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One of the most basic properties of a consensus protocol is its fault-tolerance—the maximum fraction of faulty

participants that the protocol can tolerate without losing fundamental guarantees such as safety and liveness.

Because of its importance, the optimal fault-tolerance achievable by any protocol has been characterized in a

wide range of settings. For example, for state machine replication (SMR) protocols operating in the partially

synchronous setting, it is possible to simultaneously guarantee consistency against 𝛼-bounded adversaries (i.e.,

adversaries that control less than an 𝛼 fraction of the participants) and liveness against 𝛽-bounded adversaries

if and only if 𝛼 + 2𝛽 ≤ 1.

This paper characterizes to what extent “better-than-optimal” fault-tolerance guarantees are possible

for SMR protocols when the standard consistency requirement is relaxed to allow a bounded number 𝑟 of

consistency violations, each potentially leading to the rollback of recently finalized transactions. We prove that

bounding rollback is impossible without additional timing assumptions and investigate protocols that tolerate

and recover from consistency violations whenever message delays around the time of an attack are bounded

by a parameter Δ∗
(which may be arbitrarily larger than the parameter Δ that bounds post-GST message

delays in the partially synchronous model). Here, a protocol’s fault-tolerance can be a non-constant function

of 𝑟 , and we prove, for each 𝑟 , matching upper and lower bounds on the optimal “recoverable fault-tolerance”

achievable by any SMR protocol. For example, for protocols that guarantee liveness against 1/3-bounded

adversaries in the partially synchronous setting, a 5/9-bounded adversary can always cause one consistency

violation but not two, and a 2/3-bounded adversary can always cause two consistency violations but not

three. Our positive results are achieved through a generic “recovery procedure” that can be grafted on to any

accountable SMR protocol and restores consistency following a violation while rolling back only transactions

that were finalized in the previous 2Δ∗
timesteps.

1 INTRODUCTION
We consider protocols for the state machine replication (SMR) problem, in which processes receive

transactions from an environment and are responsible for finalizing a common sequence of trans-

actions. We focus on the partially synchronous setting [12], in which message delays are bounded

by a known parameter Δ following an unknown “global stabilization time” GST (and unbounded

until that point).

The two most basic requirements of an SMR protocol are consistency, meaning that no two

processes should finalize incompatible sequences of transactions (one should be a prefix of the

other), and liveness, which stipulates that valid transactions should eventually be finalized (ideally,

following GST, within an amount of time proportional to Δ). Guaranteeing consistency and liveness
becomes impossible if too many of the processes are faulty (i.e., deviate from the intended behavior

of a protocol). For the SMR problem in partial synchrony, it is possible to simultaneously guarantee

consistency against 𝛼-bounded adversaries (i.e., adversaries that control less than an 𝛼 fraction of

the participants) and liveness against 𝛽-bounded adversaries if and only if 𝛼 + 2𝛽 ≤ 1.

The focus of this paper is consistency violations—the type of violation that enables, for example,

double-spending a cryptocurrency native to a blockchain protocol. What can be said about a

protocol when the adversary is large enough to cause a consistency violation? For example, is it

already in a position to cause an unbounded number of consistency violations (as opposed to just

one), or could the protocol “fight back” in some way?

Tomake sense of this question and the idea of multiple consistency violations, wemust formalize a

sense in which a protocol might restore consistency following a violation, necessarily by rolling back
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transactions that had been viewed as finalized by some non-faulty processes. One key parameter is

then the recovery time 𝑑 , meaning the number of timesteps after a violation before a protocol returns

to healthy operation. A second is the rollback ℎ, meaning that the recovery process “unfinalizes”

only transactions that have been finalized within the previous ℎ time steps.

The natural wishlist for an SMR protocol in partial synchrony would then be:

(1) All of the “usual” guarantees, such as optimal fault-tolerance (i.e., consistency with respect to

𝛼-bounded adversaries and liveness with respect to 𝛽-bounded adversaries for some 𝛼, 𝛽 > 0

with 𝛼 + 2𝛽 = 1).

(2) Automatic recovery from a consistency violation with the worst-case recovery time 𝑑 and

worst-case rollback ℎ as small as possible (if nothing else, independent of the specific execu-

tion).

(3) Never suffers more than 𝑟 consistency violations overall, where 𝑟 is as small as possible.

To what extent are these properties simultaneously achievable?

This paper provides a thorough investigation of this question. To expose the richness of the an-

swer, we work with a timing model that can be viewed as an interpolation between the synchronous

and partially synchronous settings. In addition to the usual parameters Δ and GST (known and un-

known, respectively) of the partially synchronous model, we allow for a known parameter Δ∗ ≥ Δ
which may or may not bound message delays prior to GST. Canonically, Δ∗

should be thought of

as orders of magnitude larger than Δ (days or weeks, as opposed to millisecond or seconds), with Δ
indicating the speed of communication between processes when all is well (no network issues, no

attacks) and Δ∗
the speed of (possibly out-of-band) communication around the time of an attack.

1

We will be interested in protocols that always satisfy all the “usual” guarantees (1) and that finalize

transactions in time 𝑂 (Δ) (rather than 𝑂 (Δ∗)) after GST, whether or not pre-GST message delays

are bounded by Δ∗
, and also satisfy the additional recovery guarantees (2) and (3) in the event that

pre-GST message delays are in fact bounded by Δ∗
.
2

Our main positive result, stated formally in Theorem 6.1 and proved in Section 7, shows that

such protocols do indeed exist. For example, we show that there is a protocol that satisfies:

• 1

3
-resilience in partial synchrony (independent of whether Δ∗

bounds pre-GST message

delays), with worst-case latency 𝑂 (𝑓𝑎Δ) after GST, where 𝑓𝑎 denotes the (actual) number of

faulty processes;

• should pre-GST message delays be bounded by Δ∗
, recovers from consistency violations in

time 𝑂 (𝑓𝑎 · Δ∗) and with rollback 2Δ∗
; and

• should pre-GST message delays be bounded by Δ∗
, never suffers from more than one consis-

tency violation with a
5

9
-bounded attacker, and never suffers from more than two consistency

violations with a
2

3
-bounded attacker.

We achieve this result by designing a generic “recovery procedure” that can be grafted on to any

accountable SMR protocol, including protocols with asymmetric fault-tolerance with respect to

consistency and liveness attacks. Sections 4 and 5 give informal and formal, respectively, descriptions

of this procedure.

Our results are tight in several senses. For example, we prove in Theorem 6.2 that recovery

from a consistency violation necessarily requires a rollback proportional to the parameter Δ∗
. In

1
Indeed, for our positive results, message delays must be bounded by Δ∗

for the duration of our recovery procedure, but not

otherwise.

2
In particular, a synchronous protocol with respect to the parameter Δ∗

will not generally satisfy consistency and liveness

if message delays do not happen to bounded above by Δ∗
.
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particular, in the pure partially synchronous model (Δ∗ = +∞, in effect), recovery from consistency

violations with bounded rollback is impossible. Theorems 6.3 and 6.4 show that the bounds we

obtain on adversary size (as a function of the number 𝑟 of consistency violations) are optimal. For

example, in the symmetric case above, an attacker controlling five-ninths of the processes can

always force two consistency violations, and one controlling two-thirds of the processes can cause

unbounded rollback.

2 THE SETUP
We consider a set Π = {𝑝1, . . . , 𝑝𝑛} of 𝑛 processes. Each process 𝑝𝑖 is told its “name” 𝑖 as part of its

input. We focus on the case of a static adversary, which chooses a set of processes to corrupt at

the start of the protocol execution.
3
We call a process corrupted by the adversary faulty. Faulty

processes may behave arbitrarily (i.e., we consider Byzantine faults), subject to our cryptographic

assumptions (stated below). Processes that are not faulty are correct. The adversary is 𝜌-bounded if

it corrupts less than a 𝜌 fraction of the 𝑛 processes.

Cryptographic assumptions. We assume that processes communicate by point-to-point authen-

ticated channels and that a public key infrastructure (PKI) is available for generating and validating

signatures. For simplicity of presentation (e.g., to avoid the analysis of negligible error probabilities),

we work with ideal versions of these primitives (i.e., we assume that faulty processes cannot forge

signatures). We also assume that all processes have access to a random permutation of Π, denoted
Π∗

: [1, 𝑛] → Π, which is sampled after the adversary chooses which processes to corrupt.

Message delays. We consider a discrete sequence of timeslots 𝑡 ∈ N≥0. As discussed in the

introduction, we consider protocols that operate in partial synchrony (with some parameter Δ,
perhaps in the order of seconds or milliseconds) and satisfy additional recovery properties should

synchrony hold (with some different parameter Δ∗
, perhaps in the order of days).

Synchrony. In the synchronous setting, a message sent at time 𝑡 must arrive by time 𝑡 + Δ∗
, where

Δ∗
is known to the protocol.

Partial synchrony. In the partially synchronous setting, a message sent at time 𝑡 must arrive by time

max{GST, 𝑡} + Δ. While Δ is known, the value of GST is unknown to the protocol. The adversary

chooses GST and also message delivery times, subject to the constraints already specified.

Clock synchronization. In the partially synchronous setting, we suppose all correct processes

begin the protocol execution before GST. When considering the synchronous setting, we suppose

all correct processes begin the protocol execution by time Δ∗
. A correct process begins the protocol

execution with its local clock set to 0; thus, we do not suppose that the clocks of correct processes

are synchronized. For simplicity, we assume that the clocks of correct processes all proceed in real

time, meaning that if 𝑡 ′ > 𝑡 then the local clock of correct 𝑝 at time 𝑡 ′ is 𝑡 ′ − 𝑡 in advance of its

value at time 𝑡 .4

Notation concerning executions and received messages. We use the following notation when

discussing any execution of a protocol:

• 𝑀𝑖 (𝑡) denotes the set of messages received by process 𝑝𝑖 by timeslot 𝑡 ;

3
All results in this paper hold more generally for adaptive adversaries (with essentially identical proofs), with the exception

of the bound on the expected termination time for the recovery procedure asserted in part (iii) of Theorem 6.1 (which

requires that a random permutation of the processes be chosen subsequent to the adversary deciding which processes to

corrupt).

4
Using standard arguments, our protocol and analysis can easily be extended to the case in which there is a known upper

bound on the difference between the clock speeds of correct processes.
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• 𝑀𝑐 (𝑡) denotes the set of all messages received by any correct process by timeslot 𝑡 ;

• 𝑀𝑐 denotes the set of all messages received by any correct process during the execution.

Transactions. Transactions are messages of a distinguished form, signed by the environment. Each
timeslot, each process may receive some finite set of transactions directly from the environment.

Determined inputs. A value is determined if it known to all processes, and is otherwise undeter-
mined. For example, Δ, Δ∗

and Π are determined, while GST is undetermined.

State machine replication. A protocol for state machine replication (SMR) must cause correct

processes to finalize logs (sequences of transactions) that are live and consistent with each other.

Formally, if 𝜎 and 𝜏 are sequences, we write 𝜎 ⊆ 𝜏 to denote that 𝜎 is a prefix of 𝜏 . We say 𝜎 and 𝜏

are compatible if 𝜎 ⊆ 𝜏 or 𝜏 ⊆ 𝜎 . If two sequences are not compatible, they are incompatible. If 𝜎
is a sequence of transactions, we write tr ∈ 𝜎 to denote that the transaction tr belongs to the

sequence 𝜎 .

Fix a process set Π and genesis log, denoted log𝐺 . If P is a protocol for SMR, then it must specify

a function F , which may depend on Π and log𝐺 , that maps any set of messages to a sequence of

transactions extending log𝐺 . We require the following conditions to hold in every execution:

Consistency. If𝑀1 ⊆ 𝑀2 ⊆ 𝑀𝑐 , then F (𝑀1) ⊆ F (𝑀2).5

Liveness. If 𝑝𝑖 and 𝑝 𝑗 are correct and if 𝑝𝑖 receives the transaction tr then, for some 𝑡 , tr ∈ F (𝑀 𝑗 (𝑡)).

This definition of consistency ensures that correct processes never finalize incompatible logs:

for any sets𝑀1, 𝑀2 ⊆ 𝑀𝑐 that two such processes might have received, F (𝑀1) ⊆ F (𝑀1 ∪𝑀2) and
F (𝑀2) ⊆ F (𝑀1 ∪𝑀2). We say a set of messages𝑀 is a certificate for a sequence of transactions 𝜎
if F (𝑀) ⊇ 𝜎 . If we wish to make F explicit, we may also say that𝑀 is an F -certificate for 𝜎 .6

The liveness parameter. If there exists some fixed ℓ that is a function of determined inputs
7
other

than Δ∗
and such that the following holds in all executions of P, we say P has liveness parameter ℓ :

If 𝑝𝑖 and 𝑝 𝑗 are correct and if 𝑝𝑖 receives the transaction tr at time 𝑡 then, for 𝑡 ′ = max{𝑡,GST} + ℓ ,

tr ∈ F (𝑀 𝑗 (𝑡 ′)).

