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PSMT: Private Segmented Membership Test for
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Abstract—In various real-world situations, a client may need
to verify whether specific data elements they possess are part
of a set segmented among numerous data holders. To maintain
user privacy, it’s essential that both the client’s data elements
and the data holders’ sets remain encrypted throughout the
process. Existing approaches like Private Set Intersection (PSI),
Multi-Party PSI (MPSI), Private Segmented Membership Test
(PSMT), and Oblivious RAM (ORAM) face challenges in these
contexts. They either require data holders to access the sets in
plaintext, result in high latency when aggregating data from
multiple holders, risk exposing the identity of the party with
the matching element, cause a large communication overhead
for multiple-element queries, or lead to high false positives.

This work introduces the primitive of a Private Segmented
Membership Test (PSMT) for clients with multiple query el-
ements. We present a basic protocol for solving PSMT using
a threshold variant of approximate-arithmetic homomorphic
encryption, addressing the challenges of avoiding information
leakage about the party with the intersection element, minimizing
communication overhead for multiple query elements, and pre-
venting false positives for a large number of data holders ensuring
IND-CPAD security. Our novel approach surpasses current state-
of-the-art methods in scalability, supporting significantly more
data holders. This is achieved through a novel summation-based
homomorphic membership check rather than a product-based
one, as well as various novel ideas addressing technical challenges.
Our new PSMT protocol supports a large number of parties
and query elements (up to 4096 parties and 512 queries in
experiments) compared to previous methods. Our experimental
evaluation shows that our method’s aggregation of results from
1024 data holders with a set size of 215 can run in 71.2s and
only requires an additional 1.2 seconds per query for processing
multiple queries. We also compare our PSMT protocol to other
state-of-the-art PSI and MPSI protocols and our previous work
and discuss our improvements in usability with a better privacy
model and a larger number of parties and queries.

Index Terms—Multi-party private set intersection; Private
membership test; Multi-query Private Membership Test; Fully
homomorphic encryption

I. INTRODUCTION

In the real world, data from a single institution or multiple
collaborating institutions is often shared and distributed across
various servers (databases) over the internet or in the cloud.
Computing on distributed data often faces significant obstacles
due to communication and computation challenges. More
critically, ensuring privacy while performing computations
on such data introduces new challenges, frequently limiting
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collaboration among entities. This issue needs to be addressed
in numerous real-world scenarios.

An example of this issue arises when federal tax authorities
need to identify whether suspected tax evaders hold accounts
in domestic and foreign banks. Due to different jurisdictions
and privacy laws, banks cannot disclose account holders, and
tax authorities cannot reveal their suspect lists. Often, these
institutions are willing to work with tax authorities [1], and
they themselves also aim to rigorously vet new and existing
customers to mitigate risks. However, financial privacy laws
restrict banks from sharing customer data with third parties
without consent. In the United States alone, over 4,700 FDIC-
insured banks exist, and they face challenges when sharing
fraud lists due to privacy and legal concerns. Banks are
reluctant to share private data on fraudulent activities or even
disclose whether a queried customer is on their fraud watchlist.
A secure membership query system satisfying these needs in
an efficient manner for multiple subjects could benefit not only
banks but also credit card companies, tax agencies, and other
similar entities, enabling them to collaborate on fraud detection
and assess a person’s credibility on an international scale.

Government agencies like the FBI and CIA manage sensi-
tive lists of secret agents or watchlists across divisions. Data
sharing for identity verification, background checks, security
clearance, or watchlist screening requires collaboration while
protecting personally identifiable information (PII). To ensure
strict security and privacy, records must be stored in encrypted
form across distributed servers (e.g., DHS Use Cases [2]).

Handling scenarios where verifying the membership of
multiple items across various distributed databases is important
to expedite the investigation process for multiple subjects. For
example, querying multiple watchlists for several suspects can
be more efficient if the protocol handles multiple queries in a
single call for a membership test. Similarly, consider collab-
orative research in the medical field where multiple hospitals
need to find common patients who have undergone specific
treatments or have been diagnosed with certain conditions.
Hospitals, bound by HIPAA regulations [3], cannot freely
share their patient records. Using a multi-item membership
protocol would enable them to securely and efficiently identify
common patients, reducing both time and resource costs.

In all the examples above, we face a problem where
the number of entities and queries involved in data-sharing
applications can be substantial, e.g., thousands of entities and
hundreds of queries when dealing with tax fraud [4]. Addition-
ally, datasets are frequently updated, and regulations require
that datasets containing PII be stored and managed with strong
data security guarantees [5]. There is a need to perform queries



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

by testing the membership of a client’s multiple elements
within distributed datasets without revealing which dataset
the intersection originated from. We term this property as
provenance privacy, which ensures the confidentiality of the
party from which the intersection is derived. Multiple distinct
parties frequently update and maintain these datasets, requiring
strict protection to ensure individual privacy. For this purpose,
storing and using records in encrypted form is crucial. This
allows data holders (e.g., Amazon AWS or Microsoft Azure)
to hold their customers’ (data owners’) data in encrypted
form to comply with privacy regulations. These data holders
store and operate on the encrypted data provided by their
clients or data owners (e.g., financial institutions, hospitals,
tax-collecting, and law-enforcement agencies) on their behalf.
This scenario is different from those considered by privacy-
preserving techniques such as PSI, MPSI, PSMT, or ORAM
(detailed below and in Section II) in multiple ways. We term
this problem as Private Segmented Membership Test (PSMT)
[6] for multiple queries.

Existing approaches, such as private set intersection (PSI),
fall short in numerous ways for those scenarios. PSI enables
two parties (referred to as receiver and sender hereafter by
convention [7]) to compute set intersections without revealing
any additional information. While existing PSI protocols can
address the PSMT, they require dataset holders to access the
elements of their sets in plaintext format [8] and do not
scale well. Thus, for situations with encrypted databases with
sensitive information, PSI is not suitable. Generic multiparty-
PSI (MPSI) protocols like [9]–[11] and Private Membership
Test (PMT) protocols [12] are also less suitable for efficiently
solving PSMT due to a high number of interactions (in OT-
based), privacy concerns against the senders, high aggregation
runtime, bandwidth or storage needs. Similarly, ORAM-based
(Oblivious RAM) techniques cannot handle a high number
of servers and multiple clients without a non-collusion as-
sumption and typically require a private state for each client
interacting with the ORAM server.

Fully Homomorphic Encryption (FHE) is commonly used
in constructing PSI protocols because it requires only a single
round of communication. However, PSI protocols based on
FHE, [8], [13], [14], face several challenges in addressing the
PSMT problem, including key management, efficiency, and
security issues. Theoretically, given a set held by the sender X
and receiver query y, existing PSI protocols homomorphically
compute a sender polynomial, f(y) = r

∏
x∈X(x − y),

where r is a random mask. To apply this method for PSMT,
each sender would individually calculate their own sender
polynomial, after which the multiplicative aggregation of these
polynomials would correctly be an encryption of zero for an
intersection and a random nonzero value otherwise. However,
it would require FHE parameters that can tolerate O(log(l))
additional multiplicative depth for even a moderately large
number of parties l (e.g., l = 64). Moreover, using only
FHE for PSMT would require non-collusion among parties,
and a malicious receiver with FHE secret keys could monitor
all communications. Threshold-FHE addresses these issues
by enabling better key management, preventing unauthorized
decryption, and eliminating the single point of failure if a

single party acts adversarially.
This work extends our conference work [6], which ad-

dressed PSMT for distributed sensitive datasets using a pro-
tocol for FHE ciphertexts with single query elements. In this
extended version, we tackle a more practical scenario where a
receiver may have multiple subjects for PSMT in environments
with limited communication throughput and latency. While the
original work ensured security, privacy, and low computation
latency, this extension focuses on reducing communication
overhead. We introduce a provable protocol that enables
receiver-side batching and sender-side query extraction with
minimal computation cost. Both complexity analysis and ex-
perimental results show significant reductions in communica-
tion overhead, making this extended work a practical solution
for multi-query PSMT in real-world scenarios.

Our new PSMT protocol handles encrypted input for both
the receiver’s elements and sets held by the sender and does
not rely on any preprocessing (besides encryption) of the sets
beforehand, completely eliminating the need for the senders
to access the sets in plaintext during query computation.
Furthermore, we introduce optimization techniques that enable
receiver-side batching, allowing a querier to compute PSMT
for multiple query elements at the cost of a single query
ciphertext. Our protocol’s construction is based on threshold-
FHE, where the parties use cheap homomorphic additions to
aggregate ciphertexts gathered from multiple sites. Using α-
out-of-l threshold-FHE, our protocol can handle up to α − 1
colluding parties where α < l/2. The security of our protocol
is derived from the post-quantum security of FHE [15], and
it upholds the provenance privacy of the senders. We provide
further security countermeasures for adversaries in the IND-
CPAD model by using existing noise-smudging techniques and
provide theoretical proof for security and privacy assuming a
semi-honest model. In summary, we construct a protocol that
can tolerate a large number of senders and efficiently compute
on encrypted sender sets. The contributions of this work are
summarized as follows:
• We define the Private Segmented Membership Test (PSMT)

problem and extend it to support multi-item queries, making
it highly applicable to various real-world scenarios. Existing
approaches result in various limitations, and we present a
novel solution to address them.

• We address the shortcomings of existing PSI and MPSI-
based approaches using finite-field FHE for solving PMST
with single/multiple queries, which results from encrypted
user data segmented across many senders and high ag-
gregation latency. For the first time, we provide a novel
summation-based set intersection protocol with approximate
arithmetic threshold-FHE that overcomes these limitations
and handles collusion among parties under an honest ma-
jority assumption.

• We prove the security and privacy model of our protocol in
a semi-honest setting with IND-CPAD security.

• To address the technical challenges in solving the
PSMT problem with our novel solution—including plain-
text domain size, function approximation accuracy/latency,
throughput, and parameterization—we provide concrete
parameters and novel strategies. These include enabling
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TABLE I
COMPARISON OF EXISTING WORKS TO OUR WORK.

