
Further Improvements in AES Execution over
TFHE: Towards Breaking the 1 sec Barrier

Sonia Belaïd1, Nicolas Bon1,2, Aymen Boudguiga3, Renaud Sirdey3, Daphné
Trama3 and Nicolas Ye3

1 CryptoExperts, Paris, France
name.surname@cryptoexperts.com

2 DIENS, Ecole normale supérieure, PSL University, CNRS, Inria, Paris,
France

nicolas.bon@ens.fr
3 Université Paris-Saclay, CEA LIST, Palaiseau, France

name.surname@cea.fr

Abstract. Making the most of TFHE advanced capabilities such as programmable or
circuit bootstrapping and their generalizations for manipulating data larger than the
native plaintext domain of the scheme is a very active line of research. In this context,
AES is a particularly interesting benchmark, as an example of a nontrivial algorithm
which has eluded “practical” FHE execution performances for years, as well as the
fact that it will most likely be selected by NIST as a flagship reference in its upcoming
call on threshold (homomorphic) cryptography. Since 2023, the algorithm has thus
been the subject of a renewed attention from the FHE community and has served
as a playground to test advanced operators following the LUT-based, p-encodings
or several variants of circuit bootstrapping, each time leading to further timing
improvements. Still, AES is also interesting as a benchmark because of the tension
between boolean- and byte-oriented operations within the algorithm. In this paper,
we resolve this tension by proposing a new approach, coined “Hippogryph”, which
consistently combines the (byte-oriented) LUT-based approach with a generalization
of the (boolean-oriented) p-encodings one to get the best of both worlds. In doing so,
we obtain the best timings so far, getting a single-core execution of the algorithm
over TFHE from 46 down to 32 seconds and approaching the 1 second barrier with
only a mild amount of parallelism. We should also stress that all the timings reported
in this paper are consistently obtained on the same machine which is often not the
case in previous studies. Lastly, we emphasize that the techniques we develop are
applicable beyond just AES since the boolean-byte tension is a recurrent issue when
running algorithms over TFHE.

1 Introduction
Fully Homomorphic Encryption (FHE) is a corpus cryptographic techniques that allows
data to be processed while remaining encrypted, without any need for decryption. Various
FHE schemes, such as BGV [BGV12], designed for general computation, CKKS [CKKS17],
optimized for approximate arithmetic, and TFHE [CGGI16, CGGI20], specialized for
binary operations and low-latency bootstrapping, offer different trade-offs in terms of
functionality and performance. Although FHE provides strong end-to-end encryption, it
still faces significant efficiency challenges. One of the main limitations is the substantial
ciphertext expansion, which hampers fast data transmission to the server.

2 Further Improvements in AES Execution over TFHE

To mitigate this issue of large uplink data transmission with FHE, it is now standard
to rely on a method called transciphering. In this approach, the client first encrypts its
data using a symmetric encryption scheme and sends both the encrypted data and (once
and for all) the FHE-encrypted symmetric key to the server. Leveraging its encrypted-
domain computing capabilities, the server can then decrypt the encrypted data within
the homomorphic domain, ultimately producing homomorphic ciphertexts on which it can
perform the requested calculations.

The first attempt to transcipher AES ciphertexts into FHE data was made in 2012
by Gentry, Halevi, and Smart [GHS12]. They used the BGV scheme [BGV12], a fully
homomorphic encryption method based on the Ring-LWE problem, as implemented in
HElib [HS20], an open-source library for FHE. However, their implementation resulted in
an execution latency of 17.5 minutes, with now obsolete parameters (despite an amortized
cost of 5.8 seconds per block), highlighting the impracticality of this approach for fast data
transmission with AES. That is why many researchers have since developed new “FHE-
friendly” symmetric cryptosystems to improve efficiency. Today, several proposals exist,
including block ciphers such as LowMC [ARS+16], PRINCE [BCG+12], and CHAGHRI
[AMT22], as well as stream ciphers like Elisabeth [CHMS22], PASTA [DGH+21], and
Kreyvium [CCF+16]. These new schemes, referred to as hybrid encryption schemes, offer
faster and more efficient homomorphic execution compared to the work of Gentry et al.
[GHS12], though none have yet been standardized.

In 2022, the National Institute of Standards and Technology (NIST) announced a future
call for threshold encryption with a specific focus on FHE, indicating that AES would serve
as the benchmark for evaluating proposals. Since then, numerous teams have revisited AES
transciphering to improve efficiency. In 2023, the work of Trama et al. [TCBS23] brought
AES execution times to under 5 minutes in sequential mode and 30 seconds in parallel
mode, leveraging TFHE programmable bootstrapping (PBS) in integer mode and using
the Tree-Based Method (TBM) [GBA21] to perform bootstrapping on multiple encrypted
inputs. Later in 2023, Bon et al. [BPR24] proposed the p-encoding method for binary
ciphertexts in TFHE, achieving an AES evaluation in 211 seconds. Other teams then
achieved further optimizations using TFHE in leveled homomorphic encryption (LHE)
mode and circuit bootstrapping, such as Fregata [WWL+23] and Thunderbird [WLW+24],
which reduced sequential execution times to 86 seconds and 46 seconds, respectively, on a
single core. The timing results in the above works are summarized in Table 1 where we
provide both the original timings given in the papers and the timings obtained on our
single machine test bench.

Still, even if AES is often considered a reference benchmark, it is unlikely to be used
for transciphering in practical FHE deployments as the stream-cipher based approach
intrinsically leads much better performances [CCF+16, TB23]. However, as an example of
a nontrivial algorithm that has eluded “practical” FHE execution for years, the algorithm
is also interesting since it exemplifies the tension between boolean- and byte-oriented
operations that is a recurrent issue when running algorithms over TFHE.

Our Contributions. This paper provides a first set of tools to resolve this kind of tension
by consistently combining the (byte-oriented) LUT-based approach with a generalization
of the (boolean-oriented) p-encodings one to get the best of both worlds. We then show
that this strategy pays off, at least for AES, as we improve the state of the art for a TFHE
execution of the algorithm between 30 and 45% and almost break the 1 second latency
barrier with a mild amount of parallelism.

Specifically, all the aforementioned approaches rely on TFHE but offer different trade-
offs. Binary ciphertext-based techniques, such as those in [BPR24], are faster in sequential

3

mode but require costly evaluations of the 8-bit Sbox. In contrast, the programmable
bootstrapping-based approach of [TCBS23] simplifies Sbox evaluation but is less efficient
for the remainder of the AES circuit. Building on these works, we propose a hybrid
framework, which we refer to as Hippogryph1, combining the strengths of these two
approaches. The Sbox is evaluated using PBS in integer mode as in [TCBS23], while the
rest of the AES circuit leverages the p-encoding method from [BPR24]. The integration of
these two techniques requires non-trivial transitions between the methods, which constitute
a key contribution of our work. This seamless combination sets a new record for AES
homomorphic evaluation, achieving execution in approximately 30 seconds on a standard
laptop using a single core.

We emphasize that all timings reported in this paper have been consistently obtained
on the same machine, which is generally not the case in previous studies. To do so, we
had to consistently gather and run the codes used in previous studies or reimplement their
algorithms in cases where the code was not or only partially made public. As a bonus
contribution we thus plan to openly release this software in the close future in order to
provide the community with a consistent test bench for further works on AES execution
over TFHE.

Table 1: State-of-the-art single-core homomorphic evaluation of AES. The table indicates
both the original timings, in seconds, provided in the papers and, in brackets, the timings
obtained on our single machine test bench (a 12th Gen Intel(R) Core(TM) i7-12700H CPU
laptop).

Year Reference Method Timings

2023
[TCBS23] Tree-Based Method (TBM) 270 (270) s
[BPR24] p-encoding method 135 (90) s

[WWL+23] TFHE in “LHE” mode 86 (87) s
2024 [WLW+24] TFHE in “LHE” mode 46 (60) s
2025 This work Combined TBM/p-encodings 32 s

Organisation. In the following, Section 2 provides the necessary background on TFHE
and a concise overview of the AES scheme and its subroutines. Section 3 focuses on the
two building blocks of Hippogryph, as introduced in [TCBS23] and [BPR24]. Section 4
introduces our new design. Finally, Section 5 presents a detailed comparison with existing
approaches, supported by relevant benchmarks.