Liveness and consistency resilience. Recall that 𝑛 = |Π |. When the protocol P is clear from

context, we write 𝜌𝐶 to denote the consistency resilience of P, which is the largest 𝜌 such that,

for all 𝑛, the protocol satisfies consistency so long as the adversary is 𝜌-bounded. We write 𝜌𝐿
to denote the liveness resilience, which is the largest 𝜌 such that, for all 𝑛, the protocol satisfies

liveness so long as the adversary is 𝜌-bounded. It is well known that 𝜌𝐶 + 2𝜌𝐿 ≤ 1 in the partially

synchronous setting [12] and that 𝜌𝐶 + 𝜌𝐿 ≤ 1 in the synchronous setting [16].

The number of consistency violations. When F is clear from context, we say the set of messages

𝑀 has 𝑟 consistency violations if there exist 𝑀0 ⊂ 𝑀1 ⊂ · · · ⊂ 𝑀𝑟 ⊆ 𝑀 such that, for each

𝑠 ∈ {0, 1, . . . , 𝑟 − 1}, F (𝑀𝑠 ) ⊈ F (𝑀𝑠+1). We also say𝑀 has a consistency violation (w.r.t. F ) if it has

at least one consistency violation. An execution has 𝑟 consistency violations if𝑀𝑐 has 𝑟 consistency

violations.

5
This is equivalent to the seemingly stronger condition in which𝑀𝑐 is replaced by the set of messages received by any

process (correct or otherwise), as faulty processes always have the option of echoing any messages they receive to correct

processes.

6
The selection F of finalized transactions by a correct process depends only on the set of messages it has received, and not

on the times at which these messages were received. One motivation for this restriction is to accommodate clients that

wish to verify the finality of transactions (via a suitable certificate) without observing the entire execution of the protocol.

Another is that, in partial synchrony, certificates are anyways required for guaranteed consistency and liveness [13].

7
The requirement that ℓ is not a function of Δ∗

(while Δ∗
is not necessarily𝑂 (Δ)) means that having liveness parameter ℓ

may require finalization of transactions in time less than Δ∗
after GST.
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Accountable protocols (informal discussion). Informally, a protocol is accountable if it produces
proofs of guilt for some faulty processes in the event of a consistency violation. We cannot generally

require proofs of guilt for a fraction 𝜆 > 𝜌𝐶 of processes, since consistency violations may occur

when less than a fraction 𝜆 of processes are faulty. On the other hand, all standard protocols that

provide accountability produce proofs of guilt for a 𝜌𝐶 fraction of processes in the event of a

consistency violation [20].

Accountable protocols (formal definition). Consider an SMR protocol P:

• We say the set of messages𝑀 is a proof of guilt for 𝑝 ∈ Π if there does not exist any execution

of P in which 𝑝 is correct and for which𝑀 ⊆ 𝑀𝑐 .
8

• We say P is 𝜆-accountable if the following holds at every timeslot 𝑡 of any execution of P: if

𝑀𝑐 (𝑡) has a consistency violation, then 𝑀𝑐 (𝑡) is a proof of guilt for at least a 𝜆 fraction of

processes in Π.

Given that all standard protocols that are 𝜆-accountable for any 𝜆 > 0 are also 𝜌𝐶 -accountable,

we will say that a protocol is accountable to mean that it is 𝜌𝐶 -accountable. It is important to note

that, while an accountable protocol ensures the existence of proofs of guilt for a 𝜌𝐶 fraction of

processes in the event of a consistency violation, it does not automatically ensure consensus between
correct processes as to a set of faulty processes for which a proof of guilt exists. One role of the

recovery procedure (as specified in Section 5) will be to ensure such consensus.

Message gossiping. In our recovery procedure, it will be convenient to assume that correct

processes gossip all messages received. Then, if synchrony does hold with respect to Δ∗
, any

message received by correct 𝑝 at some timeslot 𝑡 is received by all correct processes by time 𝑡 + Δ∗
.

It will not generally be necessary to gossip all messages; for example, for standard quorum-based

protocols, it will suffice to gossip blocks that have received quorum certificates (QCs) along with

those QCs.

A comment on setup assumptions. Given an accountable SMR protocol P and a process set Π,
our wrapper will initiate a sequence of executions of P, with process sets that are progressively

smaller subsets of Π. Of course, a PKI for Π suffices to provide a PKI for each subset of Π and

a random permutation of Π naturally induces a random permutation of each subset. Moreover,

the maximum number of executions of P initiated by the wrapper will be small and the size of

the process set of each is known ahead of time. (For example, if 𝜌𝐶 = 1/3 and the adversary is

5/9-bounded, the wrapper will initiate at most two executions of P; if 𝜌𝐶 = 1/3 and the adversary

is 2/3-bounded, at most three.) Thus, for setup assumptions such as threshold signatures, one can

simply run each required setup in advance, before executing the wrapper.

3 RECOVERY METRICS
In this section, we introduce definitions to quantify how well a protocol recovers from consistency

violations.

Generalizing resilience to take recovery into account. Is a protocol vulnerable to one con-

sistency violation inexorably doomed to an unbounded number of them? Or could a protocol

achieve strictly higher levels of resilience by tolerating (and recovering from) a bounded number of

consistency violations? The following definitions generalize consistency and liveness resilience to

account for the possibility of recovery from consistency violations.

8
If we wish to make P, log𝐺 , and Π explicit, we may also say that𝑀 is a (P,Π, log𝐺 )-proof of guilt.
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• Recoverable consistency resilience. Consider a function 𝑔 : N≥0 → [0, 1]. We say a protocol P
has recoverable consistency resilience 𝑔 if the following holds for each 𝑟 ∈ N≥0: 𝑔(𝑟 ) is the
largest 𝜌 such that, for all 𝑛, provided the adversary is 𝜌-bounded, executions of P have at

most 𝑟 consistency violations.

• Recoverable liveness resilience. Consider a function 𝑔 : N≥0 → [0, 1]. We say a protocol P has

recoverable liveness resilience 𝑔 if the following holds for each 𝑟 ∈ N≥0: 𝑔(𝑟 ) is the largest 𝜌
such that, for all 𝑛, provided the adversary is 𝜌-bounded, liveness holds in all executions with

precisely 𝑟 consistency violations.
9

Suppose P has consistency resilience 𝜌𝐶 and recoverable consistency resilience 𝑔. Note that

𝑔(0) = 𝜌𝐶 . Also, 𝑔 is nondecreasing (i.e., 𝑔(𝑠) ≥ 𝑔(𝑟 ) for 𝑠 > 𝑟 ): if executions of P have at most 𝑟

consistency violations when the adversary is 𝜌-bounded, then this is also true of all 𝑠 > 𝑟 . If

𝑔(𝑟 + 1) > 𝑔(𝑟 ), the protocol effectively has increased consistency resilience after 𝑟 consistency

violations.

Recoverable resilience for our wrapper. Suppose P is accountable and has consistency re-

silience 𝜌𝐶 and liveness resilience 𝜌𝐿 for partial synchrony with 𝜌𝐶 + 2𝜌𝐿 = 1. If we identify some

fraction 𝑥 of the processes in Π as faulty and then run an execution of P using the remaining

processes, there will be no consistency violation so long as less than a fraction 𝑥 + 𝜌𝐶 (1 − 𝑥) of the
processes in Π are faulty. Given this, let us define a sequence {𝑥𝑟 }𝑟 ∈N≥0 by recursion:

𝑥0 = 0, 𝑥𝑟+1 = 𝑥𝑟 + 𝜌𝐶 (1 − 𝑥𝑟 ).
Define:

𝑔1 (𝑟 ) = min{𝑥𝑟+1, 1 − 𝜌𝐿}, 𝑔2 (𝑟 ) = min{𝑥𝑟 + 𝜌𝐿 (1 − 𝑥𝑟 ), 1 − 𝜌𝐿}. (1)

Given P as input, our wrapper produces an SMR protocol with recoverable consistency resilience 𝑔1
and recoverable liveness resilience 𝑔2 as in (1). For example, if 𝜌𝐶 = 𝜌𝐿 = 1

3
, then 𝑔1 (0) = 𝑔2 (0) = 1

3
,

𝑔1 (1) = 𝑔2 (1) = 5

9
, and 𝑔1 (𝑟 ) = 𝑔2 (𝑟 ) = 2

3
for all 𝑟 ≥ 2.

Specifying the recovery time. Next, we provide a definition that captures the time required by a

protocol to recover from consistency violations. Suppose P has recoverable liveness resilience 𝑔.

We say P has recovery time 𝑑 with liveness parameter ℓ if the following holds for all executions E
of P:

(†𝑑,ℓ ) If there exists 𝑟 such that E has precisely 𝑟 consistency violations, let 𝑡 be least such that𝑀𝑐 (𝑡)
has 𝑟 consistency violations (otherwise set 𝑡 = ∞). If correct 𝑝𝑖 receives the transaction tr at

any timeslot 𝑡 ′ then, for every correct 𝑝 𝑗 and for 𝑡 ′′ = max{𝑡 + 𝑑,GST, 𝑡 ′} + ℓ , tr ∈ log𝑗 (𝑡 ′′).
In the above, 𝑑 should be thought of as a ‘grace period’ after consistency violations, after which

liveness with parameter ℓ must hold. In our construction, 𝑑 is governed by the length of time it

takes to run our recovery procedure.

Probabilistic recovery time. Our recovery procedure uses the random permutation Π∗
—chosen

after the adversary chooses which processes to corrupt—to select “leaders,” and as such it will run

for a random duration. To analyze this, we allow the grace period parameter 𝑑 in the definition

above to depend on an error probability 𝜀 ∈ [0, 1] and sometimes write 𝑑𝜀 to emphasize this

dependence. We then make the following definitions:

• We say that (†𝑑,ℓ ) is ensured with probability at least 𝑝 if, for every choice of corrupted

processes (consistent with a static 𝜌-bounded adversary), with probability at least 𝑝 over

the choice of Π∗
(sampled from the uniform distribution), (†𝑑,ℓ ) holds in every execution

consistent with these choices and with the setting.

9
Prior to the 𝑟 th consistency violation, a sufficiently large adversary may still be in a position to cause a liveness violation.
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• We say that P has probabilisitic recovery time 𝑑𝜀 with liveness parameter ℓ if it holds for every
𝜀 ∈ [0, 1] that (†𝑑𝜀 ,ℓ ) is ensured with probability at least 1 − 𝜀.

Recovery time for our wrapper. Given P with liveness parameter ℓ as input, our wrapper will

produce an SMR protocol with (worst-case) recovery time 𝑂 (Δ∗ · 𝑓𝑎), probabilisitic recovery time

𝑂 (Δ∗ · log 1

𝜀
), and liveness parameter ℓ , where 𝑓𝑎 denotes the actual (undetermined) number of

faulty processes.

Bounding rollback. We say that a protocol has rollback bounded by ℎ if the following holds for

every execution consistent with the setting and every correct 𝑝𝑖 , 𝑝 𝑗 ∈ Π: if there exists an interval

𝐼 = [𝑡, 𝑡 + ℎ] such that 𝜎 ⊆ log𝑖 (𝑡 ′) for all 𝑡 ′ ∈ 𝐼 , then 𝜎 ⊆ log𝑗 (𝑡 ′) for all sufficiently large 𝑡 ′.
That is, consistency violations can “unfinalize” only transactions that have been finalized recently,

within the previous ℎ time steps. Here, ℎ can be any value that depends only on determined inputs.

Bounding rollback for our wrapper. Given an SMR protocol P with liveness resilience 𝜌𝐿 as

input, our wrapper will produce an SMR protocol with rollback bounded by ℎ = 2Δ∗
so long as

synchrony holds for Δ∗
and the adversary is (1−𝜌𝐿)-bounded. In fact, while the recovery procedure

described in Section 5 requires a common choice for Δ∗
, rollback can be bounded on an individual

basis, with each correct process making their own personal choice of message delay bound ≤ Δ∗
.

rollback will be bounded by twice their personal choice of bound, so long as that bound on message

delay holds.
10

4 THE INTUITION BEHIND THEWRAPPER
We describe a wrapper, which takes an accountable and optimally resilient SMR protocol P as

input, and which runs an execution of P until a consistency violation occurs
11
Once this happens,

the wrapper triggers a ‘recovery procedure’, which achieves consensus on a set of faulty processes

𝐹 for which a proof of guilt exists, together with a long initial segment of the log produced by P
below which no consistency violation has occurred. The wrapper then initiates another execution

of P that takes this log as its genesis log, with the players in 𝐹 removed from the process set. This

next execution is run until another consistency violation occurs, and so on.

Specifying log𝑖 (𝑡) and F . While the formal definition of SMR in Section 2 requires us to specify

the finalization rule F (from which the transactions log𝑖 (𝑡) finalized by 𝑝𝑖 can then be defined

as F (𝑀𝑖 (𝑡))), it will be more natural when defining our wrapper to specify log𝑖 (𝑡) directly, and
then later to define F such that log𝑖 (𝑡) = F (𝑀𝑖 (𝑡)). Recall that the given protocol P satisfies

consistency and liveness with respect to a function that may depend on the process set and the

genesis log. We write F (Π, log𝐺 ) to denote this function.