Protocol Construction Class Post-Quant. S.A.S L.F.P. M.Q. Agg. Comp. Collusion Rounds Adversary Model
Chen et al. [8] FHE PSI ✓ × ✓ ✓ O(log l) − 2 Semi-honest
Chen et al. [13] FHE, OPRF PSI × × ✓ ✓ O(log l) − 2 Malicious
Cong et al. [14] FHE, OPRF PSI × × ✓ ✓ O(log l) − 2 Malicious

Kolesnikov et al. [9] OPPRF MPSI × × ✓ ✓ − α < l 4 Semi-honest
Ramezanian et al. [12] Bloom/Cuckoo Filter, HE PMT × × × × − − 2 Semi-honest

Pinkas et al. [16] Oblivious Transfer PSI × × ✓ ✓ − − 2 Semi-honest
Bay et al. [17] Bloom Filter MPSI × × × ✓ − α < l 5 Semi-honest

Nevo et al. [11] OPPRF, OKVS MPSI × × ✓ ✓ − α < l 4 Malicious
Vadapalli et al. [18] DPF ORAM × ✓ ✓ ✓ − − log(l) + 1 Semi-honest

Chung et al. [19] Bloom Filter PSU × ✓ ✓ ✓ − − 2 Semi-honest
Yang et al. [20] FHE Quorum PSI ✓ × ✓ ✓ O(log l) α < l/2 1− 5 Semi-honest
Koirala et al. [6] Threshold FHE PSMT ✓ ✓ ✓ × O(1) α < l/2 4 Semi-honest

This work Threshold FHE PSMT ✓ ✓ ✓ ✓ O(1) α < l/2 4 Semi-honest

Notation: l parties; α corrupted and colluding parties; S.A.S: Security against senders; L.F.P.: Low false positive rate (below 10−3); M.Q.: Support for efficiently
handling multiple queries; Agg. Comp.: Multiplicative aggregation overhead in FHE; OPRF, OPPRF, DFP, and HE stand for Oblivious Pseudorandom Function,
Oblivious Programmable Pseudorandom Function, Distributed Point Function, and Homomorphic Encryption, respectively. Post-Quant. denotes security against
quantum adversaries; − means not applicable.

receiver-side batching for multiple query elements and
achieving robust performance even with a very large number
of senders and extensive set sizes.

• We implement our method for both single query and multi-
ple query PSMT and present an experimental evaluation of
our solution to show its significant performance advantage
in the case of a large number of senders. Our anonymized
source code is available for reproducibility and future re-
search at https://anonymous.4open.science/r/psmt-7777. We
show up to 2.4× to 5.6× performance improvement over
previous works for single query PSMT and 512× improve-
ment for multi-query PSMT.

II. RELATED WORK

A. Private Set Intersection (PSI)

The first PSI protocol was based on the Diffie-Hellmann
(DH) key agreement scheme [21]. This protocol leveraged
the commutative properties of the DH function and offered
security against the random oracle model. Its low communica-
tion cost continues to serve as a foundation for many modern
PSIs. Freedman et al. [22] introduced PSI protocols based
on oblivious polynomial evaluation (OPE) where sets are
represented as polynomials. Additionally, PSI protocols have
been constructed using Oblivious Pseudo-Random Functions
(OPRFs) [23], garbled circuits [24], oblivious transfer (OT),
OT-extension [16], [25] and recently introduced oblivious key-
value store (OKVS) [26] by Garimella et al. [27]. Recent PSI
protocols for unbalanced set sizes use OPE and increasingly
utilize FHE with post-quantum security [8], [13], [14].

The two-party PSI model is extensively studied due to its
wide real-world applications. Several variants of this model
exist, where either both parties learn the intersection (mutual
PSI) [28] or only one of the parties learns the intersection
(one-way PSI) [8]. Other variants, such as circuit-PSI [28],
[29], allow computation of a function over the intersection
or multiple PSI that allows resources from previous PSI to be
reused in subsequent PSI [30]. Many of these protocols scale to
millions of items within seconds and are only slightly slower
than the simple but insecure method that exchanges hashed
items. Pinkas et al. [16] used (1-out-of-n) OT based on [31].
The limitation of their approach is that the OT step requires

the sender to access elements in the hash table’s bins, and
extending it to substantial parties requires multiple Oblivious
Pseudo-Random Function (OPRF) evaluations via OT, greatly
increasing communication overhead.

The CLR17 [8] protocol and its improved variants [13],
[14] are the current state-of-the-art FHE-based PSI proto-
cols to the best of our knowledge. The basic protocol in
CLR17 has the sender sample a uniformly random non-zero
element ri and homomorphically compute the intersection
polynomial zi = ri

∏
x∈X(ci − x) using encrypted receiver’s

set (c1, c2, . . . , cn) and the sender’s unencrypted elements
x ∈ X . zi is returned to the receiver, who concludes that
y ∈ X iff zi = 0. The receiver only learns the presence of an
intersection. CLR17 protocol applies many optimizations, such
as cuckoo hashing, SIMD (Single Instruction Multiple Data),
and windowing. Later works added an OPRF preprocessing to
achieve malicious security, applied the Paterson-Stockmeyer
algorithm, and reduced the communication by using extremal
postage-stamp bases [14]. These protocols require the sender
to access the set in plaintext for the optimizations and encod-
ings for creating the interpolation polynomial. Consequently,
the privacy of datasets held by the sender is only protected
against the receiver and not against the sender. Fundamentally,
the CLR17-based protocols perform PSI by employing zero as
a multiplicative annihilator in the polynomial

∏
x∈X(y − x).

Adapting these methods to the multi-party scenario would
drastically increase the multiplicative depth required to obtain
the query result and result in scalability issues.

B. Multi-party PSI (MPSI)

Multi-party PSI (MPSI) extends the two-party PSI problem
to scenarios involving more than two parties. Two-party PSI
protocols can be extended to multiple parties to handle the
MPSI scenario; however, these solutions often lead to privacy
and performance issues [32]. Several techniques have been
employed to design MPSI, such as circuit-based computations
[33], bloom filters [34], [35], OPE [22], [36], and OT and
permutation-based hashing [37]. Kolesnikov et al. [9] used
a technique based on oblivious evaluation of a programmable
pseudorandom function (OPPRF) to implement a time-efficient
MPSI protocol for large amounts of items. However, their time
complexity scales quadratically w.r.t the number of parties in
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the protocol. Chandran et al. [10] improve upon [9] in terms of
communication and extend it to circuit-based PSI and quorum-
PSI. Several works [38], [39] use a model similar to PSMT,
where multiple parties outsource their sets to untrusted servers.
Notably, these protocols provide intersection results to all or
some parties based on the intersection outcome and do not
support a substantial number of parties.

Badrinarayanan et al. [40] employ threshold FHE to con-
struct threshold MPSIs with sublinear communication com-
plexities with thresholds proportional to the number of ele-
ments in sets. They use a similar polynomial encoding of set
elements as in [8]. Bay et al. [17] provide two MPSI protocols
based on bloom filters and threshold homomorphic public-key
techniques. Their protocol performs better than previous state-
of-the-art [9] in terms of run time for small-sized sets and a
large number of senders. Nevo et al. [11] construct efficient
malicious MPSI protocols based on OPPRF and OKVS. Multi-
party quorum-PSI, introduced by Yang et al. [20], allows the
detection of a threshold number of elements across multiple
sets. Chandran et al. [10] propose using it for anti-money
laundering to identify entities across multiple blacklists, but
it faces scalability issues with many parties.

C. Other Similar Methods
Private Membership Test (PMT). PMT, or Private Set
Inclusion, is a similar problem to PSI, in which a receiver
learns if their single element is included in a sender’s database
without revealing anything to the sender. To solve PMT,
many works apply Private Information Retrieval (PIR) based
protocols that allow a user to retrieve an item from a database
without the database owner learning anything about the item
[41]. PSMT closely matches the PIR; however, the sender’s
database is public in PIR. PMT has been extensively studied,
particularly for two-party PSI in malware detection [12]. While
hashing seems a naive solution for low-latency multi-party
PMT, it becomes insecure with low-entropy input domains,
and even high-entropy input domains, it may leak repeated
elements upon consecutive executions. One can solve PSMT
using individual PMT protocols with all senders via 1-out-of-
n OT-based PMTs, followed by a secure XOR computation
by the client. However, this approach has several drawbacks.
Firstly, it necessitates sender access to plaintext sets for OT,
losing privacy. Secondly, it requires the client to run n PMT
protocols with n senders, adding extra communication and
computation. While OT extension-based protocols can reduce
communication, they also demand access to plaintext sets, and
any updates in databases result in significant performance and
communication penalties.

Some works have applied the PIR protocols to the PMT
problem [12], [42] based on homomorphic encryption and
bloom filters, but they induce significantly high false positives.
Tamrakar et al. [43] propose a carousel method for PMT for
solving malware detection based on Trusted Execution En-
vironments (TEEs). However, TEEs suffer from side-channel
attacks and hardware-based attacks [44], which have decreased
their confidence for use recently.
Oblivious RAM (ORAM). ORAM allows a client to out-
source data storage to a server and enable read/write op-

erations to that data while maintaining its privacy. Many
state-of-the-art ORAM frameworks [45] require only constant
client bandwidth blowup and low client storage but rely on
weaker non-cryptographic security assumptions. ORAM can
be employed to solve PSMT but only partially. Namely, it
is primarily designed for a single private database that can
only be accessed by a single client, and using multiple servers
requires a strong non-collusion assumption between them
[45]. Distributed ORAM (DORAM) manages multiple non-
colluding servers but duplicates data across them, leading to
higher bandwidth demands and significant overheads when
scaling with more senders. DUORAM [18] is one of the state-
of-the-art DORAM models, however, it provides instantiations
for up to only 3-party computation, which is far less than
the scale involved in our scenario. Although the database on
the server is encrypted in ORAM (similar to PSMT), ORAM
requires the client to have a private state, due to which multiple
clients cannot interact with the ORAM server directly.
Private Set Protocols. Similar to PSI, private set union
(PSU) securely evaluates the union of sets without revealing
their elements, with protocols [19], [46] gaining popularity.
Recently, private matching for compute (PMC) [47], [48],
which matches datasets owned by mutually distrusted parties,
is also gaining interest for various applications. While our
previous work [6] addresses the PSMT problem for single-
element queries, it becomes impractical in real-world scenarios
due to the rapidly increasing communication overhead when
handling multiple queries.

In summary, PSMT can be addressed using methods based
on PMT, OT, ORAM, PSU, PMC, or TEEs, but they only offer
partial solutions. The considerable overhead for a large number
of senders, a lack of privacy for datasets held by senders,
either from the client or the sender(s), along with high latency
and low throughput typically associated with existing protocols
[43], or lack of support for large senders’ set size renders
them impractical for efficient multi-query PSMT solutions. We
compare representative works to our new protocol in Table I.

III. PRELIMINARIES & DEFINITIONS

In this section, we summarize some of the important no-
tations for FHE and PSMT. We provide a complete list of
notations in Table II.

A. Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) is a cryptographic
primitive that allows computation on encrypted data with post-
quantum security. Noise associated with an FHE ciphertext
grows corresponding to each homomorphic operation, i.e.,
additively with additions and multiplicatively with multipli-
cations. The most prominent FHE schemes are BGV [49],
B/FV [50], [51], CKKS [52], and TFHE [53]. In practice, FHE
schemes are often implemented as Somewhat Homomorphic
Encryption (SHE) schemes where the user(s) provide the
multiplicative depth required by the computation at the setup
phase. In this work, we use the CKKS scheme, which uses a
fixed-point complex number encoding to enable homomorphic
computations on real numbers. Similar to B/FV and BGV,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

TABLE II
LIST OF NOTATIONS AND DESCRIPTIONS

Notation Description
l The total number of parties (l − 1 senders)
Xi Set of the ith sender (owned by the data-owner)
Xl−1 Senders’ leader
X Union of the senders’ sets
δ The length of the bit-string
ψ Number of query elements specified by the receiver
cxi Ciphertext of the ith sender
cy Ciphertext of the receiver
N The ring dimension in FHE (power of 2)
q Ciphertext modulus
D The FHE multiplicative depth
η The batch size of FHE scheme
α Number of secret-key shares
σ Standard deviation of smudging noise
a Number of adversarial queries
s Statistical security bits
λ Computational security bits
DR,σ Discrete Gaussian noise distribution
L Lower bound of interval for DEP
R Upper bound of interval for DEP
n Number of iterations for DEP
c Degree of polynomial for Chebyshev approximation
j Count of 1st homomorphic square operation
k Count of 2nd homomorphic square operation
ρ Scaling factor for reducing false positives
τ Threshold required to confirm an intersection
κ Limit for the random mask
diffi FHE-ciphertext (vector denoting cxi − cy)
etani() A piecewise function that takes diffi as input
K Output of etani() when input is 0 (maxima of VAF)
S Parameter for controlling input range of 0 in VAF

CKKS has operands in R = Z[X]/⟨ΦM (X)⟩, where ΦM (X)
is the cyclotomic polynomial (xN + 1) of order M = 2N
(cyclotomic index) and degree N ∈ Z which is the ring
dimension. CKKS parameters include the ring dimension,
ciphertext modulus, and standard deviation of the error. We
employ the CKKS parameters to maintain 128-bit security in
both classical and quantum contexts [54]–[56].
SIMD: In FHE, we can consider the factorization of (xN +1)
modulo p where p is a prime. We can then write the message
space as a direct product of small fields, encrypt a vector of
elements of these fields, and operate in parallel on the entries
of these vectors, thus obtaining single instruction, multiple
data (SIMD) capabilities [57].

In general, we have (xN + 1) = f1(X). · · · .fη(X) (mod
p) with all fi’s having the same degree d such that
N = η · d and message space is Zp[X]/⟨xN + 1⟩ =∏η

i=1(Zp[X]/⟨fi(X)⟩) = (Fpd)η . The plaintext space is
isomorphic to η copies of the finite field with pd elements,
and instead of encrypting one single high-degree polynomial,
we can encrypt a vector of η elements of Fpd . Therefore, a
single homomorphic operation can handle η messages, each
stored in a ciphertext slot, with the total slots and batch size
equals η.

B. Threshold FHE

For the threshold functionality in our protocol, we uti-
lize α-out-of-l (leveled) threshold-FHE (thresFHE) where l
is the number of parties and α is the minimum number

Parameters: PSMT involves l entities, namely
P1, P2, . . . , Pl−1 and Py where, Py is the receiver, Pl−1

is the senders’ leader and the rest of the parties are the senders.
All senders possess encrypted sets of items with a bit-length
of δ. The receiver holds an element y with a bit-length of δ;
senders P1, . . . , Pl−1 hold encryption of sets X1, . . . , Xl−1,
namely cx1 , . . . , cxl−1 and we define X =

⋃l−1
i=1 Xi.

Input: Encryption of y and encryptions of the sets
X1, . . . , Xl−1.
Output: Receiver gets {y} ∩ X , and the senders, including the
sender’s leader, get ⊥.

Fig. 1. Ideal functionality FPSMT of single-query PSMT

of partial decryptions needed to complete the decryption
[58]. A thresFHE scheme consists of a tuple of proba-
bilistic polynomial time (PPT) algorithms (ThresFHE.Enc,
ThresFHE.Eval, ThresFHE.PartDec), and two l-party proto-
cols (ThresFHE.KeyGen, ThresFHE.Combine) with the fol-
lowing functionalities:
• ThresFHE.KeyGen(1λ, 1D, parm) → (pk, evk, {ski}i∈[n]):

Given a security parameter λ and a depth D, each party Pi

outputs a public key pk for encryption, an evaluation key
evk, and a secret key share ski of the implicitly defined
secret key sk under some public parameter parm.

• ThresFHE.Enc(pk,m) → c: Given a public key pk, a
message m, the encryption algorithm uses error distributions
χenc and χerr to sample u ← χenc and e0, e1 ← χerr

and outputs c ← u · pk + (m + e0, e1) mod q such
that, c = (c0, c1) where the ciphertext space is defined as
R2

q = (R/⟨q⟩)2.
• ThresFHE.Eval(evk, f, {cki}i∈[v]) → c∗: Given an evalua-

tion key evk, a v-input function, f that can be evaluated
using at most depth D and ciphertexts ci, the evaluation
algorithm outputs a new ciphertext c∗ that is an encryption
of f(m1, . . . ,mv). where ci ← ThresFHE.Enc(pk ,mi).

• ThresFHE.PartDec(c, ski, χsmg(Bsmg)): Given a ciphertext
c = (c0, c1), a secret key share ski and a smudging error
distribution χsmg(Bsmg) with a bound Bsmg , the partial
decryption algorithm samples a smudging error esmg

i ←
χsmg(Bsmg), and computes pdeci ← c1 · si + esmg

i .
• ThresFHE.Combine(pk, {pdeci}i∈[I]) → m or ⊥: Given a

public key pk, a set of partial decryptions {pdeci}i∈[I] for
an index set I ⊆ [n] the combine algorithm computes c0 +∑I

i=0 pi mod q and outputs m if |I|≥ α otherwise ⊥.
The key generation phase in thresFHE can be accomplished

using a trusted setup procedure which can be run either via
TEEs or secure multiparty computation to broadcast partial
secret key to α key-holders. Existing works [59], [60] have
shown that the latter method of key generation can be com-
pleted in a two-round, l-party protocol to compute a common
public key, a common public evaluation key and a private share
of the implicitly defined secret key. Similarly, thresFHE final
decryption is a one-round α party protocol. As in standard
homomorphic encryption schemes, we require that a thresFHE
scheme satisfies compactness, correctness, and security [40].

C. Private Segmented Membership Test (PSMT)
Problem Definition: The PSMT problem and its ideal func-
tionally FPSMT for single query is described in Figure 1.
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Algorithm 1 Oracles for IND-CPAD indistinguishability game
1: initialization
2: (pk, sk)← KeyGen(1κ)
3: global state
4: S ← ∅
5: i← 0
6:
7: function Eb

pk(m0,m1)
8: ct← Encpk(mb)
9: S[i]← (m0,m1, ct)

10: i← i+ 1
11: return ct
12: end function
13:
14: function Hb

pk(g,J = (j1, . . . , jk))
15: ct← Evalpk(g, S[j1].ct, . . . , S[jk].ct)
16: gm0 ← g(S[j1].m0, . . . , S[jk].m0)
17: gm1 ← g(S[j1].m1, . . . , S[jk].m1)
18: S[i]← (gm0, gm1, ct)
19: i← i+ 1
20: return ct
21: end function
22:
23: function Db

sk(i)
24: if S[i].m0 = S[i].m1 then
25: return Decsk(S[i].ct)
26: else
27: return ⊥
28: end if
29: end function

For a party Py , with a data element y, and l − 1 parties
P1, P2, . . . , Pl−1, each with a set Xi such that X =

∑l−1
i=1Xi,

a PSMT allows the party Py to learn {y}∩X , without leaking
any elements not in any Xi or which party holds an element
in the intersection. The same definition applies to multi-query
PSMT, where the number of queries ψ < η and the receiver
learns if any of the ψ queries held by him/her is included in the
senders’ sets. The sets held by different senders in the PSMT
are mutually exclusive or disjoint. The parties involved are
referred to as the sender and the receiver. For strong protection
of user data, each sender in PSMT, Pi does not have plaintext
access to Xi, i.e., each sender only has encryptions of x ∈ Xi.
PSMT outputs {y} ∩

⋃l−1
i=1Xi to the receiver and nothing to

the senders without leaking any other information about the
receiver’s element and sets held by the senders.
Threat Model: PSMT protects the outsourced data owned
by the data owners from the semi-honest senders, and our
threat model is similar to that in previous works [61]. The
provenance privacy of the senders is preserved in PSMT.
For the threshold functionality in PSMT, we employ α-out-
of-l thresFHE that can handle α − 1 colluding participants
where α < l/2 such that the majority of the parties are
honest. We do not consider membership inference attacks with
repeated adaptive queries. Such attacks can be mitigated by
rate limiting or OPRFs [13] at the cost of additional overhead
from preprocessing. Since parties are semi-honest, they are
guaranteed to use the actual inputs; therefore, there is no
integrity tampering. As in previous works [16], [17], we do
not consider outside adversaries since they can be mitigated by
standard network security techniques. We also do not consider
membership inference attacks with repeated adaptive queries.

We note that in the rest of this paper, senders’ sets refer to
the encrypted sets of data owners that are held by the senders.

D. Adversary & Security Models

We assume a semi-honest setting, where parties (both
senders and receiver) are assumed to be honest but curious.
The corrupted parties are defined as protocol participants who
adhere to the protocol but may collude with each other to
deduce information about the honest parties but do not behave
maliciously or deviate from the protocol. Adversaries will
try to learn any of the receiver query y (if the receiver is
not compromised) and the sender’s set elements x ∈ Xi.
Adversaries may eavesdrop on messages or compromise up
to α− 1 parties.

We define the semi-honest model with static adversaries,
which means corrupted parties are determined before the exe-
cution of the protocol and do not change during the execution.
In other words, honest parties cannot become corrupted and
reveal their secret values during the protocol’s execution.
Adversaries can be any subset of the protocol participants,
referred to as corrupted parties. With all the assumptions
above, we use the following definitions to define security
against semi-honest static adversaries.

Definition 1 (Negligible Function). A function µ : N → N is
negligible in k if, for every positive polynomial p(·) and suf-
ficiently large k, µ(k) < 1

p(k) . We denote negligible functions
as negl(k).

Definition 2 (Computational Indistinguishability). We say that
two distributions X = {Xk}k∈N and Y = {Yk}k∈N indexed
by security parameter k are computationally indistinguishable
if for any PPT algorithm A:
|Pr[1← A(Xk)]− Pr[1← A(Yk)]|= negl(k).

We denote this property by X ≈c Y .

Definition 3 (Correctness). A FHE scheme Π
= (KeyGen, Enc, Dec, Eval) is correct for some class
of circuits L if for all m1, . . . ,mk ∈ M, for all C ∈ L, for
all (pk, sk)← KeyGen(1λ), we have that,

Decsk(Evalpk(C,Encpk(m1), . . . ,Encpk(mk)))

= C(m1, . . . ,mk).
(1)

The above correctness property also applies to threshold
FHE schemes, where the decryption is divided into two phases:
partial decryption and a combination step. Partial decryption
is completed using secret key shares, and the combination
algorithm completes the decryption by combining the partially
decrypted ciphertexts using pk. In approximate FHE schemes
like CKKS, the correctness requirement of Equation (1) is
satisfied approximately. For a formal definition of an approx-
imately correct FHE scheme, one can refer to Section 2.3 of
Li and Micciancio [62].

