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Abstract

We construct a novel SNARK proof system, Morgana. The main property
of our system is its small circuit keys, which are proportional in size to the
description of the circuit, rather than to the number of constraints.

Previously, a common approach to this problem was to first construct a
universal circuit (colloquially known as a zk-VM), and then simulate an
application circuit within it. However, this approach introduces significant
overhead.

Our system, on the other hand, results in a direct speedup compared to
Spartan [19], the state-of-the-art SNARK for R1CS.

Additionally, small circuit keys enable the construction of zk-VMs from our
system through a novel approach: first, outputting a commitment to the
circuit key, and second, executing our circuit argument for this circuit key.
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Introduction

State of the field

In recent years, we have seen impressive progress in the field of general-
purpose SNARKs. It is difficult to do justice to this vast body of work in
this brief summary, but the general outlook is as follows:

1. Trusted setup-specific approaches, such as Groth16 [10], are gradually
being replaced by trusted setup-free approaches (or at least approaches
with a universal trusted setup). Groth16 uses R1CS arithmetization.

2. The pivotal point in this transition was the introduction of PlonK [8].
Currently, dominant approaches, such as Halo2 [4] and STARKs [3]
[18] [11], employ a very similar approach to arithmetization, known as
”Plonkish.”

3. Considerable effort has been dedicated to the development of efficient
SNARK recursion primitives. In addition to the aforementioned Halo2
and STARKs (which are amenable to direct recursion), we highlight
folding schemes [15] [5] [13] [14]. Importantly, all the folding schemes
obviate the cost of linear combinations. As a result, they typically use
either R1CS arithmetization or its generalization, CCS [20].

4. Recently, there has been a significant shift toward protocols that work
with multivariate polynomials, allowing them to exploit the sumcheck
protocol and, especially, the GKR [9] [22] protocol.

5. In applications, there has been a significant shift toward so-called zk-
VMs (such as SP1, RISC-0, and Jolt [2]), universal circuits capable
of simulating arbitrary programs. While the possibility of such an
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approach has been understood for a long time, it is only recently that
they have started to become feasible.

Circuit-based approaches and zk-VM approaches have a principal trade-
off: while zk-VMs are slower due to simulation overhead, they enjoy dy-
namic branching. Indeed, in circuits, the expression

let y = if condition {option1} else {option2};

is interpreted as

let y = (1 - condition) * option1 + condition * option2;

which requires computing both branches before proceeding.
Somewhere in between zk-VMs and application-specific circuits are var-

ious approaches exploiting recursion to deal with non-uniformity. On the
circuit side, Stackproofs [7] use non-uniform folding to simulate the call stack
and Nebula [1] uses non-uniform folding to fetch the opcodes by selectively
deactivating parts of the circuit. On the zk-VM side, various approaches to
”precompiles” have emerged—de facto separate circuits capable of executing
heavy operations requiring acceleration. The job of the zk-VM is simply to
move data to these accelerated circuits, which handle the heavy lifting.

Our approach

We have discovered this construction by accident. Our original entry point
was the idea that folding schemes can largely ignore the complexity of the
linear layer (and only deal with linear constraints in a decider phase), and we
wanted to reproduce a similar behavior in a monolithic SNARK (for linear
combinations that are batched enough times in a circuit). What we have
discovered is not only that it is possible, it suddenly unlocks a far larger
degree of non-uniformity than traditional folding and recursive schemes.

What we construct, in fact, is a circuit proof system with an extremely
lightweight and provable circuit compiler. This unlocks the ability to run
a two-stage protocol to achieve dynamic branching - in the first stage, a
virtual machine runs the circuit compiler and outputs the verification key.
The second stage checks the proof with respect to this verification key.

To illustrate how this can work, we once again consider the example
with the ternary operator. Consider the following expression, with A, B
representing two static circuits.

let y = if condition {A(x)} else {B(x)};
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a VM then will non-deterministically output one of the following two circuits
in its place (note that inputs are known to the prover, so it can choose the
appropriate branch):

assert!(condition);

let y = A(x);

or

assert!(!condition);

let y = B(x);

Circuit builder

Let us consider how circuit builders work. We will restrict our discussion to
some large class of proof systems:

1. We only consider proof systems without circuit-specific trusted setup.
Universal trusted setup is tolerated.

2. We assume that it uses the PCS + PIOP pattern. We fix some poly-
nomial commitment scheme (or, maybe, a collection of commitment
schemes) over our base field F.

3. We assume that the verifying key of the circuit is a commitment to the
circuit key, using our polynomial commitment scheme. We elaborate
on this further:

First of all, we refer to circuit key when we mean circuit-specific in-
formation that is used for the proof. Typically, people consider a proving
key, which consists of a circuit key, and a commitment key. The latter
may or may not be present (for example, for FRI it is not present and for
KZG it is a crucially important universal setup data).

Our (rather pedantic) requirement states that the verifying key is in
fact a commitment (using our commitment scheme) to the circuit key.
The reason why we insist on this is that formally a compressed high-level
definition of a circuit would already qualify as a ”circuit key” as long as
the compiler is deterministic. We insist that the circuit key means the fully
unrolled form - for example, in PlonK it would be values of all fixed columns,
i.e. selector columns and columns encoding copy constraint permutation.

