys
before attempting to decrypt under the combined key.

Epoch handling. Another implication of sending CKA messages in chunks is that
there is no longer a unique protocol epoch. Whereas in the classical Double
Ratchet each message is encrypted under key derived from the current epoch’s
CKA key while simulatenously sending the CKA message for that epoch t, the
sending epoch and the CKA epoch now typically differ. Only once the sender is
sure the other party will have sufficiently many chunks, they can start using the
corresponding CKA key. A bit more concretely, the protocol maintains separate
epoch counter tCurr, the epoch for which CKA messages are currently being
exchanged, and tS, the epoch under which they currently encrypt messages. We
refer to Table 1 for an overview of the variables used by the protocol. Analogously,
each party keeps track of a receiving epoch tR, which is the epoch they last
received a message encrypted under. Observe that since epochs advance more
slowly, each party may act both as a sender and a receiver during each given
sending epoch. In more detail,

– Whenever entering a “sending epoch” a party generates a fresh CKA message
and its corresponding key. This key is then immediately mixed into the
post-quantum root key, deriving three keys: the updated root key Kroot, a
sending key, and a receiving key. See lines 12 and 13 of TR-Send-A.

– However, unless nchunk “ 1, those keys cannot be immediately used for
sending. Instead, A at this point simply schedules the keys for further use. In
case of the sending key, it will be the one used next, KS`1. The party can
use it once either B either starts sending chunks for the next key (lines 25-30
in TR-Rec-A) or A knows that B will know sufficiently many chunks with the
next one received (lines 20-23 of TR-Send-A). The receiving key can either
be the next or the one there after, depending on whether B has already used
to current one.

– Similarly, during a “receiving epoch” the user reconstructs ρ once they received
sufficiently many chunks. The party can then immediately start using the
new sending key (lines 34-38 in TR-Rec-A) while the receiving key may have
to scheduled for later use unless the other party already uses it (lines 39-42 in
TR-Rec-A). In either case, for the next sending operation A then can initiate
the next sending epoch.

18

4.2 Correctness and Security

This section establishes SM security of the TR protocol from Sec. 4.1. Recall
that the FS and PCS properties of SM security are defined with respect to an
epoch function τ , abstracting that FS and PCS progress at different speed for
the sub-protocol secure against classical adversaries and the sub-protocol secure
against quantum adversaries. We first discuss the respective epoch function for
both cases.

Remark 4.1 (Epoch functions). For the protocol TR, we define τC :“ tCurrC

and τQ :“ tSQ. Observe that for the classical CKA the epoch function directly
corresponds to epochs as introduced in [1] and increment on every change in
direction. For the post-quantum protocol, once A enters an even epoch, it takes
the following for A to advance to the next odd epoch:

1. A needs to send at least nchunk ´ 1 many messages that need to be received
by B (any subset of nchunk ´ 1 many does, in case more are sent)

2. B sends a message that is received by A.
3. If B received at least nchunk many messages before (2), then A immediately

increments the epoch; otherwise A increments the epoch upon the next send
action.

B on the other hand increments from an even to an odd epoch after receiving
nchunk many messages from A. In particular, this implies that once A moves to
an odd message and any further message is received by B, B advances as well.
The parties then advance from the odd to the next even epoch upon the same
steps happening in the reverse direction.

Theorem 4.1 (Security of TR). For the TR protocol, let τC and τQ denote
the respective epoch functions as discussed in Remark 4.1. Assume that

– CKAC is p∆C
FS, ∆

C
PCSq-secure CKA scheme or CKAQ is p∆Q

FS, ∆
Q
PCSq-secure

CKA scheme;
– CKAC and CKAQ are both correct;
– KDF1 is a secure PRF-PRNG, KDF2 is a secure PRG, and KDF3 is a secure

dual-PRF;
– AEAD is a secure authenticated encryption scheme with associated data.

Then, the TR construction above is p∆C
FS, ∆

C
PCS, τ

Cq-secure if CKAC is secure, and
p∆Q

FS, ∆
Q
PCS ` 1, τQq secure if CKAQ is secure respectively.

Remark 4.2 (Instantiations). For the Triple Ratchet protocol, we propose to
instantiate the two CKA using a generic CKA construction from RKEM presented
in Sec. 5, with the classical one using a forward-secure Diffie-Hellman RKEM—
modularizing the protocol proposed by Bienstock et al. [9] — and the post-
quantum one using our Katana-RKEM. Therefore, both CKA will have ∆CKA

FS “ 0
and ∆CKA

PCS “ 2. Therefore, for the TR protocol, we obtain classical PCS within
∆TR

PCS “ 2 epochs and post-quantum PCS within ∆TR
PCS “ 3 (albeit slower) epochs.

19

The additional epoch it takes for the post-quantum protocol is due to the protocol
already having sampled the key material for the next epoch when still distributing
it. In other words, a corruption may already compromise the secret key material
of the next epoch.

5 From Ratcheting Key Encapsulation Mechanism to CKA

5.1 Definition of Forward-Secure Ratcheting KEM

In this section, we define a forward-secure ratcheting KEM (RKEM), serving as
the main building block to construct a CKA. RKEM is a two party protocol, with
parties exchanging encapsulation keys and ciphertexts in a ping-pong manner. In
particular, the ciphertext can depend on the encapsulation key received in the
previous round.

Definition 5.1. A forward-secure ratcheting key encapsulation mechanism
pRKEMq ΠRKEM with key space K, ciphertext space CT , and ratcheting key
spaces RKP and yRKP for parties P P tA,Bu consists of PPT algorithms
pRKeyGen-P,REnc-P,RDec-PqPPtA,Bu defined as follows:

RSetupp1λq Ñ par: It takes as input the security parameter 1λ and outputs a
public parameter par. We assume all algorithms to take par as input and may
omit it for simplicity.

RKeyGen-Pppar,modeq Ñ pekP, dkPq : It takes as input the public parameter
par and outputs encapsulation and decapsulation keys pekP, dkPq P RKP if
mode “ K and pekP, dkPq P yRKP if mode “ updated. In case mode “ K, we
may simply ignore mode from the input when the context is clear.14

REnc-ApekB, dkAq Ñ pctB,K,xdkAq : It takes as input an encapsulation key ekB
for party B and a decapsulation key for party A, and outputs a ciphertext ctB,
a shared key K P K, and a possibly updated decapsulation key xdkA.

RDec-ApdkA, ctA, ekBq Ñ pK, pekBq : It takes as input a decapsulation key dkA for
party A, a ciphertext ctA, and an encapsulation key for party B, and outputs
a shared key K P K and a possibly updated encapsulation key pekB.

In the above, we define algorithms REnc-B and RDec-B analogously with roles
of parties A and B swapped.

Remark 5.1 (Non-forward-secure RKEM). Our definition of a forward-secure
RKEM can naturally handle a non-forward-secure scheme as well. In this work
we define a non-forward-secure RKEM by restricting xdkP “ dkP and pekP “ ekP
in algorithms REnc-P and RDec-P, respectively, for P P tA,Bu. While we can
alternatively remove xdkP and pekP from the outputs, we chose the former approach
to be consistent with our forward-secure formalization, allowing us to construct
secure messaging protocol in a unified framework.
14 Indeed, RKeyGen-P with mode “ updated is mainly used for security analysis and

will otherwise only appear in the setup of our construction. As such, we will typically
omit mode outside this section.

20

To aid readability, we define DRKeyGen-Ppparq (resp. pDRKeyGen-Ppparq) for
P P tA,Bu as the distribution of sampling pekP, dkPq

$
Ð RKeyGen-Pppar,modeq

with mode “ K (resp. mode “ updated) for par P RSetupp1λq. We use the
shorthand DRKeyGen-P and pDRKeyGen-P when par is randomly generated from
RSetupp1λq. In the following correctness and security definitions, we assume par

is sampled and fixed once and for all, and only use DRKeyGen-P and pDRKeyGen-P.
While we omit par for readability, it is understood that the probability is taken
over the randomness of generating par.

We first define correctness. Correctness comes in two flavors. First, we require
that a ciphertext generated using an updated encapsulation key can be decrypted
correctly using an updated decapsulation key. Second, we require that the updated
keys generated during the encapsulation and decapsulation algorithms have the
same distribution as keys sampled directly using pDRKeyGen-P. This is a key property
that allows us to effectively focus only on one round of interaction between the
parties, as opposed to arguing correctness of a ping-pong interaction in its entirety.

Definition 5.2 (Correctness). We say a ratcheting KEM ΠRKEM is correct
if it satisfies two properties. The first property, correctness with updated keys,
requires the following to hold:

Pr

»

—

–

pekA, dkAq
$
Ð DRKeyGen-A, p pekB,xdkBq

$
Ð pDRKeyGen-B,

pctB,K,xdkAq
$
Ð REnc-Ap pekB, dkAq,

pK1, pekAq
$
Ð RDec-BpxdkB, ctB, ekAq

: K “ K1

fi

ffi

fl

“ 1´ neglpλq.

We require the above to hold with the roles of parties A and B swapped. We denote
the marginal distribution of p pekA,xdkAq generated through the above process as
D1

RKeyGen-A, and define D1
RKeyGen-B similarly. The second property, correctness of

update key distribution, then requires that D1
RKeyGen-P is statistically close to

pDRKeyGen-P for P P tA,Bu.

While we do not require it, we can define correctness with respect non-updated
keys by replacing p pekB,xdkBq

$
Ð pDRKeyGen-B with pekB, dkBq

$
Ð DRKeyGen-B above.

We next define forward-secure IND-CPA security. This is captured through an
extension of a natural IND-CPA security game where the adversary is provided
with the updated decapsulation key along the challenge ciphertext.

Definition 5.3 (FS-IND-CPA Security). We say a ratcheting KEM ΠRKEM is
forward-secure IND-CPA pFS-IND-CPAq secure if the advantages

AdvFS-IND-CPA-A
A p1λq :“∣∣∣∣∣∣∣∣∣∣∣

Pr

»

—

—

—

—

—

–

b $
Ð t0, 1u,K1

$
Ð K,

pekA, dkAq
$
Ð DRKeyGen-A, p pekB,xdkBq

$
Ð pDRKeyGen-B,

pctB,K0,xdkAq
$
Ð REnc-Ap pekB, dkAq,

p ¨ , pekAq
$
Ð RDec-BpxdkB, ctB, ekAq,

b1 $
Ð ApekA, pekA, pekB, ctB,xdkA,Kbq

: b “ b1

fi

ffi

ffi

ffi

ffi

ffi

fl

´
1

2

∣∣∣∣∣∣∣∣∣∣∣
21

and AdvFS-IND-CPA-B
A , defined analogously with the roles of parties A and B swapped,

are negligible. We denote AdvFS-IND-CPA
A :“ maxPPtA,Bu

´

AdvFS-IND-CPA-P
A p1λq

¯

.
As a special case, we say a (non-forward-secure) RKEM (cf. Remark 5.1) is

simply IND-CPA secure if xdkA is not given to A in the above game.

Lastly, we define ratchet simulatability. This comes with two properties:
updated key and ciphertext simulatability. The former property stipulates that the
updated key p pekP,xdkPq can be simulated only from the non-updated key pekP, dkPq.
Importantly, the updated key does not depend on the peers encapsulation key
ekP̄ required to run REnc-P. This is used to break the dependence on the updated
keys from the peers keys, allowing us to prove security of CKA based on induction.
The latter property stipulates that the ciphertext ctP generated using the peer P̄’s
decapsulation key can be simulated using instead user P’s (updated) decapsulation
key. Put differently, ctP along with the knowledge of P̄’s decapsulation key does
not leak any information of P’s decapsulation key. This is a key property to argue
PCS for CKA as it is used to argue that once P generates a fresh pair of key, it
will heal P despite P̄ being corrupt. The formal definition is given in App. D.1.

Instantiations. In this work, we consider five instantiations of RKEM. A generic
instantiation based of any KEM is presented in App. F. Second, we have an
optimized forward-secure and an optimized non-forward secure instantiation
based on lattices and based on Diffie-Hellman, each. The lattice based construc-
tions, called Katana-RKEM, are presented in Sec. 6. The Diffie-Hellman based
instantiations modularize the Double Ratchet and the forward-secure variant
thereof by Bienstock et al. [9] — for completness they are presented in App. F.

5.2 A Generic Construction of CKA from Ratcheting KEM

We now present a simple construction of CKA based on RKEM. In the protocol,
for each send operation, a party P first samples fresh key pair using RKeyGen-P.
P then encapsulates a symmetric key to the other party under the latest public
key from the other party; the freshly sampled secret key is updated as part of this
process. The resulting ciphertext along the freshly sampled public key is then
sent to the other party while the updated secret key is stored. The receiving party
analogously simply uses their secret key to decapsulate the received ciphertext
and public key, and stores the updated public key while erasing their own secret
key. The protocol assumes a public-secret key pair of B to be distributed as setup
such that A can initiate the first send operation. A schematic overview of the
protocol is depicted in Fig. 5 while a formal description is presented in App. D.2.

A proof of the following theorem is presented in App. D.3.

Theorem 5.1 (Key indistinguishability). For any correct and forward-
secure RKEM, the protocol from Fig. 15 is a correct and secure CKA protocol with
∆FS “ 0 and ∆PCS “ 2. Moreover, if the RKEM is non-forward secure, then the
protocol is a secure CKA with ∆FS “ 1 and ∆PCS “ 2.

22

Alice Bob

pK, pekB,0q pxdkB,0,Kq

pekA,1, dkA,1q
$
Ð RKeyGen-Apparq

pctB,0,K1, xdkA,1q
$
Ð REnc-Ap pekB,0, dkA,1q

output K1

pekA,1 , ctB,0q
pK1, pekA,1q

$
Ð RDec-BpxdkB,0, ctB,0, ekA,1q

output K1

pxdkA,1,Kq pK, pekA,1q

pekB,2, dkB,3q
$
Ð RKeyGen-Bpparq

pctA,1,K2, xdkB,2q
$
Ð REnc-Bp pekA,1, dkB,2q

output K2pekB
,2
, ctA

,1
q

pK2, pekB,2q
$
Ð RDec-ApxdkA,1, ctA,1, ekB,2q

output K2

pxdkB,2,KqpK, pekB,2q

Fig. 5: The first two messages of the RKEM based CKA. Computation for
CKA-Send-P and CKA-Rec-P are shown in boxes, while the state kept in be-
tween operations is shown next to the party.

6 Katana: An Efficient Ratcheting KEM from Lattices

In this section, we construct a ratcheting KEM (RKEM) from lattices which we
call Katana. As with typical practice-oriented lattice-based constructions, we first
analyze our construction based on asymptotic bounds and later set concrete
parameters based on cryptanalysis.

6.1 Construction of Katana

The notations used in this section is summarized in Table 2. H is a function
which on input pu, seedq P Rk

q ˆ t0, 1u
λ, outputs a tuple pK, s, eq distributed over

t0, 1uλˆχˆχ. This function is modeled as a random oracle in the security proof.
In practice, H can output randomness used to sample from the target distributions.
Moreover, let Encode : t0, 1uλ Ñ Rq be a function that maps seed P t0, 1uλ Ă Rq

to tq{2s ¨ seed, where seed is viewed as a degree λ ´ 1 polynomial in Rq with
binary coefficients. Let Decode : Rq Ñ t0, 1uλ be a function that maps each
coefficient w P Rq to 0 (resp. 1) if it is close to 0 (resp. tq{2s) in absolute value.

Katana is based on the (IND-CPA secure) KEM by Lyubashevsky et al. [30]
and Lindner and Peikert [28], underlying the NIST standard Kyber [33]. The
construction is given in Fig. 6. For simplicity, we first provide the simplified
variant where we do not perform bit-dropping. The optimized variant is given
in Sec. 6.3. As we provide the correctness statement for our optimized scheme
in Sec. 6.3, we defer the correctness of the non-optimized variant to App. E.1.

23

RKeyGen-Pppar,modeq

1 : if Jmode “ KK

2 : psP, ePq
$
Ð χˆ χ

3 : else // mode “ updated

4 : psP, ePq
$
Ð pχˆ pχ

5 : if JP “ AK then

6 : uA :“ D ¨ sA ` eA P Rk
q

7 : else // P “ B

8 : uB :“ DJ
¨ sB ` eB P Rk

q

9 : if Jmode “ KK
10 : pekP, dkPq :“ puP, puP, sPqq

11 : else // mode “ updated

12 : pekP, dkPq :“ puP, sPq

13 : return pekP, dkPq

REnc-Pp pekP̄, dkPq

1 : puP, sPq :“ dkP

2 : seed $
Ð t0, 1uλ

3 : mÐ Encodepseedq // m P Rq

4 : pK, s, eq :“ HpuP, seedq

5 : ẽP
$
Ð χ̃

6 : vP̄ :“ pek
J

P̄ ¨ sP ` ẽP `m P Rq

7 : ctP̄ :“ vP̄

// Update and erase dkP

8 : xdkP :“ sP ` s P Rk
q

9 : return pctP̄,K, xdkPq

RDec-PpxdkP, ctP, ekP̄q

1 : m :“ ctP ´ ekJ

P̄ ¨
xdkP

2 : seed :“ Decodepmq

3 : pK, s, eq :“ HpekP̄, seedq

// Update ekP̄

4 : if JP “ AK then

5 : pekB :“ ekB `DJ
¨ s` e

6 : else // P “ B

7 : pekA :“ ekA `D ¨ s` e

8 : return pK, pekBq

RSetupp1λq

1 : par :“ D $
Ð Rkˆk

q

2 : return par

Fig. 6: Katana without the bit-dropping optimization. Above, pP, P̄q “ pA,Bq or
pB,Aq.

6.2 Security of Katana

Below, we prove that Katana is FS-IND-CPA secure and ratchet simulatable.

FS-IND-CPA Security. The following theorem establishes the FS-IND-CPA
security of Katana.

Theorem 6.1 (FS-IND-CPA security). Our RKEM Katana is FS-IND-CPA
secure assuming the hardness of the MLWEq,k,χ and the hint-MLWEq,k,2k,χ,χ,Fcpa

assumptions with Fcpa :“ UptI2kˆ2kuq.

Proof Overview. The main technical argument of the proof is to prove that
the encryption algorithm REnc-Pp pekP̄, dkPq run by user P can be simulated
without knowledge of P’s decapsulation key dkP “ sP. Focusing on P “ A,

Notations Explanation
Rq Polynomial ring Rq “ ZrXs{pq,Xn

` 1q with n ě λ

k Dimension of public matrix D P Rkˆk
q

χ, χ̃ Distributions for secrets and noises in ek and ct

pχ Distribution for “updated” secrets: pχ :“ r2s ¨ χ

H A function H : Rk
q ˆ t0, 1u

λ
Ñ t0, 1uλ ˆRk

q modeled as a RO.
Encode,Decode Encoding and decoding elements in t0, 1uλ to Rq

Table 2: Overview of the notations. See the accompanying text for more details.
Recall rN s ¨D is the convolution of N independent copies of D.

24

this would be a straightforward proof if not for forward-secrecy as pekA, ctBq “

pD ¨ sA ` eA, pek
J

B ¨ sA ` ẽA ` mq consists of a standard Kyber-like ciphertext.
However, this is non-trivialized by the fact that the we must simulate this all
while being able to simulate the updated decapsulation key xdkA “ sP ` s to
the adversary, as required by forward-security, where recall s is generated as
HpekP̄, seedq with m “ Encodepseedq.

In our proof, we first modify the way the reduction simulates the random
oracle H so that s is no longer output by it. This modification allows the reduction
to only require knowledge of xdkA “ sA ` s as opposed to explicitly knowing s.
However, since we haven’t established that m does not leak from the ciphertext
ctB yet, we cannot immediately argue that this modification cannot be detected
by the adversary. We will use deferred analysis (cf. [19]) to formally argue this.
After this step is completed, we can rely on the hint-MLWE problem to argue
that pekA, ctBq looks random while viewing the updated key xdkA as the hint. The
full proof is given in App. E.2.

Ratchet Simulatability. The following theorem establishes the ratchet simu-
latability of Katana. Below, we rely on the hint-MLWEq,k,1,χ,χ̃,Fsim problem, where
Fsim is a distribution over R1ˆ2k

q that outputs r´psJ|peJs with ps,pe $
Ð pχ.

Theorem 6.2 (Ratchet simulatability). Our RKEM Katana is ratchet sim-
ulatable assuming the hardness of the MLWEq,k,pχ and hint-MLWEq,k,1,χ,χ̃,Fsim

assumptions.

