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Abstract. Hybrid Homomorphic Encryption (HHE) is considered a promising solution
for key challenges that emerge when adopting Homomorphic Encryption (HE). In cases
such as communication and computation overhead for clients and storage overhead
for servers, it combines symmetric cryptography with HE schemes. However, despite
a decade of advancements, enhancing HHE usability, performance, and security for
practical applications remains a significant stake. This work contributes to the field
by presenting a comprehensive analysis of prominent HHE schemes, focusing on their
performance and security. We implemented three superior schemes–PASTA, HERA,
and Rubato–using the Go programming language and evaluated their performance in
a client-server setting. To promote open science and reproducibility, we have made our
implementation publicly available on GitHub. Furthermore, we conducted an extensive
study of applicable attacks on HHE schemes, categorizing them under algebraic-
based, differential-based, linear-based, and LWE-based attacks. Our security analysis
revealed that while most existing schemes meet theoretical security requirements,
they remain vulnerable to practical attacks. These findings emphasize the need for
improvements in practical security measures, such as defining standardized parameter
sets and adopting techniques like noise addition to counter these attacks. This survey
provides insights and guidance for researchers and practitioners to design and develop
secure and efficient HHE systems, paving the way for broader real-world adoption.
Keywords: Applied Cryptography · HE-friendly Ciphers · Homomorphic Encryption
· Hybrid Homomorphic Encryption · Lattigo

1 Introduction
The versatile nature of Homomorphic Encryption (HE)—combined with the wide range
of its applications—has rendered it one of the most significant fields of research in recent
years. In 1978, one year after the introduction of RSA [RSA78], Rivest et al. suggested
HE serves as a solution against the incompatibility between user privacy and the need for
data delegation and computational requirements [RAD78]. HE performs computations
on encrypted data and produces an encrypted result that can be decrypted to the same
result as if the computations had been performed on unencrypted data. Several existing
public-key cryptosystems, including RSA [RSA78], ElGamal [ElG85], and Goldwasser-
Micali [GM19], present homomorphic properties, though none supports the computation of
arbitrary functions on ciphertexts. The goal of obtaining a fully homomorphic encryption
(FHE) scheme continued until Gentry’s breakthrough in 2009 [Gen09]. This scheme dealt
with the difficulty of specific mathematical problems concerning ideal lattices and enabled
unrestricted computations on encrypted data. Through unrestricted computation feature,
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FHE has been brought as the leading solution to many applications, such as private
information retrieval [ACLS18], private set intersection [CLR17, CHLR18, CMdG+21],
and privacy-preserving machine learning [HHCP18, LLL+22].

However, the practical adoption of FHE schemes in real-world applications is hindered
by high computational, storage, and communication requirements. FHE ciphertexts
impose significant storage and transfer overhead, leading to considerable storage and
communication costs. Historically, these inefficiencies were overlooked, as prior applications
assumed the availability of a hypothetical, resource-unlimited Cloud Service Provider (CSP).
However, FHE is ill-suited for resource-constrained environments, such as the Internet of
Things (IoT), fog computing, or federated learning in limited-capacity networks, where
numerous entities generate data and require privacy-enhancing technologies. Beyond these
scenarios, even in the context of unlimited resources, application owners face the financial
burden of storage costs, which increase rapidly when storing FHE ciphertexts for further
use.

As stated in [NLV11], HE schemes have yet to provide efficient communication and
computation on the client side, thus becoming inapplicable for many real-world scenarios.
This is when the idea of Hybrid Homomorphic Encryption (HHE) was put forth. HHE
integrates one or more HE schemes with a symmetric cipher to create a robust and
efficient encryption system [NLV11]. Employing a Symmetric Key Encryption (SKE)
scheme allows users to encrypt data with an encryption ratio that ensures ciphertext
sizes are nearly equal to plaintext sizes. This approach significantly reduces storage
and communication costs while offering low computational overhead compared to HE
schemes. The symmetrically encrypted ciphertexts are transmitted to and stored by a
CSP. Upon user request, the CSP employs a symmetric decryption circuit, implemented
homomorphically as a transform function, to convert the stored symmetric ciphertexts into
homomorphic ciphertexts. These homomorphic ciphertexts are then processed as inputs
for the requested computation, following the standard HE workflow. By integrating SKE
with HE, an HHE system enhances computational capabilities while mitigating the storage
and communication overhead commonly associated with HE schemes [DGH+23]. HHE
has already demonstrated its potential in various domains, including privacy-preserving
machine learning [BFM22, CHMS22, FNB+24, NBF+24] and IoT applications [HD24].

Note 1.1: HHE trade-off
HHE significantly reduces bandwidth requirements and computational costs on the
client side, as well as storage costs on the server side. However, this efficiency is
accompanied by increased computational overhead in the encrypted domain (i.e., server-
side computations) due to the SKE to HE ciphertext transformation.

1.1 Contribution
Though a variety of HHE schemes have been proposed over the past decade, to the
best of our knowledge, no published work attempts to analyze, compare, and evaluate
these schemes, and this is precisely what this work aims to do. Our contribution can be
summarized as follows:
C1. We lay the basic theoretical foundation allowing researchers to comprehend current

HE and HHE schemes.
C2. We provide a detailed description of how the most important HHE schemes–PASTA,

HERA, Rubato, and Elisabeth– work and make a thorough comparison.
C3. We analyze the security properties of current HHE schemes and demonstrate that,

although most existing schemes satisfy the necessary theoretical security properties,
they are still susceptible to attacks.

C4. We analyze various implementation aspects such as processing power, memory al-
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location, security, and ease of running a scheme. Furthermore, we elaborate on
the limitations preventing the existing HHE solutions from being implemented in
real-world settings. A real-world setting follows a client-server architecture, where
the client can use the symmetric cipher independently, and the server performs HHE
computations.

C5. We support open science and reproducible research by making our code available
online on GitHub. Specifically, to provide a fair and solid comparison of the examined
works, we built our HHE library with Go programming language, using a modular
approach, to run superior HHE schemes, namely PASTA, HERA, and Rubato.

1.2 Organization
The rest of this paper is structured as follows. Section 2 provides some necessary background
information to understand the core components of HE and HHE ciphers. Section 3 delivers
definitions and foundations for HE and four common HE schemes. Section 4 continues by
providing our universal definition of HHE and offers a brief history of HE-friendly ciphers.
Additionally, it elaborates on the building blocks of HHE schemes, highlighting their
enhancements over the years. It then outlines four cutting-edge HHE schemes and their
underlying techniques. Section 5 presents the evaluation results of our HHE implementation,
considering both client and server perspectives in a real-world setting. Section 6 discusses
the semantic security of an HHE scheme based on the universal definition we provided
earlier. Furthermore, we take the security analysis of HHE one step further by studying
and describing a wide range of attacks that can be applied to HE-friendly ciphers and
are not related to semantic security. Section 7 categorizes various attacks on HE-friendly
ciphers. Finally, in Section 8, we present the key insights, highlight identified research
gaps, and outline proposed directions for future work.

2 Background

2.1 Notation
Throughout the paper, vectors are represented in lowercase bold letters, and matrices in
capital letters. Let [n] be the set of integers from 1 to n. ⌊·⌉ denotes the nearest integer
to a real number, while ⟨·, ·⟩ represents the inner product of two vectors. [·]q signifies
the mod q reduction, and ∥v∥p denotes the ℓp-norm of the vector v. We denote λ as the
security parameter of a cryptosystem. For a probability distribution χ, we denote x

χ←− S
if x is sampled from a set S according to the distribution χ, with $ the uniformly random
distribution. Finally, DS,σ stands for the Gaussian distribution in a set S for width σ. We
use G to denote an additive group, Zp to denote the set of integers modulo p, Fp the field
of integers modulo p, and Rn the quotient ring Zn[X]/(P ) of polynomials over Zn[X] by
the ideal generated by an irreducible polynomial P . We use P to indicate the plaintext
space and C to indicate the ciphertext space. We use the notation v1 ⊙ v2 to represent
the element-wise product between two vectors. Finally, we use the terms pk, sk, and evk
to denote public, secret, and evaluation keys, respectively.

2.2 Substitution-Permutation Network (SPN)
SPN is a cryptographic construction used to design block ciphers [Fei73]. The SPN consists
of non-linear substitutions (S-boxes) and linear bit permutations based on confusion and
diffusion [Sha49]. N represents the block size of a basic SPN consisting of r-rounds of
n× n s-boxes [YTH96].
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Permutation. We call permutation any bijection of a set in itself. The permutation
of a vector x = (x1, . . . , xn) is a rearrangement of its elements

(
xσ(1), . . . , xσ(n)

)
, for

σ(i) ∈ [1, n] and σ(i) ̸= σ(j), i ̸= j.

S-Box. An essential part of designing a symmetric cipher is choosing an efficient S-Box
for the non-linear layer. Authors in [DGH+23] analyzed and compared different S-Boxes.
Here, we add the missing ones and redefine all with our notation for future use in Section 4.

χ-S-box: This is a non-linear function that takes as input a vector of n elements in Zq and
outputs a vector of n elements in Zq. The χ-S-box is defined as follows:

Sχ (x)i = xi + xi+2 + (xi+1 · xi+2) = xi + xi+2 · (1 + xi+1) .

Cube S-Box: Given a prime p, such that gcd(p− 1, 3) = 1, the cube S-Box is defined as
follows:

Sc(x)i = (xi)3
.

Feistel-Like S-Box via a Quadratic Function: The Feistel-like S-Box is defined as follows:

Sfq(x)i =
{

xi if i = 0,
xi + (xi−1)2 otherwise,

Feistel-Like S-Box via the χ-Function: The Feistel-like S-Box is defined as follows:

Sfχ(x)i =
{

xi if i ≤ 1,
xi + (xi−1 · xi−2) otherwise,

LowMC S-Box: For three input bits a, b, and c, the LowMC S-box is defined as follows:

Smc (a, b, c) = (a⊕ bc, a⊕ b⊕ ac, a⊕ b⊕ c⊕ ab)

2.3 Stream Ciphers

As defined in [QYS+23], most stream ciphers are a generic construction that can be
represented through a finite state machine characterized by the key (K), the initial vector
(IV ), and the internal state (S). An initialization function expands K and the initial value
of IV into an initial internal state. Subsequently, the internal state undergoes updates via
an update function, and the output function generates an output based on the final state.

PRNGIV

Permutation
Generator P

Key Register K

F⊕
ciphertextplaintext

Figure 1: Filter Permutator Construction [MJSC16]
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2.4 Filter Permutator
As illustrated in Figure 1, a filter permutator (FP) consists of a constant key register (K),
a permutation generator, a pseudo-random number generator (PRNG) initialized with a
public IV , a pseudo-random permutation (P ), and a non-linear filter function (F ). Based
on the PRNG output, the permutation generator applies a new bit-permutation to K in
each cycle. The filtering function F generates a keystream bit from the permuted key,
which is then XORed with the plaintext to create ciphertext.

2.5 Look-Up Table (LUT)
A look-up table L over a set S is an array of N elements in S, indexed by i ∈ [N ]. We
denote L[i] ∈ S, the value of L stored in position i. In this work, we only focus on
Negacyclic LUT (NLUT), defined below. Note that if we can define an LUT on any set,
an NLUT can only be defined over a group. In this article, this group is the real torus
T = R/Z.

Definition 1 (Negacyclic Look-Up Table (NLUT)). A negacyclic look-up table over T is
a look-up table of size 2N such that ∀i ∈ [N ], L[N + i] = −L[i]

In practice, an NLUT is represented by a polynomial P ∈ Zq,N [X]. Denote P =
a0 + a1X + . . . + aN−1XN−1, where 2N is the size of the LUT. The value of the i-th entry
is given by (X−i · P ) mod X. This polynomial representation allows the homomorphic
evaluation of an NLUT presented in Section 4.6.

2.6 Learning With Errors (LWE)
LWE was introduced and established by Regev in 2005 [Reg05, Reg09], showcasing its
comparable worst-case hardness properties through a quantum reduction. With the
diversification of cryptographic protocols, new variants of this problem have emerged,
such as RLWE [LPR13] or TLWE [CGGI20]. These variants reduce to the same hardness
assumption, which we call GLWE. Due to space constraints, we formally define only the
General LWE (GLWE) problem.