2 Preliminaries
2.1 Notations
Let T = R/Z be the real torus, that is to say the additive group of real numbers modulo 1.
In practice, torus elements are not represented with an infinite number of digits, but are
discretized. We can define the discretized torus Tq = {a

q
∣ a ∈ Zq}, and identify it with the

ring Zq. Thus, any element a
q

of Tq will be represented in machine by a without losing
any properties of the group Tq. The operations of sum + and external product ⋅ have to
be understood modulo q. Moreover, for a power of two N and a given q, we will denote by
TN,q[X] the polynomial ring Tq[X]/(XN + 1). The elements of this ring are polynomials
of maximum degree N − 1 and with coefficients in Tq. Like for the scalar version, this ring
will be identified with the ring ZN,q[X] = Zq[x]/(XN + 1). Finally, we will denote by B

1Following the seemingly emerging tradition of using (possibly mythical) bird names, like Fregata or
Thunderbird, for frameworks running AES over TFHE.

4 Further Improvements in AES Execution over TFHE

Figure 1: Embedding of Zp in Zq . The inner circle represents Zp with p = 5, and the outer
circle is Zq, with q = 64.

the set of binary digits {0, 1}. For x and q ∈ Z, [x]q denotes the reduction of x modulo
q and ⌊x⌉ is the rounding of x. We denote by x

$← χ a random sampling according to a
distribution χ.

2.2 Preliminaries on TFHE
TFHE [CGGI16, CGGI17, CGGI20] is a homomorphic encryption scheme, designed as a
successor to FHEW [DM14]. Its security is based on the Learning With Errors (LWE)
problem. Optimized for operations on low-precision data (typically less than 6 bits),
TFHE offers a distinctive feature: programmable bootstrapping. This enables the evaluation
of any univariate function on a ciphertext while simultaneously resetting its noise to a
nominal level. In what follows, we introduce TFHE, describe the encoding and encryption
procedures, and provide an overview of the homomorphic operations it supports.

2.2.1 Plaintext Space and Encryption

Before exploring the TFHE scheme in detail, it is important to define the plaintext space
and its embedding into the discretized torus.

The plaintext space is the ring Zp, with p ∈ N∗. We trivially identify Zp with Tp. Let
us consider a mapping ρ ∶ Zp→Zq, defined as ρ ∶ m ↦ ⌊mq

p
⌉. The image of this mapping

only reaches p elements in Zq, which take the form {kq
p
∣ k ∈ Zp}. These elements are

evenly distributed across Zq and form what we refer to as sectors of Zq, represented as:
{((2k−1)q

2p
, (2k+1)q

2p
) ∣ k ∈ Zp}. Such a mapping is represented on Figure 1.

TFHE features two types of encryption that share similar structural patterns but
operate within different mathematical spaces.

LWE Encryption. Let m ∈ Zp be a message and let sk = (s1, . . . , sn) represent the
secret key, sampled uniformly at random from Bn. First, the message m is encoded in
the space Zq by m̃ = ρ(m). A small random Gaussian noise e

$← χσ of variance σ2 is then
added. Since e is small, the noisy message m̃ + e remains within the same sector as m̃.
Next, we construct the LWE ciphertext as a vector c = (a1, . . . , an, b), where the ai’s are
sampled uniformly at random from Zq, and b is defined by b = ∑n

i=1 ai ⋅ si + m̃ + e. We
denote by c ∈ LWEsk(m) an LWE encryption of the message m with secret key sk.

Decryption is performed in two steps: first, we compute ϕ(c) = b −∑n
i=1 ai ⋅ si, referred

to as the phase of the ciphertext. Then we round it to the nearest plaintext value:
m̃ = ⌊p

q
ϕ(c)⌉. As long as e < q

2p
, this rounding produces the right center of sector.

5

GLWE Encryption. This encryption mode mirrors the structure of LWE encryption
but operates within polynomial rings. The secret key SK is here represented as a vector
(S1, . . . , Sk), sampled uniformly at random from BN,q[X]k. The message is encoded
in a polynomial in ZN,q[X]. The noise is also a polynomial from the same ring, with
coefficients drawn from χσ. Similar to LWE encryption, the ciphertext takes the form
C = (A1, . . . , Ak, B) where B = ∑k

i=1 Ai ⋅ Si + M̃ +E.
It is worth noting that LWE encryption can be viewed as a special case of GLWE

encryption, where N = 1 and k = n.

2.2.2 Homomorphic Operations.

TFHE is trivially linearly homomorphic, so we define the following linear operations.

Sum of Ciphertexts. Let c1 and c2 be two ciphertexts encrypting m1 and m2 with
noise variances σ2

1 and σ2
2 , respectively. Performing a coordinate-wise sum of the two

vectors results in a valid ciphertext c′, which encrypts m1 +m2 with noise σ2
1 + σ2

2 . We
denote this operation by SumTFHE(c1, c2).

Product with a Cleartext. Let c be a ciphertext encrypting m with noise σ2. Mul-
tiplying each coordinate of c by a constant ν ∈ Z produces a valid ciphertext c′, which
encrypts m′ = ν ⋅m with noise ν2 ⋅σ2. We denote this operation as ClearMultTFHE(c′, ν).

These linear operations also have an equivalent with the polynomials when using
GLWE encryption. They are extremely fast, particularly in comparison to bootstrapping.
However, they increase the noise level, which means that only a limited number of such
operations can be performed before the correctness of the results is compromised.

Key Switching (KS). TFHE also features a keyswitching algorithm, that allows the
server to homomorphically transform a ciphertext c1 encrypted under a key s1 into a
ciphertext c2 encrypted under a key s2. To do so, it requires a keyswitching key KSK,
which is simply an encryption of s1 under the key s2. To know more about this algorithm,
the reader is referred to [CGGI20]. Concretely, the size of a ciphertext can be temporarily
reduced by keyswitching it to a shorter key (but raising its noise), to enable some speed-ups
in the bootstrapping algorithm.

Programmable Bootstrapping (PBS). Bootstrapping was introduced by Gentry
in [Gen09]. It allows to homomorphically reset the noise of a ciphertext to a nominal level.
While this operation can theoretically be applied to any homomorphic encryption scheme, it
is often deemed too slow for practical use, except for TFHE. Indeed, TFHE bootstrapping is
efficient when compared to bootstrapping techniques of other fully homomorphic encryption
schemes [BP23], especially for low-precision messages.

In addition, TFHE bootstrapping is implemented in a programmable manner: while the
noise is being reset, any arbitrary function f can be evaluated on the ciphertext. Indeed,
programmable bootstrapping (PBS) allows the homomorphic evaluation of the Look-Up
Table (LUT) of the function f . We denote the evaluation of a function f on a ciphertext
c with PBS as PBS_TFHE(c, f). We provide hereafter a high-level overview of how PBS
works.

Let (a1, . . . , an, b) be the LWE encryption of a message m with the secret key (s1, . . . , sn)
and the noise variance σ2. To reset the noise to a nominal level following Gentry’s
framework, the server must homomorphically evaluate b −∑n

i=1 ai ⋅ si, and then round the
result to the nearest integer in Zp. To do so, the server is equipped with a bootstrapping
key, which consists of encryptions Enc(si) of each bit si of the secret key. Using this
key, the computation of µ = b −∑n

i=1 ai ⋅Enc(si) is straightforward, leveraging the linear

6 Further Improvements in AES Execution over TFHE

KS MS BR SE
LWE(nlong)

Zq

LWE(nshort)

Zq

LWE(nshort)

Z2N

GLWE(k, N)

ZN,q

LWE(nlong)

Zq

Figure 2: Types and shapes of ciphertexts inside a PBS.

homomorphisms inherent to TFHE. However, since the ai’s are sampled uniformly at
random from Zq, they may have very large norms, leading to substantial noise growth.
TFHE circumvents this issue with a technique known as gadget decomposition, which helps
mitigate noise growth during multiplications with constants (refer to [CGGI20] for further
details on gadget decomposition).

