
SoK: Multiparty Computation in the

Preprocessing Model

Shuang Sun Eleftheria Makri
LIACS, Leiden University

Abstract

Multiparty computation (MPC) allows a set of mutually distrusting
parties to compute a function over their inputs, while keeping those in-
puts private. Most recent MPC protocols that are ready for real-world
applications are based on the so-called preprocessing model, where the
MPC is split into two phases: a preprocessing phase, where raw material,
independent of the inputs, is produced; and an online phase, which can be
efficiently computed, consuming this preprocessed material, when the in-
puts become available. However, the sheer number of protocols following
this paradigm, makes it difficult to navigate through the literature. Our
work aims at systematizing existing literature, (1) to make it easier for
protocol developers to choose the most suitable preprocessing protocol for
their application scenario; and (2) to identify research gaps, so as to give
pointers for future work. We devise two main categories for the prepro-
cessing model, which we term traditional and special preprocessing, where
the former refers to preprocessing for general purpose functions, and the
latter refers to preprocessing for specific functions. We further system-
atize the protocols based on the underlying cryptographic primitive they
use, the mathematical structure they are based on, and for special prepro-
cessing protocols also their target function. For each of the 41 presented
protocols, we give the intuition behind their main technical contribution,
and we analyze their security properties and relative performance.

1 Introduction

Multiparty computation (MPC) is a mechanism that allows a set of mutually
distrusting parties to compute a function over their private inputs, without re-
vealing these inputs. More specifically, MPC allows one or more of the protocol
participants to obtain the output of the function to be computed, while learn-
ing no more information about other participants’ inputs, beyond what can
be inferred from the protocol’s output. Due to its rich functionality, allowing
the computation of virtually any function on private data, MPC is a largely
researched cryptographic primitive.

In 1991, the seminal work on the so-called Beaver triples [5] was introduced.
A Beaver triple is of the form (a, b, c), with a and b uniformly random, and

1

c = a · b. This is a method to compute multiplications over random values,
which in turn allows for efficient multiplications over secret inputs. However, it
was only in 2009 that Orlandi [74] defined an independent preprocessing phase
for the costly generation of those Beaver triples, and a fast online phase to
be executed when the function and inputs are known. This is, to the best of
our knowledge, the foundation of the preprocessing model. The preprocessing
model consists of two phases: the preprocessing phase that is independent from
inputs, and the online phase that is for computing on inputs, and outputs the
results. The preprocessing phase entails the evaluation of a target function on
random inputs, which can be efficiently derandomized in the online phase.

Soon after the definition of the preprocessing model, thus for almost 15 years
now, the preprocessing model is the most common way to design MPC protocols.
This is because the preprocessing model lends itself to efficient solutions, and
therefore leads to adoption of MPC in real-world applications. MPC in the
preprocessing model aims at increasing the overall efficiency of MPC protocols,
but the focus lies on the online phase. The goal here is to satisfy a practical
need for fast evaluation of functions, once the parties’ inputs are known, at the
cost of a relatively slower preprocessing phase, which can take place anytime
prior to the actual online execution.

In this work, we systematize MPC protocols in the preprocessing model.
Firstly, we devise two main categories in this model, which we call traditional
and special preprocessing, depending on the preprocessed materials they gen-
erate. We call traditional preprocessing that which generates random values
and Beaver triples, enabling the sharing of private inputs, and the execution of
secure multiplications in the online phase, respectively. We call special prepro-
cessing that which provides additional preprocessed material, aimed at speeding
up the online phase for specific functions (e.g., matrix multiplications). We fur-
ther systematize the examined protocols, based on the underlying cryptographic
primitive used in the preprocessing; based on the mathematical structure they
live in; and for the special preprocessing protocols also based on their target
function.

For each of the 41 protocols we analyze, we summarize their technical overview.
While we strive to explain the technical contribution of each paper, our goal is
to abstract it to facilitate understanding, rather than detailing concrete pro-
tocols, which can be found in the corresponding works themselves. Thus, we
aim to simplify the technical description of each protocol analyzed in our SoK
to highlight the core ideas and intuitions behind the technical contributions of
each paper. In addition, we discuss the security assumptions of each presented
protocol, and we give comparative performance metrics, in relation to prior
work.

Concretely, our contributions are summarized as follows:

1. We present the first Systematization of Knowledge on MPC in the pre-
processing model, an important area, with a sheer number of publications
that have not been surveyed before, and we unify common terminology in
this area (e.g., the preprocessing phase, aka -less accurately- offline phase);

2

2. We devise two main families of preprocessing protocols, based on the type
of materials they generate: traditional and special preprocessing;

3. We abstract the hardcore technical details of each protocol, and focus on
explaining the intuition behind each idea to facilitate understanding;

4. We identify research gaps and give pointers for future work.

1.1 Related Work

Lindell [65] presented a review article on MPC, with a clear emphasis on the
security paradigm behind it. As the goal of the article is to showcase that MPC
has moved from theory to real-world applications, feasibility of MPC, and use
cases thereof are also an important component of this survey. The holistic (the-
ory, practice and applications) survey on MPC by Zhao et al. [89] is motivated
by the emergence of recent application scenarios, entirely matching the natural
settings and requirements of MPC. This paper discusses the main underlying
theoretical building blocks of MPC, the security requirements and models, and
then moves to the focus points of cloud-assisted MPC, and application-oriented
MPC, which are the main motivation of this article.

Vos et al. [85] focus on a specific MPC application, namely Private Set
Intersection (PSI), and in particular solutions offering security against semi-
honest adversaries. The proposed systematization aims at identifying research
gaps, to turn protocol designers towards promising directions to solving the
problem at hand efficiently. Their SoK demonstrates that older solutions that
might be overlooked by new research, can still be relevant to construct efficient
multiparty PSI protocols.

The survey of Zhou et al. [90] gathers the MPC-based solutions for machine
learning (ML), and presents them in two categories, namely HE-based, and
Secret-Sharing-based. Instead of analyzing in detail all proposed works, and
their technical components, this survey focuses on identifying common chal-
lenges with respect to MPC for ML, and the adoption thereof. Then, they
also provide guidelines for implementation of such systems, and propose future
work, based on the currently identified limitations. Another survey focusing on
a concrete application of MPC is presented by Zhang and Xin [88]. This work
focuses on an active research area, namely privacy-preserving deep learning, and
discusses the solutions that are based on MPC, providing a concise overview of
each of the analyzed schemes.

Given the increased interest in SPDZ-like [26] MPC protocols, which is due
to their good balance between security and efficiency, Orsini [75] surveys this line
of work, hence covering a wide-range of concretely efficient MPC protocols with
active security, in the dishonest majority setting. Another survey on concretely
efficient MPC [42], goes beyond the active security with dishonest majority
case that Orsini [75] analyzed, thus looking also at semi-honest adversaries,
and honest majority settings; and focuses also on MPC for privacy-preserving
machine learning (PPML), as well as directions for future work.

3

Hastings et al. [51] systematize eleven general-purpose MPC compilers. The
systematization is performed on the grounds of language expressibility, crypto-
graphic capabilities, and accessibility to developers (e.g., documentation ade-
quacy), and based on their analysis, they provide a recommendation for each of
these compiler frameworks.

Our work is the first SoK on MPC considering the preprocessing model.

2 Cryptographic Building Blocks for MPC

We assume the reader is familiar with the basic notions and primitives surround-
ing MPC. Here, we merely recapitulate the basic cryptographic building blocks
that enable secure computation by means of MPC, and we refer the interested
reader to two excellent and complementary introductions to MPC [16, 40].

Secret Sharing

Secret sharing allows a secret to be distributed among a group of parties, such
that each share on its own does not reveal any information about the original
secret. MPC is usually based on Linear Secret Sharing Schemes (LSSS), for
which the reconstruction of the secret from the shares is a linear mapping. As
such, LSSS enjoy an additive homomorphism, which allows linear operations to
be performed indirectly on the secret, while actually being performed locally
on the shares by each individual party, without requiring further interaction.
Additive secret sharing, where the secret is simply the sum of the individual
shares, and Shamir’s secret sharing [84] are the two most popular choices for
designing MPC protocols, and they both enjoy the property of perfect secrecy.