The structure of this section. In Section 4.1, we describe the intuition behind a feature of the

wrapper which allows us to ensure rollback bounded by 2Δ∗
. Section 4.2 describes the intuition

behind the recovery procedure.

In what follows, we use the variable E to denote an execution of the wrapper (with process set

Π and log𝐺 as the genesis log), which initiates successive executions E1, E2, . . . of P, where E𝑟

has process set Π𝑟 and log𝐺𝑟
as the genesis log. Process 𝑝𝑖 maintains local variables M𝑖 and M𝑖,𝑟

10
The requirement that the choice be ≤ Δ∗

stems from the fact that the recovery procedure requires delays to be bounded

by Δ∗
to function correctly.

11
By “optimally resilient,” we mean that the protocol’s consistency resilience 𝜌𝐶 and liveness resilience 𝜆𝐿 in partial

synchrony are both positive and satisfy 𝜌𝐶 + 2𝜌𝐿 = 1 (as is the case for all of the “usual” SMR protocols designed for

the partially synchronous setting). This assumption is merely to simplify the presentation. For a non-optimally resilient

protocol, the “1 − 𝜌𝐿” term in (1) should be replaced by “(1 + 𝜌𝐶 )/2”.
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for each 𝑟 ≥ 1.
12
The former records all messages so far received in execution E, while the latter

records all messages so far received in execution E𝑟 . We suppose messages have tags identifying

the execution in which they are sent, and that M𝑖,𝑟 ⊆ M𝑖 at every timeslot, for all correct 𝑝𝑖 and all 𝑟 .

4.1 Ensuring bounded rollback
In what follows, we write 𝜌𝐶 and 𝜌𝐿 to denote the consistency and liveness resilience of P. Each

process 𝑝𝑖 executing the wrapper maintains a value log𝑖 . Suppose the currently running execution

of P is E𝑟 . To ensure rollback bounded by 2Δ∗
, 𝑝𝑖 proceeds as follows:

• While running the execution E𝑟 of P, and when 𝑝𝑖 finds that some subset of M𝑖,𝑟 is an

F (Π𝑟 , log𝐺𝑟
)-certificate for 𝜎 properly extending log𝑖 , it will set log𝑖 to extend 𝜎 .

• Process 𝑝𝑖 will only strongly finalize 𝜎 , however, once log𝑖 has extended 𝜎 for an interval of

length 2Δ∗
.

• Upon finding that M𝑖,𝑟 has a consistency violation w.r.t. F (Π𝑟 , log𝐺𝑟
), 𝑝𝑖 will:

– Send a signed 𝑟 -genesis message (gen, log𝑖 , 𝑟 ) to all processes (motivation below);

– Temporarily set log𝑖 to be log𝐺𝑟
;

– Stop running E𝑟 , and;

– Begin the recovery procedure.

To see what this achieves (modulo complications that may later be introduced by the recovery

procedure), suppose that synchrony holds for Δ∗
. Then, due to our assumptions on message

gossiping described in Section 2, 2Δ∗
bounds the round-trip time between any two correct processes.

In particular, suppose that 𝑝𝑖 finalizes 𝜎 at 𝑡 because there exists𝑀 ⊆ M𝑖,𝑟 which is an F (Π𝑟 , log𝐺𝑟
)-

certificate for 𝜎 . Then every correct process 𝑝 𝑗 will receive the messages in𝑀 by 𝑡 + Δ∗
, and will

then finalize 𝜎 (never to subsequently finalize anything incompatible with 𝜎), unless M𝑗,𝑟 has a
consistency violation (w.r.t. F (Π𝑟 , log𝐺𝑟

)) by that time. In the latter case, 𝑝𝑖 will begin the recovery

procedure by timeslot 𝑡 + 2Δ∗
and will not strongly finalize 𝜎 .

Complications introduced by the recovery procedure. Our recovery procedure introduces the

complication that there is not necessarily consensus on which logs have been strongly finalized

by some correct process. If a single correct process has strongly finalized 𝜎 when the recovery

procedure is triggered, and if the procedure determines that a log 𝜎 ′ ⊉ 𝜎 should be used as the

genesis log in the next execution of P, then this may violate the condition that the protocol has

rollback bounded by 2Δ∗
. We must therefore ensure that the recovery procedure reaches consensus

on a log that extends all logs strongly finalized by correct processes. As in explained in Section 4.2,

the 𝑟 -genesis messages sent by processes before entering the recovery procedure will be used to

achieve this.

4.2 The intuition behind the recovery procedure
Recall that 𝜌𝐶 (𝜌𝐿) is the consistency (liveness) resilience of P in partial synchrony (with pa-

rameter Δ), and that the wrapper aims to deliver extra functionality in the case that synchrony

happens to hold with respect to the (possibly large) bound Δ∗
, and so long as the adversary is

(1 − 𝜌𝐿)-bounded. So, suppose these conditions hold.

As noted in Section 4.1, while running execution E𝑟 of P, process 𝑝𝑖 will enter the recovery

procedure upon finding that M𝑖,𝑟 has a consistency violation. Given our gossip assumption, described

in Section 2, this means that correct processes will begin the recovery procedure within time Δ∗
of

each other. The key observation behind the recovery procedure is that, if one has a proof of guilt

12
We use M𝑖 when specifying the pseudocode, rather than𝑀𝑖 (𝑡 ) , since 𝑝𝑖 only has access to its local clock and does not

know the ‘global’ value of 𝑡 .
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for processes in some set 𝐹 , where |𝐹 | ≥ 𝜌𝐶𝑛, then the fact that the adversary is (1 − 𝜌𝐿)-bounded
(and 2𝜌𝐿 + 𝜌𝐶 = 1) means that the adversary controls less than half the processes in Π − 𝐹 . This

follows since:

1 − 𝜌𝐿 − 𝜌𝐶 = 𝜌𝐿, and so (1 − 𝜌𝐿 − 𝜌𝐶 )/(1 − 𝜌𝐶 ) = 𝜌𝐿/2𝜌𝐿 .

As a consequence, we can run a modified version of a standard (
1

2
-resilient) SMR protocol for

synchrony (such as [1]), in which the instructions are divided into views, each with a distinct leader.

In each view, the leader makes a proposal for the set of processes 𝐹 that should be removed from

Π𝑟 to form Π𝑟+1, and the processes outside 𝐹 then vote on that proposal.

Ensuring an appropriate value for log𝐺𝑟+1 . As well as proposing 𝐹 , the leader 𝑝𝑖 must also

suggest a sequence 𝜎 to be used as log𝐺𝑟+1 and this sequence must extend all logs strongly finalized

by correct processes. To achieve this (while keeping the probabilistic recovery time small), we run

a short sub-procedure at the beginning of the recovery procedure, before leaders start proposing

values. We proceed as follows:

• Each correct 𝑝 𝑗 waits time 2Δ∗
upon beginning the recovery procedure and then sets 𝑃 𝑗 (𝑟 )

to be the set of processes in Π𝑟 from which it has received an 𝑟 -genesis message.

• Process 𝑝 𝑗 then enters view (𝑟, 1) (the 1st view of the 𝑟 th execution of the recovery procedure).

To form an appropriate proposal 𝜎 for log𝐺𝑟+1 while in view (𝑟, 𝑣), the leader 𝑝𝑖 of the view waits for

2Δ∗
after entering the view (to accommodate possible lags between the progress of and information

received by different correct processes), and then proceeds as follows. If𝑀 is the set of 𝑟 -genesis

messages that 𝑝𝑖 has received by that time and which are signed by processes in Π𝑟 − 𝐹 , then let

𝑀 ′
be a maximal subset of𝑀 that contains at most one message signed by each process. We say

𝜎 is extended by the 𝑟 -genesis message (gen, 𝜎 ′, 𝑟 ) if 𝜎 ⊆ 𝜎 ′
. Process 𝑝𝑖 then sets 𝜎 so that the

following condition is satisfied:

†(𝑀 ′, 𝜎): 𝜎 is the longest sequence extended by more than
1

2
|Π𝑟 − 𝐹 | elements of𝑀 ′

.

Process 𝑝𝑖 then sends𝑀 ′
along with 𝜎 as a justification for its proposal. A correct process 𝑝 𝑗 will

be prepared to vote on the proposal if †(𝑀 ′, 𝜎) is satisfied and𝑀 ′
includes messages from every

member of 𝑃 𝑗 (𝑟 ).

To see that this achieves the desired outcome, note that if 𝑝 𝑗 is correct and𝑀
′
includes messages

from every member of 𝑃 𝑗 (𝑟 ), then it must contain a message from every correct process. If 𝜎 ′
has

been strongly finalized by some correct process, then every correct process must have finalized

𝜎 ′
before entering the recovery procedure, and cannot have subsequently finalized any value

incompatible with 𝜎 ′
. So, for each 𝑟 -genesis message (gen, 𝜎 ′′, 𝑟 ) sent by a correct process, 𝜎 ′′

must

extend 𝜎 ′
. It therefore holds that 𝜎 ′

is extended by more than
1

2
|Π𝑟 − 𝐹 | elements of𝑀 ′

, so that, if

†(𝑀 ′, 𝜎) is satisfied, 𝜎 must extend 𝜎 ′
.

5 THE FORMAL SPECIFICATION OF THEWRAPPER
In what follows, we suppose that, when a correct process sends a message to ‘all processes’, it

regards that message as immediately received by itself. The pseudocode uses a number of inputs,

local variables, functions and procedures, detailed below.

Inputs. The wrapper takes as input an SMR protocol P, a process set Π, a random permutation Π∗

of Π, a value log𝐺 , and message delay bounds Δ∗
and Δ. The consistency resilience 𝜌𝐶 of P is also

given as input. Recall that the given protocol P satisfies consistency and liveness with respect to

a finalization function that may depend on the process set Π′
and the value log′

𝐺
for the genesis

log. (For example, signatures from a certain fraction of the processes in Π′
may be required for



Andrew Lewis-Pye and Tim Roughgarden 10

transaction finalization.) We write F (Π′, log′
𝐺
) to denote this function, and suppose also that this

function is known to the protocol.

Permutations and the variables Π𝑟 . Process 𝑝𝑖 maintains a variable Π𝑟 for each 𝑟 ∈ N≥1. Π1

is initially set to Π, while each Π𝑟 for 𝑟 > 1 is initially undefined.
13
Once Π𝑟 is defined, Π

∗
𝑟 is the

permutation of Π𝑟 induced by Π∗
.

Views and leaders. Views are indexed by ordered pairs and ordered lexicographically: one should

think of view (𝑟, 𝑣) as the 𝑣 th view in the 𝑟 th execution of the recovery procedure. For 𝑟, 𝑣 ∈ N≥1,
we set lead(𝑟, 𝑣) = 𝑝𝑖 , where 𝑝𝑖 = Π∗

𝑟 (𝑣); this function is used to specify the leader of each view.
14

Received messages and executions. We let M𝑖 be a local variable that specifies the set of all

messages so far received by 𝑝𝑖 . The wrapper will also initiate executions E1, E2, . . . of P: for each

𝑟 ≥ 1, M𝑖,𝑟 specifies all messages so far received by 𝑝𝑖 in execution E𝑟 . We suppose that messages

have tags identifying the execution in which they are sent, and that all messages received by 𝑝𝑖 in

E𝑟 are also received by 𝑝𝑖 in the present execution of the wrapper, so that M𝑖,𝑟 ⊆ M𝑖 for all 𝑟 .

The variables log𝐺𝑟
. Process 𝑝𝑖 maintains a variable log𝐺𝑟

for each 𝑟 ∈ N≥1. Initially, log𝐺1

is

set to log𝐺 , while each log𝐺𝑟
for 𝑟 > 1 is undefined. If the execution E𝑟 of P is initiated by the

wrapper, then this will be an execution with log𝐺𝑟
as the genesis log and with process set Π𝑟 .

Logs. Process 𝑝𝑖 maintains two variables log𝑖 and log∗𝑖 . The former should be thought of as the

sequence of transactions that 𝑝𝑖 has finalized, while the latter is the sequence that 𝑝𝑖 has strongly

finalized.

Signatures. We write𝑚𝑝𝑖 to denote the message𝑚 signed by 𝑝𝑖 .

𝑟-genesis messages. An 𝑟 -genesis message is a message of the form (gen, 𝜎, 𝑟 )𝑝 𝑗
, where 𝜎 is a

sequence of transactions and 𝑝 𝑗 ∈ Π. These are used during the 𝑟 th execution of the recovery

procedure to help reach consensus on an appropriate value for log𝐺𝑟+1 . We say 𝜎 ′
is extended by

the 𝑟 -genesis message (gen, 𝜎, 𝑟 )𝑝 𝑗
if 𝜎 ′ ⊆ 𝜎 .

