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Abstract
As Fully Homomorphic Encryption (FHE) enables computation over

encrypted data, it is a natural question of how efficiently it handles

standard integer computations like 64-bit arithmetic. It has long

been believed that the CGGI/DM family or the BGV/BFV family

are the best options, depending on the size of the parallelism. The

Cheon–Kim–Kim–Song (CKKS) scheme, although being widely

used in many applications like machine learning, was not consid-

ered a good option as it is more focused on computing real numbers

rather than integers.

Recently, Drucker et al. [J. Cryptol.] suggested to use CKKS for

discrete computations, by separating the error/noise from the dis-

crete message. Since then, there have been several breakthroughs in

the discrete variant of CKKS, including the CKKS-style functional

bootstrapping by Bae et al. [Asiacrypt’24]. Notably, the CKKS-style
functional bootstrapping can be regarded as a parallelization of

CGGI/DM functional bootstrapping, and it is several orders of mag-

nitude faster in terms of throughput. Based on the CKKS-style func-

tional bootstrapping, Kim and Noh [ePrint, 2024/1638] designed

an efficient homomorphic modular reduction for CKKS, leading to

modulo small integer arithmetic.

Although it is known that CKKS is efficient for handling small

integers like 4 or 8 bits, it is still unclear whether its efficiency ex-

tends to larger integers like 32 or 64 bits. In this paper, we propose

a novel method for homomorphic unsigned integer computations.

We represent a large integer (e.g. 64-bit) as a vector of smaller

chunks (e.g. 4-bit) and construct arithmetic operations relying on

the CKKS-style functional bootstrapping. The proposed scheme

supports many of the operations supported in TFHE-rs while out-

performing it in terms of amortized running time. Notably, our

homomorphic 64-bit multiplication takes 17.9ms per slot, which is

more than three orders of magnitude faster than TFHE-rs.
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1 Introduction
Fully Homomorphic Encryption (FHE) is a branch of cryptogra-

phy that allows computation in an encrypted state. Since Gen-

try’s first instantiation [Gen09], the efficiency of FHE has been

improved dramatically. The major FHE schemes can be categorized

into LWE-based or RLWE-based depending on whether the de-

fault ciphertext format is LWE or RLWE, respectively. LWE-based

schemes such as the CGGI/DM family [CGGI16, DM15] are known

to be fast (in terms of latency) and flexible, while RLWE-based

schemes such as the BGV/BFV family [Bra12, FV12, BGV12] and

CKKS [CKKS17] have better throughput. One of the key technical

differences is that computations on LWE-based schemes mostly rely

on programmable/functional bootstrapping [CJP21, KS22] whereas

computations on RLWE-based schemes mainly use homomorphic

polynomial evaluations (i.e. addition and multiplication).

It had long been believed that different families are good at dif-

ferent functionalities. For instance, the CGGI/DM family was used

to handle small or non-parallelizable computations, the BGV/BFV

family was used to handle parallelizable large integer computations,

and CKKS was used to handle real number arithmetic. However,

recent improvements in the discrete variant of CKKS [DMPS24,

CKKL24, BCKS24, BKSS24, AKP24, KN24] suggest that this may

not be true. In particular, recent works [BCKS24, BKSS24, AKP24]

show that CKKS handles functional/programmable bootstrapping

faster than CGGI/DM by several orders of magnitude. As func-

tional/programmable bootstrapping is a core component of CGGI/DM,

this means that it can be preferable to use CKKS if we have more

than hundreds of parallelism.

Since we know that CKKS handles homomorphic look-up ta-

bles efficiently, a natural question is whether CKKS is good at

integer computations in general. For computations modulo NTT-

friendly primes, it seems that the BGV/BFV family is the right

choice, as they provide a fast and efficient solution for both latency

and throughput, in the light of recent improvements in BGV/BFV

bootstrapping [MHWW24, KSS24]. However, when it comes to

standard modulo power-of-two computations like unsigned 64-bit

arithmetic, the landscape is relatively unclear. The most straightfor-

ward option, to use the plaintext modulus to be a power-of-two has

several problems. One problem is that the plaintext modulus is too

large to be efficiently supported. For instance, 64-bit multiplications

in BGV/BFV enlarge the noise by > 64 bits, and choosing large

parameters like large ring degree (e.g. log(𝑁 ) ≥ 17) is unavoidable.

Recall that large parameters lead to inefficiency in terms of latency

and memory footprint, which is not desirable. Another problem

is that the use of power-of-two modulus prevents one from using

large parallelism. In BGV/BFV, the number of slots is determined

by how the cyclotomic polynomial Φ𝑀 (𝑋 ) splits in the plaintext

space Z𝑡 . As 𝑡 is a power-of-two, we do not have as many slots as

in the case of NTT-friendly primes, leading to lower throughput for

handling modulo 𝑡 computations in parallel. In addition, directly

using computations over Z𝑡 makes it difficult to handle important

components of integer arithmetic such as bit shift and comparison.

Instead of directly supporting Z𝑡 arithmetic for large 𝑡 , the exist-

ing approaches often decompose 𝑡 into several chunks to improve

efficiency. For instance, several works [CKK16, XCWF16, QZL
+
19,

ZQH
+
21, HZY

+
22] considered radix-2 arithmetic operations for

handling integer computations. Similarly, [TLW
+
21, IZ21] decom-

pose large modulus into smaller finite field elements, leading to
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efficient homomorphic comparison. By decomposing the desired

plaintext modulus 𝑡 , one can keep the noise growth small while sup-

porting efficient homomorphic operations like comparison and bit

shifts. However, as modulo 2 (or 2
ℓ
for small ℓ) plaintext space still

has a limited number of slots, the SIMD capability or throughput is

not as great as the case of NTT-friendly plaintext modulus.

An alternative option is to use the other families such as CGGI/DM

or CKKS. Using CGGI/DM to handle integer computations is rela-

tively well explored, and the major libraries like TFHE-rs [Zam22]

allow standard integer computations of up to 256 bits by using

lower precision arithmetic as building blocks. On the other hand,

using CKKS to handle integer computations is new (motivated

in [DMPS24] and related to [BCKS24, KSS24, AKP24, KN24]) and

has not yet been fully explored. For small precision like 4 or 8 bits,

one can regard integers as real numbers and rely on CKKS opera-

tions, look-up tables [CKKL24], and modular reduction [KN24]. For

large precision, a straightforward approach is to use high-precision

CKKS and directly supporting Z𝑡 for large power-of-two integer 𝑡 ,

but this has a similar problem as in BGV/BFV such as large param-

eters and lack of efficient comparison/bit shift.

In this regard, it can be tempting to use a decomposition-based

approach as in BGV/BFV. Indeed, [ZYZ
+
24] suggests to use decom-

position to efficiently handle both homomorphic multiplication and

comparison. However, their arithmetic operations do not modular

reduce, and individual digits exceed the base and continuously grow.

As a result, their approach cannot support bootstrapping and can

evaluate only circuits of predetermined size. To support bootstrap-

ping, we need to take care of the carries every time we perform

homomorphic arithmetic operations. Since CKKS does not naturally

support modular reduction, we need a different strategy than the

ones in the BGV/BFV family. In this paper, we suggest using the

modular reduction in [KN24] in a clever way to efficiently instan-

tiate fully homomorphic encryption over large unsigned integers

(i.e. arithmetic over Z
2
𝑘 for large 𝑘).

1.1 Technical Overview
We provide a simplified overview of our method, focusing on how

the underlying message behaves through homomorphic operations.

At a high level, we decompose a large integer into digits and rely on

the grade-school addition/multiplication that computes iteratively

from the lowest digit. Let 𝑑 be the base for our digit decomposition,

and let 𝑡 be the target modulus. We aim to enable Z𝑡 arithmetic

using digit decomposition of base 𝑑 .

Ingredients. Recall that discrete CKKS allows us to encrypt integers
rather than real numbers. If we rely on the inclusion Z ↩→ C as

in [DMPS24], we have addition and multiplication over integers

directly inherited from the corresponding CKKS operations. Al-

though it can afford arbitrary precision in theory, we assume that

it only supports bounded precision arithmetic (e.g. at most 𝑑2) for

efficiency. In other words, we can add and multiply small integers.

The next ingredient is the modular reduction from [KN24]. The

input is a discrete CKKS ciphertext encrypting integers, and it takes

modulo 𝑑 via the discrete bootstrapping from [BKSS24]. Taking

into account that bootstrapping is roughly as costly as hundreds

of homomorphic multiplications, we can assume that we have an

expensive homomorphic modular reduction.

To summarize, we have addition and multiplication over Z, and
a modular reduction [·]𝑑 which is very costly.