We use the following security definition proposed in [62],
[63] to capture the security of approximate FHE schemes
against passive attacks. Such definition also applies to thresh-
old approximate FHE schemes, where the adversary has access
to a decryption oracle.

Definition 4 (IND-CPAD Security). Let Π =
(KeyGen, Enc, Dec, Eval) be a FHE scheme. We define
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the IND-CPAD game to be an indistinguishability game
parameterized by distribution ensembles {(Eb

θ, H
b
θ , D

b
θ)}θ for

b ∈ {0, 1}, where these oracles are the stateful oracles given
in Algorithm 1. The scheme Π is κ-bit IND-CPAD-secure if
for any adversary A, we have that κ ≤ log2

T (A)

advA . T (A)

is the running time of A and advA is the advantage of A,
defined as advA = υA(ξA)2 where υA = Pr[A ̸=⊥] and
ξA = 2Pr[b′ = b | A ̸=⊥]− 1 and the goal of A is to output
b′ = b [62].

Li and Micciancio [63] have shown that in the FHE schemes
satisfying standard correctness requirement in Equation (1),
the IND-CPAD security is equivalent to the indistinguishability
under chosen plaintext attack security (IND-CPA).

IV. PSMT PROTOCOL

A. Basic Protocol without Approximation

Protocols using FHE to implement PSI [8] use zero as a
multiplicative annihilator. Multiplications are not scalable, so
we propose the novel idea of using additive aggregation.

We consider set elements to be members of Z (e.g., hashed
elements). We describe our basic protocol in Figure 3 as a
strawman protocol. The receiver has access to a query element
y, and s/he creates replicas of y such that the number of
replicas equals η (batch-size) and encrypts them to obtain cy
such that all slots of cy contain y. The receiver then sends cy
to l senders. Senders either encrypt their sets themselves or
receive the encryptions from data owners through a secure
communication channel. Thus, each sender i ∈ [1, l − 1]
has access to an encryption of a set Xi, cxi

. Each slot of
cxi

contains different elements of Xi. Due to batching, each
sender possesses only a single ciphertext. In case |Xi|> η, the
sender possesses multiple cxi . Each sender i then computes a
homomorphic difference of cy , and its ciphertext(s) cxi

in a
SIMD fashion to obtain diffi. Each sender i then computes a
piecewise function etani(), defined below.

etani(diffi) =

{
K, if diffi = 0

0, if diffi ̸= 0

etani() maps the input to K if the input is zero and zero
otherwise. If equipped with multiple diffi, senders compute
separate etani() for every diffi in parallel since they are
independent. The sender then simply sums the etani into a
single ciphertext. The results obtained by the senders can be
additively aggregated by computing

∑l−1
i=1 etani, whose value

is non-zero for an intersection and zero for a non-intersection.
If the senders’ sets are disjoint, the summation value will be K
for an intersection; otherwise, it will be some multiple of K.
In practical deployments, a leader sender will likely handle the
aggregation or rotate this task among senders. In our protocol,
a leader sender performs the aggregation.

This basic protocol can be implemented with any FHE
scheme, and the aggregation would be composed of effi-
cient homomorphic additions only. Unfortunately, this version
would suffer from high multiplicative depth when computing
the condition “if diffi = 0.” This leads to the need to
approximate the function etani().

–1–1–1 –0.5–0.5–0.5 0.50.50.5 111

111

000

1

0-0.5-1 0.5 1

Fig. 2. Graph of the VAF K · (1− tanh2(S · x)): K = 1.5, S = 10.

Input : Receiver provides a query element y; senders possess en-
cryption of sets X1, . . . , Xl−1, namely cx1 , . . . , cxl−1 such that
X =

⋃l−1
i=1Xi. Each set contains bit strings of length δ. K is the

output of the function etan() when input is zero. δ, and K are public
parameters.
Output: Receiver outputs {y} ∩ X ; senders outputs ⊥.
1. Setup: The senders, the receiver, and the data owners jointly agree

on a public-key thresFHE scheme with the same ring dimension.
Receiver, senders, and data owners are provided an evaluation key
evk and a public key pk. A secure multi-party computation or
trusted hardware is used to distribute α partial decryption keys
sk1, sk2, . . . , skα among receiver and α − 1 senders such that
α < l/2.

2. Encryption: The receiver encrypts its element y such that all slots of
the resulting ciphertext cy contain replicas of y and sends cy to all
of the senders. Senders encrypt each of sets X1, . . . , Xl−1 held by
them using pk. Alternatively, data owners perform the encryption
of the sets and send it such that, cx1 , . . . , cxl−1 ciphertexts are
possessed by senders. If |Xi|> η, then sender i possesses multiple
ciphertexts.

3. Intersection: Using cy(s) each sender i:
a. Homomorphically computes diffi = cy − cxi and etani(diffi)

using evk. If possessing multiple ciphertexts, sender computes
multiple diffi and etani(diffi) with the rest of ciphertexts paral-
lelly and homomorphically summates them to a single etani.

b. Sends etani to a leader sender, who uses evk to homomor-
phically compute, z =

∑l−1
i=1 etani. Leader sender returns

the ciphertext z to the receiver and α − 1 senders for partial
decryption.

4. Partial Decryption: Each sender i such that i ∈ [1, α−1] partially
decrypts z using ski and sends their partial decryption to the
receiver. The receiver partially decrypts their share of z.

5. Result interpretation: The receiver combines α partial decryptions
to decrypt z and outputs

Result =

{
Intersection z = K

No Intersection z ̸= K

Fig. 3. Basic PSMT protocol

B. Novel Value Annihilating Function (VAF)

One naı̈ve thought is to approximate the function etani()
with a polynomial, but doing so would require polynomials
with very high degrees. We begin by considering the compu-
tation a single sender must perform. Suppose there exists a
small negligible value ϵ and a sender has access to a set Xi

with size n such that xj ∈ Xi for j ∈ [n] and is given an
FHE ciphertext cy encrypting a receiver’s input y ∈ Y .

Consider the function f(y,Xi) =
∑n−1

j=0 g(diffj), where
diffj = (y − xj) and g(diffj) = 1

diff
j
+ϵ

. Then, f(y,Xi) can

be thought to exhibit the following behavior similar to that of
etani:

f(y,Xi) =

{
1/ϵ+

∑n−1
j=1 g(diffj), if diff0 = 0∑n−1

j=0 g(diffj) ≪ K, if diffj ̸= 0
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Parameters: Xi is the input set for l senders: i ∈ [0, l − 1]. y, τ , and κ are the receiver’s input, threshold value, and limit for the random mask,
respectively. λ denotes the computational security parameter, σ denotes the set element’s bit string length, and ψ denotes the number of query

elements for handling multiple queries. λ, τ , κ, σ, and ψ are public parameters. K and S are public VAF parameters. L, R and n are public DEP
parameters. c is the degree of the polynomial used for Chebyshev approximation.

1. [Parameters]
a. Threshold FHE: Parties agree on parameters (N, q, δ, d, α) for the thresFHE CKKS scheme with λ computational security.
b. Key Distribution: Parties run a secure multiparty computation protocol ThresFHE.KeyGen distributing distributing shares of the secret key
sk among α participants and broadcasting the public key pk and evaluation key evk. Alternatively, a trusted setup can compute these keys.
All the parties, including data owners, have access to pk and evk.

2. [Encryption]
a. Encrypt X & batch : For all x ∈ Xi, such that i ∈ [1, l−1], each sender i groups its values x into vectors in Rm of length m with elements

in R. Then, the senders i batches each vector into 2 · m/N plaintexts and encrypts them using ThresFHE.Enc. Each sender encrypts and
batches their sets independently. Alternatively, data owners can execute ThresFHE.Enc using pk and send encrypted sets to their corresponding
senders i such that i ∈ [1, l − 1]. Each sender i obtains a ciphertext cxi after this step. In case |Xi|> η, the sender can possess multiple
ciphertexts encrypting Xi. Note that FHE batching is applied only on the senders’ side unless the receiver needs to transmit multiple queries,
in which case batching is also applied on the receiver’s side.

b. Encrypt y(s): Receiver constructs a vector of length N/2. If using a single query element, each element in the vector is y ∈ R; otherwise,
multiple query elements are inserted into the vector. Then, the receiver encodes the vector into a CKKS plaintext and encrypts it to obtain cy .

4. [Compute Intersection]
If multiple queries are transmitted by the receiver in a single ciphertext, the sender extracts each query to obtain the ψ number of ciphertexts.
Otherwise, the sender receives a single cy and proceeds without extraction.
a. Homomorphically compute subtractions: Each sender i obtains the ciphertext cy and computes diffi = cy − cxi .
b. Apply DEP to reduce the domain size: Each sender i iteratively applies the domain extension process n times using DEP to shrink the

domain interval of values diffi from step 4a into the interval [−R,R].
c. Homomorphically evaluate VAF: Each sender i uses the Chebyshev approximation method to approximate etani = K ·(1−tanh2(S ·diffi))

in the interval [−R,R] using a degree c polynomial.
d. First homomorphic squaring: Each sender i homomorphically squares etani and obtains etan2

j

i such that j ∈ [1, 12]. Higher values of
j ≥ 2 can be chosen depending on the desired approximation accuracy for larger senders’ set sizes.

e. Scaling and second homomorphic squaring: Each sender i multiplies etan2
j

i using a scaling factor, ρ. Step 4d can be applied again to obtain
(ρ · etan2

j

i )2
k

with k ∈ [3, 4] to exponentially increase the number of parties the protocol can handle and reduce the false positive rates to
negligible or zero.

f. Homomorphically evaluate summation: If a sender possesses multiple ciphertexts, Step 4a to 4e is applied to all the remaining ciphertexts
in parallel, and homomorphically summated to (ρ · etan2

j

i )2
k

. An aggregator collects (ρ · etan2
j

i )2
k

from all other senders, samples a random
non-zero plaintext element r ∈ [−κ, κ]; and homomorphically evaluates z, such that,

z = r +

l−1∑
i=0

(ρ · etan2
j

i )2
k

z is then broadcast to the α parties holding the partial decryption keys, including α− 1 senders and the receiver.
5. [Partial and Final Decryption]

a. Partial decryption & smudging noise : Upon receiving z, each partial key-share holder sender i ∈ [1, α) uses their secret key share ski
to partially decrypt z using ThresFHE.PartialDec, which introduces a smudging noise esmg to the partial decryptions parti. Each sender i
computes parti and sends their decryption share to the receiver.

b. Final decryption: The receiver uses their partial decryption key ski and z to execute ThresFHE.PartialDec and obtains their partial decryption
share parti. Optionally, the receiver can use a ThresFHE.PartialDec algorithm that does not introduce a smudging noise to increase the precision.
Receiver then combines their share with the partial decryptions received from the α−1 senders, {parti : ski}i∈[0,α) using ThresFHE.Combine
and pk and obtains the resulting vector of length η.

c. Interpretation of result: The receiver checks if the magnitude of any element of the resulting vector exceeds τ ,

{y} ∩
l−1⋃
i=1

Xi = {y : ThresFHE.Combine(z) ≥ τ}

If any value in a ciphertext slot is greater than the threshold τ , an intersection exists; otherwise, no intersection exists.