Once the linear part is computed, the server homomorphically performs the challenging
rounding operation as follows:

1. Keyswitching (KS): The ciphertexts are keyswitched to a smaller key to accelerate
the next steps.

2. ModSwitching (MS): The server switches the modulo of µ from q to 2N , producing
µ̂.

3. It constructs an accumulator polynomial acc(X), whose coefficients encode the
outputs of the function f evaluated alongside the PBS (i.e., the LUT of f). We will
give more details on how to construct the accumulator polynomial in Section 2.2.3.

4. BlindRotate (BR): The server computes X−µ̂ ⋅ acc(X) which rotates the polynomial
and specifically moves its coefficient vµ̂ =m to the first position. The rotation works
because the order of X in ZN,q[X] is 2N . If the LUT is properly encoded in the
polynomial’s coefficients, the first coefficient now contains an encryption of the LUT
output.

5. SampleExtract (SE): The server then extracts this first coefficient and converts it
into a new LWE ciphertext, which has significantly less noise than the original one.
However, if m > p

2 , the extracted coefficient will acquire an additional negative sign.
This phenomenon is known as the negacyclicity problem. In Section 2.2.3, we discuss
how we address this issue by using an odd value for the plaintext modulus p.

Figure 2 sums up the bootstrapping procedure of TFHE, and clarifies the types of ciphertext
used at each step. Note that TFHE bootstrapping is by far the most computationally
expensive operation in TFHE, and its cost increases significantly with the modulus p of
the plaintext. Figure 3 gives examples of TFHE bootstrapping timings, on a standard
laptop, in function of the input message’s precision (number of bits).

2.2.3 Negacyclicity Problem and Parity of Plaintext Space

A common choice for TFHE is using a small power of 2 for the modulus p of the plaintext
space, aligning with the format of (small-precision) binary numbers. However, selecting
such an even modulus introduces an additional constraint: any function f ∶ Zp → Zp used
within a PBS must be negacyclic (i.e., it must satisfy f(x + p/2) = −f(x) for all x ∈ Zp)
due to the minus signs that appear during the BlindRotate step). To circumvent this issue,
a possible approach consists in adding a bit of padding fixed to 0 in the most significant
bit, effectively embedding the plaintext space Zp into Z2p. However, this padding leads
to an important overhead: linear operations are no longer virtually free, as frequent
bootstrapping becomes necessary to maintain the padding bit cleared.

7

Figure 3: Timing of a PBS (obtained on a laptop) with respect to the precision of the
ciphertext.

Another solution is to adopt an odd modulus p, which completely eliminates the
negacyclicity problem. This approach, introduced in [BPR24], requires only a minor
modification of the accumulator polynomial (acc) of the bootstrapping algorithm, but
allows for arbitrary PBS function f ∶ Zp → Zp without the need for a padding bit. We give
in Eq. (1) a concrete formula for the accumulator acc in the PBS algorithm with an odd
plaintext modulus.

Definition 1 (accumulator). If p is an odd modulus, and f ∶ Zp ↦ Zp is a function, then
the accumulator acc(X) ∈ ZN,q[X]/(XN + 1) has the form:

acc(X) =X−
N
2p ⋅

N/p−1
∑
j=0

Xj ⋅
⎛
⎜
⎝

p−1
2

∑
i=0

f(i)Xi 2N
p +

p−1
2 −1

∑
i=0
−f (i + p + 1

2
)Xi 2N

p +
N
p

⎞
⎟
⎠

(1)

In this work, we also make use of plaintext modulus p = 2. Even though 2 is even, we
will use PBS without a bit of padding to evaluate a negacyclic function.

2.3 A Short Reminder on AES
The Advanced Encryption Standard (AES), based on the Rijndael algorithm winner of
the NIST competition in 2000 [DR02], is a symmetric block cipher supporting key sizes
of 128, 192, and 256 bits. Depending on the key size, AES uses 10, 12, or 14 rounds of
processing, each applying a fixed sequence of substitution, permutation, and mixing steps
to transform plaintext into ciphertext (or ciphertext into plaintext for decryption). A key
schedule generates round keys for each encryption round, plus an initial key.

This work focuses on AES with 128-bit keys, which uses 10 rounds. The 16-byte input
(plaintext for encryption or ciphertext for decryption) is treated as a structured state
matrix, which is progressively updated during the encryption process. The encryption
begins with an AddRoundKey step, followed by 10 rounds. Each round includes four steps:
SubBytes, ShiftRows, MixColumns, and AddRoundKey, except the final round, which omits
MixColumns. Below, we recall the key expansion and the subroutines:

• Key Expansion: The Key Expansion operation is performed once for a given secret
key. Starting from the 128-bit key (in our context), it generates eleven 128-bit
round keys, which are then used in the AddRoundKey operation throughout the AES
encryption or decryption process, without needing access to the original key. The
key expansion involves XORs and GF(256) multiplications.

• SubBytes: The SubBytes operation is the only non-linear transformation in the
cipher. It involves a substitution step, where each byte in the state matrix is replaced

8 Further Improvements in AES Execution over TFHE

according to a fixed S-box. Since it operates independently on each byte of the state,
SubBytes can be easily parallelized, allowing for more efficient execution.

• AddRoundKey: During this transformation, the state is updated by combining it with
the current round key using a bitwise XOR operation. Specifically, the 128-bit round
key is organized into a matrix format to align with the structure of the state matrix,
and the two matrices are XORed element-wise to produce the new state.

• ShiftRows: The ShiftRows step is a byte transposition that cyclically shifts the
rows of the state by different offsets. For AES with 128-bit keys, the first row remains
unchanged, the second row is shifted by one byte, the third by two bytes, and the
fourth row by three bytes.

• MixColumns: The MixColumns step processes the state column by column through
matrix multiplication. To compute each byte of the state matrix, they combine
scalar multiplication in GF(256) with XOR operations. This approach facilitates
parallelization of the operation.

3 Building Blocks of Hippogryph
In this section, we present the two approaches from [TCBS23] and [BPR24] that we use
as building blocks for our new algorithm. [TCBS23] is simply recalled, while [BPR24]
is generalized beyond just the Boolean case. We also formally present some advanced
homomorphic primitives used in these works that we reuse as well.

3.1 The “Full-LUT” Approach
In the “Full-LUT” approach of [TCBS23], AES is evaluated entirely with TFHE’s pro-
grammable bootstrapping, encoding exclusively all operations within LUTs. To meet the
performance constraints outlined in Section 2.2, this method operates on elements in Z16,
ensuring efficient computation.

3.1.1 AES Subroutines as LUTs

The SubBytes step, which involves the evaluation of an Sbox, is inherently a LUT operation
and is therefore naturally implemented in FHE using a PBS. However, it must be evaluated
over Z16 rather than GF (256) for efficiency reasons. Converting the other AES steps into
LUT evaluations also requires additional effort.

In particular, in the original AES design [DR02], the MixColumns step is computed using
a series of XOR operations and multiplications in GF (256). Unfortunately, TFHE’s native
cleartext-ciphertext multiplication cannot directly handle these GF (256) multiplications
because of the polynomial nature of the elements of this field. As a result, MixColumns
must be reformulated as a LUT evaluation.

Additionally, the AddRoundKey step, which uses XOR as its key operation, presents its
own challenges because XOR is a bivariate operation that requires two inputs. Classical
bootstrapping, which operates on single inputs, is insufficient for this purpose. To address
this, the authors utilize a specialized bootstrapping method that supports operations on
multiple encrypted inputs.

3.1.2 LUTs Evaluation

Since the AES evaluation involves computing an 8-bit Sbox, a straightforward solution
would be to work with 8-bit messages. With such messages, the homomorphic Sbox

9

evaluation would require only one bootstrapping per byte. However, as discussed in
Section 2.2, processing messages with more bits demands larger TFHE parameters, which
significantly slow down the bootstrapping process. For example, with 8-bit inputs, TFHE
parameters result in bootstrapping times of approximately 1.5 seconds per byte on a
standard laptop, making direct evaluation of the 8-bit Sbox (and other LUTs) infeasible.

