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Abstract. While many side-channel attacks on elliptic curve cryptog-
raphy can be avoided by coordinate randomization, this is not the case
for the zero-value point (ZVP) attack. This attack can recover a pre-
fix of static ECDH key but requires solving an instance of the depen-
dent coordinates problem (DCP), which is open in general. We design
a new method for solving the DCP on GLV curves, including the Bit-
coin secp256k1 curve, outperforming previous approaches. This leads to
a new type of ZVP attack on multiscalar multiplication, recovering twice
as many bits when compared to the classical ZVP attack. We demon-
strate a 63% recovery of the private key for the interleaving algorithm
for multiscalar multiplication. Finally, we analyze the largest database of
curves and addition formulas with over 14 000 combinations and provide
the first classification of their resistance against the ZVP attack.

Keywords: dependent coordinates problem · elliptic curve cryptogra-
phy· GLV curve · side-channel attacks · ZVP attack

1 Introduction

Elliptic curve cryptography (ECC) provides several efficient schemes suitable
for memory-constrained devices such as smartcards, but it can fall prey to side-
channel attacks (SCAs) [19]. These exploit extra information leaked from the
device during the execution of the protocol – e.g., timing, power consumption, or
electromagnetic radiation. While most basic SCAs against ECC can be prevented
by coordinate randomization, this is not the case for the refined power-analysis
attack (RPA) [15], the exceptional procedure attack (EPA) [17] or the most
general one – the zero-value point (ZVP) attack [1]. The ZVP attack repeatedly
forces a zero intermediate value during the computations of an addition formula
in the ECDH protocol to recover the upper bits of a static private key. For each
bit of the private key, the attacker needs to solve an instance of the dependent
coordinates problem (DCP) [24]. The difficulty of the DCP depends on the
implemented addition formulas, but generally it remains an open problem to
find an efficient algorithm for the DCP. If the implemented addition formula
contains only hard DCP problems, only a few bits of the private key can be
recovered. As a result, existing progress on the ZVP attacks focuses on addition
formulas containing easy instances of DCP [1, 22, 24].
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Meanwhile, Gallant, Lambert, and Vanstone [14] introduced GLV curves
equipped with efficiently computable endomorphisms, which allow us to replace
single-scalar multiplication with a faster multiscalar multiplication using two
scalars. Extending this idea often led to record-breaking ECC implementations
[13, 20, 16, 6]. A popular example of a GLV curve is secp256k1 [9], which is
used in the Bitcoin Core, or several of the popular pairing-friendly curves, such
as BLS12-381, used in Zcash [7]. The ZVP attack was designed for single-scalar
multiplication, and it is unclear whether multiscalar multiplication algorithms
are more or less vulnerable to this attack. Additionally, while it is believed that
endomorphisms do not significantly help to solve the discrete logarithm problem
[5], their effect on DCP has not been studied. With this motivation, we present
the following contributions:

– We develop new ZVP attacks on the classical multiscalar multiplication al-
gorithms (interleaving and the Straus-Shamir trick), focusing on hard DCP
problems. Our attacks use a fast endomorphism to recover twice as many
bits when compared to the classical ZVP attack (Section 4). Additionally,
for some implementations of the interleaving algorithm, our ZVP attack is
able to recover 63% of the private key on average.

– We classify all the addition formulas from the Explicit-Formulas Database
[4] with respect to the difficulty of the underlying DCP problems (Section 3).
We show that the EPA attack cannot be used on the secp256k1 curve, and
the ZVP attack on all but one of the addition formulas in EFD supporting
secp256k1 must solve hard instances of DCP. We provide a semi-automatic
tool for the classification of formulas with respect to other curves as well.

2 Background

Throughout the paper, p ≥ 5 is a prime number, and Fp is a finite field of size p.
Define an elliptic curve E over Fp in the short Weierstrass model by the equation

E/Fp : y2 = x3 + ax+ b, a, b ∈ Fp, 4a3 + 27b2 ̸= 0.

The set of solutions over Fp forms a finite abelian group E(Fp) with a neutral
element ∞ and cardinality n = #E(Fp) ≈ p. For any point P ∈ E(Fp), denote
its coordinates by xP , yP . The addition on E of two affine points R = P +Q is
defined by the following rational functions:

xR = s2 − xP − xQ, yR = s(xP − xR)− yP ,

where s =
yP−yQ

xP−xQ
if P ̸= Q and s =

3x2
P+a
2yP

otherwise. This is well-defined unless

P = −Q or Q = P , 2P = ∞, in which case R = ∞.
We can naturally define scalar multiplication (SM) d · P as d-fold addition

P + · · · + P . There are several algorithms for computing SM; generally, they
iterate over the digits3 of the scalar d, evaluating formulas for point addition

3 Depending on the representation, we denote (signed) digits by upper indices in brack-
ets, i.e., the least significant digit of d is d(0). By d≥i we denote the upper digits of d
down to d(i). In particular, for binary representation, d(0) is the least significant bit.
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(add(P,Q)) and doubling (dbl(P )). For more efficiency, several popular SM al-
gorithms also use differential addition formulas (i.e., P +Q = dadd(P −Q,P,Q))
and ladder formulas (i.e., (2P, P + Q) = ladd(P − Q,P,Q)). One of the popu-
lar SM algorithms is the double-and-add with the non-adjacent form (NAF)
(Algorithm 1), in which d(i) ∈ {−1, 0, 1}.

To avoid a costly inversion, formulas are defined in non-affine coordinate
systems. For instance, the following is a projective add formula from [10]:

(x3 : y3 : z3) = (vA : u(v2x1z2 −A)− v3y1z2 : v3z1z2) (1)

u = y2z1 − y1z2, v = x2z1 − x1z2, A = u2z1z2 − v3 − 2v2x1z2

for a projective sum (x3 : y3 : z3) of two points (x1 : y1 : z1), (x2 : y2 : z2).
The Explicit Formulas Database (EFD) [4] is the largest public database of
formulas for multiple coordinate systems and curve models ([24] provides a good
overview of the database). Among the short Weierstrass and others, it supports
the (Twisted) Edwards model [3] and the Montgomery model [21].

Algorithm 1: Double-and-add.

Input: P ∈ E, m-digit scalar d in the NAF representation.
Output: kP

1 Q←∞
2 for i = m− 1 down to 0 do
3 Q← dbl(Q)

4 if d(i) = 1 then Q← add(Q,P )

5 if d(i) = −1 then Q← add(Q,−P )

6 return Q

2.1 GLV curves

A GLV curve [14] is an elliptic curve E equipped with an efficiently computable
endomorphism ϕ for speeding up SM. An endomorphism ϕ : E → E is defined
by rational maps r1, r2: (x, y) 7→ (r1(x, y), r2(x, y)) and satisfies ϕ(∞) = ∞.
Coefficients of r1, r2 lie in Fp, and r1 can be expressed purely in the x-coordinate
(in the Weierstrass model). If the group E(Fp) has a prime order n, then ϕ acts
on E(Fp) as SM by some λ ∈ Z. Any scalar d ∈ Z can be then decomposed using
the extended Euclidean algorithm as

d = d0 + d1λ (mod n), d0, d1 ≈
√
n.