Fig. 4. Full PSMT protocol

Here, if diff0 = 0 (i.e., y ∈ Xi) and ϵ → 0, f(y,Xi)
increases without bound and its limit approaches infinity. This
misuses the notion of infinity in terms of computation, as
infinity is not a numerical quantity. Nevertheless, it leads us to
some intuition on how to construct a protocol that is amenable
to PSMT: we should have a function that each sender computes
that outputs very large values (close to K) to annihilate
the summation on an intersection but outputs a negligible
summation value compared to K on a non-intersection. Then,
additively summing these results from each sender would yield
a result indicating if the receiver’s element y is in

⋃l−1
i=1Xi,

i.e., the large value indicates intersections and small negligible
values indicate non-intersections.

The function f(y,Xi) exhibits useful properties similar to

those of the etani(). We call such functions Value Annihilating
Functions (VAF). A VAF maps zero to K and all others
to zero. Computing VAFs homomorphically is challenging
because if conditions cannot be evaluated efficiently in FHE.
Instantiating a VAF on finite fields with exact FHE schemes
would require a very large plaintext domain for representing
inputs making the approximation very inefficient. Hence, for
such a function, approximate-arithmetic FHE is preferable.

It is challenging to find a function that accurately ap-
proximates such kind of behavior. The functions approxi-
mating such kind of behavior require computing the inverse
or the division operation, and computing such an operation
homomorphically is fundamentally challenging. We explored
many candidates to compute VAFs, such as rational functions
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including fK,S(x) = K
(1+S·x)4 , sigmoid, hyperbolic tangent,

piecewise linear, sign function, among others. The rational
functions require computing a division for VAF, which is
inefficient for FHE. Sigmoid, hyperbolic tangent, piecewise
linear, and sign functions either did not exhibit the kind of
properties that we needed or resulted in a very high accuracy
loss while approximating in FHE. With all the considerations,
we discovered the following function exhibits satisfactory
behavior for our purpose with minimal accuracy loss:

DApprox
K,S (x) = K · (1− tanh2(S · (x))) (2)

This function is shown in Figure 2, approximating a VAF.
Since piece-wise functions cannot be evaluated efficiently in
FHE due to branching, we designed a function that gets larger
quickly as the input gets closer to zero. The derivative of
the hyperbolic tangent (1 − tanh2(x)) has maxima as one
for zero inputs and approaches zero for inputs in the range
(−∞,−3) ∪ (3,∞). We set K acts as the maxima and use S
to increase the input range for zero (i.e., width of the function’s
hump near the zero) such that the function outputs zero for
inputs in range (−∞,−1) ∪ (1,∞). When computing functions
such as DApprox

K,S (x) in approximate homomorphic encryption,
only additions and multiplications are available. However, such
approximations are not zero-valued for all nonzero arguments
or even all arguments outside some interval centered at zero.
In the following sections, we describe how we compute a
polynomial approximation DApprox

K,S (x) whose values on R
except for a small interval near zero can be bounded by some
small number κ. Then, we can set parameters K,S, κ, ν such
that (l− 1) ·κ < τ , where τ = ν ·K. ν ∈ (0, 1] is a threshold
proportion used to account for the case where error from
approximate-arithmetic FHE may cause a sum of l outputs of
DApprox

K,S (x) on nonzero arguments to be greater than (l−1)·κ.

C. Polynomial Approximation of VAF

The approximation of complex non-polynomial functions is
a well-studied topic. Existing works such as [64] use poly-
nomial composition with iterative algorithms to approximate
functions like min/max and comparison using FHE. Other
works have used techniques like Taylor series [65], [66],
minimax approximation [67], [68], look-up tables [69] and
conversion between FHE schemes [53], [61].

A major challenge for approximation techniques is find-
ing polynomial approximations that work on large domains.
Existing approaches for approximation [52], [65], [66], [70]
struggle for large domain intervals, inducing very high approx-
imation errors. Even domains of thousands can be challenging
[70], [71]. This would require homomorphically evaluating
polynomials of an extremely large degree. For instance, simply
using Chebyshev-based approximation for approximating non-
linear functions for domains such as [−1000, 1000], requires
almost 20.5 minutes of computation time and an additional 12
multiplicative depth for acceptable accuracy. Hence, the error
induced by the approximation and the computational cost of
approximation are the major factors [71] to be considered dur-
ing the approximation. For our application, we are primarily
concerned with the computational cost of the evaluation and

require low precision that will enable us to distinguish values
converging to K (for intersection) and 0 (for non-intersection).
Domain Extension Polynomials (DEPs). DEPs enable the
effective shrinking of a large domain interval [−LnR,LnR]
to a smaller subinterval [−R,R] such that the property of
the VAFs around zero in the smaller domain is preserved.
To compress inputs from an interval [−LnR,LnR] to an
interval [−R,R], we can iteratively apply a DEP with O(n)
operations and 2n additional depth. Using this method we can
convert inputs z ∈ [−LnR,LnR] into values D(z) such that
z ∈ [−R,R] =⇒ D(z) ≈ z and z /∈ [−R,R] =⇒ D(z) ≈
sign(z). Specifically, we utilize Algorithm 1 from [71]. To
handle inputs in [−R,R] using the DEP B(z) = z − 4

27z
3 at

an iteration n of Algorithm 1, we divide inputs to B(z) by
LnR, and scale its ouputs by LnR. This converts B(z) from a
DEP on [−1, 1] to a DEP on [−R,R]. If the accuracy of B(z)
is not good enough, then squaring its outputs can make B(0)
larger and B(z) for z ̸= 0 smaller, at the cost of additional
depth and runtime. DEPs enable the approximation of values
within a large domain interval, allowing the protocol to handle
potentially millions of inputs efficiently.
Chebyshev Approximation. Chebyshev polynomial approxi-
mation are minimax-based polynomial approximation method
that achieves the smallest possible polynomial degree with
minimal approximation errors [70], [71]. Approximating func-
tions using standard approximation techniques like Taylor
series can induce the Runge phenomenon [72] that causes
an approximation to yield poor accuracy at the edges of the
interval. Chebyshev polynomials reduce this phenomenon and
provide an approximation that is close to the best polynomial
approximation to a continuous function.

We apply DEPs and Chebyshev approximation to approx-
imate a DApprox

K,S (x) in a much smaller interval [−R,R]
while preserving the original larger domain [−LnR,LnR]
with low FHE multiplicative depth. This leads our protocol
to approximate etani() with low approximation errors and
computational cost for a large domain.

D. Security and Correctness

Using our basic protocol in Figure 3, the receiver can learn
the aggregation value

∑l−1
i=0 etani to infer information about

the difference between their query and the sender’s value to
get information about the non-intersection values. To fix this
issue, we require the senders to obscure the aggregation value
by adding a small random masking term r ∈ [−κ, κ], where κ
is public and the bound for the approximation value of VAF
on a non-intersection.

We prove the security of our protocol in the semi-honest
model with static adversaries (defined in Section III-D),
assuming that all protocol participants run algorithms that
run in PPT. The semantic security of the PSMT protocol
follows directly from the IND-CPAD security of the underlying
thresFHE CKKS scheme, and we provide proof for such
security in the following sections.

1) Protocol Correctness: It is easy to see that the protocol
correctly computes the intersection conditioned on the VAF
approximation, succeeding in approximating the VAF (Eq. 2).
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The approximation succeeds if proper DEP and Chebyshev
parameters for a given senders’ set are used from Table III,
and homomorphic squaring and scaling techniques are applied
to eliminate false positives (see Section V-C).

2) Security Against Semi-Honest Adversaries: We prove the
security of the protocol under the assumption of the existence
of an IND-CPAD secure thresFHE scheme Π with a threshold
α < l/2. Here, we consider the protocol participants as
corrupted by the adversary where they are honest but curious.
Loosely put, we say that the protocol ΠPSMT of Figure 4
realizes the functionality of FPSMT , if it is correct.

Theorem 1. The protocol in Figure 4 is a secure protocol for
FPSMT in the semi-honest setting.

Proof. We consider two types of adversaries: those that cor-
rupt a subset of sender parties, including the receiver Py ,
and those that corrupt a subset excluding Py . The number
of corrupted parties, denoted by α, is defined as α < l/2. We
provide separate simulations for each class.

Consider an adversary A that corrupts a strict subset I
of parties from the set {Py, P0, . . . , Pl−1}, including Py . We
define a simulator S equipped with a functionality SGEN to
generate keys of the underlying encryption scheme as follows:

1. S simulates {Xi}i∈I , which also includes Py’s input, and
Z = ∩l−1

i=0Xi, and invokes the corrupted parties on their
corresponding inputs.

2. S generates (pk, ski) by invoking the simulator’s func-
tionality SGEN during the key generation phase.

3. Next, S plays the role of honest parties against Py

on arbitrary sets of inputs. Namely, S computes the
subtractions, applies the DEP procedure, evaluates the
VAF, and performs squaring and scaling. S then simulates
the leader sender and summates the ciphertexts. S creates
partial decryption shares of the ciphertexts, applies noise-
flooding, and transmits the partial decryption shares of the
summated ciphertext to the receiver.

4. Upon receiving the partial decryptions, Py combines them
to complete the decryption and interprets the result. The
simulator completes the decryption procedure as follows.
If y ∈ Z, S homomorphically forces the decryption
outcome to exceed the threshold value in one of the
plaintext slots by adding the result ciphertext to another
ciphertext containing a value greater than τ . If y /∈ Z,
the simulator ensures the decryption outcome does not
exceed the threshold value in any plaintext slot by ho-
momorphically multiplying the resulting ciphertext with
a ciphertext encrypted with zeroes and then adding a
random element r ∈ [−κ, κ]. This guarantees that all
values of the ciphertext remain below threshold τ .