Oblivious Transfer

Oblivious Transfer (OT) [71, 78, 41, 54] is a protocol executed between two
parties: a sender and a receiver. The most basic OT protocol is a 1-out-of-2
OT, which allows the sender to transfer one out of two possible values to the
receiver. More generally, OT allows the sender to transfer some out of many
pieces of information to the receiver. During an OT, the sender does not learn
anything about which pieces of information were actually transferred to the
receiver, and the receiver does not gain any information about the pieces they
did not receive. OT is complete for MPC [62, 47]. While OT is an expensive
cryptographic primitive, OT extension [53, 6] allows one to perform only a few
OT’s from scratch (i.e., using the standard expensive methodologies), and then
be able to perform many additional OT’s at the cost of a constant number of
invocations of relatively inexpensive symmetric key primitives. OT extension is
a fundamental building block of numerous MPC protocols.

4

Homomorphic Encryption

Homomorphic encryption (HE) is a form of encryption that allows computa-
tions to be performed on encrypted data without first having to decrypt it. HE
comes in several flavors: Partially Homomorphic Encryption (PHE), which al-
lows unlimited number of either additions or multiplications on the ciphertext;
Somewhat Homomorphic Encryption (SHE), which allows limited number of
additions and multiplications to be performed on the ciphertext; and Fully Ho-
momorphic Encryption (FHE), which allows unlimited number of additions and
multiplications to be performed on the ciphertext. PHE, notably Additively Ho-
momorphic Encryption (AHE), aka Linearly Homomorphic Encryption (LHE),
e.g., Pallier’s cryptosystem [77], as well as SHE, have been extensively used in
combination with MPC, or to facilitate the generation of raw material in the
preprocessing phase.

3 Traditional Preprocessing

In this section, we analyze the protocols that did pioneer work, over the years,
on how we generate materials in the traditional preprocessing phase. We reit-
erate that by traditional preprocessing we denote protocols that are designed
to produce preprocessing material of the form of (1) randoms, enabling the
sharing of private inputs in the online phase; (2) triples, allowing for efficient
secure multiplication in the online phase; (3) squares, which are similar to the
triples for computing even more efficiently a squaring in the online phase, and
(4) shared bits, which are consumed to accelerate the online computation of
non-linear functions in the online phase.

For each protocol, we explain their core technical contribution, describe their
security assumptions and explain their performance, usually in terms of improve-
ments over prior work. Table 1 summarizes our findings on traditional prepro-
cessing protocols. Concretely, we present the reference to the corresponding
work; the year of publication; the cryptographic primitive based on which the
preprocessing is performed; the supported number of parties in the protocol;
the security guarantees offered by the protocol (active or passive, denoted as
, and , respectively); the maximum corruption threshold; and the offline

and online performance improvement over prior work (we write Comp, when
the improvement refers to the computation cost, and Comm, when it refers to
the communication cost). We further divide Table 1 into two sections, based
on whether the protocols operate over fields, or over rings. TG denotes Triple
Generation, Mul denotes Multiplication, ℓ is the length of the input, and s the
statistical security parameter.

Beaver Triples. A Beaver triple is a set of secret shared values with
the following special form (⟨a⟩, ⟨b⟩, ⟨c⟩), where a and b are uniformly sampled
random values and c is the product of a and b. It is used for securely computing
multiplications in MPC protocols. It was first proposed by Donald Beaver [5, 7],
hence the name; it is also commonly called a multiplication triple.

5

Table 1: Overview of Protocols in the Traditional Preprocessing Model.

Work Year Primitive Parties Sec Corruption Offline Online

Over Fields

Beaver Triple
[5, 7]

1991,
1998

OT ≥2 <n/2 1 round

Orlandi
Protocol
[74, 55]

2009,
2010

LHE ≥2 n− 1 Comp: 188.4ms/TG Comp: 15.9ms/Mul

BDOZ [9] 2011 LHE ≥2 n− 1 Comp: Similar as [74] Comp: 101× [74]

SPDZ [33] 2012 SHE ≥2 n− 1 Comp: 13ms
Comm: O(n2/s)/Mul; Comp:

0.05ms/Mul

Breaking the
Limits [29]

2012 SHE ≥2 n− 1 Comp: 0.5× [33] Comp: 4.9− 14.35× [33]

TinyOT [72] 2012 OT 2 1
Comp: 500000 OTs/s; Overall comp:

≤ 3 sec/AES
Comm: 4 bits/gate; Comp: 20000

gates/s

Tinier [43] 2015 OT ≥ 2 n− 1 Comm & Comp: 102 × [33]

MASCOT [60] 2016 OT ≥2 n− 1
Comm & Comp: 72× TG [33]; 200×

TG [29]

Overdrive [61] 2018 LHE ≥2 n− 1
Comm: LowGear 2× TG [33];
Comp: LowGear 5.88× TG [60]

TopGear [3] 2019 SHE ≥2 n− 1 Comm & Comp: 2− 5× TG [61]

Turbospeedz [8] 2019 LHE ≥2 n− 1 Comm: Same as [76] Comm: 2× [33]

Boyle FSS [12] 2019 FSS 2 1 Comm: 102× [35]

Silent NISC
[11]

2019 SOT 2 1 OT extension: up to 46.8× [53]

Silver [24] 2021 SOT 2 1
Comm: Same as [11]; Comp: 19×

[11]

LowGear
2.0 [81]

2023 LHE ≥2 n− 1 Comm: 1.5× [61]

Coral [52] 2024
OT &
LHE

≥2 <n/2
Comm: 2− 10× [39]; Comp: 101×

[39]

Over Rings

SPDZ2k [25] 2018 OT ≥2 n− 1 Comm: 0.5× [60]

RSS19 [79] 2019 LHE 2 1 Comm: 6.9× [35]; Comp: 3.6× [35]

Overdrive2k [76] 2019 SHE ≥2 n− 1 Comm: 2× [25]

MonZa [17] 2020 LHE 2 1 Comm: 5.3× [25] Same as [25]

MHz2k [21] 2021 SHE ≥2 n− 1 Comm: 2.2× [17]

TopGear2k
[21]

2021 SHE ≥2 n− 1 5.6× memory requirement improvement

ACEDX21 [1] 2021
SHE

RMFE
≥2 <n/2 Comm: O(n2/log(n)) ring elements/Mul

Pika [86] 2022 FSS ≥2 <n/2 Comm & Comp: 25 × TG [27] Comm: 74× [27]

EXY22 [39] 2022
OT

RMFE
≥2 n− 1 Comm: 5142.5kn(n− 1) bits/TG Comm: 12.4k(n− 1) bits/Mul

Multipars [50] 2023 LHE ≥2 n− 1
Comm: 8− 30× [25]; Comp: 15.2×

[27]

6

The main idea behind Beaver triples is to select random inputs to each gate
and evaluate gates with these random values first, then correct the errors to
obtain the results all at once. The correction procedure is based on a technique,
which aims to prove that the product of two secrets is a third secret [4].

Consider a gate gk ∈ {+,×} in circuit CF . When gk is (×), the real output
value xk can be calculated by xk = rk −∆k, where rk is a random value for the
output wire of gk and ∆k is the correction value for it. Since the random values
and correction values can be prepared in advance without any information about
the real inputs, gates can later be reconstructed to obtain the result, once the
input values become available. Beaver triples reduce the number of rounds of
interaction by an order of magnitude.

Breaking the Limits. Damg̊ard et al. [29] propose a SHE-based protocol
that not only generates Beaver triples, but also produces “square pairs”, i.e., a
list of pairs of sharings (⟨a⟩, ⟨b⟩) such that b = a2, and also “shared bits”, i.e., a
list of single shares ⟨a⟩ such that a ∈ {0, 1}. This MPC protocol can be covertly
or actively secure. The notions of square pairs and singles, also appear in other
earlier works, but Damg̊ard et al. [29] are the first to formalize them.