𝑟 -proposals. An 𝑟 -proposal is a tuple 𝑃 = (𝐹, 𝜎,𝑀, 𝑟 ), where 𝐹 ⊂ Π, 𝜎 is a sequence of transactions,

𝑀 is a set of 𝑟 -genesis messages, and 𝑟 ∈ N≥1. The last entry 𝑟 indicates that this is a proposal

corresponding to the 𝑟 th execution of the recovery procedure. One should think of 𝐹 as a suggestion

for Π𝑟 − Π𝑟+1, while 𝜎 is a suggestion for log𝐺𝑟+1 and𝑀 is a justification for 𝜎 .

(𝑟, 𝑣)-proposals. An (𝑟, 𝑣)-proposal is a message of the form 𝑅 = (𝑃, 𝑣,𝑄)𝑝 𝑗
, where 𝑃 is an 𝑟 -

proposal, 𝑝 𝑗 ∈ Π, and either 𝑄 = ⊥ or else 𝑄 is a QC (as specified below) for some (𝑟, 𝑣 ′)-proposal
with 𝑣 ′ < 𝑣 .

Votes. A vote for the (𝑟, 𝑣)-proposal 𝑅 = (𝑃, 𝑣,𝑄)𝑝 𝑗
, where 𝑃 = (𝐹, 𝜎,𝑀, 𝑟 ), is a message of the form

𝑉 = 𝑅𝑝𝑘 , where 𝑝𝑘 ∈ Π. We also say 𝑉 is a vote by 𝑝𝑘 . At timeslot 𝑡 , 𝑝𝑖 will regard 𝑉 as valid if it is

signed by one of the processes that, from 𝑝𝑖 ’s perspective, remains in the active process set—i.e.,

if Π𝑟 is defined and 𝑝𝑘 ∈ Π𝑟 − 𝐹 .

QCs. A QC for an (𝑟, 𝑣)-proposal 𝑅 = (𝑃, 𝑣,𝑄 ′)𝑝 𝑗
, where 𝑃 = (𝐹, 𝜎,𝑀, 𝑟 ), is a set 𝑄 of votes for

𝑅. At timeslot 𝑡 , 𝑝𝑖 will regard 𝑄 as valid if every vote in 𝑄 is valid and 𝑄 contains more than

1

2
|Π𝑟 − 𝐹 | votes, each by a different process. If 𝑄 is a QC for an (𝑟, 𝑣)-proposal 𝑅 = (𝑃, 𝑣,𝑄 ′)𝑝 𝑗

, we

set view(𝑄) = (𝑟, 𝑣) and P(𝑄) = 𝑃 , and we may also just refer to 𝑄 as a QC.

13
We write 𝑥 ↑ to indicate that the variable 𝑥 is undefined, and 𝑥 ↓ to indicate that 𝑥 is defined.

14
We can write 𝑝𝑖 = Π∗

𝑟 (𝑣) because the number of views in the 𝑟 th execution of the recovery procedure will be bounded

by |Π𝑟 | .
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Locks. Each process 𝑝𝑖 maintains a value 𝑄+
𝑖 , which is initially undefined. This variable should be

thought of as playing the same role as locks in Tendermint. The variable 𝑄+
𝑖 may be set to a valid

QC for an (𝑟, 𝑣)-proposal during view (𝑟, 𝑣).
The variables 𝑃𝑖 (𝑟 ) and 𝑡0. Process 𝑝𝑖 maintains a local variable 𝑃𝑖 (𝑟 ) for each 𝑟 ≥ 1, initially

undefined. Upon halting execution E𝑟 and entering the recovery procedure at timeslot 𝑡 (according

to its local clock), 𝑝𝑖 will set 𝑡0 := 𝑡 , wait 2Δ∗
, and then set 𝑃𝑖 (𝑟 ) to be the set of processes in Π𝑟

from which it has received signed 𝑟 -genesis messages.

The time for each view. Each view is of length 8Δ∗
. Having set 𝑡0 upon halting execution E𝑟 and

entering the recovery procedure, 𝑝𝑖 will start view (𝑟, 𝑣) (for 𝑣 ≥ 1) at time 𝑡0 + 2Δ∗ + 8(𝑣 − 1)Δ∗
.

Detecting equivocation. At timeslot 𝑡 , we say 𝑝𝑖 detects equivocation in view (𝑟, 𝑣) if M𝑖 contains
at least two distinct (𝑟, 𝑣)-proposals signed by lead(𝑟, 𝑣).15

Valid (𝑟, 𝑣)-proposals. Consider an (𝑟, 𝑣)-proposal 𝑅 = (𝑃, 𝑣,𝑄)𝑝 𝑗
, where 𝑃 = (𝐹, 𝜎,𝑀, 𝑟 ). At

timeslot 𝑡 (according to 𝑝𝑖 ’s local clock), process 𝑝𝑖 will regard 𝑅 as valid if:

(i) Π𝑟 and log𝐺𝑟
are defined;

(ii) 𝐹 ⊂ Π𝑟 , and |𝐹 | ≥ 𝜌𝐶 |Π𝑟 |;
(iii) M𝑖 is a (P,Π𝑟 , log𝐺𝑟

)-proof of guilt for every process in 𝐹 ;

(iv) 𝑀 is a set of 𝑟 -genesis messages, each signed by a different process in Π𝑟 − 𝐹 ;

(v) For each 𝑝𝑘 ∈ 𝑃𝑖 (𝑟 ), there exists an 𝑟 -genesis message signed by 𝑝𝑘 in𝑀 ;

(vi) 𝜎 is the longest sequence extended by more than
1

2
|Π𝑟 − 𝐹 | elements of𝑀 ;

(vii) 𝑝 𝑗 = lead(𝑟, 𝑣);
(viii) 𝑄+

𝑖 is undefined, or 𝑄 is a valid QC with (a) view(𝑄) ≥ view(𝑄+
𝑖 ), and (b) P(𝑄) = 𝑃 , and;

(ix) 𝑝𝑖 does not detect equivocation in view (𝑟, 𝑣).

The local variables voted and lockset. For each (𝑟, 𝑣), voted(𝑟, 𝑣) and lockset(𝑟, 𝑣) are initially
set to 0. These values are used to indicate whether 𝑝𝑖 has yet voted or set its lock during view (𝑟, 𝑣).
𝑟 -finish votes and QCs. An 𝑟 -finish vote for 𝑃 is a message of the form 𝑃𝑝 𝑗

, where 𝑃 = (𝐹, 𝜎,𝑀, 𝑟 )
is an 𝑟 -proposal and 𝑝 𝑗 ∈ Π. At timeslot 𝑡 , 𝑝𝑖 will regard the 𝑟 -finish vote as valid if Π𝑟 is defined

and 𝑝 𝑗 ∈ Π𝑟 − 𝐹 . A valid finish-QC for 𝑃 is a set of more than
1

2
|Π𝑟 − 𝐹 | valid 𝑟 -finish votes for 𝑃 ,

each signed by a different process.

The procedure Makeproposal. If 𝑝𝑖 = lead(𝑟, 𝑣), then it will run this procedure during view (𝑟, 𝑣).
To carry out the procedure, 𝑝𝑖 checks to see whether there exists some greatest 𝑣 ′ < 𝑣 such that

it has received a valid QC, 𝑄 say, with view(𝑄) = (𝑟, 𝑣 ′). If so, then 𝑝𝑖 sends the (𝑟, 𝑣)-proposal
𝑅 = (P(𝑄), 𝑣,𝑄)𝑝𝑖 to all processes. If not, then it sets 𝐹 to be the set of all processes 𝑝 𝑗 ∈ Π𝑟

such that M𝑖 is a (P,Π𝑟 , log𝐺𝑟
)-proof of guilt for 𝑝 𝑗 . Let 𝑀 be the set of 𝑟 -genesis messages that

𝑝𝑖 has received and which are signed by processes in Π𝑟 − 𝐹 , and let 𝑀 ′
be a maximal subset of

𝑀 that contains at most one message signed by each process. Process 𝑝𝑖 then sets 𝜎 to be the

longest sequence extended by more than
1

2
|Π𝑟 − 𝐹 | elements of𝑀 ′

and sends to all processes the

(𝑟, 𝑣)-proposal 𝑅 = (𝑃, 𝑣,⊥)𝑝𝑖 , where 𝑃 = (𝐹, 𝜎,𝑀 ′, 𝑟 ).
Message gossiping. We adopt the message gossiping conventions described in Section 2.

The function F . While the function F is not explicitly used in the pseudocode, we will show in

Section 7 that, at every 𝑡 , log𝑖 = F (M𝑖 ) (where log𝑖 and M𝑖 are as locally defined for 𝑝𝑖 at 𝑡 ). The

function F is specified in Algorithm 2.

Pseudocode walk-through. The pseudocode appears in Algorithm 1. Below, we summarise the

function of each section of code.

15
If M𝑖 contains a vote for an (𝑟, 𝑣)-proposal, we consider it as also containing that (𝑟, 𝑣)-proposal.
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Algorithm 1 : the instructions for 𝑝𝑖

1: Local variables
2: r, initially 1. ⊲ Number of executions of P initiated

3: rec, initially 0. ⊲ 1 if carrying out recovery

4: log𝑖 , log
∗
𝑖 , initially set to log𝐺 ⊲ Finalized and strongly finalized transactions

5: Π𝑟 , 𝑟 ≥ 1. Initially, Π1 = Π, while Π𝑟 ↑ for 𝑟 > 1. ⊲ Process set for E𝑟

6: log𝐺𝑟
. Initially, log𝐺1

= log𝐺 , while log𝐺𝑟
↑ for 𝑟 > 1. ⊲ Genesis log for E𝑟

7: M𝑖 , M𝑖,𝑟 , initially empty. ⊲ As specified in Section 5

8: 𝑄+
𝑖 , initially undefined. ⊲ The lock

9: 𝑡0, initially undefined. ⊲ Timeslot at start of recovery

10: 𝑃𝑖 (𝑟 ), initially undefined. ⊲ A set of processes

11: voted(𝑟, 𝑣), lockset(𝑟, 𝑣) (𝑟, 𝑣 ≥ 1), initially 0. ⊲ As specified in Section 5

12:

13: At timeslot 𝑡 :
14: If 𝑡 = 0, start execution E1 of P, with process set Π1 and with log𝐺1

as genesis log;

15:

16: If rec = 0:

17: If M𝑖,r has a consistency violation w.r.t. F (Πr, log𝐺r
):

18: Send (gen, log𝑖 , r)𝑝𝑖 to all processes; ⊲ Send r-genesis message

19: Set log𝑝𝑖 := log𝐺r
; Stop running Er; Set rec := 1; ⊲ Start recovery

20:

21: If rec = 0:

22: If ∃𝜎,𝑀 s.t. 𝜎 ⊃ log𝑖 and𝑀 ⊆ M𝑖,r is an F (Πr, log𝐺r
)-certificate for 𝜎 ;

23: Let 𝜎 be the longest such; Set log𝑖 := 𝜎 ; ⊲ Extend log

24: If there exists a longest 𝜎 ⊃ log∗𝑖 s.t. log𝑖 has extended 𝜎 for time 2Δ∗
:

25: Set log∗𝑖 := 𝜎 ; ⊲ Extend strongly finalized log

26:

27: If rec = 1:

28: If 𝑡0 ↑, set 𝑡0 := 𝑡 ; ⊲ Set 𝑡0 upon entering recovery

29: If 𝑡 = 𝑡0 + 2Δ∗
: ⊲ Set 𝑃𝑖 (r)

30: Set 𝑃𝑖 (r) := {𝑝 𝑗 ∈ Πr : M𝑖 contains an r-genesis message signed by 𝑝 𝑗 };
31:

32: If 𝑡 = 𝑡0 + 4Δ∗ + 8(𝑣 − 1)Δ∗
(for some 𝑣 ∈ N≥1) and 𝑝𝑖 = lead(r, 𝑣):

33: Makeproposal; ⊲ Leader makes new proposal 2Δ∗
after starting view

34: If 𝑡 ∈ [𝑡0 + 2Δ∗ + 8(𝑣 − 1)Δ∗, 𝑡0 + 2Δ∗ + 8𝑣Δ∗) (for some 𝑣 ∈ N≥1):
35: If voted(r, 𝑣) = 0 and M𝑖 contains a valid (r, 𝑣)-proposal 𝑅:
36: Send 𝑅𝑝𝑖 to all processes; Set voted(r, 𝑣) := 1; ⊲ Vote

37: If lockset(r, 𝑣) = 0 and M𝑖 contains a valid QC for an (r, 𝑣)-proposal, 𝑄 say:

38: Set 𝑄+
𝑖 := 𝑄 , lockset(r, 𝑣) := 1; ⊲ Set lock

39: Set the (r, 𝑣)-timer to expire in time 2Δ∗
;

40: If (r, 𝑣)-timer expires and 𝑝𝑖 does not detect equivocation in view (r, 𝑣):
41: Send P(𝑄+

𝑖 )𝑝𝑖 to all processes; ⊲ Send finish vote

42:

43: If M𝑖 contains a valid finish-QC for some 𝑃 = (𝐹, 𝜎,𝑀, r):
44: Set Πr+1 := Πr − 𝐹 , log𝐺r+1 := 𝜎 ; ⊲ Start new execution of P
45: Set r := r + 1 and make 𝑡0 and 𝑄

+
𝑖 undefined;

46: Start execution Er of P, with process set Πr and with log𝐺r
as genesis log;

47: Set rec := 0; Set log𝑖 := log𝐺r
;
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Line 14. This line starts the execution of the wrapper by initiating E1, the first execution of P,

which has process set Π1 = Π and log𝐺1

= log𝐺 as the genesis log.