Definition 2 (GLWE sample). Let R be a ring and RN [X] := R[X]/(XN + 1) for N a
power of 2. For a positive integer k, a vector s $←− ZN [X]k and a polynomial µ ∈ RN [X],
we define GLWEs(µ) = (a, µ + ⟨s, a⟩ + e), where a $←− RN [X]k and e

χ←− RN [X] for an
error distribution χ. The trivial sample GLWEs(0R) = (a, ⟨z, a⟩ + e) is called the GLWE
distribution.

Definition 3 (GLWE problem). Let s $←− ZN [X]k be a secret vector.

• Search GLWE: Given GLWEs(0) = (a, ⟨z, a⟩+ e) and a distribution χ, find s;

• Decisional GLWE: Given a pair (a, b) ∈ RN [X]k+1 and the distribution χ, decide if
b is chosen at random, i.e. b

$←− RN [X], or if it follows a GLWE distribution that is
(a, b) = GLWEs(0R).

The classical LWE problem stated by Regev corresponds to the case N = 1 and
R = Zq, for q a power of a prime. In short, an LWE sample is given by LWEs(µ) =
((a1, . . . , ak), µ + ⟨s, a⟩+ e), for a = (a1, . . . , ak) ∈ Zk

q , s ∈ Zk, µ ∈ Zq and e
χ←− Zq.

General Gentry-Sahai-Waters (GGSW). A GGSW encryption, named after Gentry
et al. [GSW13] who first introduced it, is an extension of GLWE. In a nutshell, it is given
by a vector of GLWE distributions. Consider an integer plaintext µ ∈ ZN [X]k and a
vector s $←− ZN [X]k. For d > 0 its depth and a basis β > 0, a GGSW sample is given by
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GGLWs(µ) = Z + µ ·G(β) ∈ TN [X]d(k+1)×(k+1), where Z is a matrix of d(k + 1) GLWE
distributions and G(β) is the gadget matrix in TN [X]d(k+1)×(k+1) given by G

(β)
i,j = Ik+1⊗g

for Ik+1 the identity matrix, ⊗ the tensor product and g the vector of size d given by
gi = β−i, i ∈ [d].

3 Homomorphic Encryption

In this section, we first present the general HE definition and its correctness. Subsequently,
we explore the four HE schemes commonly employed across various HHE schemes.

Over the years, researchers have developed three types of HE: Partially Homomorphic
Encryption (PHE), Somewhat Homomorphic Encryption (SHE), and Fully Homomorphic
Encryption (FHE), each with distinct properties and capabilities. FHE, though computa-
tionally intensive and resource-demanding, enables arbitrary computations on ciphertexts,
including addition, multiplication, and other complex operations. In contrast, PHE sup-
ports only a single operation, either addition or multiplication, making it computationally
less demanding but significantly less flexible than FHE. SHE offers an intermediate solution,
allowing a limited number of additions and multiplications while being more practical than
PHE and less resource-intensive than FHE.

Since the groundbreaking work by Gentry [Gen09], numerous HE schemes have emerged
to handle diverse data types. Notably, recommended by Homomorphic Encryption Stan-
dard [ACC+21], the Brakerski-Gentry-Vaikuntanathan (BGV) scheme [BGV12] supports
modular arithmetic over finite fields, enabling computations on vectors of integers in Zq with
q ≥ 2. Similarly, the Brakerski/Fan-Vercauteren (B/FV) scheme [Bra12, FV12] operates
over finite fields and facilitates computations on integer vectors. The Cheon-Kim-Kim-Song
(CKKS) scheme [CKKS17] allows approximate computations on vectors of real and com-
plex numbers. Additionally, the Torus FHE (TFHE) scheme [CGGI16, CGGI17, CGGI20]
employs boolean circuits and decision diagrams for low-precision integers [CJP21]. Each
HE scheme is meticulously designed to achieve specific optimization goals. BGV, B/FV,
and CKKS prioritize minimizing the multiplicative depth in their decryption circuits, while
TFHE focuses on reducing the gate count required for decryption operations.

Def. 3.1: General HE Definition
An HE := (KeyGen, Enc, Eval, Dec) scheme is a tuple of four algorithms defined as follows:

1. KeyGen
(
1λ

)
takes as input a security parameter λ and outputs the public key pk,

the secret key sk and the evaluation key evk;

2. Enc (pk, m) takes as input the public key pk and a message m and outputs a
ciphertext cm;

3. Eval (evk, f, (cm1 , . . . , cmn)) takes as input the evaluation key evk, a function f and
an n-tuple of ciphertexts (cm1 , . . . , cmn) and outputs a ciphertext cf ;

4. Dec
(
sk, cf

)
takes as input the secret key sk and a ciphertext cf and outputs mf .

Correctness: An HE scheme is correct if:

Pr
[
Dec

(
sk, cf

)
̸= f(m1, . . . , mn)

∣∣ [
(pk, sk, evk)← KeyGen

(
1λ

)]
∧

[
cf ← Eval (evk, f, (cm1 , . . . , cmn))

]]
= negl(λ).
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3.1 BGV
BGV is an SHE scheme based on RLWE that supports modular arithmetic over finite
fields [BGV12]. BGV construction is scale-dependent, relying on a predetermined sequence
of moduli Q = {q0, q1, . . . , qL}. Each modulus is the ciphertext scale for a certain level of
operation, and each multiplication requires a modulus switch.

Setup. Given a security parameter λ, generate two integers t, n > 0 and q0 < . . . < qL

a sequence of powers of prime qℓ with ℓ ∈ [L]. Then set P = Rt = Zt[X]/(Xn + 1) the
plaintext space and C = Rql

×Rql
the ciphertext space at level ℓ, forRql

= Zql
[X]/(Xn + 1).

Finally, denote Dql,σ the discrete Gaussian distribution over Rql
of width σ. The BGV

algorithms are illustrated in Definition 3.2.

Def. 3.2: BGV

1. KeyGen
(
1λ

)
takes as input a security parameter λ. Sample sk $←− R with coef-

ficients in {−1, 0, 1}, a
$←− RqL

, and e ← DqL,σ; set pk = (b, a) ∈ R2
qL

, where
b← [−a · sk + t · e]qL

, and evk = (b′, a) ∈ R2
qL

, where b′ ←
[
−(a · sk + e) + sk2]

ql
;

outputs (sk, pk, evk);

2. Enc(pk, m) takes as input the public key pk and a plaintext m ∈ P. Sample u
$←− R

with coefficients in {−1, 0, 1}, and e1, e2 ← Dqℓ,σ. Set c1 ← [b · u + t · e1 + m]qℓ
and

c2 ← [a · u + t · e2]qℓ
; outputs c = (c1, c2);

3. EvalAdd
(
c(1), c(2)) takes as input two ciphertexts c(1), c(2) and computes cadd

1 ←[
c

(1)
1 + c

(2)
1

]
qℓ

and cadd
2 ←

[
c

(1)
2 + c

(2)
2

]
qℓ

; outputs cadd = (cadd
1 , cadd

2 );

4. EvalMult
(
c(1), c(2)) takes as input two ciphertexts c(1), c(2) and computes c =

(c1, c2, c3) ←
([

c
(1)
1 · c

(2)
1

]
qℓ

,
[
c

(1)
1 · c

(2)
2 + c

(1)
2 · c

(2)
1

]
qℓ

,
[
c

(1)
2 · c

(2)
2

]
qℓ

)
. Set cmult ←

Relinearize (evk, c); outputs cmult;

5. Relinearize(evk, c) takes as input the evaluation key evk = (b′, a) and c =
(c1, c2, c3), compute c1 ← [c1 + b′ · c3]ql

and c2 ← [c2 + a · c3]ql
; outputs c = (c1, c2);

6. ModSwitch(evk, c) takes as input the evaluation key evk, a ciphertext c encrypted
modulo qℓ; computes c′ ←

⌊
qℓ

qℓ−1
· c

⌉
; outputs c′;

7. Dec(sk, c) takes as input the secret key sk and the ciphertext c. Compute m′ ←
[c1 + c2 · sk]qℓ

.

For simplicity and due to space constraints, we will not redefine functions for other HE
schemes sharing the same principles as BGV.

3.2 B/FV
B/FV is another SHE scheme that supports modular arithmetic over finite fields [Bra12,
FV12]. B/FV is scale-independent, meaning the ciphertext modulus remains constant
during homomorphic evaluation. The plaintext and the ciphertext spaces are defined over
two polynomial rings denoted by P = Rt, and C = Rq ×Rq. Unlike the BGV scheme, in
B/FV, the plaintext is placed on the most significant bits of the data structure. This is
achieved by utilizing a scale factor, denoted as ∆, and adjusting the message’s scale before
encryption and after decryption. The B/FV is outlined in Definition 3.3.
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Def. 3.3: B/FV

1. ScaleUp
(
m, ∆ =

⌊
q
t

⌋)
takes as input the message m and scale factor ∆ and outputs

m′ = ∆ ·m;

2. ScaleDown
(

m′, ∆−1 =
⌊

t
q

⌋)
takes the scaled-up message m′ and reverse scale factor

∆−1, and outputs m = ∆−1 ·m′.

3. KeyGen
(
1λ

)
outputs (sk, pk, evk);

4. Enc (pk, m′) outputs c;

5. EvalAdd
(
c(1), c(2)) outputs cadd;

6. EvalMult
(
c(1), c(2)) outputs cmult;

7. Relinearize (evk, c) outputs c;

8. Dec (sk, c) outputs m′, all are similar to BGV.

3.3 CKKS

CKKS is an SHE scheme permitting approximate computation on vectors of real and
complex numbers [DM15]. CKKS operates as a scale-dependent HE scheme, where the
ciphertext modulus adapts throughout homomorphic evaluation, akin to the BGV scheme.
The plaintext and ciphertext spaces are defined in the same way as P = R and C = R2

q.

Encoding. We consider a message as a vector of complex numbers z ∈ Cn/2 and provide
an encoding to convert z into a suitable plaintext. This method relies on a scaling factor ∆
and the canonical embedding π : Rn → Cn/2. This construction is detailed in [CKKS17].

Def. 3.4: CKKS
1. Encode (z, ∆) takes as input a vector z ∈ Cn and the scale factor ∆. Maps z into

element w ∈ R, where w ←
⌊
∆ · π−1(z)

⌉
; outputs w;

2. Decode (w, ∆) takes a plaintext ring element w ∈ R, and computes z← π
(
∆−1 · w

)
;

outputs z;

3. Rescale (cqℓ
, ∆) scale the input ciphertext c down by ∆ such that c′

qℓ−1
= ∆−1 ·

[(c1, c2)]qℓ
, similar to BGV ModSwitch, outputs c′

qℓ−1
;

4. KeyGen
(
1λ

)
outputs (sk, pk, evk);

5. Enc (pk, m) outputs c;

6. EvalAdd
(
c(1), c(2)) outputs cadd;

7. EvalMult
(
c(1), c(2)) outputs cmult;

8. Relinearize (evk, c) outputs c;

9. Dec (sk, c) outputs m′, all similar to BGV.
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3.4 TFHE
TFHE is an FHE scheme founded on bootstrapping. Unlike the leveled HE schemes,
TFHE is fully homomorphic, enabling support for any logical circuit and, consequently,
any function. TFHE is particular because it uses two types of encryption: the classical
LWE ciphertext and the so-called General-GSW ciphertext. The latter permits efficient
homomorphic multiplications.

Bootstrapping. To define a proper cryptosystem, one has to guarantee that any ciphertext
can be decrypted correctly. As homomorphic operations tend to increase noise, it is
necessary to provide a method to keep the noise of a ciphertext under a given bound. This
can be achieved with a technique known as bootstrapping, which consists in refreshing the
encryption of a message into a new ciphertext, hence resetting the noise to an acceptable
level. We refer the reader to the article of A. Al Bawadi and Y. Polyakov [ABP23] for
more information on bootstrapping.

Let B = {−1, 0, 1}, and T be the real Torus, i.e. the set of real numbers modulo one. For
q, N > 0 two powers of 2, we denote TN [X] = TN [X]/(XN + 1), BN [X] = B[X]/(XN + 1)
and Zq,N [X] = Zq[X]/(XN + 1). Let β > 0 and d ∈ Z be two integers, called the base
and the depth, respectively.

Def. 3.5: TFHE

1. KeyGen
(
1λ

)
takes as input a security parameter λ. Sample k = k(λ) polynomials

sk := (s1, . . . , sk) $←− (Bq,N [X])k. Set pk := (a, b) ← GLWEsk(0), outputs the keys
(pk, sk).