To address this issue, the authors of [TCBS23] propose a decomposition approach and
demonstrate that the optimal representation of 8-bit inputs for their purpose is in Z16.
Specifically, a message M ∈ {0,⋯, 255} is split into two 4-bit chunks (or nibbles) h and l
such that M = 16h+ l. The encryption of M is then represented as a vector containing the
encryptions of h and l with the same key sk: C = (c0, c1) ∈ LWEsk(h) × LWEsk(l).

However, bootstrapping these decomposed inputs requires a method capable of handling
multiple encrypted inputs. The authors explore several approaches for this, namely the
chain-based method and the tree-based method [GBA21]. Their analysis concludes that
the Tree-Based Method (TBM) is the most suitable for their needs. They also relies on
the Multi-Value Bootstrapping (MVB) to produce several outputs for the cost of one PBS.
We provide details about TBM and MVB in the following:

Multi-Value Bootstrapping from [CIM18]. Multi-Value Bootstrapping (MVB) is a
technique that enables the evaluation of k distinct Look-up tables (fi)1≤i≤k on a single
encrypted input, using only one BlindRotate. This method is based on the factorization of
the accumulator polynomials acci(X) associated with each function fi. Specifically, each
accumulator polynomial is expressed as:

acci(X) =
N−1
∑
j=0

αi,jXj , αi,j ∈ Zq.

The factorization then splits it into two parts:

acci(X) = v0(X) ⋅ vi(X) mod (XN + 1),

where v0(X) is a common factor shared across all accumulators:

v0(X) =
1
2
⋅ (1 +X + ⋅ ⋅ ⋅ +XN−1),

and vi(X) is a distinct factor specific to each function fi:

vi(X) = αi,0 + αi,N−1 + (αi,1 − αi,0) ⋅X + ⋅ ⋅ ⋅ + (αi,N−1 − αi,N−2) ⋅XN−1.

This factorization is made possible thanks to the identity:

(1 +X + ⋅ ⋅ ⋅ +XN−1) ⋅ (1 −X) ≡ 2 mod (XN + 1).

By leveraging this factorization and as illustrated on Figure 4, multiple LUTs can be
evaluated on a single encrypted input by performing the following steps:

1. Computing a BlindRotate operation on an accumulator polynomial initialized with
the value of v0.

2. Then multiplying with ClearMultTFHE the obtained rotated polynomial by each
vi(X) corresponding to the LUT of fi to obtain the respective acci(X).

Finally, at the cost of a single BlindRotate and k cleartext-ciphertext GLWE multiplications,
one can obtain the evaluation of k different LUTs on one single encrypted input. Moreover,

10 Further Improvements in AES Execution over TFHE

Figure 4: Difference between classic bootstrapping of several LUTs on a single input (a)
and the use of MVB (b). Pink arrows represent cleartext-ciphertext RLWE multiplications.
Figure extracted from [TCBS23].)

this specific choice of factorization allows for a very-low norm for the vectors vi’s (which
in practice are very sparse), and so a very-low noise expansion.

This MVB primitive thus allows significant speed-ups in the implementation of
[TCBS23], in particular in the evaluation of the Sbox or in the multiplications in GF (256)
that occur during the MixColumns step. Indeed, since each byte is decomposed into two
nibbles h and l, the LUT corresponding, for instance, to the Sbox must also be decomposed
into two tables: one providing the most significant nibble and one providing the least
significant nibble. That is to say:

tabmsn[i] = ⌊
Sbox[i]

16
⌋ and tablsn[i] = Sbox[i] mod 16.

Each of these tables must be evaluated on an 8-bit payload ciphertext.

Tree-Based Method from [TCBS23]. Let B, B′, d ∈ N∗. The Tree-Based Method
(TBM) allows to evaluate a LUT f ∶ ZBd ↦ ZB′ with a large input size Bd, by processing
d limbs of data in ZB . We consider input messages that are written as:

m =
d−1
∑
i=0

miB
i, with mi ∈ ZB ,

and that are represented by d ciphertexts (c0, c1, . . . , cd−1) corresponding to the d message
components (m0, m1, . . . , md−1). To evaluate f , we encode a LUT for f using Bd−1

accumulators, each represented by a polynomial acci(X). These accumulators encode the
functions:

fi ∶ ZB → ZB′

x↦ f(i + x ⋅Bd−1)

Next, we apply a BlindRotate and a SampleExtract to each accumulator acci(X), using
cd−1 as the selector. This operation produces Bd−1 LWE ciphertexts, each encrypting

11

Figure 5: Illustration of the tree-based method on messages m1 = 1, m2 = 2 in the space Z4.
The corresponding ciphertexts are c1 ∈ (m1) and c2 ∈ LWE(m2). We apply the addition in
Z4 via programmable bootstrapping. Red arrows indicate bootstrappings. (Figure inspired
by [TCBS23].)

f(i +md−1 ⋅ Bd−1) for i ∈ ZBd−1 . Finally, a Keyswitch operation from LWE to GLWE
aggregates these ciphertexts into Bd−2 GLWE encryptions, representing the LUT of h,
defined as:

h ∶ (ZB)d−1 ↦ Z′B
(a0, . . . , ad−1)↦ f ○ g(a0, . . . , ad−2, md−1)

using the bijection g, which reverses the decomposition:

g ∶ (ZB)d → ZBd

(a0, . . . , ad−1)↦
d−1
∑
i=0

ai ⋅Bi

This process is repeated iteratively, using the next ciphertext at each step, until a
single LWE ciphertext encrypting f(m0, . . . , md−1) is obtained.

In the implementation described in [TCBS23], this primitive is employed to evaluate
an 8-bit LUT by dividing it into two limbs of 4 bits each, which they determined to be
optimal for their specific setting. To further enhance the performance of the TBM, the
blind rotations for the accumulators acci(X) of the first layer of the tree can be performed
simultaneously using the MVB technique (as discussed in [GBA21]).

Finally, the “full-LUT” approach facilitates efficient computation of the Sbox through
the Tree-Based Method, as opposed to directly evaluating the corresponding Boolean
circuit. However, this approach also requires LUT-based computation of XOR operations
and other intermediary steps, which is notably slower when operating in Z16 compared
to binary messages. Consequently, our new method Hippogryph proposed in this paper
strategically applies LUT evaluation exclusively where it is most effective and yields the
best performance, namely for the evaluation of the Sbox.

3.2 Generalization of the “p-encodings” Approach
The work of [BPR24] takes an orthogonal approach compared to the previous one. In
this method, data is encrypted bit per bit and only Boolean operations are performed. It

12 Further Improvements in AES Execution over TFHE

leverages the fact that, in the plaintext space Z2, the SumTFHE operation actually performs
a XOR. Thus, the linear operations MixColumns and AddRoundKey can be efficiently
performed with minimal cost, using only the homomorphic sum of TFHE. Specifically, they
leverage on the circuit representation of MixColumns proposed in [Max19]. Furthermore,
because operations are performed on individual bits, the ShiftRows transformation can
be evaluated for free, as it merely involves rearranging the ciphertexts.

Evaluating SubBytes is trickier. Using p = 2, it is impossible to perform a bivariate
Boolean gate other than XOR. Thus, evaluating the boolean circuit of the Sbox cannot be
done. To deal with this problem, the authors introduced the notion of p-encoding, that
embeds the bits into a larger space Zp with p > 2.

In this work, we now generalize this notion beyond the Boolean case by defining the
(o, p)- encoding construction. Informally, instead of embedding the Boolean space in Zp,
we embed any space Zo in Zp (with o < p). So, what was called p-encoding in [BPR24]
corresponds to a (2, p)-encoding in this work. Definition 2 formalizes this generalization:

Definition 2 ((o, p)-encoding). Let Zo be the message space. A (o, p)-encoding is a
function E ∶ Zo ↦ 2Zp that maps each element of Zo to a subset of the discretized torus Zp.
A (o, p)-encoding is valid if and only if:

⎧⎪⎪⎨⎪⎪⎩

∀(i, j) ∈ Z2
o, i ≠ j,E(i) ∩ E(j) = ∅ and

if p is even: ∀ x ∈ Zp,∀i ∈ Zo ∶ x ∈ E(i) ⇐⇒ [x + p
2]p ∈ E([−i]o)

(2)

The latter property is a direct consequence of the negacyclicity problem, which we presented
in Section 2.2.3.