Proof Overview. Ratchet simulatability consists of proving key and ciphertext
simulatability. The former can be proven in a straightforward manner by observing
that the information required to perform key update does not depend on the peer’s
(updated) encapsulation key. The latter is the more technical proof. Similarly
to FS-IND-CPA security, the main technical argument of the proof is to prove
that the encryption algorithm REnc-Pp pekP̄, dkPq run by user P can be simulated.
However, there are two critical differences: (i) the goal is not to hide the message
m, and more importantly, (ii) the simulation must be performed while the
adversary holds user P̄’s decapsulation keys pdkP̄,xdkP̄q — in particular, arguing
ctP̄ is random based on hint-MLWE does not work as the adversary can use the
decapsulation keys to check this.

In our proof, we first aim to statistically simulate ctP̄ using xdkP̄, without

knowledge of dkP. Focusing on the case P “ A, the ciphertext ctA “ pek
J

A ¨sB`ẽB`m
can be equally expressed as psJ

A ¨ ekB ´ psJ
A ¨ eB ` peJ

A ¨ sB ` ẽB, where we denote

the underlined values as h. In particular, ctA can be simulated using xdkA “ psA
and h. However, notice the information of dkB “ puB, sBq is required to compute
h, and thus, ctA cannot be made independent from dkB.15 We thus only aim to
computationally simulate ctA, where we rely on the hint-MLWE problem again,
15 While ratchet simulatability is a new notion in our work, the same argument should

be required by [1,27], and this is the part where they contained a flaw in the proof.

25

but with the difference that the hint is now given in the form h. The actual proof
consists of carefully setting up the game hybrids so that we can invoke this core
argument. The full proof is given in App. E.3.

We note that our definition of RKEM is in the standard model, while our
construction is in the random oracle model (ROM). We thus make an implicit
assumption that the correctness and security definitions of RKEM are adapted in
the standard way to allow adversaries to make RO queries. As common practice,
we then assume the RKEM instantiated with a concrete hash function retains the
same security, and view it as an RKEM in the standard model when using it as a
building block to generically construct a CKA.

6.3 Optimizing Katana with Bit-Dropping

We can minimize the size of the ciphertext by performing bit-dropping, similarly
to Kyber [33]. Namely, we drop the d lower bits of the ciphertext ctP “ pek

J

P̄ ¨

sP ` ẽP `m P Rq and map it to an element over modqd. These are standard
techniques and the details are provided in App. E.4.

It can be checked that this optimization only affects the correctness of Katana.
Specifically, the proof of FS-IND-CPA security and ratchet simulatability remains
unchanged, except for the hybrids we rely on the correctness of the scheme.
We therefore only provide the proof of correctness below. Below, similarly to
Kyber, we consider an average case bound on the error δ $

Ð χround induced by
bit-dropping for tighter concrete parameters. The proof is included in App. E.4.

Lemma 6.1 (Correctness with bit-dropping). Our optimized RKEM
Katana is correct assuming

Pr
“

∥psJ ¨ e´ peJ ¨ s` ẽ` δ∥8 ď q{4
‰

“ 1´ neglpλq, (1)

where the probability is taken over the randomness to sample ps, eq $
Ð χ ˆ

χ,pps,peq $
Ð pχˆ pχ, ẽ $

Ð χ̃, and δ $
Ð χround. Here, χround is some distribution over

Rq such that Prrδ $
Ð χround : ∥δ∥8 ď

X

q
2d`1

T

s “ 1.

6.4 Concrete Parameter Selection

We provide a concrete instantiation of Katana. For reference, we recall all the
requirements our parameters (see Tables 2 and 5) must satisfy, where note that
some requirements are subsumed by others. The first requirement stems from
correctness (cf. Lemma 6.1), the second and third stem from FS-IND-CPA security
(cf. Theorem 6.1), and the second and forth stem from ratchet simulatability
(cf. Theorem 6.2).

(R1) The correctness error is below 2´λ (see Lemma 6.1, Eq. (1)).
(R2) The MLWEq,k,χ and MLWEq,k,χ̃ problems are hard.
(R3) The hint-MLWEq,k,2k,χ,χ,Fcpa problem is hard, where Fcpa :“ UptI2kˆ2kuq,

i.e., a distribution always outputting the identity matrix I2kˆ2k P R
2kˆ2k
q .

26

(R4) The hint-MLWEq,k,1,χ,χ̃,Fsim problem is hard, where Fsim is a distribution
over R1ˆ2k

q that outputs r´psJ|peJs with ps,pe $
Ð pχ.

Below, we focus on the conditions required by FS-IND-CPA security. The condi-
tions Items (R2) and (R4) required by ratchet simulatability is obtained in a
similar fashion. The condition Item (R1) on correctness is similar to Kyber, and
in particular, we re-employ their analysis, [33, see Eqs. (7) and (8)] in order to
characterize the distribution in Eq. (1). More details are found in App. E.5

FS-IND-CPA Security. We study Items (R2) and (R3), which underlie
FS-IND-CPA security. We note that Item (R3) strictly subsumes Item (R2),
therefore we may study Item (R3) alone. If χ follows a Gaussian distribution
of parameter σ, then the hint-MLWE reduction (cf. Theorem A.1) tells us that
hint-MLWEq,k,2k,χ,χ,Fcpa is at least as hard as MLWEq,k,2k,χ1 , where χ1 is the dis-

crete Gaussian of parameter σ0: 1
σ2
0
“ 2

´

1
σ2 `

s1pI2kq
2

σ2

¯

“ 4
σ2 . In our case, we

rely on two heuristics:

Heuristic 1: Replace Gaussians. While Theorem A.1 holds when the secret and
noise are sampled from Gaussian distributions, we assume that it also the
case with non-Gaussian distributions of equivalent variance σ2. In our case,
we will sample ẽP

$
Ð χ̃ as a sum of uniforms and s $

Ð χ from a binomial
distribution (see below Summary for discussion); both types of distributions
become “Gaussian-like” for some parameter regimes. It has also been argued in
Raccoon [16,15] that in Rényi divergence-based arguments, sum of uniforms
behave similarly to discrete Gaussians of identical variance σ2. For the present
analysis, we conjecture that this is also the case in hint-MLWE.

Heuristic 2: Remove factor 2. We remove the factor 2 in the above equation.
This is motivated by the fact that in [24], this factor seems to appear in
order to simplify a smoothing parameter argument for discrete Gaussians.
In particular, we can see that (i) if there is no hint then it is clear that the
factor 2 is superfluous, and (ii) in our case, since the underlying distributions
are not discrete Gaussians, this factor 2 serves no apparent purpose.

Under Heuristics 1 and 2, the above equation simplifies to σ0 “ σ{
?
2, where σ

is the standard variation of χ, and χ is not necessarily discrete Gaussian. We
may then estimate the hardness of MLWEq,k,2k,χ1 using the lattice estimator16.

Summary. We now specify the parameter sets. We introduce the error distribu-
tions that we use to instantiate our scheme:

– χ “ CBDη is a centered binomial distribution, that is CBDη “ rηs ¨ pB ´ Bq,
where B “ Upt0, 1uq is the Bernoulli distribution of parameter 1{2. This
distribution is used in Kyber [33].

16 https://github.com/malb/lattice-estimator

27

https://github.com/malb/lattice-estimator

Target
λ

CoreSVP
hardness

n k q qd χ χ̃ d |ek| |ct| |ek| `
|ct|

128 100 256 2 7681 8 CBDp4q SUp7, 4q 3 832 48 880
192 158 - 3 10753 - - - - 1344 72 1416
256 215 - 4 15361 - - - - 1792 96 1888

Table 3: Parameter sets for Katana. The sizes of ek and ct are in bytes. The
symbol “-” in a cell indicates that it has the same value as the cell directly above
in the table.

– χ̃ “ SUpu, T q is the sum of T uniformly random variates over
t´2u´1, . . . , 2u´1 ´ 1u, that is SUpu, T q “ rT s ¨ Upt´2u´1, . . . , 2u´1 ´ 1uq.
This distribution is used in Raccoon [16].

These distributions were chosen because they are easy to implement in a constant-
time manner, unlike Gaussian distributions. An additional silver lining of sums of
uniforms is that they provide slightly better correctness bounds than Gaussians
(of identical variance), due to their tails decreasing faster. Finally, we propose
parameters sets in Table 3, which target 128, 192 and 256 bits of security. We
recall that the CoreSVP hardness is a crude measure of the bit-security of a lattice
problem and that it ignores several polynomial factors. These factors typically
represent about 30 bits of security. We choose primes q that are NTT-friendly.

7 Efficiency Analysis of Triple Ratchet

We now examine the effects of our two main improvements — erasure coding and
a better RKEM— on the efficiency of attaining post-quantum PCS (recall efficient
classical PCS is inherited from using Signal’s Double Ratchet protocol). For our
RKEM improvement, the gain is clear as it reduces the combined encapsulation
key and ciphertext size by approximately 37% when compared to a standard
KEM (Kyber) at a comparable security level. For our coding improvement, PQ3
is a natural benchmark. It turns out that the gain (or loss) depends on the
communication pattern, and to emphasize this point, in addition to comparing
PQ3 to TR with Katana we also compare it with TR using a trivial RKEM based
on Kyber-768. We focus on communication cost but note that higher efficiency
can yield higher security: a protocol that is more efficient in communication
cost can yield shorter epochs and faster PCS healing for a fixed communication
overhead budget.

7.1 Effect of Our RKEM on Communication Costs

We can use Kyber to construct a trivial RKEM (cf. App. F). Compared to
such RKEM, our optimized RKEM Katana has significantly smaller combined

28

encapsulation key and ciphertext size at the same security level, and this leads
directly to a smaller amount of data that must be transferred between parties in
order to obtain PCS when building a post-quantum CKA. This can be seen by
comparing the last two columns in Table 4, where the reduction in per message
overhead comes entirely from the fact that Kyber-768 requires the transfer of 2272B
per epoch where Katana only requires the transfer of 1416B (see also Table 3).

7.2 Effect of Chunk Encoding on Communication Costs

The benefits of our use of erasure codes is more nuanced and depends on mes-
saging behavior. To understand this, recall that PQ3 attains post-quantum PCS
by repeatedly sending Kyber encapsulation key and ciphertext messages until
receiving an acknowledgement [22].

In a perfectly balanced conversation where every send is followed by a receive,
this repeated sending imposes no cost and PQ3 actually has a structural advantage
over TR because ∆PQ3

PCS “ 2 where ∆TR
PCS “ 3. Real conversations are unbalanced

and Signal’s use of encrypted typing indicators - small, frequent messages that
do not elicit a response - amplify this imbalance. Using PQ3 in this setting would
lead to a large number of repeated KEM messages. The cost is significant and
this can negatively impact a user’s experience when it happens. Another Signal
feature, linked devices, exacerbates the costs of repeated messages even further.
Signal users often leave linked laptops and desktops off for hours or days, and
each logical conversation with a user maintains separate protocol sessions with
each of that user’s linked devices. When someone leaves their laptop off overnight
- or loses it - it can impose a significant cost on everyone messaging them. The
resulting costs and user experience are unacceptable for the Signal team.

We illustrate these costs in Table 4 where we report the expected number
of bytes transferred to attain PCS assuming a simple model of unbalanced
communication where every sender has a probability p of sending another message
before receiving all incoming messages, independent of previous events. We
compare PQ3 and two instantiations of TR. One is the TR where we use Signal’s
Double Ratchet protocol as the classical CKA with curve25519 and the post-
quantum CKA based on the trivial RKEM with Kyber-768. The other TR, which is
our main protocol, replaces the post-quantum CKA with one based on Katana at
λ “ 192. Chunk sizes are chosen so that all protocols attain PCS in 50 messages
under ideal conditions. In row one we use p “ 0 to capture perfectly balanced
communication The advantage of PQ3 over the trivial RKEM, due to its smaller
∆PCS, is clear, as is the advantage of Katana due to the smaller message size. In
row two we use p “ 0.5 to conservatively approximate the sending behavior of
two online parties using typing indicators and read receipts, and we see that at
this point both instantiations of TR have an advantage over PQ3. Finally, in row
3, we use p “ 0.9 to approximate the behavior of a device that is offline for hours
at a time, where PQ3 is more than 4 times as expensive as TR with Katana.

Acknowledgement. The third author was partially supported by JST, CREST
Grant Number JPMJCR22M1, Japan.

29

PQ3 TR with
Kyber-768

TR with
Katana (λ = 192)

p “ 0 6 488 9 000 6 500
p “ 0.5 11 176 9 540 6 890
p “ 0.9 48 680 13 860 10 010

Table 4: Expected communication cost in bytes to attain PCS for PQ3 and TR.
See text for the parameter p. PQ3 is assumed to send a Kyber-768 encapsulation
key and ciphertext every 50 messages. TR with Kyber-768 (resp. Katana) uses
a post-quantum CKA based on Kyber-768 (resp. Katana with λ “ 192). This
includes base message cost of 36B for PQ3 and 46B for TR to account for the
overhead of sending counters and DH keys but excludes the 64B signature used
by PQ3 for fair comparison.

References

1. J. Alwen, S. Coretti, and Y. Dodis. The double ratchet: Security notions, proofs, and
modularization for the Signal protocol. EUROCRYPT 2019, Part I, pp. 129–158,
Darmstadt, Germany, 2019.

2. J. Alwen, D. Hartmann, E. Kiltz, and M. Mularczyk. Server-aided continuous
group key agreement. ACM CCS 2022, pp. 69–82, Los Angeles, CA, USA, 2022.

3. J. Alwen, D. Jost, and M. Mularczyk. On the insider security of MLS.
CRYPTO 2022, Part II, pp. 34–68, Santa Barbara, CA, USA, 2022.

4. Apple Security Engineering and Architecture (SEAR). iMessage with PQ3: The
new state of the art in quantum-secure messaging at scale.

5. F. Balli, P. Rösler, and S. Vaudenay. Determining the core primitive for optimally
secure ratcheting. ASIACRYPT 2020, Part III, pp. 621–650, Daejeon, South Korea,
2020.

6. M. Bellare, A. C. Singh, J. Jaeger, M. Nyayapati, and I. Stepanovs. Ratcheted
encryption and key exchange: The security of messaging. CRYPTO 2017, Part III,
pp. 619–650, Santa Barbara, CA, USA, 2017.

7. K. Bhargavan, A. Bichhawat, Q. H. Do, P. Hosseyni, R. Küsters, G. Schmitz,
and T. Würtele. DY*: A modular symbolic verification framework for executable
cryptographic protocol code. In 2021 IEEE European Symposium on Security and
Privacy, pp. 523–542, Vienna, Austria, 2021.

8. K. Bhargavan, C. Jacomme, F. Kiefer, and R. Schmidt. Formal verification of the
PQXDH post-quantum key agreement protocol for end-to-end secure messaging.
USENIX Security 2024, Philadelphia, PA, USA, 2024.

9. A. Bienstock, J. Fairoze, S. Garg, P. Mukherjee, and S. Raghuraman. A more
complete analysis of the Signal double ratchet algorithm. CRYPTO 2022, Part I,
pp. 784–813, Santa Barbara, CA, USA, 2022.

10. A. Caforio, F. B. Durak, and S. Vaudenay. Beyond security and efficiency: On-
demand ratcheting with security awareness. PKC 2021, Part II, pp. 649–677,
Virtual Event, 2021.

11. R. Canetti, P. Jain, M. Swanberg, and M. Varia. Universally composable end-to-end
secure messaging. CRYPTO 2022, Part II, pp. 3–33, Santa Barbara, CA, USA,
2022.

30

12. S. Chen and M. Fischlin. Integrating causality in messaging channels. EURO-
CRYPT 2024, Part III, pp. 251–282, Zurich, Switzerland, 2024.

13. K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila. A formal
security analysis of the Signal messaging protocol. Journal of Cryptology, 33(4):1914–
1983.

14. D. Collins, D. Riepel, and S. A. O. Tran. On the tight security of the double ratchet.
ACM CCS 2024, pp. 4747–4761, Salt Lake City, UT, USA, 2024.

15. R. d Pino, S. Katsumata, T. Prest, and M. Rossi. Raccoon: A masking-friendly
signature proven in the probing model. CRYPTO 2024, Part I, pp. 409–444, Santa
Barbara, CA, USA, 2024.

16. R. d Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, M. Rossi,
and M.-J. Saarinen. Raccoon. Technical report, National Institute of Standards and
Technology, 2023. Available at https://csrc.nist.gov/Projects/pqc-dig-sig/
round-1-additional-signatures.

17. N. Drucker and S. Gueron. Continuous key agreement with reduced bandwidth. In
International Symposium on Cyber Security Cryptography and Machine Learning,
pp. 33–46. Springer.

18. M. F. Esgin, T. Espitau, G. Niot, T. Prest, A. Sakzad, and R. Steinfeld. Plover:
Masking-friendly hash-and-sign lattice signatures. EUROCRYPT 2024, Part VII,
pp. 316–345, Zurich, Switzerland, 2024.

19. R. Gennaro and V. Shoup. A note on an encryption scheme of kurosawa and
desmedt. Cryptology ePrint Archive, Report 2004/194.

20. K. Hashimoto, S. Katsumata, E. Postlethwaite, T. Prest, and B. Westerbaan. A
concrete treatment of efficient continuous group key agreement via multi-recipient
PKEs. ACM CCS 2021, pp. 1441–1462, Virtual Event, Republic of Korea, 2021.

21. K. Hashimoto, S. Katsumata, and T. Prest. How to hide MetaData in MLS-like
secure group messaging: Simple, modular, and post-quantum. ACM CCS 2022, pp.
1399–1412, Los Angeles, CA, USA, 2022.

22. F. Jacobs. Designing imessage pq3: Quantum-secure messaging at scale. Invited
talk at the Real World Crypto Symposium 2025, 2024.

23. D. Jost, U. Maurer, and M. Mularczyk. Efficient ratcheting: Almost-optimal guar-
antees for secure messaging. EUROCRYPT 2019, Part I, pp. 159–188, Darmstadt,
Germany, 2019.

24. D. Kim, D. Lee, J. Seo, and Y. Song. Toward practical lattice-based proof of
knowledge from hint-MLWE. CRYPTO 2023, Part V, pp. 549–580, Santa Barbara,
CA, USA, 2023.

25. N. Kobeissi, K. Bhargavan, and B. Blanchet. Automated verification for secure
messaging protocols and their implementations: A symbolic and computational
approach. In 2017 IEEE European Symposium on Security and Privacy, EuroS&P
2017, Paris, France, April 26-28, 2017, pp. 435–450.

26. E. Kret and R. Schmidt. The pqxdh key agreement protocol.
27. J. Lee, J. Kwon, and J. S. Shin. Efficient continuous key agreement with reduced

bandwidth from a decomposable kem. IEEE Access, 11:33224–33235.
28. R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryption.

CT-RSA 2011, pp. 319–339, San Francisco, CA, USA, 2011.
29. F. Linker, R. Sasse, and D. Basin. A formal analysis of apple’s iMessage PQ3

protocol. Cryptology ePrint Archive, Paper 2024/1395.
30. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with

errors over rings. EUROCRYPT 2010, pp. 1–23, French Riviera, 2010.
31. M. Marlinspike and T. Perrin. The double ratchet algorithm.

31

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

32. M. Marlinspike and T. Perrin. The x3dh key agreement protocol.
33. P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.

Schanck, G. Seiler, D. Stehlé, and J. Ding. CRYSTALS-KYBER. Technical report,
National Institute of Standards and Technology, 2022. available at https://csrc.
nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022.

34. P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring.
In 35th FOCS, pp. 124–134, Santa Fe, NM, USA, 1994.

35. D. Stebila. Security analysis of the iMessage PQ3 protocol. Cryptology ePrint
Archive, Report 2024/357.

36. N. Vatandas, R. Gennaro, B. Ithurburn, and H. Krawczyk. On the cryptographic
deniability of the Signal protocol. ACNS 20International Conference on Applied
Cryptography and Network Security, Part II, pp. 188–209, Rome, Italy, 2020.

32

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

SUPPLEMENTARY MATERIALS

A Omitted Preliminary

A.1 Lattices and Hardness Assumption

Cyclotomic rings. Let n be a power-of-two integer, which we leave undefined unless explicitly specified
otherwise. Let R “ Zrxs{pxn`1q the cyclotomic ring of degree n and K “ Rrxs{pxn`1q. For a real matrix
M P Rkˆℓ, we note s1pMq and call spectral norm of M the value maxx‰0

∥M¨x∥
∥x∥ , where ∥¨∥ denotes the

L2-norm. The spectral norm of M is also the (unique non-negative) square root of the largest eigenvalue
of Mt ¨M. We recall that if M is symmetric, then its singular values are the square roots of its eigenvalues.
If B P Rkˆℓ has its entries in R, we identify B with its associated anti-circulant matrix M P Znkˆnℓ and
abusively say that the spectral norm of B is the spectral norm of M.

Hardness Assumption. In this work, we also rely on the standard module learning with errors (MLWE)
problem, formally defined as follows.