The simulator S needs to produce simulated ciphertexts to-
wards α corrupted parties that are homomorphically evaluated
and indistinguishable from the real ciphertexts because this
is the only message that appears in the view of the corrupted
parties. Note that α is smaller than the threshold l, and there is
at least one honest party, in particular l−α honest parties. This
makes sure that the ciphertexts will be indistinguishable even
though α adversaries collude with each other because there
will be at least one honest party holding a share of the secret

key. The view of the adversary in the simulated execution
is indistinguishable from the real execution as the simulated
ciphertexts and partial decryptions are computationally indis-
tinguishable from the actual encryptions and decryptions. The
indistinguishability follows from the IND-CPAD security of
the underlying thresFHE scheme Π, since both the simulated
ciphertext and real ciphertext look like fresh encryptions of
the scheme Π. Hence, the view of the corrupted receiver to
the ciphertext received from the simulator is indistinguishable
from the receiver’s view in the real execution of the protocol.

Next, we consider an adversary that does not corrupt Py . In
this case, the simulator S is defined as follows.

1. S simulates {Xi}i∈I , which does not include Py’s input,
and invokes the corrupted parties on their corresponding
inputs.

2. S generates (pk, ski) by invoking the simulator’s func-
tionality SGEN during the key generation phase.

3. Next, S plays the role of Py against the corrupted senders
on an arbitrary set of inputs and concludes the simulation
by playing the role of Py on these arbitrary inputs. This
corruption case is simpler as only Py learns the output
who is honest.

In this case, where we have only α corrupt senders, the
simulator S can simply generate new encryptions of zero in
the place of real encryptions of the receiver’s query element
y. By the IND-CPAD security of the thresFHE scheme, this
ciphertext is indistinguishable from the senders’ view in the
real protocol. The views of the adversarial senders in the
simulated execution are indistinguishable from the real ex-
ecution, as they cannot differentiate between the actual and
simulated encryption. The ciphertexts will be indistinguishable
even though α adversaries collude with each other because
there exists at least one honest party, including the party Py

who holds a share of the secret key. This concludes the proof
for the second case.

Handling IND-CPAD capable adversaries. Recent works
have shown that the threshold variant of CKKS is vulnerable
to IND-CPAD attackers [73]. To mitigate this kind of attack,
existing works [63], [74], have proposed various countermea-
sures such as bootstrapping to reset the noise variance, using
the rounding procedure or attaching a proper noise at the end
of the decryption process called smudging noise. We employ
the noise smudging (noise flooding) method to transform
the thresFHE CKKS scheme achieving the weak IND-CPA
security definition into one which is IND-CPAD secure [62].

Before adding the noise, proper estimation needs to be
done for noise addition [75]. Senders estimate the noise
statically offline using a fresh secret key-public key pair and
select messages reflecting actual data for the homomorphic
computation. The additional noise is drawn from DR,σ over
the polynomial ring, represented in its coefficient form where
σ is a standard deviation set by a security level and noise
estimate. Thus, to achieve s > 0 bits of statistical security,
one can set σ =

√
24a ·N · 2s/2 (see Corollary 2 in [62]),

where a is the number of adversarial queries the application
is expecting, and N is the ring dimension used for FHE.
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E. Choosing Optimal Parameters

Over the course of our experiments, we encountered several
challenges in determining suitable parameters for the DEP and
Chebyshev approximation and tailoring them to the specific
sender set sizes. To set up the DEP parameters for reducing
the Chebyshev approximation degree, one needs to be careful
while choosing L, R, and n with c to minimize FHE depth
and approximation errors for a given |X |. We provide further
details regarding parameterization and list our findings in
Section IV-H and Table III.

We note that the values described in this section and in
Table III are useful for the case where

⋂l−1
i=1Xi = ∅, i.e.,

each sender’s set has no element in common with other sender
sets. In case senders’ sets are not disjoint, we can allow up to
Ψ of l senders to have a duplicate element, so long as values
up to Ψ · K can be represented correctly in CKKS with the
parameterization being used. To ensure that the summation
does not overflow, we can set a smaller K and heuristically
choose smaller values for parameters j, k, ρ, and τ . Note that
in case, we allow duplicate items, our protocol will require
higher precision bits to accommodate for the precision loss
occurring during smudging noise addition for security.
Smudging Noise. In our protocol, we require the senders
to add a smudging noise to their partial decryptions from
σ =

√
24a ·N · 2s/2 that has a larger variance than the

standard noise distribution of basic thresFHE CKKS. We set
a = 210 and s = 36, limiting the adversary’s success rate to
2−36 (about 1 in 68 billion) for 210 adversarial queries for
a single ciphertext. Li and Micciancio offer noise-estimation
parameters for a < 215 only (see Table 1 in [62]) and having
higher values of a without adding larger smudging noise or
significant precision loss is a problem orthogonal to ours and
a topic under research [62], [74], [76]. Hence, we assume that
distributed thresFHE queries for identical or related ciphertexts
are limited to fewer than 210 in our application since all parties
will need to be involved in every thresFHE decryption. One
solution to mitigate such an issue would be refreshing the noise
estimate after every 210 queries which would add minimal
overhead to the latency as it can be done offline. Similarly,
another mitigation, as suggested by [62], would update the
secret key shares occasionally. However, this method will
require extra rounds of communication.

After estimating the noise, we determined that approxi-
mately 34 noise bits are needed for smudging, which en-
sures IND-CPAD security. However, this noise introduces high
variance in each partial decryption, and when aggregated
across many parties, it can lead to a significant loss in
precision, potentially causing the non-intersection summation
z =

∑l−1
i=1 etani to overflow. This issue is mitigated in our

protocol by choosing a higher τ value to account for the
precision loss. Additionally, since the noise smudging is done
independently by the senders, it incurs minimal latency and
does not significantly impact the overall protocol performance.

F. Multiple Queries

In the current PSMT model, the receiver is required to
transmit separate query ciphertexts for each query element,

leading the receiver-to-sender communication to increase lin-
early with the number of query elements. This results in
huge communication costs when the receiver has a large
number of query elements. We enhance the current PSMT
model to efficiently handle multiple query elements with the
same communication cost as a single query element. This
reduction in communication overhead is achieved by having
the senders pre-process the query ciphertext that contains
multiple queries before performing the actual computation,
such as homomorphic approximation and domain extension on
the ciphertexts. Thus, we significantly reduce communication
costs for multiple queries by adding minimal computation
on the senders’ side. Upon receiving the query ciphertext
containing multiple queries from the receiver, each sender
performs the following pre-processing steps to extract the
individual query elements.

Suppose the number of query elements specified by the
receiver during the initialization phase of the protocol is
denoted as ψ such that ψ ≤ η. Firstly, the sender creates ψ
FHE plaintexts encoding one-hot vectors, with the one in the
ψ-th slot. Next, each sender multiplies every plaintext with the
query ciphertext to obtain ψ query ciphertexts where the ith

slot of the ith query ciphertext for i ∈ [1, ψ] contains separate
query elements. Each sender then uses a generic rotate and
add algorithm [77] to replicate query elements in every slot
of the multiple query ciphertexts using log(η) homomorphic
rotations and additions. Rotations and additions are noise-free
operations in FHE and add minimal processing time for the
senders. We provide the algorithm for processing multiple
queries in Algorithm 2.

Algorithm 2 Process Query Vectors
1: Inputs: ψ, η, single receiver query ciphertext query ctxt
2: Outputs: ψ server query ciphertexts query ctxts
3: function process query(ψ, η, query ctxt)
4: for i = 0 to ψ − 1 do
5: Initialize extraction plaintext oneHot[i] = 1
6: Extract the query element in separate ciphertexts
7: query ctxts[i]← EvalMult(query ctxt, oneHot[i])
8: Replicate elements in all slots of each query ctxts
9: for j = 1 to η/2; j = j ∗ 2 do

10: ct temp← EvalRotate(query ctxts[i], j)
11: query ctxts[i]← EvalAdd(query ctxts[i], ct temp)
12: end for
13: end for
14: return query ctxts
15: end function

G. Asymptotic Complexity Analysis

Each sender must compute the procedures described in
Figure 4. This requires 2n + O(log(c)) + j + k homomor-
phic multiplications. These procedures require a multiplicative
depth of 2n for the application of the DEP, approximately
log(c)+1 for Chebyshev approximation, and j+k for repeated
squaring. The precise amount of depth recommended for a
polynomial approximation of degree c is chosen heuristically1.
CKKS operations besides multiplication, e.g., addition and

1Some guidelines for choosing parameters for polynomial approximation
can be found at https://github.com/openfheorg/openfhe-development/blob/
main/src/pke/examples/FUNCTION EVALUATION.md
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TABLE III
OUR PROTOCOL PARAMETERS TO SOLVE PSMT

|X | DEP Chebyshev Params Optimizations
L R n c κ j k ρ

27 2.50 21 2 27 3.4 × 10−5 3 3 2.5
28 2.56 16 3 27 3.2 × 10−1 1 3 2.5
210 2.58 24 4 27 1.8 × 10−6 4 3 2.5
213 2.58 27.5 6 27 5.6 × 10−3 4 3 2.5
215 2.58 43.5 7 27 3.7 × 10−1 4 3 2.5
220 2.59 200 9 247 1.2 × 10−1 2 3 2.5
221 2.59 400 9 247 7.3 × 10−1 4 3 2.7
222 2.59 800 9 247 7.6 × 10−1 6 3 2.7
223 2.59 1600 9 247 6.3 × 10−1 8 3 2.7
224 2.59 3200 9 247 7.9 × 10−1 10 3 2.7
225 2.59 6400 9 247 2.7 × 10−1 12 3 2.7

scaling, contribute relatively small amounts of overhead and
noise. This enables the extraction of multiple queries to in-
dividual ciphertexts computationally very cheap. The additive
aggregation of each sender’s result is relatively inexpensive;
most notably, it does not increase multiplicative depth even
with an increasing number of senders.

Our protocol requires sending one ciphertext from the
receiver to the l − 1 senders and receiving α − 1 ciphertexts
from the senders by the receiver. Thus, the communication
between the receiver and senders is bounded above by l+α−2
ciphertexts. The inter-sender communication is bounded by
(l−1) ·α ciphertexts which includes the final result ciphertext
sent to the receiver by the aggregator. The number of commu-
nication rounds between the receiver and senders is four in our
protocol, assuming a trusted setup provides all the parties their
respective keys. In case a separate secure multi-party protocol
is run for the key generation during the setup phase, it will
add two more rounds to the overall communication.

H. Protocol Parameters

We analyzed various levels of parameters for the DEP
procedure and Chebyshev-based approximation and how they
affect the performance and accuracy of our protocol for PSMT.
Using B(x) = x− 4

27x
3, it is imperative to maintain L below

1.5 ×
√
3 while using DEPs [71]. To expand the domain

[−LnR,LnR] to adequately accommodate large input sets
without amplifying error and computation, one must increase
R and n. However, using arbitrarily large values for R and n
would greatly increase error and require very high depths for
homomorphic computation. Using smaller values of L, (close
to 1.5), greatly increases the accuracy of the DEP method,
but this results in larger values for other parameters, incurring
very high computational costs.