To generate square pairs, assume each party Pi holds ai, a secret share of a,
and its ciphertext cai

is known to all parties. The parties compute ca2←ca·ca,
where ca←ca1

+ ... + can
. All parties execute a re-share protocol so that each

party Pi obtains the share bi, where b = b1 + ... + bn, and the ciphertext cb
is known to all. For the authentication, the parties compute cγ(a)←ca·cα and
cγ(b)←cb·cα, where α is the global MAC key. Again, parties execute the re-
share protocol so that each party Pi obtains γ(a)i and γ(b)i. After that, each
party decomposes the various plaintext elements and obtains the secret shared
square pair (⟨ai⟩, ⟨bi⟩).

To generate shared bits, the parties compute and decrypt ca2 after obtaining
ca, and denote the plaintext as s = a2. If any slot position in s is 0, set it to
1. Then the parties take a fixed square root t, encrypt t−1·ca, denote as cv.
The parties compute cγ(v)←cv·cα, re-share it and decompose it similarly to the
square pairs generation. After that, each party Pi obtains a shared bit ⟨bi⟩.

The multiplication triple generation closely follows the SPDZ [33] paradigm,
which we explain later in the paper. Damg̊ard et al. [29] achieve active security
by adapting the sacrificing technique to the square pairs and bit-sharings.

In the online phase, to square the sharing ⟨x⟩, parties take a square pair
(⟨a⟩, ⟨b⟩), partially open ⟨x⟩ − ⟨a⟩ to obtain ϵ and then each party calculates:
⟨z⟩ ← ⟨b⟩ + 2 · ϵ · ⟨x⟩ − ϵ2. The shared bits are useful in computing high level
operations, such as comparisons, bit-decomposition, fixed and floating point
operations.

The offline protocol has running time about twice that of SPDZ, based on
Zero Knowledge Proofs of Knowledge (ZKPoKs). The SPDZ online phase has an
amortized throughput of 20000 multiplications per second, over a 64-bit prime
field, with 3 players. The online protocol of Damg̊ard et al. [29] performs 98000
multiplications per second in a single thread, and 287000 with 4 threads.

7

3.1 Homomorphic Encryption Based Approaches

We categorize the traditional preprocessing protocols into HE-based, and OT-
based, depending on the way they generate the preprocessed triples. We further
systematize these works based on the underlying algebraic structure that they
use, namely fields or rings.

3.1.1 Over Fields

Most of the seminal works in MPC in the preprocessing model, are based on
finite fields. This came as a natural choice, due to the fact that the underlying
cryptographic primitives used (e.g., Shamir, or additive secret sharing) operate
over fields.

Orlandi Protocol Orlandi [74] proposes a verifiable secret sharing-based
protocol for MPC over arithmetic circuits, which offers security against n − 1
static, active corruptions. The protocol uses the circuit randomization approach
of Beaver [5], but offloads the costly parts to an independent preprocessing
phase, where the parties generate random shares and random triples. This does
not depend on the function to be computed, nor the parties’ inputs. After that,
the parties use the generated triples to evaluate the circuit on their inputs.

Concretely, to generate a random share [r], where r is a random value, each
party Pi samples random pair (ri, ρr,i) and broadcasts the commitment. Then
all parties compute the commitment of (r, ρr), where r =

∑n
i ri and ρr =

∑n
i ρr,i.

Denote the commitment as Cr, then each party Pi sets [r]i = (ri, ρr,i, Ci).
Assume two random shares [a] and [b] are generated and given to parties.

To generate a multiplication triple ([a], [b], [c]), where c = a·b, each party Pi

encrypts its share ai using its public key of a Paillier cryptosystem [77] instan-
tiation. Pi broadcasts the encrypted share and the corresponding commitment.
With the homomorphic property of the Paillier cryptosystem, the other parties
can multiply their shares into the encrypted share from Pi and obtain a random
share [c]. The product is then masked as ([c] + [r]).

With these secret shared random values and triples, the product of two secret
shared inputs [x] and [y] can be computed. The parties mask the inputs as d =
[x]−[a], e = [y]−[b], and open d, e. They then compute [z] = e[x]+d[y]−de+[c],
hence z = xy. When evaluating a circuit with M multiplications with s bits of
statistical security, the overhead is O(s/logM).

BDOZ . Bendlin et al. [9] propose the first practical MPC protocol for gen-
erating “standard material” in the preprocessing model, which operates over
arithmetic circuits, and offers active security against a dishonest majority.

BDOZ achieves active security by computing a MAC with a random key pair
K = (α, β) over Z2

p to prevent parties from lying about their private shares.
Concretely, the authentication code for value m is MACk(m) = αm+ β mod p.
One party holds m and MACk(m), and another party holds K. The probability
of the party who holds m being able to claim a wrong value for a given MAC is
1/p. All randoms and triples are key-consistent in this protocol, so they can be
added together freely.

8

The offline phase achieves similar efficiency with Damg̊ard and Orlandi’s
work [32]. During the online phase, BDOZ avoids the commitments for shared
values, so that each party performs O(n2) multiplications to evaluate a secure
multiplication. Implementation results for the two-party case indicate that each
multiplication takes approximately 6 msec, which is at least an order of magni-
tude faster than that of Damg̊ard and Orlandi’s work on the same platform.

SPDZ . Instead of authenticating each share of secret values by using a
pairwise key, as in BDOZ, Damg̊ard et al. [33] propose a general MPC protocol,
which authenticates the secret value by using a single global key. SPDZ aims
to compute securely an arithmetic circuit C over any finite field Fpk in the
preprocessing model, based on SHE. The intuition and motivation behind the
construction is that the authentication approach in BDOZ requires each party
to have its own key, and each of the n shares needs to be authenticated with n
MACs. It is easier to work with a global key, conduct some checks at the end
of the protocol, and abort if malicious behavior is detected.

Assume s is a secret value, and α is the global MAC key, which is chosen
randomly over Fpk . Both s and its MAC γ = α · s are secret shared additively
among the parties. Concretely, in the online phase, each shared value s ∈ Fpk is
represented as ⟨s⟩ := (δ, (s1, ..., sn), (γ(s)1, ..., γ(s)n)), where δ is a public value
from the preprocessing phase, s = s1+ ...+sn and γ(s)1+ ...+γ(s)n = α(s+ δ).
Each party Pi holds si and γ(s)i. The MAC of a value s under a global key α,
is γ(s), where γ(s)←γ(s)1 + ...+ γ(s)n.

To prevent a malicious adversary from inserting an error to the MACs, SPDZ
introduces a sacrificing technique to check the triples before using. To check
a triple (⟨a⟩, ⟨b⟩, ⟨c⟩), such that c = ab + ∆, with ∆ an error, SPDZ sacrifices
another triple (⟨f⟩, ⟨g⟩, ⟨h⟩), of the same format. Let t be a random field element,
then t·∆−∆′ equals 0 with probability negligible in sec for a field of size at least
2sec, if either ∆̸=0 or ∆′ ̸=0. This means that any error will be detected with
overwhelming probability, since the parties have to reveal Jta− fK and Jtb− gK.

SPDZ does not check the MACs of the opened values until the output stage.
Parties generate a random linear combination of both the opened value s and
their shares of the corresponding MACs. They commit to the results and only
then open the key α. This protocol is statistically secure against an active,
adaptive corruption of n− 1 parties. The online phase is unconditionally secure
and has total computational and communication complexity linear in n, while
BDOZ has n2. For 3 parties, a secure 64-bit multiplication can be prepared in
about 13 ms in the preprocessing phase, which is 2-3 orders of magnitude faster
than preliminary estimates for the most efficient instantiation of BDOZ. In the
online phase, a multiplication can be done in 0.05 ms.