The computation of kP can then be carried out through multiscalar multipli-
cation (MSM) as (d0 + d1λ)P = d0P + d1ϕ(P ). This is usually done using the
interleaving method (as in the libsecp256k1 library [29]) or the Straus-Shamir [2]
trick. Both methods process the two SMs d0P , d1ϕ(P ) at the same time, which
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eliminates half of the dbl operations when compared to simple SM dP (e.g.,
using Algorithm 1). The difference between the two methods is that at the be-
ginning, the Straus-Shamir trick precomputes P ± ϕ(P ), while the interleaving
precomputes small multiples of the points P and ϕ(P ) separately. Details differ
depending on the representation of the scalars d0, d1.

Algorithm 2 is the interleaving method combined with the regular w-NAF
representation as designed in [18] and used in libsecp256k1 for w = 5 (also
proposed by Brumley [8] for OpenSSL). In the regular w-NAF representation, the
digits of the scalar take the odd values from {±1,±3, . . . ,±(2w−1)}. Since none
of the digits of the private key are ever zero in this representation, the number
of add and dbl operations is fixed, providing a SCA protection (e.g., against
cache timing attacks). Note that in each iteration of Algorithm 2, computing

Q + d
(i)
0 P + d

(i)
1 ϕ(P ) requires two additions. There are two natural options to

order them, either (Q+ d
(i)
0 P ) + d

(i)
1 ϕ(P ) or Q+ (d

(i)
0 P + d

(i)
1 ϕ(P )). The second

option requires temporary space to store d
(i)
0 P + d

(i)
1 ϕ(P ), but it can use faster

formulas for addition since both the precomputed points d
(i)
0 P, d

(i)
1 P can be

in the affine form. For instance, this approach with the modified add-2009-bl

addition formula can save one finite field squaring compared to the first option
[4]. The first variant is used in libsecp256k1, but we will consider both variants
of the interleaving algorithm, as their distinction will be relevant for our attacks.

Algorithm 2: Interleaving Multiscalar Multiplication.

Input: P ∈ E, endomorphism ϕ, l-digit regular w-NAF scalars d0, d1
Output: d0 + d1ϕ(P )

1 Store kP , kϕ(P ) for k ∈ {±1,±3, . . . ,±(2w − 1)}
2 Q←∞
3 for i = l − 1 down to 0 do
4 for j = 0 to w − 1 do
5 Q← dbl(Q)

6 Q← add(Q, d
(i)
0 P ) /* Alternatively: R← add(d

(i)
0 P, d

(i)
1 ϕ(P )) */

7 Q← add(Q, d
(i)
1 ϕ(P )) /* Q← add(Q,R) */

8 return Q

Algorithm 3 is the Straus-Shamir trick combined with the GLV-SAC repre-
sentation. Faz-Hernández, Longa, and Sánchez [12] designed this representation
to achieve a constant number of dbl and add operations for SCA protection. The
GLV-SAC representation of two scalars d0, d1 is a signed representation satisfying

(d
(i)
0 , d

(i)
1 ) ∈ {(1, 0), (−1, 0), (1, 1), (−1,−1)}. In particular, (d

(i)
0 , d

(i)
1 ) ̸= (0, 0),

which means that add is computed in each iteration.
The most prominent example of a GLV curve is the secp256k1 curve used in

the Bitcoin core:

E/Fp : y2 = x3 + 7, p = 2256 − 232 − 977,
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Algorithm 3: Straus-Shamir trick.

Input: P ∈ E, endomorphism ϕ, l-digit GLV-SAC scalars d0, d1
Output: d0 + d1ϕ(P )

1 Store g0P + g1ϕ(P ) for (g0, g1) ∈ {(1, 1), (−1,−1), (1, 0), (−1, 0)}
2 Q←∞
3 for i = l − 1 down to 0 do
4 Q← dbl(Q)

5 Q← add(Q, d
(i)
0 P + d

(i)
1 ϕ(P ))

6 return Q

which is a member of the family of short Weierstrass curves with a = 0 and
p = 1 (mod 3). Such curves admit an endomorphism ϕ : (x, y) 7→ (βx, y), where
β ∈ F×

p is an element of order 3. The endomorphism can be computed using only
one multiplication (by β) in Fp. Moreover, it acts on E(Fp) as λ, which satisfies
the quadratic equation λ2 +λ+1 = 0. This family of GLV curves, including the
secp256k1 curve, is the focus of this work.

2.2 ZVP attack

The target of the ZVP attack [1] is a static private key d used in the ECDH
protocol implemented on a device to which the attacker has access. The device
takes a point P (public key) on input, which is multiplied by the secret key d as
part of the protocol, resulting in dP . The special assumption of the ZVP attack
is that the attacker has a side-channel oracle (given by, e.g., power consump-
tion) that tells them whether a zero intermediate value has occurred during the
computation of the scalar multiplication. For example, during the computation
of the add formula in (1), it can be detected that the intermediate value A = 0.
This is a reasonable assumption as the power consumption during the zero-value
operations dramatically decreases. See also Figure 1.

P dP

leakage

ECDH
with secret d

O(P ) = True . . . zero value detected

O(P ) = False . . . otherwise

Fig. 1: Construction of the ZVP oracle O.

We will explain the attack in detail on Algorithm 1. The attacker gradually
recovers the prefixes d≥i of d, digit by digit, starting from an empty prefix.
Assuming that the attacker recovered the prefix d≥i, they take a guess on the
next upper digit d(i−1). The idea of the ZVP attack is to verify this guess by
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constructing P such that a zero value appears during the computation of add.
If the guess on d(i−1) is correct then O(P ) = True.

It remains to explain how to construct such points P that invoke the zero
intermediate value during add. The attacker uses the fact that in a formula for
add, any intermediate value can be expressed as a polynomial f in the coordinates
of the input points Q and P (or −P ) to the add – one can see that in the add
formula in (1). The goal is, therefore, to find P such that the coordinates of ±P
and Q are the roots of f , where Q is a known multiple of P . This problem is an
instance of the so-called dependent coordinates problem (DCP):

Definition 1. Let E/Fp : y2 = x3 + ax + b be a curve. Given a polynomial
f ∈ Fp[x1, x2, y1, y2] and scalars k, g ∈ Z, find a point P ∈ E(Fp) such that
f(xQ, xG, yQ, yG) = 0, where Q = kP , G = gP . We denote this problem4 as
DCPf (k, g). An instance with g = 1, G = P is denoted as DCPf (k).

To summarize the ZVP attack, the attacker makes a guess g on the digit
d(i−1) of a private key d, with already recovered prefix k = d≥i, selects an
intermediate polynomial f that appears during the add computation and solves
DCPf (k, g). The solution is a point P for which O(P ) = True if the guessed k
is correct, i.e., if g = d(i−1).

Remark 1. One might jump to the conclusion that if O(P ) = True, then the
guess g must be correct. As an example, if f = x1 + x2 and P is a solution to
DCPf (k, g) then xgP + xkP = 0. However, x−gP + xkP = 0 and so P would
invoke a zero if g is correct as well as if −g is correct. For such cases, we have
to keep track of all the possibilities for g as we progress through the digits of d.