The optimal DEP, Chebyshev, and optimization parameters
for running our protocol for various senders’ set sizes are
provided in Table III. K and S are set to 1 and 10, respectively,
for the VAF. |X | denotes the size of the senders’s set. To
confirm an intersection for l < 4096, setting threshold τ > 200
is sufficient for the parameters described in Table III. A higher
value of τ handles the precision loss occurring due to the
additional added noise from noise-smudging in cases where
z =

∑l−1
i=1 etani overflow beyond negligible values. The value

τ can be adjusted to higher values for a higher number of
parties. We note that the parameters we provide are highly
optimized for the particular computations, and some values in
Table III were found empirically.

I. Discussion

1) Set Updates: As we do not require any preprocessing
of senders’ sets, updates to the encrypted senders’ sets are
trivial in our protocol. Most computations in our protocol take
place during the online phase of the protocol. This allows the
protocol to easily add or delete any element in senders’ sets,
as no pre-processing is necessary during the offline phase.
The data owners can simply update their sets, encrypt them,
and send the corresponding ciphertext(s). Alternatively, data
owners can only send the latest set of elements separately,
which will save communication costs. Senders can then use
all received ciphertexts to compute the PSMT for new queries.
This will allow the parties to compute the intersection of their
private sets on a regular basis with sets that are often updated.

2) Multiple Receivers: In case we have multiple receivers,
each receiver must participate in the setup phase of key
generation to obtain a partial decryption key. The threshold
value α can be adjusted to accommodate the increased number
of receivers. For r number of receivers, the threshold can be
adjusted to (α − r) which will ensure that only the querying
receiver needs to supply partial decryption to complete the
decryption process. However, with multiple receivers, it’s
crucial they do not collude, as each holds a partial decryption
key, and collusion can lead to fewer than (α−r) senders being
required for decryption, as malicious receivers could get access
to the final result by monitoring the communications channels.
In scenarios where a new receiver wants to perform the query,
we can update the secret key shares in thresFHE by updating
the original polynomial used for setting up secret sharing.

3) Attacks on CKKS in OpenFHE: For our experiments,
we utilize an open-source FHE library called OpenFHE [78].
OpenFHE uses non-worst-case noise estimation during static
noise estimation to provide better efficiency [76], [79], and
multiplies the noise internally to ensure enough noise bits
suggested in [62]. Recently, Guo et al. [80] show that relying
on non-worst-case noise estimation undermines noise-flooding
countermeasures for achieving IND-CPAD and implement a
key-recovery attack on OpenFHE. In their attack, the adversary
has the freedom to select a different evaluation function for
noise estimation; however, in our application, the senders
are semi-honest, who run the noise estimation, and add the
correct amount of noise using worst-case noise estimation
using [Table 1, [62]]. Hence, this attack does not apply to our
protocol. Alexandru et al. [75] also noted that these attacks
result from misusing OpenFHE by using incompatible circuits
during noise estimation.

4) Tradeoffs: The process of applying a DEP followed by
Chebyshev approximation requires significant depth, but this
depth does not depend on the number of senders involved.
Each sender can perform this computation in parallel, but
this step may be expensive. Thus, even though we require a
higher computational complexity compared to other methods
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for a small number of senders, this complexity does not
depend on the number of senders and stays moderately low
for a significantly higher number of senders. The protocol’s
computation and FHE multiplicative depth only depend on
the size of the sender’s set and not the number of senders.
We also note that FHE batching can only be applied to either
the receiver or senders, but not both. Applying batching to the
receiver’s elements will require using hashing techniques (e.g.,
cuckoo hashing), which will eventually require pre-processing
of the elements.

V. CHALLENGES

A. Increasing Throughput

Using our PSMT protocol, senders encode each of its sets’
elements into separate plaintexts and individually compute the
polynomial approximation. A single query can take time on the
order of seconds, highlighting the need for better throughput.
The throughput of our protocol can be improved using the
SIMD feature available in FHE schemes. The CKKS scheme
supports the packing of multiple message vectors into a single
ciphertext where the slots of the ciphertexts hold different
values. This allows slot-wise addition and multiplication [57].
The CKKS scheme can encrypt η = N/2 elements in R into a
single ciphertext using this mapping. The batching technique
allows the sender to operate on η items simultaneously,
resulting in η-fold improvement in both the computation and
communication. To enable batching when not all slots are
used, we fill the remaining slots with a dummy value.

B. Supporting Larger Sets

Increasing the capacity of the protocol to support large
senders’ sets requires the use of larger plaintext spaces. In prior
work on FHE-based PSI [8], [13], [14], the sender partitions
their elements into disjoint sets and computes the intersection
of receiver elements with each partition. This can reduce
the effective set size in each computation, but partitioning
increases the number of results to be sent back. Although
the results can be multiplicatively aggregated, it requires more
depth. An advantage of our design is that we gain the ability
to partition computations and thereafter aggregate results from
the partitions nearly for free.

Our protocol can be extended to use very large sender
sets. However, we note that it will require more depth and
computing power due to the large FHE parameters required
for the DEP procedure and Chebyshev approximation. Since
our final result is the summation of individual results from the
senders, increasing the senders’ set sizes does not dramatically
increase the communication size.

C. Reducing False Positives

In the existing works, false positives occur due to hashing
collisions [8] or representation of the set elements using some
probabilistic encoding techniques like bloom filter encoding
[81]. In our protocol, false positives can occur due to bad
approximation accuracy of the VAF. After applying the DEP
procedure, we found that the homomorphic approximation for

the VAF was not accurate enough within the range [−3, 3].
While the approximation would correctly map zero values to
K, the non-zero values in the range [−3, 3] would be mapped
to values far too close to K. Hence, instead of producing a
hump at 0, we observed that the approximation would produce
a flatter curve. These values would later contaminate the
summation outcome, leading to false positives. To solve this
issue, we used a technique involving homomorphic squaring
and scaling. Homomorphically squaring the values in the range
(−1, 1) would map them to smaller and smaller values. Then,
we would scale them by a scaling factor ρ ∈ (2, 2.8) so
they remain within (−1, 1). Finally, we apply homomorphic
squaring again, which would square ρ for intersection and
augment the difference between values mapped to zero and
non-zero. After using the aforementioned techniques, κ is the
highest value approximated by the Chebyshev (see Table III)
when diffi is at its minimum value of one.

Our complete protocol after incorporating the aforemen-
tioned solutions is detailed in Figure 4.

VI. EVALUATION

We implemented our proposed PSMT protocol using
OpenFHE v1.0.3 [78]. The anonymized source code is avail-
able at https://anonymous.4open.science/r/psmt-7777. We used
the threshold variant of CKKS scheme [52] with the default
FHE parameters provided in OpenFHE [15] and the noise
smudging parameters provided in [62], to ensure a (128, 36)-
bit computational and statistical security. To be able to support
a higher amount of noise bits during noise smudging, we
recompiled OpenFHE with NATIVE SIZE = 128 flag. Our
experiments were run on a server with an AMD EPYC 7313P
processor and 128GB of memory, running Ubuntu 20.04. In
our LAN setup, we assumed a 10 Gbps bandwidth and 0.2ms
round trip time (RTT) latency, while our WAN assumed 200
Mbps and 1 Gbps bandwidths with an 80ms RTT latency.

We evaluate the performance in terms of computational and
communication costs. For computational latency, we evaluate
per-sender query runtime and the runtime for aggregating
results from multiple senders by performing 5 runs for each
combination of parameters and taking the average. The bit-
length δ of the set elements is matched to the plaintext space
accommodated by the DEP and Chebyshev parameters. The
senders’ individual computations are independent in our pro-
tocol. We assume that after receiving the query ciphertext from
the receiver, each sender operates on their own set in parallel.
We choose the number of senders for every sender’ set such
that each sender has to evaluate a single ciphertext. To obtain
the noise for noise smudging, we assume senders perform
static noise estimation offline using the publicly available input
bounds reflecting actual data. This is a one-time estimation
process that solely depends on the query computation time and
induces negligible latency for a large number of senders. To
better understand the scalability of our protocol, we evaluate it
on the range of the number parties l = 2n where n ∈ [2, 12].

Baselines. Many variants of PSI, MPSI, and PMT protocols
are designed to handle specific or more general scenarios.
Selecting a specific protocol for comparison with our work
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* Nevo et al. do not support more than 32 parties

Fig. 5. Runtime comparison for Bay et al. [17] and Nevo et al. [11] with ours and Cong et al. [14] (middle, zoomed-left). Total computation
time comparison for Cong et al. [14] vs. our protocol for l < 4096 and α ∈ { l

8
, l
4
, l
2
}; senders’ set size is set to 215 (right).

is a complex task, given our novel privacy model with server-
side encryption, provenance privacy, and a high number of
senders. Considering the existing works that we discussed in
Section II, [9], [40], [12], [16] and [10] either lack scalability
for a large number of senders, do not provide a public
implementation or do not support multiple senders. ORAM-
based approaches such as [18] simply do not support a higher
number of senders for comparison with our work. [8] is an
older work and serves as the foundation for [13] and [14].
Thus, we primarily compare our protocol to the following
state-of-the-art baseline FHE-based and non-FHE-based PSI
and MPSI protocols: Cong et al., [14], Bay et al. [17] and
Nevo et al. [11]. Cong et al.’s protocol uses the BFV FHE
scheme [51] and for a fair comparison, we implemented their
protocol for a multiparty setting using a threshold variant
of BFV in OpenFHE by using their public implementation,
originally implemented in SEAL [82]. We used the default
noise-flooding mechanism in OpenFHE for BFV to ensure
IND-CPAD in the threshold setting. Similarly, for non-FHE-
based protocols we ran the public implementations (both in
C++) of the MPSI protocols of Bay et al. [17], which is one
of the fastest-known MPSI protocols for smaller set sizes and
a large number of parties and Nevo et al. [11], which is one of
the most scalable maliciously secure MPSI protocol based on
OPPRF and OKVS on our server for performance comparison.
The communication overhead of our new protocol remains
consistent with our original protocol, even for multiple queries.
Therefore, we compare the runtime of the original protocol
with existing works and discuss the additional computational
overhead in Section VI (Runtime for multiple queries).