Operationally, our plan is to use an auxiliary VM proof system to output
a circuit key and then use it’s commitment for the circuit proof system. This,
of course, requires property 3.
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Almost all proof systems satisfying the 1st property that we know of
satisfy the remaining properties.
Most circuit builders, then, work roughly as follows:

1. The circuit builder starts with a high-level description of a constraint
system. Eventually, it typically constructs something similar to our
definition of a modular constraint system, an intermediate repre-
sentation which involves calls to a subcomponents, which are, them-
selves, modular constraint systems.

2. It then compiles this representation, obtaining a circuit key. In case
of PlonK, this step is highly non-trivial, involving allocation of con-
straints, and computation of copy constraint permutation matrices.
For R1CS / CCS, this is essentially just the flattening of an ordered
graph of modular components.

We note that this 1-st stage representation typically has a much smaller
size - the size cost of invoking a new component is O(|input|) of this com-
ponent. Our goal is to construct a proof system for which the 2-nd stage is
essentially trivial.

V-SPARK

We construct a novel version of the SPARK argument, introduced in Spartan
[19], which we call V-SPARK (”vectorized spark”). Using it as a drop-in
replacement for SPARK in super-Spartan, we get a proof system with the
desired property - a circuit key proportional not to the CCS constraint
system size, but to the size of the modular description.

Dynamism

The most important application is that this approach enables far cheaper dy-
namic branching. Rather than building a zk-VM that simulates the circuit,
it is now possible to build a zk-VM that outputs the modular description of
the circuit and then proves it using the static part of the argument.

In a ”precompile” paradigm, this can be seen as essentially the freedom
to make as many precompiles as desired, at no extra cost.

We avoid many preliminaries in this paper and assume familiarity with
sumcheck-based protocols. We refer the reader to the excellent Spartan [19]
and Lasso [21] papers for the necessary background on the use cases of the
sumcheck protocol, the GKR protocol, and SPARK. We also refer to Ceno
[16] as an example of an alternative approach to a similar problem set.
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1. V-SPARK Protocol

1.1 Preliminaries

1.1.1 Array notation

Let us begin by introducing some notation. We work in a field F such that
|F| ≥∼ 2λ, where λ is a security parameter. By default, the values that we
use are either field elements or small non-negative integer numbers (and we
assume that small integers are embedded in F).

We use Rust-like notation for the range:

[a..b] = {x ∈ N | a ≤ x < b}

The chunk of an array s is denoted as s[a..b] (and one-sided chunks are
denoted s[a..] and s[..b], respectively).

As we need to frequently deal with recursively defined structures, we will
also use lists (note that this notation defines the set of all lists with values
in T ):

List(T ) = {(k ∈ N, f : [0..k] → T )}

For l ∈ List(T ), we will denote it’s i-th element li or l[i] (if it exists).
For l ∈ List(A×B) we denote unzip(l) = (la, lb) the pair of lists defined as
(la[i], lb[i]) = l[i], and zip the inverse operation (valid only if the length of
the lists coincides).

For two sets A,B their disjoint union (analogue of programming enums)
is denoted A

∐
x,y

B. The subscripts x, y, if present, denote the names of the

canonical embeddings (constructors):

ix : A → A
∐
x,y

B

iy : B → A
∐
x,y

B
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1.1.2 Polynomials

Unless otherwise specified, we will work with multivariate polynomials.
Since multilinear polynomials are defined by their values in the boolean

hypercube Bn, it is convenient to use the following notation: for a multilinear
polynomial P and a number i, we will denote

P [i] = P (i0, ..., in−1)

where
(i0, ..., in−1) ∈ Bn,

∑
2kik = i

As a slightly unconventional notation, we declare that standalone [i] de-
notes the decomposition (i0, ..., in−1). This is because that way conveniently
P ([i]) = P [i] = P (i0, ..., in−1).

We also denote by eq(x; y) a multilinear polynomial in two sets of vari-
ables that represents a diagonal matrix: eq[i][i] = 1, and eq[i][j] = 0 for
i ̸= j. We will occasionally use the shorthand notation eqr(x) = eq(x; r)
when the variable y = r is fixed.

The following closed-form expression is well known:

eq(x; y) =
∏

i∈[0..n]

(xiyi + (1− xi)(1− yi))

A simple implication of this formula is the following tensor decompo-
sition property:

eq(x; y) = eq(x[..k]; y[..k]) eq(x[k..]; y[k..])

Definition 1. The multilinearization of a table P is a multilinear poly-
nomial P ′ such that P [i] = P ′[i] for all i.

Multilinearization can be computed as follows:

P ′(y) =
∑
x∈Bn

P (x) eq(x; y)

We will typically skip the multilinearization notation and denote a mul-
tilinearization of an array P with the same letter. We hope this does not
cause any confusion.
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1.1.3 Pullback and pushforward

Next, we introduce two operations on arrays. Assume that we are given two
sets, identified with [0..n] and [0..m].

Let b : [0..m] → F (represented by an array of length m), and let f :
[0..n] → [0..m] (represented by an array of length n with values in [0..m]).

Definition 2. The pullback of b along f is:

(f∗b)[i] = b[f [i]]

In the Lasso paper, the same concept is referred to as an indexed lookup.
Now, assume f is as defined above and a is an array of size n.