The ZVP attack has two issues, though. Firstly, solving DCP effectively is,
in general, an open problem, as we discuss in the following section. Instances of
DCP with smaller values of k (shorter prefixes d≥i) can be easily solved, but that
only allows the attacker to target only a few digits of d. Secondly, DCP does not
have to have a solution, regardless of whether our guess is correct or not. We,
therefore, cannot simply iteratively reveal each digit of d, as some digits might
correspond to cases for which the DCP does not have a solution.

There are two attacks that can be considered special cases of the ZVP attack
called Refined Power Analysis (RPA) attack [15] and Exceptional Procedure
attack (EPA) [17]. The RPA attack forces a coordinate of a point to be zero
during the computation of the scalar multiplication. The DCP in this case is
DCPf (k) for either f = y1 or f = x1. The RPA attack is independent of the
choice of the formula for add or dbl and relies purely on the existence of points
with zero coordinates. All points with zero coordinates in the usual curve models
have low order (≤ 4) and should not appear during the scalar multiplication –
with the exception of points (0, y) in the Weierstrass model [24]. The EPA attack
takes a similar approach as RPA but also assumes that an incorrect computation

4 The original formulation of DCP in [24] is with g = 1 for the simple binary represen-
tation. This is a generalization for more SM algorithms and scalar representations.
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of add can be forced. This computation is induced using special points for which
the used formula for add is not defined.

All ZVP attacks can be thwarted using scalar randomization, as the attacker
cannot solve the DCP for an unknown randomized scalar and cannot prepare
the input point. However, the RPA attack is resistant to projective coordinate
randomization as (0 : y : z) = (0 : ry : rz) for any r ∈ Fp. ZVP and EPA attacks
are resistant to coordinate randomization on the condition that the roots of
the DCP polynomial f do not change under coordinate randomization. This is
almost always the case for addition formulas in EFD (see Section 3).

2.3 Solving DCP

Given a DCPf (k, g) problem, one can replace the polynomial f ∈ Fp[x1, x2, y1, y2]
with f ′ ∈ Fp[x1, x2], by removing any occurrences of y1, y2 using the curve equa-
tion [24]. We will, therefore, assume that already f ∈ Fp[x1, x2]. In general, the
only known approach [24, 1] for solving the DCPf (k, g) is to express the maps for
multiplication by k and g using rational functions uk, ug ∈ Fp(x) and substitute
into f :

f (uk(x), ug(x)) = 0. (2)

Taking just the numerator f of the rational function on the left, we get a univari-
ate polynomial equation f(x) = 0. We then test whether at least one root of f
lifts to a point on our curve (i.e., there is a point with the root as x-coordinate).

Remark 2. All complexities are stated in an indeterminate M(m) for the com-
plexity of multiplying two degree-m polynomials. The complexity of root-finding
of a degree-m polynomial is O(M(m) logm logmp) operations in Fp [27].

Regarding the complexity of the just described method, the main bottleneck
is the construction and root finding of f , i.e., the numerator of (2). The ratio-
nal function uk can be computed using division polynomials in O(M(k2) log k)
time/space and satisfies deg(uk) = k2 [28]. Similarly, deg(ug) = g2 and so
deg(f) ≤ 2max(k, g)2 deg f . Taking the Karasuba complexity m1.6 for M(m),
the overall time and space complexity is:

O(M(δ2) log δ log δ2p) ⊆ O(δ3.2 log δ log δ2p), δ = 2max(k, g)2 deg f. (3)

Due to this complexity in both time and space, we can solve the general
DCP problem only for small scalars k and g. In the context of the ZVP attack,
the scalar g is small, but the scalar k is a prefix of a private key, i.e., k = d≥i.
Consequently, the ZVP attack can recover only a few upper digits of the private
key d.

Instances of DCP that have been solved in the literature for large k focused
on special types of polynomials f . The authors of [1, 22, 24] target DCPf (k) in
which the polynomial f depends on the coordinates of only one input point. For
instance, if f = x1 + 1, we can first find a point Q that satisfies xQ + 1 = 0
and then compute P = k−1Q. As our analysis in the following section shows,
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most addition formulas do not contain such polynomials, and the attacker is left
with the general (hard) DCP problem. Hard DCP problems on the GLV curve,
including the secp256k1, are the focus of this work.

3 Classification of formulas

During the ZVP attack, the attacker forces a zero intermediate value (IV) in an
addition formula by solving the corresponding DCP. Every formula contains an
IV for every finite field operation, allowing the attacker to choose the one with
the easiest DCP. In this section, we semi-automatically analyze DCP problems
of all addition formulas from the EFD together with almost 200 popular curves.
We show that secp256k1 is resistant to EPA attacks, and any ZVP attack on
secp256k1 must solve hard DCP problems with the exception of one add formula.

3.1 Methodology

Our source of formulas was the updated export5 of the EFD from [24]. For curves,
we have used the database of standard prime field curves from [25], including 144
Weierstrass curves, 15 Edwards curves, 5 Montgomery curves, and 31 Twisted
Edwards curves.

Example 1. The following is part of the three-operand code for the projec-
tive add formula (1): t0 = Y1*Z2, t1 = Y2*Z1, u = t1-t0, t2 = X1*Z2, t3

= X2*Z1, v = t3-t2, t4 = u^2, t5 = v^3, t6 = v^2,..., A = t12-t9,

X3 = v*A, Y3 = t20-t19, Z3 = t21*t22

Given an elliptic curve, every intermediate value (IV) can be expressed as a
polynomial function in the coordinates of the input points of the formula:

IV = f(X1, Y1, Z1, X2, Y2, Z2), f ∈ Z[X1, Y1, Z1, X2, Y2, Z2], (4)

For instance, for the third IV in Example 1, we have u=(Y2*Z1-Y1*Z2). For
each formula F and a curve E, we consider the set of polynomials IF,E containing
the factors of the polynomials of every IV in F . Any ZVP attack on the formula
must then use one of the polynomials in IF,E to force a zero IV.

We label any polynomial f ∈ IF,E as easy if it depends on the coordinates of
only one point (either X1, Y1 or X2, Y2). We have seen in Section 2 that the DCP
is easily solvable in such cases. Any other polynomial in IF,E is labeled hard.
Moreover, in the context of ZVP attacks, we exclude the following polynomials
f from IF,E :

– easy polynomials f that do not have a solution corresponding to a point on
the curve E, including constant polynomials that are trivially without roots.

5 Available at https://github.com/crocs-muni/efd.

https://github.com/crocs-muni/efd
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– the few f for which f = 0 depends on the choice of the projective represen-
tation of the input point(s). This choice is based on the assumption that a
projective randomization of points is in place. It also allows us to transform
all polynomials in IF,E to an affine form by putting Zi = 1.

– f s.t. f = 0 implies that one of the coordinates of the input or output points
(e.g., X3 in Example 1) is 0. Recall that forcing zero coordinates of points is
the domain of RPA and EPA attacks (Section 2). We exclude RPA attacks in
our analysis of formulas since they do not depend on the choice of formula.
We also exclude the general EPA attacks (with the exception of EPA on
secp256k1 in Section 3.3) as their analysis has been done in [24].

– f s.t. f = 0 implies that the input or output points are of small order or
satisfy some trivial condition, i.e., (X1, Y1) = −(X2, Y2). Such points should
not appear in the SM and can often be used for easier attacks than ZVP.
Nevertheless, this assumption depends on the context, so we also recomputed
the analysis without it.