Overdrive . Following SPDZ [33], Keller et al. [60] proposed an MPC pro-
tocol, called MASCOT (see Section 3.2), which replaced SHE encryption with
OT to do the preprocessing phase. Later, Keller et al. [61] propose a solution to
preprocessing SPDZ efficiently, called Overdrive. They do the triple generation
and authentication closely after MASCOT, but use lattice-based SHE instead of
OT. The core of this solution is the two-party oblivious multiplication protocol
by BDOZ [10]. But unlike BDOZ, Overdrive replaces the proof of correct mul-

9

tiplication by the SPDZ sacrifice to avoid the costliest part. The idea is that,
since only the encryption of the sum of all shares is used in the protocol, Over-
drive replaces the per-party proof with a global proof, where the parties prove
a single joint statement together for their secret inputs and an accumulated ci-
phertext. This significantly reduces the computation, because every party only
has to check one proof instead of n − 1. To further reduce the complexity of
the triple generation, Overdrive generates a pair of correlated triples ((a, b, ab),
(a′, b, a′b)) for the sacrifice, instead of two independent ones.

Overdrive’s preprocessing comes in two flavors, called LowGear and High-
Gear. LowGear uses the original LHE-based method of BDOZ, implemented
with a level-zero LWE-based SHE scheme, namely BGV [13], which includes
inherent packing. This makes LowGear very efficient for a small number of par-
ties. For two parties, LowGear is 6× faster than MASCOT on a LAN, and 20×
faster over WAN.

HighGear works better for larger values of n. It uses the original ZK proofs
of SPDZ, but optimizes them by improving tightness and enabling batching.
Compared to MASCOT, HighGear generates triples 6× faster, in a 2PC, 128-
bit, WAN setting, and incurs the same communication.

TopGear . HighGear [61] has several limitations on the security parameters,
mainly because of memory and bandwidth consumption constraints. Baum et
al. [3] present a modified approach based on the ZKPoK scheme in HighGear,
which they combine with the offline phase of SPDZ, resulting in the TopGear
protocol. TopGear is a n-prover ZKPoK protocol, in which the n players act
both as a set of provers, and individually as verifiers. TopGear provides active
security against a dishonest majority.

TopGear uses the distributed decryption protocol from HighGear to obtain
the MAC shares and merge them into the re-sharing scheme of Damg̊ard et
al. [29] to obtain the shares of c and a fresh encryption of c. For computing
two million triples, the throughput of triples per second generated by TopGear
is 2− 5× higher than by HighGear.

LowGear 2.0 . LowGear 2.0 [81] introduces a new LHE-based preprocessing
that removes the costly sacrificing step of Overdrive, by combining the pairwise
multiplication protocol with the authentication. The core of the preprocessing
is a two-party exchange protocol, which is based on the one in LowGear [61].
Assume party P1 holds [a]1, [b]1, which are shares of a and b, respectively.
P2 holds [a]2, [b]2. P1 encrypts [a]1, [b]1 with the public key and sends the
ciphertexts E([a]1), E([b]1) to P2. P2 computes E([a]1)·[b]2+E([b]1)·[a]2−E(r),
where r is a random value, and sends it to P1. P1 decrypts it and obtains
d = [a]1[b]2 + [a]2[b]1 − r. P1 sets [c]1 = [a]1[b]1 + d, P2 sets [c]2 = [a]2[b]2 + r.
As such, the parties have a triple (a, b, c), where c = [c]1 + [c]2 = ab.

To guarantee the integrity of triples without sacrificing, the preprocess-
ing protocol constructs the MAC share of c = ab not from c itself, but from
αc = α(ab). Therefore, each party commits to its share of a and αb, before c
and αc are constructed. To check the MACs of triples, each party samples a
random value and invokes the standard authentication scheme from LowGear;
then checks a linear combination of the random value and triples. LowGear 2.0

10

is implemented as an extension to the MP-SPDZ framework [27]. Compared to
the triple generation of LowGear [61], LowGear 2.0 reduces the communication
rounds from 3 to 2. The number of ciphertexts sent per ordered pair of parties
is reduced by ∼ 33%.

3.1.2 Over Rings

As shown in Section 3.1.1, finite field arithmetic is popular in MPC. However,
comparisons and bitwise operations are inefficient over finite field arithmetic, but
can be greatly simplified when implemented over rings. Additionally, computing
over rings makes integer arithmetic efficient, by leveraging special techniques al-
ready implemented in computers. In 2018, Cramer et al. [25] proposed SPDZ2k ,
the first MPC protocol over a ring Z2k , rather than over a finite field Fp. This
significantly simplifies implementations for comparisons and bitwise operations.
However, SPDZ2k left an open question: can an efficient preprocessing protocol
over Z2k be provided via HE?

RSS19 . Rathee et al. [79] propose an efficient two-party protocol based on
RLWE-based AHE over rings Z2l , which is secure against a semi-honest and
computationally bounded adversary. To generate n triples, party P0 samples
randomness ⟨a⟩0, ⟨b⟩0, and encrypts them with the public key pk: cta←Enc(pk, ⟨a⟩0),
ctb←Enc(pk, ⟨b⟩0). P0 then sends (cta, ctb) to P1. P1 samples randomness ⟨a⟩1
and ⟨b⟩1, but also another random value r. P1 encrypts r and gets ctr simi-
larly to P0. Then, P1 computes ct′a←cta⊙⟨b⟩1; ct′b←ctb⊙⟨a⟩1; ctd←ct′a⊕ct′b⊕ctr
, and sends ctd to P0. ctd is decrypted by P0 to obtain d. After all, P0

computes ⟨c⟩0←⟨a⟩0·⟨b⟩0 + d, and outputs (⟨a⟩0, ⟨b⟩0, ⟨c⟩0). P1 computes
⟨c⟩1←⟨a⟩1·⟨b⟩1 − r, and outputs (⟨a⟩1, ⟨b⟩1, ⟨c⟩1).

This protocol offers statistical security against a corrupted P0 and compu-
tational security against a corrupted P1. RSS19 outperforms the OT-based
ABY [35] protocol with improvements of up to 6.9× in communication, and
3.6× in runtime for 64-bit triples generation.

Overdrive2k . Orsini et al. [76] propose Overdrive2k, a SHE-based protocol
over Z2k , which closes the performance gap between SPDZ2k [25] and Over-
drive [61]. It provides security against n − 1 malicious static corruptions. The
online computation is performed over Z2k , but the random authenticated data
is produced over Z2(k+s) , where the integer k defines the modulus 2k, and s is
a statistical security parameter. As such, the MAC Check procedure, follows
closely that of SPDZ2k [25], but is performed over Z2(k+s) .

The offline protocol generates randoms, triples, and squares similarly to
SPDZ and Damg̊ard et al. [29]. It also generates random authenticated bits
for which Orsini et al. [76] propose a novel technique to implement 4-to-1 map
modulo 2t based on the 2-to-1 map modulo p, where the latter one is a standard
trick for generating authenticated bits from the work of Damg̊ard et al. [29]. The
main idea behind this is temporarily working modulo 2t+1 and then reducing
the roots modulo 2t to obtain a 2-to-1 map. For generating a triple in the
2PC setting Overdrive2k reduces the communication to half compared to the
SPDZ2k [25] over 64- and 128-bit data types with 64-bit statistical security. The

11

amortized communication cost of producing triples is reduced by up to 2.6×.
MonZa . MonZa is a Joye-Libert(JL)-based [57] 2PC protocol proposed by

Catalano et al. [17] for secure computation over the ring Z2k . JL is used as
the underlying AHE scheme, because it naturally supports Z2k as the under-
lying message space. In addition, JL has two important properties, all valid
ciphertexts are publicly recognizable; and it provides circuit privacy for linear
functions. This allows MonZa to avoid the costly ZK proofs of Overdrive2k [76].
MonZa is particularly suitable for the server-client model, where one party has
less computational power than the other.