Definition 3. The pushforward of a along f is:

(f∗a)[i] =
∑

j|f [j]=i

a[j]

This concept is somewhat obscured in SPARK-related papers, but really
it describes a sparse array using a set of (value, index) pairs, with the added
feature that indices can repeat and values for repeating indices are summed
together.

Proposition 1. The following well-known observation establishes the dual-
ity between pullback and pushforward:

⟨a, f∗b⟩ = ⟨f∗a, b⟩

Here, ⟨·, ·⟩ denotes the inner product.

1.2 SPARK

Assume that we are in the following setting:

• We are given a multilinear polynomial P in n variables and a multi-
linear polynomial f in n variables, with values living in 0 . . . 2m ⊂ F.

• Both of these are committed (or, in an interactive setting, the oracles
to these polynomials are sent to the verifier), and the prover tries to
convince the verifier of the claim of the form:

(f∗P )(r) = c
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The SPARK protocol family follows the following blueprint:

c = (f∗P )(r) = ⟨f∗P, eqr⟩

⟨f∗P, eqr⟩ = ⟨P, f∗ eqr⟩

Therefore, it is sufficient to check the sum:∑
x∈Bn

P (x)(f∗ eqr)(x) = c

The methods for computing this sum diverge:

1. The prover can commit to f∗ eqr and validate that it is an indexed
lookup using any off-the-shelf lookup argument. While this method is
conceptually the simplest, it is not efficient for normal SPARK.

2. Alternatively, one can commit to the bit decomposition of f and com-
pute f∗ eqr directly using a closed-form expression. This method is
more efficient when 2n ≪ 2m.

3. As a middle-ground (and the most practically used method), one can
split f into multiple limbs of the form:

f = f0 + 2αf1 + · · ·+ 2(q−1)αfq−1

where q = ⌊m/α⌋. Then, one observes that:

f∗ eqr =
∏

j∈0..q
f∗
j eqrj

where rj = r[αj . . . α(j+1)], due to the tensor decomposition property
of eqr.

One of the reasons why the third method is efficient is that, while the
prover needs to perform more indexed lookups for all the pullbacks, the set of
values taken by f∗

j eqrj is small (of size 2q). This is crucial for elliptic curve-
based commitment schemes. Curiously, FRI-based commitment schemes do
not benefit from this speedup and are forced to stop at roughly 2q ∼ 2n for
optimal efficiency.

Various minor optimizations are possible (for example, the sumcheck
for the computation of the sum can be run in parallel with the lookup
argument), but this is not important for our high-level exposition.

11



Virtual machine description

One can interpret a SPARK as an execution of a following (very simple)
VM.

The program is a sequence of pairs (ADDR, VALUE). It takes as an input
the evaluation point r, initializes a single register RET = 0 and executes this
sequence using the following state transition:

RET += EQ(ADDR, r) * VALUE

Obviously, this interpretation is rather trivial (and in practice, optimiza-
tions described above are employed to save the costs), but it makes sense to
use it as a specification of a necessary functionality of SPARK.

1.3 V-SPARK

1.3.1 Admissible sets

The idea of V-SPARK is to add caching to the SPARK. For this, we
need to define a special class of embeddings that are friendly to evaluation
properties of multilinear polynomials.

Definition 4. Admissible segment is a range [0..2n]. The set of admis-
sible segments is denoted Adm.

This is just a notion of an evaluation domain - the n-dimensional hyper-
cube will always be identified with this admissible segment. The space Fs of
functions on the admissible segment (i.e. vectors of length 2n) correspond
to multilinear polynomials in n variables through multilinearization.

Definition 5. Admissible embedding is an embedding of admissible seg-
ments f (a) : [0..2k] ↪−→ [0..2n] defined as f (a) : x 7→ x + a · 2k. It’s image (a
segment [a · 2k..(a+ 1) · 2k]) will be called an admissible sub-segment, or an
admissible subset.

For s′, s ∈ Adm, denote Emb(s′, s) the set of admissible embeddings
from s′ to s.

Lemma 1. (Properties of admissible embeddings):

1. (Composition) For a pair of admissible embeddings

s
f
↪−→ s′

f ′

↪−→ s′′

their composition s
f ′◦f
↪−−→ s′′ is admissible.
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2. (Evaluation) For an admissible embedding f (a) : [0..2k] ↪−→ [0..2n], a
polynomial Q(x0, ...xk−1) and a point r = (r0, ...rn−1) it holds that

(f
(a)
∗ (Q))(r) = Q(r[..k]) · eq([a], r[k..])

Proof. The first property is obvious - if s = [0..2k], s′ = [0..2k
′
], s′′ = [0..2k

′′
]

for k ≤ k′ ≤ k′′, and f, f ′ are shifts f (a), f (a′) respectively, the composition
f ′ ◦ f performs a total shift by a · 2k + a′ · 2k′ = 2k(a+ a′ · 2k′−k). Therefore,

it is an admissible embedding f (a+a′2k
′−k).

For the second property observe that f (a) can be defined on a hypercube
as a linear embedding (x0, ..., xk−1) 7→ (x0, ..., xk−1, [a]). We know how the
eq polynomial behaves w.r.t. these embeddings.