Lines 16 - 19. During the 𝑟 th execution of P, these lines check whether the recovery procedure

should be triggered. If so, then 𝑝𝑖 disseminates an 𝑟 -genesis message, temporarily resets its log, and

starts the recovery procedure.

Lines 21 - 25. During the 𝑟 th execution of P, these lines check whether 𝑝𝑖 should extend its finalized

and strongly finalized logs.

Lines 28 - 30. These lines initialize the 𝑟 th execution of the recovery procedure by setting 𝑡0 and

𝑃𝑖 (𝑟 ).
Lines 32 - 41. These lines specify the instructions for view (𝑟, 𝑣). Initially, the leader waits 2Δ∗

and then makes an (𝑟, 𝑣)-proposal. Processes vote upon receiving a first valid (𝑟, 𝑣)-proposal. Upon
receiving a first valid QC for an (𝑟, 𝑣)-proposal,𝑄 say, 𝑝𝑖 sets its lock to𝑄 and then waits 2Δ∗

. If, at

this time, it still does not detect equivocation in view (𝑟, 𝑣), then it sends a finish vote for P(𝑄).
Lines 43 - 47. These lines determine when 𝑝𝑖 stops carrying out the 𝑟 th execution of the recovery

procedure. This happens when 𝑝𝑖 receives a valid finish-QC for some 𝑟 -proposal 𝑃 . The 𝑟 -proposal

𝑃 then specifies Π𝑟+1 and log𝐺𝑟+1 .

Algorithm 2 : the function F
1: Inputs
2: 𝑀 ⊲ A set of messages

3: Π, log𝐺 ⊲ Process set and genesis log

4: F (Π′, log′
𝐺
) ⊲ A function for each possible Π′

and log′
𝐺

5: Local variables
6: r, initially 1.

7: Π𝑟 , 𝑟 ≥ 1. Initially, Π1 = Π, while Π𝑟 ↑ for 𝑟 > 1.

8: log𝐺𝑟
. Initially, log𝐺1

= log𝐺 , while log𝐺𝑟
↑ for 𝑟 > 1.

9: end, initially 0

10:

11: While end = 0 do:
12: If 𝑀 does not have a consistency violation w.r.t. F (Πr, log𝐺r

):
13: Let 𝜎 be longest such that𝑀 is an F (Πr, log𝐺r

)-certificate for 𝜎 ;
14: Return 𝜎 ; Set end := 1;

15: Else if there does not exist a unique r-proposal with a valid finish-QC in𝑀 :

16: Return log𝐺r
; Set end := 1;

17: Else if there exists a unique r-proposal 𝑃 = (𝐹, 𝜎,𝑀 ′, r) with a valid finish-QC in𝑀 :

18: Set Πr+1 := Πr − 𝐹 , log𝐺r+1 = 𝜎 ;

19: Set r := r + 1;

Informal discussion: how does the recovery procedure ensure consensus? To establish that

at most one 𝑟 -proposal can receive a valid finish-QC, suppose that some correct 𝑝𝑖 sends a finish

vote for the 𝑟 -proposal 𝑃 during view (𝑟, 𝑣). In this case, 𝑝𝑖 must set its lock to some valid QC, 𝑄

say, at some timeslot 𝑡 while in view 𝑣 . Suppose that 𝑄 is a QC for the (𝑟, 𝑣)-proposal 𝑅, and note

that P(𝑄) = 𝑃 . We will observe that:

(1) All correct processes set their locks to some valid QC for 𝑅 while in view 𝑣 .

(2) No (𝑟, 𝑣)-proposal other than 𝑅 can receive a QC that is regarded as valid by any correct

process.
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From (1) and (2) it will be easy to argue by induction on 𝑣 ′ > 𝑣 that no correct process votes for

any proposal 𝑅′ = (𝑃 ′, 𝑣 ′, 𝑄 ′)𝑝 𝑗
such that 𝑃 ′ ≠ 𝑃 , since their locks will forever prevent voting for

such proposals. It follows that if any correct 𝑝𝑘 sends a finish vote for an 𝑟 -proposal 𝑃 ′
during

some view 𝑣 ′ ≥ 𝑣 , then 𝑃 = 𝑃 ′
. We conclude that, assuming (1) and (2), at most one 𝑟 -proposal can

receive a valid finish-QC.

To see that (1) holds, note that all correct processes will be in view (𝑟, 𝑣) at 𝑡 + Δ∗
and will have

received 𝑄 by this time. They will therefore set their lock to be some QC for 𝑅, unless they have

already received a valid QC for some (𝑟, 𝑣)-proposal 𝑅′ ≠ 𝑅. The latter case is not possible, since

then 𝑝𝑖 would detect equivocation in view (𝑟, 𝑣) by 𝑡 + 2Δ∗
, and so would not send the finish vote

for 𝑃 .

To see that (2) holds, the argument is similar. All correct processes will be in view (𝑟, 𝑣) at 𝑡 + Δ∗

and will have received 𝑅 by this time. Item (ix) in the validity conditions for (𝑟, 𝑣)-proposals prevents
correct processes from voting for (𝑟, 𝑣)-proposals 𝑅′ ≠ 𝑅 at later timeslots, and correct processes

cannot vote for such proposals at any timeslot ≤ 𝑡 + Δ∗
because 𝑝𝑖 would detect equivocation in

view (𝑟, 𝑣) in this case.

Having established that at most one 𝑟 -proposal can receive a valid finish-QC, suppose now,

towards a contradiction, that no 𝑟 -proposal ever receives a valid finish-QC. Let 𝑣 be the least such

that lead(𝑟, 𝑣) is correct and let 𝑖 be such that 𝑝𝑖 = lead(𝑟, 𝑣). Since 𝑝𝑖 waits 2Δ
∗
, until some

timeslot 𝑡 say, before disseminating an (𝑟, 𝑣)-proposal 𝑅 = (𝑃, 𝑣,𝑄)𝑝𝑖 , it will have seen all locks held

by correct processes by this time, and will have received 𝑟 -genesis messages from all processes in

any set 𝑃 𝑗 (𝑟 ) for correct 𝑝 𝑗 . At 𝑡 , 𝑝𝑖 will disseminate an (𝑟, 𝑣)-proposal which all correct processes

regard as valid by timeslot 𝑡 + Δ∗
. All correct processes will therefore vote for the proposal by this

time and will receive a valid QC for the proposal by time 𝑡 + 2Δ∗
. All correct processes will then set

their locks. They will still be in view (𝑟, 𝑣) by time 𝑡 + 4Δ∗
(since they enter the view within time

Δ∗
of each other) and will send 𝑟 -finish votes for 𝑃 by this time.

6 THE THEOREM STATEMENTS
Given functions 𝑔,𝑔′ : N→ R, we say 𝑔 ≤ 𝑔′ if 𝑔(𝑟 ) ≤ 𝑔′ (𝑟 ) for all 𝑟 ∈ N. If 𝑥 ∈ R, we say 𝑔 ≤ 𝑥 if

𝑔(𝑟 ) ≤ 𝑥 for all 𝑟 ∈ N. We say 𝑔 < 𝑔′ if 𝑔 ≤ 𝑔′ and 𝑔(𝑟 ) < 𝑔′ (𝑟 ) for some 𝑛.

We begin with our main positive result, which states the guarantees our wrapper achieves for

recoverable consistency and liveness, worst-case and probabilistic recovery time, and rollback.

Theorem 6.1. Suppose the wrapper is given an SMR protocol P as input, where P has consistency
resilience 𝜌𝐶 and liveness resilience 𝜌𝐿 in partial synchrony, such that 𝜌𝐶 + 2𝜌𝐿 = 1. Let 𝑔1 and
𝑔2 be as defined in expression (1) in Section 3. If P has liveness parameter ℓ and is accountable for
(1 − 𝜌𝐿)-bounded adversaries, then the wrapper produces a protocol with the same consistency and
liveness resilience as P in partial synchrony, and with the following properties for (1 − 𝜌𝐿)-bounded
adversaries when message delays are bounded by Δ∗:

(i) Recoverable consistency resilience ≥ 𝑔1 and recoverable liveness resilience ≥ 𝑔2.
(ii) Recovery time 𝑂 (𝑓𝑎Δ∗) with liveness parameter ℓ , where 𝑓𝑎 is the actual (unknown) number of

faulty processes.
(iii) Probabilistic recovery time 𝑂 (Δ∗log 1

𝜀
) with liveness parameter ℓ .

(iv) Rollback bounded by 2Δ∗.

The proof of Theorem 6.1 is given in Section 7.

The next three results describe senses in which Theorem 6.1 is tight. We say a protocol has

bounded rollback if there exists some ℎ such that the protocol has rollback bounded by ℎ. Our first
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impossibility result states that the rollback of a protocol must scale with Δ∗
, and hence bounded

rollback in the partially synchronous setting is impossible.

Theorem 6.2 (Impossibility result 1). Suppose partial synchrony holds w.r.t. Δ and synchrony
holds w.r.t. Δ∗. Suppose P is a protocol for SMR with liveness resilience 𝜌𝐿 , consistency resilience
𝜌𝐶 ≥ 𝜌𝐿 , liveness parameter ℓ , and with rollback bounded by ℎ. If we are given only that the adversary
is 𝜌-bounded for 𝜌 > 1 − 2𝜌𝐿 , then ℎ = Ω(Δ∗). In particular, P does not have bounded rollback in the
pure partially synchronous setting.

Proof. The proof is an easy adaptation of the classic proof of Dwork, Lynch and Stockmeyer [12].

Let F be the function with respect to which P has liveness resilience 𝜌𝐿 and consistency resilience

𝜌𝐶 . Given any 𝛾 ∈ [0, 1), let Δ∗
be large enough that ℓ/Δ∗ < 1 − 𝛾 . We show that P does not have

rollback bounded by 𝛾Δ∗
. Let 𝑛 be such that there exists𝑚 ∈ N with 1 − 2𝜌𝐿 < 𝑚/𝑛 < 𝜌 , and such

that 𝑛 −𝑚 is even. Let Π = {𝑝1, . . . , 𝑝𝑛} and let Π1,Π2,Π3 be disjoint subsets of Π with |Π1 | =𝑚,

|Π2 | = |Π3 | = (𝑛 −𝑚)/2. Note that (𝑛 −𝑚)/2 < 𝜌𝐿𝑛. Let tr1 and tr2 be distinct transactions. We

consider three executions of P with Δ = 1.

Execution E1. Processes in Π1 and Π2 are correct. Processes in Π3 are faulty and perform no

actions. Processes in Π1 receive tr1 at timeslot 1. GST= 0.

Execution E2. Processes in Π1 and Π3 are correct. Processes in Π2 are faulty and perform no

actions. Processes in Π1 receive tr2 at timeslot 1. GST= 0.

Execution E3. GST= Δ∗
. Processes in Π2 and Π3 are correct. Processes in Π1 are faulty. Processes

in Π1 receive tr1 and tr2 at timeslot 1. The processes in Π1 simulate two simultaneous executions

E′
3
and E′′

3
prior to GST, sending messages as instructed in these two executions, unless explicitly

stated otherwise. In E′
3
, each process in Π1 acts exactly as if correct, except that it (i) ignores receipt

of tr2, (ii) ignores messages from, and does not send messages to, processes in Π3, and (iii) ignores

messages sent by processes in Π1 corresponding to E′′
3
. In E′′

3
, each process in Π1 acts exactly as

if correct, except that it (i) ignores receipt of tr1, (ii) ignores messages from, and does not send

messages to, processes in Π2, and (iii) ignores messages sent by processes in Π1 corresponding to

E′
3
. After GST, processes in Π1 carry out no action. Message delays prior to GST are as follows:

• Messages sent by processes in Π2 to processes in Π3 do not arrive until GST.

• Symmetrically, messages sent by processes in Π3 to processes in Π2 do not arrive until GST.

• For 𝑘 ∈ {2, 3}, messages sent from processes in Π𝑘 to processes in Π1 or Π𝑘 arrive at the next

timeslot.

• Messages sent by processes in Π1 to processes in Π1, Π2 or Π3 arrive at the next timeslot.

Since |Π3 | < 𝜌𝐿𝑛, all processes in Π2 must finalize tr1 by timeslot ℓ in E1. Similarly, all processes

in Π3 must finalize tr2 by timeslot ℓ in E2. Let 𝑖 and 𝑗 be such that 𝑝𝑖 ∈ Π2 and 𝑝 𝑗 ∈ Π3. From

consistency (and since 𝜌𝐶 ≥ 𝜌𝐿) it follows that:

(i) F (𝑀𝑖 (𝑡)) = tr1 for all 𝑡 ∈ [ℓ,GST) in E1.