In this work, we focus exclusively on cases where p = 2 or p is an odd prime. As a result,
a lot of the subleties of negacyclicity can be overlooked. Furthermore, among the various
types of (o, p)-encodings, one particular class proves especially useful for our purposes: the
canonical (o, p)-encoding.

Definition 3 (canonical (o, p)-encoding). A (o, p)-encoding E is said canonical if and only
if it verifies:

E ∶ Zo → Zp

x↦ x

(with o < p). Informally, we simply embed a smaller space into a larger one, without
altering the order of the elements.

In [BPR24], the Boolean space is used (so o = 2). The SubBytes circuit is evaluated
using (2, 11)-encoding, while the rest is evaluated with a (2, 2)-encoding (i.e. the trivial
encoding of TFHE). Consequently, an Encoding Switching operation is required. This
operation can be straightforwardly performed using a PBS.

Definition 4 (Encoding Switching). Let c be a ciphertext encrypting a message m ∈ Zo

under the (o, p)-encoding E . Its encoding can be switched to the (o, p′)-encoding E ′ by
applying a PBS on c evaluating the function:

CastE↦E ′ ∶ Zp → Zp′

x↦ x′

where x′ is defined as ∀i ∈ Zo, x ∈ E(i) Ô⇒ x′ ∈ E ′(i)

13

It remains to explain how the SubBytes circuit is evaluated in [BPR24]. The authors
use a circuit representation for the Sbox (the one of [BP10]), and decompose it into
so-called gadgets, which are smaller subcircuits evaluable in one single bootstrapping if the
inputs are provided under the right p-encodings. This makes the evaluation of the circuit
of the Sbox much faster than with the naive approach of “gate bootstrapping” where every
logic gate is evaluated with a bootstrapping. As an order of magnitude, the authors of
[WWL+23] have also implemented the AES with the “gate bootstrapping” approach and
report a sequential evaluation timing of more than an hour on a standard laptop.

Manipulating the data bit-per-bit makes the evaluation of the linear part blazingly
fast, however the circuit decomposition into gadgets is less efficient (even if better than
gate bootstrapping).

4 Design of Hippogryph
Building on the foundation of the two previous works, we develop a hybrid approach,
Hippogryph, that not only combines their respective strengths but also introduces new
contributions to enable their effective integration. The guiding principles of this design are
outlined below:

• The SubBytes step, which was the weak point of [BPR24], is evaluated using the
strategy of [TCBS23].

• Conversely, the linear steps (namely ShiftRows , MixColumns and AddRoundKey)
are computed using a trivial (2, 2)-encoding, which makes them extremely fast.

• Since the two aforementioned points rely on different data representations (arithmetic
for SubBytes and Boolean for the other steps), a decomposition layer and a recom-
position layer are necessary to transition from one to another. The decomposition
and recomposition steps are denoted by Decomposer and Recomposer, respectively.

Our design for one round of AES is summed up on Figure 6. In the following we explain
each of its components.

SubBytes. The SubBytes step is implemented following the design of [TCBS23]. Each
8-bit input is represented by two ciphertexts, each encrypting a 4-bit limb. Two instances
of the TBM are then used to compute the limbs of the output. The only modification from
the design of [TCBS23] is the adoption of the canonical (16, 17)-encoding, as specified in
Definition 3:

E17 ∶ Z16 → Z17

i↦ i.

This modification is introduced to ensure compatibility with the Recomposer operation,
a point which will be explained in the dedicated paragraph. In Figure 6, ciphertexts
encrypted under this (16, 17)-encoding are represented by blue rectangles. This process is
repeated 16 times, once for each byte of the AES state. An additional improvement comes
from the fact that the two TBM are using a MVB to evaluate the first step. So, the same
common factor can be used for both evaluations, requiring only one BlindRotate per byte
for this first step.

Linear Circuit. For this part, we follow the design of [BPR24]. The ciphertexts
manipulated in this block are encoded under the trivial (2, 2)-encoding E2, and encrypt a
single bit each. They are represented by yellow squares on Figure 6. Consequently, this

14 Further Improvements in AES Execution over TFHE

SubBytes

Tree
PBS

Tree
PBS

MVB MVB

Σ Σ

PB
S

PB
S

PB
S

PB
S

PB
S

PB
S

PB
S

PB
S

Round Key

Linear
Circuit
C

DecomposerRecomposer

Figure 6: Structure of one round of AES with our method. Ciphertexts in blue live in Z17
while the ones in yellow are in Z2. Squares represent encryptions of one single bit while
rectangles represent nibbles.

15

circuit takes 256 inputs (one for each of the 128 bits in an AES block, and one for each of
the 128 bits in the current round key), and outputs a new state of 128 bits, by combining
the three following steps:

• ShiftRows : This step is trivially implemented in FHE by permuting the input
ciphertexts according to the AES spec.

• MixColumns : Here, we use the XOR-only circuit representation of [Max19]. Eval-
uating a XOR on ciphertexts under E2 is simply done using the native addition of
TFHE SumTFHE.

• AddRoundKey : This step is a simple XOR between the state and the round key.

Evaluating the sums within this circuit increases the noise in the ciphertexts. However,
this problem can actually be overlooked: using p = 2 there is plenty of room for the noise
to grow, so the bottleneck of the construction in terms of noise is actually the TBM in
Z17. In our experimentations, we made sure to select parameters ensuring correctness up
to the target probability of success.

Decomposer. From the SubBytes step to the linear circuit steps, a switch of represen-
tation is needed at two levels. First, we need to decompose each ciphertext of a 4-bit limb
into 4 ciphertexts each encrypting a single bit. Secondly, we need to switch the encoding
from E17 to E2. Fortunately, by combining the MVB primitive and the encoding switching
primitive (from Definition 4), it is possible to do both changes at once for each nibble with
a single PBS. Formally, the MVB will evaluate the four functions:

∀i ∈ {0, . . . , 3}, fi ∶ Z17 → Z2

x↦ E2((E−1
17 (x))i)

where (y)i refers to the extraction of the i-th bit of y.

Recomposer. Conversely, a transformation from the Boolean domain to the arithmetic
domain is required. As in the Decomposer operation, this involves two key steps:

• Casting the ciphertexts from a plaintext modulus of 2 to 17.

• Recombining each group of 4 bits into a single ciphertext encrypting the whole
nibble.

To achieve this efficiently, we introduce four intermediary (2, 17)-encodings, namely:

∀i ∈ {0, . . . , 3},E(i)17 ∶ Z2 → Z17

x↦
⎧⎪⎪⎨⎪⎪⎩

0 if x = 0
2i+1 if x = 1

.

Using little-endian representation, we perform an encoding switching (Definition 4) on the
i-th bit of each nibble, transitioning from E2 to E(i)17 . In Figure 6, the resulting ciphertexts
are representing by squares filled with different shades of blue. Once the bits are expressed
in this intermediary representation, we simply sum them to reconstruct the result in E17.

The inputs to the Recomposer are encrypted modulo 2. Since no padding bits are
used, the negacyclicity problem necessitates that the PBS in the Recomposer evaluates a
negacyclic function. As stated in Property 1, the existence of a Boolean recomposition
algorithm relying solely on PBS and linear operations depends on the parity of the output
plaintext modulus.

16 Further Improvements in AES Execution over TFHE

Property 1. A Recomposer using only linear operations and one PBS per bit exists only
if the output modulo is odd.

Proof. Let p be an integer. Let (b0, . . . , bd−1) be the bits to encrypt, and let (c0, . . . , cd−1)
denote their corresponding ciphertexts, encoded with the trivial (2, 2)-encoding E2. We
aim to construct a Recomposer that uses only one programmable bootstrapping (PBS)
per bit and linear operations to homomorphically compute an encryption of the message
m = ∑d−1

i=0 bi2i under the canonical (2d, p)-encoding Ep. The purpose of this proof is to
demonstrate how the parity of p influences the existence of such an algorithm.