(f
(a)
∗ (Q))(r) = ⟨f (a)

∗ (Q), eqr⟩ =

= ⟨Q, (f (a))∗ eqr⟩ = ⟨Q, eqr[..k]⟩ eqr[k..]([a])
= Q(r[..k]) eq(r[k..], [a])

The lemma 1 lists all the required properties of admissible embeddings.
In the later parts of the article, we will discuss alternative admissibility
structures - for different kinds of polynomials, these will be bases satisfying
the embedding property, and a form of evaluation property (which allows
one to evaluate the direct image in a point using a closed formula).

We avoid axiomatizing the concept of admissibility structure, but will
use it as an informal concept - a set of bases satisfying a version of the lemma
1. Many of our results (formulated in terms of composition and evaluation)
then will easily transition to these other settings.

1.3.2 Sparse arrays

Definition 6. For an admissible segment s : Adm, we define sparse arrays:

Sp(s) = List(s× F)

This is just a normal definition of a sparse array that we have always used
- a sequence of (address, value) pairs. Alternatively, for a sparse array u ∈
Sp(s), one can define a pair of lists f ∈ List(s), a ∈ List(F) via unzipping:
(fi, ai) = ui.

The dense form of an array u is defined as

df(u) = f∗a

.
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1.3.3 Cached-sparse arrays

We generalize the sparse arrays to allow recursive definition on admissible
subsegments.

Definition 7. For s = [0..2n] ∈ Adm, we define the set of cached-sparse
arrays using the following recursive rule:

CSp(s) = Sp(s)
∐

(sp,rec)

List({(s′, f, u)|s′ ∈ Adm, f ∈ Emb(s′, s), u ∈ CSp(s′)})

Or, in plain language, a cached-sparse array hosted on s is either

1. A sparse array hosted on s (base case).

2. A list of triples (s′, f, u) where f : s′ ↪−→ s is an admissible embedding
and u is a cached-sparse array hosted on s′.

The dense form of the cached-sparse array is also defined recursively:

1. For the base case u = isp(c), df(u) = df(c).

2. For the recursive case u = irec([(s
′
0, f0, u0), (s

′
1, f1, u1), ...]), we define

df(u) =
∑
i

(fi)∗(df(ui))

Lemma 2. The cached-sparse polynomial u can be evaluated in a point r
using the following recursive algorithm:

1. For the base case u = isp(c), the normal SPARK applies:

(df(u))(r) = (df(c))(r) =

(denote unzip(c) = (f, a))

= (f∗a)(r) =
∑
i

ai · (f∗ eqr)i

2. For the recursive case u = irec([..., (s
′
i, fi, ui), ...])

(df(u))(r) =
∑
i

((fi)∗ui)(r) =

and by evaluation property from lemma 1 we get∑
i

(ui(r[..k]) · eq(r[k..], [a]) where s′i = [0..2k], fi = f (a))

14



1.3.4 Directed graph interpretation

Consider an array of admissible segments s ∈ List(Adm) (called ”shapes”),
and an array u of cached-sparse arrays u[i] ∈ CSp(s[i]), such that each
recursive u[i] only involves u[j]-s for j < i. They form a topologically ordered
directed graph (with multiple edges, but without loops) in the following way:

1. The vertices of the graph are indices i.

2. For a vertex i corresponding to the recursive u[i] = irec(ℓ), and j < i
we define the list of edges e(j, i) ∈ List(Emb(s[j], s[i])) as all f -s that
map u[j] to u[i]:

e(j, i) = [f for (s , f, u ) in ℓ if u = u[j]]

It is a nicer interpretation from a computational standpoint because it
reflects the actual concept of caching.

1.3.5 Sample implementation

Consider an array u of descriptions. Each description u[i] has a field k
representing the corresponding admissible segment [0..2k] (i.e. k is number
of variables in the corresponding polynomial), and the field entries, which is
either Sp or Rec. Sparse entries are lists of (addr, val) pairs, while recursive
descriptions are lists of (id, a) pairs, where id < i is the id of one of the
previously constructed polynomials, and a defines the embedding f (a).

u0

u1

a0 a1

+a0 +a1

(id: 0, a: 1)

Figure 1.1: Recursive entry adds an already constructed array to an admis-
sible segment

fn evaluate_cached_sparse<F: Field>(

r: &[F], // evaluation point

u: CachedSparseDescription<F>,

// as defined above
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) -> F {

let n = u.len();

let mut evals = vec![F::zero(); n];

for i in 0..n {

match &u[i].entry {

// evaluation point of u[i]

let r_ctx = &r[..u[i].k];

Sp(arr) => {

for (addr, val) in arr {

evals[i] += eq(r, addr) * val

}

}

Rec(arr) => {

for (id, a) in arr {

let r_hi = r_ctx[u[id].k..]

evals[i] += evals[id] * eq(r_hi, a)

}

}

}

}

return evals[n-1];

}

Definition 8. A SNARK implementing this function is called V-SPARK
protocol.

The details of the SNARK itself may vary. The most efficient approach
likely involves a write-once memory for values of evals, but we do not go
into these details here - an implementation using a fully dynamic RAM is
enough for our purposes.

1.4 V-SPARK modifications

In our actual application, we need various slight modifications of V-SPARK.

1.4.1 Matrix version

In the Spartan protocol, SPARK is applied to the polynomials representing
structure matrices that define the R1CS circuit. We therefore need a version
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Figure 1.2: An admissible submatrix is a product of two admissible subseg-
ments

of V-SPARK that is applicable to admissible submatrices (i.e., products of
two admissible subsegments).