2. Enc(pk, m) takes as input the public key pk and a message m ∈ Zq,N [X]. Compute
c← (a, b + m + e) = GLWEsk(m) ∈ (Zq,N [X])k+1, for e

χ←− Zq,N [X] and outputs c;

3. EvalMult(G, c) takes as input a GGSW ciphertext G and a GLWE ciphertext c.
First compute (c)β ← ((a1)β , . . . , (ak)β , (b)β) ∈ Zq,N [X]d(k+1) where ( · )β is the
decomposition in basis β. Compute the GLWE ciphertext cmult ← (c)β ·G; outputs
cmult;

4. KeySwitch(sk′, c) takes as input a new secret key sk′ and a GLWE ciphertext
c = (a, b). Define the key-switching key K ∈ Zq,N [X]d·k×(k+1) as the first d · k
rows of GGSWsk′(1). Compute the GLWE ciphertext c′ ← (0, b) − EvalMult(K, a)
encrypted under sk′; outputs c′;

5. CMux(B, c0, c1) takes as input two GLWE ciphertexts c0, c1 of plaintexts m0, m1
and a GGSW ciphertext B of a bit b. Compute the GLWE ciphertext c3 ←
EvalMult(B, c1 − c0) + c0, which is an encryption of mb with fresh noise; outputs
c3;

6. Dec(sk, c) takes as input the secret key sk and a ciphertext c. Compute b−
∑n

i=1 ai ·
si = m + e. Then, round to the nearest integer to output the message m.

Mark that a GLWE ciphertext mentioned in Definition 3.5 is an LWE ciphertext if N = 1
and an RLWE ciphertext if k = 1.

Classical methods to achieve bootstrapping are usually too slow and, thus, impractical.
TFHE introduces a novel idea that consists of running the bootstrapping together with the
evaluation of a look-up table. Given as input G, a GGSW encryption of an NLUT L, and c
the LWE encryption of a message m, one can compute directly a fresh ciphertext c′ of L[m].
This method requires a heavy usage of the CMux algorithm that can be optimized using
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programmable bootstrapping. We refer the reader to the articles of Chillotti et al. [CGGI20]
and Cosseron et al. [CHMS22]

4 Hybrid Homomorphic Encryption

In this section, we introduce a novel definition for HHE schemes, while in Section 6, we
use it to define HHE semantic security. Additionally, we conduct a literature analysis on
the diverse techniques and design approaches employed in creating HHE schemes. Our
study is divided into two parts: a brief history of HE-friendly symmetric ciphers and an
examination of state-of-the-art HE-friendly ciphers and their characteristics. Within the
context of HE, high computational costs and significant ciphertext expansion are two
major challenges real-world applications face.

To tackle the mentioned issues, researchers in [NLV11] proposed a hybrid approach,
where the plaintext m is symmetrically encrypted using a randomly chosen key K by a
client. The resulting ciphertext cm is much smaller than a homomorphic ciphertext, with
an encryption ratio of |cm|/|m| ≈ 1. The client then sends cm along with homomorphically
encrypted K to a remote location, such as a cloud service provider. Here, cm is transformed
into a homomorphic ciphertext cevl by evaluating the SKE decryption circuit.

With this in mind, we provide a formal definition of HHE that takes up the construction
provided by Dobraunig et al. [DGH+23]. At this point, it is important to highlight that
the definition of their proposed encryption algorithm was misleading, rendering impossible
a universal definition and proper security analysis. Therefore, we extend the definition of
HHE with an encapsulation algorithm (Encap). This algorithm specifically manages the
generation of the symmetric key and its encryption into a homomorphic ciphertext.

Let HE := (KeyGen, Enc, Dec, Eval) be a homomorphic encryption scheme and SKE :=
(Gen, Enc, Dec) be a symmetric cipher. A hybrid homomorphic encryption scheme is a
tuple of the six algorithms HHE := (KeyGen, Encap, Enc, Decomp, Eval, Dec) as follows:

Def. 4.1: Universal HHE Definition

1. KeyGen
(
1λ

)
takes as input a security parameter λ and generates the homomorphic

keys (pk, sk, evk)← HE.KeyGen
(
1λ

)
, outputs (pk, sk, evk);

2. Encap (pk, 1µ) takes as input the public key pk, a security parameter µ and
computes the symmetric key K ← SKE.Gen (1µ) and its homomorphic encryption
cK ← HE.Enc(pk, K), outputs (K, cK);

3. Enc(K, m) takes as input, the symmetric key K and a message m and computes the
ciphertext cm ← SKE.Enc(K, m), outputs cm;

4. Decomp(evk, cK, cm) takes as input the evaluation key evk, the homomorphically
encrypted symmetric key cK and a symmetric ciphertext cm, computes cevl

m ←
HE.Eval

(
evk, SKE.Dec, (cK, cm)

)
, outputs cevl

m ;

5. Eval
(
evk, f,

(
cevl

m1
, . . . , cevl

mn

))
takes as input the evaluation key evk, a function f

defined in the ciphertext space of HE and a n-tuple of homomorphic ciphertexts cevl
mi

and computes cf ← HE.Eval
(
evk, f,

(
cevl

m1
, . . . , cevl

mn

))
, outputs cf ;

6. Dec
(
sk, cf

)
takes as input the homomorphic secret key sk and a ciphertext cf and

computes mf ← HE.Dec
(
sk, cf

)
, if the message mf is valid, outputs mf ; otherwise

outputs ⊥.
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Correctness: Additionally, an HHE scheme is correct if:

Pr
[
Dec

(
sk, cf

)
̸= f (m)

∣∣ [
(pk, sk, evk)← KeyGen

(
1λ

)]
∧

[
cf ← Eval

(
evk, f, cevl

m
)]

∧
[
cevl

m ← Decomp (evk, cK, cm)
]
∧ [(K, cK)← Encap (pk, 1µ)]

]
= negl (λ, µ) .

The correctness of HHE is achieved if both HE and SKE are correct.

4.1 Standard Symmetric Ciphers

Initially, homomorphic evaluation of standard symmetric ciphers such as AES [DR05, JV02]
has received considerable attention [GHS12, BHKR13, CCK+13, CLT14]. Yet, the early
implementations of homomorphic AES faced significant performance drawbacks. For
example, the work in [GHS12] by Gentry et al., utilizing the BGV scheme, achieved
a running time of 5 minutes in Byte mode and 40 minutes in SIMD mode per block.
Additionally, researchers experimented with other ciphers, such as PRINCE [BCG+12],
which yielded an evaluation time of 3.3 seconds per block [DSES14]. The performance
drawbacks of these schemes are due to the extensive multiplicative depth in their circuit.
Pointing it out, authors in [ARS+15] indicated the need for new symmetric HE-friendly
Ciphers with a lower multiplication complexity and smaller multiplicative depth while
maintaining the same level of security. Early implementation of their proposed HE-friendly
cipher LowMC had an evaluation time of 0.36 seconds per block, outperforming its
counterparts by orders of magnitude. Eventually, it divided research in the HHE field
into two branches, both with a focus on real-world applications: (a) Improving the
performance of traditional ciphers such as AES to be more practical, and (b) Designing
new HE-friendly ciphers and employing them in combination with different HE schemes
for various applications. In this paper, we primarily focus on the HE-friendly
ciphers. However, we refer readers interested in the first branch to [ADE+23], an efficient
HHE scheme to perform AES over CKKS, where the authors provided a comprehensive
comparison with the previous AES-based HHE schemes. Likewise, works in [TCBS23,
WWL+23] attempted to enhance the computation costs of running AES using the TFHE
scheme.

4.2 HE-friendly Symmetric Ciphers

As depicted in Figure 2, many HHE schemes have been proposed in recent years, most of
which are based on one of two main design approaches for HE-friendly ciphers: (1) SPN-
based ciphers (mainly utilizing s-boxes and matrix multiplication) and (2) Register-based
stream ciphers (employing filter permutation functions). We briefly introduce these two
design approaches and their historical improvements by studying the first generation of
HHE schemes. We then provide more detail for their successors.
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Figure 2: Timeline of HHE Evolutions 1: SPN-based ciphers, 2: Register-based
ciphers, 3: Homomorphic AES
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SPN-based approach. In 2015, LowMC [ARS+15], the first HE-friendly cipher, was
introduced. LowMC is designed to minimize the number of nonlinear operations by
using efficient s-boxes while depending on a robust linear layer to ensure its security.
Subsequently, the authors in [DEG+18] expanded on the concept of incorporating a robust
linear layer, further developing the idea by proposing Rasta and Agrasta. Rasta uses a
publicly chosen and fixed substitution layer. The affine layers are formed using a public
nonce and a counter, ensuring that no affine layer is likely ever to be reused under a single
key, which makes a large part of the computation nonce-dependent but key-independent.
Agrasta is the aggressive variant whose key and block sizes are equal to the security level
proposed to explore Rasta’s limits. Let N , i, r, Sχ, and x be the nonce, block counter,
round counter, s-box, and input vector, respectively. Let Mj,N,i, cj,N,i be the n× n binary
matrix and round constant generated by an extendable output function (XOF) (see detail
in [Dwo15]). Rasta’s affine layer Ar,N,i is as follows:

Ar,N,i = Mj,N,i · x⊕ cj,N,i

Given K and (N, i), Rasta’s keystream is ksN,i ← K⊕ PN,i(K), where

PN,i = Ar,N,i ◦ Sχ ◦Ar−1,N,i ◦ . . . ◦ Sχ ◦A1,N,i ◦ Sχ ◦A0,N,i.

Authors in [HL20] found that using XOF to generate random matrices makes the pre-
computation phase slower because of the costly restriction of checking matrix invertibility.
Therefore, they designed Dasta – a variant of Rasta that avoids the use of XOF. Instead
of randomly generated linear layers, which are random invertible binary matrices, the
authors consider linear layers to be split into two parts: (1) a variable bit permutation
and (2) a fixed linear transformation. Another variant of Rasta called Masta [HKC+20]
employed modular arithmetic to support HE schemes over a non-binary plaintext space.
Its advantage over Rasta lies in the reduced computational cost on the client side, which
is achieved by defining affine layers with finite field multiplication, resulting in improved
performance. FASTA [CIR22] as a variant of Rasta designed for efficient homomorphic
packed evaluation over BGV schemes. Its linear layer, a rotation-based transformation,
is combined with five parallel calls of a specific Rasta instance. Each of these instances
operates with the 329-bit key and contributes to generating a portion of the keystream.
Chaghri [AMT22], a recently proposed SPN-based cipher, follows the Marvellous design
strategy [AABS+20]. It operates in rounds, with each round comprising three layers:
S-box, linear, and subkey injection. The subkeys for injection are derived from the master
key using a key schedule algorithm. In the S-box layer, a power map xa is applied to
each state element, followed by an invertible affine transformation. Regrettably, Chaghri’s
author only compared their work with AES, achieving a running time of 54.32 seconds per
block compared to 97.84 seconds per block for AES. Chaghri fails to surpass other HHE
schemes in performance. Consequently, we have left it out of the state-of-the-art schemes.

Register-based approach. In 2015, the authors of Kreyvium [CCF+15] proposed a
completely different approach, relying on tailor-made stream ciphers. Kreyvium is a variant
of the Trivium [DCP08] stream cipher, designed to deliver 128-bit security while preserving
its performance attributes. Trivium is a stream cipher that has garnered recommendation
within the eSTREAM portfolio of stream ciphers [ECR12]. The authors introduced a new
HHE structure (Figure 3) consisting of two phases: the offline and online phases. The
offline phase is independent of the plaintext and can be completed in advance. In contrast,
the online phase is executed upon receiving the symmetric ciphertext, which depends on
the plaintext input.
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HE.Eval(evk,⊕,(cks, cm))

cevl

Figure 3: Kreyvium HHE framework [CCF+15]

Kreyvium’s plaintext space has been considered as {0, 1}. The stream cipher is
a combination of an expansion function G, which maps ℓIV -bit strings to strings of
arbitrary size, and a fixed-size parametrized function F with input size ℓx, parameter
size ℓK and output size N. The expansion function G is a CTR mode counter defined as
G (IV, t · ℓx) = (IV, IV ⊞ 1, . . . , IV ⊞ (t− 1)) where a⊞b = (a+b) mod 2ℓx . Additionally,
F is designed to generate the keystream using a synchronization function that takes the
IV and K and outputs an n-bit initial state, a transition function that computes the next
state, and a filtering function that takes the internal state and computes the keystream
based on that.