Our Goal. We construct a homomorphic computer that computes

unsigned modulo 𝑡 arithmetic based on addition, multiplication,

and modulo 𝑑 . We aim to support common integer operations such

as arithmetic, comparison, and shift operations.

The straightforward approach is to imitate what modern com-

puters do. However, it turns out that it is not a good idea because

our homomorphic computer has a different characteristic than the

usual computer. That is, modular reduction is way more costly than

addition and multiplication, which means that the computational

complexity is determined by the number of modular reductions,
1

not the number of multiplications. As a result, we need to build

algorithms that minimize the number of modular reductions.

Homomorphic Multiplication. We describe our multiplication algo-

rithm that relies on grade-school multiplication. Let

𝑎 =

𝑢−1∑︁
𝑖=0

𝑎𝑖 · 𝑑𝑖 and 𝑏 =

𝑢−1∑︁
𝑖=0

𝑏𝑖 · 𝑑𝑖

be digit decompositions of two integers𝑎, 𝑏 ∈ Z𝑡 , where𝑢 = log𝑑 (𝑡).
As illustrated in Figure 1, we iteratively compute the lowest digit

as follows.

• Step 0. We compute 𝑎0𝑏0, then extract the low part 𝑐0 and

the high part 𝑐0’.

• Step 𝑖 . We compute 𝑐′
𝑖−1+

∑𝑖
𝑗=0 𝑎 𝑗𝑏𝑖− 𝑗 , then extract the low

part 𝑐𝑖 and the high part 𝑐′
𝑖
.

• We iterate until 𝑖 = 𝑢 − 1, and output (𝑐0, 𝑐1, . . . , 𝑐𝑢−1).
Here we observe that one homomorphic modular reduction per

step is sufficient to evaluate both low and high parts: the high part

can be computed by subtracting the low part from the original one

and dividing by 𝑑 .2 Therefore, it leads to 𝑢 modular reductions in

total. Although there are 𝑂 (𝑢2) homomorphic multiplications in

this algorithm, its cost is negligible compared to the cost of modular

reduction.

Other Operations. Addition and subtraction work similarly to mul-

tiplication. Homomorphic comparisons such as 𝑎 ≥ 𝑏 can be com-

puted as regarding 𝑎 − 𝑏 as a 𝑢 + 1 digit integer and extracting the

highest digit. Since we already have a reduced form after subtrac-

tion, comparison is just as costly as subtraction. To be specific, we

may follow (the analogue of) the iterative algorithm for subtraction

until the last step, and output 𝑐′
𝑢−1 + 1 instead of (𝑐0, 𝑐1, . . . , 𝑐𝑢−1),

as it corresponds to the𝑢-th digit. For homomorphic shift operation

by a scalar, we may appropriately shift the digits and apply modular

reductions. As the simplest case, if the right shift amount 𝑦 is less

than log
2
(𝑑), then the 𝑖th digit can be written as

𝑙𝑜 (𝑎𝑖 << 𝑦) + ℎ𝑖 (𝑎𝑖−1 << 𝑦)

where (𝑎0, 𝑎1, . . . , 𝑎𝑢−1) is the input.

1
This explains why we rely on the naive grade-school addition/multiplication instead

of more sophisticated algorithms like Karatsuba or FFT.

2
Note that dividing by 𝑑 consumes modulus, leading to continuous decrease in cipher-

text modulus. We illustrate how we overcome this problem in Section 3.2.
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𝑎0𝑏0

𝑎0𝑏1 + 𝑎1𝑏0

𝑎0𝑏2 + 𝑎1𝑏1 + 𝑎2𝑏0

𝑙𝑜 (𝑎0𝑏0) 𝑙𝑜 (ℎ𝑖 (𝑎0𝑏0) + 𝑎0𝑏1 + 𝑎1𝑏0) 𝑙𝑜 (ℎ𝑖 (· · · ) + 𝑎0𝑏2 + 𝑎1𝑏1 + 𝑎2𝑏1) · · ·

Figure 1: Grade-school multiplication between
∑
𝑖 𝑎𝑖 · 𝑑𝑖 and

∑
𝑖 𝑏𝑖 · 𝑑𝑖 .

1.2 Contribution
We propose an efficient SIMD

3
FHE over integers that supports

a wide range of operations. In particular, our scheme provides

three different types of operations, namely arithmetic operations,

comparison, and bootstrapping. Note that these operations are

the most important primitives of FHE and are necessary for most

applications.

Concrete Efficiency. Among the schemes that support diverse opera-

tions, our scheme provides the most efficient performance in terms

of throughput. As we rely on CKKS, we can enjoy almost the maxi-

mum parallelism possible (i.e. 𝑁 /2 slots), leading to outperforming

the approaches based on other FHE schemes. We compare the con-

crete performance on homomorphic multiplication and comparison

in Table 1 and 2. Compared to the widely used TFHE-rs [Zam22],

our multiplication and comparison are ≈ three and two orders of

magnitude faster, respectively. For BGV/BFV, we compare with

the state-of-the-art decomposition-based methods, achieving ≈ 2

orders of magnitude acceleration in multiplication and ≈ 6 times

faster in comparison.

𝑘 𝜆 amortized time (ms)

[HZY
+
22] 32 80 1020

[Zam22]

32

128

7830

64 30900

Ours

32 ≈ 128

8.79

64 17.9

Table 1: Comparison on multiplication.

Compared to the possible approaches that directly encode large

integers without decomposition, our method achieves much smaller

FHE parameters. As arithmetic over Z𝑡 for large 𝑡 like 64-bit con-
sumes a huge amount of modulus per multiplication, it is unavoid-

able for the direct encoding approaches to use large ring dimension

such as log𝑁 = 17, 18. On the other hand, we use the FHE param-

eter for Z𝑑 to instantiate modulo at most 𝑑𝑑 arithmetic, having

3
Refers to Single Instruction Multiple Data.

𝜆 # slots latency (sec) amortized time (ms)

[TLW
+
21] > 80

256 20.2 78.8

128 20.5 160

16 4.75 297

[Zam22] 128 1 0.852 852

Ours ≈ 128 16384 197 12.0

Table 2: Homomorphic Comparison over Z
2
64 .

significantly smaller parameters to achieve the same precision. In-

deed, we were able to instantiate 64-bit precision arithmetic using

log𝑁 = 15 parameters with only ≈ 800 bits of modulus budget.

Versatility. Our scheme not only provides efficient operations but

also offers a variety of new operations. Traditionally, SIMD schemes

were only capable of computing addition and multiplication, lead-

ing to inefficiency in computing other types of functions. On the

contrary, our scheme supports arithmetic, comparison, and shift

operation, leading to a more complete set of instructions to emulate

the (unencrypted) computer. Furthermore, our scheme is compatible

with the multi-precision arbitrary function evaluation in [AKP24],

supporting any function in a reasonable time complexity.

In addition, our method gives CKKS the ability to efficiently com-

pute over large integers, which means that CKKS is now capable

of computing both real numbers and integers. As our encoding is

directly compatible with the CKKS encoding, one can efficiently

convert one format to the other to enjoy maximal efficiency. This

extends the quantization framework in [KN24], allowing both ac-

curate and approximate computations.

Enhanced Security. As the original CKKS cannot distinguish the er-

ror from the message, it was difficult for CKKS to achieve advanced

security notions such as IND-CPA𝐷 security [LM21] or Thresh-

old FHE security [AJLA
+
12, BGG

+
18]. Since the discrete CKKS

framework allows us to distinguish the error from the ciphertext

by discretizing the message space, it can enjoy the advantages of

the exact schemes in terms of security. As we provide an efficient

integer computer, discrete CKKS can now handle any operation

without going through the original CKKS, leading to better security.
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For instance, one may use our homomorphic fixed point arithmetic

instead of the usual CKKS operations to avoid large noise flooding

needed to achieve advanced security.

2 Preliminaries
Let 𝑁 > 1 be a power of two integers and 𝑄 > 1 be an integer. Let

R = Z[𝑋 ]/(𝑋𝑁 +1) andR𝑄 = R/𝑄R. LetDFT : R[𝑋 ]/(𝑋𝑁 +1) →
C𝑁 /2

be a discrete Fourier transform (DFT) defined as

𝑚(𝑋 ) ↦→
(
𝑚(𝜁 5

𝑖

)
)
0≤𝑖<𝑁 /2

where 𝜁 is a complex primitive 2𝑁 th root of unity. Let iDFT :

C𝑁 /2 → R[𝑋 ]/(𝑋𝑁 + 1) be its inverse.