To do so, following the blueprint introduced earlier in the section, we want to bootstrap

the ciphertext ci into Zp with the p-encoding E(i)p =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z2 ↦ Zp

0↦ {0}
1↦ {2i+1}

. Once we have those,

a simple sum will reconstruct the message under the canonical (2d, p)-encoding. Let us
analyze if this bootstrapping is possible.

As the ciphertexts are encrypted modulo 2, there is no bit of padding. So, if we send
them modulo p with a PBS, the result will necessarily be encoded under a negacyclic

(2, p)-encoding, that is to say of the form: E(neg) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z2 ↦ Zp

0↦ {γ}
1↦ {[−γ]p}

with γ ∈ Zp.

Now, we need a linear transformation that casts a ciphertext from E(neg) to E(i)p . Let
us denote this hypothetical linear transformation by L, and define it as:

L ∶ Zp ↦ Zp

x↦ a ⋅ x + b

By simply considering the encoding switching from E(neg) to E(0)p , it is clear that the
constants a and b need to verify the property:

⎧⎪⎪⎨⎪⎪⎩

a ⋅ γ + b = 0 mod p

a ⋅ (−γ) + b = 1 mod p

which can be rewritten as:

⎧⎪⎪⎨⎪⎪⎩

b = 2−1 mod p

γ = (b − 1) ⋅ a−1 mod p

It is clear that such a b only exists if and only if 2 has an inverse modulo p. This latter
argument forces p to be odd. In that case, fixing a to 1, the (2, p)-encoding

E(neg) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z2 ↦ Zp

0↦ {[2−1 − 1]p}
1↦ {[1 − 2−1]p}

is supposed to be what we are looking for.
Let us check if that is the case. As it is negacyclic, the PBS is evaluable. Then, the

linear transformation x↦ x+ 2−1 mod p produces a ciphertext under the right p-encoding.
Trivially, adding a constant to a TFHE ciphertext do not increase its noise. The same
reasoning can be followed for the others bits.

Finally, summing the produced ciphertexts gives an encryption of m under Ep. The
whole procedure is only possible if p is odd.

Thus, an odd modulo is required and the best choice to fit 4-bit nibbles is p = 17.

17

Key Expansion. Note that, as done, to the best of our knowledge, in all previous works
on AES transciphering, we do not perform the key expansion in the homomorphic domain.
Instead, we work under the assumption that FHE encryptions of the eleven AES round
keys are directly available. Since the round keys need to be computed only once for a
given secret key, this makes sense in a client-server setting as the client is then expected
to compute the key expansion and to send encryptions of the resulting round keys (rather
than sending an encryption of the secret key under the homomorphic scheme).

5 Experimental Results
In this section, we compare our new framework to several state-of-the-art homomorphic
AES executions, including the ones performed with the two building blocks of our new
design. We particularly emphasize that all implementations have been tested on the same
machine, a 12th Gen Intel(R) Core(TM) i7-12700H CPU laptop with 64 Gib total system
memory with an Ubuntu 22.04.2 LTS operating system. All execution timings can be found
in Table 3. Parameter sets used to obtain these results are presented in Table 2. Depending
on the framework, we had to use different implementations of TFHE as available in the
TFHElib2, tfhe-rs3 or TFHEpp4 libraries.

Table 2: Parameters sets used for our homomorphic AES evaluation, with λ ≈ 128 bits
as the security parameter. Perr denotes the probability of bootstrapping failure. BPBS
and l denote the basis and levels associated with the gadget decomposition in KeySwitch,
BKS and t denote the decomposition basis and the precision of the decomposition of
BlindRotate. σLWE and σGLWE are the standard deviations of noises used in LWE and
GLWE ciphertexts, respectively.

Perr n N k l BPBS BKS t σLWE σGLWE
2−40 754 1024 1 2 223 24 3 246.4 216.7

2−128 900 4096 1 2 215 23 6 244.5 22

Table 3: Comparison of our method with different state-of-the art approaches on a single
core. The only execution timing that was not obtained on our machine is marked with a
∗, i.e. for Thunderbird, making the comparison more in favor of that method. See the
discussion at the end of Section 5.1.2.

Year Reference Framework Library Timings (s)

2023
[TCBS23] Tree-Based Method (TBM) TFHElib 270
[BPR24] p-encoding method tfhe-rs 90

[WWL+23] Fregata TFHEpp 87
2024 [WLW+24] Thunderbird TFHEpp 46∗

2025 this work Hippogryph tfhe-rs 32

5.1 State-Of-The-Art Homomorphic AES Executions
The approaches introduced in [TCBS23] and [BPR24], which form the foundation of our
proposal, are discussed in Section 3. Additionally, we briefly describe the two other
main state-of-the-art methods for homomorphic AES executions: Fregata [WWL+23] and
Thunderbird [WLW+24].

2https://tfhe.github.io/tfhe/
3https://github.com/zama-ai/tfhe-rs
4https://github.com/virtualsecureplatform/TFHEpp

https://tfhe.github.io/tfhe/
https://github.com/zama-ai/tfhe-rs
https://github.com/virtualsecureplatform/TFHEpp

18 Further Improvements in AES Execution over TFHE

5.1.1 Fregata [WWL+23]

In this work, the authors present a novel evaluation framework especially designed for
faster AES homomorphic evaluation. Instead of relying on functional bootstrapping, they
decided to use CMUX gate as the building block of their framework. They also propose a
new technique for an efficient S-box evaluation relying on mixed packing (which combines
different ways of organizing encrypted data within polynomials to balance parallelism and
flexibility). But one of the major contributions of this work is the optimization of TFHE’s
circuit bootstrapping. Indeed, they propose to use PBSManyLUT [CLOT21] in the first
step of circuit bootstrapping. As their framework relies on the use of TFHE in LHE mode,
this optimization of circuit bootstrapping is the key to an efficient homomorphic AES
evaluation. Fregata being designed to perform one round of AES without any bootstrapping
and to use circuit bootstrapping on each bit of the state matrix after a full round evaluation,
running these circuit bootstrappings then becomes the most time consuming part. Finally,
they also leverage on encoding messages in {0, 1} as {0, 1

2} over the torus to transform XOR
operations into simple LWE sums (which is the same thing as using our (2, 2)-encoding in
the linear parts).

Their results, obtained with the TFHEpp library [Mat20], reached an AES homomorphic
evaluation latency of 86 seconds on a 12th Gen Intel(R) Core(TM) i5-12500× 12 with 15.3
GB RAM machine. When running the Fregata implementation5 on our machine, we also
obtained a latency of about 87 seconds.

5.1.2 Thunderbird [WLW+24]

The work presented in the Thunderbird paper leverages on the Fregata framework to
produce an even faster AES homomorphic evaluation, still using TFHEpp. Specifically,
Thunderbird combines the gate bootstrapping and leveled evaluation modes of TFHE to
cater to various function types within symmetric encryption algorithms. More specifically,
their approach builds upon the Fregata framework with additional optimizations:

• The circuit bootstrapping proposed in Fregata is optimized by replacing the second
step (namely a private keyswitch) by a public keyswitch followed by a new operation
called EvalSquareMult.

• Instead of following a standard AES implementation, the authors introduce a LUT-
based AES implementation that merges SubBytes, ShiftRows and MixColumns
operations into 8-to-32-bit tables (which results in a smaller number of XOR opera-
tions when running the overall AES).

Moreover, as in [WWL+23], they rely on encoding the messages in {0, 1} as {0, 1
2} over

the Torus. With such encoding, XOR operation can be performed for free. They call this
optimization FreeXOR. They also propose another technique to evaluate XOR, namely
HomoXOR relying on gate bootstrapping with messages encoded in {−1

8 , 1
8} over the Torus.

The evaluation of AES with this technique is less efficient than with FreeXOR. For this
work, the tests were run on an Intel(R) Core(TM) i5-11500 CPU @ 2.70GHz machine with
32 GB of RAM and they obtained an average execution latency of 46 seconds.