The authors of FLIP [MJSC16] proposed an alternative method with a similar objective.
FLIP stream cipher incorporates a filter permutator using a forward PRNG [BY03] based
on AES-128, the Knuth shuffle [D+97] bit permutation generator, and a filter function.
This design achieves consistent noise reduction when integrated with HE schemes. FLIP’s
authors propose a boolean filtering function optimized for FHE schemes like GSW [GSW13]
and FHEW [ASP14]. The authors introduced a novel framework, named Homomorphic
Encryption-Symmetric Encryption (HE-SE), comprising five steps, as illustrated in Figure 4.
FLIP has shown certain security weaknesses [DLR16]. In response to these vulnerabilities,
the authors introduced FiLIP [MCJS19], an enhanced iteration of FLIP, adopting the
Improved Filter Permutator (IFP) paradigm. The main advantage of IFPs is that they
can apply to any filtering function and register size, providing a general framework for
determining the security of IFP instances. FiLIP’s authors coined the term Transciphering
adopted widely among other HHE schemes. The homomorphic evaluation of the SKE
cipher’s decryption circuit is known as transciphering, and it is the most resource-intensive
part of HHE frameworks. It is noteworthy that transciphering is often denoted by terms
such as decompression or decomp in the context of HHE schemes.
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)
K← SKE.Gen

(
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)
cK ← HE.Enc(pk, K)
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cevl
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(
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(
cevl
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mn

))

f (m)← HE.Dec
(
sk, cf

)

choose f

Figure 4: General HHE framework [MJSC16]

Ultimately, recent HHE design advancements have suggested schemes such as PASTA,
HERA, and Rubato, leveraging robust linear layers and S-boxes. In addition, Elisabeth
follows the FP design paradigm. The subsequent sections delve into the specifics of these
diverse HHE schemes.

4.3 Pasta
Pasta [DGH+23] is a new stream cipher optimized for integer use cases over Fp. Pasta’s
authors provide an extensive comparison of different existing symmetric ciphers in the
context of HHE spanning several libraries. Their results show that Pasta achieves a better
balance between ciphertext expansion and computational efficiency compared to existing
symmetric ciphers. This better balance is accomplished by combining efficient techniques
for the S-boxes and linear layers specifically tailored for integer arithmetic over Fp. The
design of PASTA is based on the Rasta design strategy, namely splitting the cipher into two
parallel branches to optimize the linear layer. Taking K as an input, Pasta’s permutation
is as follows:

PN,i = Ar,N,i ◦ Sc ◦Ar−1,N,i ◦ Sfq ◦Ar−2,N,i ◦ . . . ◦A1,N,i ◦ Sfq ◦A0,N,i

It utilizes two types of S-boxes, as previously defined in Section 2. Further, similar to
Rasta, Pasta’s affine layer was defined as follows:

Aj,N,i =
[
2 · I I

I 2 · I

] [
Mj,L,N,i(xL) + cj,L,N,i

Mj,R,N,i(xR) + cj,R,N,i

]
where I, M ∈ Ft×t

p , and c ∈ Ft
p represent the identity matrix, invertible matrix, and

constant for each round, respectively. It is worth noting that FASTA was introduced
after Pasta; however, the authors abstained from a direct comparison between FASTA
and Pasta. Instead, they asserted that FASTA’s design signifies an improvement over the
Rasta and Dasta schemes.
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4.4 HERA
HERA [CHK+21] is an HE-friendly stream cipher with a randomized key schedule. HERA’s
author proposed a new transciphering framework called RtF (Real-to-Finite-field) for
efficient computation over encrypted data of real numbers using HE. The framework
combines the CKKS and BFV homomorphic encryption schemes and uses HERA stream
cipher with modular arithmetic in between. Following the design paradigm of Kreyvium,
RtF also incorporates two distinct phases for offline and online computation. HERA
encrypts a real message vector m ∈ Rn on the client side and converts the ciphertexts into
the corresponding CKKS ciphertexts on the server side. The main idea behind the HERA
cipher is to use a simple randomized key schedule to generate a set of polynomials over
Zt in unknowns {k0, . . . , k15}, where ki ∈ Zt denotes the i-th component of the secret key
K ∈ Z16

t . Taking K as an input, HERA’s permutation is as follows:

PN = Finr,N ◦ RFr−1,N ◦ . . . ◦ RF1,N ◦KSD0,N ,

where Fin, RF , and KSD denote the final round function, round function, and key
scheduler, respectively. For each round 1 < i < r − 1, the round function is defined as

RF i,N = KSDi,N ◦ Sc ◦MixRows ◦MixColumns

Additionally, the last round function operates on the final round r as

Finr,N = KSDr,N ◦MixRows ◦MixColumns ◦ Sc ◦MixRows ◦MixColumns

Finally, the key scheduler component is a product between a uniformly random value
rc ∈ (Z16

t )r+1 obtained from an XOF function fed by a nonce N , and K, denoted as
KSDi,N (x) = x + K ⊙ rci. Compared to other HE-friendly ciphers, such as FLIP and
Rasta, which use randomized linear layers, HERA requires fewer random bits, significantly
improving its efficiency on both the client and server sides.

4.5 Rubato
Rubato [HKL+22] is a family of noisy ciphers for approximate homomorphic encryption
based on HERA design. Rubato introduces noise to a symmetric cipher of low algebraic
degree, significantly reducing multiplicative complexity without compromising security.
Rubato operates in the same transciphering framework as RtF. It takes a symmetric key
and a nonce as input and returns a keystream. The keystream is generated by applying
linear and nonlinear transformations to the input key and nonce. The noise is introduced
during the encryption process, resulting in a noisy cipher that is not suitable for the
transciphering of exact data. Same as HERA, Rubato uses a randomized key schedule to
generate a set of polynomials over Zq in unknowns {k0, . . . , kn}, where ki ∈ Zq denotes
the i-th component of the secret key K ∈ Zn

q . Taking K as an input, Rubato’s permutation
is as follows:

PN = NF ◦ Finr,N ◦ RFr−1,N ◦ . . . ◦ RF1,N ◦KSD0,N

where NF , Fin, RF , and KSD denote the adding noise, final round, round functions, and
key scheduler, respectively. For each round 1 < i < r − 1, the round function is defined as

RF i,N = KSDi,N ◦ Sfq ◦MixRows ◦MixColumns

Additionally, the last round function operates on the final round r as

Finr,N = TRn,l ◦KSDr,N ◦MixRows ◦MixColumns ◦ Sfq ◦MixRows ◦MixColumns,

where TRn,l : Zn
q → Zl

q is the truncation function. Same as HERA, the key scheduler
denoted as KSDi,N (x) = x + K ⊙ rci, where rc ∈ (Zn

q )r+1. Finally, Gaussian noise is
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added to the output of the final round (x1, . . . , xl) as NF(x) = (x1 + e1, . . . , xl + el), where
(e1, . . . , el) are l elements sampled from a one-dimensional discrete Gaussian distribution.
For a given message vector m ∈

(
Rl

)b, Rubato encryption is defined as c = ⌊∆ ·m⌉+ ks
mod q, where ks ∈

(
Zl

q

)b is the keystream of b-block generated by the Rubato cipher,
and ∆ ∈ R is the scaling factor. Compared to Pasta and HERA, Rubato exhibits lower
multiplicative depth and demands fewer random bits for linear layers.

4.6 Elisabeth
Elisabeth [CHMS22] is a stream cipher optimized for the TFHE scheme. It provides
a variety of server-side operations for homomorphic evaluation, especially for neural
network inference. It uses a Group Filter Permutator (GFP) paradigm. The filters in
Elisabeth’s design use the fewest levels possible of NLUT to parallelize computation
efficiently. Taking K ∈ Zn

q as input, with q a power of two, Elisabeth’s i-th keystream is
ksi = F (Pi (Si(K)) + wi), where Si : Zn

q → Zk
q is a subset extraction function that picks

at random k elements in Zn
q , Pi is a random permutation and wi

$←− Zk
q is a random mask.

F : Zk
q → Zq is the filter function, defined as:

F (x1, . . . , xk) =
k/t⊕
i=1

f(x1, . . . , xt)

with
⊕

the direct sum over Zq, t a divisor of k, and f : Zt
q 7→ Zq a sequence of additions

and NLUT evaluations. The choice of t and the definition of f are key parameters towards
the optimization of Elisabeth stream cipher. We refer the reader to the complete analysis
provided by Cosseron et al. [CHMS22] for more detail on the NLUT choices and the
construction of f .

5 Evaluation
We commence by examining the specifications of various HHE ciphers to provide a compre-
hensive overview of their distinct properties. Our analysis summarizes the implementation
of each HHE scheme based on the authors’ claims and their support for open science.
Subsequently, we assess the performance of three cutting-edge HHE schemes: PASTA,
HERA, and Rubato, in a real-world setting, employing our implementation. The source
codes for both the client and server sides are composed in Golang version 1.21.5, leveraging
the Lattigo library [lat23] version 5.0.2. This library presently supports B/FV, BGV,
and CKKS schemes. Our experiments were conducted in a single-threaded environment,
with the client side operating on a laptop equipped with an Intel Core i5-9300H CPU @
2.40GHz and 16GB memory and the server side on a PC powered by an Intel Core i7-8700
CPU @ 3.20GHz with 64GB memory.

5.1 Implementations of HHE Ciphers.
As depicted in Table 1, various HHE ciphers have been proposed, each with different
properties. Most of these ciphers are designed to operate with one or more HE schemes,
depending on the plaintext space and data type. To incorporate these HHE ciphers into
an HHE framework, it is necessary to implement the decryption circuit using a library
that provides an Application Programming Interface (API) to support the requisite HE
scheme. There are numerous libraries available for implementing HE schemes. We direct
the reader to [GMT23], where the authors thoroughly analyze these diverse libraries to
ascertain their respective strengths and weaknesses.
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Table 1: HHE Ciphers Properties
Cipher T1 Supported HE Security (bits) Tool Field
LowMC B B/FV, BGV, TFHE 80, 128, 256 S-box F2
Kreyvium S B/FV, BGV, TFHE 128 FP F2
FLIP S B/FV, BGV, TFHE 80, 128 FP F2
R & A 2 S B/FV, BGV, TFHE 80, 128, 256 S-box F2
FiLIP S B/FV, BGV, TFHE 80, 128 FP F2
Dasta S B/FV, BGV, TFHE 80, 128, 256 S-box F2
Masta S B/FV, BGV 80, 128 S-box Fp

PASTA S B/FV, BGV 80, 128 S-box Fp

FASTA S B/FV, BGV 128 S-box F2
HERA S CKKS 80, 128, 256 S-box Fp

Rubato S CKKS 80, 128 S-box Fp

Elisabeth S TFHE 128 FP F16, F2
Chaghri B BGV 128 S-box F2
1 T denotes cipher type, S: Stream cipher and B: Block cipher
2 Rasta and Agrasta

We have examined the available implementations for various HHE schemes to com-
prehend the proposed HHE framework and ensure the fairness of their experiments. Our
findings, which are presented in Table 2, illustrate the availability of various cipher im-
plementations that support open science, and it also compares these ciphers with their
counterparts. As Table 2 illustrates, recent schemes such as PASTA, HERA, and Elisabeth
are accompanied by open-source implementations, enabling comparisons with numerous
other HHE schemes.
The authors of PASTA provide a comprehensive framework named hybrid-HE- frame-
work [Hyb21], which includes implementations for comparing eight ciphers across three
different libraries. The authors of HERA implemented their RtF-Transciphering frame-
work [RtF21] using the Lattigo library, providing implementations only for HERA and
Rubato. However, they claim to compute comparison metrics with other works directly
from Dasta [HL20], which is not implemented in the same programming language, leading
to an unfair comparison. The authors of Elisabeth used the Concrete Library to implement
their scheme in Rust [Eli22], implementing only the FiLIP cipher and using the results
from PASTA’s benchmarking framework to compare their work with others.