2.1 CKKS Basics
In CKKS, there are two kinds of encoding called slots-encoding and

coeffs-encoding. The slots-encoding Ecd : C𝑁 /2 → R is defined

as

Ecd(®𝑧) = ⌊Δ · iDFT(®𝑧)⌉
where Δ > 0 is a scaling factor. The slots-decoding Dcd : R →
C𝑁 /2

is defined as

Dcd(𝑚(𝑋 )) = 1

Δ
· DFT(𝑚(𝑋 )) .

The slots-encoding supports single instruction multiple data (SIMD)

computations and used as a default encoding for CKKS. The coeffs-
encoding CoeffEcd : R𝑁 → R is defined as

CoeffEcd(®𝑧) =
𝑁−1∑︁
𝑖=0

⌊Δ · 𝑧𝑖 ⌉𝑋 𝑖

where ®𝑧 = (𝑧0, 𝑧1, . . . , 𝑧𝑁−1), simply scaling up the vector and

round. The coeffs-decoding CoeffEcd : R → R𝑁
is its approximate

inverse defined as

CoeffDcd

(
𝑁−1∑︁
𝑖=0

𝑚𝑖𝑋
𝑖

)
=

1

Δ
(𝑚0,𝑚1, . . . ,𝑚𝑁−1).

As coeffs-encoding is compatible with coefficient-wise operations,

we may use it for bootstrapping (to raise modulus), conversions

to/from other schemes [BGGJ20], or modular reduction [KN24].

In CKKS, each homomorphic multiplication increases the scal-

ing factor from Δ to Δ2
, and we rescale the ciphertext to keep

the scaling factor to be ≃ Δ. As rescaling reduces the ciphertext

modulus, the ciphertext modulus gradually decreases and cannot

allow further multiplications at some point. The CKKS bootstrap-
ping [CHK

+
18] increases the modulus, recovering the multiplica-

tive capability.

Definition 1 (CKKS Bootstrapping). Let 𝑞,𝑄 > 1 be integers
such that𝑄 > 𝑞. Let ct ∈ R2𝑞 be a CKKS ciphertext encrypting a vector
®𝑧 ∈ C𝑁 /2 via the slots-encoding, where both real and imaginary parts
of each entry are in [−1, 1]. The CKKS bootstrappingBTS : R2𝑞 → R2𝑄
raises the modulus while approximately preserving the underlying
message. That is,

BTS(ct) = ct′ ∈ R2𝑄
where Dcd ◦Dec(ct) ≃ Dcd ◦Dec(ct′). Here Dec denotes the CKKS
decryption.

The standard CKKS bootstrapping [CHK
+
18] can be simplified

as a combination of modulus raising (denoted as ModRaise) and
modular reduction (denoted as EvalMod). As the natural modulus

raising adds a small error on themost significant bits (𝑚 ↦→𝑚+𝑞0 ·𝐼 ),
we need to remove this error by homomorphically evaluating a

modular reduction (𝑚 + 𝑞0 · 𝐼 →𝑚).

An additional issue is thatModRaise requires coeffs-encoding
whereas EvalMod requires slots-encoding. Hence, we need conver-

sions between them, which we can instantiate with homomorphic

evaluation ofDFT/iDFT. Conversions from slots-encoding to coeffs-

encoding and vice versa are denoted as StC and CtS, respectively.
As a result, the CKKS bootstrapping can be instantiated within the

order of StC-ModRaise-CtS-EvalMod, as illustrated in Algorithm 1.

Algorithm 1: Slot Bootstrapping [BCC
+
22]

Setting :Δ ≪ 𝑞0.

Input :ct = Enc ◦ Ecd(®𝑧) ∈ R2𝑞 with ®𝑧 ∈ [−1, 1]𝑁 /2.
Output :ctout ∈ R2𝑄 = Enc ◦ Ecd( ®𝑤), where ®𝑤 ≃ ®𝑧.

1 ctout ← EvalMod ◦ CtS ◦ModRaise ◦ StC(ct);
2 return ctout.

2.2 Discrete CKKS
The recent improvements in the discrete variant of CKKS (first

formalized in [DMPS24]) add additional encoding structure to CKKS

for handling discrete data. Instead of using the whole continuous

space such as C or R, we focus on its discrete subset. For instance,

onemay use the inclusionZ ↩→ C to deal with integer computations

using CKKS (as suggested in [DMPS24]). The observation is that this

inclusion is a ring homomorphism and we can use CKKS operations

to handle integer addition and multiplication. Importantly, this

framework allows us to distinguish the underlying error from the

ciphertext which was not possible in the original CKKS.

Definition 2 (Discrete CKKS Ciphertext). Let 𝑋 ⊆ C be a
finite set. Let 𝑋 ↩→ C be an additional discrete encoding. A discrete
CKKS ciphertext encrypting a vector ®𝑧 ∈ 𝑋𝑁 /2 is a CKKS ciphertext
ct that encrypts a vector ®𝑧 + ®𝑒 ∈ C𝑁 /2 where ®𝑒 is small. In this case,
we call ®𝑒 as the underlying error of the discrete CKKS ciphertext ct.

As the error is separated from the message, we may reduce the

error by evaluating a cleaning polynomial. For instance, [DMPS24]

describes a cleaning function ℎ1 (𝑥) = 3𝑥2 − 2𝑥3 for the encoding
{0, 1} ↩→ C that reduces the error. Note that the cleaning in the

context of discrete CKKS is very similar to the notion of bootstrap-

ping in the other schemes, and can be regarded as another type of

bootstrapping.

Definition 3 (Cleaning). Let 𝑋 ⊆ C be a finite set. Let 𝑋 ↩→ C
be an additional discrete encoding. Let ct ∈ R2𝑞 be a discrete CKKS
ciphertext encrypting a vector ®𝑧 ∈ 𝑋𝑁 /2 whose underlying error is
®𝑒 ∈ C𝑁 /2. The cleaning function maps ct to ct′, so that the underlying
error of ct′, denoted as ®𝑓 is much smaller than ®𝑒 .

Homomorphic operations on discrete CKKS ciphertexts can be

classified into two types, i.e. arithmetic operation and interpola-

tion. Arithmetic operation consists of addition and multiplication
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inherited from the original CKKS whereas interpolation refers to

polynomial interpolation over a finite number of points. For in-

terpolation, [CKKL24] suggests to use complex roots-of-unity for

polynomial interpolations, as it provides more numerically stable

interpolation than the typical equispaced points on the real line

(e.g. Z ⊆ C). The power of interpolation is that we can evaluate an

arbitrary function. Note that the original CKKS needs to rely on

polynomial approximations and thus could not compute discontin-

uous functions efficiently.

Definition 4 (Interpolation over roots-of-unity). Let 𝑋 =

{1, 𝜔, . . . , 𝜔𝑡−1} ⊆ C where 𝜔 is a primitive 𝑡-th root of unity. Let
𝑓 : Z𝑡 → C be an arbitrary function. The homomorphic look-up table
LUT𝑓 : R2

𝑄
→ R2

𝑄
homomorphically evaluates an interpolation that

corresponds to 𝑓 . That is, 𝜔𝛼 ∈ 𝑋 is mapped to 𝑓 (𝛼) for each slot.

Other lines of works [BCKS24, BKSS24, AKP24] build an ana-

logue of functional/programmable bootstrapping in CGGI/DM [CJP21,

KS22] for discrete CKKS. That is, they design new bootstrapping

circuits dedicated to handling discrete data while evaluating an

arbitrary function. The major observation is that one can use inter-

polation rather than approximation for evaluating homomorphic

modular reduction, which means that we do not necessarily have

a gap between the message and the base modulus. Notably, the

CKKS-style functional bootstrapping (i.e. discrete bootstrapping)

can be regarded as a parallelization of CGGI/DM bootstrapping

which is several orders of magnitude faster than the state-of-the-art

such as [Zam22]. We provide a (simplified) instantiation of discrete

bootstrapping from [BKSS24] in Algorithm 2. Here EvalExp denotes
a homomorphic evaluation of the complex exponential function

𝑥 ↦→ 𝑒2𝜋𝑖𝑥 .

Algorithm 2: Discrete Bootstrapping [BKSS24]
Setting :We rely on the encoding 𝑋 = {0, 1, . . . , 𝑡 − 1} ↩→ C.
Input :ct ∈ R2

𝑄
a discrete CKKS ciphertext encrypting

®𝑧 ∈ 𝑋𝑁 /2
. 𝑓 : Z𝑡 → C an arbitrary function.

Output :ctout encrypting 𝑓 (®𝑧).
1 ctout ← LUT𝑓 ◦ EvalExp ◦ CtS ◦ModRaise ◦ StC(ct);
2 return ctout.