Table IV shows the overall communication overhead and
computation time, which is the total time required to complete
the DEP and Chebyshev approximation using the parameters
in Table III. Observe that the size of messages from the re-
ceiver to senders increases with senders’ set sizes due to larger
senders’ set size requiring query ciphertexts, which should be
able to tolerate a higher amount of noise and, hence, higher
FHE depth for the DEP and Chebyshev. The inter-sender
communication is largely determined by the size of ciphertexts
sent by senders to the leader after query computation. The
leader sender has to then send back α aggregated ciphertexts
for partial decryption. Since the aggregated ciphertext’s size is
significantly smaller, the communication is not affected much
by higher values of α in our protocol (Figure 5, right). Finally,
the message size from the senders to the receiver depends on
α, and it remains very low as it only contains the summation

TABLE IV
COMMUNICATION AND COMPUTATION OVERHEAD

|X | Message size (MB) No. of Agg. Query DepthR-to-S S-to-S S-to-R Senders (second) (second)
27 45 49.1 2.1 128 6.53 13.20 21
28 49 53.1 2.1 256 14.12 15.24 23
210 63 67.1 2.1 1024 40.29 19.09 30
213 79 83.1 2.1 1024 67.51 26.00 38
215 87 91.1 2.1 1024 71.16 30.07 42
220 107 111.1 2.1 1024 87.78 59.67 52
221 111 115.1 2.1 1024 103.98 64.65 54
222 115 119.1 2.1 1024 84.63 68.90 56
223 119 123.1 2.1 1024 90.34 75.80 58
224 123 127.1 2.1 1024 84.09 81.08 60
225 127 131.1 2.1 1024 92.53 86.76 62

Agg. denotes the total time required to aggregate the ciphertexts. R-to-S, S-to-S, and
S-to-R denotes receiver to sender, inter-sender, and sender to receiver, respectively.
Query refers to the query computation time for each sender.

result ciphertext.
For various settings of |X |, we set the highest number

of parties to 1024 (modest for most applications discussed
in Section I) and examine the aggregation latency and com-
munication overhead. Most related state-of-the-art works are
only evaluated for a small number of senders (usually 100
or less) [9], [17], [35]. The aggregation time (not counting
encryption and partial/final decryption) of our protocol stays
within 100 seconds for |X |≤ 225, and our protocol can
be easily extended for a higher number of senders (up to
4096 in Figures 5 and 7). The corruption threshold α does
not significantly affect the computational or communication
overhead. For the applications discussed in Section I, we can
observe that our protocol can handle the increasing number
of parties very efficiently. The parties do not need to store
any auxiliary data for computing PSMT. Moreover, parties in
these applications (e.g., government agencies, banks, insurance
companies) are often equipped with high bandwidth networks
and connected through LANs, which helps minimize the
communication latency in our protocol. We note that we only
report computational latency for only up to 4096 parties, but
this is only due to memory constraints when running the
protocol with a huge number of senders in a single system.

Comparison with FHE-based protocol. We compare the
computational latency of our protocol and Cong et al.’s
protocol [14] in the multi-party setting in Figures 5 to 7. For a
number of senders less than approximately 320, [14] is faster
than our protocol, but for a higher number of senders, our
protocol outperforms [14]. As the number of senders increases,
aggregation time for [14] becomes the bottleneck due to its
multiplicative aggregation. The query computation time for
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Fig. 6. Computation time comparison for Cong et al. [14] vs ours for
different senders’ set size. Number of senders is set to 1024.
**Bay et al. and Nevo et al. were omitted due to inefficiency for
larger set sizes and a high number of senders, respectively.

our protocol is slower than [14]. Similarly, partial decryption
time and ciphertext combining time are also slower for our
protocol, as these operations are inherently slower in CKKS
compared to BFV. However, our protocol is almost 3.3−5.6×
faster for various values of α in Figure 5 (right), and |X |
in Figure 6 when the aggregation time is also taken into
account for the overall latency. We observe this speedup due
to our summation based approach for aggregation. Moreover,
continuing to increase the number of senders results in an even
greater computational latency benefit.

In terms of communication size, [14] has an advantage
over our protocol since it uses smaller FHE parameters while
query computations as they operate on unencrypted datasets
(Table V). We, however, process fully encrypted datasets and
provide security against the senders that necessitate the use of
non-scaler homomorphic operations requiring relatively larger
FHE parameters. Moreover, our communication cost scales
much better when dealing with a high number of senders, as
depicted in Figure 7. Our communication is mainly dependent
on |X | and grows slowly with the increasing number of
senders. Considering l ∈ [29, 213] and high bandwidth network
environments (around 1Gbps or more), our total runtime
latency is up to 5.6× better than [14].

Comparison with non-FHE-based protocols. For non-
FHE-based protocols, multiplicative depth is not a significant
issue, but most of them have high communication and no
post-quantum security. These protocols either support a large
senders’ set size or a moderately high number of senders but
not both. We compared both our work and [14] to Bay et al.
[17] and Nevo et al. [11] in the MPSI setting with α = l

2 .
In terms of communication, [17] require five rounds while

ours and [11] need four. [17] only provide a theoretical
level communicational analysis, lacking an implementation
level evaluation, thus, for communication we only compare
ours with [14] and [11]. Theoretically, clients in [17] send
encrypted bloom filters comprising m ciphertexts, where m is
determined by the number of hash functions h and the dataset
size n. In experiments, [17] set h = 7 and m = ⌊ 7n

log 2⌋ bits to
achieve a 1% false positive rate, while our method maintains
a negligible false positive rate. For sensitive applications
requiring a much lower false positive rate, [17] must use higher
m and h, which will incur significantly larger overheads.

[11], [14], [17] access the senders’ set elements in plain for
encoding while we operate on encrypted sets. In [17], senders
can have duplicate elements among each other, but in ours,

TABLE V
COMMUNICATION COST FOR OUR PROTOCOL COMPARED TO
CONG et al. [14] AND NEVO et al. [11] FOR UP TO l = 15,

α = l − 1 AND 220 SENDERS’ SET SIZE[1,2,3] .
Params. Total Comm. size Comm. time (seconds)

l α [14] [11] Ours
10 Gbps 1 Gbps 200 Mbps

[14] [11]
Ours [14] [11] Ours [14] [11] Ours

4 1 180.1 201.3 759.3 0.5 0.2 0.6 1.8 1.6 6.1 7.5 9.0 30.7
3 195.5 2225.6 771.7 0.5 1.8 0.6 1.9 17.8 6.2 8.1 89.3 31.2

10
1 497.2 453.0 2043.3 0.7 0.4 1.6 4.3 3.6 16.3 20.2 18.4 82.1
4 515.8 1054.6 2061.9 0.7 0.8 1.7 4.5 8.4 16.5 21.1 42.5 82.8
9 546.8 5563.9 2082.9 0.8 4.5 1.7 4.7 44.5 16.7 22.2 222.9 84.0

15

1 742.7 662.7 3113.3 0.9 0.5 2.5 6.3 5.3 24.9 30.0 26.8 124.9
4 761.3 1254.6 3131.9 0.9 1.0 2.5 6.4 10.0 25.1 30.8 50.5 125.6
7 779.9 1416.9 3150.5 1.0 1.1 2.5 6.6 11.3 25.2 31.5 57.0 126.3
14 823.3 8345.9 3193.6 1.0 6.7 2.6 6.9 66.8 25.6 33.3 334.2 128.1

1 [14] and [11] do not provide security of datasets against the senders.
2 [11] does not support sender side encryption. Implementing sender side

encryption in [14] results in impractical runtimes (multiple hours or
days) due to huge overheads for optimization operations and intersection
polynomial generation for interpolation in the homomorphic domain.

3 ”Total Comm. size” refers to the communication size of sent/received
data between all parties. **Bay et al. [17] omitted as they lack an
implementation level communication analysis and cannot handle 220

senders’ set size.

* Nevo et al. do not support more than 32 parties

Fig. 7. Total runtime comparison for Cong et al. [14] and Nevo et
al. [11] with ours. Senders’ set size is set to 215 and α = l

2
.

**Bay et al. omitted as they do not support 215 set size.

we assume that all senders have distinct elements. Senders’
set size is set to 27 for [17], but for the number of parties
higher than 128, 256, and 512, we set the senders’ set size to
28, 29, and 210 for us and [14], [11] respectively even though
it favors [17]. We report the runtime comparison using these
settings in Figure 5 (middle, left-zoomed).

[11] are extremely fast as they employ very efficient
OPPRF and OKVS-based primitives; however, they can only
handle up to 32 parties. For applications involving a limited
number of parties and malicious security, [11] is preferable.
[14] and [17] are better for applications having less than
around 300 parties but [17] are limited in set size. Our protocol
scales much better and is up to 1.5× and 2.4× faster than [17]
and [14] for up to 210 senders. Hence, our work is better for
a very high number of parties that require security against the
senders.

Communication and total runtime. We compare our



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

Fig. 8. Computation time for multiple query PSMT using our method
for handling multiple queries

protocol to [11] and [14] in Table V for communication
size. We limit l = 15 as [11] only provide communication
analysis for up to 15 parties in [ [11], Table 4]. Our protocol
outperforms [11] when the collusion level reaches α = l − 1,
though [11] excels at lower α values. [14] surpasses both our
method and [11] in terms of communication only. In Figure 7,
we show the total runtime latency of our protocol compared to
[14] and [11]. Even though [14] and [11] have lower latencies
for a smaller number of parties (due to unencrypted senders’
sets), ours is up to 2.4× faster for a higher number of parties
as we rely on summation-based aggregation.

Runtime for multiple queries. We implement our al-
gorithm of employing multiple queries in a single query
ciphertext, enabling receiver-side batching as described in
Section IV-F. In Figure 8, we show the computation time
required for a single sender to process the multiple queries
in PSMT for two example senders’ set sizes. We employ
multithreading using the OpenMP library to speed up the
homomorphic evaluations of multiple queries since they are
independent of each other. The query extraction time, primar-
ily involving homomorphic rotations and additions, accounts
for about 14 and 19 seconds of the total time for senders’ set
size 210 and 215, respectively, and it does not increase with
the increasing number of queries. We report the computational
overhead for handling multiple queries up to 512 only due to
memory constraints, as a single sender must manage multiple
homomorphic evaluations of these queries. Theoretically, our
algorithm can handle up to η queries for the communication
cost of a single query ciphertext.

Comparison with other works. [9] is close to our work in
the MPSI setting; however, it scales poorly for a large number
of parties, taking almost 300 seconds of computation time for
15 parties. [35] provide a maliciously secure MPSI based on
garbled bloom filters and k-out-of-N OT. [35] and [9] both
has been compared against [11] hence we do not compare
against [35] and [9]. [83] employ a multi-query reverse private
membership test protocol, but their implementation is not
compatible with multiple parties. [84] achieve maliciously
secure MPSI using bloom filters for large inputs; however,
they lack a public implementation for comparison.

VII. CONCLUSION

In this work, we introduce the concept of a multi-query
Private Segmented Membership Test (PSMT) for cases where
users wish to query a set held segmented among many data

holders while ensuring provenance privacy. We show a basic
protocol to solve PSMT based on approximate-arithmetic
threshold FHE and provide details about overcoming various
technical challenges to make our solution feasible. We extend
the naive protocol to handle multiple queries with a single
query ciphertext, achieving huge reductions in communication.
We further guarantee IND-CPAD by providing security and
privacy proof. Our experiment shows the scalability of our
protocol for both single and multiple queries, which aggregates
the results from data holders. In future work, we aim to explore
new avenues for further optimizations and discussions.
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