All of the above exceptions can be checked automatically, with the exception of
the last one, which we did manually. We then classify each formula for each curve
as either resistant, semi-resistant, or vulnerable, depending on the proper-
ties of IF,E . A formula is resistant if IF,E is empty. Vulnerable formulas have
at least one easy polynomial IF,E . Semi-resistant formulas are the remaining
ones, i.e., IF,E contains at least one hard polynomial and no easy polynomials.
Semi-resistant formulas are vulnerable to ZVP attacks as well, but the under-
lying DCPs are difficult to solve. Formulas for dbl cannot be semi-resistant as
they depend on one input point by definition, and so all of the polynomials in
IF,E are easy if there are any.

3.2 Results

We have analyzed over 200 formulas with almost 5000 IV polynomials in com-
bination with 195 curves. We present here the results for Weierstrass add and
dbl formulas with four popular curves, including the secp256k1 curve. The rest
of the results can be found in our repository.

Table 1 shows the results for dbl formulas. For clarity, formulas are grouped by
their coordinate systems with the number of formulas in brackets. The coordinate
systems are abbreviated: jac for jacobian, proj for projective, mod for modified
jacobian, xz for xz, xyz for xyzz. The formulas are divided into either resistant
or vulnerable, as per our definition above. The rows further divide the formulas
per the number of easy IV polynomials (e.g., resistant formulas have none). For
example, for P-256, there are two vulnerable projective formulas with two easy
IV polynomials and twelve resistant jacobian formulas. Clearly, the resistance of
formulas depends on the choice of the curve. While most formulas are vulnerable
for P-521, the opposite is true for P-256. Surprisingly, none of them are vulnerable
for secp256k1. This means that the ZVP attack cannot target any dbl formula
from EFD when the secp256k1 curve is used.

Similarly, Table 2 shows the results for add formulas. It turned out that there
are no resistant Weierstrass add formulas, and so formulas are only divided into
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#IV P-256 secp256k1 P-384 P-521

re
si
st
a
n
t 0 jac(12) jac(12) jac(2) jac(2)

mod(3),xyz(6) mod(3), xyz(2) proj(2) proj(2)

proj(9) proj(5), xz(5) xyz(3) xyz(3)
v
u
ln
er
a
b
le

1 proj jac(10) jac(4), mod(3)

xz(5) mod(3), xyz(3) proj(3)

proj(7), xz(3) xyz(1), xz(3)

2 proj(2) proj(2) jac(6), proj(4)

xyz(2), xz(2)

3 proj, xz(2)

5 proj

6 proj(2)

Table 1: Distribution of IV polynomials for dbl formulas and four popular curves.
Formulas are grouped by their coordinate system with their amount in brack-
ets. Each formula is either resistant or vulnerable with the number of easy IV
polynomials in rows.

semi-resistant or vulnerable. This means that each formula either contains an
easy IV polynomial (vulnerable formula) or no easy ones and at least one hard IV
polynomial (semi-resistant formula). The number of these polynomials is again
in the rows. Since the semi-resistance of formulas did not change significantly
between curves, we only show the results for P-256 and secp256k1. Focusing on
secp256k1, we found the following eleven hard IV polynomials shared between
the formulas, which we will use for our attacks (Section 4).

f1 = X1 +X2, f3 = X4
1 +X4

2 + (X1 +X2)
4 − 3(X1 +X2)(Y1 + Y2)

2

f2 = 2X1(X1 −X2)
2 − (Y1 − Y2)

2, f4 = (X1 −X2)
3 + (Y1 − Y2)

2

f5 = X1(X1 −X2)
2 − (Y1 − Y2)

2, f6 = X1 −X2 − 1, f7 = X1 −X2 − 2

f8 = Y1Y2 − 3b, f9 = Y1Y2 + 3b, f10 = X2Y1 +X1Y2, f11 = X1X2 + Y1Y2

Out of the 36 semi-resistant add formulas: 32 formulas contained only one IV
polynomial (f1, f2, f4 or f5), two formulas contained two IV polynomials (both
f1, f3), one formula contained f4, f6, f7 and one formula contained f1, f8, f9, f10, f11.
The overall conclusion for secp256k1 is that the ZVP attack on any classical
scalar multiplication algorithm using dbl and add must focus on the add with
all but two formulas being semi-resistant with hard DCPs (the exceptions are
two variants of the formula by Renes, Costello, and Batina [23]). Furthermore,
the amount of possible IVs is limited (only one for most formulas). We have to
emphasize that we do not make any claims for formulas that are not in the EFD
database.

Curve25519. To illustrate our results on other operations and curve models,
we will summarize our findings for the popular Curve25519 in the Montgomery
form. All four formulas for the differential addition are resistant (contain no
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#IV P-256 secp256k1

se
m
i-
re
si
st
a
n
t

1 jac(22), mod(3), proj(4), xyz(3)

2 jac(22), mod(3), proj(8), xyz(6) proj(2)

3 mod(1)

4 proj(4), mod(1)

5 proj(1)

v
u
ln
er
.

2 proj(2)

4 proj(4)

Table 2: Distribution of IV polynomials for add formulas and for P-256 and
secp256k1. Formulas are grouped by their coordinate system with their amount
in brackets. Each formula is either semi-resistant or vulnerable with the number
of hard (for resistant) or easy (for vulnerable) IV polynomials in rows. There are
no resistant Short Weierstrass add formulas in EFD.

IV polynomials usable for ZVP). Similar holds for ladder and doubling formu-
las with the exceptions of xz:ladd-1987-m and xz:dbl-1987-m. Both of these
formulas contain an easy IV polynomial X1 − a, where a is the Montgomery
model parameter. Surprisingly, all of the considered Montgomery curves have a
solution point for this polynomial (M-221, M-511, Curve383187 or M-383) except
for Curve25519. This means that all of the formulas supporting Curve25519 are
resistant against ZVP with this curve.

Remark 3. We have treated the detection of zero values as a black-box oracle,
assuming the ability to detect operations involving zeroes using side channels.
In practice, it might be crucial to distinguish the operations as the gate counts
might differ for (modular) addition/subtraction and multiplication. The attacker
is expected to require more effort to detect a zero addition than a multiplication
by zero [1]. If we consider only multiplication to be detectable, the presented re-
sults do not change for Weierstrass formulas. Our repository contains the results
in this model as well.

3.3 Resistance of secp256k1 to EPA and RPA

We excluded the EPA attack (a special case of ZPV) in our analysis of formulas
as it was already done by Sedlacek et al. [24]. The EPA targets a polynomial f ,
for which f = 0 causes an error during the scalar multiplication. As shown in [24],
all known add formulas in the EFD database for short Weierstrass curves offer
only one f that could be zero: y1 + y2. The authors focused on the general case
and did not consider how the situation changes for particular curves. We will now
show that for the secp256k1 (and the general GLV curves) that DCPy1+y2

(k, g)
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has a solution only for three values of k
g . Since k corresponds to a prefix of a

random secret scalar (target of the EPA attack), the probability of encountering
such k and g is negligible, making the secp256k1 curve resistant to EPA.