More recently, [KN24] suggested using discrete bootstrapping

to instantiate homomorphic modular reduction. Recall that the

original CKKS does not have an inherent modular reduction, unlike

other schemes like BGV/BFV/CGGI/DM. The main reason is that

CKKS encodesmessages in the least significant bits via DFTwhich is

not compatible with modular reduction. However, [KN24] observed

that we can indeed use the native modular reduction at the bottom

modulus, by incorporating discrete bootstrapping as a subroutine.

As a summary of the previous works, we provide a simplified

overview of discrete CKKS in Figure 2. In discrete CKKS, there are

three separated ciphertext formats providing different operations.

Here separated means that one can only perform one type of op-

eration in a single format and needs to evaluate some (expensive)

transformations to convert it to the other formats. To be specific,

three formats can be denoted as arithmetic, coefficient, and interpo-

lation formats. First, the arithmetic format refers to the usual CKKS

Arithmetic
(Z, in slots)

Coefficient
(Z𝑡 , in coeffs)

Interpolation
({1, 𝜔, . . . , 𝜔𝑡−1}, in slots)

StC

EvalExp ◦ CtS ◦ModRaise

LUT𝑓

Figure 2: Overview of Discrete CKKS

slots-encoding which supports addition and multiplication inher-

ited from the original CKKS. In terms of discrete computations, one

can use this type for integer additions and multiplications. Second,

the coefficients format refers to the coeffs-encoded CKKS ciphertext

at the bottom modulus. This type of ciphertexts are used to perform

RLWE modular reduction as suggested in [KN24] or conversions

between RLWE/MLWE/LWE (one may refer to [BCK
+
23]). Third,

interpolation formats refer to discrete CKKS ciphertexts encoded

via roots-of-unity encoding as in [CKKL24], suitable for handling

polynomial interpolations. It would usually be integrated with boot-

strapping as in [BKSS24, AKP24], but one can specifically use this

kind of encoding to handle arbitrary functions more efficiently. The

arith-to-coeff, coeff-to-interpolate, interpolate-to-arith conversions

can be instantiated with StC, EvalExp◦CtS◦ModRaise, and LUT𝑓 ,
respectively.

3 Proposed Method
In this section, we describe our strategy on how to efficiently enable

integer computations using discrete CKKS. Let 𝑡 = 2
𝑘
be the target

modulus for which we want to evaluate. As a high-level overview,

we decompose 𝑡 via a digit decomposition by a smaller modulus

𝑑 = 2
ℓ
and handle modulo 𝑡 computation using several (extended)

modulo 𝑑 computations. For instance, we may choose 𝑘 = 64 and

ℓ = 4, leading to evaluating 64-bit computation using 16 digits of

modulo 16 computations.

3.1 Scheme Description
We first illustrate how we put 𝑘-bit data into discrete CKKS cipher-

texts. The message in our encoding is a vector of 𝑘-bit integers

®𝑧 = (𝑧0, 𝑧1, . . . , 𝑧𝑁 /2−1) ∈ Z𝑁 /2𝑡 . To encrypt this vector, we use

𝑢 = 𝑘 − ℓ ciphertexts ct0, ct1, . . . , ct𝑢−1 where ct𝑖 encrypts the 𝑖th
digit of the base-𝑑 representation of ®𝑧. That is,

ct𝑖 = Enc ◦ Ecd(𝑧0𝑖 , 𝑧1𝑖 , . . . , 𝑧 (𝑁 /2−1)𝑖 )
where 𝑧 𝑗 = 𝑧 𝑗 (𝑢−1)𝑧 𝑗 (𝑢−2) · · · 𝑧 𝑗0 (𝑑) for each 0 ≤ 𝑗 < 𝑁 /2. Here
each ciphertext ct𝑖 for 0 ≤ 𝑖 < 𝑢 is a valid discrete CKKS ciphertext



Kim

for Z𝑑 computations. Therefore, we may use any operations in

the prior works of discrete CKKS, such as arithmetic operations,

table look-ups, and modular reduction. In particular, we mainly

rely on addition, multiplication, and modular reduction, to handle

ring operations over Z𝑑 as well as the carry operation. To keep the

discrete bootstrapping forZ𝑑 efficient, we choose𝑑 to be sufficiently

small (e.g. 𝑑 ≤ 2
8
). In terms of cleaning, we may use digit-wise

cleaning for Z𝑑 (e.g. cleaning for 𝑑th roots of unity as in [CKKL24])

which should guarantee the decryption precision. We elaborate on

the encryption scheme as follows.

• Encryption: Let ®𝑧 = (𝑧0, 𝑧1, . . . , 𝑧𝑁 /2−1) ∈ Z
𝑁 /2
𝑡 be a vec-

tor of 𝑘-bit unsigned integers. The encryption IntEnc :

Z𝑁 /2𝑡 → (R2
𝑄
)𝑢 is defined as

IntEnc(®𝑧) =
(
Enc ◦ Ecd(𝑧0𝑖 , 𝑧1𝑖 , . . . , 𝑧 (𝑁 /2−1)𝑖 )

)
0≤𝑖<𝑢

where 𝑧 𝑗 = 𝑧 𝑗 (𝑢−1)𝑧 𝑗 (𝑢−2) · · · 𝑧 𝑗0 (𝑑) is a base 𝑑 represen-

tation of 𝑧 𝑗 for each 0 ≤ 𝑗 < 𝑁 /2.
• Decryption: Let ct = (ct0, ct1, . . . , ct𝑢−1) be a vector of dis-

crete CKKS ciphertexts. The decryption IntDec : (R2
𝑄
)𝑢 →

Z𝑁 /2𝑡 is defined as

IntDec(ct) =
𝑢−1∑︁
𝑖=0

⌊Dcd ◦ Dec(ct𝑖 )⌉ · 𝑑𝑖

where we regard each Z𝑑 integers as an element of Z and

perform element-wise multiplications and additions.

• Bootstrapping: Given a ciphertext ct = (ct0, ct1, . . . , ct𝑢−1)
encrypting a vector ®𝑧 ∈ Z𝑁 /2𝑡 , the (discrete) bootstrapping

Boot : (R2𝑞)𝑢 → (R2𝑄 )
𝑢
is defined as

Boot(ct) = (IntBoot𝑑 (ct𝑖 ))0≤𝑖<𝑢
where IntBoot : R2𝑞 → R2𝑄 refers to an identity discrete

bootstrapping (i.e. functional bootstrapping evaluating an

identity function) for Z𝑑 . For simplicity, we assume that

this bootstrapping not only raises the modulus but also

reduces the noise. See [BKSS24, AKP24] for details.

Theorem 3.1 (EncryptionCorrectness). Let ®𝑧 = (𝑧0, 𝑧1, . . . , 𝑧𝑁 /2−1 ∈
Z𝑢𝑡 be a vector of 𝑘-bit unsigned integers. Then we have

IntDec ◦ IntEnc(®𝑧) = ®𝑧.

Proof. Observe that

𝑧 𝑗 =

𝑢−1∑︁
𝑖=0

𝑧 𝑗𝑖 · 𝑑𝑖

from the base-𝑑 representation of 𝑧 𝑗 . By the correctness of CKKS

encryption and decryption, we have

IntDec ◦ IntEnc(®𝑧) =
𝑢−1∑︁
𝑖=0

(𝑧0𝑖 , 𝑧1𝑖 , . . . , 𝑧 (𝑁 /2−1)𝑖 ) · 𝑑𝑖

=

(
𝑢−1∑︁
𝑖=0

𝑧 𝑗𝑖 · 𝑑𝑖
)
0≤ 𝑗<𝑁 /2

= (𝑧0, 𝑧1, . . . , 𝑧𝑁 /2−1) = ®𝑧.
□

Theorem 3.2 (Bootstrapping Correctness). Let ct ∈ (R𝑞)𝑢

be a ciphertext encrypting a vector ®𝑧 ∈ Z𝑁 /2𝑡 according to the above
encryption. Then we have

IntDec ◦ Boot(ct) = ®𝑧.

Proof. Let ct = (ct0, ct1, . . . , ct𝑢−1) and ®𝑧 = (𝑧0, 𝑧1, . . . , 𝑧𝑁 /2−1).
Let 𝑧 𝑗 = 𝑧 𝑗 (𝑢−1)𝑧 𝑗 (𝑢−2) · · · 𝑧 𝑗0 (𝑑) be the base-𝑑 representation of

𝑧 𝑗 for each 0 ≤ 𝑗 < 𝑁 /2. Let ®𝑤𝑖 = (𝑧0𝑖 , 𝑧1𝑖 , . . . , 𝑧 (𝑁 /2−1)𝑖 ) ∈ Z
𝑁 /2
𝑑

be a vector of ℓ-bit unsigned integers for each 0 ≤ 𝑖 < 𝑢. Then by

the definition of the encryption, we have that ct𝑖 is a valid discrete

CKKS encryption of ®𝑤𝑖 for each 𝑖 . Recall that the bootstrapping

for ct is defined as an element-wise integer bootstrapping, which

means that the components of Boot(ct) are the bootstrappings of
ct𝑖 . Therefore, we have

IntDec ◦ Boot(ct) =
𝑢−1∑︁
𝑖=0

⌊Dcd ◦ Dec ◦ Boot(ct𝑖 )⌉ · 𝑑𝑖

=

𝑢−1∑︁
𝑖=0

⌊Dcd ◦ Dec(ct𝑖 )⌉ · 𝑑𝑖 = ®𝑧.