All the definitions can be tweaked to accommodate these changes. Im-
portantly, the evaluation formula from the lemma 1 now states that for the
admissible embedding

f (a,a′) : [0..2k]× [0..2k
′
] ↪−→ [0..2n]× [0..2n

′
]

a matrix-representing polynomial P (x0, ..., xk−1; y0, ..., yk′−1), and an evalu-
ation point (r; r′) = (r0, ..., rn−1; r0, ..., rn′−1) we have

(f
(a,a′)
∗ P )(r; r′) = P (r[..k]; r′[..k′]) · eq(r[k..], [a]) · eq(r′[k′..], [a′])

The rest of the definitions and formulas are modified in an obvious way
to accomodate this.

Definition 9. We state the required notation for cached-sparse matrix
graph description explicitly, as we will need it later:

1. Vertices are indices i. Each vertex has an associated matrix shape
s[i]× s′[i].

2. Some vertices correspond to sparse descriptions. For these, we have
an associated sparse matrix.

3. For a recursive i, and j < i, there is a list of embeddings e(i, j) ∈
Emb(s[j]× s′[j], s[i]× s′[i]).

1.4.2 Vector-valued arrays

Sometimes, it is useful to consider vector-valued arrays. This is useful if
multiple arrays are being constructed using the same combinatorial descrip-
tion.

An important practical example for which this happens are the R1CS
matrices (A,B,C).
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2. Modular Constraint Systems

2.1 MCS definitions

Now, our goal is to construct a circuit compiler that outputs cached sparse
matrix descriptions as circuit keys. Obviously, there is no chance of doing
this efficiently for a general circuit. Instead, we want to exploit modularity,
which naturally exists in most realistic circuits constructed by programmers
(with the notable exception of neural networks and other poorly structured
circuits).

Definition 10. CCS shape is a collection of admissible segments

s = (ssource, s0, ..., sk−1)

.

Definition 11. A Generalized CCS (customizable constraint system) of
shape s is a tuple (M0, ...,Mk−1) of matrices, with matrix Mi defined on
ssource × si, and an additional set of non-linear conditions, which is kept
opaque in this definition.

The witness W is an element of Fssource. The results of application Ti =
Mi(W ) ∈ Fsi are called virtual targets. The Ti-s are subject to some non-
linear conditions.

The witness W satisfies the CCS if the Ti-s satisfy these non-linear con-
ditions.

(The original CCS definition given by Srinath Setty says that Ti-s all
have the same length, and satisfy a single non-linear equation. We do not
insist on this — and, practically, a similarly generalized version of CCS is
already used in one of the newer folding papers [14].)

A particular simple case of this definition is R1CS. In this case, we only
have three matrices, and the virtual targets are subject to non-linear relation
M0(W ) ·M1(W )−M2(W ) = 0.
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For our purposes, we need a more refined notion of components, which
can involve multiple admissible segments that are to be allocated in either
W or virtual targets.

We denote Tag the set of tags - the tag ”source”, corresponding to the
witness, and indices of virtual targets.

Definition 12. Component shapes CSh are defined as lists of tagged admis-
sible segments:

CSh = List(Adm×Tag)

Note that in contrast to CCS shapes, in the component shape the tags
can repeat - for example, we can have multiple segments tagged ”source”.
This reflects the idea that the component insists that each of these witness
chunks is allocated contiguously, but does not care if the chunks themselves
are in arbitrary positions.

Definition 13. For a pair of shapes v′, v ∈ CSh, we denote Emb(v′, v) the
set of tag-preserving admissible embeddings. I.e., the embedding from v′ to
v is a mapping that takes (s′, t′) ∈ v′ and returns ((s, t), f) | (s, t) ∈ v, f ∈
Emb(s′, s) such that t = t′.

We will use it to define allocation, or ”gluing data” - i.e. describe the
way that embeds a particular component into the larger one.

Definition 14. For the shape v ∈ CSh, we define a primitive component
of shape v. Denote (si, ti) = vi segments and tags, respectively. Then, the
primitive component is a collection of sparse matrices from source to target
segments:

(Mij ∈ Sp(si × sj) | ti = source, tj ̸= source)

The set of primitive components of shape v is denoted PrComp(v).

Definition 15. The recursive components of the shape v are defined
recursively:

RecComp(v) =

PrComp(v)
∐
pr,rec

List({(v′, g, u)|v′ ∈ CSh, g ∈ Emb(v′, v), u ∈ PrComp(v′)})

We call g gluing data.

Definition 16. A modular constraint system is a topologically ordered
graph of recursive components (u0, ..., un−1) - i.e. definition of each compo-
nent only involves previously defined components uj for j < i.

Additionally the component un−1 is assumed to have the CCS shape.
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Similar to previous cases, we can interpret it as a graph of shapes and
embeddings:

1. Each vertex i has an associated shape v[i] ∈ CSh

2. Sparse vertex has an associated primitive component.

3. Recursive vertex i is connected with j < i by a list of gluing mappings
g(j, i) ∈ List(Emb(v[j], v[i])).

Every modular constraint system can be interpreted as the cached-sparse
matrix system, by replacing each vertex i with the list of products

ℓ[i] = [s× s′ for (s, t), (s′, t′) in v[i] if s = source, s′ ̸= source]

. Then, each g(j, i) can be interpreted as a bipartite graph of admissible
matrix embeddings between ℓ[j] and ℓ[i] - recall that each gluing is an em-
bedding of v[j] ↪−→ v[i]. The corresponding lists of embeddings of products
are united by all g ∈ g(j, i).