Definition A.1 (MLWE). Let k, q be integers and χ be a probability distribution over Rq. The advantage
of an adversary A against the Module Learning with Errors MLWEq,k,χ problem is defined as:

AdvMLWE
A p1λq “ |Pr rApD,D ¨ s` eq “ 1s ´ Pr rApD,bq “ 1s| ,

where pD,b, s, eq $
Ð Rkˆk

q ˆRk
q ˆ χˆ χ. The MLWEq,k,χ assumption states that any efficient adversary

A has negligible advantage.

The following result establishes the hardness of the hint-MLWE problem based on the MLWE problem.
This is a simple adaptation of the original proof [24], formally appearing in [18]. Below, we denote Dσ as
a discrete Gaussian distribution with standard deviation σ.

Theorem A.1 (Hardness of hint-MLWE). For any integers k, ℓ, q, n, let F be a probability distribution
over Rℓˆ2k

q , χ and χ̃ be discrete Gaussian distributions Dσ1 and Dσ2 , respectively, and B, σ a positive
real such that

Pr
”

s1
`

MMJ
˘

ă B : M $
Ð F

ı

ě 1´ neglpλq,

and σ “ ωp
?
log nq and 1

σ2 “ 2 ¨
´

1
σ2
1
` B

σ2
2

¯

. Under these conditions, the hint-MLWEq,k,ℓ,Dσ1 ,Dσ2 ,F problem
is as hard as the MLWEq,k,Dσ problem.

A.2 Rounding

In our work, we use the rounding definition used by Kyber [33]. Below, we briefly recall their definition.
For an even (resp. odd) positive integer q, we define x1 “ x mod ˘q to be the unique element x1 in the

range ´q
2 ă x1 ď

q
2 (resp. ´ q´1

2 ă x1 ď
q´1
2) such that x1 “ x mod q. For any positive integer q, we define

x1 “ x mod `q to be the unique element x1 in the range 0 ď x1 ă q such that x1 “ x mod q. We simply
write x mod q when the representation is not important. Also, for an element in x P Q, txs denotes the
rounding to the nearest integer, where in case of a tie, we take the larger integer.

Compression and Decompression. We define the following compression and decompression algorithms for
positive integers d and q such that d ă rlog2pqqs:

Compressq : Zq ÝÑ Z2d

x ÞÝÑ

Z

2d

q
¨ x

V

mod `2d. (2)

Decompressq : Z2d ÝÑ Zq

y ÞÝÑ
Y q

2d
¨ x

U

. (3)

For these functions, we have the following:

33

Lemma A.1. Let d and q be positive integers such that d ă rlog2pqqs. Then, for any x P Zq, we have∣∣x1 ´ x mod ˘q
∣∣ ď Y q

2d`1

U

,

where x1 “ DecompressqpCompressqpx, dq, dq.

When, Compressq or Decompressq is used with x P Rq or x P Rk
q , the procedure is applied to each

coefficient individually.

A.3 CKA Security

In this section, we recall CKA security as introduced in [1]. Note that we use separate parameters ∆FS

and ∆PCS for FS and PCS, respectively, whereas [1] hardcoded ∆PCS “ 2.

Definition A.2 (Key Indistinguishability). Let ∆FS and ∆PCS be positive integers, dictating how fast
forward secrecy and post-compromise security come into effect. For a CKA protocol ΠCKA, the advantage
of an adversary A against key indistinguishability is defined as

AdvCKAA,∆FS,∆PCS
p1λq :“ max

pt˚

ˆ

PrrGameCKAA,∆FS,∆PCS,pt˚p1
λq “ 1s ´

1

2

˙

,

where GameCKAA,∆FS,∆PCS,pt˚p1λq for any challenge epoch pt˚ P N is described in Fig. 7.
We say ΠCKA is p∆FS, ∆PCSq-key indistinguishable if for any efficient A that respects alternating

communications (cf. Remark 2.1), we have AdvCKAA,∆FS,∆PCS
p1λq “ neglpλq. In the context of alternating

communications, it is understood that a call to Chall-P has the same effect as a call to Send-P.

GameCKAA,∆FS,∆PCS,pt
˚p1

λ
q

1 : b $
Ð t0, 1u

2 : ICKA
$
Ð CKA-Init-KeyGenp1λq // Initial key

3 : for P P tA,Bu

4 : stP
$
Ð CKA-Init-PpICKAq

5 : ptP Ð 0

6 : b1 $
Ð Appt˚

q
Send-Ppq,Receive-Ppq,Chall-Ppq,Corr-Ppq

7 : return Jb “ b1K

Send-Pprleakq

1 : ptP Ð ptP ` 1

2 : if JrleakK // Leak randomness

// Allow leaking rand. ∆PCS-epoch before pt˚

3 : req JptA,ptB ď pt˚
´∆PCSK

4 : rand $
Ð R

5 : pK
ptP
, ρ

ptP
, stPq Ð CKA-Send-PpstP; randq

6 : else // Secure randomness

7 : randÐ K

8 : pK
ptP
, ρ

ptP
, stPq

$
Ð CKA-Send-PpstPq

9 : return pK
ptP
, ρ

ptP
, randq

Chall-Ppq

1 : ptP Ð ptP ` 1

2 : req JptP “ pt˚K // Challenge epoch pt˚

3 : pK
ptP
, ρ

ptP
, stPq

$
Ð CKA-Send-PpstPq

4 : if Jb “ 0K then

5 : KÐ K
ptP

6 : else

7 : K $
Ð K // Replace with random key

8 : return pK, ρ
ptP
q

Receive-Ppq

1 : ptP Ð ptP ` 1

2 : pK, stPq
$
Ð CKA-Rec-PpstP, ρptP

q

3 : assert JK “ K
ptP

K // Correctness

Corr-Ppq

// Allow corrupting ∆PCS-epoch before pt˚

1 : req JptA,ptB ď pt˚
´∆PCSK

// Allow corrupting ∆PCS-epoch after pt˚

2 : req JptP ě pt˚
`∆FSK

3 : return stP

Fig. 7: Security game for continuous key agreement pCKAq protocol. With an overload of notation, in the
above P denotes the variable that can be either A or B. For instance, it is understood that A is given
oracle access to both Send-A and Send-B with the shorthand Send-P.

34

Remark A.1 (Bad randomness). We deviate from [1] (and other works on secure messaging) by not
considering adversiarilly chosen randomness. Instead, we consider a slightly weaker model in which
randomness is always honestly sampled but might be leaked to the adversary instead. We discuss
mitigations against adversarially influenced randomness in App. G.

A.4 Chunk Encoding

Definition A.3. An erasure code for a set of symbols Σ, a block length N , and a message size nchunk

consists of PPT algorithms Encode,Decode defined as follows:

EncodepM, iq Ñ c : It takes as input a message M P Σnchunk , and an integer i P ZN and outputs symbol
c P Σ.

DecodepLq Ñ M : It takes as input a set L Ă ZN ˆ Σ such that |L| ě nchunk and outputs a message
M P Σnchunk .

An erasure code is said to be correct if for all messages M P Σnchunk , for all I Ă ZN such that
|I| “ nchunk, if L “ tpi,EncodepM, i, nchunkq | i P Iqu then DecodepL, nchunkq “M .

A correct erasure code can be instantiated using systematic Reed-Solomon codes, allowing an imple-
mentation to avoid decoding overhead in a typical case when no messages are dropped. Furthermore
we note that using Reed-Solomon erasure codes over a finite field whose size is much larger than nchunk

makes the encoding effectively rateless, similar to a fountain code. Unlike fountain codes, however, we do
not require linear time decoding but do require reconstruction with exactly nchunk symbols.

A.5 Cryptographic Primitives

Definition A.4 (Authenticated Encryption). An authenticated encryption with associated data
(AEAD) scheme is a pair of algorithms AEAD :“ pEnc,Decq with the following syntax:

EncpK, h,Mq Ñ e: It takes a key K, authenticated data h, and a message M, and produces a ciphertext e.
DecpK, h, cq Ñ M1: It takes a key K, authenticated data h, and a ciphertext c, and outputs a plaintext M1.

We assume all agorithms to be deterministic, i.e., all randomness to be based off the key.
We say that an AEAD scheme is correct, if for all keys K and all pairs ph,Mq,

Dec
`

K, h,EncpK, h,mq
˘

“ m.

We require AEAD to be one-time IND-CCA secure, formalized by the game in Fig. 8, and define the
following advantage

AdvAEADA p1λq :“

∣∣∣∣PrrGameAEADA p1λqs ´
1

2

∣∣∣∣
and say the scheme to be secure iff every PPT A has negligible advantage.

GameAEADA p1λq

1 : b $
Ð t0, 1u

2 : K $
Ð t0, 1uλ

3 : e˚
Ð K

4 : b1 $
Ð Ap1λqencryptpq,decryptpq

5 : return Jb “ b1K

encryptph,Mq

1 : if Jb “ 0K then

2 : e˚
Ð EncpK, h,Mq

3 : else

4 : e˚ $
Ð C

5 : return e˚

decryptph, eq

1 : if Je “ e˚K_ Jb “ 1K then

2 : return K

3 : return DecpK, h, eq

Fig. 8: The one-time IND-CCA game of an AEAD scheme pEnc,Decq with ciphertext space C, where
encrypt is a one-time oracle.

35

Key Derivation Functions (KDF). We use several KDF in our work. Syntax wise, KDF is a determin-
istic algorithm taking one or more inputs and producing one or more (uniform) values. While we fix the
number of inputs for each concrete KDF, in slight abuse of notation we overload the same function to
output a variable number of arguments. In practice, each KDF would be instantiated by a hash-based
construction such as HKDF. In the following we outline the different security assumptions we need.

Definition A.5 (Pseudorandom generator (PRG)). A KDF with one input argument is said to
behave like a PRG, if

AdvPRGA p1λq :“
∣∣∣Prrx $

Ð t0, 1uλ, y Ð KDFpxq, b1 $
Ð Apyq : b1 “ 1s ´ Prry $

Ð Y, b1 $
Ð Apyq : b1 “ 1s

∣∣∣
is negligible for every PPT A.

Definition A.6 ((dual)-PRF). A KDF with two input arguments is said to behave like a pseudo-random
function (PRF), if

AdvPRFA p1λq :“

∣∣∣∣PrrGamePRFA p1λqs ´
1

2

∣∣∣∣
is negligible for every PPT A, for the game from Fig. 9. Moreover, it is said to be a dual-PRF if the
advantage is also negligible in a variant of the game where the roles of σ and I are swapped, i.e., where
initially I is sampled and chall, eval take σ as input, and F is indexed by σ.

GamePRFA p1λq

1 : b $
Ð t0, 1u

2 : σ $
Ð t0, 1uλ

3 : Fr¨s Ð K

4 : b1 $
Ð Ap1λqchall

5 : return Jb “ b1K

challpIq

1 : pσ1, Rq Ð KDFpσ, Iq

2 : if Jb “ 1K then

3 : RÐ evalpIq

4 : return pσ1, Rq

evalpIq

1 : if JFrIs “ KK then

2 : FrIs $
Ð R

3 : return FrIs

Fig. 9: PRF security of a two-input KDF. If KDF expands to more than two return values, then the first
one is σ and the remaining outputs should be considered as R over an appropriate composite space R.

Definition A.7 (PRF-PRNG). A KDF with two input arguments is said to have PRF-PRNG security,
if

AdvPRF-PRNGA p1λq :“

∣∣∣∣PrrGamePRF-PRNGA p1λqs ´
1

2

∣∣∣∣
is negligible for every PPT A, for the game from Fig. 10.

B More Details on Hybrid Messaging

In this section, we present the formal security and correctness definition of a (hybrid) secure messaging
scheme. The game is shown in Fig. 11. The game is a generalization of the game from Alwen et al. and
we, therefore, refer to [1] for an indepth discussion thereof.

On a high-level, the security game allows an adversary to control a messaging session, where either
party can send and receive messages. Security is defined using a special challenge oracle that takes two
messages, with the adversary’s goal to guess which one was encrypted. Parties can moreover be corrupted
where to predicate safe-corr and safe-chall rule out trivial attacks by challenging before PCS kicked in
after a corruption, or corrupting before FS kicked in after a challenge, respectively. The game uses
“semi-active” adversaries as in [1], where the adversary has to behave passively after a corruption until
PCS restores security, but can otherwise try to break authenticity by injecting other ciphertexts. We
discuss authenticity more below.

Recall that for a hybrid SM scheme the receive algorithm SM-Rec-P returns the index idx of the
received message, while the sender stores the index of the last sent message as part of their protocol state.

36

GamePRF-PRNGA p1λq

1 : b $
Ð t0, 1u

2 : σ $
Ð t0, 1uλ

3 : corr, prng, prf Ð false

4 : Fr¨s Ð K

5 : b1 $
Ð Ap1λqprocess,chall-prf,chall-prng,corr

6 : return Jb “ b1K

corrpq

1 : req J␣prfK
2 : corrÐ true

3 : return σ

processpIq

1 : I Ð sample-if-necpIq
2 : pσ,Rq Ð KDFpσ, Iq

3 : return R

chall-prfpIq

1 : req J␣corrK^ J␣prngK
2 : prf Ð true

3 : pσ1, Rq Ð KDFpσ, Iq

4 : if Jb “ 1K then

5 : RÐ evalpIq

6 : return pσ1, Rq

chall-prngpIq

1 : I Ð sample´ if ´ necpIq

2 : req J␣corrK^ J␣prfK
3 : prngÐ true

4 : pσ,Rq Ð KDFpσ, Iq

5 : if Jb “ 1K then

6 : R $
Ð R

7 : return R

sample-if-necpIq

1 : if JI “ KK then

2 : I $
Ð I

3 : corrÐ false

4 : return I

evalpIq

1 : if JFrIs “ KK then

2 : FrIs $
Ð R

3 : return FrIs

Fig. 10: PRF-PRNG security of a two-input KDF. If KDF expands to more than two return values, then the
first one is σ and the remaining tuple of outputs should be considered R over an appropriate composite
space R.

In the security game, correctness thus enforces that the receipent outputs the correct message index (in
additition to the correct message) as part of the respective oracle. The game moreover uses an epoch
function τpidxq defined on those message indices to abstract the handling of epochs, which can advance
at different velocities depending on whether we consider classical or post-quantum security. FS and PCS
is then defined in the number of epochs ∆FS and ∆PCS, respectively, describing the corruption window.
The game uses uses the helper algorithm epoch-mgmt to ensure consistency of the indices and the epoch
function: For each operation, indices must strictly increase while the associated epoch must be monotonic.
The additional helper algorithm corr-mgmt moreover keeps track of corrupted epochs — updating the
last corrupted epoch tL in case the party does not have access to good randomness — and the last epoch
each party has been challenged.

Finally, the game also uses an period function ıpidxq for bookkeeping. Within each epoch, periods have
to start at 1 and then increment on each send operation. Periods are then used to formalize the precise
authenticity guarantees. Recall that we said that the attacker may try to inject messages as long as neither
party is currently compromised (as formalized by safe-inj.) If all messages have been delivered, then we
expect that no injections can be performed outside such a windows of compromise. This is, however not
necessarily true if delayed messages for which the keys where compromised have not been delivered. The
game keeps track of those messages using Lcomp and then permits injecting the same number of messages
without being counted as a compromise. In other words if Alice sent ten messages not yet delivered while
being compromised, then the attacker may substitute those ten messages but must not be able to inject
an eleventh. This is checked by ensuring that for each message in Lcomp only one injection happens with
the same epoch-period pair. (The overall message index, however, may differ.)

Definition B.1. For a SM protocol ΠSM with message index space Idx, let τ : Idx Ñ N be an epoch
function that dictates how fast forward secrecy and post-compromise security come into effect, measured
as positive integers ∆FS and ∆PCS, respectively. The advantage of an adversary A is defined as

AdvSMA,∆PCS,∆FS,τ
p1λq :“

∣∣∣∣PrrGameSMA,∆PCS,∆FS,τ
p1λq “ 1s ´

1

2

∣∣∣∣
where the game is described in Fig. 11. We say ΠSM is p∆FS, ∆PCS, τq-secure if for any efficient A we
have AdvSMA,∆PCS,∆FS,τ

p1λq “ neglpλq.

37

GameSMA,∆PCS,∆FS,τ
p1λq

1 : b $
Ð t0, 1u

2 : IK
$
Ð SM-Init-KeyGenp1λq // Sample initial key

3 : for P P tA,Bu

4 : stP
$
Ð SM-Init-PpIKq

5 : ptChall-P, idxPq Ð p0,´8q

6 : tL Ð ´8

7 : Ltrans, Lchall, Lcomp ÐH

8 : b1 $
Ð Ap1λqSend-Ppq,Receive-Ppq,Chall-Ppq,Corr-Ppq

9 : return Jb “ b1K

Chall-ApM0,M1, rleakq

1 : rand $
Ð R

2 : req J|M0| “ |M1|K

3 : pct, stAq
$
Ð SM-Send-ApstA,Mb; randq

4 : epoch-mgmtpA, chall, rleakq

5 : req Jsafe-challpAqK
6 : record :“ pA,Mb, idxA, ctq

7 : Ltrans, Lchall, Lcomp
`
Ð record

8 : if J␣rleakK then randÐ K

9 : return pct, idxA, randq

Inject-Apctq

1 : req JpB, , , ctq R LtransK^ Jsafe-injpqK

2 : pM1, idx1, stAq
$
Ð SM-Rec-ApstA, ctq

3 : epoch-mgmtpA, receive, falseq

// Authenticity guarantee

4 : if JM1
‰ KK then

5 : assert Didx2 : Jequivpidx1, idx2
qK

^ JpB, , idx2, q P LcompK
6 : foreach idx2 : equivpidx1, idx2

q

7 : if JpB, , idx2, q P LtransK then

8 : Ltrans, Lchall, Lcomp
´
Ð pB, , idx2, q

9 : return pM1, idx1
q

Send-ApM, rleakq

1 : rand $
Ð R

2 : pct, stAq
$
Ð SM-Send-ApstA,M; randq

3 : epoch-mgmtpA, send, rleakq

4 : record :“ pA,M, idxA, ctq

5 : Ltrans
`
Ð record

6 : if J␣safe-challpAqK then

7 : Lcomp
`
Ð record

8 : if J␣rleakK then randÐ K

9 : return pct, idxA, randq

Receive-Apctq

1 : req JpB, , , ctq P LtransK

2 : pM1, idx1, stAq
$
Ð SM-Rec-ApstA, ctq

3 : epoch-mgmtpA, receive, falseq

4 : record :“ pB,M1, idx1, ctq

// Correctness guarantee

5 : assert Jrecord P LtransK
6 : if Jrecord P LchallK then

7 : M1
Ð K

8 : Ltrans, Lchall, Lcomp
´
Ð record

9 : return pM1, idx1
q

Corr-Apq

1 : req JpB, , , q R LchallK^ Jsafe-corrpAqK
2 : foreach pB,M1, idx1, ct1

q P Ltrans

3 : Lcomp
`
Ð pB,M1, idx1, ct1

q

4 : tL Ð maxptA, tBq

5 : return stA

epoch-mgmtpP, act, rleakq

1 : idxÐ idxpstPq

2 : pt, tPq Ð pτpidxq, τpidxPqq

3 : pi, iPq Ð pıpidxq, ıpidxPqq

4 : if Jact P tsend, challuK then

5 : assert Jidx ą idxPK
6 : else assert Jidx ě idxPK
7 : assert Jt ě tPK
8 : if Jt ą tPK then

9 : assert Ji “ 1K
10 : elseif Jact P tsend, challuK then

11 : assert Ji “ iP ` 1K
12 : else assert Ji “ iPK
13 : corr-mgmtpP, act, rleak, t, tPq

14 : idxP Ð idx

corr-mgmtpP, act, rleak, t, tPq

1 : if Jact “ challK then tChall-P Ð t

2 : if JrleakK then bad-randP Ð true

3 : if Jt ą tPK^ Jbad-randPK then

4 : while JtP ă tK
5 : tP `“ 1

6 : if Jsending-eppP, tqK
^ J␣safe-challpPqK then

7 : tL Ð maxptL, tq

8 : bad-randP Ð false

equivpidx1, idx2q

1 : return Jτpidx1q “ τpidx2qK
^ Jipidx1q “ ipidx2qK

sending-eppP, tq

1 : return JP “ A and t is oddK
_ JP “ B and t is evenK

safe-challpPq // ∆PCS after last corruption

1 : return JtP ě tL `∆PCSK

safe-injpq // Once both parties healed

1 : return JminptA, tBq ě tL `∆PCSK

safe-corrpPq // ∆FS epochs after last challenge

1 : return JtP ě tChall-P `∆FSK

Fig. 11: The SM security game parametrized in the epoch function τ , the number of epochs ∆PCS for
PCS, and the number of epochs ∆FS for FS. The period function ı is used for bookkeeping purposes and
not security relevant. The oracles for B are defined analogously.