The second equality follows from the correctness of the discrete

bootstrapping over Z𝑑 . □

3.2 Arithmetic Operations
Based on the encryption scheme defined in the previous subsection,

we describe how we define homomorphic arithmetic operations

over Z𝑡 . We not only provide simple addition and multiplication

but also some popular operations (e.g. comparison, bit shift) that

are defined over unsigned integers. Let IntMod𝑑 be a homomorphic

modular reduction by Z𝑑 as defined in [KN24] and Carry𝑑 = (𝑖𝑑 −
IntMod𝑑 )/𝑑 .4

• Reduction: Let ct = (ct0, ct1, . . . , ct𝑢−1) ∈ (R2𝑄 )
𝑢
be a

vector of discrete CKKS ciphertexts encrypting vectors in

Z𝑁 /2. The modular reduction of ct is sequentially defined

as

Reduce(ct) = (ct′
0
, ct′

1
, . . . , ct′𝑢−1)

where ct′
0
= IntMod𝑑 (ct0), ct′′0 = Carry𝑑 (ct0), and
ct′𝑖 = IntMod𝑑 (ct′′𝑖−1 + ct𝑖 )
ct′′𝑖 = Carry𝑑 (ct′′𝑖−1 + ct𝑖 )

for each 1 ≤ 𝑖 < 𝑢. The result of Reduce encrypts a message

𝑢−1∑︁
𝑖=0

⌊Dcd ◦ Dec(ct𝑖 )⌉ · 𝑑𝑖

modulo 𝑡 , i.e., reducing the ciphertext ct to the correct base-
𝑑 representation. Let Carry(ct) be defined as ct′′

𝑢−1.
• Addition: Let ct = (ct𝑖 )0≤𝑖<𝑢 , ct′ = (ct′𝑖 )0≤𝑖<𝑢 ∈ (R

2

𝑄
)𝑢

be vectors of ciphertexts each encrypting a 𝑘-bit unsigned

integer according to the encryption scheme in Section 3.1.

The addition of ct and ct′ is defined as

Add(ct, ct′) = Reduce((ct𝑖 + ct′𝑖 )0≤𝑖<𝑢 )
4
Note that Carry𝑑 (ct) may be at a lower level than ct. This may lead to modulus

consumption and bootstrapping, but we consider the efficiency aspect in the later

subsection.
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where the addition on the right-hand side is the usual CKKS

addition.

• Subtraction: Let ct = (ct𝑖 )0≤𝑖<𝑢 , ct′ = (ct′𝑖 )0≤𝑖<𝑢 ∈ (R
2

𝑄
)𝑢

be vectors of ciphertexts each encrypting a 𝑘-bit unsigned

integer according to the encryption scheme in Section 3.1.

The subtraction of ct and ct′ is defined as

Sub(ct, ct′) = Reduce((ct𝑖 − ct′𝑖 )0≤𝑖<𝑢 )

where subtraction on the right-hand side is the usual CKKS

subtraction.

• Multiplication: Let ct = (ct𝑖 )0≤𝑖<𝑢 , ct′ = (ct′𝑖 )0≤𝑖<𝑢 ∈
(R2

𝑄
)𝑢 be vectors of ciphertexts each encrypting a 𝑘-bit

unsigned integer according to the encryption scheme in

Section 3.1. The multiplication of ct and ct′ is defined as

Mult(ct, ct′) = Reduce ©«©«
𝑖∑︁
𝑗=0

Mult(ct𝑗 , ct′𝑖− 𝑗 )
ª®¬0≤𝑖<𝑢ª®¬

whereMult on the right-hand side refers to the usual CKKS

multiplication.

• Comparison: Let ct = (ct𝑖 )0≤𝑖<𝑢 , ct′ = (ct′
𝑖
)0≤𝑖<𝑢 ∈

(R2
𝑄
)𝑢 be vectors of ciphertexts each encrypting a 𝑘-bit

unsigned integer according to the encryption scheme in

Section 3.1. The comparison ct ≥ ct′ is defined as

ct ≥ ct′ = Carry(ct − ct′) + 1

which outputs 1 for true and 0 for false.

• Right Shift: Let ct = (ct0, ct1, . . . , ct𝑢−1) ∈ (R2𝑄 )
𝑢
be a

vector of ciphertexts encrypting a 𝑘-bit unsigned integer

according to the encryption scheme in Section 3.1. Let 0 ≤
𝑚 < 𝑘 be an integer. The right shift of ct by𝑚 denoted as

ct << 𝑚 is defined as

ct << 𝑚 =
(
IntMod𝑑 (ct𝑖−𝑥 << 𝑦) + Carry𝑑 (ct𝑖−𝑥−1 << 𝑦)

)
0≤𝑖<𝑢

where 𝑥 = ⌊𝑚/ℓ⌋, 𝑦 = [𝑚]ℓ , and ct𝑖 = 0 for 𝑖 < 0.

• Left Shift: Let ct = (ct0, ct1, . . . , ct𝑢−1) ∈ (R2𝑄 )
𝑢
be a

vector of ciphertexts encrypting a 𝑘-bit unsigned integer

according to the encryption scheme in Section 3.1. Let 0 ≤
𝑚 < 𝑘 be an integer. The left shift of ct by𝑚 denoted as

ct >> 𝑚 is defined as

ct >> 𝑚 =
(
Carry𝑑 (ct𝑖+𝑥 << (ℓ − 𝑦)) + IntMod𝑑 (ct𝑖+𝑥+1 << (ℓ − 𝑦))

)
0≤𝑖<𝑢

where 𝑥 = ⌊𝑚/ℓ⌋, 𝑦 = [𝑚]ℓ , and ct𝑖 = 0 for 𝑖 ≥ 𝑢.

Theorem 3.3 (Arithmetic Correctness). Reduction, Addition,
Subtraction, Multiplication, Comparison, Right Shift, and Left Shift
defined above are correct.

Proof. We give proof per each operation.

• Reduction: It suffices to show that

𝑢−1∑︁
𝑖=0

⌊Dcd ◦ Dec(ct′𝑖 )⌉ · 𝑑
𝑖 ≡𝑡

𝑢−1∑︁
𝑖=0

⌊Dcd ◦ Dec(ct𝑖 )⌉ · 𝑑𝑖 .

By mathematical induction, we first check that

⌊Dcd ◦ Dec(ct′′𝑗 )⌉ =
⌊∑𝑗

𝑖=0
⌊Dcd ◦ Dec(ct𝑖 )⌉ · 𝑑𝑖

𝑑 𝑗

⌋

holds for each 𝑗 . Again, we use mathematical induction and

get

𝑗∑︁
𝑖=0

⌊Dcd ◦ Dec(ct′𝑖 )⌉ · 𝑑
𝑖 =

[
𝑗∑︁

𝑖=0

⌊Dcd ◦ Dec(ct𝑖 )⌉ · 𝑑𝑖
]
𝑑 𝑗+1

for each 𝑗 . By plugging in 𝑗 = 𝑢 − 1, we finish the proof.

• Addition: We first check that

𝑢−1∑︁
𝑖=0

⌊Dcd ◦ Dec(ct𝑖 + ct′𝑖 )⌉ · 𝑑
𝑖 =

𝑢−1∑︁
𝑖=0

⌊Dcd ◦ Dec(ct𝑖 )⌉ · 𝑑𝑖 +
𝑢−1∑︁
𝑖=0

⌊Dcd ◦ Dec(ct′𝑖 )⌉ · 𝑑
𝑖

from the decryption correctness of (ct𝑖 )𝑖 and (ct′𝑖 )𝑖 . Then
by the correctness of reduction, we have the correctness of

addition.

• Subtraction: We first check that

𝑢−1∑︁
𝑖=0

⌊Dcd ◦ Dec(ct𝑖 − ct′𝑖 )⌉ · 𝑑
𝑖 =

𝑢−1∑︁
𝑖=0

⌊Dcd ◦ Dec(ct𝑖 )⌉ · 𝑑𝑖 −
𝑢−1∑︁
𝑖=0

⌊Dcd ◦ Dec(ct′𝑖 )⌉ · 𝑑
𝑖 .