(ii) F (𝑀 𝑗 (𝑡)) = tr2 for all 𝑡 ∈ [ℓ,GST) in E2.

For processes in Π2, E3 is indistinguishable from E1 prior to GST. For processes in Π3, E3 is

indistinguishable from E2 prior to GST. It follows that F (𝑀𝑖 (𝑡)) = tr1 for all 𝑡 ∈ [ℓ,GST) in E3

and that F (𝑀 𝑗 (𝑡)) = tr2 for all 𝑡 ∈ [ℓ,GST) in E3. However, it cannot be the case that F (𝑀𝑘 (𝑡))
begins with both tr1 and tr2 for all correct 𝑝𝑘 and all sufficiently large 𝑡 . This suffices to establish

the claim, since Δ∗ − ℓ > 𝛾Δ∗
. □

Our second impossibility result justifies our restriction to (1 − 𝜌𝐿)-bounded adversaries: with a

larger adversary, bounded rollback is impossible (even in the synchronous setting).
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Theorem 6.3 (Impossibility result 2). Consider the synchronous setting and suppose P is a
protocol for SMR with liveness resilience 𝜌𝐿 and consistency resilience 𝜌𝐶 ≥ 𝜌𝐿 . If we are given only
that the adversary is 𝜌-bounded for 𝜌 > 1 − 𝜌𝐿 , then P does not have bounded rollback. (The same
result also holds in partial synchrony.)

Proof. As in the proof of Theorem 6.2, let F be the function with respect to which P has liveness

resilience 𝜌𝐿 and consistency resilience 𝜌𝐶 . Consider any ℎ which is a function of the determined

inputs. Let 𝑛 be such that there exists 𝑚 ∈ N with 1 − 𝜌𝐿 < 𝑚/𝑛 < 𝜌 . Let Π = {𝑝1, . . . , 𝑝𝑛}
and let Π1,Π2,Π3 be disjoint subsets of Π with |Π1 | = 2𝑚 − 𝑛, |Π2 | = |Π3 | = 𝑛 −𝑚. Note that

Π1 ∪ Π2 ∪ Π3 = Π and 𝑛 −𝑚 < 𝜌𝐿𝑛. Let tr1 and tr2 be distinct transactions. We consider three

executions of P with Δ∗ = 2. In all three executions, messages sent at any timeslot 𝑡 arrive at the

least even timeslot 𝑡 ′ > 𝑡 , unless explicitly stated otherwise. We first specify executions E1 and E2:

Execution E1. Processes in Π1 and Π2 are correct. Processes in Π3 are faulty and perform no

actions. Processes in Π1 receive tr1 at timeslot 1.

Execution E2. Processes in Π1 and Π3 are correct. Processes in Π2 are faulty and perform no

actions. Processes in Π1 receive tr2 at timeslot 1.

Since 𝑛 −𝑚 < 𝜌𝐿𝑛, all processes in Π2 must finalize tr1 by some timeslot 𝑡1 in E1. Similarly, all

processes in Π3 must finalize tr2 by some timeslot 𝑡2 in E2. Set 𝑡3 to be an even timeslot greater

than max{𝑡1, 𝑡2} + ℎ. Let 𝑖 and 𝑗 be such that 𝑝𝑖 ∈ Π2 and 𝑝 𝑗 ∈ Π3. From consistency (and since

𝜌𝐶 ≥ 𝜌𝐿) it follows that:

(i) F (𝑀𝑖 (𝑡)) = tr1 for all 𝑡 ∈ [𝑡1, 𝑡3] in E1.

(ii) F (𝑀 𝑗 (𝑡)) = tr2 for all 𝑡 ∈ [𝑡2, 𝑡3] in E2.

Set𝑀1 = 𝑀𝑖 (𝑡3) and𝑀2 = 𝑀 𝑗 (𝑡3). It cannot be that F (𝑀1 ∪𝑀2) extends both tr1 and tr2. Without

loss of generality, suppose that it does not extend tr2. We now specify E3:

Execution E3. Processes in Π3 are correct. Processes in Π1 and Π2 are faulty and receive tr1 and
tr2 at timeslot 1. At timeslots ≤ 𝑡3, the processes in Π1 ∪ Π2 carry out a simulation of E1 between

them (sending no messages to processes in Π3 as part of this simulation). Recall that 𝑝𝑖 ∈ Π2. As a

result of this simulation,𝑀𝑖 (𝑡3) (as defined for E3) contains all messages in𝑀1. At timeslots ≤ 𝑡3
each process in Π1 also simulates execution E2, i.e. sends to all processes in Π3 precisely the same

messages at the same timeslots as in E2. Recall that 𝑝 𝑗 ∈ Π3. At timeslot 𝑡3, 𝑝𝑖 sends all messages in

𝑀1 to 𝑝 𝑗 , and these messages are received at the next timeslot.

Since E3 is indistinguishable from E2 at timeslots ≤ 𝑡3 for 𝑝 𝑗 , F (𝑀 𝑗 (𝑡)) = tr2 for all 𝑡 ∈ [𝑡2, 𝑡3]
in E3. However, 𝑀 𝑗 (𝑡3 + 1) = 𝑀1 ∪𝑀2. Since F (𝑀1 ∪𝑀2) does not extend tr2, P does not have

rollback bounded by ℎ. □

Our final impossibility result shows that the recoverable consistency and liveness functions 𝑔1
and 𝑔2 in Theorem 6.1 cannot be improved upon, giving an analog of the “𝜌𝐶 + 2𝜌𝐿 ≤ 1” constraint

for all positive values of 𝑟 .

Theorem 6.4 (Impossibility result 3). Given 𝜌𝐶 and 𝜌𝐿 such that 𝜌𝐶 +2𝜌𝐿 = 1, let 𝑔1 and 𝑔2 be as
defined in Section 3. Suppose 𝑔′

1
, 𝑔′

2
≤ 1 − 𝜌𝐿 and that P is an SMR protocol for partial synchrony with

recoverable consistency resilience ≥ 𝑔′
1
and recoverable liveness resilience ≥ 𝑔′

2
when message delays

are bounded by Δ∗. Suppose that, for some 𝑑 and ℓ , P has recovery time 𝑑 with liveness parameter ℓ
when the adversary is 1 − 𝜌𝐿-bounded. Then:

(1) If 𝑔′
2
≥ 𝑔2, then 𝑔′1 ≤ 𝑔1, and;

(2) If 𝑔′
2
> 𝑔2, then 𝑔′1 < 𝑔1.
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Proof. Let 𝜌𝐶 and 𝜌𝐿 be such that 𝜌𝐶 + 2𝜌𝐿 = 1. Recall that, in Section 3, we set 𝑥0 = 0 and

𝑥𝑟+1 = 𝑥𝑟 + 𝜌𝐶 (1 − 𝑥𝑟 ), and then defined:

𝑔1 (𝑟 ) = min{𝑥𝑟+1, 1 − 𝜌𝐿}, 𝑔2 (𝑟 ) = min{𝑥𝑟 + 𝜌𝐿 (1 − 𝑥𝑟 ), 1 − 𝜌𝐿}.

Suppose 𝑔′
2
≤ 1 − 𝜌𝐿 and 𝑔′

2
≥ 𝑔2. Let C be the set of all SMR protocols for partial synchrony with

recoverable liveness resilience ≥ 𝑔′
2
when message delays are bounded by Δ∗

. We prove †𝑟 below
by induction on 𝑟 :

†𝑟 : If 𝑔′
1
≤ 1 − 𝜌𝐿 and P ∈ C has recoverable consistency resilience ≥ 𝑔′

1
when message delays

are bounded by Δ∗
, then: 𝑔′

1
(𝑟 ) ≤ 𝑔1 (𝑟 ), and if 𝑔′

2
(𝑟 ) > 𝑔2 (𝑟 ) then 𝑔′1 (𝑟 ) < 𝑔1 (𝑟 ).

Given 𝑟 ∈ N≥0, suppose †𝑟 ′ holds for all 𝑟 ′ < 𝑟 in N≥0. If 𝑥𝑟 ≥ 1− 𝜌𝐿 then there is nothing to prove.

So, suppose otherwise. Let 𝜌∗ be such that 𝑔′
2
(𝑟 ) = 𝑥𝑟 + 𝜌∗ (1 − 𝑥𝑟 ), noting that 𝜌∗ ≥ 𝜌𝐿 because

𝑔′
2
(𝑟 ) ≥ 𝑔2 (𝑟 ). Suppose P ∈ C and choose arbitrary 𝜌 > 𝑥𝑟 + (1 − 2𝜌∗) (1 − 𝑥𝑟 ). It suffices to show

that if the adversary is only 𝜌-bounded, then there are executions of P with 𝑟 + 1 consistency

violations.

From the induction hypothesis it follows that for each 𝜖 > 0 there exist executions of P in which

the adversary is (𝑥𝑟 + 𝜖)-bounded with 𝑟 consistency violations. By standard simulation arguments,

there also exist such executions for arbitrarily large process sets Π = {𝑝1, . . . , 𝑝𝑛}. For 𝑟 = 0 this

claim is immediate. If 𝑟 > 0, note that †𝑟−1 applies to arbitrary P′ ∈ C. If there existed 𝜖 > 0

and 𝑁 such that all executions of P with a process set of size 𝑛 ≥ 𝑁 in which the adversary is

(𝑥𝑟 + 𝜖)-bounded have at most 𝑟 − 1 consistency violations, then there would exist protocols in

C which achieve the same for 𝑛 < 𝑁 by having each process simulate P for ⌈𝑁 /𝑛⌉ processes,
contrary to the induction hypothesis. This means we can find 𝑛, Π = {𝑝1, . . . , 𝑝𝑛} and Π1 − Π4

which is a partition of Π such that:

(1) |Π1 ∪ Π3 | = |Π1 ∪ Π4 | < 𝑥𝑟 + 𝜌∗ (1 − 𝑥𝑟 ),
(2) |Π1 ∪ Π2 | < 𝜌𝑛,

and such that there exist executions of P with process set Π and 𝑟 consistency violations in which

only the processes in Π1 are faulty. Let E0 be such an execution, and let 𝑡0 be such that𝑀𝑐 (𝑡0) has
𝑟 consistency violations in E0. We may assume that E0 has no more than 𝑟 consistency violations,

since otherwise this is already an execution with 𝑟 +1 consistency violations in which the adversary

is 𝜌-bounded.

Let ℓ and 𝑑 be as in the statement of the lemma. Without loss of generality, suppose 𝑑 > 0.

Suppose Δ∗ > ℓ and set Δ = 1 (this choice of Δ can be made consistent with E0 by setting GST≥ 𝑡0).

Let tr1 and tr2 be distinct transactions that are not sent by the environment to any process prior

to 𝑡0. We consider three further executions of P, all of which are identical to E0 until after 𝑡0:

Execution E1. Processes in Π2 ∪ Π3 are correct. Processes in Π1 ∪ Π4 are faulty. Processes in Π1

perform no action after 𝑡0. Processes in Π4 act correctly, except that they perform no action at

timeslots ≥ 𝑡0 + 𝑑 . GST= 𝑡0 and processes in Π2 receive tr1 at 𝑡0 + 𝑑 .
Execution E2. Processes in Π2 ∪ Π4 are correct. Processes in Π1 ∪ Π3 are faulty. Processes in Π1

perform no action after 𝑡0. Processes in Π3 act correctly, except that they perform no action at

timeslots ≥ 𝑡0 + 𝑑 . GST= 𝑡0 and processes in Π2 receive tr2 at 𝑡0 + 𝑑 .
Execution E3. Processes in Π3 ∪ Π4 are correct. Processes in Π1 ∪ Π2 are faulty. Processes in Π1

perform no action after 𝑡0. The execution is identical to E1 and E2 prior to 𝑡0 +𝑑 . At 𝑡0 +𝑑 , processes
in Π2 receive tr1 and tr2. GST= 𝑡0 + 𝑑 + ℓ + 1. At timeslots in [𝑡0 + 𝑑 + ℓ], the processes in Π2

simulate two simultaneous executions E′
3
and E′′

3
, sending messages as instructed in these two

executions, unless explicitly stated otherwise. In E′
3
, each process in Π2 acts exactly as if correct,
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except that it (i) ignores receipt of tr2, (ii) ignores messages from, and does not send messages to,

processes in Π4, and (iii) ignores messages sent by processes in Π2 corresponding to E′′
3
. In E′′

3
,

each process in Π2 acts exactly as if correct, except that it (i) ignores receipt of tr1, (ii) ignores
messages from, and does not send messages to, processes in Π3, and (iii) ignores messages sent by

processes in Π2 corresponding to E′
3
. After GST, processes in Π2 carry out no action. For messages

sent in timeslots in [𝑡0 + 𝑑,GST), message delivery is as follows:

• Messages sent by processes in Π3 to processes in Π4 do not arrive until GST.

• Symmetrically, messages sent by processes in Π4 to processes in Π3 do not arrive until GST.

• For 𝑘 ∈ {3, 4}, messages sent from processes in Π𝑘 to processes in Π2 or Π𝑘 arrive at the next

timeslot.