38

C Triple Ratchet: Security Proof

In this section, we prove the SM security of the TR protocol, as stated in the following theorem.

Theorem C.1 (Theorem 4.1 restated). For the TR protocol, let τC and τQ denote the epoch functions
as discussed in Remark 4.1, and let ıC :“ iSC and ıQ :“ iSQ denote the period functions. Assume that

– CKAC is p∆C
FS, ∆

C
PCSq-secure CKA scheme or CKAQ is p∆Q

FS, ∆
Q
PCSq-secure CKA scheme;

– CKAC and CKAQ are both correct;
– KDF1 is a secure PRF-PRNG, KDF2 is a secure PRG, and KDF3 is a secure dual-PRF;
– AEAD is a secure authenticated encryption scheme with associated data.

Then, the TR construction above is p∆C
FS, ∆

C
PCS, τ

Cq-secure if CKAC is secure, and p∆Q
FS, ∆

Q
PCS ` 1, τQq

secure if CKAQ is secure respectively. More concretely, let q be an upper bound on the oracle invocations .
Then we have

AdvSMA,∆Q
PCS`1,∆Q

FS,τ
Qp1

λq ď AdvCKA-corrC
A1

p1λq ` AdvCKA-corrQ
A2

p1λq

` 2q2
´

AdvCKA
Q

B,∆Q
PCS,∆

Q
FS
p1λq ` q ¨ AdvPRF-PRNGC p1λq ` q ¨ AdvPRGD p1λq

` AdvdPRFE p1λq ` AdvAEADF p1λq
¯

in case the post-quantum sub-protocol CKAQ is secure. Moreover, in case the classical sub-protocol CKAC

is secure, AdvSMA,∆C
PCS,∆

C
FS,τ

Cp1λq can be bounded by the same term, except with the CKA advantage replaced

by AdvCKA
C

B,∆C
PCS,∆

C
FS
, respectively.

In the above, AdvCKA-corr
A1 denotes the advantage of A1 breaking the correctness17 of the CKA and the

remaining advantage terms formalizing the aforementionend security assumptions on the underlying
primitives.

As observed in [1], the SM security game can be split into separate games for correctness, authenticity,
and confidentiality, as stated by the following lemma.

Lemma C.1. In the following, let

– GameSM-corr
A be a variant of GameSMA,∆PCS,∆FS,τ

whose only winning condition is breaking the correctness
in the Receive-A and Receive-B oracles (whose challenge oracles has been removed and where the
adversary loses upon a successful injection).

– GameSM-auth
A,∆PCS,∆FS,τ

be a game whose only winning condition is breaking authenticity, i.e., triggering
JM1 “ KK_ Jrecord P LcompK, with the adversary losing when breaking correctness and the challenge
oracle removed.

– GameSM-conf
A,∆PCS,∆FS,τ

be a variant where the adversary loses if they break correctness or cause a non-trivial
injection, i.e., trigger JM1 “ KK_ Jrecord P LcompK.

It holds that

AdvSMA,∆PCS,∆FS,τ
p1λq ď AdvSM-corr

A p1λq ` AdvSM-auth
A,∆PCS,∆FS,τ

p1λq ` AdvSM-conf
A,∆PCS,∆FS,τ

p1λq.

Correctness. For correctness of the Triple Ratchet protocol, we require both CKAs to be correct. For
simplicity, we assume the AEAD scheme to decrypt correctly with probability 1.

Lemma C.2. Assuming the AEAD to have perfect correctness, then the Triple Ratchet is correct as long
as both the classical CKA and the post-quantum CKA are correct. More concretely,

AdvSM-corr
A p1λq ď AdvCKA-corrC

A1
p1λq ` AdvCKA-corrQ

A2
p1λq,

where AdvCKA-corr
A p1λq the notes the advantage of A to just trigger the correctness property in the CKA

game.
17 Technically, of winning an variant of the CKA game where the challenge oracle has been removed such that

breaking correctness is the only winning condition.

39

Proof. This follows mostly by inspection. For the classical CKA, observe that it is easy to argue to both
parties A and B absorb the same keys KCKA into their root key Kroot. Therefore, for the same epoch t and
period iS, they produce the same AEAD key KC

aead. Analogously, for the post-quantum protocol, Decode is
guaranteed to produce the correct CKA message ρ and, therefore, correctness of the CKA scheme implies
they produce the same sending and receiving keys KS and KR as well. As a result, for each message index
idx, both parties produce the same AEAD key Kaead :“ KDF3pK

C
aead,K

Q
aeadq and, therefore, by correctness

of the AEAD the recepient outputs the correct message.

Confidentiality. We now proceed to bound the advantage on the confidentiality game. Privacy holds as
long as either of the CKA protocols is secure — with the speed of FS and PCS depending on whether
the classical or the post-quantum CKA is assumed to be secure. While the proofs of both properties are
essentially analogous, in the following we mainly focus on the post-quantum security. First, we establish
some technical lemmas that allow us to simplify the proof.

Lemma C.3. Let GameSM-conf-ss be a variant of GameSM-conf with the following two modifications:

– The attacker A only gets to make a single challenge.
– The attacker has to selectively input the value tL that the game will have at the time of the challenge

at the beginning of the interaction. We call this input t˚
L .

For any PCS and FS parameters ∆PCS and ∆FS, respectively, and any epoch function τ , we then get

AdvSM-conf
A,∆PCS,∆FS,τ

p1λq ď q2 ¨ AdvSM-conf-ss
A1,∆PCS,∆FS,τ

p1λq.

Proof. The reduction to a single challenge follows using a standard hybrid argument, losing a factor in the
number of challenge queries, which is at most q. Simply put, one can consider hybrids where the first n
challenges encrypt message M1 while all challenges thereafter encrypt message M0; the first hybrid clearly
corresponds to the original game with b “ 0 while the last hybrid corresponds to the original game with
b “ 1, while distinguishing two subsequent hybrids reduces to the one-challenge game with emulating
the other challenges using the regular sending oracle. Selective security then follows by a reduction that
simply guesses the input, losing another factor q.

Lemma C.4. Assuming either the classical protocol CKAC or the post-quantum protocol CKAQ to be
secure, then confidentiality holds for TR protocol. More concretely, let q be an upper bound on the oracle
invocations and, for X P tC,Qu, let ∆X

PCS and ∆X
FS denote the PCS and FS parameters for the classical and

post-quantum CKAs, respectively, and let τC and τQ denote the respective epoch functions (as discussed
in Remark 4.1). Then we have

AdvSM-conf-ss
A1,∆C

PCS,∆
C
FS,τ

Cp1
λq ď AdvCKA

C

B,∆C
PCS,∆

C
FS
p1λq ` q ¨ AdvPRF-PRNGC p1λq

` q ¨ AdvPRGD p1λq ` AdvdPRFE p1λq ` AdvAEADF p1λq

in case the classical part CKAC is secure, and

AdvSM-conf-ss
A1,∆Q

PCS`1,∆Q
FS,τ

Qp1
λq ď AdvCKA

Q

B,∆Q
PCS,∆

Q
FS
p1λq ` q ¨ AdvPRF-PRNGC p1λq

` q ¨ AdvPRGD p1λq ` AdvdPRFE p1λq ` AdvAEADF p1λq

in case the post-quantum part CKAQ is secure.

Proof. We show this using a sequence of hybrids. The overall approach closely follows the proof in [1].
All of the changes, unless specifically mentioned otherwise, are only performed to the CKA of TR that
is assumed to be secure. The proofs for the two CKAs are mostly analogous, with small deviations
mentioned when they arise.

Hybrid1: In the first hybrid, we modify GameSM-conf-ss
A1,∆PCS,∆FS,τ

as follows:
– We replace the key KCKA of epoch t˚

L `∆PCS with a fresh independent one. That is, we replace it
in both TR-Send-P, when output by CKA-Send-P, and in TR-Rec-P, when output by CKA-Rec-P,
with the same freshly sampled key.

– If t˚
L “ ´8, i.e., if no corruption occurs before the challenge, then Hybrid1 behaves as the original

game.

40

The latter case is trivially indistinguishable; we focus on the former case (with some corruption) in the
following. Note that the sender of the key of t˚

L `∆PCS, i.e., the party P executing CKA-Send-P, did so
between epoch t˚

L `∆PCS ´ 1 and t˚
L `∆PCS. By definition of t˚

L , we can therefore conclude that this
must have been done with good randomness, as safe-challpPq at this point was still false and, therefore,
using bad randomness would have updated tL. Using ∆PCS “ ∆CKA

PCS ` 1, we can moreover observe
that pt˚ :“ t˚

L `∆PCS ´ 1 is a valid challenge epoch for the CKA game. In other words, safe-corrpPq
and safe-challpPq ensure that the CKA state can only be leaked for strictly before pt˚ ´∆CKA

PCS and after
pt˚ `∆FS. Therefore, there exists a simple reduction to GameCKAA1,pt˚ as follows:
– Whenever TR-Send-P invokes CKA-Send-P, the reduction uses the Send-P oracle of the CKA game

instead to obtain ρ for epoch other than t˚
L . Similarly, the reduction uses the Chall-P oracle to

obtain ρ for the challenge epoch t˚
L . The reduction then keeps track of the corresponding key

KCKA and uses that one to mix into the root key Kroot.
– Whenever TR-Rec-P invokes CKA-Rec-P on a decoded message ρ that has been sent by the other

party, as chunks, then the reduction invokes the Receive-P oracle of the CKA game to advance
the party’s CKA state. In a bit more detail, once at least nchunk many SM messages have been
honestly delivered (without any non-trivial injection), the reduction invokes the delivery oracle.
Using correctness of the erasure code, we know that the game delivers the same ρ that Decode
would recover. It then mixes in the key KCKA that was output as part of sending ρ (which by
correctness is the same key the protocol obtains).

– Whenever the attacker A1 corrupts a party P in the SM game, the reduction corrupts the
corresponding party in the CKA game to obtain their CKA state. As argued above, whenever a
corruption is valid in the SM game, it is also valid in the CKA game.

– For injections, recall that we disallowed so-called non-trivial injections, i.e., only allow injections
for messages sufficiently in the past such that both parties have healed in the meantime. Note,
however, that delivering old out-of-order messages causes the Triple Ratchet protocol to just look
up the skipped key in StoredKeys — not affecting the CKA state. Therefore, the reduction running
these parts internally can properly emulate any effect of such injections.

As a consequence, for the post-quantum CKA we obtain∣∣∣Pr ”

GameSM-conf-ss
A1,∆PCS`1,∆FS,τQp1λq “ 1

ı

´ Pr
“

Hybrid1p1
λq “ 1

‰

∣∣∣ ď AdvCKA
Q

B,∆PCS,∆FS
p1λq,

and the analogous result for the classical CKA with the tighter ∆PCS bound.
Hybrid2: In the second hybrid, we modify Hybrid1 as follows:

– For all epochs starting from t˚
L `∆PCS to the challenge epoch, we replace the output of KDF1,

i.e., Kroot, KS and KR`1, with freshly sampled independent keys. (In the case of the classically
secure CKA, KDF1 just outputs two keys, which we replace by fresh ones.)

Observe that the first of those KDF1pKroot,KCKAq invocations in Hybrid1 uses a fresh and independent
KCKA. Therefore, by PRF-PRNG security of KDF1, the outputs will be indistinguishable from freshly
sampled outputs. Moreover, the game disallows any corruption of the involved keys. Therefore, using
a sequence of hybrids we observe that for all the subsequent epochs, until the challenge epoch, the
Kroot input now is a secure key and, thus, by PRF-PRNG security we can replace the subsequent
outputs. (Note that for confidentiality, we only need the “PRNG” property of PRF-PRNG security.
The “PRF” aspect of it will be vital for authenticity.) As a result, we can deduce∣∣Pr “

Hybrid2p1
λq “ 1

‰

´ Pr
“

Hybrid1p1
λq “ 1

‰
∣∣ ď q ¨ AdvPRF-PRNG

C p1λq.

Hybrid3: In the third hybrid, we modify Hybrid2 as follows:
– For all epochs starting from t˚

L `∆PCS to the challenge epoch, we replace the output of KDF2, i.e.
KS, of the sending party with freshly sampled independent keys. For the receiving party, KR is
replaced with the same key, i.e., the key used by the sender for the same epoch and period.

– In the challenge epoch, only invocations up to the actual challenge are replaced.
Since the initial keys KS (or KR, respectively) have been fresh in Hybrid2, PRG security of KDF2

ensures that those outpts are indistinguishable. In particular, recall that for epochs between t˚
L `∆PCS

and (before) the challenge epoch the game does not allow corruptions. While corruptions may be
allowed for the challenge epoch in case of ∆FS “ 0, they are in particular only allowed after the
challenge. However, KS can be safely leaked after the challenge with the challenge KX

aead still appearing
independent and uniform at random. Therefore, we obtain∣∣Pr “

Hybrid3p1
λq “ 1

‰

´ Pr
“

Hybrid2p1
λq “ 1

‰
∣∣ ď q ¨ AdvPRGD p1λq.

41

Hybrid4: Finally, we modify Hybrid3 as follows:
– For the challenge, we replace the output of Kaead :“ KDF3pK

C
aead,K

Q
aeadq with a fresh independent

key.
Note that in Hybrid3 either KC

aead or KQ
aead has been substituted with a fresh independent key. Therefore,

dual-PRF security ensures that the output is indistinguishable from a uniform random key in either
case. ∣∣Pr “

Hybrid4p1
λq “ 1

‰

´ Pr
“

Hybrid3p1
λq “ 1

‰
∣∣ ď AdvdPRFE p1λq.

Finally, we consider the probability of A1 winning Hybrid4, i.e., of correctly guessing which of the messages
was encrypted as part of the challenge. Since Hybrid4 uses a fresh uniform random key to encrypt the
challenge using AEAD, this probability trivially reduced to AEAD security:

Adv
Hybrid4
A1 p1λq ď AdvAEADF p1λq.

The overall confidentiality statement then follows directly by adding the respective error terms, for both
the classical and the post-quantum parts.

Authenticity. Finally, we bound the advantage on the authenticity game. Analogous to confidentiality,
authenticity holds as long as either of the CKA protocols is secure — with the speed of FS and PCS
depending on whether the classical or the post-quantum CKA is assumed to be secure.

Lemma C.5. Let GameSM-auth-ss be a variant of GameSM-auth with the following two modifications:

– The attacker has to selectively input the epoch t˚ they try to attack, as well as t˚
L , the value of the last

epoch corrupted tL beforehand.
– Any non-trivial injection is forbidden unless in epoch t˚.
– Corruptions are disallowed for a parties in epoch t˚.

For any PCS and FS parameters ∆PCS and ∆FS, respectively, and any epoch function τ , we for every
PPT adversary A, there exists a PPT adversary A1 such that

AdvSM-auth
A,∆PCS,∆FS,τ

p1λq ď q2 ¨ AdvSM-auth-ss
A1,∆PCS,∆FS,τ

p1λq.

Proof. A1 works by internally running A and simulating the original game based on the restricted one.
To this end, the reduction tries to guess the epoch t˚ of the first successful (non-trivial) injection and the
last corruption beforehand. (Note that any corruption in t˚ would need to happen after the successful
injection for the injection to be allowed; therefore, we can simply disregard such ijections.) To this end, it
chooses t˚ uniformly at random in t1, . . . , qu and t˚

L in t8, 1, . . . , q ´∆PCSu. It remains to briefly argue
that if the guesses are correct, then the reduction can successfully simulate the original game until the
successful injection. (Note that the game is considered won the moment a successful injection occurs.
Therefore, the behavior of A1 afterwards is irrelevant.) This can be achieved trivially by simply rejecting
all non-trivial injection attemps before t˚, since for TR the state remains unchanged in case an injection
is rejected.

Lemma C.6. For X P tC,Qu, let ∆X
PCS and ∆X

FS denote the PCS and FS parameters for the classical and
post-quantum CKAs, respectively, and let τC and τQ denote the respective epoch functions (as discussed
in Remark 4.1). Then we have

AdvSM-auth-ss
A1,∆C

PCS,∆
C
FS,τ
p1λq ď AdvCKA

C

B,∆C
PCS,∆

C
FS
p1λq ` q ¨ AdvPRF-PRNGC p1λq

` q ¨ AdvPRGD p1λq ` AdvdPRFE p1λq ` AdvAEADF p1λq

in case the classical part CKAC is secure, and

AdvSM-auth-ss
A1,∆Q

PCS`1,∆Q
FS,τ
p1λq ď AdvCKA

Q

B,∆Q
PCS,∆

Q
FS
p1λq ` q ¨ AdvPRF-PRNGC p1λq

` q ¨ AdvPRGD p1λq ` AdvdPRFE p1λq ` AdvAEADF p1λq

in case the post-quantum part CKAQ is secure.

42

Proof. First, we consider the injections for “old” epochs, i.e., where τpidx1
q ă t˚

L , but the party P is in
epoch t˚ when processing the injection. Note that at this point P already got the (correct) number of
messages sent during τpidx1

q and has stored the individual AEAD keys in StoredKeys. Therefore, P will
not accept an injection for a period counter, according to the period function ı, for which no message has
been sent. Moreover, the CKA already moved on sufficiently such that those “trivial” injections no longer
affect the protocol state. Therefore, we will ignore them in the following, for simplicity.

In the remainder, we bound the probability of a “non-trivial” attack using a sequence of hybrids. The
sequence closely follows the one of the confidentiality proof — we mainly outline the differences.

Hybrid1: In the first hybrid, we modify GameSM-auth-ss
A1,∆PCS,∆FS,τ

as follows:
– We replace the key KCKA of epoch t˚

L `∆PCS with a fresh independent one. That is, we replace it
in both TR-Send-P, when output by CKA-Send-P, and in TR-Rec-P, when output by CKA-Rec-P,
with the same freshly sampled key.

– If t˚
L “ ´8, i.e., if no corruption occurs the injection oracle becomes available during epoch t˚,

then Hybrid1 behaves as the original game.
Note that while processing the message that delivers this KCKA to the receiver, the receiver is still in
the prior epoch. Therefore, injections are disallowed by safe-inj at this point. As a result, the argument
becomes essentially the same as in the confidentiality case: the respective sender sampled the key
using good randomness and no corruption exposing it is allowed. This yields a simple reduction to
the CKA game in which either the correct key or an independently sampled one is produced. As a
consequence, for the post-quantum CKA we obtain∣∣∣Pr ”

GameSM-auth-ss
A1,∆PCS`1,∆FS,τQp1λq “ 1

ı

´ Pr
“

Hybrid1p1
λq “ 1

‰

∣∣∣ ď AdvCKA
Q

B,∆PCS,∆FS
p1λq,

and the analogous result for the classical CKA with the tighter ∆PCS bound.
Hybrid2: In the second hybrid, we modify Hybrid1 as follows:

– For all epochs starting from t˚
L `∆PCS to t˚, we replace the output of KDF1, i.e., Kroot, KS and

KR`1, with freshly sampled independent keys. (In the case of the classically secure CKA, KDF1

just outputs two keys, which we replace by fresh ones.)
– In epoch t˚, if the receiver is still in epoch t˚ ´ 1 then we replace the keys by independent ones

for any injected ciphertext, using the ones consistent with the sender for the honest delivery.
Again, the argument is fairly similar to the one from confidentiality, as no corruptions are allowed for
that period. Some care, however, has to be taken with respect to (non-trivial) injections. For epochs
t˚
L `∆PCS to t˚´ 1 no injections are allowed by Hybrid1. Thus, we can therefore use a simple sequence

of additional hybrids to replace those keys by fresh ones.
In constrast, injections are allowed for t˚. In particular, the receiver of such an injection might be
still at epoch t˚ ´ 1 at this stage, processing the injection attempt. We know from the prior argument
that the Kroot the receive stores at this point is fresh. Here we crucially rely on the “PRF” property of
PRF-PRNG security of KDF1 to argue that we can replace all the resulting keys with independent
and uniformly distributed ones. As a result, we can deduce∣∣Pr “

Hybrid2p1
λq “ 1

‰

´ Pr
“

Hybrid1p1
λq “ 1

‰
∣∣ ď q ¨ AdvPRF-PRNG

C p1λq.

Hybrid3: In the third hybrid, we modify Hybrid2 as follows:
– In epoch t˚, we replace the output of KDF2, i.e. KS, of the sending party with freshly sampled

independent keys. For the receiving party, KR is replaced with the same key, i.e., the key used by
the sender for the same period.