The GLV curves of the form y2 = x3+b are acted upon by an endomorphism
λ(x, y) = (βx, y), where β ∈ Fp is a (nontrivial) third root of 1. If P is a solution
to DCPy1+y2(k, g), then Q = kP , G = gP and yQ + yG = 0. Squaring the
equation and replacing y2Q and y2G using the curve equation, we get x3

Q = x3
G,

which means that either xQ = xG, xQ = βxG or xQ = β2xG. These three cases
imply, respectively, that either Q = −G, Q = −λG, or Q = −λ2G. Consequently,
k
g ∈ {−1,−λ,−λ2} as claimed.

Similarly for ladd formulas, the only potential zero polynomial is f = x2

[24]. This means that as long as the curve does not contain points with zero
x-coordinate, the curve is resistant to EPA attack. This is the case for secp256k1
as the curve equation is y2 = x3 + b with nonsquare b. For the same reason,
secp256k1 is resistant to RPA attack, for which a zero coordinate point is nec-
essary. Thus, if the target is secp256k1, only the general ZVP attack is relevant
and is also the focus of the next section.

4 ZVP-GLV attack

During the classical ZVP attack as described in Section 2, the attacker needs to
find a solution to a DCPf (k, g) where k is a small prefix of the private key d and
g is the guess on the next digit. The situation changes when the implementation
uses the GLV decomposition d = d0 + d1λ (mod n). The multiscalar multiplica-
tion algorithms gradually go through the prefixes of both the scalars d0 and d1 at
the same time. The attacker would now need to solve DCPf (k0 + k1λ, g), where
both k0, k1 are small but k0 + k1λ is not. Since the state-of-the-art approach
for solving DCP works only for small k, it seems that the ZVP attack cannot
be used for implementations using the GLV decomposition. This section shows
that the opposite is true:

– We show that DCPf (k0 + k1λ, g) can be solved efficiently for small k0, k1, g
even though k0+k1λ is a large scalar. Moreover, we can solve such DCPs for
t-bit k0 and t-bit k1 in a comparable time as DCPf (k, g) for a single t-bit k.

– We design a ZVP-GLV attack that can recover upper digits of both scalars
d0, d1 at the same time. As a result, the ZVP-GLV attack can recover twice
as many digits of the secret scalar d when compared to an implementation
not using the GLV decomposition.

Firstly, Section 4.1 describes a method for solving DCPf (k0 + k1λ, g). In
Section 4.2, 4.3 and 4.4, we use the method to attack the Straus-Shamir trick
(Algorithm 3) and the interleaving algorithm (Algorithm 2). We also show that
one variant of the interleaving algorithm is especially vulnerable to ZVP attack,
allowing the attacker to recover the majority of the digits of d (Section 4.5). All
of the sections contain experimental results on the secp256k1 curve as well.
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Attacker model. The target is a device that performs MSM P 7→ dP on a GLV
curve E/Fp : y2 = x3+ b using a fixed secret scalar d = d0+d1λ (mod n). Here,
n is the order of E(Fp), λ is the action of an endomorphism ϕ on E(Fp), where
λ2+λ+1 = 0 (mod n). The MSM is done using either Algorithm 3 or Algorithm
2. The scalars d0 and d1 have l digits and are encoded in the appropriate repre-
sentations (GLV-SAC or regular w-NAF). The attacker controls the input point
P and can detect (using a suitable side channel) whether a zero appears during
the computation of add, i.e., they have an oracle O described in Section 2.2 (we
extend this model in Section 4.5). The attacker’s goal is to recover as many digits
of d as possible using O. All of our experiments are simulated, i.e., we do not
perform any side-channel measurements and treat O as a black-box oracle.

4.1 DCP on GLV curves

The state-of-the-art approach to solving DCPf (k, g), as described in Section 2.3,
is to find a root of a univariate polynomial f of degree≈ 2max(k, g)2 deg f . As we
show in Lemma 1, we can extend the approach to DCPf (k0+k1λ, g) where both
k0, k1 are small. We construct a polynomial F of degree≈ 16max(k0, k1, g)

2 deg f
and then look for roots of F . The key idea behind the construction of F is that
the multiplication-by-k map can be replaced by two multiplication-by-ki maps
while the degree of the map for λ is one, bringing no additional cost.

Lemma 1. Let E/Fp be a GLV curve with an endomorphism ϕ and an action
λ. For k0, k1, g ∈ Z and f ∈ Fp[x1, x2], consider the DCPf (k0 + k1λ, g). There
is a polynomial h ∈ Fp[x] of degree ≤ δ = 16max(k0, k1, g)

2 deg f , such that if
P ∈ E is a solution to the DCP then xP is a root of h. The polynomial h can
be found with the following time and space complexity:

O(M(δ2) log δ log δ2p).

Proof. Denote u0, u1, ug ∈ Fp(x) the rational functions for the x-coordinates of
the multiplication maps by k0, k1ϕ and g, respectively. To construct h, we will
substitute u0, u1, g, f into the Semaev polynomial S3 [26]. The polynomial S3 ∈
Fp[X1, X2, X3] satisfies for any points P0+P1 = P2 that S3(xP0

, xP1
, xP2

) = 0. In
particular, for any P ∈ E and Q = k0P + k1λP , we have S3(xk0P , xk1λP , xQ) =
0. Since u0(xP ) = xk0P , u1(xP ) = xk1λP , we can substitute u0, u1 into S3:
S3(u0(xP ), u1(xP ), xQ) = 0. If P is a solution to the DCP, then f(xQ, xG) = 0
where G = gP . We will now assume that the polynomial f(x1, x2) = 0 can
be expressed as a x2 = f ′(x1) for a rational function f ′ ∈ Fp(x1) and leave
the proof of the general case for Appendix 6.1. Substituting f ′ and g into S3,
we get S3(u0(xP ), u1(xP ), f

′(g(xP ))) = 0. As a result, if h is the denominator
of the rational function S3(u0(x), u1(x), f

′(g(x))) ∈ Fp(x) then xP is its root
as claimed. The degree of h is given by the degree of f ′ (which is deg f), the
maximum of degrees of u0, u1, ug and the degree of S3 (which is 2 in each vari-
able). The complexity of constructing h is dominated by the construction of the
maps u0, u1, ug, and their substitution into S3 with the complexity discussed in
Section 2.3.
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Note that Lemma 1 easily extends to DCPf (k0 + k1λ, λg) since the rational
map for λg is βug, whereu ug is the rational map for g and β ∈ Fp is the action
of λ. In principle, our approach works for DCPf (k0 + k1λ, g0 + λg1) as well (it
requires a higher degree Semeav polynomial S4), but we will not need it.

Figure 2a shows the timings6 of solving DCPf (k0 + k1λ) for scalars k0, k1 of
small bit-lengths (2-5 bits) and a selection of IV polynomials that we found in our
analysis of formulas for secp256k1 in Section 3. For comparison, Figure 2b shows
the timings of solving DCPf (k) classically for small k. While solving DCPf (k)
for 8-bit k can take more than 18 minutes (for f2), solving DCPf (k0 + k1λ) for
two 4-bit scalars k0, k1 takes less than 14 seconds. In Section 4.2, we will show
that this makes the decomposed private key d = d0 + d1λ more vulnerable.

(a) DCPf (k0 + k1λ) (b) DCPf (k)

Fig. 2: Timings for solving DCPf (k0 + k1λ) and DCPf (k) for different polyno-
mials fi and scalar bit-lengths on the secp256k1 curve.