Table 2: HHE Ciphers with Open-Source Implementation
Cipher Comparison Library Language Open-source
C1: LowMC AES, PRINCE HElib C/C++ ✓
C2: Kreyvium C1, Trivium HElib C/C++ ✗
C3: FLIP C1, C2 HElib C/C++ ✗
C4: Rasta, Agrasta C1, Trivium, C2, C3 HElib C/C++ ✓
C5: FiLIP C1, C3, C4 HElib C/C++ ✗
C6: Dasta C4 HElib C/C++ ✗
C7: Masta C4 HElib C/C++ ✗
C8: PASTA C1, C2, C4, C5, C6, C7, C9 HElib, SEAL, TFHE C/C++ ✓
C9: HERA C1, C3, C4, C6, C7 Lattigo Golang ✓
C10: Fasta C4 HElib, TFHE, PALISADE C/C++ ✓
C11: Rubato C7, C8, C9 Lattigo Golang ✓
C12: Elisabeth C1, C2, C5, C6, C7, C8, C9 Concrete Rust ✓
C13: Chaghri AES HElib C/C++ ✗

✓ denotes that the implementation is open-source and available for benchmarking.
✗ denotes denotes that the implementation is not publicly available.

Our study reveals that among all these implementations, PASTA’s framework covers
implementations for most of the HHE schemes in the same programming language. However,
their implementation has two major flaws. First, it does not separate client and server
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execution as in a real-world application setting. Second, it does not use large input
vectors to fully analyze the performance of the HHE schemes. Elisabeth’s implementation
encountered a similar issue. Likewise, the author of PASTA did not implement Rubato,
which is claimed to be more efficient than HERA for client-side computations.

5.2 Our HHE Benchmarking Approach
To the best of our knowledge, none of the existing HHE implementations are intended for use
in real-world scenarios, with independent client and server implementations. Furthermore,
as shown in Figure 5, past works’ comparisons have always been conducted on powerful
devices with no resource constraints. To ensure a fair and realistic comparison, our
implementation includes two primary components, client and server, that can be executed
independently. We implemented PASTA, HERA, and Rubato ciphers in Lattigo. However,
as Lattigo does not yet fully support TFHE, we could not implement Elisabeth [CHMS22]
and include it in our comparison. Yet, according to the comparison provided in [CHMS22],
PASTA and HERA outperform Elisabeth regarding running time per bit for 128-bit
security; therefore, the same results are expected.

Figure 5: Two different settings with specification for HHE implementation:
(left) non-real-world settings, (right) our real-world setting

Golang Benchmarking Tool. Golang incorporates built-in tools for crafting comprehensive
benchmarks, offering statistics for each process execution. These statistics encompass the
following metrics:
M1. Average Latency represents the average execution time per operation.
M2. Memory allocation indicates the total number of bytes allocated per operation on

the heap.
M3. Number of (memory) allocations denotes the number of memory allocations required

for each operation.
Memory allocation operations require CPU resources to locate the proper memory chunks.
As a result, a rise in the number of memory blocks created for memory allocations corre-
sponds to a higher CPU resource consumption. To optimize code execution performance,
efforts should be made during the scheme’s implementation to reduce excessive memory allo-
cations [Pł22]. Thus, measuring such metrics is critical for developing new memory-efficient
HHE schemes.

We utilized the standard Golang benchmarking tool to evaluate the mentioned metrics
for HHE schemes. A lower value for each metric is preferred to achieve an efficient scheme.
To ensure a fair comparison, we provided parameters in Table 3 that yield the same security
level (128-bit). For simplicity, each set of parameters is named and will be used to present
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results. Furthermore, we opted to generate random plaintext vectors of size N , where N
denotes the maximum number of coefficients, also referred to as the maximum number of
slots for plaintext and ciphertext, corresponding to the HE parameters.

Table 3: Benchmarking Parameters
Param #Rounds #Key #Blocks log2 P log2 N

(words) (words)
PASTA

P3-1614 3 256 128 16 14
P3-3215 3 256 128 32 15
P3-6015 3 256 128 60 15
P4-1614 4 64 32 16 14
P4-3215 4 64 32 32 15
P4-6016 4 64 32 60 16

HERA
H5-2816 5 16 16 28 16
H5-2516 5 16 16 25 16

Rubato
R5-2616 5 16 12 26 16
R3-2516 3 36 32 25 16
R2-2516 2 64 60 25 16

In our implementation, the execution flow of HHE schemes is divided into five functions:
KeyGen, Encap, Enc, Decomp, and Relinearization and Rotation (R&R) KeyGen (also known
as halfboot keys in HERA and Rubato schemes).
The first four functions are explained in Definition 4.1. In principle, the R&R KeyGen is
considered part of KeyGen; however, in practice, it operates on the server-side to produce
the requisite keys for Decomp, due to its high resource consumption. The client uses KeyGen,
Encap, and Enc to generate HE keys, then creates a master symmetric key K and encrypts
it with the respected HE scheme. She then encrypts her data using K. Upon receiving
encrypted data and homomorphically encrypted cK, the server uses the R&R KeyGen and
Decomp functions to transcipher symmetrically encrypted data into homomorphic data.
This approach allows the server to perform HE operations on the data.

Table 4: Results for Symmetric Ciphers
Param Time Memory Allocs #Allocs

(ms/op) (MB/op) (allocs/op)
P3-1614 35.89223 17.64820862 859835
P3-3215 42.30898 21.32488155 860274
P3-6015 49.06042 27.65648174 860290
P4-1614 2.910659 1.417246819 69212
P4-3215 3.405685 1.698161125 69222
P4-6016 3.964417 2.198654175 69257
H5-2816 0.075601 0.01574707 858
H5-2516 0.084632 0.01574707 858
R5-2616 0.143319 0.049766541 1229
R3-2516 0.084013 0.026374817 691
R2-2516 0.052809 0.017601013 483

Client-Side: The results of the client-side experiment, including keystream generation
and encrypting a vector of 128 plaintexts, are presented in Table 4. The results indicate
that Rubato outperforms HERA, PASTA-4, and PASTA-3 by an average factor of 1.2×,
42×, and 500×, respectively, regarding running time per operation. Furthermore, Rubato
surpasses PASTA-4 and PASTA-3 by an average factor of 710× and 56×, respectively,
regarding memory allocation per operation. However, it should be noted that Rubato
consumes more memory per operation (20×) than HERA while having a better number of
allocations per operation for R3-2516 and R2-2516.
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Server-Side: The results of server-side experiments for PASTA, HERA, and Rubato are
summarized in Table 5, aligning with the metrics used on the client side. The results reveal
that for R&R KeyGen, PASTA-3 exceeds PASTA-4, HERA, and Rubato by an average
factor of 3.1×, 5.2×, and 5.4× in regards to running time. Likewise, PASTA-3 outperforms
PASTA-4, Rubato, and HERA by an average of 3×, 7.8×, and 7.9×, respectively, regarding
memory allocation. However, Rubato surpasses HERA, PASTA-3, and PASTA-4 by an
average factor of 1.1×, 15.7×, and 29.4×, respectively, in terms of running time. HERA
outperforms Rubato, PASTA-3, and PASTA-4 by an average of 1.5×, 29.9×, and 35.6× in
memory allocation, respectively. Experiments on the average execution time and memory
consumption for performing Decomp indicate that Rubato and HERA schemes surpass
PASTA by a significant order of magnitude. The advantage is ascribed to their low
multiplicative depth for the decryption circuit and the data encoding techniques, resulting
in using all coefficients in the ciphertext polynomial rings. Utilizing CKKS encoding
techniques and transferring data between coefficients and slots for decoding enhances the
efficiency of evaluating the symmetric circuit – widely regarded as the most computationally
expensive component of HHE schemes – for HERA and Rubato.

Table 5: Benchmark results for HHE schemes in full-coefficient mode
Param Benchmark Time Memory Allocs #Allocs

(s/op) (MB/op) (allocs/op)
P3-1614 KeyGen 0.0397791 51.08751678 21873

R&R KeyGen 7.287907 1808.771645 71191
Encap 0.0265839 4.968841553 243
Enc 3.7912274 2258.974701 110063048
Decomp 780.66732 384619.065 91051940

P3-3215 KeyGen 0.0785246 101.573555 21877
R&R KeyGen 27.1918257 6608.258629 99038
Encap 0.0560374 9.921966553 243
Enc 8.9038207 5453.794571 220208763
Decomp 3269.26386 1532179.02 181687981

P3-6015 KeyGen 0.0793637 101.5717239 21872
R&R KeyGen 27.0965226 6608.259872 99042
Encap 0.0557442 9.921966553 243
Enc 10.4351284 7079.774445 220202696
Decomp 3278.80850 1533410.287 181062228

P4-1614 KeyGen 0.041437 51.08769989 21875
R&R KeyGen 26.4933591 6206.03894 152984
Encap 0.0251192 4.968841553 243
Enc 1.2451438 725.6864471 35442042
Decomp 1747.36410 550370.2523 55599409

P4-3215 KeyGen 0.0791121 101.5734787 21876
R&R KeyGen 101.6135308 24378.86888 264367
Encap 0.0532069 9.921966553 243
Enc 2.8978117 1743.103241 70890711
Decomp 7371.90987 2195520.681 110678564

H5-2816 KeyGen 1.1824637 1570.83329 375771
R&R KeyGen 106.4032398 40065.93994 140442
Encap 9.2174537 3818.448524 8531
Enc 0.56478 125.0019531 6881377
Decomp 179.68644 40091.24128 6509545

H5-2516 KeyGen 1.0762753 1427.113785 390495
R&R KeyGen 110.6379293 39143.16187 136406
Encap 8.6461869 3610.431923 8115
Enc 0.57781 125.0019531 6881377
Decomp 165.19297 36903.18815 6502104

R5-2616 KeyGen 1.0813324 1427.113632 390477
R&R KeyGen 111.3192927 39143.16061 136400
Encap 9.2465584 3610.431946 8116
Enc 0.81869 324.5014648 7929929
Decomp 91.76728 25918.47347 6452755

R3-2516 KeyGen 1.0676216 1427.111946 390487
R&R KeyGen 110.9901145 39143.16535 136418
Encap 20.9380585 8085.594765 18161
Enc 1.24966 415.5039139 10682562
Decomp 148.61062 56542.57570 9692901

R2-2516 KeyGen 1.0687663 1427.111885 390482
R&R KeyGen 111.11005 39143.15746 136383
Encap 36.6681119 14341.22204 32208
Enc 1.66919 512.5073242 13631849
Decomp 224.21408 98637.28681 12964543
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Overall Findings. Our comparison concentrated on memory allocation and execution
time metrics for both client and server. Below is a summary of our key findings:
F1. Utilizing the B/FV scheme, PASTA variations perform faster and need less memory

than HERA and Rubato variations for both KeyGen and Encap.
F2. In Enc, HERA marginally outperforms Rubato, while both surpass PASTA regarding

execution time and memory utilization.
F3. The R&R KeyGen function appears to be more memory-intensive and time-consuming

in HERA and Rubato than in PASTA.
F4. Rubato and HERA’s Decomp function surpasses PASTA in execution time and memory

consumption by a significant order of magnitude, respectively. The advantage is
ascribed to their low multiplicative depth for the decryption circuit and data encoding
techniques, mainly when the CKKS is employed as the underlying HE scheme.

F5. We discovered an out-of-memory problem with P4-6016, so, our analysis excludes
the server-side results for P4-6016. These findings underscore a certain level of
impracticality. More precisely, despite being on the server side and assuming unlimited
resources, it is essential to acknowledge that these resources are paid for. Therefore,
running these experiments in the cloud would incur significant costs, rendering it
financially unsustainable for many users.

Discussion on the choice of HE library. When we started our study, selecting an
appropriate programming language for our implementations was a key decision. Given
the available libraries, we identified two main options: OpenFHE (C++) [ABBB+22] and
Lattigo (Go) [lat23]. Eventually, we chose Lattigo due to three main reasons:
D1. Compared to C++, Go allows developers to design and develop applications rapidly

and cost-effectively using modern software development methods. Furthermore, Go
offers a more flexible maintenance process – a characteristic that is of paramount
importance for industries wishing to build HHE services.

D2. Go supports multi-platform deployment and execution due to its building capabilities.
Developers can readily deploy Go and Lattigo-based applications using Docker.

D3. Two primary schemes of our study – HERA and Rubato – were already implemented
in Lattigo (not in a client-server setting). Hence, we already have a good starting
point for our library. Therefore, we decided to implement PASTA, HERA, and Rubato
using our modular approach and migrate to the necessary dependencies. Even though
Lattigo is a promising library for HE, it does not have built-in support for the TFHE
scheme. However, it is currently under continuous development, and TFHE support
is already planned. This will allow us to add the missing implementation for the
Elizabeth scheme.