The preprocessing phase is similar to BDOZ [10] and Overdrive2k [76], but
based on the JL cryptosystem. Unlike BDOZ [10] and Overdrive2k [76], MonZa’s
preprocessing protocol generates randoms and triples in an asymmetric way. It
requires only one key pair and one party computes the intermediate ciphertext
C for products of shared values, while the other party decrypts. For example,
assume α the global MAC key, two parties P1 and P2 hold the shares α1, α2

respectively. To authenticate a value r known by P1, the parties compute the
shares of the product r·α2. Here, P1 encrypts r with α1, denoted as C1, and
P2 generates the commitment C2 to α2. The triple (a, b, c) can be generated
by executing the above approach twice. C1 is the encryption of a, C2 is the
commitment to b, and then this is repeated to authenticate the product c.

MonZa provides active security without the standard sacrifice step. The
online phase is the same as the one of SPDZ2k . MonZa performs better for
large choices of k. More specifically, in the setting of k = 64, LAN latency 0.5
ms, computational security level S = 112, statistical security level s = 56, and
JL modulus size = 2048-bit, the average time for triple generation on a batch
of 100 runs is 52.24 ms. For k = 128 and s = 40, MonZa generates triples with
∼ 5.3× better communication compared to SPDZ2k .

MHz2k . Cheon et al. [21] propose a SHE-based MPC protocol over Z2k ,
named MHz2k, actively secure, in the dishonest majority setting. The online
phase follows closely that of SPDZ2k . The triple generation and sacrifice step
combine the standard methods of SPDZ [33] and Overdrive2k [76], while the
authentication method is similar to the SPDZ2k MAC. The entire preprocessing
protocol is similar to Overdirve2k, but compatible with the online protocol of
SPDZ2k [25]. The novel insight here is that MHz2k uses a constant encoding
for the ciphertext ctα, for α the global MAC key. MHz2k proposes a Zero-
knowledge Proof of Message Knowledge (ZKPoMK) to guarantee that a given
ciphertext is generated with a plaintext over Z2k . The ZKPoMK proceeds very
similar to ZKPoPK, but it is more suitable for the packing method in MHz2k.
Cheon et al. [21] also propose an efficient ZKPoPK over Z[X]/ϕp(X), where p
is a prime, named TopGear2k. This is an adaptation of TopGear to the Z2k

case. MHz2k outperforms MonZa by 2.2×, and Overdrive2k by 3.5×, in terms
of amortized communication cost of triple generation, over Z232 and Z264 .

Multipars. Hasler et al. [50] present an actively secure MPC protocol over
Z2k , named Multipars. The preprocessing protocol is LHE-based and modeled
following LowGear 2.0 [81]; it combines triple production and authentication
to provide a triple generation protocol without the sacrificing step. Multipars

12

successfully transferred this protocol to the Z2k setting by combining Over-
drive2k [76], and the ZKPoMK of MHz2k [21].

Concretely, given two vectors [a] and [b], to generate an authenticated mul-
tiplication triple (JaK,JbK,JcK) that satisfies c = ab without sacrificing, the pre-
processing protocol needs to compute [αa], [αb], [ab] and [αab], where α is
the vector containing α in each entry. Assume n parties P1, ..., Pn. For each
ordered pair of parties (Pi, Pj), where Pi inputs a vector a, and Pj inputs n
vectors b0, b1, ..., bn−1. The core scheme is modeled following the LowGear
pairwise multiplication protocol in Overdrive [61]. It first authenticates [a] and
[α]i·[b]j . Then it multiplies a component-wise with each of the n vectors from
Pj . After that, each ordered pair of parties (Pi, Pj) obtain pairwise shares
(di,j , ei,j) with di,j + ei,j = a⊙bi,j , which can be computed locally. Assume Pi

is the prover, then Pi needs to prove that the product is a valid ciphertext. This
combines authentication and component-wise multiplication and guarantees the
multiplicative relation without sacrificing.

Relying on these techniques, Multipars provides protection against selective
failure attacks. Regarding performance, Hasler et al. [50] present an efficient
implementation of a preprocessing phase for SPDZ2k , which computes triples up
to 15.2× faster than MP-SPDZ [27]. In terms of communication per triple pro-
duced, Multipars outperforms MHz2k [21] by a factor of 2.2×, Overdrive2k [76]
by around 11×, and SPDZ2k by 8− 30× in a two-party setup.

3.2 OT Based Approaches

3.2.1 Over Fields

Just like for traditional preprocessing based on HE primitives, OT-based ap-
proaches were also initially constructed over finite fields.

Cut&Choose . Lindell and Pinkas [66] introduce a new technique termed
cut-and-choose, which combines the circuit checks for active security and the
oblivious transfer.

Assume two parties P1 and P2, the cut-and-choose oblivious transfer is an
ordinary oblivious transfer with the sender, suppose P1, inputting many pairs
(x01,x

1
1),...,(x

0
s,x

1
s), with s the statistical security parameter. The receiver, sup-

pose P2, inputting many bits σ1, ..., σs, and a set J ⊂ [s] of size exactly s/2.
Then P2 obtains xσ1

i for every i along with both values (x0j ,x
1
j) for every j ∈ J ,

while the sender learns nothing about σ1, ..., σs and J .
Most of the exponentiation operations in this protocol can be executed in

a preprocessing phase. P1 can pre-compute its input keys independent from
its actual inputs, since the garbled values of wires are all random, except the
input wires. The oblivious transfers are also executed before P2 receives its
inputs. The idea is that P2 firstly executes oblivious transfers with random
inputs σ1,...,σℓ, where ℓ is the length of the inputs. After P2 receives input
bits y1, ..., yℓ from P1, it sends P1 the correction bits y1⊕σ1,...,yℓ⊕σℓ. P1

then exchanges the roles of P2’s two keys in input wires, for which it receives a
correction bit with the value 1.

13

The preprocessing phase accounts for 13.5sℓ of the 15sℓ exponentiations of
the protocol. Thus, the parties only need to compute sℓ/2 full exponentiations
in the online phase. The whole protocol requires the exchange of 7sℓ+22ℓ+7s+5
group elements and has 12 communication rounds. This is a protocol to improve
the general OT primitive, and not an MPC preprocessing protocol, per se. Thus,
we exclude this from Table 1.

TinyOT . Nielsen et al. [72] provide an efficient implementation of a 2PC
OT-based protocol for Boolean circuits. To make it secure against an active
adversary, they introduce 3 approaches to put MACs on all bits, named aBit,
aAND and aOT, which provide authentication for bits, local ANDs, and OTs,
respectively. Both aAND, and aOT are built upon aBit, and all of them can be
done in the preprocessing.

Assume two parties P1 and P2. To generate authenticated bits, the pro-
tocol first samples random global keys ∆1, ∆2 ∈ {0, 1}k, held by P2 and P1,
respectively. By using OT extension, a few seed OTs are extended into many
OTs. Suppose the receiver, say P1, wants to authenticate a bit x. It inputs x
as the choice bit in an OT, while the sender, say P2, who holds Kx∈{0, 1}k,
inputs (Kx,Kx⊕∆1). Then P1 gets MAC Mx = Kx⊕x∆1. Let [x] represent
the authenticated bit x and [x] = (x,Mx,Kx). P1 can reveal [x] by sending
(x,Mx) to P2. If Mx ̸= Kx⊕x∆1, P2 aborts. The procedure is symmetric for
P2 generating [y].

Next, based on aBits, one can construct the approach aAND. One party,
assume P1, computes c = ab for random a, b, then obtains an authenticated
AND triple ([a], [b], [c]) by using aBits. With these preprocessed bits and triples,
the parties could compute [z] = [x][y] securely. Firstly, P1 evaluates and opens
[f] = [a]⊕[x1] and [g] = [b]⊕[y1], where x1 = x⊕x2, y1 = y⊕y2. The parties
then compute [x1y1] = f [y1]⊕g[x1]⊕[c]⊕fg. To compute [x2y2], the parties
perform the above steps symmetrically. TinyOT lets these aBits represent the
sender messages, and the receiver choice bit in a standard 1-out-2 OT. When
all input and output bits are obliviously authenticated, the aOT is completed.
Next, the parties compute [s1] = [r2⊕x2y1] and [s2] = [r1⊕x1y2], where [r1], [r2]
are authenticated shared bits. The parties finally obtain [z1] = [r1]⊕[s1]⊕[x1y1],
and [z2] = [r2]⊕[s2]⊕[x2y2], such that [z] = [z1|z2].