Proposition 2. For an MCS u, the CCS matrices corresponding to un−1

can be computed using V-SPARK protocol on the graph defined above.
Spartan protocol for MCS (with V-SPARK used to compute evaluations

of structure matrices instead of SPARK) is a proof system with the circuit
key proportional in size to the modular description of a constraint system.

2.2 Approaches to an allocator

In theory, the previous description is already enough to write circuits. For
example, if one creates a modular component, representing some re-usable
functionality, they can then allocate it manually multiple times and con-
struct a modular constraint system. In this process, the target allocations,
likely, never intersect (because targets represent constraints, if they intersect
for multiple components it would mean that constraints got added to each
other). Witness allocations can and sometimes should intersect, to facilitate
I/O between the components.

However, it is extremely inconvenient - not only the programmer will
need to allocate the witness manually, but the alignment requirements are
also much more difficult than in normal programming! De facto, only the
structures of size 2k are allowed.

To understand more about different tradeoffs that can arise during the
allocation, consider the following explicit example:
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2.2.1 Circom example

As an example, we will use Circom[12], a language for R1CS circuits (the
syntax is very intuitive, and in our examples, knowledge of the full language
is not really necessary). As we are working with R1CS circuits, we have three
virtual targets: L, R, and O, bound by the equation L[i]·R[i] = O[i]. Circom
has the constraint operator ===, which represents the R1CS constraint.

Here is an example circuit:

/// this component checks that a^(2^20) = b^(2^20)

component Component1() {

signal input a;

signal input b;

signal a_powers[20];

signal b_powers[20];

a_powers[0] <== a * a;

b_powers[0] <== b * b;

for(var i = 0; i < 19; i++) {

a_powers[i + 1] <== a_powers[i] * a_powers[i];

b_powers[i + 1] <== b_powers[i] * b_powers[i];

}

a_powers[19] === b_powers[19]; // constrains lhs = rhs

}

/// This component does it for each a[i], b[i]

component Component2() {

signal input a[64];

signal input b[64];

// this cycle is statically unrolled at compilation time

for(i=0; i<64; i++) {

var tmp = Component1();

tmp.a <== a[i];

tmp.b <== b[i];

}

}
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Consider the witness of Component1. In total, we need to allocate 42
elements to the witness. The way they are allocated is irrelevant because
we consider the Component1 to be primitive. It also needs to allocate 40
elements in each of the L, R, and O targets to accommodate constraints (in
R1CS, these three targets are always used together).

Component2 needs to allocate 64 instances of Component1. It also needs
to separately allocate its inputs (as they are contiguous arrays) and spend
128 constraints to copy the data between instances of Component1 and the
inputs.

The question here is: what strategy should be used for the allocation of
Component1? There are a few possible options (we will speak only about
the witness here; analogous problems also exist for the targets):

1. Allocate 64 elements to the witness, wasting 64− 42 = 22 elements.

2. Allocate 42 = 32 + 8 + 2 elements to the witness in 3 separate seg-
ments.

3. Do something in between.

2.2.2 Tradeoffs

First strategy is wasteful - because each level of sub-component in a cir-
cuit leads to the wasted witness. These losses accumulate multiplicatively,
leading to inefficient allocation after just few layers of indirection.

The second strategy is much better in terms of witness size; moreover,
it is actually optimal:

Lemma 3. Let n = n1+ ...+nk. Denote si the admissible segments of such
lengths that

∑
i
l(si) = n (i.e., a binary decomposition). Analogously, define

si,j to be l
i
(si,j) = nj.

Then, it is possible to tightly pack the disjoint union of si,j in the disjoint
union of si.

Proof. The following greedy algorithm then does the job:

1. If there exists an odd segment l(si) = 1, then there exists some l(si,j) =
1. Pack si,j in si, it removes them from the process.

2. If there is no odd segment si, but there is l(si,j) = 1, there exists
another odd segment si′,j′ . Glue them together and treat them as a
single segment (i.e. they will always be allocated contiguously).
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3. If all segments have even length, rescale every segment 1/2 times and
continue.

Therefore, the second strategy allocates everything without overhead.
There is, however, another issue - the total amount of matrices involved
in a definition of the component blows up quadratically (as we allocate
∼ log(size) segments for both the source and each of the targets). We did
not perform the exact estimates, but it looks like a potentially significant
overhead for a component call.

There are also other reasons to desire simplicity (even if this strategy
works). For example, in a dynamic circuit builder (which is a desired target
of Morgana), the circuit is not known beforehand. That means that any
allocation strategy will need to be executed during proving time — a serious
argument against using ”smarter” approaches to allocation.

In the next chapter, we explain an approach that solves this issue al-
together (at the cost of a marginally larger prover). We believe it is also
likely the simplest approach from a dynamic standpoint (i.e., it minimizes
the amount of work done by an allocator).
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3. Alternative Admissibility Struc-
tures

In this chapter, we adapt the techniques from V-SPARK to a hybrid uni-
variate - multivariate setting.