Due to the absence of corruptions, this simply follows by PRG-security of KDF2. Therefore, we obtain∣∣Pr “

Hybrid3p1
λq “ 1

‰

´ Pr
“

Hybrid2p1
λq “ 1

‰
∣∣ ď q ¨ AdvPRGD p1λq.

Hybrid4: Finally, we modify Hybrid3 as follows:
– For all injection attemps in epoch t˚, we replace the output of Kaead :“ KDF3pK

C
aead,K

Q
aeadq with

a fresh independent key, subject to consistency. For example, assume we consider CKAQ to be
secure, then for each unique value of KC

aead, we replace the output with a fresh uniform key.
Assume CKAQ is assumed to be secure. Then, in Hybrid3 we replaced KQ

aead for each injection attempt
with independent and fresh values. Even if the attacker can cause the receiving party to reuse KC

aead

accross injections, dual-PRF security of KDF3 ensures the outputs to be independent and freshly
sampled. The analogous argument holds if we assume CKAC to be secure. Therefore, dual-PRF security
ensures that the output is indistinguishable from a uniform random key in either case.∣∣Pr “

Hybrid4p1
λq “ 1

‰

´ Pr
“

Hybrid3p1
λq “ 1

‰
∣∣ ď AdvdPRFE p1λq.

43

Distribution DKeyBaseSim
A,0

1 : p pekA, xdkAq
$
Ð pDRKeyGen-A

2 : return p pekA, xdkAq

Distribution DKeyBaseSim
A,1

1 : pekA, dkAq
$
Ð DRKeyGen-A

2 : p pekA, xdkA, q
$
Ð RSimKey-A1pekA, dkAq

3 : return p pekA, xdkAq

Fig. 12: Base Key simulatability.

Distribution DKeyUpdSim
A,0

1 : pekB, dkBq
$
Ð DRKeyGen-Btrand0u

2 : p pekB, xdkB, aux0q
$
Ð RSimKey-B1pekB, dkBq

3 : pekA, dkAq
$
Ð DRKeyGen-Atrand1u

4 : pctB,K, xdkA q
$
Ð REnc-Ap pekB , dkA; rand2q

5 : pK1, pekA q
$
Ð RDec-BpxdkB, ctB, ekAq

6 : return
´

p pekB, xdkBq, p pekA, xdkAq, ctB,K,K
1,

aux0, rand0, rand1, rand2
¯

Distribution DKeyUpdSim
A,1

1 : pekB, dkBq
$
Ð DRKeyGen-Btrand0u

2 : p pekB, xdkB, aux0q
$
Ð RSimKey-B1pekB, dkBq

3 : pekA, dkAq
$
Ð DRKeyGen-Atrand1u

4 : p pekA, xdkA, aux1q
$
Ð RSimKey-A1pekA, dkAq

5 : pctB,K,K
1, rand2q

$
Ð RSimKey-A2p

pekB, xdkB, aux1q

6 : return
´

p pekB, xdkBq, p pekA, xdkAq, ctB,K,K
1,

aux0, rand0, rand1, rand2
¯

Fig. 13: Updated Key simulatability. The text highlighted in blue denotes the main differences between
the two distributions. Recall Dtrandu denotes the process of sampling from the distribution D with
randomness rand. Above, we assume rand (except for those output by RSimKey-A2) to be distributed
uniformly over their respective domain.

Finally, we consider the probability of A1 winning Hybrid4 by succeeding with one of the injection attempts.
There are three cases to consider:

– The attacker injects in the transition from epoch t˚ ´ 1 to t˚ with a modified CKA message, i.e., such
that the KCKA differs from what the sender uses.

– The attacker injects in the transition from epoch t˚ ´ 1 to t˚ but the receiver obtains the KCKA the
sender used.

– The attacker injects after the receiver already honestly transitioned to t˚.

In the first case, the attacker essentially tries to inject to a fresh key Kaead (see Hybrid4) for which they
have no information about (in particular not even seen a ciphertext for). AEAD security rules out such an
injection. In the second and third cases, the attacker has seen a valid ciphertext under that key, from the
sender, but tries to inject a different one. Again, AEAD security prevents such an attack. Overall, this
probability trivially reduced to AEAD security:

Adv
Hybrid4
A1 p1λq ď AdvAEADF p1λq.

The overall confidentiality statement then follows directly by adding the respective error terms, for both
the classical and the post-quantum parts.

D Details on the CKA from RKEM

D.1 Omitted Definition of RKEM

We formally define ratchet simulatability of RKEM explained in Sec. 5.1. Notice we have one more
additional property named base-key simulatability. This is a minor property required to capture the first
keys that are shared among the users in the CKA protocol.

Definition D.1 (Ratchet Simulatability). For b P t0, 1u, let DKeyBaseSim
A,b be the distributions as

defined in Fig. 12, DKeyUpdSim
A,b be the distributions as defined in Fig. 13, and DCtxtSim

B,b be the distributions

44

Distribution DCtxtSim
B,0

1 : pekA, dkAq
$
Ð DRKeyGen-Atrandu

2 : p pekA, xdkA, auxq
$
Ð RSimKey-A1pekA, dkAq

3 : pekB, dkBq
$
Ð DRKeyGen-B

4 : p ctA ,K, xdkBq
$
Ð REnc-Bp pekA, dkB q

5 : pK1, pekBq
$
Ð RDec-ApxdkA, ctA, ekBq

6 : return
´

aux, rand, p pekA, xdkAq, ctA,

pekB, pekBq, pK,K
1
q

¯

Distribution DCtxtSim
B,1

1 : pekA, dkAq
$
Ð DRKeyGen-Atrandu

2 : p pekA, xdkA, auxq
$
Ð RSimKey-A1pekA, dkAq

3 : p pekB, xdkBq
$
Ð pDRKeyGen-B

4 : p ctA , ekB,K,K
1
q

$
Ð RSimCtxt-Bp pekB, pekA, xdkA q

5 : return
´

aux, rand, p pekA, xdkAq, ctA,

pekB, pekBq, pK,K
1
q

¯

Fig. 14: Ciphertext simulatability. The text highlighted in blue denotes the main differences between the
two distributions.

as defined in Fig. 14. Moreover, let DKeyBaseSim
B,b and DKeyUpdSim

B,b and DCtxtSim
B,b be defined analogously with

the roles of the two parties swapped in the respective experiments. We say a ratcheting KEM ΠRKEM is
ratchet simulatable if there exists efficient simulators pRSimKey-P1,RSimKey-P2,RSimCtxt-PqPPtA,Bu such
that the advantage against base-key simulatability

AdvKeyBaseSim-P
A p1λq :“

∣∣∣∣Prrb $
Ð t0, 1u, x $

Ð DKeyBaseSim
P,b , b1 $

Ð Apxq : b1 “ bs ´
1

2

∣∣∣∣,
the advantage against updated key simulatability

AdvKeyUpdSim-P
A p1λq :“

∣∣∣∣Prrb $
Ð t0, 1u, x $

Ð DKeyUpdSim
P,b , b1 $

Ð Apxq : b1 “ bs ´
1

2
,

∣∣∣∣
and the advantage against ciphertext simulatability

AdvCtxtSim-P
A p1λq :“

∣∣∣∣Prrb $
Ð t0, 1u, x $

Ð DCtxtSim
P,b , b1 $

Ð Apxq : b1 “ bs ´
1

2

∣∣∣∣
for both P P tA,Bu are negligible. We denote AdvKeyBaseSimA :“ maxPPtA,Bu

´

AdvKeyBaseSim-P
A p1λq

¯

,

AdvKeyUpdSimA :“ maxPPtA,Bu

´

AdvKeyUpdSim-P
A p1λq

¯

and AdvCtxtSimA :“ maxPPtA,Bu

´

AdvCtxtSim-P
A p1λq

¯

.

D.2 Protocol Description

A formal description of our generic construction of a CKA protocol based on an RKEM is depicted in
Fig. 15.

D.3 Security

In this section, we provide the security proof for the generic CKA construction based on RKEM.

Theorem D.1 (Theorem 5.1 restated). For any correct and forward-secure RKEM, the protocol from
Fig. 15 is a correct and secure CKA protocol with ∆FS “ 0 and ∆PCS “ 2. Moreover, if the RKEM is
non-forward secure, then the protocol is a secure CKA with ∆FS “ 1 and ∆PCS “ 2.

More specifically, let q denote an upper bound on the number of epochs A creates and let ϵRKEMcorr denote
the correctness error of the RKEM. Then we have

AdvCKAA,∆FS,∆PCS
p1λq ď q ¨ ϵRKEMcorr ` AdvKeyBaseSim-B

B p1λq ` pq ´ 1q ¨ AdvKeyUpdSimC p1λq

` AdvCtxtSimD p1λq ` AdvFS-IND-CPA
E p1λq,

with ∆PCS “ 2 and ∆FS “ 0 if the RKEM is forward secure. If the RKEM is non-forward secure, we obtain
the same bound except with AdvIND-CPA

E p1λq and for ∆FS “ 1.

45

CKA-Init-KeyGenp1λq

1 : par $
Ð RSetupp1λq

2 : p pekB, xdkBq
$
Ð RKeyGen-Bppar, updatedq

3 : return IK :“ p pekB, xdkB, parq

CKA-Init-ApIKq

1 : parse p pekB, xdkB, parq Ð IK

2 : tA :“ 0

3 : stA :“ ptA,K, pekB, parq

4 : return stA

CKA-Init-BpIKq

1 : parse p pekB, xdkB, parq Ð IK

2 : tB :“ 0

3 : stB :“ ptB, xdkB,K, parq

4 : return stB

CKA-Send-ApstAq

1 : parse ptA, , pekB, parq Ð stA

2 : req JtA is evenK
3 : tA `“ 1

4 : pekA, dkAq
$
Ð RKeyGen-Apparq

5 : pctB,K, xdkAq
$
Ð REnc-Ap pekB, dkAq

6 : ρ :“ ptA, ekA, ctBq // Send pekA, ctBq

7 : stA :“ ptA, xdkA,K, parq

8 : return pK, ρ, stAq

CKA-Rec-BpstB, ρq

1 : parse ptB, xdkB, , parq Ð stB

2 : req JtB is evenK
3 : parse ptA, ekA, ctBq Ð ρ

4 : req JtA “ tB ` 1K
5 : tB `“ 1

6 : pK, pekAq
$
Ð RDec-BpxdkB, ctB, ekAq

7 : stB :“ ptB,K, pekA, parq

8 : return pK, stBq

Fig. 15: A generic construction of a CKA from ratcheting KEM. Algorithms CKA-Send-B and CKA-Rec-A
are defined analogously with the roles of parties A and B swapped, and the algorithms checking for the
epoch number to be odd instead of even.

Proof. Consider the CKA game GameCKAA,t˚ as depicted in Fig. 16 with the protocol from Fig. 15 inlined
and some minor syntactic changes. In particular, we keep the protocol state expanded as part of the
game’s state rather than parsing and reasembling stP for each operation. Analogously, we keep IK and
CKA messages ρt in their expanded form, which especially implies that CKA-Init-P which just parses IK
becomes vacuous. Furthermore, we observe that the epoch counters maintained by the game and the ones
maintained by the protocol match, and therefore unify them into a single counter tP per party. Finally,
we remove some redundant checks on the epoch counters in CKA-Rec-P that always hold when messages
are honstly delivered by an adversary that respects alternating communication.

Correctness: We first argue correctness of the scheme; namely that line 3 of Receive-P never applies. To
this end, observe that by correctness of RKEM, K1

1 “ K1 and the keypair p pek1,xdk1q is indistinduishable
from a fresh one, when only considering the keys themselves. Since the protocol for epoch t only uses
the keys p pekt´1,xdkt´1q (and no side information thereof) we can therefore inductively invoke correctness
and argue that by correctness K1

t “ Kt and that the key pair p pekt,xdktq is indistinguishable from a fresh
keypair (when ignoring side information).

In the following, we therefore consider a modification of GameCKAA,t˚,b where the correctness condition
has been removed and bound the respective advantage of A.

HybridCKAA,t˚,b,0 to HybridCKAA,t˚,b,t˚´2: We define a sequence of hybrids HybridCKAA,t˚,b,i for 0 ď i ď t˚ ´ 2 and
b P t0, 1u. The hybrids are based on Fig. 16 with modifications described below — they are depicted in
Fig. 17.

Initial setup: Instead of directly sampling p pek0,xdk0q using the RKeyGen-B algorithm, all hybrids
first sample pek0, dk0q instead, and then use RSimKey-B1 to derive p pek0,xdk0q. It is easy to see that this
is indistinduishable by base-key simulatability, and more concretely there exists a simple reduction B0

such that ∣∣∣Pr“GameCKAA,t˚,bp1
λq “ 1

‰

´ Pr
“

HybridCKAA,t˚,b,0p1
λq “ 1

‰

∣∣∣ ď AdvKeyBaseSim-B
B p1λq.

46

GameCKAA,t˚p1
λ
q

1 : b $
Ð t0, 1u

2 : CKA-Init-KeyGen

parÐ RSetupp1λq

p pek0, xdk0q
$
Ð RKeyGen-Bppar, updatedq

3 : for P P tA,Bu

4 : tP :“ 0 // CKA-Init-P does nothing

5 : b1 $
Ð Appt˚

q
Send-Ppq,Receive-Ppq,Chall-Ppq,Corr-Ppq

6 : return Jb “ b1K

Send-Pprleakq

1 : tP Ð tP ` 1

2 : rand :“ prand1, rand2q Ð R

3 : CKA-Send-P

pektP , dktPq Ð RKeyGen-Pppar; rand1q

pcttP´1,K, xdktPq Ð REnc-Pp pektP´1, dktP ; rand2q

ρ :“ ptP, ektP , cttP´1q

4 : if JrleakK then // Leak randomness

// Allow leaking randomness ∆PCS-epoch before t˚

5 : req JtA, tB ď t˚
´∆PCSK

6 : else // Secure randomness (for challenge epoch)

7 : randÐ K

8 : KtP Ð K

9 : return pK, ρ, randq

Chall-Ppq

1 : tP Ð tP ` 1

2 : req JtP “ pt˚K // Challenge epoch t˚

3 : CKA-Send-P

pektP , dktPq
$
Ð RKeyGen-Ppparq

pcttP´1,K, xdktPq
$
Ð REnc-Pp pektP´1, dktPq

ρ :“ ptP, ektP , cttP´1q

4 : KtP Ð K

5 : if Jb “ 1K then

6 : K $
Ð K // Replace with random key

7 : return pK, ρq

Receive-Ppq

1 : tP Ð tP ` 1

2 : CKA-Rec-P

pK, pektPq
$
Ð RDec-PpxdktP´1, cttP´1, ektPq

3 : assert JK “ KtPK // Correctness

Corr-Ppq

1 : // Allow corrupting ∆PCS-epoch before pt˚

2 : req JptA,ptB ď pt˚
´∆PCSK

// Allow corrupting ∆PCS-epoch after pt˚

3 : req JptP ě pt˚
`∆FSK

4 : Protocol state

if P is sender in tP then

stP :“ ptP, xdktP ,K, parq

else

stP :“ ptP,K, pektP , parq

5 : return stP

Fig. 16: The CKA security game with our specific RKEM based protocol inlined for clarity. Some trivial
simplifications have been applied, such as unifying the epoch counters shared between the game and the
protocol, and storing the individual components of CKA messages and states to avoid repeated parsing.

47

HybridCKAA,t˚,b,ip1
λ
q

1 : CKA-Init-KeyGen

1 : par $
Ð RSetupp1λq

2 : pek0, dk0q
$
Ð DRKeyGen-Bpparq

3 : p pek0, xdk0, ¨ q
$
Ð RSim-KeyB1pek0, dk0q

2 : for P P tA,Bu

3 : ptP :“ 0 // CKA-Init-P does nothing

4 : b1 $
Ð Appt˚

q
Send-Ppq,Receive-Ppq,Chall-Ppq,Corr-Ppq

5 : return b’

Send-Pprleakq

1 : tP Ð tP ` 1

2 : rand :“ prand1, rand2q Ð R

3 : CKA-Send-P

1 : pektP , dktPq
$
Ð DRKeyGen-Pppar; rand1q

2 : if JtP ď iK then

3 : p pektP ,
xdktP , auxq

$
Ð RSim-KeyP1pektP , dktPq

4 : pcttP´1,K,K
1
tP , rand2q

$
Ð RSim-KeyP2p pektP´1, xdktP´1, auxq

5 : else

6 : pcttP´1,K, xdktPq
$
Ð REnc-Pp pektP´1, dktP ; rand2q

7 : ρ :“ ptP, ektP , cttP´1q

4 : if JrleakK then // Leak randomness

// Allow leaking randomness ∆PCS-epoch before t˚

5 : req JtA, tB ď t˚
´∆PCSK

6 : else // Secure randomness (for challenge epoch)

7 : randÐ K

8 : KtP Ð K

9 : return pK, ρ, randq

Chall-Ppq

1 : tP Ð tP ` 1

2 : req JtP “ pt˚K // Challenge epoch t˚

3 : CKA-Send-P

1 : pektP , dktPq
$
Ð RKeyGen-Ppparq

2 : pcttP´1,K, xdktPq
$
Ð REnc-Pp pektP´1, dktPq

3 : ρ :“ ptP, ektP , cttP´1q

4 : KtP Ð K

5 : if Jb “ 1K then

6 : K $
Ð K // Replace with random key

7 : return pK, ρq

Receive-Ppq

1 : tP Ð tP ` 1

2 : CKA-Rec-P

1 : if JtP ą iK then

2 : pK, pektPq
$
Ð RDec-PpxdktP´1, cttP´1, ektPq

Corr-Ppq

1 : // Allow corrupting ∆PCS-epoch before pt˚

2 : req JptA,ptB ď pt˚
´∆PCSK

// Allow corrupting ∆PCS-epoch after pt˚

3 : req JptP ě pt˚
`∆FSK

4 : Protocol state

1 : if P is sender in tP then

2 : stP :“ ptP, xdktP ,K, parq

3 : else

4 : stP :“ ptP,K, pektP , parq

5 : return stP

Fig. 17: A sequence of hybrid games for 0 ď i ď t˚ ´ 2. Changes with respect to Fig. 16 are highlighted.

48

HybridCKAA,t˚,b,t˚´1p1
λ
q

1 : CKA-Init-KeyGen

par $
Ð RSetupp1λq

pek0, dk0q
$
Ð DRKeyGen-Bpparq

p pek0, xdk0, ¨ q
$
Ð RSim-KeyB1pek0, dk0q

2 : for P P tA,Bu

3 : ptP :“ 0 // CKA-Init-P does nothing

4 : b1 $
Ð Appt˚

q
Send-Ppq,Receive-Ppq,Chall-Ppq,Corr-Ppq

5 : return Jb “ b1K

Send-Pprleakq

1 : tP Ð tP ` 1

2 : rand :“ prand1, rand2q Ð R

3 : CKA-Send-P

if JtP ď t˚
´ 2K then

pektP , dktPq
$
Ð DRKeyGen-Pppar; rand1q

p pektP ,
xdktP , auxq

$
Ð RSimKey-P1pektP , dktPq

pcttP´1,K,K
1
tP , rand2q

$
Ð RSimKey-P2p

pektP´1, xdktP´1, auxq

elseif JtP “ t˚
´ 1K then

p pektP ,
xdktPq

$
Ð pDRKeyGen-Ppparq

pcttP´1, ektP ,K,K
1
tPq

$
Ð RSimCtxt-Pp pektP ,

pektP´1, xdktP´1q

else

pektP , dktPq
$
Ð DRKeyGen-Pp ; rand1q

pcttP´1,K, xdktPq
$
Ð REnc-Pp pektP´1, dktP ; rand2q

ρ :“ ptP, ektP , cttP´1q

if JrleakK then // Leak randomness

// Allow leaking randomness ∆PCS-epoch before t˚

4 : req JtA, tB ď t˚
´∆PCSK

5 : else // Secure randomness (for challenge epoch)

6 : randÐ K

7 : KtP Ð K

8 : return pK, ρ, randq

Chall-Ppq

1 : tP Ð tP ` 1

2 : req JtP “ pt˚K // Challenge epoch t˚

3 : CKA-Send-P

pektP , dktPq
$
Ð RKeyGen-Ppparq

pcttP´1,K, xdktPq
$
Ð REnc-Pp pektP´1, dktPq

ρ :“ ptP, ektP , cttP´1q

4 : KtP Ð K

5 : if Jb “ 1K then

6 : K $
Ð K // Replace with random key

7 : return pK, ρq

Receive-Ppq

1 : tP Ð tP ` 1

2 : CKA-Rec-P

if JtP ą t˚
´ 1 K then

pK, pektPq
$
Ð RDec-PpxdktP´1, cttP´1, ektPq

Corr-Ppq

1 : // Allow corrupting ∆PCS-epoch before pt˚

2 : req JptA,ptB ď pt˚
´∆PCSK

// Allow corrupting ∆PCS-epoch after pt˚

3 : req JptP ě pt˚
`∆FSK

4 : Protocol state

if P is sender in tP then

stP :“ ptP, xdktP ,K, parq

else

stP :“ ptP,K, pektP , parq

5 : return stP

Fig. 18: An additional hybrid game. Changes with respect to HybridCKAA,t˚,b,t˚´2 are highlighted.