• Multiplication: We first check that

𝑢−1∑︁
𝑖=0

Dcd ◦ Dec ©«
𝑖∑︁
𝑗=0

Mult(ct𝑗 , ct′𝑖− 𝑗 )
ª®¬
 · 𝑑𝑖

=

𝑢−1∑︁
𝑖=0

©«
𝑖∑︁
𝑗=0

⌊Dcd ◦ Dec(ct𝑗 )⌉ ⊙ ⌊Dcd ◦ Dec(ct𝑖− 𝑗 )⌉ · 𝑑𝑖ª®¬
≡𝑡

(
𝑢−1∑︁
𝑖=0

⌊Dcd ◦ Dec(ct𝑖 )⌉ · 𝑑𝑖
)
⊙

(
𝑢−1∑︁
𝑖=0

⌊Dcd ◦ Dec(ct′𝑖 )⌉ · 𝑑
𝑖

)
by the decryption correctness. Then by the correctness of

reduction, we have the correctness of multiplication.

• Comparison: We observe that given an integer 𝑥 , the corre-

sponding carry operation computes (𝑥−[𝑥]𝑡 )/𝑡 . Let ct′−ct
encrypts an integer vector ®𝑧 ∈ Z𝑁 /2 according to the de-

cryption function in Section 3.1. Since both ct and ct′ en-
crypt unsigned 𝑘-bit integers, we have −𝑡 < 𝑧𝑖 < 𝑡 for each

entry 𝑧𝑖 for ®𝑧. In particular, the 𝑖th entry of ct is greater
than or equal to the 𝑖th entry of ct′ if and only if 𝑧𝑖 ≥ 0.

Note that the carry operation outputs 0 when 0 ≤ 𝑧𝑖 < 𝑡

and outputs 1 when −𝑡 < 𝑧𝑖 < 0. Therefore, we have that

Carry(ct − ct′) + 1 encrypts the right result.
• Right shift: It suffices to check the base-𝑑 representation of

the right shift of the originalmessage. Let𝛼 = 𝛼𝑢−1𝛼𝑢−2 · · ·𝛼0
be the base-𝑑 representation of an unsigned 𝑘-bit integer

𝑥 . Let 𝛽 = 𝛽𝑢−1𝛽𝑢−2 · · · 𝛽0 be the base-𝑑 representation of

𝛼 << 𝑚. For each 𝑖 ,

𝛽𝑖 = [𝛼𝑖−𝑥 << 𝑦]𝑑 +
⌊𝛼𝑖−𝑥−1 << 𝑦

𝑑

⌋
.

This proves the correctness.
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• Left shift: It suffices to check the base-𝑑 representation of

the left shift of the originalmessage. Let𝛼 = 𝛼𝑢−1𝛼𝑢−2 · · ·𝛼0
be the base-𝑑 representation of an unsigned 𝑘-bit integer

𝑥 . Let 𝛽 = 𝛽𝑢−1𝛽𝑢−2 · · · 𝛽0 be the base-𝑑 representation of

𝛼 >> 𝑚. For each 𝑖 ,

𝛽𝑖 = [𝛼𝑖+𝑥+1 << (ℓ − 𝑦)]𝑑 +
⌊
𝛼𝑖+𝑥 << (ℓ − 𝑦)

𝑑

⌋
.

This proves the correctness.

□

3.3 Efficiency Analysis
We analyze the computational efficiency of each operation by count-

ing the number of discrete bootstrapping. Note that discrete boot-

strapping is usually > 100 times faster than any other homomorphic

operations (e.g. addition, multiplication) so it gives a good approxi-

mation of the complexity.

Theorem 3.4 (Reduction Complexity). Let

ct = (ct0, ct1, . . . , ct𝑢−1) ∈ (R2𝑄 )
𝑢

be a vector of ciphertexts encrypting integer vectors in [0, 𝑑𝑚−𝑑𝑚−1],
where 𝑄 ≫ 𝑑𝑚 . Then the number of discrete bootstrappings used to
instantiate the Reduce operation is ≤ 𝑢𝑚 −𝑚 + 1.

Proof. We provide an algorithm with at most 𝑢𝑚 −𝑚 + 1 boot-
strappings. Recall that Reduce consists of 𝑢 IntMod𝑑 and 𝑢 − 1

Carry𝑑 . The main issue is that the definition of Carry𝑑 includes ho-

momorphic division by 𝑑 , which consumes modulus. To handle this

issue, we keep all the ct𝑖 ’s, ct′𝑖 ’s, ct
′′
𝑖
’s at the bootstrapping (output)

level via discrete bootstrapping. To do this, we instantiate Carry𝑑
with the iterative bootstrapping in [KN24]. The key observation is

that ct′′
𝑖−1 + ct𝑖 decrypts to an element

< 𝑑𝑚

which can be proved by mathematical induction on 𝑖 .

• Base case 𝑖 = 0: ct𝑖 decrypts to ≤ 𝑑𝑚 − 𝑑𝑚−1 < 𝑑𝑚 .

• Assume 𝑖 and prove 𝑖 + 1: Assume that ct′′
𝑖−2 + ct𝑖 decrypts

to < 𝑑𝑚 . Then by the definition of Carry𝑑 , ct
′′
𝑖−1 decrypts

to < 𝑑𝑚−1. Thus, ct′′
𝑖−1 + ct𝑖 decrypts to

< 𝑑𝑚−1 + 𝑑𝑚 − 𝑑𝑚−1 = 𝑑𝑚 .

• By mathematical induction, we proved the desired property.

Therefore, Carry𝑑 can be instantiated with IntBoot𝑚−1
𝑑

of [KN24,

Algorithm 2] which requires𝑚 − 1 discrete bootstrappings. As a
result, we instantiate Reducewith𝑢 ·1+(𝑢−1) · (𝑚−1) = 𝑢𝑚−𝑚+1
discrete bootstrappings. □

Corollary 3.5 (Addition/SubtractionComplexity). The num-
ber of bootstrappings needed for addition/subtraction is ≤ 2𝑢 − 1.

Proof. It follows directly from the fact that [0, 𝑑) + [0, 𝑑) =
[0, 2𝑑−1) and [0, 𝑑)−[0, 𝑑) = (−𝑑,𝑑)whose lengths are ≤ 𝑑2−𝑑 . □

Corollary 3.6 (Comparison Complexity). The number of boot-
strappings needed for comparison is ≤ 2𝑢.

Proof. Recall that the comparison operation does exactly the

same as the subtraction except for the last carry step. Hence, we

need 2𝑢 − 1 + 1 = 2𝑢 discrete bootstrappings. □

Theorem 3.7 (Multiplication Complexity). Suppose that 𝑘 ≤
ℓ · 2ℓ . The number of bootstrappings needed for multiplication is
≤ 3𝑢 − 2.

Proof. Recall that the Mult operation heavily relies on the

Reduce operation. Hence, it suffices to check the size of the un-

derlying message of

𝑀𝑖 =

𝑖∑︁
𝑗=0

Mult(ct𝑗 , ct′𝑖− 𝑗 ) .

As each ct𝑗 and ct′
𝑗
decrypts to a ℓ-bit unsigned integer, we have

that each coordinate of the decryption of𝑀𝑖 is less than or equal to

(2ℓ − 1) · (2ℓ − 1) · 𝑢 = (𝑑 − 1)2 · 𝑢 ≤ (𝑑 − 1)2 · 𝑑 < 𝑑3 − 𝑑2 .

Hence, by Theorem 3.4, the number of bootstrapping needed is at

most 3𝑑 − 2. □

Theorem 3.8 (Shift Complexity). The number of bootstrappings
needed for the right/left shift operation is ≤ 𝑢 − 𝑥 .

Proof. We first prove the right shift operation. Observe that

we need to compute IntMod𝑑 (ct𝑖 << 𝑦) for 0 ≤ 𝑖 < 𝑢 − 𝑥

and Carry𝑑 (ct𝑖 << 𝑦) for 0 ≤ 𝑖 < 𝑢 − 𝑥 − 1. We can compute

IntMod𝑑 (ct𝑖 << 𝑦) for 0 ≤ 𝑖 < 𝑢 − 𝑥 using 𝑢 − 𝑥 discrete boot-

strappings. The remaining Carry𝑑 ’s can be computed without in-

troducing additional discrete bootstrappings. Hence 𝑢 − 𝑥 in total.

The left shift operation works exactly the same except that the

IntMod𝑑 is needed for index 𝑥 ≤ 𝑖 < 𝑢 and Carry𝑑 is needed for

index 𝑥 + 1 ≤ 𝑖 < 𝑢. □

We summarize the analyses in Table 3.