• Messages sent by processes in Π2 to processes in Π2, Π3 or Π4 arrive at the next timeslot.

Since |Π1 ∪ Π4 | < 𝑔′
2
(𝑟 ), all processes in Π3 must finalize tr1 (and not tr2) by timeslot 𝑡0 + 𝑑 + ℓ

in E1. Similarly, all processes in Π4 must finalize tr2 (and not tr1) by 𝑡0 + 𝑑 + ℓ in E2. Since E3 is

indistinguishable from E1 until GST for processes in Π3, all processes in Π3 must finalize tr1 (and
not tr2) by timeslot 𝑡0 + 𝑑 + ℓ in E3. Since E3 is indistinguishable from E2 until GST for processes

in Π4, all processes in Π4 must finalize tr2 (and not tr1) by timeslot 𝑡0 + 𝑑 + ℓ in E3. Execution

E3 is therefore an execution of P with 𝑟 + 1 consistency violations and in which the adversary is

𝜌-bounded. □

7 THE PROOF OF THEOREM 6.1
We assume throughout this section that the adversary is (1− 𝜌𝐿)-bounded and that message delays

are bounded by Δ∗
.

Some further terminology. We make the following definitions:

• Process 𝑝𝑖 begins the 𝑟
th
execution of the recovery procedure at the first timeslot at which

r = 𝑟 and rec = 1 (where those values are as locally defined for 𝑝𝑖 ).

• The 𝑟 th execution of the recovery procedure begins at the first timeslot at which some correct

process begins the 𝑟 th execution of the recovery procedure.

• Execution E𝑟 begins at the first timeslot at which some correct process begins execution E𝑟 .

If 𝑟 > 1, then the (𝑟 − 1)th execution of the recovery procedure also ends at this timeslot.

• If a QC/finish-QC is regarded as valid by all correct processes, we refer to it as a valid

QC/finish-QC.

Lemma 7.1. If the 𝑟 th execution of the recovery procedure begins at 𝑡0, then:
(i) All correct processes begin the 𝑟 th execution of the recovery procedure by time 𝑡0 + Δ∗.
(ii) There exists a unique 𝑟 -proposal, 𝑃 say, that receives a finish-QC that is regarded as valid by

some correct process.
(iii) If 𝑣0 is least such that lead(𝑟, 𝑣0) is correct, all correct processes receive a valid finish-QC for 𝑃

by time 𝑡0 + 2Δ∗ + 8𝑣0Δ
∗.

(iv) All correct processes begin execution E𝑟+1 within time Δ∗ of each other and with the same local
values for Π𝑟+1 and log𝐺𝑟+1 .

Proof. The proof is by induction on 𝑟 . So, suppose the lemma holds for all 𝑠 < 𝑟 . The 𝑟 th

execution of the recovery procedure cannot begin before execution E𝑟 . So, since the lemma holds

for 𝑟 − 1 (if 𝑟 > 1), it follows that all correct processes begin E𝑟 by 𝑡0 + Δ∗
. All messages received by

the first correct process to begin the 𝑟 th execution of the recovery procedure will also be received

by all correct processes by 𝑡0 + Δ∗
, meaning that all correct processes will begin the 𝑟 th execution

of the recovery procedure by that time (and within Δ∗
of each other). This establishes statement (i)

of the lemma.
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By the induction hypothesis, all correct processes have the same local values for Π 𝑗 and log𝐺 𝑗
,

so that any QC or finish-QC that is regarded as valid by any correct process will be regarded as

valid by all correct processes. The remainder of the proof of Lemma 7.1 proceeds much as in the

informal discussion at the end of Section 5. Below, we fill in the details.

Suppose first that there exists some least 𝑣 such that some correct process 𝑝𝑖 sends a finish vote

for some 𝑟 -proposal, 𝑃 say, during view (𝑟, 𝑣). Then, at some timeslot 𝑡 while in view (𝑟, 𝑣), 𝑝𝑖 must

set 𝑄+
𝑖 := 𝑄 , for some 𝑄 such that: (i) 𝑄 is a valid QC for an (𝑟, 𝑣)-proposal 𝑅, and; (ii) P(𝑄) = 𝑃 .

We will show that:

(1) All correct processes set their locks to some valid QC for 𝑅 while in view (𝑟, 𝑣).
(2) No (𝑟, 𝑣)-proposal other than 𝑅 can receive a QC that is regarded as valid by any correct

process.

To see that (1) holds, note that all correct processes will be in view (𝑟, 𝑣) at 𝑡 + Δ∗
, since 𝑝𝑖 is

still in view (𝑟, 𝑣) at time 𝑡 + 2Δ∗
and all correct processes begin the recovery procedure (and so

each view of the recovery procedure) within time Δ∗
of each other. All correct processes will also

have received 𝑄 by 𝑡 + Δ∗
. They will therefore set their lock to be some QC for 𝑅, unless they have

already received a valid QC for some (𝑟, 𝑣)-proposal 𝑅′ ≠ 𝑅. The latter case is not possible, since

then 𝑝𝑖 would detect equivocation in view (𝑟, 𝑣) by 𝑡 + 2Δ∗
, and so would not send the finish vote

for 𝑃 .

To see that (2) holds, note that (as reasoned above) all correct processes will be in view (𝑟, 𝑣)
at 𝑡 + Δ∗

and will have received 𝑅 by this time. Item (ix) in the validity conditions for (𝑟, 𝑣)-
proposals prevents correct processes voting for (𝑟, 𝑣)-proposals 𝑅′ ≠ 𝑅 at timeslots after 𝑡 +Δ∗

, and

correct processes cannot vote for such proposals at any timeslot ≤ 𝑡 + Δ∗
because 𝑝𝑖 would detect

equivocation in view (𝑟, 𝑣) before sending the finish vote for 𝑃 in this case. Since any QC for an

(𝑟, 𝑣)-proposal that is regarded as valid by any correct process must include at least one vote by a

correct process, the claim follows.

From (2) it follows that no correct process sends a finish vote for any 𝑟 -proposal other than 𝑃

while in view 𝑣 . Next, we argue by induction on 𝑣 ′ > 𝑣 that no correct process votes for any proposal

𝑅′ = (𝑃 ′, 𝑣 ′, 𝑄 ′)𝑝𝑘 such that 𝑃 ′ ≠ 𝑃 . So, suppose the claim holds for all 𝑣 ′′ ∈ (𝑣, 𝑣 ′), meaning that

no 𝑅′ = (𝑃 ′, 𝑣 ′′, 𝑄 ′)𝑝𝑘 with 𝑃 ′ ≠ 𝑃 and 𝑣 ′′ ∈ (𝑣, 𝑣 ′) can receive a valid QC. From (1), it follows that

every correct process 𝑝 𝑗 has their local lock𝑄
+
𝑗 set so that view(𝑄+

𝑗 ) ≥ (𝑟, 𝑣) upon entering view 𝑣 ′.
They therefore cannot vote for any proposal 𝑅′ = (𝑃 ′, 𝑣 ′, 𝑄 ′)𝑝𝑘 such that 𝑃 ′ ≠ 𝑃 , since for 𝑅 to be

valid it must hold that P(𝑄 ′) = 𝑃 ′
, so that view(𝑄 ′) < (𝑟, 𝑣), while view(𝑄 ′) ≥ view(𝑄+

𝑗 ) ≥ (𝑟, 𝑣).

So far, we have established that at most one 𝑟 -proposal receives a valid finish-QC. To establish (ii)

and (iii) in the statement of the lemma, let 𝑡0 and 𝑣0 be as specified in the statement of the lemma.

Note that 𝑡0 + 2Δ∗ + 8𝑣0Δ∗
is the first timeslot at which any correct process can enter view (𝑟, 𝑣0 + 1).

Suppose, towards a contradiction, that it is not the case that all correct processes receive a valid

finish-QC for some 𝑟 -proposal by 𝑡0 + 2Δ∗ + 8𝑣0Δ
∗
. This means that no correct process receives a

valid finish-QC for any 𝑟 -proposal by 𝑡0 + Δ∗ + 8𝑣0Δ
∗
, so all correct processes are still executing the

recovery procedure and are in view (𝑟, 𝑣) at this time.

Let 𝑖 be such that 𝑝𝑖 = lead(𝑟, 𝑣0). Since 𝑝𝑖 waits 2Δ∗
after entering the view before disseminating

an (𝑟, 𝑣0)-proposal 𝑅 = (𝑃, 𝑣0, 𝑄)𝑝𝑖 , and since all correct processes enter the view at most Δ∗
after

𝑝𝑖 , it will have seen all locks held by correct processes by this time, and will have received 𝑟 -genesis

messages from all processes in any set 𝑃 𝑗 (𝑟 ) for correct 𝑝 𝑗 . Process 𝑝𝑖 will disseminate the (𝑟, 𝑣0)-
proposal 𝑅 by 𝑡0 + 5Δ∗ + 8(𝑣0 − 1)Δ∗

, since 𝑝𝑖 begins the 𝑟
th
execution of the recovery procedure by

time 𝑡0 +Δ∗
. All correct processes will have received the proposal by timeslot 𝑡0 + 6Δ∗ + 8(𝑣0 − 1)Δ∗
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and will regard the proposal as valid by this time (having received all (P,Π𝑟 , log𝐺𝑟
)-proofs of guilt

that 𝑝𝑖 received by 𝑡0 + 5Δ∗ + 8(𝑣0 − 1)Δ∗
). All correct processes will therefore vote for the proposal

by this time and will receive a valid QC for the proposal by 𝑡0+7Δ∗+8(𝑣0−1)Δ∗
, and so will set their

locks by this time. They will still be in view (𝑟, 𝑣) by time 𝑡0 + 9Δ∗ + 8(𝑣0 − 1)Δ∗ = 𝑡0 + Δ∗ + 8𝑣0Δ
∗

and will send 𝑟 -finish votes for 𝑃 by this time. All correct processes will therefore receive a valid

finish-QC for 𝑃 by time 𝑡0 + 2Δ∗ + 8𝑣0Δ
∗
, giving the required contradiction.

To see that statement (iv) of the lemma holds, note that the first correct process to begin execution

E𝑟+1 does so upon receiving a valid finish-QC for some 𝑟 -proposal 𝑃 at some timeslot 𝑡 . This cannot

happen until at least 2Δ∗
has passed since the 𝑟 th execution of the recovery procedure began,

meaning that all correct processes will have begun the 𝑟 th execution of the recovery procedure by

timeslot 𝑡 . They will all receive a valid finish-QC for 𝑃 by 𝑡 + Δ∗
, and so will begin execution E𝑟+1

by that time. □

Further notation. Given statement (iv) of Lemma 7.1, each value Π𝑟 or log𝐺𝑟
is either undefined

at all timeslots for all correct processes, or else is eventually defined and takes the same value for

each correct process. We may therefore write Π𝑟 and log𝐺𝑟
to denote these globally agreed values.

Lemma 7.2. If 𝑝𝑖 is correct, then, at the end of every timeslot, log𝑖 = F (M𝑖 ).

Proof. Let rec, r, M𝑖 , M𝑖,𝑟 and log𝑖 be as locally defined for 𝑝𝑖 . Consider first the case that rec = 0

at the end of timeslot 𝑡 . In this case, M𝑖 has a consistency violation with respect to F (Π𝑟 , log𝐺𝑟
) for

each 𝑟 < r but does not have a consistency violation with respect to F (Πr, log𝐺r
). Also, M𝑖 contains

a valid finish-QC for some 𝑟 -proposal for each 𝑟 < r, which must be unique by Lemma 7.1. At the

end of timeslot 𝑡 , log𝑖 is the longest string 𝜎 such that M𝑖 (and M𝑖,r) is an F (Πr, log𝐺r
)-certificate

for 𝜎 . The iteration defining F in Algorithm 2 will not return a value until it has defined all values

Π𝑟 and log𝐺𝑟
for 𝑟 ≤ r. Upon discovering that M𝑖 does not have a consistency violation with

respect to F (Πr, log𝐺r
), it will return the same value 𝜎 , as the longest string for which M𝑖 is an

F (Πr, log𝐺r
)-certificate.

Next, consider the case that rec = 1 at the end of timeslot 𝑡 . In this case, M𝑖 has a consistency
violation with respect to F (Π𝑟 , log𝐺𝑟

) for each 𝑟 ≤ r, and also contains a valid finish-QC for some

𝑟 -proposal for each 𝑟 < r, which must be unique by Lemma 7.1. However, M𝑖 does not contain a

valid finish-QC for any r-proposal. At the end of timeslot 𝑡 , log𝑖 = log𝐺r
. The iteration defining

F will not return a value until it has defined all values Π𝑟 and log𝐺𝑟
for 𝑟 ≤ r, and will then also

return log𝐺r
. □

Lemma 7.3. The wrapper has rollback bounded by 2Δ∗. Also, log𝐺𝑟+1 ⊇ log𝐺𝑟
whenever log𝐺𝑟+1 ↓.