Sending and receiving: For epochs 1 ď tP ď i, we moreover change CKA-Send-P to use RSimKey-P1

and RSimKey-P2 to generate the key pair p pektP ,
xdktPq as well as the ciphertext cttP´1 and key KtP

for epoch tP. Note that the updated decyrption key xdktP is already generated by the simulator and,
thus, we skip RDec-P in CKA-Rec-P for those epoch. (Observe that defining the key earlier does not
otherwise change the game’s behavior, as it is only leaked as part of a corruption once the respective
message has been leaked.)
Note that this behavior exactly corresponds to DKeyUpdSim

P,1 while the regular protocol behavior exactly
corresponds to DKeyUpdSim

P,0 . Therefore, there exists a simple reduction to updated-key simulatability,
i.e., ∣∣∣Pr“GameCKAA,t˚,bp1

λq “ 1
‰

´ Pr
“

HybridCKAA,t˚,b,0p1
λq “ 1

‰

∣∣∣ ď AdvKeyUpdSim-P
C p1λq,

where P “ A for odd tP and P “ B for even tP.

49

HybridCKAA,t˚,b,t˚´1: Next, consider a hybrid depicted in Fig. 18 that changes how the keys for epoch t˚ ´ 1

are sampled. More concretely, it samples the key pair p pektP ,
xdktPq freshly and then uses the simulator

RSimCtxt-P to simulate ektP , the key KtP and the ciphertext cttP´1. (The private key dktP is not needed by
the hybrid.) In addition, we also emit the decryption for epoch t˚ ´ 1 as pektP has already been produced.
Observe that this matches the sampling strategy of DCtxtSim

P,1 , while the old strategy of HybridCKAA,t˚,b,t˚´2

matches DCtxtSim
P,0 . Therefore, we obtain∣∣∣Pr“HybridCKAA,t˚,b,t˚´2p1

λq “ 1
‰

´ Pr
“

HybridCKAA,t˚,b,t˚´1p1
λq “ 1

‰

∣∣∣ ď AdvCtxtSim-P
D p1λq,

for an appropriate reduction D.

Embedding the challenge: In HybridCKAA,t˚,b,t˚´1, we now switch from b “ 0 to b “ 1 based on FS-IND-CPA
security of the RKEM. Observe the following:

– p pekt˚´1,xdkt˚´1q is a fresh key pair drawn from the same distribution the key generation algorithm
produces. Moreover, with ∆PCS “ 2, the adversary is not allowed to leak the key pair’s randomness.

– The only place xdkt˚´1 is used in the game is in CKA-Rec-P to update ekt˚ to pekt˚ .
– The only place pekt˚´1 is used is in Chall-P where the challenge is encrypted under this key, and a

real-or-random key is returned based on the bit b.

This directly corresponds to FS-IND-CPA security of the RKEM. Thus, we obtain∣∣∣Pr“HybridCKAA,t˚,b“0,t˚´1p1
λq “ 1

‰

´ Pr
“

HybridCKAA,t˚,b“1,t˚´1p1
λq “ 1

‰

∣∣∣ ď AdvFS-IND-CPA
E p1λq.

Note that if the RKEM is non-forward secure, then xdkt˚ “ dkt˚ cannot be leaked as ∆FS “ 1. Moreover,
the reduction does not need to consider the use xdkt˚ to update the next public key. Therefore, there is
no need for the reduction to know dkt˚ to simulate the further protocol execution, and the reduction to
AdvIND-CPA works analogously.

Putting it all together: By fixing the bit b in the CKA game and taking b1 as its output — technically the
version without the correctness condition — we can rewrite the advantage as

AdvCKAA p1λq “
∣∣∣Pr“GameCKAA,t˚,b“0p1

λq “ 1
‰

´ Pr
“

GameCKAA,t˚,b“1p1
λq “ 1

‰

∣∣∣
Using the sequence of hybrids

GameCKAA,t˚,b“0 Ñ HybridCKAA,t˚,b“0,0 Ñ . . . Ñ HybridCKAA,t˚,b“0,t˚´1

Ñ HybridCKAA,t˚,b“1,t˚´1 Ñ . . . Ñ HybridCKAA,t˚,b“1,0 Ñ GameCKAA,t˚,b“1

then yields the desired bound.

E More Details on Our Lattice-based RKEM Katana

In this section, we provide the correctness and security proofs omitted in Sec. 6. We further provide
omitted details on the optimized RKEM using bit-dropping.

E.1 Correctness

Correctness can be shown through a standard check on the size of the decapsulation noise. While it is
easy to show that the assumption required for the correctness holds for specific distributions of χ, pχ, and
χ̃ (e.g., discrete Gaussian distributions), we leave it general to allow any distribution. See Sections 6.1
and 6.4 for more detail.

Lemma E.1 (Correctness). Our RKEM Katana is correct assuming

Pr
“

∥psJ ¨ e´ peJ ¨ s` ẽ∥8 ď q{4
‰

“ 1´ neglpλq,

where the probability is taken over the randomness to sample ps, eq $
Ð χˆ χ,pps,peq $

Ð pχˆ pχ, and ẽ $
Ð χ̃.

50

Proof. Recalling that pχ is defined as r2s ¨ χ (i.e., convolution of two independent copies of χ), correctness
of update key distribution is immediate. Let us show correctness with updated keys. Due to symmetry,
we only focus on the case where user A runs RDec-A. Namely, we have the following

ctA ´ ekJ
B ¨

xdkA “ pek
J

A ¨ sB ` ẽB `m´ ekJ
B ¨

xdkA

“ pDpsA ` peAq
J ¨ sB ` ẽB `m´ pDJsB ` eBq

J ¨ psA

“ m` peJ
A ¨ sB ´ eJ

B ¨ psA ` ẽB
loooooooooooomoooooooooooon

“:z

,

where ppsA,peAq
$
Ð pχˆ pχ and psB, eB, ẽBq

$
Ð χˆχˆ χ̃. If each coefficient of z P Rq is smaller than q{4 (i.e.,

∥z∥8 ď q{4), Decode will correctly decode to m as desired.

E.2 FS-IND-CPA Security

We recall the theorem statement establishing the FS-IND-CPA security of our RKEM Katana.

Theorem E.1 (FS-IND-CPA security). Our RKEM Katana is FS-IND-CPA secure assuming the hard-
ness of the MLWE and the hint-MLWE assumptions.

Formally, for any adversary A against the FS-IND-CPA security making at most Q queries to the
random oracle H, there exists adversary BMLWE against the MLWEq,k,χ problem and adversaries Bhint-MLWE,1

and Bhint-MLWE,2 against the hint-MLWEq,k,2k,χ,χ,Fcpa problem with Fcpa :“ UptI2kˆ2kuq such that

AdvFS-IND-CPA-A
A p1λq ď AdvMLWE

BMLWE
p1λq ` Advhint-MLWE

Bhint-MLWE,1
p1λq

` 2 ¨ Advhint-MLWE
Bhint-MLWE,2

p1λq ` ϵcorr `
Q

2λ´1
,

where ϵcorr is the probability that correctness with updated keys fails (cf. Def. 5.2).

Proof. Due to the symmetry of users A and B, we only focus on bounding the advantage AdvFS-IND-CPA-A
A p1λq

(cf. Def. 5.3). The theorem is proven in a sequence of hybrid games given in Figs. 19 and 20. The first
Game0 is the real FS-IND-CPA security game, where Game6 is a game in which even an unbounded
adversary has negligible advantage. Our proof consists of bounding the advantage of an adversary A of
the adjacent games. Below, ϵi denotes the advantage of A in Gamei and Q denotes the number of random
oracle queries performed by A.

Game0: This is the real FS-IND-CPA security game. For reference, in Fig. 19, we provide the full details
of the game.

Game1: In this game, the challenger reuses K, s, e from algorithm REnc-A as opposed to generating them
through executing RDec-B. This follows from the same argument made to prove correctness: m used
during REnc-A and m1 generated during RDec-B are the same with all but a negligible probability.
Hence, we have

|ϵ0 ´ ϵ1| ď ϵcorr,

where ϵcorr is the probability that correctness with updated keys fails (cf. Def. 5.2).
Game2: In this game, the challenger samples a random puB from Rk

q as opposed to generating them
as an MLWE instance. It is straight forward to see that the Game2 is indistinguishable from Game1
under the MLWE assumption. Formally, we can construct an adversary BMLWE against the MLWEq,k,χ

problem such that

|ϵ1 ´ ϵ2| ď AdvMLWE
BMLWE

p1λq.

Game3: In this game, the challenger first samples pK0, s, eq
$
Ð t0, 1uλ ˆ χˆ χ and later programs the

random oracle H on input pekA, seedq. In case the input is already queried (i.e., QHrekA, seeds ‰ K),
then the challenger declares the adversary A wins and outputs 1 as the output of the game. This
game is identical to Game2 as long as QHrekA, seeds ‰ K. Since seed is sampled uniformly random
over t0, 1uλ, the probability of this occurring is Q{2λ.
Hence, we have

|ϵ2 ´ ϵ3| ď
Q

2λ
.

51

Game0 // Original FS-IND-CPA security game

1 : QHr¨s :“ K // Prepare empty RO

2 : b $
Ð t0, 1u

3 : K1
$
Ð t0, 1uλ

// Sample from pDRKeyGen-B

4 : ppsB,peBq
$
Ð pχˆ pχ

5 : puB :“ DJ
¨ psB ` peB P Rk

q

6 : p pekB, xdkBq :“ ppuB,psBq

// Sample from DRKeyGen-A

7 : psA, eAq
$
Ð χˆ χ

8 : uA :“ D ¨ sA ` eA P Rk
q

9 : pekA, dkAq :“ puA, puA, sAqq

// Run REnc-Ap pekB, dkAq

10 : seed $
Ð t0, 1uλ

11 : mÐ Encodepseedq // m P Rq

12 : pK0, s, eq :“ HpuA, seedq

13 : ẽA
$
Ð χ̃

14 : vB :“ pek
J

B ¨ sA ` ẽA `m P Rq

15 : ctB :“ vB

16 : xdkA :“ sA ` s P Rk
q // Update and erase dkA

// Run RDec-BpxdkB, ctB, ekAq

17 : m1 :“ ctB ´ ekJ
A ¨

xdkB

18 : seed1 :“ Decodepm1
q

19 : pK1, s1, e1
q :“ Hpek1

A, seed
1
q

20 : pekA :“ ekA `D ¨ s1
` e1

// Run adversary A

21 : b1 $
Ð ApekA, pekA, pekB, ctB, xdkA,Kbq

22 : return Jb “ b1K

Game1

// Same up till Game0, line 16

16 : pekA :“ ekA `D ¨ s` e // Reuse K, s, e from REnc-A

17 : b1 $
Ð ApekA, pekA, pekB, ctB, xdkA,Kbq

18 : return Jb “ b1K

Game2

1 : QHr¨s :“ K

2 : b $
Ð t0, 1u

3 : K1
$
Ð t0, 1uλ

4 : puB
$
Ð Rk

q

5 : pekB :“ puB // Remove xdkB

// Sample from DRKeyGen-A

// Same from Game1, line 7

Game3

1 : QHr¨s :“ K

2 : b $
Ð t0, 1u

3 : pK0, s, eq
$
Ð t0, 1uλ ˆ χˆ χ // Sample w/o RO

4 : K1
$
Ð t0, 1uλ

5 : pekB
$
Ð Rk

q

6 : psA, eAq
$
Ð χˆ χ

7 : uA :“ D ¨ sA ` eA P Rk
q

8 : pekA, dkAq :“ puA, puA, sAqq

9 : seed $
Ð t0, 1uλ

10 : mÐ Encodepseedq

11 : if JQHruA, seeds ‰ KK then

12 : return 1 // Declare A wins

13 : QHruA, seeds :“ pK0, s, eq // Program RO

14 : ẽA
$
Ð χ̃

15 : vB :“ pek
J

B ¨ sA ` ẽA `m P Rq

16 : ctB :“ vB

17 : xdkA :“ sA ` s P Rk
q

18 : pekA :“ ekA `D ¨ s` e

19 : b1 $
Ð ApekA, pekA, pekB, ctB, xdkA,Kbq

20 : return Jb “ b1K

HpuA, seedq // Used by Game0 to Game3

1 : if JQHru, seeds “ KK then

2 : pK0, s, eq
$
Ð t0, 1uλ ˆ χˆ χ

3 : QHru, seeds Ð pK0, s, eq

4 : return QHru, seeds

Fig. 19: Hybrid games Game0 to Game3 used for the proof of FS-IND-CPA. The text highlighted in blue
denotes the main difference between the previous hybrid.

Game4: In this game, the challenger no longer programs the random oracle. Instead, it aborts the game
and declares the adversary wins when the random oracle is queried on pu˚

A, seed
˚
q. We denote this

event by E4. Clearly, as long as event E4 does not occur, Game3 and Game4 proceed identically. Hence,
we have

|ϵ3 ´ ϵ4| ď PrrE4s.

52

Game4

1 : QHr¨s :“ K

2 : pu˚
A , seed

˚
q :“ pK,Kq

3 : b $
Ð t0, 1u

4 : pK0, s, eq
$
Ð t0, 1uλ ˆ χˆ χ // Sample w/o RO

5 : K1
$
Ð t0, 1uλ

6 : pekB
$
Ð Rk

q

7 : psA, eAq
$
Ð χˆ χ

8 : uA :“ D ¨ sA ` eA P Rk
q

9 : pekA, dkAq :“ puA, puA, sAqq

10 : seed $
Ð t0, 1uλ

11 : mÐ Encodepseedq

12 : if JQHruA, seeds ‰ KK then

13 : return 1 // Declare A wins

14 : pu˚
A , seed

˚
q Ð puA, seedq

15 : ẽA
$
Ð χ̃

16 : vB :“ pek
J

B ¨ sA ` ẽA `m P Rq

17 : ctB :“ vB

18 : xdkA :“ sA ` s P Rk
q

19 : pekA :“ ekA `D ¨ s` e

20 : b1 $
Ð ApekA, pekA, pekB, ctB, xdkA,Kbq

21 : return Jb “ b1K

Hpu, seedq // Used by Game4 to Game6

1 : if Jpu˚
A , seed

˚
q ‰ pK,KqK then

2 : if Jpu, seedq “ pu˚
A , seed

˚
qK then

3 : abort

4 : if JQHru, seeds “ KK then

5 : pK0, s, eq
$
Ð t0, 1uλ ˆ χˆ χ

6 : QHru, seeds Ð pK0, s, eq

7 : return QHru, seeds

Game5

// Same up till Game4, line 17

20 : xdkA :“ sA ` s P Rk
q

21 : peA :“ eA ` e P Rk
q

22 : pekA :“ D ¨xdkA ` peA

23 : b1 $
Ð ApekA, pekA, pekB, ctB, xdkA,Kbq

24 : return Jb “ b1K

Game6

1 : QHr¨s :“ K

2 : pu˚
A , seed

˚
q :“ pK,Kq

3 : b $
Ð t0, 1u

4 : pK0, s, eq
$
Ð t0, 1uλ ˆ χˆ χ // Sample w/o RO

5 : K1
$
Ð t0, 1uλ

6 : pekB
$
Ð Rk

q

7 : psA, eAq
$
Ð χˆ χ

8 : uA
$
Ð Rk

q

9 : ekA :“ uA // Remove dkA

10 : seed $
Ð t0, 1uλ

11 : mÐ Encodepseedq

12 : if JQHruA, seeds ‰ KK then

13 : return 1 // Declare A wins

14 : else

15 : pu˚
A , seed

˚
q Ð puA, seedq

16 : v1
B

$
Ð Rq

17 : vB :“ v1
B `m

18 : ctB :“ vB

19 : xdkA :“ sA ` s P Rk
q

20 : peA :“ eA ` e P Rk
q

21 : pekA :“ D ¨xdkA ` peA

22 : b1 $
Ð ApekA, pekA, pekB, ctB, xdkA,Kbq

23 : return Jb “ b1K

Fig. 20: Hybrid games Game4 to Game6 used for the proof of FS-IND-CPA. The text highlighted in blue
denotes the main difference between the previous hybrid. abort indicates the game terminates and
returns 1.

As we cannot bound PrrE4s yet, we postpone bounding it to later.
Game5: In this game, the challenger computes user A’s updated key pekA directly without using ekA. Since

this is only a conceptual change, we have
ϵ4 “ ϵ5.

Moreover, denoting E5 the event that the adversary triggers the abort condition in Game5, we also
have

PrrE4s “ PrrE5s.

Game6: In the final game, the challenger samples a random uA from Rk
q and sets user A’s key as ekA :“ uA.

Moreover, it samples random v1
B from Rq and sets the ciphertext as ctB :“ v1

B `m. Recall in the

53

previous game, uA and vB were set as MLWE instances. Since sA and eA are partially leaked to the
adversary A via xdkA “ sA ` s and pekA, we cannot rely on the standard MLWE assumption to argue
indistinguishability of the two games. However, noticing that s, e $

Ð χ are information theoretically
hidden to A conditioning on the game not aborting, we can rely instead on the hint MLWE assumption.
Let E6 denote the event that A triggers an abort in Game6 and let Wini denote the event that A
wins in Gamei. Then, we can construct an adversary Bhint-MLWE,1 against the hint-MLWEq,k,2k,χ,χ,Fcpa

problem with F :“ UptI2kˆ2kuq such that

|PrrWin5 ^␣E5s ´ PrrWin6 ^␣E6s| ď Advhint-MLWE
Bhint-MLWE,1

p1λq.

Indeed, the reduction is straightforward as Bhint-MLWE,1 receives as hints xdkA and peA and can efficiently
simulate Game5 or Game6 to A depending on whether it receives a random or valid MLWE instance.
Here, recall F outputs I2kˆ2k (i.e., the identity matrix in R2kˆ2k

q) with probability 1. Moreover,
observe we have

|ϵ5 ´ ϵ6|
“

ˇ

ˇ

`

PrrE5s ¨ PrrWin5|E5s ` PrrWin5 ^␣E5s
˘

´
`

PrrE6s ¨ PrrWin6|E6s ` PrrWin6 ^␣E6s
˘
ˇ

ˇ

ď PrrE5s ` PrrE6s ` |PrrWin5 ^␣E5s ´ PrrWin6 ^␣E6s|
ď PrrE5s ` PrrE6s ` Advhint-MLWE

Bhint-MLWE,1
p1λq,

where we use the fact that PrrWini|Eis “ 1 for i P t5, 6u. In addition, it can be checked that the
differences between PrrE5s and PrrE6s are negligible assuming the hardness of the hint-MLWE problem.
Formally, we can construct an adversary Bhint-MLWE,2 against the hint-MLWEq,k,2k,χ,χ,Fcpa problem
such that

|PrrE5s ´ PrrE6s| ď Advhint-MLWE
Bhint-MLWE,2

p1λq.

Lastly, observe that in the final game, m is information theoretically hidden from A as v1
B is sampled

uniformly at random. Put differently, seed is hidden from A, and thus, we have PrrE6s ď Q{2λ.
Combining everything together, we have

|ϵ5 ´ ϵ6| ď Advhint-MLWE
Bhint-MLWE,1

p1λq ` Advhint-MLWE
Bhint-MLWE,2

p1λq `
Q

2λ
.

The bound in the theorem statement follows by collecting all the bounds. This completes the proof.

E.3 Ratchet Simulatability

We recall the theorem statement establishing the ratchet simulatability of our RKEM. Below, we rely on
the hint-MLWEq,k,1,χ,χ̃,Fsim problem, where Fsim is a distribution over R1ˆ2k

q that outputs r´psJ|peJs with
ps,pe $

Ð pχ.

Theorem E.2 (Ratchet simulatability). Our RKEM Katana is ratchet simulatable assuming the
hardness of the MLWE and hint-MLWE assumptions.

Formally, for any adversary A against ratchet simulatability making at most Q queries to the random
oracle H, there exists adversary BMLWE against the MLWEq,k,pχ problem and adversary Bhint-MLWE against
the hint-MLWEq,k,1,χ,χ̃,Fsim problem such that

AdvKeyBaseSim-P
A p1λq “ 0, AdvKeyUpdSim-P

A p1λq ď ϵcorr

and
AdvCtxtSim-P

A p1λq ď AdvMLWE
BMLWE

p1λq ` Advhint-MLWE
Bhint-MLWE

p1λq ` ϵcorr `
Q

2λ
,

where ϵcorr is the probability that correctness with updated keys fails (cf. Def. 5.2).