Specifically, univariate polynomials in a coefficient basis are very de-
sirable because they can be shifted by k using multiplication by xk. This
means that admissible segments in this case are any contiguous segments:

3.1 Admissibility in monomial basis is trivial

We change the notation slightly - P [i] now means i-th coefficient of a poly-
nomial. We still identify the polynomial P with the array P [ ].

Lemma 4. (Evaluation formula analogue to Lemma 1)
Let f : [0..k] ↪−→ [0..n] be any shift embedding f : x 7→ x + a (in the

context of this chapter, we will call these ”admissible”). Let P be an array
of length k (corresponding, through monomial basis, to a polynomial P (x) =∑
i∈[0..k]

P [i] · xi). Then,

(f∗P )(t) = taP (t)

Proof. Obvious.

V-SPARK protocol naturally transitions to monomial basis, and can be
used for any segments and shift embeddings - the alignment restrictions no
longer apply. However, many other questions remain unclear — main one
being, how does one run a sumcheck in this basis?
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3.2 Inner product argument in a monomial basis

Inspired by the cohomological sumcheck argument from [6], we suggest an
inner product argument in a coefficient basis. Suppose that we are given
a pair of oracles to univariate polynomials P (x) and Q(x) of degree n − 1.
Then, their inner product in coefficient basis is equal to:

⟨P,Q⟩ = (P (x)Q(x−1)xn−1)[n− 1]

Lemma 5. Assume ζ is nonzero and not a root of unity of order < n. Then,
for a polynomial T of degree 2n − 2, its n − 1-th coefficient equals 0 if and
only if there exists a polynomial M such that:

M(ζx)− ζn−1M(x) = T (x)

Proof. Let’s consider a linear operator M(x) 7→ M(ζx) − ζn−1M(x). It
acts diagonally on monomials, sending a monomial xk 7→ (ζk − ζn−1)xk.
It obviously vanishes for k = n − 1, so it is impossible to find such an
M if (T (x))n−1 ̸= 0. Additionally, all other coefficients are multiplied by
ζn−1(ζk−(n−1) − 1). By our assumption, this is nonzero for k ranging from
0 to 2(n − 1), which means that it is possible to reverse it on all other
monomials.

The argument (which we call Knuckles, for its resemblance to the
Sonic[17] commitment scheme) works as follows:

1. Assume that the prover has already sent oracles to P , Q, and claimed
inner product c.

2. Send commitment to M , receive random challenge t.

3. Validate that P (t)Q(t−1)tn−1 − c = M(ζt) − ζn−1M(t) by opening
M(t) and the oracles.

This argument is quite versatile; for example, it can be used to construct
a multivariate commitment scheme from a univariate one by setting Q to
represent the coefficient-form cast of the evaluations of a multilinear eq-
polynomial.
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3.3 Univariate to Multivariate Transition

In the simplest version, we will keep the targets multivariate but make the
witness univariate (in coefficient form). Let us consider a target T [y], equal
to

∑
x
M [y, x]W [x]. The matrix M is represented by a polynomial which is

multivariate in the variables y (and uses an evaluation basis) and univariate
in x (and uses a coefficient basis).

When an evaluation claim T (r) = c is received, one first needs to pass
the following sumcheck: ∑

j

(M(r, x))j(W (x))j = c.

This is done using Knuckles.
The second stage is the evaluation of M(r, r′). Here, we use a modified

version of V-SPARK (in the target dimension, the admissible subsets are as
before, but in the source dimension, any subsegment is admissible).

3.4 Hybrid Approach

Importantly, the Knuckles argument requires us to perform an additional
commitment to a ∼ 2N -sized polynomial (where N is the witness size).
This is a significant overhead, which can be decreased by instead using
polynomials of the form P (x0, ..., xu−1, x̃), which are multivariate in the
first few variables and univariate in the last one.

When asked to compute the inner product of two such polynomials, we
can first run the sumcheck over the multivariate coordinates. This way, we
reduce the claim∑

(x0,...,xu−1)∈Bu

∑
i

(P (x0, ..., xu−1, x̃))i(Q(x0, ..., xu−1, x̃))i = c

to the claim of the form∑
i

(P (r0, ..., ru−1, x̃))i(Q(r0, ..., ru−1, x̃))i = c′,

to which we can then apply Knuckles.
No other changes are required. Realistically, most univariate commit-

ment schemes already include batching, so they naturally support this hybrid
commitment scheme. For practical purposes, u can be chosen between 4 and
6, trading proof size for prover performance.
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From the standpoint of V-SPARK, there is an additional choice to be
made: do these multivariate coordinates correspond to the least or most
significant bits? We think that convenient choice is to make most significant
bits multivariate. In this case, the memory is split into 2u pages, and
an admissible segment is either a subsegment which fits into a page or an
admissible collection of pages.

3.5 Univariate Targets

It is also possible to use the univariate (or hybrid) system for the targets.
It is unclear if this is really necessary, and u for the targets likely should
be large (as we really want to avoid committing to them). This is done
by splitting M into two matrices - first is a univariate-to-univariate layer
performs the actual transformation, and the second layer is a univariate-to-
multivariate layer representing a diagonal matrix.
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4. Adding dynamism

We now explain the killer feature of the Morgana proof system — the fact
that, in addition to a circuit builder, we get dynamic branching (almost)
for free! In our opinion, this is very important, as it completely nullifies the
tradeoff between a circuit-based approach and a VM approach. We get some-
thing very close to the normal programming flow (arguably, even better, as
the ability to use non-determinism is retained), without losing performance
(and even gaining performance compared to Plonkish approaches).