Two aANDs and two aOTs are sufficient to evaluate any Boolean gate with
only 4 bits per gate being communicated. Experiments on a device with two
Intel Xeon E3430 2.40GHz cores show that the protocol generates 500000 OTs
per second and can evaluate more than 20000 Boolean gates per second, for big
enough circuits. Evaluating the oblivious AES encryption alone (approximately
34000 gates) takes 64 seconds, but when repeating the task 27×, it only takes
less than 3 seconds per instance.

Tinier . Frederiksen et al. [43] design a set of protocols to generate binary
multiplication triples, based on OT-extension. The crux of all proposed pro-
tocols in Tinier lies in authenticating (passively secure) shared values using a
correlated OT extension method, which allows the adversary to introduce errors
on the MACS, dependent on the MAC key. The authors show that despite the
few bits leakage of the key, the protocol is actively secure. The authentication is

14

designed by an elegant combination of the multiparty version of Tiny OT [72],
introduced by Larraia et al. [64], and the standard IKNP protocol [53]. Tinier
first produces unchecked triples, and afterwards performs batch verification. All
proposed protocols in Tinier, producing respectively F2 triples, F240 triples, and
MiniMac [34] (F28) triples perform favorably to prior work. Notably, SPDZ
triples are expected to be produced faster by 2 orders of magnitude compared
to the by then state-of-the-art.

MASCOT . Keller et al. [60] propose an actively secure OT-based MPC pro-
tocol for arithmetic circuits. The main goal of MASCOT is to generate triples
secure against malicious adversaries in the dishonest majority setting. MAS-
COT achieves this by running the passively secure two-party product-sharing
protocol of Gilboa [46] between every pair of parties, using k oblivious transfers
to multiply two k-bit field elements. Then, they generalize the OT-based triple
generation method proposed by Frederiksen et al. [43] from binary fields to fi-
nite fields, and they also closely follow their authentication method, albeit they
check the MACs after opening values, by means of random linear combinations
of the MACs.

MASCOT preprocessing first generates shares of correlated vector triples
(a, b, c), where b ∈ F and a, c ∈ Fτ for some constant τ , based on Gilboa
multiplication. The parties then sample 2 public random vectors r, r′ ∈ Fτ , and
construct triples (a, b, c) and (a′, b, c′) with a = ⟨a, r⟩, c = ⟨c, r⟩, a′ = ⟨a, r′⟩,
c′ = ⟨c, r′⟩. Then, the protocol adds MACs to both triples (a, b, c), (a′, b, c′), and
uses the standard sacrifice technique to guarantee the correctness of the triples.
Privacy is ensured by producing several leaky triples and then extracting a single
random triple through random combinations. The online phase is identical to
SPDZ [33].

The actively secure version of MASCOT is only 6× less efficient than the
passive. The triple generation of MASCOT is at least 72× faster than SPDZ [33]
and 200× faster than the work of Damg̊ard et al. [29] for a single secure multi-
plication, while compared to the work of Damg̊ard et al. [28], the improvement
is over 1000×.

3.2.2 Over Rings

Considering the advantages of a ring-based setting for operations, such as com-
parisons, OT-based approaches over rings, much like the HE-based ones have
starter being introduced in the last few years.

SPDZ2k . Given that classical MAC authentication does not provide any
protection over rings Z2k , Cramer et al. [25] propose SPDZ2k , which extends
the MAC formalism of SPDZ [33] by computing MACs in some larger ring R′ =
Z2k+s , instead of in Z2k directly. SPDZ2k is actively secure against a dishonest
majority. The preprocessing is based on MASCOT, but with a different MAC
procedure.

To authenticate messages, each party holds a secret shared value [x]i ∈ Z2t ,
such that x =

∑n
i=1[x]i mod 2k with t = k + s. Each party also holds a share

[α]i∈Z2s of global MAC key α, which is sampled uniformly from Z2t . To authen-

15

ticate the shares, each party holds a value [γx]i, where γx =
∑n

i=1[γx]i = α·x
mod 2t. An authenticated share ⟨x⟩i represents the pair of values ([x]i, [αx]i)
and is held by party Pi. Thus, to compute an arbitrary linear function, for ex-
ample y = c0+

∑k
j=1cj ·xj , where c0, c1, ..., ck are public inputs, the computation

goes as follows: P1 sets [y]1 = c0 +
∑k

j=1cj ·[xj]1 mod 2t; the other parties Pi,
i ̸=1, set [y]i similarly, but without adding c0. Each party Pi, i ∈ [n], calculates

[α·y]i = [α]i·c0 +
∑k

j=1cj ·[α·xj]i, then ⟨y⟩i can be represented as ([y]i,[αy]i).
The communication complexity of the triple generation protocol is O((k +

s)2) bits per multiplication gate. This is roughly twice the communication cost
of MASCOT [60].

3.2.3 Silent OT Based Approaches

Silent preprocessing entails techniques that allow the parties in an MPC protocol
to sample correlated short seeds with a small amount of interaction, and then
locally (silently) expand them to long correlated randomness. “Silent” refers to
the local expansion step that requires no interaction.

Silent NISC . Boyle et al. [11] propose efficient, actively secure 2-round
protocols for generating useful instances of two-party correlations, such as OTs,
with a small amount of communication. They propose an OT extension pro-
tocol, based on distributed point functions (DPF), which is the family of all
point functions that evaluate to a non-zero value at one index in their domain.
Boyle et al. [11] push the bulk of computations to an offline phase by replacing
the DPF with a simpler puncturable pseudorandom function (PPRF) in the
pseudorandom correlation generation (PCG) protocol. Their 2-round OT ex-
tension protocol can be applied to various traditional secure computation tasks,
such as semi-honest MPC for binary circuits, and malicious MPC for binary or
arithmetic circuits. It also can be used to design silent non-interactive secure
computation (NISC).

The silent NISC protocol is a 2-round secure computation protocol with a
silent preprocessing and a fast online phase. It works for two parties in the
malicious setting. Assume functionality f(x, y), where the receiver inputs x,
the sender inputs y, and r is the correlated randomness. In this protocol, the
receiver’s piece of the correlated randomness rR is split into two parts, rinR
is used to mask the receiver’s input, and routR is used to unmask the output.
The receiver is able to locally generate rinR from its public key pkR during the
preprocessing phase. In parallel, the sender also generates its own key pair
(pkS ,skS). The receiver then obtains routR by using pkS . The sender locally
computes its correlated randomness rS by invoking the OT extension protocol
mentioned above.

The semi-honest NISC protocol has total communication (2s+1)·n+O(n),
for O(n) the number of required OTs, and s the length of the string. The pro-
posed OT extension protocol is up to 46.8× faster than the IKNP protocol [53],
in a setting with 10 Mbps WAN, and approximately 5× faster in a 100 Mbps
WAN.

16

Silver . The most costly part of Silent NISC [11] is a large matrix-vector
multiplication, which requires millions of OTs. Couteau et al. [24] propose new
protocols for Silent Oblivious Transfer (SOT), and vector oblivious linear eval-
uation (VOLE), called Silver. VOLE is a protocol that lets two parties securely
compute a linear function on private input vectors without revealing these in-
puts. This work is not based on a well-studied assumption, it is designed upon
fundamental structural properties that resist known attacks and is validated
through experimental analysis.

Assume G ∈ Fk×n
2 is a public matrix, x is the vector held by the receiver

in the OTs. The protocol for SOT constructs G by directly identifying its
core structural properties, and allows the mapping x→x·GT to be computed in
strict linear time. Let e be a uniform random vector. Silver also guarantees that
distinguishing e·GT from random cannot be done using all known attacks on
LPN and code-based cryptographic primitives. Silver is silent: after a one-time
cheap interaction, two parties can store small seeds, from which they can later
locally generate a large number of OTs, while remaining offline. The protocol
for VOLE builds upon the protocol of Boyle et al. [11]. The receiver inputs x,
the sender inputs a vector (a, b). The protocol allows the receiver to obtain
x·a+ b from the sender.