Proof. We first provide the simulators pRSimKey-P1,RSimKey-P2,RSimCtxt-PqPPtA,Bu used to prove
ratchet simulatability in Fig. 21. As base key simulatability trivially holds from construction, below we
show update key simulatability and ciphertext simulatability.

54

RSimKey-P1pekP, dkPq

1 : puP, sPq :“ dkP

2 : seed $
Ð Upt0, 1uλqtrandseedu

3 : pK, s, eq :“ HpuP, seedq

4 : if JP “ AK then

5 : pekA :“ uA `D ¨ s` e

6 : else // P “ B

7 : pekB :“ uB `DJ
¨ s` e

8 : xdkP :“ sP ` s P Rk
q

9 : aux1 :“ prandseed, dkPq

10 : return p pekP, xdkP, aux1q

RSimKey-P2p
pekP̄, xdkP̄, aux1q

1 : prandseed, dkPq :“ aux1

2 : puP, sPq :“ dkP

3 : seed $
Ð Upt0, 1uλqtrandseedu

4 : pK, s, eq :“ HpuP, seedq

5 : mÐ Encodepseedq // m P Rq

6 : ẽP
$
Ð χ̃trandẽu

7 : vP̄ :“ pek
J

P̄ ¨ sP ` ẽP `m P Rq

8 : ctP̄ :“ vP̄

9 : rand2 :“ prandseed, randẽq

10 : return pctP̄,K,K, rand2q

RSimCtxt-Pp pekP, pekP̄, xdkP̄q

1 : pK, s, eq $
Ð t0, 1uλ ˆ χˆ χ

2 : if JP “ AK then

3 : ekA :“ pekA ´D ¨ s´ e // ek before update

4 : peB :“ pekB ´DJ
¨xdkB // MLWE noise in pek

5 : else // P “ B

6 : ekB :“ pekB ´DJ
¨ s´ e

7 : peA :“ pekA ´D ¨xdkA

8 : seed $
Ð t0, 1uλ

9 : HpekP, seedq :“ pK, s, eq // Program RO

10 : mÐ Encodepseedq // m P Rq

11 : psP, eP, ẽPq
$
Ð pχˆ pχˆ χ̃

12 : vP̄ :“ psJ

P̄ ¨ ekP ´ psJ

P̄ ¨ eP ` peJ

P̄ ¨ sP ` ẽP `m

13 : ctP̄ :“ vP̄ // Simulate vP̄ w/o user P secret

14 : return pctP̄, ekP,K,Kq

Fig. 21: Simulators for base key, updated key, and ciphertext simulatability with pP, P̄q “ pA,Bq or pB,Aq.
Recall UpSqtrandu denotes the process of sampling uniformly from the set S using randomness rand.
Moreover, in line 9 of RSimCtxt-P, we assume the simulator outputs K in case the random oracle is already
programed.

Updated key simulatability. Due to the symmetry of users A and B, we only focus on bounding the
distinguishing advantage of distributions DKeyUpdSim

A,0 and DKeyUpdSim
A,1 (cf. Def. D.1). This is proven in a

sequence of hybrid distributions given in Fig. 22. Let us assume an adversary A is given a sample from
the distribution DA,i for i P t0, 1, 2u and outputs a bit. Let ϵi denote the probability that A outputs 1
given a sample from DA,i. The goal is then to bound the difference between ϵ0 and ϵ2.

Distribution DA,0: This is the distribution DKeyUpdSim
A,0 . For reference, in Fig. 22, we provide the full details

of the distribution.
Distribution DA,1: The only difference between the prior distribution is that we reuse K, s, e from

algorithm REnc-A as opposed to generating them through executing RDec-B. This follows from the
same argument made to prove correctness: m used during REnc-A and m1 generated during RDec-B
are the same with all but a negligible probability. Hence, we have

|ϵ0 ´ ϵ1| ď ϵcorr,

where ϵcorr is the probability that correctness with updated keys fails (cf. Def. 5.2).
Distribution DA,2: The only difference between the prior distribution is that we push the generation of

pekA and xdkA once we sample pK, s, eq. This can be done because pekA no longer depends on user B’s
information due to the modification we made in DA,1. Since this modification is conceptual, we have

ϵ1 “ ϵ2.

Lastly, observe that DA,2 implicitly defines the desired RSimKey-A1 and RSimKey-A2. Hence, DA,2 has
the same distribution as DKeyUpdSim

A,1 . This completes the proof of updated key simulatability.

Ciphertext simulatability. Similarly to above, we only focus on the distinguishing advantage of the
distributions DCtxtSim

B,0 and DCtxtSim
B,1 . This is proven in a sequence of hybrid distributions given in Figs. 23

and 24. Again, let ϵi denote the probability that A outputs 1 given a sample from DB,i. The goal is then
to bound the difference between ϵ0 and ϵ6.

Distribution DB,0: This is the distribution DCtxtSim
B,0 . For reference, in Fig. 23, we provide the full details

of the distribution.
Distribution DB,1: The only difference between the prior distribution is that we reuse K, s, e from

algorithm REnc-B as opposed to generating them through executing RDec-A. This follows from the

55

Distribution DA,0 :“ DKeyUpdSim
A,0

1 : pekB, dkBq
$
Ð DRKeyGen-Btrand0u

2 : p pekB, xdkB, aux0q
$
Ð RSimKey-B1pekB, dkBq

3 : pekA, dkAq
$
Ð DRKeyGen-Atrand1u

// REnc-A in full detail

4 : prandseed, randẽq :“ rand2

5 : puA, sAq :“ dkA

6 : seed $
Ð Upt0, 1uλqtrandseedu

7 : mÐ Encodepseedq // m P Rq

8 : pK, s, eq :“ HpuA, seedq

9 : ẽA
$
Ð χ̃trandẽu

10 : vB :“ pek
J

B ¨ sA ` ẽA `m P Rq

11 : ctB :“ vB

12 : xdkA :“ sA ` s P Rk
q

// RDec-B in full detail

13 : m1 :“ ctP ´ ekJ

P̄ ¨
xdkP

14 : seed1 :“ Decodepm1
q

15 : pK1, s1, e1
q :“ HpekP̄, seed

1
q

16 : pekA :“ ekA `D ¨ s1
` e1

17 : return
´

p pekB, xdkBq, p pekA, xdkAq, ctB,K,K
1,

aux0, rand0, rand1, rand2
¯

Distribution DA,1 :“ DKeyUpdSim
A,1

// Same up till DKeyUpdSim
0 , line 12

13 : pekA :“ ekA `D ¨ s` e // Reuse pK, s, eq from REnc-A

14 : return
´

p pekB, xdkBq, p pekA , xdkAq, ctB,K, K ,

aux0, rand0, rand1, rand2
¯

Distribution DA,2

// Same up till DKeyUpdSim
0 , line 3

// Run RSimKey-A1pekA, dkAq

4 : puA, sAq :“ dkA // ekA “ uA

5 : seed $
Ð Upt0, 1uλqtrandseedu // Sample only randseed

6 : pK, s, eq :“ HpuA, seedq

7 : pekA :“ ekA `D ¨ s` e // Compute at the beginning

8 : xdkA :“ sA ` s P Rk
q

9 : aux1 :“ prandseed, dkAq

// Run RSimKey-A2p pekB, xdkB, aux1q, ignoring the initial steps

10 : mÐ Encodepseedq // m P Rq

11 : ẽA
$
Ð χ̃trandẽu

12 : vB :“ pek
J

B ¨ sA ` ẽA `m P Rq

13 : ctB :“ vB

14 : rand2 :“ prandseed, randẽq // Set rand2 at the end

15 : return
´

p pekB, xdkBq, p pekA, xdkAq, ctB,K,K,

aux0, rand0, rand1, rand2
¯

Fig. 22: Hybrid distributions used for the proof of updated key simulatability. The text highlighted in
blue denotes the main difference between the previous hybrid.

same argument made to prove correctness: m used during REnc-B and m1 generated during RDec-A
are the same with all but a negligible probability. Hence, we have

|ϵ0 ´ ϵ1| ď ϵcorr,

where ϵcorr is the probability that correctness with updated keys fails (cf. Def. 5.2).
Distribution DB,2: The main difference between the prior distribution is that we compute the ciphertext

ctA “ vA in a different way. Below, we show that these two ways of computing vA are identical, where
the first equality is how vA is computed in the prior distribution:

vA ´m “ pek
J

A ¨ sB ` ẽB

“ pD ¨ psA ` peAq
J ¨ sB ` ẽB

“ psJ
A ¨ pD

J ¨ sB ` eBq ´ psJ
A ¨ eB ` peJ

A ¨ sB ` ẽB

“ psJ
A ¨ ekB ´ psJ

A ¨ eB ` peJ
A ¨ sB ` ẽB

The last equation is exactly how vA is computed in DB,2. Hence, we have

ϵ1 “ ϵ2.

Distribution DB,3: The difference between the prior distribution is that we sample pK0, s, eq
$
Ð t0, 1uλ ˆ

χˆχ and later program the random oracle H on input pekA, seedq. In case the input is already queried

56

Distribution DB,0 :“ DCtxtSim
B,0

1 : QHr¨s :“ K // Prepare empty RO

2 : pekA, dkAq
$
Ð DRKeyGen-Atrandu

3 : p pekA, xdkA, auxq
$
Ð RSimKey-A1pekA, dkAq

// Real user B procedure in full detail

// DRKeyGen-B in full detail

4 : psB, eBq
$
Ð χˆ χ

5 : uB :“ DJ
¨ sB ` eB P Rk

q

6 : pekB, dkBq :“ puB, puB, sBqq

// REnc-Bp pekA, dkBq in full detail

7 : seed $
Ð t0, 1uλ

8 : mÐ Encodepseedq // m P Rq

9 : pK, s, eq :“ HpekB, seedq

10 : ẽB
$
Ð χ̃

11 : vA :“ pek
J

A ¨ sB ` ẽB `m P Rq

12 : ctA :“ vA

13 : xdkB :“ sB ` s P Rk
q // Update and erase dkB

// RDec-ApxdkA, ctA, ekBq in full detail

14 : m1 :“ ctA ´ ekJ
B ¨

xdkA

15 : seed1 :“ Decodepm1
q

16 : pK1, s1, e1
q :“ HpekB, seed

1
q

17 : pekB :“ ekB `DJ
¨ s1
` e1

18 : return paux, rand, p pekA, xdkAq,

ctA, pekB, pekBq, pK,K
1
qq

Distribution DB,1

// Same up till DB,0, line 13

13 : pekB :“ ekB `DJ
¨ s` e // Reuse pK, s, eq from REnc-B

14 : return paux, rand, p pekA, xdkAq,

ctA, pekB, pekB q, pK, K qq

Hpu, seedq // Used by all distributions

1 : if JQHru, seeds “ KK then

2 : pK0, s, eq
$
Ð t0, 1uλ ˆ χˆ χ

3 : QHru, seeds Ð pK0, s, eq

4 : return QHru, seeds

Distribution DB,2

// Same up till DB,0, line 3

4 : psA :“ xdkA

5 : peA :“ pekA ´D ¨ psA // MLWE noise in pekA

6 : psB, eB, ẽB q
$
Ð χˆ χˆ χ̃

7 : uB :“ DJ
¨ sB ` eB P Rk

q

8 : ekB :“ uB // Remove dkB

9 : seed $
Ð t0, 1uλ

10 : pK, s, eq :“ HpekB, seedq

11 : pekB :“ ekB `DJ
¨ s` e // Update immediately

12 : mÐ Encodepseedq// Generate ctA w/o dkB

13 : vA :“ psJ
A ¨ ekB ´ psJ

A ¨ eB ` peJ
A ¨ sB ` ẽB `m

14 : ctA :“ vA

15 : return paux, rand, p pekA, xdkAq,

ctA , pekB, pekBq, pK,Kqq

Distribution DB,3

// Same up till DB,0, line 3

4 : pK, s, eq $
Ð t0, 1uλ ˆ χˆ χ // Sample w/o RO

5 : psA :“ xdkA

6 : peA :“ pekA ´D ¨ psA

7 : psB, eB, ẽBq
$
Ð χˆ χˆ χ̃

8 : uB :“ DJ
¨ sB ` eB P Rk

q

9 : ekB :“ uB

10 : pekB :“ ekB `DJ
¨ s` e

11 : seed $
Ð t0, 1uλ

12 : if JQHrekB, seeds ‰ KK then

13 : return J // Output special symbol J

14 : QHrekB, seeds :“ pK0, s, eq // Program RO

15 : mÐ Encodepseedq

16 : vA :“ psJ
A ¨ ekB ´ psJ

A ¨ eB ` peJ
A ¨ sB ` ẽB `m

17 : ctA :“ vA

18 : return paux, rand, p pekA, xdkAq,

ctA, pekB, pekB q, p K,K qq

Fig. 23: Hybrid distributions DB,0 to DB,3 used for the proof of ciphertext simulatability. The text
highlighted in blue denotes the main difference between the previous hybrid.

(i.e., QHrekA, seeds ‰ K), the distribution outputs a special symbol J. This distribution is identical to
the previous one as long as QHrekA, seeds ‰ K. Since seed is sampled uniformly random over t0, 1uλ,
the probability of this occurring is Q{2λ.
Hence, we have

|ϵ2 ´ ϵ3| ď
Q

2λ
.

57

Distribution DB,4

// Same up till DB,0, line 3

4 : pK, s, eq $
Ð t0, 1uλ ˆ χˆ χ

5 : psA :“ xdkA

6 : peA :“ pekA ´D ¨ psA

7 : psB, eB, ẽBq
$
Ð χˆ χˆ χ̃

8 : uB
$
Ð Rk

q

9 : ekB :“ uB

10 : pekB :“ ekB `DJ
¨ s` e

11 : seed $
Ð t0, 1uλ

12 : if JQHrekB, seeds ‰ KK then

13 : return J

14 : QHrekB, seeds :“ pK0, s, eq

15 : mÐ Encodepseedq

16 : vA :“ psJ
A ¨ ekB ´ psJ

A ¨ eB ` peJ
A ¨ sB ` ẽB `m

17 : ctA :“ vA

18 : return paux, rand, p pekA, xdkAq,

ctA, p ekB , pekBq, pK,Kqq

Distribution DB,5

// Same up till DB,0, line 3

4 : pK, s, eq $
Ð t0, 1uλ ˆ χˆ χ

5 : psA :“ xdkA

6 : peA :“ pekA ´D ¨ psA

7 : puB
$
Ð Rk

q

8 : pekB :“ puB

9 : ekB :“ pekB ´DJ
¨ s´ e

10 : seed $
Ð t0, 1uλ

11 : if JQHrekB, seeds ‰ KK then

12 : return J

13 : QHrekB, seeds :“ pK0, s, eq

14 : mÐ Encodepseedq

15 : psB, eB, ẽBq
$
Ð χˆ χˆ χ̃

16 : vA :“ psJ
A ¨ ekB ´ psJ

A ¨ eB ` peJ
A ¨ sB ` ẽB `m

17 : ctA :“ vA

18 : return paux, rand, p pekA, xdkAq,

ctA, pekB, pekBq, pK,Kqq

Distribution DB,6 :“ DCtxtSim
B,1

// Same up till DB,0, line 3

// Sample from pDRKeyGen-B

4 : ppsB,peBq
$
Ð pχˆ pχ

5 : puB :“ DJ
¨ psB ` peB P Rk

q

6 : pekB :“ puB // Implicitly xdkB :“ psB

// Run RSimCtxt-Bp pekB, pekA, xdkAq

7 : pK, s, eq $
Ð t0, 1uλ ˆ χˆ χ

8 : psA :“ xdkA

9 : peA :“ pekA ´D ¨ psA

10 : ekB :“ pekB ´DJ
¨ s´ e

11 : seed $
Ð t0, 1uλ

12 : if JQHrekB, seeds ‰ KK then

13 : return J

14 : QHrekB, seeds :“ pK0, s, eq

15 : mÐ Encodepseedq

16 : psB, eB, ẽBq
$
Ð χˆ χˆ χ̃

17 : vA :“ psJ
A ¨ ekB ´ psJ

A ¨ eB ` peJ
A ¨ sB ` ẽB `m

18 : ctA :“ vA

19 : return paux, rand, p pekA, xdkAq,

ctA, pekB, pekB q, pK,Kqq

Fig. 24: Hybrid distributions DB,4 to DB,6 used for the proof of ciphertext simulatability. The text
highlighted in blue denotes the main difference between the previous hybrid.

Distribution DB,4: The difference between the prior distribution is that we sample a random uB from
Rk

q and sets user B’s key as ekB :“ uB. Recall in the previous game, uB was set as MLWE instances.
Since sB and eB are partially leaked via ctA “ vA and xdkA “ psA, we cannot rely on the standard

58

Notations Explanation
d Amount of bit dropping performed on ciphertext such that d ă rlog2pqqs

qd Rounded modulus satisfying qd :“ 2d

Compressq
Decompressq

Rounding operations from Kyber [33]

Table 5: Parameters and notaions regarding bit-dropping optimization. See App. A.2 for the definitions of
Compressq and Decompressq.

MLWE assumption to argue indistinguishability of the two distributions.18 However, noticing that
ẽ $
Ð χ̃ is information theoretically hidden to A conditioning on the game not aborting, we can rely

instead on the hint MLWE assumption. Concretely, we can construct an adversary Bhint-MLWE against
the hint-MLWEq,k,1,χ,χ̃,Fsim problem such that

|ϵ3 ´ ϵ4| ď Advhint-MLWE
Bhint-MLWE

p1λq,

where recall a sample from Fsim has the form r´psJ|peJs with ps,pe $
Ð pχ. In more detail, Bhint-MLWE

obtains
´

DJ,uB, r´psJ|peJs, h “ r´psJ|peJs

„

peB
psB

ȷ

` ẽB

¯

as input, where uB is either random or of the

form DJ ¨ sB ` eB. Here h is the hint. It then simulates p pekA,xdkAq by setting ppsA,peAq :“ pps,peq and
computing the ciphertext ctA “ vA “ psJ ¨ uB ` h`m.

Distribution DB,5: The only difference from the prior distribution is that we sample user B’s updated
key pekB “ puB uniformly sample and then set ekB. In the previous distribution, this was performed in
the opposite direction. Since this produces an identical distribution, we have

ϵ4 “ ϵ5.

Distribution DB,6: The only difference from the prior distribution is that we sample user B’s updated
key pekB “ puB as a valid MLWE instance. It is straight forward to see that the two distributions
is indistinguishable under the MLWE assumption. Formally, we can construct an adversary BMLWE

against the MLWEq,k,pχ problem such that

|ϵ5 ´ ϵ6| ď AdvMLWE
BMLWE

p1λq.

Lastly, it can be checked that the final distribution DB,6 is identical to DCtxtSim
B,1 as the generation of

the updated key p pekB,xdkBq can be pushed before generating the non-updated key pekB, dkBq. Moreover,
line 7 onward is identical to RSimCtxt-B as desired. The bound in the theorem statement follows by
collecting all the bounds. This completes the proof.

E.4 Details on Optimized RKEM

We minimize the size of the ciphertext in our RKEM by performing bit-dropping, similarly to Kyber [33].
The additional notations we use and our optimized construction is provide in Table 5 and Fig. 25,
respectively.

Lemma 6.1 (Correctness with bit-dropping). Our optimized RKEM Katana is correct assuming

Pr
“

∥psJ ¨ e´ peJ ¨ s` ẽ` δ∥8 ď q{4
‰

“ 1´ neglpλq, (1)

where the probability is taken over the randomness to sample ps, eq $
Ð χˆ χ,pps,peq $

Ð pχˆ pχ, ẽ $
Ð χ̃, and

δ $
Ð χround. Here, χround is some distribution over Rq such that Prrδ $

Ð χround : ∥δ∥8 ď
X

q
2d`1

T

s “ 1.

Proof. Since the encapsulation key is unchanged, correctness of update key distribution follows
from Lemma E.1. Let us show correctness with updated keys. Again, due to symmetry, we only fo-
cus on the case where user A runs RDec-A. First, observe that we have

vA “ pek
J

A ¨ sB ` ẽB `m

18 It is worth noting that at a high level, this is the argument where [1] made a mistake by arguing indistinguishability
solely on MLWE.