4.1 Design space

There are multiple ways of adding dynamism. We have only preliminary
understanding of the different tradeoffs that these approaches pose.

The most principled one (and the one that we didn’t investigate too
much) would be allowing the circuit to output the code of other circuits.
This should be enough to construct a form of λ-calculus.

A simpler approach, which we outline here, is to make a provable VM
capable of outputting the circuit key of the circuit. A minimal such VM
has normal RAM, stack, and a write-once memory that hosts the circuit
description.

4.2 Minimal VM

A minimal virtual machine should be capable to perform the following op-
erations:

1. Basic arithmetic over field F (likely only additions are enough), reads
/ writes to RAM, conditional jumps.

2. Non-deterministic guess - an operation that synthesizes unconstrained
prover input on top of a stack.
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3. Ability to write in write-once memory representing the cached-sparse
matrix system. The semantics of this process are not that important,
but there is a mission critical property - the VM must not be able to
edit the already constructed matrices after finalizing them.

4. An allocator, capable of allocating cached-sparse matrices on the main
component. Allocated components must not be able to reuse ele-
ments of the targets. (in reality, the intermediate components will
likely use the same allocator, but this property is only crucial for the
main component)

Definition 17. Given such VM, the (base) Morgana VM protocol per-
forms the following sequence of operations:

1. A VM is ran on the code / input of the program and constructs an
MCS circuit key. The corresponding verifier key is exposed as one of
the commitments of the proof.

2. A V-SPARK-based Spartan protocol is applied to MCS. The proof is
correct if both of these are correct.

Lemma 6. (Circuit transformation) For a circuit f it is possible to
write a Morgana-VM program of size = O(size of the modular description(f))
which executes the circuit.

Proof. The program works as follows:

1. Construct the circuit (write the required cached matrix description in
write-once memory).

2. Allocate it to the main component.

3. For every stack input / output c and corresponding circuit input /
output x add a linear constraint x − c · 1 = 0. Here, c is treated as a
constant from the perspective of the circuit - i.e. this constraint binds
the inputs and outputs of the circuit to the values on a stack. From
a VM perspective, outputs are obtained non-deterministically - but
it enforces the constraint that will then be checked during the circuit
validation phase.

Due to conditions (3), (4), the circuit stays intact (since further actions
of VM can not alter an already allocated circuit). This means that the
prover trying to supply an incorrect output will fail the second phase of the
protocol.
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Moreover, if the circuit is called multiple times, the cost of the call
becomes O(input/output size). The reason for this is that after the circuit
is allocated, it becomes a modular component that is callable. Therefore,
the only work that VM needs to do is add a call and constraints binding the
I/O.

Importantly, the conditions (3) and (4) are crucial here - if a VM is able
to retroactively edit the description of f , it might be possible to attack it
using the following pattern: first non-deterministically output wrong result
of f and then use it to retroactively change the definition of f . Similar issue
happens if the allocation integrity is violated - the prover can retroactively
add value to some of the constraints of f to meddle with the definition of f .

4.3 Extension: adding RAM accesses to circuits

It is important to differentiate between branching and random access -
branching manipulates the program counter of the VM. We do not treat
RAM accesses as branching.

This can be done by allowing the circuit to access (and constrain) the
execution trace of the VM. The exact design of this can vary depending on
the design of the VM itself - the most straightforward option is introducing
(or simulating using guess) non-deterministic read / write opcodes that do
not interact with the stack but are reflected in the RAM access trace.

When invoking the circuit, a VM now also does a sequence of n non-
deterministic read / write opcodes and passes the corresponding chunk of
the execution trace ([(timestamp−n)..timestamp]) as an input to the circuit.
The circuit simulates these accesses by constraining the input.

This allows circuit components to access the memory without overhead.

4.4 Extension: adding dynamic lookup accesses to
circuits

For arrays defined on the circuit-level of the system (i.e. existing as witnesses
to the main component, not in RAM) it is desirable to have a separate lookup
argument to simulate (read-only) random access. The reason for this is that
the RAM simulation argument is significantly heavier than a normal indexed
lookup.
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4.5 Dealing with the control flow

Once again, we reiterate that the maximal expressiveness of our model can
be achieved by embracing the functional paradigm. However, we also explain
how to transform the imperative code to achieve a significant speedup:

Assume that our code is represented as separated blocks of instructions,
starting with jump entry point and ending with a conditional jump. This
is a technical condition. Every block of instructions then gets transformed
to a single circuit, with inputs and outputs representing the action of this
block on a stack. The corresponding block is then replaced by the following
sequence of operations:

1. Allocate the circuit.

2. Read the input from the stack, nondeterministically write the output
to the stack, add constraints as in lemma 6.

3. Do n non-deterministic RAM accesses (where n is a total amount of
RAM accesses in a circuit).

4. Pass these accesses as RAM input as suggested in Section 4.3.

This completely eliminates the concept of a ”precompile” - any branch-
less code block becomes a precompile in this paradigm.
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