For generating 10 million random OTs on a single core of a standard laptop,
Silver takes only 300ms, and 122KB of communication. Compared to Silent
NISC [11], Silver incurs 19× less computation and the same communication.
Compared to the IKNP [53], Silver incurs 37% less computation, and ∼ 1300×
less communication.

3.3 Function Dependent Preprocessing

Turbospeedz . Ben-Efraim et al. [8] propose an actively secure function-dependent
preprocessing protocol for SPDZ [33], in the dishonest majority setting. By
knowing the function, the preprocessing protocol is able to generate an addi-
tional secret-shared random value at each output wire of a multiplication gate,
which will be used to shift the revealed values from the input wires to the output
wires in the previous layer. With this, the parties compute the shares for the
output wires of the following layer in the circuit.

Turbospeedz [8] introduces two protocol versions: one that uses SPDZ pre-
sprocessing as a black box, and improves the online phase; and another that
modifies the Overdrive protocol [76] to improve overall communication. The
latter protocol receives the circuit as input, and performs operations in the
topological order of the gates of the circuit. Concretely, the parties first run
the SPDZ preprocessing, and obtain the necessary number of preprocessed ma-
terials. Each multiplication gate will be associated with a Beaver triple (JaK,
JbK, JcK), a random element JrK and an additional secret-shared random value
JλK, called the permutation element. Assume a multiplication gate with input
permutation element shares JλxK, JλyK. The parties locally compute the shares
of the offset values Jλx′K←JaK− Jλx ←, Jλy ′K←JbK− JλyK, and the shares of the
permutation element on the output wire JλzK→JcK− JrK. Parties then partially

17

reveal the offset values Jλx′K, Jλy ′K for every multiplication gate, and Jλx′K for
every squaring gate.

The Turbospeedz modification of Overdrive requires at most the same amount
of communication as Overdrive [76] in the preprocessing. The online phase re-
quires one value to be revealed per multiplication gate, while SPDZ [33] requires
two. The MAC-Check computation cost is roughly half of SPDZ. Compared to
SPDZ, Turbozpeedz improves the online communication almost by a factor of
2.

Boyle FSS . A function secret sharing (FSS) scheme is an efficient algorithm
that splits a function f into two additive shares f0, f1, such that each of them
hides f and f0(x) + f1(x) = f(x) for every input x. Boyle et al. [12] introduce
a new FSS-based 2PC protocol secure against semi-honest adversaries. The
protocol is especially suitable for integer comparisons or conversions between
arithmetic and boolean values, and it is generalizable to MPC. Abstractly, the
protocol can be viewed as a generalization of the TinyTable protocol [31], where
the novelty lies in using FSS to achieve exponential compression of the gates.
This work provides a circuit-dependent approach that generates randomness
aligned with the topology of the circuit, and a circuit independent approach,
based on the former one.

Assume C is the circuit of f . Each gate g maps an input from a group
Gin into an output from a group Gout. The key idea of the FSS-based gate
evaluation procedure is that, the preprocessing protocol first samples additive
r offset for the input wires of g, where g is of the form gr,0(x) = g(x − r) + 0.
Then the protocol evaluates FSS shares with the FSS scheme. The outputs of
the preprocessing phase are the FSS shares and [r]. During the online phase,
the parties match up the offsets for adjacent gates, and emulate FSS shares
using [r], by computing g[r],[r′](x) = g(x− r) + r′, where r′ is the random mask
for next gate g′. For each gate, the parties add [r′] to the FSS shares and then
exchange the result. When the masks of the output wires are revealed, both
parties can reconstruct the output.

The communication of the online phase is one element per wire. Compared
to ABY [35], this work halves the online round complexity. It avoids sending
a key for each bit of the input and improves the online communication by two
orders of magnitude compared to ABY.

Pika . Pika [86] extends the Boyle FSS protocol [12] to work over rings.
It proposes a set of FSS-based MPC protocols to securely evaluate non-linear
functions such as division, exponentiation, logarithm and tanh. This work pro-
vides both semi-honest and malicious security in the honest majority setting.
The structure follows prior lookup style MPC protocols. Data is secret shared
between two parties P0 and P1, and the third party P2 generates the FSS keys
and common randomness.

The basic idea is that P0 and P1 locally construct a database D of the
function values, such that the i-th entry di = f(i) with i the input. This
translates the problem of computing the function on the secret input into a
simple database lookup. DPF outputs two vectors y0 and y1. To lift their
shares into the ring, Pika uses a subtractive DPF, where y0[i] − y1[i] has the

18

value 1 or −1. Therefore, party P2 generates shares of the DPF sign value ±1
to avoid interactions during the translation.

Consider [a]2ℓ are secret shares of input a and [b]2ℓ secret shares of output b =
f(a). During the preprocessing phase, P2 generates Beaver triples, and random
values r0 and r1, and sends rσ to party Pσ, where σ ∈ {0, 1}. P2 also generates
FSS keys (k0, k1) for fr, where fr is the single-bit DPF at location r ∈ 2k. P2

generates shares (w0, w1) of the DPF sign bit w, and sends the tuple (kσ,wσ)
to party Pσ. After that, P0 and P1 locally reconstruct xσ≡rσ − aσ (mod 2k).
Each party computes yσ with their FSS keys by invoking the DPF, sets uσ[i] =

yσ[i + x], for i ∈ {0, 1, ..., 2k − 1}, and computes vσ = (−1)σ
∑2k−1

i=0 uσ[i]·di.
Then sets v←v + (−1)σβ, where β is a random value used to re-randomize v.
In the end, P0 and P1 output the shares [c]2ℓ = [v·w]2ℓ using a Beaver triple.
To achieve malicious security, SPDZ-like MACs are used.

Compared to ABY3 [67], Pika achieves up to 128× higher throughput and
23× lower communication in the LAN setting for batch sizes of about 102−103.
When compared to MP-SPDZ, Pika achieves up to 25× higher throughput and
74× lower communication, in the same setting.

3.4 Quintuples

A recent, interesting line of work [1, 39, 52] studies the generation of prepro-
cessing material, over Galois rings, based on reverse multiplication-friendly em-
beddings (RMFEs) [15].

ACEDX21 . Guruswami andWootters [48] showed that the Shamir’s secret-
sharing scheme has a regenerating property, when it is defined over an extension
field, where each share can be compressed into an element using a linear form,
allowing the secret to be reconstructed by a linear combination of the com-
pressed shares. Abspoel et al. [1] propose the first concrete application of this
property in MPC over Galois ring extension R/S (Z/pkZ) of characteristic pk.
Suppose there are n parties P1, ..., Pn, where Pi holds share xi of secret x ∈ R,
i = 1, ..., n. Each party Pi uses an F2-linear compression function ϕi : F2m → F2

on its share and then sends the compressed share ϕi(xi) to all other parties.
Then each party locally reconstructs the secret x =

∑n
i=1ϕi(xi)zi, where zi ∈ R

is the scalar for xi over F2. Since the compressed shares do not offer error detec-
tion, this work combines Beaver triples to achieve active security. Throughout
the preprocessing phase, the compressed shares [ϕ(x)], the scalars [z] and the
Beaver triple ([a], [b], [c]) together consist a quintuple ([ϕ(x)], [z], [a], [b], [c]).

The above construction yields another protocol to compute several copies
of the same circuit in parallel, secure in the honest majority setting. This pro-
tocol requires d + O(1) rounds to evaluate a depth-d arithmetic circuit, with
O(n2/log(n)) ring elements communicated per multiplication. The communica-
tion bits for each multiplication is Ω(n2).

EXY22 . Following the work of Abspoel et al. [1], Escudero et al. [39]
propose an MPC protocol over the Galois ring extension Zpk [X]/h(X) of charac-
teristic pk that is actively secure in the honest majority setting. It also generates

19

quintuples during the preprocessing, but in a different form: (⟨a⟩, ⟨b⟩, ⟨τ(a)⟩,
⟨τ(b)⟩, ⟨τ(a)τ(b)⟩). Among this, a, b ∈ R are random elements, τ is a Zpk -linear
map: R→ R with τ = ϕ ◦ ψ, with ϕ defined as Zpk → R, ψ is R→ Zpk .