It is important to note that the implementation of the Thunderbird framework is not
publicly available. To obtain a fair comparison with our work, we tried to reproduce
their results by implementing the framework ourselves, starting from Fregata on which
Thunderbird is based. Although our implementation of Thunderbird (using the most
efficient FreeXOR variant) still induces unexpected decryption errors, it executes the AES
in 60 secs, compared to the 46 seconds reported by the authors. This hints that our

5https://github.com/WeiBenqiang/Fregata

19

machine is approximately 1.3 times slower than the one used in their paper (a ratio which
is further confirmed by lower-grain unitary measurements on the circuit bootstrapping
alone). As a result, comparing the execution times of our new framework to those reported
in the Thunderbird paper (i.e. 46 secs) may slightly disadvantage Hippogryph.

5.2 Results
To measure the performances of our method, we implemented it using a fork of tfhe-rs
[Zam22] that supports odd moduli. The results were then compared against the current
state-of-the-art frameworks.

For a fair comparison, all implementations were tested on the same machine, using a
single core. As shown in Table 3, our novel framework achieves the lowest latency when
evaluating the AES as the evaluation of the algorithm only takes about 30 seconds. Hence,
Hippogryph is between 1.44 and 1.87 times faster than the best-in-class Thunderbird
approach (depending, as discussed above, whether we respectively consider the 46 secs
timing given in the Thunderbird paper or a timing of 60 secs as measured with our imple-
mentation). Moreover, when enabling several cores on our 12th Gen Intel(R) Core(TM)
i7-12700H CPU laptop, we can reach an execution time that is smaller than 5 seconds,
using only 6 cores, and further reduce this timing to 1.6 seconds by using 16 cores on a
more powerful machine as discussed below.

A Few Words About Parallelisation. The purpose of transciphering is to minimize
the bandwidth overhead when transferring large amount of data. Given that servers
typically have more computational resources than clients, they can effectively leverage
multiple cores to parallelize computations and enhance execution times. In this context,
AES offers inherent parallelizability, as operations within each encryption round can be
executed concurrently on each byte of the state matrix, with the exception of the ShiftRows
step.

To implement this parallelization, we used Rust’s rayon crate. Our tests were conducted
on two distinct machines to assess performance across different setups. First, we used the
same 12th Gen Intel(R) Core(TM) i7-12700H CPU laptop that was previously used for
testing with a single core. This time, we ran the code on the laptop using its six available
cores. Specifically, we parallelized every round function except for the ShiftRows function,
which mainly involves reordering ciphertexts within the state matrix. Second, we ran the
code on a server with an AMD Ryzen Threadripper PRO 7995WX, equipped with 96 cores,
allowing for extended parallelization. This setup brought us remarkably close to breaking
the 1-second barrier, with an execution time of just 1.6 seconds. Detailed execution timings
illustrating these improvements can be found in Table 4.

Furthermore, finer-grained parallelism could help reduce this timing even further. For
instance, we could exploit the independence between TBM computations for each byte
output of the S-box layer.

What About Recent CPAD Attacks? To obtain a fair comparison, we use parameters
equivalent to those used in the state-of-the-art, that typically achieve an error probability
of about 2−40. But to take into account recent attacks in the CPAD model [LM21] on
several FHEs (including TFHE) [CSBB24, CCP+24], we also give execution times of our
approach with a example parameters set achieving an error probability of 2−128 (Table 2).
When running with such parameters, an AES evaluation takes about 463 seconds on our
machine, still using a single core (see also Table 4). Although more optimal parameters may
be found, this timing also illustrates that achieving CPAD security may have a significant
cost on FHE performances. At this point, we leave that cost mitigation as a future work.

20 Further Improvements in AES Execution over TFHE

Table 4: Different evaluation timings of Hippogryph for different setups.
Machine # cores Perr Timings (s)
laptop 1 2−40 32
laptop 1 2−128 463
laptop 6 2−40 4.6
server 16 2−40 1.6

6 Conclusion
Even if this paper focuses primarily on AES, it should be seen as a first step towards
solving the boolean-vs-byte tension which often occurs when attempting to run algorithms
over TFHE. Beyond the quest for “the fastest AES-over-TFHE in the west”, this paper’s
approach will clearly benefit to other block-ciphers such as PRINCE [BCG+12], SKINNY
[BJK+16] or PRESENT [BKL+07], which also alternate boolean- and byte-friendly opera-
tions. For instance the 4-bit SBox of PRINCE is byte-friendly (and even more efficient
with the full-LUT approach than the 8-bit Sbox of the AES). But the PRINCE matrix
multiplication is a real efficiency bottleneck for this approach, as it only consists of XOR
and AND operations on bits of the state matrix.

Furthermore, although AES may seem an arbitrary benchmark, it can however be
expected that works on this algorithm prefigure more widely applicable advances. For
instance, the work in [TCBS23] later leads to the full-blown instruction set in [TCB+25]
as a systematization of the LUT-based approach. An interesting perspective would then
be to revisit that latter instruction set by taking advantage of the toolbox proposed in the
present paper.

Lastly, we plan to open source the unified software test bench for AES execution over
TFHE we created for obtaining the consistent same-machine experimental results given in
this paper in the close future. We hope that it will be valuable resource for enabling fair
comparisons in further works on AES in the community.

Acknowledgements
This work was supported by the France 2030 ANR Projects ANR-22-PECY-003 Secure-
Compute and ANR-23-PECL-0009 TRUSTINCloudS. The authors would like to thank
Pierre-Emmanuel Clet for providing the parameters with Perr = 2−128 in Table 2. They also
would like to thank Matthieu Rivain for his valuable insights and thoughtful discussions.

References
[AMT22] T. Ashur, M. Mahzoun, and D. Toprakhisar. Chaghri - a fhe-friendly block

cipher. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’22, page 139–150, New York, NY, USA, 2022.
Association for Computing Machinery. doi:10.1145/3548606.3559364.

[ARS+16] M. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers
for mpc and fhe. Cryptology ePrint Archive, Paper 2016/687, 2016. https://
eprint.iacr.org/2016/687. URL: https://eprint.iacr.org/2016/687.

[BCG+12] J. Borghoff, A. Canteaut, T. Güneysu, E. Bilge Kavun, M. Knezevic, L. Ramk-
ilde Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts,
S. S. Thomsen, and T. Yalçin. Prince - a low-latency block cipher for pervasive

https://doi.org/10.1145/3548606.3559364
https://eprint.iacr.org/2016/687
https://eprint.iacr.org/2016/687
https://eprint.iacr.org/2016/687

21

computing applications - extended abstract. In International Conference on
the Theory and Application of Cryptology and Information Security, 2012.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser, editor,
ITCS 2012, pages 309–325, Cambridge, MA, USA, January 8–10, 2012. ACM.
doi:10.1145/2090236.2090262.

[BJK+16] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, Thomas Peyrin, Y. Sasaki,
P. Sasdrich, and S. M. Sim. The SKINNY family of block ciphers and its
low-latency variant MANTIS. In Advances in Cryptology - CRYPTO 2016 -
36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part II, volume 9815 of Lecture Notes in
Computer Science, pages 123–153. Springer, 2016. URL: https://doi.org/
10.1007/978-3-662-53008-5_5.

[BKL+07] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe. Present: An ultra-lightweight block
cipher. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic Hard-
ware and Embedded Systems - CHES 2007, pages 450–466, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

[BP10] J. Boyar and R. Peralta. A new combinational logic minimization technique
with applications to cryptology. In Paola Festa, editor, Experimental Algo-
rithms, 9th International Symposium, SEA 2010, Ischia Island, Naples, Italy,
May 20-22, 2010. Proceedings, volume 6049 of Lecture Notes in Computer Sci-
ence, pages 178–189. Springer, 2010. doi:10.1007/978-3-642-13193-6_16.

[BP23] A. Al Badawi and Y. Polyakov. Demystifying bootstrapping in fully homo-
morphic encryption. Cryptology ePrint Archive, Paper 2023/149, 2023. URL:
https://eprint.iacr.org/2023/149.