Operation Name Number of Discrete Bootstrapping

Addition ≤ 2𝑢 − 1
Subtraction

Multiplication
5≤ 3𝑢 − 2

Comparison ≤ 2𝑢

Right Shift ≤ 𝑢 − 𝑥
Left Shift

Table 3: Number of discrete bootstrapping used in each oper-
ation.

Next, we discuss some optimization techniques that can further

reduce the computational complexity. The first optimization is to

reduce the number of discrete bootstrapping by lazily bootstrap

Carry𝑑 . For instance, one may bootstrap for every 𝛾 (instead of

1) Carry𝑑 when evaluating Reduce as in Theorem 3.4. Although

it reduces the number of bootstrapping by a factor 𝛾 , it increases

the modulus consumption by a factor 𝛾 so one should carefully

examine the efficiency to find a sweet spot.

5
Under the assumption that 𝑘 ≤ ℓ · 2ℓ .
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Theorem 3.9 (Lazy Bootstrap). Let ct = (ct0, ct1, . . . , ct𝑢−1) ∈
(R2

𝑄
)𝑢 be a vector of ciphertexts encrypting integer vectors in [0, 𝑑𝑚−

𝑑𝑚−1], where 𝑄 ≫ 𝑑𝛾𝑚 . Then there is an instantiation of Reduce
that uses at most𝑚 · ⌊(𝑢 − 1)/𝛾⌋ + 𝑢 bootstrappings and 𝑑𝑚+𝛾−1 of
modulus.

Proof. We may instantiate exactly as in the proof of Theo-

rem 3.4, except that we lazily bootstrap for Carry𝑑 . To be explicit,

we first obtain ct′′
𝑖
(via Carry𝑑 operation with lazy bootstrapping)

sequentially and compute ct′
𝑖
at the end (via 𝑢 discrete bootstrap-

pings). Here we may choose the ciphertext modulus of ct′′
𝑖
to be

a factor 𝑑 smaller than that of ct′′
𝑖−1 for 𝛾 ∤ 𝑖 and bootstrap at

𝛾 | 𝑖 . As a result, the ciphertext modulus for ct′′
𝑖
becomes 𝑄/𝑑 [𝑖 ]𝛾 .

Recall that the modulus consumption for the last bootstrapping

(i.e. the iterative bootstrapping in [KN24]) is 𝑑𝑚 and the number

of bootstrapping is 𝑚. Hence the total modulus consumption is

𝑑𝑚 · 𝑑𝛾−1 = 𝑑𝑚+𝛾−1, and the total number of bootstrapping is

𝑚 · (# of bootstrap for Carry𝑑 ) + 𝑢 · (# of bootstrap for IntMod𝑑 )

=𝑚 · ⌊(𝑢 − 1)/𝛾⌋ + 𝑢.

□

Another observation is that we may reduce lazily, especially

in addition/subtraction. For instance, if we add three ciphertext

vectors ct, ct′, ct′′ ∈ (R2
𝑄
)𝑢 , we may define the addition of them as

Add(ct, ct′, ct′′) = Reduce((ct𝑖 + ct′𝑖 + ct
′′
𝑖 )0≤𝑖<𝑢 )

hence saving one Reduce operation. We formalize this observation

in the following theorem.

Theorem 3.10 (Lazy Addition). Let ct0, ct1, . . . , ct𝑣−1 ∈ (R2
𝑄
)𝑢

be vectors of ciphertexts encrypting unsigned 𝑘-bit integer vectors
according to the encryption scheme in Section 3.1, where 𝑣 ≤ 𝑑 . The
addition of ct0, ct1, . . . , ct𝑣−1 can be instantiated as

Reduce ©«©«
𝑣−1∑︁
𝑗=0

ct𝑗
𝑖

ª®¬0≤𝑖<𝑢ª®¬
with ≤ 2𝑢 − 1 discrete bootstrappings.

Proof. By Theorem 3.4, we only need to check that for each 𝑖 ,∑𝑣−1
𝑗=0 ct

𝑗
𝑖
decrypts to an integer vector whose entries are in [0, 𝑑2 −

𝑑]. To check this, we use the fact that ct𝑗
𝑖
decrypts to an integer

vector whose entries are in [0, 𝑑 − 1]. Then, by summing up at most

𝑑 such ciphertexts, we get the desired property. □

Thus, we may lazily reduce after adding ≤ 𝑑 ciphertext vectors.

3.4 Implications
We discuss some direct applications of our method, namely fixed

point arithmetic and arbitrary function evaluation over unsigned

integers.

3.4.1 Fixed Point Arithmetic. As our scheme supports both multi-

plication and shift operations, it immediately supports fixed point

multiplication which can be written as a combination of multiplica-

tion of two𝑚 bit integers and right shift by𝑚. However, we may

do much better than this because the fixed point multiplication can

be regarded as computing the high part of the multiplication.

• Extended Reduction: Let ct = (ct0, ct1, . . . , ct2𝑢−1) ∈
(R2

𝑄
)2𝑢 be a vector of discrete CKKS ciphertexts encrypting

vectors in Z𝑁 /2. The (extended) modular reduction of ct is
sequentially defined as

ExtReduce(ct) = (ct′
0
, ct′

1
, . . . , ct′

2𝑢−1)
where ct′

0
= IntMod𝑑 (ct0), ct′′0 = Carry𝑑 (ct0), and

ct′𝑖 = IntMod𝑑 (ct′′𝑖−1 + ct𝑖 )
ct′′𝑖 = Carry𝑑 (ct′′𝑖−1 + ct𝑖 )

for each 1 ≤ 𝑖 < 2𝑢. The result of Reduce encrypts a

message

2𝑢−1∑︁
𝑖=0

⌊Dcd ◦ Dec(ct𝑖 )⌉ · 𝑑𝑖

modulo 𝑡2, i.e., reducing the ciphertext ct to the correct

base-𝑑 representation.

• ExtendedMultiplication: Let ct = (ct𝑖 )0≤𝑖<𝑢 , ct′ = (ct′𝑖 )0≤𝑖<𝑢 ∈
(R2

𝑄
)𝑢 be vectors of ciphertexts each encrypting a 𝑘-bit

unsigned integer according to the encryption scheme in

Section 3.1. The extended multiplication of ct and ct′ is
defined as

ExtMult(ct, ct′) = ExtReduce ©«©«
min(𝑖,𝑢−1)∑︁

𝑗=max(0,𝑖−𝑢+1)
Mult(ct𝑗 , ct′𝑖− 𝑗 )

ª®¬0≤𝑖<2𝑢ª®¬
whereMult on the right-hand side refers to the usual CKKS

multiplication. The output vector contains the element-

wise product of two input integer vectors, without modular

reduction by 𝑡 .

One may simply take the last 𝑢 entries of the result of the extended

multiplication to instantiate a 𝑘-bit precision fixed point multiplica-

tion. Recall that CKKS often struggles to satisfy the security notions

like IND-CPA𝐷 [LM21] or Threshold FHE [AJLA
+
12, BGG

+
18] as

they cannot separate noise from the message. Although our fixed

point arithmetic is much slower than the usual CKKS operations

(as it involves bootstrapping), we may avoid huge flooding which

increases the parameters greatly.

3.4.2 Arbitrary Function Evaluation. As our encoding stores a large
integer after decomposing it into small pieces, wemay directly bene-

fit from themulti-precision arbitrary function evaluation in [AKP24,

Section 5.3]. Since we maintain the digit-decomposed format, we

do not need to perform digit extraction in [AKP24]. We restate (and

slightly modify) the arbitrary function evaluation framework as

follows.

Let 𝑓 : Z𝑡 → C be an arbitrary function, 𝜑 : Z𝑡 → Z𝑢
𝑑
be

the digit decomposition, and 𝜓 : Z𝑑 → 𝑋 = {1, 𝜔, . . . , 𝜔𝑑−1} be
defined as 𝑥 ↦→ 𝜔2𝜋𝑖𝑥

where 𝜔 is a complex 𝑑th root of unity. Let

𝑝 ∈ C[𝑥0, . . . , 𝑥𝑢−1] be a multivariate polynomial that interpolates
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the function 𝑓 ◦ 𝜑−1 ◦ 𝜓−1 : 𝑋𝑢 → C. Then the homomorphic

evaluation of 𝑝 instantiates 𝑓 (starting from complex roots of unity).

We denote such operation asMLUT𝑓 . We illustrate the algorithm

in Algorithm 3.