Using Lemma 1, we can efficiently solve DCPf (k0 + k1λ) for small k0, k1 as-
suming that there is at least one solution. To empirically estimate the probability
that a DCP has a solution, we have solved DCPf (k0+ k1λ) for all positive 2− 5
bit scalars k0, k1 and all the IV polynomials {f1, . . . , f11}. For each such DCP
instance, we have recorded whether it has at least one solution. Additionally, as
we saw in Section 3, some formulas have up to five IV polynomials. Hence, we
have combined the results for individual IV polynomials to see how the success
rate of finding a solution changes if it is enough to have at least one solution
for at least one polynomial from a given set of IV polynomials. Results are in
Figure 3 with the number of IV polynomials on the y-axis and the success rate
(in percentages) on the x-axis. Each dot represents a set of IV polynomials of
size 1, 2, 3, 4 or 5. Surprisingly, the DCP success rate for single polynomials is
very low (below 25% for all except for f6, f7, f11), which limits the ZVP attack

6 All our experiments were computed on a 2.3 GHz Intel Xeon Processor. Our imple-
mentation uses C/C++ for the computationally demanding parts and Python with
Sagemath for the overall interface.
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on formulas with single IVs. With at least three IV polynomials, the average
rate is over 50%, and with five IV polynomials, the rate reaches 87%.

The red dots represent the IV polynomials corresponding to add formulas
from EFD. The majority of EFD formulas have a 13−16% success rate. The ex-
ceptions are proj:add-2002-bj with 27% (2 polynomials), mod:mmadd-2009-bl
with 66% (3 polynomials) and proj:madd-2015-rcb with 70% (5 polynomials).
While the success rate is low for almost all formulas, some formulas (and all the
polynomial combinations in blue dots) show that the rate can vary over a wide
range. This is especially relevant for the development of new formulas.

Fig. 3: Each dot represents a subset of IV polynomials from {f1, . . . , f11} with
their amount on y-axis and the rate of at least one solvable DCPfi(k0 + k1λ)
problem on the x-axis. The red dots represent EFD add formulas.

4.2 Description of the ZVP-GLV attack

This section describes a new ZVP attack on implementations using GLV decom-
positions (ZVP-GLV attack). We target both the Straus-Shamir trick (Algorithm
3) and the interleaving algorithm (Algorithm 2). We will go through the general
idea of the attack and then discuss details specific to the individual algorithms.

The general idea of the ZVP-GLV attack follows the idea of the classical ZVP
attack: we iteratively recover the upper digits of d0, d1, where d = d0+d1λ is the
decomposition of the private key. In each iteration, we take a guess of the digits

d
(i)
0 , d

(i)
1 . To verify our guess, we attempt to invoke a zero during the computation

of add with a special input point found as a solution to DCP using Lemma 1.
If our guess is correct, then we detect a zero. It might happen that the DCP
does not have a solution. As we saw in Figure 3, the probability of that event
is relatively high (as high as 88%) unless multiple intermediate polynomials are

used. This means that the individual guesses for d
(i)
0 , d

(i)
1 might not be verified

and we must keep track of all possibilities for the values of d
(i)
0 , d

(i)
1 .
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We denote Ki as the set of candidates for (d≥i
0 , d≥i

1 ). We start with Kl−1

containing all possible most significant digits of d0, d1 and iteratively transform
Ki to Ki−1 until we reach a limit given by the complexity of DCP.

Kl−1 → Kl−2 → . . .Ki → Ki−1 → . . .Kl−t | limit given by the complexity of DCP.

The sizes of the sets Ki might fluctuate, but each Ki contains the correct pair
of prefixes (d≥i

0 , d≥i
1 ). The following steps transform Ki to Ki−1:

– For each candidate pair (κ0, κ1) ∈ Ki, we make a guess g0, g1 for the following

digits d
(i−1)
0 , d

(i−1)
1 . The set of options for g0, g1 depends on the representa-

tion (GLV-SAC for Algorithm 3 or regular w-NAF for Algorithm 2).
– For each candidate pair κ0, κ1 and a guess g0, g1 we create an instance of the

DCP problem and attempt to find a solution point P using Lemma 1. If we
have multiple intermediate polynomials available, we create and solve a DCP
for each one of them until a solution is found or we have no more polynomials.
Note that some candidate pairs and guesses might have a common solution
point (see Remark 1).

– Using all found points P , we query the zero detection oracle O(P ). We reject
all candidate pairs and guesses for which a zero was not detected, as they
have to be incorrect.

– Any of the candidate pairs κ0, κ1 and guesses g0, g1, for which a zero was
detected on the corresponding point P , might be correct as some of them
might share the point P . We put (κ0|g0, κ1|g1) ∈ Ki for all of these (where
| stands for concatenation).

– If no zeros are detected (and so far Ki = {}) for any point P , then the
correct candidate pair κ0, κ1 and guess g0, g1 must be one of the ones for
which the DCP had no solution point, and so we put all of these in Ki. In
principle, we should keep the guesses without solutions even if a zero was
detected, as we might lose the correct guess g0, g1 due to accidental zeros.
We never found this to be the case in our experiments and so we use this
heuristic for more efficiency.

At the end, we are left with Kl−t, a set of candidate pairs for d≥l−t
0 , d≥l−t

1 .
While the attack targets 2t digits (t + t for each di), it recovers them with the
ambiguity given by the size of Kl−t. For comparison between different represen-
tations, we will express the amount of information gained in bits. All pairs of
prefixes with t digits give us 2tw bits (where w is the window size for interleaving
and w = 2 for GLV-SAC) with logKl−t bits uncertainty. Hence, by the number
of recovered bits, we will mean the value 2wt− logKl−t.

The following subsections describe the details specific to Algorithm 3 and
Algorithm 2 and the experimental results. The pseudocodes for the attacks can
be found in Appendix 6.2 (Algorithm 4, Algorithm 5 and Algorithm 6).

4.3 ZVP-GLV attack on Straus-Shamir trick

The ZVP-GLV attack on the Straus-Shamir trick (Algorithm 3) iteratively un-
covers the GLV-SAC representation of the upper bits. This means that (g0, g1)
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∈ {(1, 0), (−1, 0), (1, 1), (−1,−1)}, using the general notation from above. We
will now explain how to construct the DCP problem for GLV-SAC. The rest of
the attack follows the general description above.