Complexity. Initially, we intended to augment our experiments with a comprehensive
comparison of the complexity of the examined schemes. We believed this would provide an
additional, insightful metric for evaluating the efficiency of various HHE schemes. However,
upon commencing the complexity analysis, we determined that a practical assessment is
the only pertinent method to evaluate scheme efficiency (due to space constraints, further
elaboration on this point is not feasible here). This observation may also explain why such
an analysis is often absent in many HHE papers.

Open Science and Reproducible Research. To support open science and reproducible
research and provide other researchers with the opportunity to use, test, and hopefully
extend our implementation, the source code used for our evaluations has been made
available online1.

1https://github.com/hosseinabdinf/HHELand

https://github.com/hosseinabdinf/HHELand
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6 Security
This section provides a detailed and formal outline of the semantic security required for
an HHE scheme to be fulfilled. We then examine diverse attack strategies employed to
compromise HE-friendly symmetric ciphers. Notably, our analysis underscores that despite
meeting established security criteria, these ciphers remain susceptible to various attacks,
posing a potential threat to the security of the corresponding HHE scheme.

6.1 Security definitions
This subsection is a background for the definition of HHE security given in Definition 7.
We try to capture the concept of perfect secrecy introduced by C. Shannon in 1946,
stating that the ciphertext gives the adversary no information about the underlying
message. This notion is well-defined for traditional PKE schemes, but there is still no
clear consensus on its definition for HE. In particular, a recent article from B. Li and D.
Micciancio [LM21] introduced a novel notion of semantic security, namely IND-CPAD,
designed for approximate HE schemes, as CKKS. This new security definition is more
robust and comprehensive, as it addresses several flaws of traditional IND-CPA in the case
of approximate HE. However, J. H. Cheon et al. [CCP+24] discuss it as too strong for
practical use in cryptography in the general case. For this reason, we chose to rely on the
traditional definition of IND-CPA security and extend it to a general definition of security
for HHE. Nonetheless, for the sake of comparison, the definition of IND-CPAD is provided
in Definition 5.

Definition 4 (Semantic Security for HE). Let HE = (KeyGen, Enc, Eval, Dec) be an HE
scheme for message space M and functionality space F :Mn →M. We say that HE is
semantically secure if for all PPT adversary A, it holds that the advantage of A given by
Advind-cpa

HE,A (λ) =
∣∣∣Pr

[
Expind-cpa

HE,A (λ)→ true
]
− 1

2

∣∣∣ is negligible in λ, where the experiment
is defined as in Figure 6.

Expind-cpa
HE,A (λ):

b
$←− {0, 1}; L← ∅

(sk, pk, evk) $←− KeyGen(1λ)
b′ ←− A(1λ, pk, evk)
return (b = b′)

OEncrypt(pk, m0, m1) :
If m0, m1 ̸∈ M : return ⊥
c

$←− Enc(pk, mb)
L← L ∪ {c}
return c

OEval(evk, f, (c1, . . . , cn)) :
If f ̸∈ F : return ⊥
For i ∈ [1, n]

If ci ̸∈ L : return ⊥
c← Eval (evk, f, (c1, . . . , cn))
L← L ∪ {c}
return c

Figure 6: Security indistinguishability game for HE. Expind-cpa
HE,A is the ind-cpa experiment

for an HE scheme HE and PPT adversary A. The two additional algorithms are the oracles
accessible to A.

This security game involves a challenger, playing the role of a user and an adversary A
represented as a PPT algorithm. A is provided access to two oracles he can call a finite
number of times, according to its capabilities: OEncrypt, which, on the input of two
plaintexts chosen by the adversary, outputs the encryption of one of them depending on the
bit b randomly chosen at the beginning of the game, and OEval, which runs the evaluation
algorithm for a valid function f and a tuple of ciphertext known by the adversary. This
game maintains a record of the ciphertexts known by the adversary through a list L.
Hence, every call of an oracle expands the list L with a new ciphertext. The adversary’s
goal is to guess the bit b, and we consider that he wins if he can find b with a probability
significantly different than a random guess, that is 1/2.
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IND-CPAD Security. As mentioned in Section 6.1, recent works state that IND-CPA is
insufficient to capture the semantic security of HE. On the initiative of Li and Miccian-
cio [LM21], the notion of IND-CPAD was first defined in 2020 and has ever since raised
many discussions and disagreements in the community. The name IND-CPAD stands
for Indistinguishability under Chosen Plaintext Attack with a Decryption oracle, as the
only but crucial difference with traditional IND-CPA is the introduction of a particular
decryption oracle.

Throughout this game, the list L does not only keep records of a ciphertext c, but
stores every query as a tuple (m0, m1, cβ), where m0, m1 are the plaintexts sent by
A, and cβ the ciphertext output by the encryption oracle OEncrypt, depending on
the bit β. Concerning the evaluation oracle OEval for a function f and ciphertexts
(m1

0, m1
1, c1

β), . . . , (mn
0 , mn

1 , cn
β), the plaintexts m0, m1 are the output of the function f on

the corresponding component, that is m0 = f(m1
0, . . . , mn

0 ) and m1 = f(m1
1, . . . , mn

1 ).
Therefore, the list L exhaustively keeps all the queries, which permits properly defining
the decryption oracle. Given a ciphertext (m0, m1, cβ) sent by A, ODecrypt outputs the
decryption of cβ . This query is made under the obvious assumption that the ciphertext
does not depend on the bit β, as it would give a straightforward advantage to A. This
assumption is formalized by verifying that m0 = m1.

Definition 5 (IND-CPAD Security). Let HE = (KeyGen, Enc, Eval, Dec) be an HE scheme
for message space M and functionality space F : Mn → M. We say that HE is se-
mantically secure if for all PPT adversary A, it holds that the advantage of A given by
Advind-cpaD

HE,A (λ) =
∣∣∣Pr

[
Expind-cpaD

HE,A (λ)→ true
]
− 1

2

∣∣∣ is negligible in λ, where the experi-
ment is defined as follows:

Expind-cpaD

HE,A (λ):

b
$←− {0, 1}; L← ∅

(sk, pk, evk) $←− KeyGen(1λ)
b′ ←− AOracles(1λ, pk, evk)
return (b = b′)

Oracles

OEncrypt(pk, m0, m1) :
If m0, m1 ̸∈ M : return ⊥
c

$←− Enc(pk, mβ)
L← L ∪ {(m0, m1, c)}
return c

ODecrypt((m0, m1, c)) :
If (m0, m1, c) ̸∈ L or m0 ̸= m1:

return ⊥
m← Dec(sk, c)
L← L ∪ {c}
return m

OEval
(
evk, f, (mi

0, mi
1, ci)i∈[n]

)
:

If f ̸∈ F : return ⊥
For i ∈ [1, n]:

If (mi
0, mi

1, ci) ̸∈ L : return ⊥
m0 ← f(m1

0, . . . , mn
0 )

m1 ← f(m1
1, . . . , mn

1 )
c← Eval

(
evk, f, (c1, . . . , cn)

)
L← L ∪ {(m0, m1, c)}
return c

Figure 7: Oracles in the IND-CPAD game for an HE scheme HE and PPT adversary A.

Definition 6 (IND-CPA security for SKE). Let SKE = (Gen, Enc, Dec) be an SKE scheme
for message spaceM and key space K. We say that SKE is semantically secure if for all PPT
adversaryA, it holds that the advantage Advind-cpa

SKE,A (µ) =
∣∣∣Pr

[
Expind-cpa

SKE,A (µ)→ true
]
− 1

2

∣∣∣
of A is negligible in µ, where the experiment is defined in Figure 9.
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Expind-cpa
SKE,A (µ):

b
$←− {0, 1} ; K $←− Gen(1µ)

b′ ← A(1µ)
return (b = b′)

OEncrypt(m0, m1) :
If m0, m1 ̸∈ M or |m0|≠ |m1| :

return ⊥
c

$←− Enc(K, mb)
L← L ∪ {c}
return c

Figure 8: Security indistinguishability game for SKE. Expind-cpa
SKE,A is the ind-cpa experiment

for an SKE scheme SKE and PPT adversary A. OEncrypt is an encryption oracle
accessible to A.

The security game for SKE is similar to the previous one, except that the information
given to the adversary A is minimal. In a secret-key setup, A does not know any key
and has access to only a single encryption oracle, OEncrypt, that, on the input of two
messages m0, m1 chosen by A, outputs the encryption of mb under the secret key.

6.2 Semantic Security extended to HHE
This section provides the first security definition for HHE, building on the HE and SKE
definitions of the previous section. We also formally demonstrate the semantic security of
HHE with respect to our definition.

Definition 7 (IND-CPA Security for HHE). Let HHE = (KeyGen, Encap, Enc, Decomp, Eval, Dec)
be an HHE scheme for message space M and functionality space F . We say that HHE is
IND-CPA secure if for all PPT adversary A, it holds that the advantage of A:

Advind-cpa
HHE,A (λ, µ) =

∣∣∣∣Pr
[
Expind-cpa

HHE,A (λ, µ)→ true
]
− 1

2

∣∣∣∣
is negligible in λ and µ, where the experiment is defined in Figure 9.

Expind-cpa
HHE,A (λ, µ):

b
$←− {0, 1}; L← ∅; S ← ∅

(sk, pk, evk) $←− KeyGen(1λ)
(K, cK) $←− Encap(pk, 1µ)
b′ $←− A(1λ, pk, evk, cK)
return (b = b′)

OEncrypt(m0, m1) :
If m0, m1 ̸∈ M:

return ⊥
c

$←− Enc(K, mb)
S ← S ∪ {c}
return c

ODecomp(evk, cK, cm) :
If cm ̸∈ S : return ⊥
c← Decomp(evk, cK, cm)
L← L ∪ {c}
return c

OEval(evk, f, (c1, . . . , cn)) :
If f ̸∈ F : return ⊥
For i ∈ [1, n]

If ci ̸∈ L : return ⊥
c← Eval (evk, f, (c1, . . . , cn))
L← L ∪ {c}
return c

Figure 9: Security indistinguishability game for HHE. Expind-cpa
HHE,A is the ind-cpa experiment

for an HHE scheme HHE and PPT adversary A. The three additional algorithms are the
oracles accessible to A.

Finally, we provide the following Theorem 1 that ensures the theoretical security of
HHE, given that HE and SKE are secure.
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Theorem 1. Let HHE be an HHE scheme built from an HE scheme HE and an SKE scheme
SKE. If HE is IND-CPA secure and SKE is IND-CPA secure, then HHE is IND-CPA secure.

Proof. We prove Theorem 1 through a sequence of games, starting with the genuine HHE
game and ending with a game where the advantage of A is negligible. We denote εi the
advantage of A for game i and ε(λ) (resp. ε(µ)) its advantage for the HE (resp. SKE) game.
Game 0: This is the initial genuine HHE game defined in Figure 9. The challenger
initializes the game by picking at random a bit b

$←− {0, 1} and generating the keys. On
the one hand, she samples the homomorphic keys (pk, sk, evk) $←− KeyGen(1λ), and on
the other the encapsulation (K, cK) $←− Encap(pk, 1µ). She submits sk, evk, cK to a PPT
adversary A, who has access to the oracles OEncrypt, OEval, ODecomp.Eventually,
A outputs a guess b′ on the value of b with an advantage ϵ0.
Game 1: This game is similar to the previous one, except that the oracle OEval is
replaced by an oracle OEvalG1 defined as follows:

OEvalG1(evk, f, (c1, . . . , cn) :
If f ̸∈ F : return ⊥
For i ∈ [1, n]: If ci ̸∈ L : return ⊥
c

$←− C; L← L ∪ {c}
return c

In short, when A calls the OEval oracle, the challenger runs the OEvalG1 oracle
instead, which returns a random element of the ciphertext space C. We prove thereunder
that a PPT adversary cannot distinguish this game from the previous one (with a non-
negligible advantage).
Claim 1. |ϵ0 − ϵ1| ≤ ϵ(λ), where ϵ(λ) is the advantage of an efficient adversary that breaks
the HE game.