Proof. We say 𝑝𝑖 finalizes 𝜎 if it sets log𝑖 to extend 𝜎 and that 𝑝𝑖 strongly finalizes 𝜎 if it sets

log∗𝑖 to extend 𝜎 . Suppose 𝑝𝑖 finalizes 𝜎 while running E𝑟 at 𝑡 because there exists𝑀 ⊆ M𝑖,𝑟 which
is an F (Π𝑟 , log𝐺𝑟

)-certificate for 𝜎 . By (iv) of Lemma 7.1, every correct process 𝑝 𝑗 will begin E𝑟

by 𝑡 + Δ∗
, and will receive the messages in 𝑀 by that time. This means 𝑝 𝑗 will finalize 𝜎 , never

to subsequently finalize any sequence incompatible with 𝜎 while running E𝑟 , unless M𝑗,𝑟 has a
consistency violation w.r.t. F (Π𝑟 , log𝐺𝑟

) by 𝑡 + Δ∗
. In the latter case, 𝑝𝑖 will begin the recovery

procedure by timeslot 𝑡 + 2Δ∗
and will not strongly finalize 𝜎 at that time. We conclude that, if 𝑝𝑖

strongly finalizes 𝜎 while running E𝑟 , then all correct processes finalize 𝜎 while running E𝑟 .

If 𝑝𝑖 strongly finalizes 𝜎 while running E𝑟 and if the 𝑟
th
execution of the recovery procedure does

not begin at any timeslot, it follows that, for all correct 𝑝 𝑗 , 𝜎 ⊆ log𝑗 thereafter. So, suppose that

the 𝑟 th execution of the recovery procedure begins at some timeslot 𝑡0. Note that, if 𝑝 𝑗 is correct,

then it waits 2Δ∗
after beginning the 𝑟 th execution of the recovery procedure before defining 𝑃 𝑗 (𝑟 ).
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By Lemma 7.1, all correct processes begin the 𝑟 th execution of the recovery procedure within time

Δ∗
of each other. Since correct processes send 𝑟 -genesis messages immediately upon beginning the

recovery procedure, it follows that 𝑃 𝑗 (𝑟 ) includes all correct processes.
By Lemma 7.1, there exists a unique 𝑟 -proposal, 𝑃 = (𝐹, 𝜎 ′, 𝑀 ′, 𝑟 ) say, that receives a valid

finish-QC. For this to occur, there must exist 𝑣 and an (𝑟, 𝑣)-proposal 𝑅 = (𝑃, 𝑣,⊥) (signed by

lead(𝑟, 𝑣)) which receives a valid QC. This QC must include at least one vote by a correct process,

𝑝 𝑗 say. It follows that 𝑀
′
must contain 𝑟 -genesis messages from every member of 𝑃 𝑗 (𝑟 ), and so

from every correct process. As we noted previously, if 𝑝𝑖 strongly finalizes 𝜎 while running E𝑟 , then

every correct process must finalize 𝜎 before beginning the 𝑟 th execution of the recovery procedure.

So, for each 𝑟 -genesis message (gen, 𝜎 ′′, 𝑟 ) sent by a correct process, 𝜎 ′′
must extend 𝜎 , and also

extends log𝐺𝑟
. It therefore holds that 𝜎 (and log𝐺𝑟

) is extended by more than
1

2
|Π𝑟 − 𝐹 | elements

of𝑀 ′
. Recall that 𝜎 ′

is as specified by 𝑃 . No correct process will vote for 𝑅 unless 𝜎 ′
is the longest

sequence extended by more than
1

2
|Π𝑟 − 𝐹 | elements of 𝑀 , meaning that 𝜎 ′

must extend 𝜎 and

log𝐺𝑟
. So far, we conclude that log𝐺𝑟+1 extends 𝜎 and log𝐺𝑟

. Since it follows by the same argument

that log𝐺𝑠
extends 𝜎 for all 𝑠 > 𝑟 , the claim of the lemma holds. □

Lemma 7.4. If an execution of the wrapper has 𝑟 consistency violations, then the 𝑟 th execution of the
recovery procedure must begin at some timeslot (and so, by Lemma 7.1 must also end at some timeslot).

Proof. For any set of messages 𝑀 , let 𝑟 ∗ (𝑀) be the greatest value taken by the variable r
when Algorithm 2 is run with input 𝑀 . From (ii) of Lemma 7.1, it follows that if 𝑀0 ⊆ 𝑀1 then

𝑟 ∗ (𝑀0) ≤ 𝑟 ∗ (𝑀1). If an execution of the wrapper has 𝑟 consistency violations, then there exist

𝑀0 ⊂ 𝑀1 ⊂ · · · ⊂ 𝑀𝑟 ⊆ 𝑀𝑐 such that, for all 𝑟 ′ ∈ [0, 𝑟 ), F (𝑀𝑟 ′ ) ⊈ F (𝑀𝑟 ′+1). If there exists

𝑟 ′ < 𝑟 − 1 and 𝑠 such that 𝑠 = 𝑗∗ (𝑀𝑟 ′ ) = 𝑗∗ (𝑀𝑟 ′+1), then F (𝑀𝑟 ′+1) = log𝐺𝑠
, and, by Lemma 7.3,

F (𝑀) ⊇ F (𝑀𝑟 ′+1) for all 𝑀 ⊇ 𝑀𝑟 ′+1. This contradicts the fact that F (𝑀𝑟 ′+1) ⊈ F (𝑀𝑟 ′+2). We

conclude that, for all 𝑟 ′ ∈ [0, 𝑟−1), 𝑟 ∗ (𝑀𝑟 ′ ) < 𝑟 ∗ (𝑀𝑟 ′+1). If 𝑟 ∗ (𝑀𝑟−1) = 𝑟 ∗ (𝑀𝑟 ) then 𝑟 ∗ (𝑀𝑟 ) is at least
𝑟 and𝑀𝑟 has a consistency violation with respect to F (Π𝑟 , log𝐺𝑟

), meaning that the 𝑟 th execution

of the recovery procedure must begin at some timeslot, as claimed. If not, then 𝑟 ∗ (𝑀𝑟 ) > 𝑟 , which

also means that the 𝑟 th execution of the recovery procedure must begin at some timeslot. □

Lemma 7.5. The wrapper has recoverable consistency resilience ≥ 𝑔1 and also recoverable liveness
resilience ≥ 𝑔2.

Proof. Recall that, in Section 3, we set 𝑥0 = 0 and 𝑥𝑟+1 = 𝑥𝑟 + 𝜌𝐶 (1 − 𝑥𝑟 ), and then defined:

𝑔1 (𝑟 ) = min{𝑥𝑟+1, 1 − 𝜌𝐿}, 𝑔2 (𝑟 ) = min{𝑥𝑟 + 𝜌𝐿 (1 − 𝑥𝑟 ), 1 − 𝜌𝐿}.
Note that 𝑥𝑟 lower bounds the fraction of the processes removed to form Π𝑟+1, i.e. |Π −Π𝑟+1 | ≥ 𝑥𝑟𝑛.

By Lemma, 7.4, if there exist 𝑟 consistency violations, then the 𝑟 th execution of the recovery

procedure must end at some timeslot. If the adversary is 𝑔2 (𝑘)-bounded, and since P has liveness

resilience 𝜌𝐿 , it follows that liveness must hold. If the adversary is 𝑔1 (𝑟 )-bounded, then since P has

consistency resilience 𝜌𝐶 , the (𝑟 + 1)th execution of the recovery procedure cannot begin at any

timeslot. From Lemma 7.4, it follows that there are at most 𝑟 consistency violations. □

Lemma 7.6. The wrapper has recovery time 𝑂 (𝑓𝑎Δ∗) with liveness parameter ℓ , where 𝑓𝑎 is the
actual (unknown) number of faulty processes. It also has probabilistic recovery time 𝑂 (Δ∗log 1

𝜀
) with

liveness parameter ℓ .

Proof. The fact that the wrapper has recovery time 𝑂 (𝑓𝑎Δ∗) with liveness parameter ℓ follows

directly from (iii) of Lemma 7.1, since views are of length 𝑂 (Δ∗). To establish the claim regarding

probabilistic recovery time, note that we required 𝜌𝐶 > 0 in the definition of optimal resilience.

Some finite power of (1 − 𝜌𝐶 ) is therefore less than 𝜌𝐿 , so there exists 𝑟 such that any execution
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in which the adversary is 1 − 𝜌𝐿-bounded can have have most 𝑟 consistency violations. If the

adversary is 𝜌-bounded, then the probability that, for one of the (at most 𝑟 ) executions of the

recovery procedure, the first 𝑑 views all have faulty leaders is 𝑂 (𝑟𝜌𝑑 ) = 𝑂 (𝜌𝑑 ) for fixed 𝜌𝐶 . Since

each view is of length 𝑂 (Δ∗), it follows from (iii) of Lemma 7.1 that the wrapper therefore has

probabilistic recovery time 𝑂 (Δ∗
log

1

𝜀
) with liveness parameter ℓ , as claimed. □

8 RELATEDWORK
Positive results. A sequence of papers, including Buterin and Griffith [5], Civit et al. [8], and Shamis

et al. [19], describe protocols that satisfy accountability. Sheng et al. [20] analyze accountability

for well-known permissioned protocols such as HotStuff [24], PBFT [6], Tendermint [2, 3], and

Algorand [7]. Civit et al. [9, 10] describe generic transformations that take any permissioned

protocol designed for the partially synchronous setting and provide a corresponding accountable

version. These papers do not describe how to reach consensus on which guilty parties to remove

in the event of a consistency violation (i.e. how to achieve ‘recovery’), and thus fall short of our

goals here. One exception to this point is the ZLB protocol of Ranchal-Pedrosa and Gramoli [18],

but the ZLB protocol only achieves recovery if the adversary controls less than a 5/9 fraction of

participants, and does not achieve bounded rollback. Freitas de Souza et al. [11] also describe a

process for removing guilty parties in a protocol for lattice agreement (this abstraction is weaker

than SMR/consensus and can be implemented in an asynchronous system), but their protocol

assumes an honest majority and the paper does not consider bounded rollback. Sridhar et al. [21]

specify a “gadget” that can be applied to blockchain protocols operating in the synchronous setting

to reboot and maintain consistency after an attack, but they do not describe how to implement

recovery and assume that an honest majority is somehow reestablished out-of-protocol.

Budish et al. [4] consider “slashing” in proof-of-stake protocols in the “quasi-permissionless”

setting. Their main positive result is a protocol that, in the same timing model considered in this

paper (with additional guarantees provided pre-GST message delays are bounded by a known

parameter Δ∗
), guarantees what they call the “EAAC property”—honest players never have their

stake slashed, and some Byzantine stake is guaranteed to be slashed following a consistency

violation. Budish et al. [4] do not contemplate repeated consistency violations, a prerequisite to the

notions of recoverable consistency and liveness that are central to this paper. To the extent that it

makes sense to compare their “recovery procedure” with our “wrapper,” our protocol is superior

in several respects, with worst-case recovery time 𝑂 (𝑛Δ∗) (as opposed to 𝑂 (𝑛2Δ∗)); probabilistic
recovery time 𝑂 (Δ∗

log
1

𝜀
), where 𝜀 is an error-probability bound (as opposed to 𝑂 (𝑛Δ∗

log
1

𝜀
)); and

rollback 2Δ∗
(as opposed to unbounded rollback).

Prior to the study of accountability, Li and Mazieres [15] considered how to design BFT protocols

that still offer certain guarantees when more than 𝑓 failures occur. The describe a protocol called

BFT2F which has the same liveness and consistency guarantees as PBFT when no more than

𝑓 < 𝑛/3 players fail; with more than 𝑓 but no more than 2𝑓 failures, BFT2F prohibits malicious

players from making up operations that clients have never issued and prevents certain kinds of

consistency violations.

Negative results. There are a number of papers that describe negative results relating to account-

ability and the ability to punish guilty parties in the ‘permissionless setting’ (for a definition of the

permissionless setting see [14]). Neu et al. [17] prove that no protocol operating in the ‘dynamically

available’ setting (where the number of ‘active’ parties is unknown) can provide accountability.

The authors then provide an approach to addressing this limitation by describing a “gadget” that

checkpoints a longest-chain protocol. The “full ledger” is then live in the dynamically available

setting, while the checkpointed prefix ledger provides accountability. Tas et al. [22, 23] and Budish
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et al. [4] also prove negative results regarding the possibility of punishing guilty participants of

proof-of-stake protocols before they are able to cash out of their position.

9 FINAL COMMENTS
While Theorems 6.2-6.3 show senses in which Theorem 6.1 is tight, a number of natural questions

remain. For example, our recovery procedure implements a synchronous protocol and has recovery

time 𝑂 (𝑓𝑎Δ∗). While Theorem 6.2 establishes that some bound on message delays is required if

we are to achieve bounded rollback, one might still make use of a recovery procedure that does not
require synchrony: could such a procedure achieve recovery time 𝑂 (𝑓𝑎Δ) after GST? Also, while
our recovery procedure has rollback bounded by 2Δ∗

, Theorem 6.2 only establishes a lower bound

of Δ∗
. Is this lower bound tight, or is 2Δ∗

optimal?
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