[BPR24] N. Bon, D. Pointcheval, and M. Rivain. Optimized homomorphic evaluation of
boolean functions. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2024(3):302–
341, 2024. URL: https://doi.org/10.46586/tches.v2024.i3.302-341,
doi:10.46586/TCHES.V2024.I3.302-341.

[CCF+16] A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-Plasencia, P. Paillier,
and R. Sirdey. Stream ciphers: A practical solution for efficient homomorphic-
ciphertext compression. In Thomas Peyrin, editor, Fast Software Encryption.
Springer Berlin Heidelberg, 2016.

[CCP+24] J. H. Cheon, H. Choe, A. Passelègue, D. Stehlé, and E. Suvanto. Attacks
against the IND-CPAD security of exact FHE schemes. Technical Report 127,
IACR ePrint, 2024.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I,
volume 10031 of LNCS, pages 3–33, Hanoi, Vietnam, December 4–8, 2016.
Springer Berlin Heidelberg, Germany. doi:10.1007/978-3-662-53887-6_1.

[CGGI17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Faster packed homomorphic operations and efficient circuit bootstrapping for
TFHE. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017,
Part I, volume 10624 of LNCS, pages 377–408, Hong Kong, China, December 3–
7, 2017. Springer, Cham, Switzerland. doi:10.1007/978-3-319-70694-8_14.

https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-642-13193-6_16
https://eprint.iacr.org/2023/149
https://doi.org/10.46586/tches.v2024.i3.302-341
https://doi.org/10.46586/TCHES.V2024.I3.302-341
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14

22 Further Improvements in AES Execution over TFHE

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: Fast fully homomorphic encryption over the torus. Journal of Cryptol-
ogy, 33(1):34–91, January 2020. doi:10.1007/s00145-019-09319-x.

[CHMS22] O. Cosseron, C. Hoffmann, P. Méaux, and F.-X. Standaert. Towards globally
optimized hybrid homomorphic encryption - featuring the elisabeth stream
cipher. Cryptology ePrint Archive, Paper 2022/180, 2022. https://eprint
.iacr.org/2022/180.

[CIM18] S. Carpov, M. Izabachène, and V. Mollimard. New techniques for multi-value
input homomorphic evaluation and applications. Cryptology ePrint Archive,
Paper 2018/622, 2018. https://eprint.iacr.org/2018/622.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic
encryption for arithmetic of approximate numbers. In Tsuyoshi Takagi and
Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS,
pages 409–437, Hong Kong, China, December 3–7, 2017. Springer, Cham,
Switzerland. doi:10.1007/978-3-319-70694-8_15.

[CLOT21] I. Chillotti, D. Ligier, J.-B. Orfila, and S. Tap. Improved programmable
bootstrapping with larger precision and efficient arithmetic circuits for tfhe. In
Advances in Cryptology – ASIACRYPT 2021: 27th International Conference on
the Theory and Application of Cryptology and Information Security, Singapore,
December 6–10, 2021, Proceedings, Part III, 2021. URL: https://doi.org/
10.1007/978-3-030-92078-4_23.

[CSBB24] M. Checri, R. Sirdey, A. Boudguiga, and J.-P. Bultel. On the practical cpad
security of “exact” and threshold FHE schemes. In CRYPTO, 2024.

[DGH+21] C. Dobraunig, L. Grassi, L. Helminger, C. Rechberger, M. Schofnegger, and
R. Walch. Pasta: A case for hybrid homomorphic encryption. IACR Cryptol.
ePrint Arch., 2021:731, 2021.

[DM14] L. Ducas and D. Micciancio. FHEW: Bootstrapping homomorphic encryption
in less than a second. Cryptology ePrint Archive, Paper 2014/816, 2014. URL:
https://eprint.iacr.org/2014/816.

[DR02] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard (Information Security and Cryptography). Springer, 1
edition, 2002.

[GBA21] A. Guimarães, E. Borin, and D. F. Aranha. Revisiting the functional bootstrap
in tfhe. 2021, 2021. doi:10.46586/tches.v2021.i2.229-253.

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. STOC ’09,
2009. doi:10.1145/1536414.1536440.

[GHS12] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the aes
circuit. In R. Safavi-Naini and R. Canetti, editors, Advances in Cryptology –
CRYPTO 2012. Springer Berlin Heidelberg, 2012.

[HS20] Shai Halevi and Victor Shoup. Design and implementation of HElib: a
homomorphic encryption library. Cryptology ePrint Archive, Report 2020/1481,
2020. URL: https://eprint.iacr.org/2020/1481.

[LM21] B. Li and D. Miccianccio. On the security of homomorphic encryption on
approximate numbers. In EUROCRYPT, pages 648–677, 2021.

https://doi.org/10.1007/s00145-019-09319-x
https://eprint.iacr.org/2022/180
https://eprint.iacr.org/2022/180
https://eprint.iacr.org/2018/622
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.1007/978-3-030-92078-4_23
https://eprint.iacr.org/2014/816
https://doi.org/10.46586/tches.v2021.i2.229-253
https://doi.org/10.1145/1536414.1536440
https://eprint.iacr.org/2020/1481

23

[Mat20] K. Matsuoka. TFHEpp: pure C++ implementation of TFHE cryptosystem.
https://github.com/virtualsecureplatform/TFHEpp, 2020.

[Max19] A. Maximov. AES mixcolumn with 92 XOR gates. IACR Cryptol. ePrint
Arch., page 833, 2019. URL: https://eprint.iacr.org/2019/833.

[TB23] N. Smart T. Balenbois, J.-B. Orfila. Trivial transciphering with trivium and
tfhe. In WAHC, pages 69–78, 2023.

[TCB+25] D. Trama, P.-E. Clet, A. Boudguiga, R. Sirdey, and N. Ye. Designing a
general-purpose 8-bit (T)FHE processor abstraction. To appear in TCHES
2025. URL: https://eprint.iacr.org/2024/1201.

[TCBS23] D. Trama, P.-E. Clet, A. Boudguiga, and R. Sirdey. A homomorphic
AES evaluation in less than 30 seconds by means of TFHE. In Michael
Brenner, Anamaria Costache, and Kurt Rohloff, editors, Proceedings of the
11th Workshop on Encrypted Computing & Applied Homomorphic Cryptog-
raphy, Copenhagen, Denmark, 26 November 2023, pages 79–90. ACM, 2023.
doi:10.1145/3605759.3625260.

[WLW+24] B. Wei, X. Lu, R. Wang, K. Liu, Z. Li, and K. Wang. Thunderbird: Efficient
homomorphic evaluation of symmetric ciphers in 3gpp by combining two
modes of TFHE. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2024(3):530–
573, 2024. URL: https://doi.org/10.46586/tches.v2024.i3.530-573,
doi:10.46586/TCHES.V2024.I3.530-573.

[WWL+23] B. Wei, R. Wang, Z. Li, Q. Liu, and X. Lu. Fregata: Faster homomor-
phic evaluation of aes via tfhe. In Information Security: 26th Interna-
tional Conference, ISC 2023, Groningen, The Netherlands, November 15–17,
2023, Proceedings, page 392–412, Berlin, Heidelberg, 2023. Springer-Verlag.
doi:10.1007/978-3-031-49187-0_20.

[Zam22] Zama. TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for
Boolean and Integer Arithmetics Over Encrypted Data, 2022. https://gith
ub.com/zama-ai/tfhe-rs.

https://github.com/virtualsecureplatform/TFHEpp
https://eprint.iacr.org/2019/833
https://eprint.iacr.org/2024/1201
https://doi.org/10.1145/3605759.3625260
https://doi.org/10.46586/tches.v2024.i3.530-573
https://doi.org/10.46586/TCHES.V2024.I3.530-573
https://doi.org/10.1007/978-3-031-49187-0_20
https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs

	Introduction
	Preliminaries
	Notations
	Preliminaries on TFHE
	A Short Reminder on AES

	Building Blocks of Hippogryph
	The ``Full-LUT'' Approach
	Generalization of the ``p-encodings'' Approach

	Design of Hippogryph
	Experimental Results
	State-Of-The-Art Homomorphic AES Executions
	Results

	Conclusion
	References