To prove this claim, we reduce Game 1 to the HE-IND-CPA game defined in Figure 6.
We introduce a key pkG1 := (pk, evk, cK) and an oracle OEncryptG1 as follows:

OEncryptG1(pkG1, m0, m1) :
If m0, m1 ̸∈ M : return ⊥
cm

$←− OEncrypt(m0, m1)
c

$←− ODecomp(evk, cK, cm)
return c

Note that the oracle OEncryptG1 is well-defined, as it calls oracle accessible to A and
pkG1 only relies on public information. One notices that OEncrypt′ corresponds to the
classical encryption oracle OEncrypt defined in Figure 6. It follows that A has access
to the oracles of the HE-IND-CPA game, which ends the reduction. Therefore, if A can
break Game 1, it has a non-negligible advantage (greater than ϵ(λ)) on the HE-IND-CPA
game, which concludes.
Game 2: This game proceeds as the previous one, except that we replace the ODecomp
oracle with a new oracle ODecompG2, defined as follows:

ODecompG2(evk, cK, cm) :
If cm ̸∈ S : return ⊥
c

$←− C; L← L ∪ {c}
return c

In this game, when A calls the ODecomp oracle, the challenger runs the ODecompG2

oracle instead. In short, the challenger does not run Decomp (evk, cK, cm) but instead
outputs a random element of the ciphertext space C. We prove that a PPT adversary
cannot distinguish this game from the previous one (with a non-negligible advantage).
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Claim 2. |ϵ1 − ϵ0| ≤ ϵ(λ), where ϵ(λ) is the advantage of an efficient adversary that breaks
the HE game.

We prove this claim by constructing an adversary B that can break the HE security
game, given an adversary A that can successfully distinguish the output of the oracle
ODecompG2 from the original oracle ODecomp ; that is, given cK and cm, A can
distinguish c

$←− Eval(evk, SKE.Dec, (cK, cm)) from a random element c
$←− C with a non-

negligible advantage. During the HE game, B calls the OEncrypt oracle for the pair
of messages (0, m) ∈ M2. The challenger outputs a ciphertext c, the encryption of
either 0 or m. B forwards (evk, c, m) to A which calls the oracle ODecomp(evk, c, m).
If c = Enc(pk, 0), then c is the encapsulation of the trivial symmetric key c = 0 and
m = SKE.Enc(0, m). Therefore, ODecomp(evk, c, m) outputs Enc(pk, m).
Game 3: The challenger does not replace any oracle in this game. Instead, it operates
at the initialization level and replaces cK with a random element in the ciphertext space.
More formally, it replaces the experiment Expind-cpa

HHE,A with ExpG3
A defined as follows:

ExpG3
A (λ, µ):

b
$←− {0, 1}; L← ∅; S ← ∅

(sk, pk, evk) $←− KeyGen(1λ)
K $←− Gen(pk) ; c

$←− C
b′ $←− AOracles(1λ, pk, evk, c)
return (b = b′)

This game aims to make homomorphic parameters unusable to reduce the standard
SKE-IND-CPA game defined in Definition 6.
Claim 3. |ϵ3 − ϵ2| ≤ ϵ(λ) + ϵ(µ), where ϵ(λ) is the advantage of an efficient adversary that
breaks the HE game and ϵ(µ) is the advantage of an efficient adversary that breaks the SKE
game.

The key argument to prove this claim is that the homomorphic ciphertext cK is not
used in any oracle anymore, as OEval and ODecomp have both been replaced by random
oracles in the previous games. Hence, distinguishing the output cK of the algorithm Encap

from a random element c
$←− C is reduced to an IND-CPA game in a PKE setup. The

advantage of A to distinguish c from cK is less than ϵ(λ). Now, one notices that ExpG3
A

is the SKE experiment Expind−cpa
SKE,A (µ) defined in Definition 6. By hypothesis, A has a

negligible advantage ϵ(µ) to win this game. Finally, its advantage to distinguish Game 2
and Game 3 is less than ϵ(λ) + ϵ(µ).

Conclusion. The overall advantage ϵHHE of A in the HHE game defined in Definition 7
is ϵHHE = 3 ϵ(λ) + ϵ(µ). As a finite sum of negligible elements, ϵHHE is negligible, which
concludes.

6.3 Attacks on HE-friendly Symmetric Ciphers
To deliver a solid understanding of applicable attacks against HE-friendly ciphers, we
started by exploring and categorizing different attacks. We presented three primary attack
categories applicable to these ciphers: algebraic-based, differential-based, and linear-based
attacks, along with LWE-based attacks within the context of HHE frameworks in Section 7.
Based on our study, this part summarizes our security evaluation of recent attacks on
HE-friendly symmetric ciphers. Moreover, we present a concise summary of the security
evaluation in Table 6, covering each scheme’s claims and recent attacks on state-of-the-art
HHE schemes.
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Attacks on HE-friendly ciphers. Initially resilient to differential and linear cryptanal-
ysis, LowMC encountered challenges, exposing vulnerabilities to algebraic attacks and
linearization techniques [DLMW15, GKRS20, BBVD20, BBVY21, LSW+22, QYS+23].

In [DLR16], the authors demonstrated that an adversary could break the FLIP ci-
pher using a guess-and-determine strategy based on a fixed internal state. In their
study [LSMI21], authors successfully executed trivial linearization attacks on Rasta and
Dasta through algebraic cryptanalysis. Furthermore, a recent technique known as coefficient
grouping [LAW+23] evaluated the algebraic degree of Chaghri, resulting in the breaking
of its full 8-round with low complexity. The 4-round instance of Elisabeth fell victim
to a known-IV linearization attack [GHBJR23], leading to key recovery. Subsequently,
Elisabeth’s authors proposed a patch [HMS23] to address the security weaknesses of their
scheme.

A new attack strategy, SASTA [ASR24], utilizes Differential Fault Analysis (DFA) to
break PASTA, achieving full key recovery. SASTA extends to other HHE schemes, such
as RASTA, MASTA, and HERA, resulting in a unique key recovery. Similarly, authors
in [JLHG24] established a DFA attack against HERA. Authors in [WT24] provide more
details of the DFA attack on MASTA, PASTA, and Elisabeth.

Recently, Meaux et al. [MR24] proposed a novel technique for conducting DFA attacks
on the FLIP and FiLIP. This technique enables successful key recovery for both of these
schemes. Notably, the new approach applies to any filtering function, provided that only
a limited number of keystream bits are involved. Nevertheless, Rubato remains secure
against SASTA due to adding random noise from a Gaussian distribution to the keystream.

However, in a recent study [GMAH+23], authors showed that it is possible to overcome
the noise using a brute force attack. They then recovered the positions of keystream bits
without introducing additional noise. As a result, the Rubato cipher became vulnerable to
full-key recovery through a linearization attack (Section 7 provides detailed definitions of
each attack).

Table 6: Security evaluation of HHE symmetric ciphers against common attacks
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Algebraic Attacks ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗
Trivial Linearization ✗ ✳ ✳ ✗ ✳ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗
Number of Monomials ✳ ✳ ✳ ✓ ✳ ✳ ✓ ✳ ✓ ✳ ✳ ✗ ✳
Gröbner basis attack ✗ ✳ ✳ ✓ ✓ ✳ ✓ ✓ ✓ ✓ ✓ ✳ ✓
GCD attack ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✓ ✓ ✓ ✳ ✳
Differential Cryptanalysis ✓ ✓ ✳ ✓ ✳ ✳ ✓ ✓ ✓ ✓ ✓ ✳ ✳
Higher-order Differential Attacks ✓ ✳ ✳ ✓ ✳ ✳ ✓ ✓ ✳ ✳ ✳ ✳ ✓
Truncated Cryptanalysis ✓ ✳ ✳ ✳ ✳ ✓ ✓ ✳ ✓ ✓ ✓ ✳ ✓
Cube Attack ✓ ✓ ✓ ✓ ✳ ✳ ✓ ✳ ✓ ✓ ✓ ✳ ✳
Invariant Subspace Trail ✗ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✓ ✓ ✳ ✓
Linear Cryptanalysis ✓ ✳ ✳ ✓ ✳ ✓ ✓ ✳ ✳ ✓ ✓ ✳ ✓
Interpolation Attack ✗ ✳ ✳ ✳ ✳ ✳ ✓ ✳ ✓ ✓ ✓ ✳ ✓
Boomerang Attacks ✓ ✳ ✳ ✳ ✳ ✳ ✓ ✳ ✳ ✳ ✳ ✳ ✳
Time-Memory Trade-Off (TMDTO) ✳ ✓ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
Correlation attacks ✳ ✳ ✓ ✳ ✓ ✳ ✳ ✳ ✳ ✳ ✳ ✓ ✳
Guess and Determine Attacks ✳ ✳ ✗ ✓ ✓ ✗ ✳ ✳ ✓ ✳ ✳ ✓ ✳
Augmented Function attacks ✳ ✳ ✓ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
BKW-like Attack ✳ ✳ ✓ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✓ ✳ ✳
Differential Fault Analysis (DFA) ✳ ✳ ✗ ✗ ✗ ✳ ✗ ✗ ✳ ✗ ✓ ✗ ✳

✓ denotes that the scheme resists the attack.
✗ denotes the scheme’s vulnerability to the attack.
✳ denotes that the authors did not claim security against the specified attack.
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Note 6.1: In Conclusion
This analysis reveals that the vulnerabilities of HHE schemes mainly stem from the
vulnerabilities of the underlying symmetric cipher. Depending on the cipher, it can lead
to a complete security breach or a simple weakening of the security. In any case, the core
principle of HHE is not threatened. As noted, the DFA attack [ASR24, WT24, MR24]
is the only attack that utilizes the structure of HHE to recover the key and hence
endangers the core principle of this technique. Fortunately, this attack can only be
conducted under certain conditions, and noisy ciphers, such as Rubato, remain secure.

7 Attacks Categorization
This section explores three primary attack categories applicable to these ciphers: algebraic-
based, differential-based, and linear-based attacks. Additionally, we discuss LWE-based
attacks within the context of HHE frameworks.

7.1 Algebraic-based Attacks
Algebraic attacks [CM03, Cou03a] represent a class of cryptographic attacks that utilize
an algebraic system of equations to extract the key stream. In such attacks, armed with
(plaintext/ciphertext) pairs, an attacker formulates key-stream outputs as multivariate
polynomials over the secret key elements. The key can be recovered by solving this
system of equations. Techniques for solving these algebraic systems span from simple
linearization to sophisticated methods employing Gröbner bases. Our understanding of
algebraic attacks on stream ciphers has been enhanced by recent proposals like the extreme
algebraic attack [MW24], which shows significant applicability to ciphers such as FLIP
and FiLIP.

In the case of Trivial Linearization, the technique involves replacing all monomials
with new variables, thereby transforming a system of polynomial equations into a linear form.
The effectiveness of algebraic attacks can be influenced by the Number of Monomials,
particularly when the cipher has a limited number of them. An attacker could resort to
key guessing to decrease the number of monomials, thereby enhancing the likelihood of
linearization and facilitating the solution of the system.

The Gröbner Basis Attack [Fau99, Fau02, SS21] is a more advanced technique that
solves a polynomial system by computing a Gröbner basis. Once the basis is computed,
variables can be systematically eliminated by altering the order of monomials.

Another strategy is the GCD Attack [HKL+22], which calculates the greatest common
divisor (GCD) of univariate polynomials. This attack is typically used in ciphers that
operate over a large field where the representation is a polynomial in a single variable.
This attack can be extended for multivariate polynomial equations by guessing all key
variables except one.

The Guess and Determine Attack [DLR16] commences by guessing specific bits of
the internal state or the key and then uses information from keystream bits to determine
the unknown bits. Assisted by algebraic attacks, guess-and-determine attacks are often
feasible. In FP-based HHE schemes, such as FLIP, an adversary might employ a guess-and-
determine strategy due to the use of a fixed internal state. Moreover, in schemes where
the internal state remains constant, like FLIP, and the register is unaltered, guessing a
single bit at any moment can provide information about another bit at a different time.
Additionally, the FP in these schemes is characterized by a limited number of high-degree
monomials.

The Cube Attack [DS09] is utilized to tackle the complex problem of solving mul-
tivariate systems of nonlinear equations over a finite field. The fundamental principle
behind the cube attack lies in the observation that polynomial equations generated by
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many symmetric-key cryptosystems are not arbitrary and unrelated. Instead, they often
originate from a single master polynomial, with tweakable variables that the attacker can
set to any desired value during a chosen plaintext attack. Given a symmetric-key cipher
with n + m input bits of secret and public variables, the goal is to determine the algebraic
normal form of the output over F2, denoted by P . This normal form represents a sum
of monomial products. The cube attack consists of two distinct phases: preprocessing
and online. During preprocessing, the attacker can analyze the cipher by running it with
various keys and plaintexts. Subsequently, in the online phase, the n secret values are set
to unknown, allowing the attacker to assign values to the m public variables as desired
and evaluate P on the combined input.