A guess (g0, g1) for d
(i)
0 , d

(i)
1 corresponds to a guess of the input point (g0 +

g1λ)P ∈ {P,−P, P +λP,−P −λP}. Given a prefix candidate (κ0, κ1), we verify
the guess by solving DCPf (κ0+κ1λ, g0+g1λ), i.e., find P such that f(xG, xQ) =
0, where G = (g0+g1λ)P and Q = (2κ0+2κ1λ)P using Lemma 1. It might seem
like a complication that Lemma 1 can only solve DCPf (κ0 + κ1λ, g) for small
g, while g0 + g1λ is not small. However, we can easily reduce this problem to a
DCP with g = 1. Denote γ = 2g0κ0 + 2g1κ1 − 2g1κ0 + λ(2g0κ1 − 2g1κ0). Then
Q = γG, as 2κ0 + 2κ1λ = γ(g0 + g1λ) (using the facts that g20 = 1, g0g1 = g21 ,
and λ2 + λ + 1 = 0). This means that G is a solution to DCPf (γ). To find P ,
we just compute P = (g0 + g1λ)

−1G.
The experimental results for this attack are in Figure 4a and Figure 4b. For

comparison, we also simulated the classical ZVP attack on the regular 2-NAF
double-and-add with the results in Figure 4c and Figure 4b. We ran the experi-
ments for four addition EFD formulas with a different number of IV polynomials.
The target bits were 4, 6, 8 and 10 for ZVP-GLV and only 4,5,6,7 for the classi-
cal ZVP, as more than 7 bits was too time-consuming. Note that these formulas
represent the four red clusters in Figure 3 with their DCP solution rate 70%,
66%, 27%, and 16%, respectively. The duration and the recovery rate of both
the classical ZVP and our ZVP-GLV attack improve with more IV polynomials.
A lower number of IV polynomials causes a lower DCP solution rate, which in-
creases the set of possible candidates Ki and the number of DCP problems in
each iteration.

Overall, our ZVP-GLV attack was able to recover significantly more bits
in less time than the classical ZVP attack. For instance, while the classical
ZVP attack took 28 minutes to recover 6.3 bits (with proj:madd-2015-rcb),
our ZVP-GLV attack recovered 7.2 bits in 48 seconds. For proj:add-2009-bl,
the ZVP attack took 64 minutes to recover 4.9 bits, and the ZVP-GLV attack
managed to recover 5.6 bits in 240 seconds. We also targeted higher bit-lengths
for proj:madd-2015-rcb to see the advantage of ZVP-GLV. We were able to
recover 16 bits with the ZVP-GLV attack in 230 minutes – the same time it took
the classical ZVP attack to recover 7 bits.

4.4 ZVP-GLV attack on window interleaving

The interleaving algorithm (Algorithm 2) performs two add operations in each
iteration, one for each scalar d0, d1. Hence, our ZVP-GLV attack targets both

additions separately in a similar spirit. We first make a guess g0 for d
(i)
0 , verify

it and then repeat this for g1 and d
(i)
1 . To verify a prefix candidate (κ0, κ1) ∈ Ki

and a guess g0 for d
(i)
0 , we need to find point P such that f(xG, xQ) = 0 where

G = g0P and Q = (2κ0 + 2κ1λ)P . This means solving DCPf (κ0 + κ1λ, g0). For
the guess g1, the DCP instance is DCPf (κ0 + κ1λ, g1λ). The ZVP-GLV attack,
in this case, uncovers the regular w-NAF representation, which means that it
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(a) ZVP-GLV timings (b) ZVP-GLV recovery

(c) ZVP timings (d) ZVP recovery

Fig. 4: Experimental results for the ZVP-GLV attack on the Straus-Shamir trick and
the classical ZVP attack on the double-and-add (using secp256k1). Figure 4a and Fig-
ure 4c show the timings for four formulas (number of IV polynomials in brackets) and
four target bits. Figure 4b and Figure 4d shows the average number of recovered bits.

can only target multiples of the window size. Figure 6 in Appendix 6.2 shows
the experimental results of the attack on the first window for w = 3, 4 and 5.
The recovery rate is lower than that of the Straus-Shamir trick. Still, the attack
recovered 5.7 bits (for mod:mmadd-2009-bl) in 12 seconds, while it took the ZVP
attack 32 minutes to recover 5.4 bits.

4.5 ZVP-GLV attack on window interleaving (alternative)

This section describes a ZVP-GLV attack on the alternative version of the in-
terleaving Algorithm 2 in which d

(i)
0 P + d

(i)
1 λP is computed in each iteration.

For any IV polynomial f , the DCP instance corresponding to the addi-

tion d
(i)
0 P + d

(i)
1 λP is DCPf (d

(i)
0 , d

(i)
1 λ). Both d

(i)
0 , d

(i)
1 are small integers from

{±1,±3, . . . ,±(2w − 1)}. On the one hand, this means that no large scalars are
involved, and we have an easy instance of DCP. On the other hand, the DCP
no longer depends on the accumulated scalar multiple Q, and so if a zero is
detected using the simple binary oracle, we have no way of knowing in which
iteration. Additionally, the zero might appear in multiple iterations. We will
extend our side-channel model and assume that the position of the zero is visi-
ble in the traces. This is a reasonable assumption since the number of dbl and
add operations is constant. More formally, we will consider a side-channel oracle
O∗(P ) ∈ {0, 1}l, which outputs a vector of 1s and 0s for each iteration, indicating
whether a zero appeared in the iteration or not.

At the beginning of the attack, we try to solve DCPf (g0, g1λ) for every
possible combination g0, g1 ∈ {±1,±3, . . . ,±(2w − 1)}. These DCPs contain
small scalars and can be solved in trivial time and since they do not depend on
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the private key, they can also be precomputed. This gives us a set P of solutions
to the DCP problems (some of them might not have a solution). The idea is to
query the oracle with all the points from P and record in which iteration a zero
was detected and in which not. However, this will not necessarily tell us which

guess g0, g1 corresponds to which d
(i)
0 , d

(i)
1 as some points might invoke a zero

for multiple possibilities of d
(i)
0 , d

(i)
1 .

For each P ∈ P we collect a list TP of guesses (g0, g1) for which P invokes a
zero. For every solution point P ∈ P, we query the oracle O∗(P ). Since the set
TP contains all the possible pairs for which a zero might occur, a zero is detected

in iteration i if and only if (d
(i)
0 , d

(i)
1 ) ∈ TP . Repeating this for every P ∈ P, we

get that (d
(i)
0 , d

(i)
1 ) ∈

⋂
P∈P TP .

As a result, the attack cannot recover the full key on its own and only reduces
the space of possible values for the key. The full key can then be recovered
using a baby-step giant-step algorithm (see the discussion regarding the discrete
logarithm problem below). The extent of the reduction of the space depends on
the used IV polynomials and the size w of the windows used in the interleaving.

Figure 5 shows the results of the attack on the secp256k1 curve with window
size w = 4 (results for w = 3, 5 are in Appendix 6.2). We ran the attack with 100
scalars for four selected addition formulas (the number of IV polynomials is in the
parentheses) and one fictitious formula containing IV polynomials with a high
DCP success rate. The resulting figure is a histogram of the size of the space (in

bits) given by the non-recovered d
(i)
0 , d

(i)
1 . The average bit-sizes are 98, 94, 162,

210 and 51 for madd-2015-rcb, mmadd-2009-bl, add-2002-bj, add-1998-cmo,
{f1, f11, f6, f7, f9}, respectively. In particular, for mmadd-2009-bl with the 94-
bit space, this means a reduction of the original 256-bit space by 63% with 47-bit

complexity for the baby-step giant-step to find the remaining bits d
(i)
0 , d

(i)
1 . For

3% of the private keys, the bit-size of the space was below 70 bits, which might
be relevant for attacks on multiple private keys. The space for the fictitious
formula has 51 bits. This shows that for any formula with IV polynomials with
a high DCP success rate, the private key can be fully recovered. While we have
not found any such formula in EFD supporting secp256k1, it is an important
takeaway for standards and developers proposing new formulas to avoid complex
formulas with a large number of IV polynomials.