Algorithm 3: Arbitrary Function Evaluation [AKP24]

Input :ct = (ct𝑖 )0≤𝑖<𝑢 ∈ (R2𝑄 )
𝑢
a ciphertext vector

encrypting ®𝑧 ∈ Z𝑁 /2𝑡 . 𝑓 : Z𝑡 → C an arbitrary

function.

Output :ctout encrypting 𝑓 (®𝑧).
1 for 𝑖 ← 0 to 𝑢 − 1 do
2 ct′

𝑖
← EvalExp ◦ CtS ◦ModRaise ◦ StC(ct𝑖 );

3 end for
4 ctout ← MLUT𝑓 (ct′0, ct

′
1
, . . . , ct′

𝑢−1);
5 return ctout.

It is worth mentioning that such functionality cannot be sup-

ported if one handles large integers directly inside CKKS. One

reason is that univariate interpolation consumes much more multi-

plicative depths than multivariate interpolation, and another reason

is that large precision polynomial interpolation is numerically un-

stable.

4 Experiments
We provide proof-of-concept implementations for the algorithms

described in the previous section. We developed our code upon

the lattigo library [lat24]. The experiments are run single-threaded

on Intel i7-1360P at 2.6GHz with 9.72GB of RAM, running Ubuntu

22.04 withWSL. All of our FHE parameters satisfy≈ 128 bit security

according to [BTPH22].

4.1 Description
We start with providing a parameter set used for our experiments, in

Table 4. Here 𝑁 denotes the RLWE ring dimension, log𝑄𝑃 denotes

the maximum RLWE modulus for switching keys, (ℎ, ˜ℎ) denotes
the Hamming weights of the dense and sparse secrets [BTPH22],

and 𝑑𝑛𝑢𝑚 denotes the gadget rank for the switching keys. The

lower table describes the moduli chain, where log𝑞𝑖 denotes the

ciphertext modulus and log𝑝 𝑗 denotes the auxiliary modulus for

key switching. Base, StC, Mult, LUT, EvalExp, and CtS denote the

moduli reserved for the corresponding operations in the discrete

bootstrapping framework [BKSS24]. When denoted as 𝑋 × 𝑌 , it
refers to using 𝑌 many 𝑋 -bit (NTT) moduli.

log𝑁 log𝑄𝑃 (ℎ, ˜ℎ) 𝑑𝑛𝑢𝑚

15 768 (192, 32) 7

log𝑞𝑖
log 𝑝 𝑗Base StC Mult LUT EvalExp CtS

34 24 × 3 34 34 × 5 34 × 8 28 × 3 34 × 3
Table 4: Parameter set for the experiment.

Next, we elaborate on the scheme parameters of our experiments.

We targeted 64-bit operations, decomposing it into 4-bit pieces,

resulting in a total of 16 pieces. In other words, 𝑘 = 64, ℓ = 4,

and 𝑢 = 16. Note that 𝑘 ≤ 2
ℓ · ℓ , which satisfies the condition for

Theorem 3.7. For the homomorphicmodular reduction instantiation,

we followed [KN24] which relies on the discrete bootstrapping

from [BKSS24]. In particular, we used the cleaning interpolation

(via Hermite interpolation) so that our bootstrapping achieves both

modulus raising and cleaning.

We implemented addition, subtraction, multiplication, compar-

ison, and right shift operation relying on the algorithms in Sec-

tion 3.2. In particular, we used the strategy to bootstrap every time

we compute Carry𝑑 , which was mainly used in the correctness

proofs. This corresponds to the equality case in Table 3.

The experimental results are illustrated in Table 5. Here the error

is measured by subtracting the decrypted result with the desired

result. The precision denotes mean and minimum precision, which

is computed as − log
2
of the mean and maximum error. We observe

that the total running time is roughly proportional to the number

of bootstrappings as expected.

# Bootstrap Running time Precision

Addition 31 191 sec (14.8, 7.25)
Subtraction 31 194 sec (14.8, 7.89)

Multiplication 46 293 sec (11.9, 1.41)
Comparison 32 197 sec (13.9, 7.73)

Table 5: Experimental results for 64-bit homomorphic opera-
tions, based on the algorithms in Section 3.2 except shifting.

To check the cost of left and right shift operations, we checked

if it is linear in 𝑥 = ⌊𝑚/𝑑⌋ as expected. We fixed 𝑦 = 1 for the

right shift and 𝑦 = 2 for the left shift, and plotted the graph in

Figure 3. Not only the linearity but also the fact that the cost of

shift is independent of 𝑦 was observed.
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Figure 3: Running time of right/left shift operations.
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4.2 Comparison with Prior Works
We compare our experimental results with previous works. We

mostly focus on versatile schemes that efficiently support multipli-

cation, comparison, and bootstrapping at the same time.

We mainly compare our algorithm with [Zam22] as it supports

all the operations we discussed in Section 3.2. We ran their bench-

mark
6
in the same environment as our experiments (e.g. same

machine, single-thread, etc.). The figures are illustrated in Table 6.

Our algorithm outperforms [Zam22] by 2-3 orders of magnitude

depending on the operations, in terms of throughput. Notably, our

homomorphic 64-bit multiplication is more than 1700 times faster.

To compare latency, our multiplication becomes favorable as soon

as we have ≥ 10 parallelism.

Latency (sec) Amortized time (ms)

[Zam22] Ours [Zam22] Ours

Addition 1.13 191 1130 11.7 96.6x
Subtraction 1.14 194 1140 11.8 96.6x

Multiplication 30.9 293 30900 17.9 1730x
Comparison 0.852 197 852 12.0 71.0x
Right Shift

7
0.582 99.6 582 6.08 95.7x

Left Shift 0.581 98.6 581 6.02 96.5x
Table 6: Comparison with TFHE-rs [Zam22] on 64-bit opera-
tions.

Next, we dive deeper into homomorphic multiplications and

see how the target modulus 𝑡 = 2
𝑘
affects the performance. We

compare our multiplication with [Zam22] for 𝑘 = 4, 8, 16, 32, 64,

and check both latency and throughput. The figures can be seen in

Table 7. Since our method is asymptotically almost linear in 𝑘 but

[Zam22] is not, the performance difference is widened for large 𝑘 .

Although we experimented 𝑘 ≤ 64 (due to the constraint 𝑘 ≤ ℓ · 2ℓ ),
our method can be easily extended by increasing ℓ . We expect that

our method should perform even better for larger 𝑘 .

𝑘 = log
2
𝑡

Latency (sec) Amortized time (ms)

[Zam22] Ours [Zam22] Ours

4 0.107 6.03 107 0.368 291x
8 0.446 25.3 446 1.54 290x
16 1.98 63.5 1980 3.88 510x
32 7.83 144 7830 8.79 891x
64 30.9 293 30900 17.9 1730x

Table 7: Comparison with TFHE-rs [Zam22] on multiplica-
tions of different sizes.

Wemove on to other possible approaches based on SIMD schemes.

Note that most works do not cover multiplication, comparison, and

bootstrapping at the same time. For instance, [ZYZ
+
24] achieves

good performance for both homomorphic multiplication and com-

parison, but the encoding formats for the two operations are differ-

ent and do not have efficient conversions from one to another. In

6
We executed integer_bench from TFHE-rs [Zam22], commit hash ba105cd.

7
For right/left shift, we considered the smallest 𝑥 which gives the largest running time

for our method.

this regard, we focus on decomposition-based works which seem

to naturally support all three operations we are interested in.

For arithmetic operations (addition and multiplication), we com-

pare with [HZY
+
22], the state-of-the-art method for radix-2 ho-

momorphic addition/multiplication. We borrowed the figures from

[HZY
+
22, Table V and VIII] which uses a similar environment for

experiments. As illustrated in Table 8, our addition is 2 − 4 times

faster for computing 32/64-bit additions, and our multiplication

is more than two orders of magnitude faster for evaluating 32-bit

multiplication.

𝑘 𝜆 amortized time (ms)

Addition

[HZY
+
22]

32

80

24

64 24

Ours

32 ≈ 128

5.98

64 11.7

Multiplication

[HZY
+
22] 32 80 1020

Ours 32 ≈ 128 8.79

Table 8: Comparison with [HZY+22] on arithmetic opera-
tions.

For homomorphic comparison, we compare with [TLW
+
21]

which introduces the vector of field elements (VFE) encoding to effi-

ciently evaluate large precision comparison. Although their latency

is much better than ours, we outperform in terms of throughput

due to the large parallelism of CKKS. The details are illustrated in

Table 9.

𝜆 # slots latency (sec) amortized time (ms)

[TLW
+
21]

8 > 80

256 20.2 78.8

128 20.5 160

16 4.75 297

Ours ≈ 128 16384 197 12.0

Table 9: Homomorphic comparison over Z
2
64 , compared

with [TLW+21].
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