The Integral Attack [KW02] is used to predict the values in the integrals after a
certain number of encryption rounds. For any multiset S comprising elements in Fn

2 , the
integral over S is precisely defined as the sum of all its elements, denoted as

⊕
e∈S e.

Integral attacks exploit the specific value obtained by integrating a function F over
a carefully selected input set X . This is mathematically expressed as the integral of
F (X ) :

⊕
x∈X F (x). Notably, when X forms a linear or affine subspace, this integral aligns

with the value of a higher-order differential of the function.

7.2 Differential-based attacks
Differential Cryptanalysis [BS91] is a type of attack that uses chosen plaintexts and
evaluates the probability of differentials, denoted by a pair (α, β). Here, α is the difference
between a pair of distinct inputs m1 and m2, while β is a potential difference for the
resulting outputs c1 = f(m1) and c2 = f(m2). The primary goal is to identify input pairs
(m1, m2) with the same difference α that, upon encryption, yield output pairs (c1, c2) with
the same difference β at an unusually high probability. A well-constructed differential can
be used to mount distinguishing attacks and key recovery attacks on the cipher. Typically,
the differential needs to cover all but one or a few rounds of the cipher to achieve this goal.

Truncated Cryptanalysis [Knu95, KB96] is a generalization of Differential Crypt-
analysis that focuses on differentials predicting only parts of an n-bit value, allowing the
other bits to take any possible value. This is referred to as a truncated differential. More
formally, if (α, β) represents an r-round differential, and α′ is a subsequence of α while β′

is a subsequence of β, then the pair (α′, β′) is termed an r-round truncated differential.
Boomerang Attack [Wag99] is a variant of differential cryptanalysis designed specif-

ically for ciphers where identifying high-probability differentials is challenging. The
Boomerang attack constructs a distinguisher with two short differentials (α1, β1) and
(α2, β2). Initially, it dissects the cipher E : Fn

2 × Fk
2 → Fn

2 into two sub-ciphers denoted as
E = E1 ◦E2. For an r-round block cipher, E1 contains the first r1 rounds, while E2 handles
the remaining r2 = r − r1 rounds. Combining these two differential characteristics makes
the Boomerang attack effective against ciphers that might resist conventional differential
cryptanalysis. This method has successfully broken ciphers previously considered secure
against traditional differential cryptanalysis techniques.

Invariant Subspace (Trail) Attacks [LAAZ11, LMR15, GRR16] exploit a structural
property inherent in block ciphers. Specifically, they leverage the property that a partition
of the plaintext space into a set and its complement is preserved under the application of
the block cipher. If an invariant subspace (V ) exists for both the round function (F ) and
the key schedule function (f), an invariant subspace trail attack can be effectively deployed
to establish a rapid distinguisher and facilitate key recovery. By deriving round keys from a
master key K as (k0, . . . , kn) = f(K) and considering a coset V ⊕a = {v⊕a | ∀v ∈ V }, where
V is a subspace of a vector space W and a is an element of W , such that F (V ⊕a) = V ⊕a′;
if the master key K resides in V ⊕(a⊕a′), then it logically follows that F (V ⊕a′)⊕K = V ⊕a,
allowing the derivation of an iterative invariant subspace. A subspace trail of length r is then
essentially a set of r+1 subspaces (V1, . . . , Vr+1) that satisfy F (Vi⊕ai)⊕K ⊆ (Vi+1⊕ai+1).
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Higher-order Differential Cryptanalysis [Lai94] employs higher-order derivatives
to extend Differential Cryptanalysis for deriving the secret key when more than two inputs
are provided. As mentioned in [Lai94], “if a (nontrivial) i-th derivative of (r − 1) round
function takes on a value with a high probability, then it is possible to derive the key for
the last round from the known 2i outputs and from the value of the anticipated derivative.”

Interpolation Attack [JK97] involves determining the polynomial representation of a
state bit. By combining knowledge about the restrictions of this polynomial with a sufficient
number of evaluations of the polynomial function, the attacker reconstructs the polynomial
representation using (plaintext/ciphertext) pairs through Lagrange interpolation. With the
algebraic representation of the system as the function f(x, k), linking the key-independent
integral to the ciphertext x and the last round key k, interpolation attacks express f as a
function of known ciphertext bits with unknown coefficients. This results in an equation of
degree 1 in the unknown coefficients for any values of the ciphertext, recoverable by solving
a linear system. The interpolation attack is commonly employed to exploit cryptographic
algorithm vulnerabilities by scrutinizing the behavior of the polynomial functions used for
generating cryptographic keys.

Differential Fault Analysis (DFA) [TMA11] is a physical attack where the attacker
gains access to public information, such as nonce, IV , inputs, and outputs of the device
running the cipher for a limited time. The attacker injects a fault into the cipher’s input
to obtain a different result for the final state and then employs differential analysis to
uncover the key. In [ASR24], the author introduces a new DFA model, SASTA, tailored for
HHE schemes. SASTA initially targets PASTA and subsequently achieves successful key
recovery in other schemes like RASTA, MASTA, and HERA. Similarly, authors in [MR24]
targeted the FLIP and FiLIP schemes with a DFA attack.

7.3 Linear-based attacks
Linear Cryptanalysis [Mat93, BSV07] is a commonly used method for analyzing the
security of a cipher. The cryptanalyst seeks to identify affine approximations of the cipher
that hold with substantial accuracy. This process involves uncovering linear characteristics,
which are sequences of linear approximations applied to consecutive rounds of the cipher.
These linear characteristics significantly impact S-boxes, playing a crucial role in the
approximations. Similar to differential cryptanalysis, linear cryptanalysis can be employed
to initiate distinguishing and key recovery attacks.

Correlation Attacks [Sie84] primarily apply to stream ciphers for extracting in-
formation on secret key bits. These attacks, specifically key-recovery attacks, can be
executed when a straightforward dependency between the keystream sequence ks =
(ks0, ks1, . . . , ksn) and the state s or key K is identified. Typically, correlation attacks
focus on state recovery, utilizing a single keystream sequence. In Fast Correlation
Attacks [MS88], the approach involves attempting to discover a low-weight parity check
polynomial of the system’s linear part, followed by applying an iterative decoding proce-
dure. Additionally, a category of correlation attacks targets filter generators [EJ04], whose
objective is to invert the nonlinear function and recover the initial state.

Time-Memory Trade-Off (TMDTO) attacks [HS05, DCLP05] constitute a generic
approach for the inversion of one-way functions, applicable to both stream and block
ciphers. In the context of stream ciphers, vulnerability to TMDTO arises when the length
of the IV is shorter than that of the key. Significantly, this vulnerability remains regardless
of the size of the internal state. Additionally, chosen plaintext TMDTO presents a threat
to block ciphers across various modes of operation.

Higher-Order Correlation Attacks [Cou03b] primarily target stream ciphers and
employ linear approximations of the output function to mount an attack on the cipher.
The filtering function is approximated with a degree-d polynomial, and the corresponding
algebraic system is solved using Gröbner basis algorithms. The attack’s efficiency depends
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on the function’s closeness to a degree-d polynomial. It can be integrated with guess-
and-determine attacks, but its complexity consistently exceeds that of fast algebraic or
correlation attacks.

Augmented Function attacks [FM07] involve considering x as an n-bit internal
state for a stream cipher, with an update function U and output function f producing
a single bit of keystream in a single iteration. The augmented function Sm : Fn → Fm

is then defined as Sm(x) = (f(x), f(U(x)), . . . , f(Um−1(x))). The update function may
exhibit linearity, resembling a filter generator, or non-linearity. The output y corresponds
to an m-bit block of the known keystream. This attack aims to recover the initial state
x through algebraic or correlation approaches, utilizing conditional equations Fy(x) = 0
of degree d for the output y of the augmented function Sm. This approach emphasizes
multiple outputs of the function rather than a singular one to identify coefficients that
enable the exploitation of a relationship between the key and the outputs.

7.4 LWE-based attacks
In addition to symmetric cryptanalysis, as mentioned in [HKL+22], LWE cryptanalysis can
also be applied to HHE frameworks. The naive approach for solving LWE hard problems
is exhaustive search. The meet-in-the-middle (MITM) [BG14] approach, a variant
of the TMDTO attack, can assist exhaustive search. Another method is the primal
attack [ZZW22], which reduces the LWE problem to the unique-SVP through embedding
and then employs lattice reduction techniques such as BKZ [SE94, CN11] to find the
shortest vector. Additionally, a dual attack [LP11, PS24] can be utilized to distinguish
between the uniform distribution and the modular discrete Gaussian over Zq.

The BKW-like Attack [BKW03] is a lattice version of Gaussian elimination parametrized
by a and b. Assuming an LWE distribution Ls,χ, where χ = Dαq is parameterized by
dimension N and modulus q, the BKW attack first reduces A to a block diagonal matrix
and then employs it to solve a lattice problem. The Arora-Ge attack proposed in [AG11]
is an algebraic algorithm designed to solve the search-LWE problem. It leverages the idea
that, given LWE samples {(ai, bi)}i, the errors fall into some interval [−tαq, tαq] for a
sufficiently large t, ensuring that the equations

∏tαq
e=−tαq(bi − ⟨ai, s⟩ − e) = 0 hold.

The authors in [APS15] investigated the computational hardness of solving the LWE
problem, focusing on the cost of attacking LWE instances with specific parameter sets.
Their work provides concrete guidance and a widely used tool [Ac23] for selecting LWE
parameters that guarantee robust security. This is particularly crucial for designing
cryptographic schemes based on LWE, including HE and HHE.

8 Discussion
In this paper, we detailed the most recent HHE schemes and evaluated their claims for
security and performance through a systematized study. We provided a universal definition
for HHE, and following that, we extended the IND-CPA security definition for HHE.
Moreover, we analyzed all the potential attacks in the literature for HE-friendly ciphers
and HE schemes, resulting in a categorization of these attacks for HHE. Furthermore,
we implemented the pioneer HHE schemes to measure their performance in a real-world
setting, and we open-sourced our implementation. The field of HHE is constantly evolving
due to the continuous advancements in both HE-friendly ciphers and HE schemes, as well
as the wide range of applications that HHE supports. Therefore, since our main motivation
was to establish the HHE foundation for future research in the field, we are presenting
some key takeaways and insights:
T1. Unlike standard symmetric ciphers such as AES, which have undergone extensive

practical maintenance and security analysis with well-defined parameter sets, identi-
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fying their vulnerabilities across various applications, HE-friendly ciphers are still in
the early stages of development and require significant progress to achieve enterprise-
level adoption. While existing efforts [ACC+21, BCC+24] aim to standardize HE
parameter sets for different security levels, a key missing component for HHE schemes
is the establishment of a standardized set of parameters that aligns with existing HE
parameter sets.

T2. The HHE schemes have been developed to reduce the computation and communication
overheads for clients with limited resources. However, in a 2-party model, the result
of transciphering, which is still a homomorphic cipher, will expand due to further
homomorphic evaluation. Eventually, the client will need to download and decrypt
this ciphertext. There are techniques for HE, such as ciphertext compression [MDK23],
which decrease communication costs. This could be an interesting research direction
for HHE schemes as well.

T3. By using HHE, a massive part of computation can be offloaded to the server side,
allowing users with low-power devices to benefit from HE-based privacy-preserving
computation for any application. This approach helps application owners attract more
users and create a more scalable system that accommodates low-powered devices.
However, this places a higher demand on the server side. An interesting question that
remains to be answered is “What is the energy consumption of HHE schemes, and
how does it compare to the energy consumption of HE?”

T4. Many encoding and packing techniques have been utilized in HE schemes. One of
the drawbacks of PASTA was the exact problem due to the underlying HE scheme.
In [BCK+23], the author suggested using ring-packing techniques to create a more
efficient framework. In their approach, the client encrypts data into small-degree
LWE ciphers, which are then packed into an RLWE cipher on the server side. Again,
analyzing this new approach and adjusting it with a HE-friendly cipher is a likely
research direction.

T5. Finally, as mentioned earlier, using standard symmetric ciphers such as AES has been
the primary aim of HHE schemes. However, due to the high multiplicative depth,
it was impractical, leading to new research attempts to design HE-friendly ciphers
until recent advancements in the field. Since design-wise, AES is more complex than
HE-friendly ciphers with low multiplicative depth, discovering the possibility and
experimental results for applying the same techniques [ADE+23, TCBS23, WWL+23]
to state-of-the-art HE-friendly ciphers can also be a potential research direction.
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