Finding the private key. We will now sketch how to find the private key d in
the reduced space. After the ZVP-GLV attack on the interleaving algorithm, we
know certain digits of the decomposed parts d0, d1. We can assume that we know
P , Q such that dP = d0P + d1λP = Q. We can now cut d0, d1 in halves into
upper and lower digits, i.e. d0 = 2e0u0 + l0, d1 = 2e1u1 + l1. We iterate through
the unknown parts of u0, u1 and store the possible values for 2e0u0P +2e1u1λP .
Then, we iterate through the unknown parts of l0, l1, computing Q− l0P − l1λP
and comparing it with the stored candidates. While this baby-step giant-step
approach gives us 50-bit time complexity to recover the unknown 100 bits in
Figure 5, it requires to store 250 points. Solving this type of problem in constant
space is an open problem, e.g., using a variant of Pollard’s rho algorithm [11].
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Fig. 5: Histogram of the number of unknown bits after the ZVP-GLV attack
on the regular 4-NAF interleaving algorithm. The attack was performed on 100
scalars for four different addition formulas and one fictitious formula containing
IV polynomials with a high success rate.

5 Conclusion

Elliptic curves with the GLV decomposition offer a speedup of scalar multiplica-
tion. Our new ZVP-GLV attacks show that this, in the end, comes at the price
of a less protected scalar in the context of side-channel attacks. In particular,
this holds for the curve secp256k1 used by Bitcoin. We have designed and imple-
mented the attacks for the Straus-Shamir trick and the interleaving algorithm –
multiscalar algorithms for GLV curves used in popular libraries. As our experi-
mental results show, the attacks can recover twice as many bits as the classical
ZVP attack. Moreover, for certain implementations of the interleaving, we were
able to recover more than 60% of the private key, which would be unfeasible
using the classical ZVP attack with hard DCP problems.

Our ZVP classification of formula-curve combinations (Section 3) gave us
several important takeaways for standards and developers proposing new formu-
las for SCA protected implementations. Less complicated formulas with fewer
IV polynomials are less vulnerable to ZVP attacks. Our ZVP-GLV attacks then
demonstrate that the choice of formula can mean the difference between a full
key recovery and a complete ZVP resistance.

The choice of the curve can significantly affect the resistance against ZVP as
well. For example, for P-256, the majority of dbl formulas are resistant, and the
opposite is true for P-521. The secp256k1 curve is resistant to EPA and RPA
attacks, and the Curve25519 is resistant to all ZVP attacks with all formulas from
EFD. The tools and complete results of our analysis and attacks are available
at https://github.com/crocs-muni/dcp-glv.
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6 Appendix

6.1 Full proof of Lemma 1

Denote u0, u1, ug ∈ Fp(x) the rational functions for x-coordinates of multiplica-
tion maps by k0, k1ϕ and g, respectively. Let S3 ∈ Fp[X1, X2, X3] be the Semaev
polynomial. For a solution P of the DCP, we have

S3(xQ, xk0P , xk1λP ) = S3(xQ, u0(xP ), u1(xP )) = 0,

where Q = k0P+k1λP and f(xG, xQ) = 0, G = gP . We can substitute ug into f
and get f(ug(xP ), xQ) = 0. Consider the rational function S3(x2, u0(x), u1(x)) as
a quadratic polynomial S′

3(x2) in x2 with coefficients in Fp(x), i.e. S
′
3 ∈ Fp(x)[x2].

Denote r1, r2 the roots of the S′
3. Based on Vieta’s formulas, any polynomial

expression that is symmetric in r1, r2 can be expressed using the coefficients of
S′
3 – rational functions in x. In particular:

h = f(ug(x), r1)f(ug(x), r2) ∈ Fp(x).

Since f(ug(xP ), xQ) = 0 then F (xP ) = 0. Note that if h vanishes then either
f(x1, r1) = 0 or f(x1, r2) = 0, in which case any point P is a solution to the
DCP. The degree of h is 2(g2+deg r1) deg f = 2(g2+deg(2k20+2k21)) deg f since
the Semaev polynomial S3 has degree 2 in each variable. This can be bounded
by δ = 16m2 deg f where m = max(k0, k1, g). The complexity of constructing h
is dominated by the construction of the maps u0, u1, ug, and their substitution
into S3 with the complexity discussed in Section 2.3.

6.2 Algorithms and graphs referenced in the text
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Algorithm 4: ZVP-GLV attack on the Straus-Shamir trick.

input : A set Ki+1 of candidates pairs for d≥i+1
0 , d≥i+1

1

output: A set Ki of candidate pairs for d≥i
0 , d≥i

1

1 Ki, Ui ← {}, {}
2 foreach (κ0, κ1) ∈ Ki+1 do
3 for (g0, g1) ∈ {(1, 0), (−1, 0), (1, 1), (−1,−1)} do
4 D ← DCPf (g0κ0 + λ(g0κ1 − g1κ0))
5 Find a solution point P to D using Lemma 1
6 if no solution then add (2κ0 + g0, 2κ1 + g1) to Ui

7 else if O(P ) = 1 then add (2κ0 + g0, 2κ1 + g1) to Ki

8 if Ki is empty then Ki ← Ui

9 return Ki

Algorithm 5: ZVP-GLV attack on the regular w-NAF interleaving.

input : A set Ki+1 of candidates pairs for d≥i+1
0 , d≥i+1

1

output: A set Ki of candidate pairs for d≥i
0 , d≥i

1

1 Ki, Ui ← {}, {}
2 foreach (κ0, κ1) ∈ Ki+1 do
3 for g0 ∈ {±1, . . . ,±(2w − 1)} do
4 D ← DCPf (2

wκ0 + 2wλκ1, g0)
5 Find a solution point P to D using Lemma 1
6 if no solution then add (2wκ0 + g0, 2

wκ1) to Ui

7 else if O(P ) = 1 then add (2wκ0 + g0, 2
wκ1) to Ki

8 if Ki is empty then Ki ← Ui

9 return Ki

Algorithm 6: ZVP-GLV attack on regular w-NAF interleaving.

input : Oracle O∗, integer t, polynomial f
output: A set Ci of candidates pairs of w-NAF bits d

(i)
0 , d

(i)
1 for each i

1 G ← {±1, . . . ,±(2w − 1)}2
2 P ← {}
3 for (g0, g1) ∈ G do
4 Attempt to find a solution point P to DCPf (g0, g1) and store in P
5 for P ∈ P do
6 Store in TP all (g0, g1) ∈ G for which P is a solution to DCPf (g0, g1)
7 for i = 0 to l − 1 do
8 Ci ← G
9 for P ∈ P do

10 if O∗(P )i = 1 then Ci ← Ci ∩ TP
11 else Ci ← Ci \ TP
12 return C0, . . . , Cl−1
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(a) ZVP-GLV timings (b) ZVP-GLV recovery

Fig. 6: Experimental results for the ZVP-GLV attack on the interleaving algorithm.
Figure 6a shows the timings for four formulas and three target bits. Figure 6b shows
the average number of recovered bits.

(a) w = 3

(b) w = 5

Fig. 7: Histogram of the number of unknown bits after the ZVP-GLV attack on
the regular 3-NAF and 5-NAF interleaving algorithm. The attack was performed
on 100 scalars for four different addition formulas and one fictitious formula
containing IV polynomials with a high success rate.
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