59

REnc-Pp pekP̄, dkPq

1 : puP, sPq :“ dkP

2 : seed $
Ð t0, 1uλ

3 : mÐ Encodepseedq // m P Rq

4 : pK, s, eq :“ HpuP, seedq

5 : ẽP
$
Ð χ̃

6 : vP̄ :“ pek
J

P̄ ¨ sP ` ẽP `m P Rq

7 : ctP̄ :“ CompressqpvP̄, dq P Rqd

8 : xdkP :“ sP ` s P Rk
q // Update and erase dkP

9 : return p ctP̄ ,K, xdkPq

RDec-PpxdkP, ctP, ekP̄q

1 : ct1
P :“ DecompressqpctP, dq P Rq

2 : m :“ ct1
P ´ ekJ

P̄ ¨
xdkP P Rq

3 : seed :“ Decodepmq

4 : pK, s, eq :“ HpekP̄, seedq

// Update ekP̄

5 : if JP “ AK then

6 : pekB :“ ekB `DJ
¨ s` e

7 : else // P “ B

8 : pekA :“ ekA `D ¨ s` e

9 : return pK, pekBq

Fig. 25: Our RKEM ΠRKEM with the bit-dropping optimization. The differences are highlighted in blue .
RSetup and RKeyGen-P are defined identically to those in Fig. 6.

“ pD ¨ psA ` peAq
J ¨ sB ` ẽB `m

“ pDJ ¨ psB ` eBq
J ¨ sA ` peJ

A ¨ sB ´ eJ
B ¨ psA ` ẽB `m

“ ekJ
B ¨

xdkA ` peJ
A ¨ sB ´ eJ

B ¨ psA ` ẽB
loooooooooooomoooooooooooon

“:z

`m

Plugging this into the decryption equation, we have

DecompressqpctA, dq ´ ekJ
B ¨

xdkA “ DecompressqpCompressqpvAq, dq ´ vA ` z `m

“ m` z ` δ,

where δ P Rq such that ∥δ∥8 ď
X

q
2d`1

T

from Lemma A.1 . If each coefficient of z ` δ P Rq is smaller than
q{4 (i.e., ∥z∥8 ď q{4), Decode will correctly decode to m as desired.

E.5 Details on Concrete Parameter Selection

Let us explain the omitted details behind our parameter selection.

Correctness. We first study Item (R1). Our analysis of correctness is similar to the one of Kyber, and we
use similar techniques. By symmetry, we can see that all integer coefficients of psJ ¨ e´peJ ¨ s` ẽ` δ follow
the same distribution, although they are not independent. We start by studying an arbitrary coefficient of
psJ ¨ e´peJ ¨ s` ẽ` δ, let us note it yi. If we completely ignore rounding, it is clear that yi is distributed as:

yi „ r2 k ns ¨ pχ0 ¨ χ0 ` χ̃0, (4)

where pχ0 (resp. χ0, resp. χ̃0) is the distribution of each integer coefficient of pχ (resp. χ, resp. χ̃). Now,
let us note χround the distribution entailed by rounding v and χ0,round as the distribution of each integer
coefficient. Since, we use exactly the same rounding method as in Kyber, we may re-employ their analysis,
[33, see Eqs. (7) and (8)] in order to characterize the resulting distributions. Eq. (4) may then be adapted
as follows:

yi „ r2 k ns ¨ pχ0 ¨ χ0 ` χ̃0 ` χ0,round. (5)

We compute explicitly the distribution in Eq. (5) using a Sage script. To keep the computation tractable,
we continuously apply tailcutting (over a set of weight ď 2´λ{n). Finally, we use the union bound to
ensure that ∥psJ ¨ e´ peJ ¨ s` ẽ` δ∥8 ď q{4 with overwhelming probability.

Ratchet Simulatability. Finally, we study Items (R2) and (R4), which underlie ratchet simulatability.
Item (R4) strictly subsumes Item (R2) and is therefore studied alone. Using the same reasoning as above,

60

RKeyGen-Pppar,modeq

1 : pekP, dkPq Ð KeyGenp1λq

2 : return pekP, dkPq

REnc-Pp pekP̄, dkPq

1 : pct,Kq $
Ð Encp pekP̄q

2 : p pekP, xdkPq Ð KeyGenp1λq

3 : ctP̄ :“ p pekP, ctq

4 : return pctP̄,K, xdkPq

RDec-PpxdkP, ctP, ekP̄q

1 : parse p pekP̄, ctq Ð ctP̄

2 : KÐ DecpxdkP, ctq

3 : return pK, pekP̄q

Fig. 26: A generic forward-secure RKEM based on a KEM “ pKeyGen,Enc,Decq. When using the RKEM
to instantiate our generic CKA construction (cf. Sec. 5.2) this exactly yields the generic CKA construction
analyzed by Alwen et al. [1].

under Heuristics 1 and 2, we may say that hint-MLWEq,k,1,χ,χ̃,Fsim is at least as hard as MLWEq,k,2k,χ1 ,
where χ1 is the discrete Gaussian of parameter σ0:19

1

σ2
0

“
1

σ2
`

s1pMq
2

σ̃2
(6)

where M “
“

´psJ | peJ
‰

, σ (resp. σ̃, resp. σ̂) is the standard variation of χ (resp. χ̃, resp. χ̂), and χ (resp.
χ̃, resp. χ̂) is not necessarily Gaussian. In addition to Heuristics 1 and 2, we rely on a third heuristic:

Heuristic 3: Approximate singular norm. Instead of computing the worst-case bound s1pMq “ max ∥M¨z∥
∥z∥ ,

we estimate the average-case value E
”

∥M¨z∥
∥z∥

ı

. We observe that E
”

∥M ¨ z∥2
ı

“ 2 k n2 σ2 σ̂2 and

E
”

∥z∥2
ı

“ 2 k nσ2. Therefore we heuristically estimate:

E

«

∥M ¨ z∥2

∥z∥2

ff

«
E

”

∥M ¨ z∥2
ı

E
”

∥z∥2
ı “ n σ̂2 (7)

The reason why this is heuristic is because the expected value is only multiplicative for independent
random variables. Since M ¨z and z are high-dimensional vectors, their norms are tightly concentrated
around their expected values. Therefore we replace s1pMq

2 in Eq. (6) by n σ̂2. Since σ̂ “ 2σ, Eq. (6)
becomes:

1

σ2
0

“
1

σ2
`

4nσ2

σ̃2
. (8)

Eq. (8) is minimized when σ̃ “ 2
?
nσ2, in which case σ0 “ σ{

?
2. Interestingly, this is exactly the same

value of σ0 as the one obtained in the study of FS-IND-CPA security. Again, we use the lattice estimator
to estimate the hardness of the underlying MLWE assumption.

F Additional RKEM instantiation

F.1 Generic Construction

While the Ratchet KEM notion is geared towards abstracting the efficient forward-secure constructions
that reuse (parts of) the KEM ciphertext to be the next round’s public key, the abstraction can also be
naively instantiated from any KEM with just using fresh keys for each round — at the cost of doubling
the communication cost. The protocol is shown in Fig. 26.

Theorem F.1. The construction from Fig. 26 is correct and FS-IND-CPA secure if the underlying KEM
is correct and IND-CPA secure.

Proof. This immediately follows using trivial reductions. In particular, observe that since p pekP,xdkPq are
just fresh keys unrelated to this round’s KEM encapsuation, leaking xdkP does not affect FS-IND-CPA
security.
19 Recall that s1pM

t
¨Mq “ s1pMq

2.

61

Ratchet simulatability is furthermore trivial due to the complete independence of rounds. For com-
pleteness we depict the simulators in Fig. 27. The proof of the following theorem follows by inspection.

Theorem F.2. The construction from Fig. 26 is perfectly ratchet simulatable using the simulators from
Fig. 27.

RSimKey-P1pekP, dkPq

1 : pxdkP, pekPq
$
Ð KeyGenp1λ; randq

2 : aux1 :“ p pekP, randq

3 : return pxdkP, pekP, aux2q

RSimKey-P2p
pekP̄, xdkP̄, aux1q

1 : parse p pekP, randq Ð aux1

2 : pct,Kq $
Ð Encp pekP̄; rand

1
q

3 : K1
Ð DecpxdkP̄, ctq

4 : ctP̄ :“ p pekP, ctq

5 : rand2 :“ paux1, rand
1
q

6 : return pctP̄,K,K, rand2q

RSimCtxt-Pp pekP, pekP̄, xdkP̄q

1 : pct,Kq $
Ð Encp pekP̄q

2 : K1
Ð DecpxdkP̄, ctq

3 : ctP̄ :“ p pekP, ctq

4 : ekP :“ pekPreturn pctP̄, ekP,K,K
1
q

Fig. 27: Simulators for key and ciphertext simulatability for the generic RKEM.

F.2 Non-Forward-Secure Lattice-based Construction

For completeness, we mention that our construction can be trivially “downgraded” to a lattice-based
non-forward-secure RKEM (cf. Remark 5.1). The difference is that we modify the REnc-P algorithm
so that HpuP, seedq outputs only K rather than pK, s, eq, and skips the updating of dkP. Moreover, the
RDec-P algorithm is modified similarly where ekP̄ is no longer updated.

It is easy to check that correctness (cf. Lemma E.1) holds, where the updated key distribution pχ is
replaced by the non-updated one χ. FS-IND-CPA security remains intact as well, with the main difference
being that we rely on standard MLWE instead of hint-MLWE to bound the advantage of Game5 and Game6
in the proof of Theorem 6.1. The difference stems from the fact that the reduction no longer requires to
simulate the updated decapsulation key xdkP. Lastly, ratcheting simulatability remains intact as well. It is
worth highlighting that we still need hint-MLWE to simulate the ciphertext in distribution DB,2 in the
proof of Theorem 6.2 as this argument does not stem from forward security.

F.3 Diffie-Hellman Constructions

In this section, we show how both the Diffie-Hellman based Double Ratchet protocol and the forward-secure
modification thereof introduced by Bienstock et al. [9] can be viewed as an instantiation of RKEM.20

Protocol. In the following, let G “ xgy be a cyclic group of prime order |G| “ q. Recall that in the
(original) Double Ratchet protocol a party reuses a group element gxi as (1) the KEM ciphertext and
(2) the public key for the next round. In other words, assume Alice currently knows Bob’s public key
Yi´1 and wants to initiate the next epoch. Then Alice sends Xi “ gxi and absorbs Ki “ pYi´1q

xi as the
CKA into the key chain. For the next message, Bob then sends Yi`1 “ gyi`1 and outputs Ki`1 “ X

yi`1

i

— therefore reuses Xi. In the forward-secure modification, Bob instead computes xXi :“ X
HpKiq

i , upon
receiving Xi, and then encapsulates to that public key instead. Upon sending Xi, Alice updates her secret
key pxi :“ xi ¨ HpKiq analogously. Simply put, the idea is that leaking pxi no longer exposed Ki, which can
be proven in the ROM. This neatly fits the RKEM abstraction as used by our generic CKA construction in
Sec. 5.2. For completeness, we present both the original and the forward-secure instantiations in Fig. 28.

Correcntess and security. We briefly argue correctness and security of the schemes. Note that the schemes
are symmetrical between A and B. Therefore, in the following, we solely focus on A without loss of
generality. Correctness of the scheme follows by correctness of the Diffie-Hellman key exchange and holds
unconditionally.
20 Bienstock et al. [9] dubbed theird forward secure protocol the “Triple Ratchet”. To avoid confusion with our

hybrid SM protocol, we omit this term.

62

RKeyGen-Pppar,modeq

1 : x $
Ð Zq

2 : pekP, dkPq Ð pgx, xq

3 : return pekP, dkPq

REnc-Pp pekP̄ :“ Y, dkP :“ xq

1 : ctP̄ :“ pq // empty ciphertext

2 : K :“ Y x

3 : xdkP :“ x ¨HpKq

4 : return pctP̄,K, xdkPq

RDec-PpxdkP :“ x, ctP, ekP̄ :“ Y q

1 : K :“ Y x

2 : pekP̄ :“ Y
HpKq

3 : return pK, pekP̄q

Fig. 28: Diffie-Hellman based RKEM. When using the base protocol to instantiate our generic CKA
construction (cf. Sec. 5.2) this exactly yields the Double Ratchet CKA as analyzed by Alwen et al. [1].
When making the RKEM forward secure , this yields a forward-secure KEM, as analyzed by Bienstock et
al. [9]. Note that for the forward secure variant, key generation is the same irrespective of the mode.

Theorem F.3. Both the non-forward secure and the forward secure RKEM constructions from Fig. 28
are perfectly correct.

Proof. Let pekA, dkAq :“ pX,xq and p pekB,xdkBq :“ pY, yq, where X “ gx and Y “ gy, respectively. The key
K output by REnc-Ap pekB, dkAq is K :“ Y x “ gxy, while RDec-BpxdkB, pq, ekAq outputs K1 :“ Xy “ gxy as
well.

Security of the basic scheme trivially reduces to the decisional Diffe-Hellman (DDH) assumption,
while security of the forward secure variant additionally relies on the random oracle model.

Theorem F.4. The non-forward secure RKEM construction from Fig. 28 is IND-CPA secure under the
DDH assumption. When modelling H as a random oracle, the forward secure variant is FS-IND-CPA
secure under the DDH assumption.

Proof. Let pekA, dkAq :“ pX,xq and p pekB,xdkBq :“ pY, yq, where X “ gx and Y “ gy, be sampled uniformly
at random over the key space. In the non-forward secure scheme, A is given ekA “ X, pekB “ Y and either
the real key K0 “ gxy or an uniform random and independent key K1 P G. This directly corresponds to a
DDH instance. In the forward secure protocol, the adversary is given the following:

– ekA “ X
– pekA “ XHpK0q

– pekB “ Y
– xdkA “ x ¨ HpK0q

– Kb, i.e., either K0 or K1 depending on the bit b.

Note that pekA is redundant given xdkA. Furthermore, note that the reduction to the DDH instance can
program the ROM for consistency as HpKbq :“ x´1 ¨xdkA, which does look like a uniform random elements
in Zq to A. Moreover, the key Kb is unpredicatable to A upront, i.e., before the key pair pX,xq is sampled
(and REnc-A is executed) meaning the programming will succeed with overwhelming probability 1´ 1

q .

Ratchet Simulatability. In the following, we argue ratchet simulatability of the protocols. Note that
ratchet simulatability for the non-forward secure protocol is almost trivial: Key simulatability can simply
execute the protocol, and for ciphertext simulatability the only caveat is that the simulator knows the
secret key of party P̄ instead of the one of P. Due to the symmetry of Diffie-Hellman, this nevertheless
allows to compute the correct key. The forward-secure variant is slightly more elaborate and involves
RSimKey-P1 actually choosing a fresh key pair and then RSimKey-P2 programming the ROM to make
this appear consist.

Theorem F.5. The forward-secure RKEM from Fig. 28 is ratchet simulatable with respect to the simula-
tors from Fig. 29. The non-forward secure variant is ratchet simulatable with respect to the simulators
form Fig. 30.

Proof. For the non-forward secure variant, the proof follows by inspection. Let us now consider the
forward secure protocol. Here,the proofs of the two properties mostly follow by inspection. In particular,
observe that the programming of the ROM is consistent, in particular (1) it programs HpKq to a value that
has the correct uniform distribution as in the real-world experiments, and (2) programs it at positions
that A cannot guess beforehand, meaning the programming is still valid with overwhelming probability
when attempted.

63

RSimKey-P1pekP :“ X, dkP :“ xq

1 : ppx, pXq $
Ð RKeyGen-Ppq

2 : aux1 :“ px, pxq

3 : return ppx, pX, aux1q

RSimKey-P2p
pekP̄ :“ pY , xdkP̄ :“ py, aux1q

1 : parse px, pxq Ð aux1

2 : K :“ ppY qx

3 : HpKq :“ x´1
¨ px // Program RO

4 : ctP̄, rand2 :“ pq

5 : return pctP̄,K,K, rand2q

RSimCtxt-Pp pekP :“ pX, pekP̄ :“ pY , xdkP̄ :“ pyq

1 : z $
Ð Zq

2 : X :“ pX´z

3 : K :“ X py

4 : ctP̄ :“ pq

5 : return pctP̄, X,K,Kq

Fig. 29: Simulators for key and ciphertext simulatability for the forward-secure Diffie-Hellman based
RKEM.

RSimKey-P1pekP :“X, dkP :“xq

1 : aux1 :“ x

2 : return px,X, aux1q

RSimKey-P2p
pekP̄ :“Y, xdkP̄ :“y, aux1 :“xq

1 : K “ Y x

2 : ctP̄ :“ pq; rand2 :“ pq

3 : return pctP̄,K,K, rand2q

RSimCtxt-Pp pekP :“X, pekP̄ :“Y, xdkP̄ :“yq

1 : K “ Xy

2 : ctP̄ :“ pq

3 : return pctP̄, X,K,Kq

Fig. 30: Simulators for key and ciphertext simulatability for the non-forward secure Diffie-Hellman based
RKEM.

G Remark on Bad Randomness

The use of bad randomness can significantly affect a protocol’s security. The secure messaging literature
can roughly be divided into three camps with respect to the type of randomness corruption considered.

– No randomness corruptions. Some papers, such as [2,21], do not consider randomness corruptions
at all. More recent work often justfies this as a deliberate choice to reduce definitional complexity.

– Uniform but leaked randomness. A significant body of work, e.g. [13,6,23], considers “good” (i.e.,
uniformly sampled) randomness that can be revealed to the adversary.

– Adversarial randomness. Another line of work, e.g. [1,20,9,3] assumes that the adversary gets to
fully control the randomness.

As argued by Balli et al. [5], the additional power of each corruption model does reflect to certain
real-world attacks. For instance, there are certain real-world attacks that randomness leakage does not
capture, but that is captured by adversarially chosen randomness. While thus applealing, we argue that
the third model is problematic when considering post-quantum security: For realistic choices of parameters,
most lattice-based KEMs are not perfectly correct, implying that an adversary choosing the randomness
can induce arbitrary decryption failures. For “ratcheting” protocols that continuously exchange fresh key
material, such correctness issues moreover can translate into security issues, if it allows the adversary to
tamper with the decryption of a freshly exchanged public key.

Several countermeasures are conceivable:

– One may choose parameters in a regime where perfect correctness is guaranteed for lattice-based
scheme. While this approach was taken in the initial (theoretical) post-quantum instantiation of the
Double Ratchet in [1], this ultimatly is highly undesirable for practical applications where the size of
post-quantum keys is one of the main obstacles towards adoption.

– One may harden the randomness as part of the cryptographic protocol. For instance in [20] the authors
generate the randomness via an output of a hash function. In the ROM, one can then prove, using an
union bound argument, that the probability of the adversary finding bad randomness triggering a
decryption failure is negligible (cf. [20, Section 1.3]).

In this work we eschew the issue of adversarially chosen randomness and choose the model of
honest-but-leaked randomness instead for several reasons. First, the model already captures many of
the attacks from bad randomness. In particular, this caputures the exposure of all intermediate values
of a computation during a corruption. (In contrast, if an attacker only gets to see the state between
operations and the operations can use fresh randomness, intermediate values may remain hidden.) Second,
while a real-world attacker may realistically have some control over the randomness source, arbitrarily
setting the randomness (but not allowing to tamper with other protocol state) seems to be an extremely

64

strong assumption not met by the real-world attacks pointed out by [5]. Finally, randomness hardening
should preferrably be performed at the operating system level and not the at the level of an individual
cryptographic protocol.

65

	 Triple Ratchet: A Bandwidth Efficient Hybrid-Secure Signal Protocol
	Introduction
	Triple Ratchet Design Overview
	Lattice-based Katana RKEM Overview

	Preliminary
	Hybrid Secure Messaging
	The Triple Ratchet
	Construction
	Correctness and Security

	From Ratcheting Key Encapsulation Mechanism to CKA
	Definition of Forward-Secure Ratcheting KEM
	A Generic Construction of CKA from Ratcheting KEM

	Katana: An Efficient Ratcheting KEM from Lattices
	Construction of Katana
	Security of Katana
	Optimizing Katana with Bit-Dropping
	Concrete Parameter Selection

	Efficiency Analysis of Triple Ratchet
	Effect of Our RKEM on Communication Costs
	Effect of Chunk Encoding on Communication Costs

	Omitted Preliminary
	Lattices and Hardness Assumption
	Rounding
	CKA Security
	Chunk Encoding
	Cryptographic Primitives

	More Details on Hybrid Messaging
	Triple Ratchet: Security Proof
	Details on the CKA from RKEM
	Omitted Definition of RKEM
	Protocol Description
	Security

	More Details on Our Lattice-based RKEMKatana
	Correctness
	FS-INDCPA Security
	Ratchet Simulatability
	Details on Optimized RKEM
	Details on Concrete Parameter Selection

	Additional RKEM instantiation
	Generic Construction
	Non-Forward-Secure Lattice-based Construction
	Diffie-Hellman Constructions

	Remark on Bad Randomness