There are two crucial points to generate this quintuple. One is generating the
authenticated pairs (⟨a⟩, ⟨τ(a)⟩). Another is obtaining the product (⟨τ(a)τ(b)⟩).
To generate T authenticated pairs of (⟨a⟩, ⟨τ(a)⟩), party Pi samples aij ∈ R at
random for j = 1, ..., T , and secret shares them. Pi then performs the affine
combination r +

∑T
j=1 rj⟨aij⟩ to obtain ⟨τ(aij)⟩, rj ∈ S. All parties then com-

pute ⟨aj⟩ =
∑n

i=1⟨aij⟩; ⟨τ(aj)⟩ =
∑n

i=1⟨τ(aij)⟩. Following this, the sacrificing is
performed to guarantee correctness.

The product ⟨τ(c)⟩ = ⟨τ(a)τ(b)⟩ is generated by each ordered pair of parties
(Pi, Pj). Assume τ(ah)

i and τ(bh)
i (h = 1, ..., N) are inputted to F by Pi and

Pj , where F is an extended correlated oblivious product evaluation function that

outputs u
(i,j)
h to Pi and v

(j,i)
h to Pj , such that u

(i,j)
h +v

(j,i)
h = τ(ah)

iτ(bh)
j . Then

Pi sets its share τ(ch)
i τ(ch)

i = τ(ah)
iτ(bh)

i+
∑

j ̸=iu
(i,j)
h +v

(j,i)
h . Then the par-

ties are able to compute ⟨ch⟩ =
∑n

i=1⟨τ(ch)i⟩ locally. With these components, a
quintuple (⟨a⟩, ⟨b⟩, ⟨τ(a)⟩, ⟨τ(b)⟩, ⟨τ(a)τ(b)⟩) is formed. Such quintuples allow
us to save one online communication round per multiplication gate.

The complete preprocessing phase over Zpk , for any prime p and integer
k≥ 1, 3, has an average communication complexity of 5142.5kn(n − 1), when
generating one quintuple with parallel operations. This amortized online com-
munication complexity is 12.4k(n− 1) bits per multiplication.

Coral . The quintuple generation method from Escudero et al. [39] applies
costly bucket operations to prevent leakage of τ(a) and τ(b), which leads to
a cubic complexity in the bucket size. Coral. [52] is an RMFE-based MPC
framework, with active security in the dishonest majority, for boolean and mixed
circuits computation, overcoming this limitation.

A quintuple in Coral is represented as (JaK, JbK, JcK, Jτ(a)K, Jτ(b)K), where
c = ϕ(ψ(a)ψ(b)). The preprocessing generates two different kinds of triples,
TinyOT and RMFE triples. For i, j = 1, ..., (s + N) · k with s the statisti-
cal security parameter, N the number of quintuples, the preprocessing proto-
col first generates TinyOT [72] triples (JaiK

B
, JbiK

B
, JciK

B
). Then converts

them to RMFE shares (JâjK, Jb̂jK, JĉjK). After that, the protocol completes
the quintuples with a standard sacrificing technique. To compute JzK such
that ψ(z) = ψ(x) ⊙ ψ(y), the online phase consumes the quintuples as JzK ←
τ(d)Jτ(b)K + τ(e)Jτ(a)K + τ(d)τ(e) + JcK, where JdK←JxK− JaK, JeK←JyK− JbK.

Coral is implemented in MP-SPDZ [27]. Compared to EXY22, the Coral
quintuple generation is over one order of magnitude faster. For input authen-
tication, Coral reduces the communication complexity by a factor of 2 − 10×,
when compared to that of EXY22. [39].

3.5 Degree Reduction

For Shamir’s secret sharing, the degree of the random polynomial encoding of the
secret goes from t to 2t after each multiplication. Therefore, after performing a

20

local multiplication, MPC protocols use degree reduction schemes to restore the
degree to t, to be able to continue with the computation. The degree reduction
can be performed using preprocessed material, for which we present the relevant
works here for completeness, but we omit these works from Table 1.

DN . Damg̊ard and Nielsen [30] propose an actively secure multiparty com-
putation protocol to reduce the degree of sharings from 2t to t, where t is the
number of corrupted parties. The foundation of this work is an n-party pas-
sive secure protocol with threshold t < n/2. This protocol generates t-degree
multiplication triples ([a], [b], [c]) during the preprocessing phase, where c = ab.

To reduce the degree of [c] to t, each party Pi first samples a random value
s(i) uniformly and creates both a t-sharing [s(i)] and a 2t-sharing ⟨s(i)⟩. Using a
fixed matrix M , the parties compute M ·([s(1)],...,[s(n)]) and M ·(⟨s(1)⟩,...,⟨s(n)⟩)
to get ([r1],...,[rℓ]) and (⟨R1⟩,...,⟨Rℓ⟩). Here, the degree of [ri] and ⟨Ri⟩ is t and
2t, respectively, with ri = Ri. The parties group the sharings to construct ℓ
multiplication triples ([a], [b], ([r], ⟨R⟩)). Next, each party computes a 2t-sharing
of D as [a][b] + ⟨R⟩, and they reconstruct D. After that, each party locally
computes the t-sharing [c] = D − [r] and outputs the multiplication triple ([a],
[b], [c]), where [c] also has a degree of t. Given these triples, secure multiplication
can be performed during the online phase using standard methods.

The above protocol has a communication complexity of O(Cn)k, where C is
the number of gates in the circuit and k is the bitlength of the elements. It
can be extended to support active security with corruption threshold t < n/3,
and the communication complexity is O(Cn)k+O(Dn2)k+poly(nκ), for D the
multiplicative depth of the circuit, and κ the security parameter.

Garg24 . Garg et al. [45] construct a scalable MPC protocol using an un-
packing approach via secret sharing based on the Chinese Remainder Theorem
(CRT). The CRT-based secret sharing schemes are non-linear, but also sat-
isfy the local homomorphism that Shamir’s secret sharing does. Similar to
the degree-reduction in the DN protocol [30], Garg et al. propose an integer-
reduction scheme to reduce the size of the secret integer.

In the offline phase, each party Pi generates a pair of random masks (JSi
tKj ,

JSi
2tKj) for each other party, and sends it to them. After receiving the pairs

of masks from all parties, each party Pi locally extracts n − t secure masks by
computing JR1

t Ki
...

JRn−t
t Ki

 =

1 1 1 · · · 1
1 2 3 · · · n
...

...
...

. . .
...

1 2ϕ 3ϕ · · · nϕ

⊙i

JS1
t Ki
...

JSn
t Ki

where ϕ = n− t−1. (JR1

2tKi,...,JR
n−t
t Ki) can be generated with (JS1

2tKi,...,JS
n
2tKi)

in the same equation.
Similarly to the DN protocol, the parties consume a pair of masks {JRi

tK, JRi
2tK}

per multiplication gate to reduce the size of the integer being shared. This pro-
tocol can be extended to the dishonest majority setting and achieves passive
security against semi-honest corruptions for t < 1− δ with any constant δ > 0.

21

At a bit level, the overall communication and computation are O(|C|·log|F |),
where |C| is the circuit size and |F | the field size.

4 Special Preprocessing

Special preprocessing material refers to the generation of random correlations
that enable computation beyond mere multiplications. Table 2 summarizes our
findings regarding preprocessing protocols targeting special functions, instead
of generic computations. In Table 2, we list the name and reference of the
protocols studied; the year of publication; the cryptographic primitive based on
which the preprocessing is performed; the supported number of parties in the
protocol; the security guarantees offered by the protocol (passive or active
), the maximum corruption threshold; and the offline and online performance

improvement over prior work, where Comm refers to communication cost, and
Comp to computation cost. We further divide Table 2 into sections, based on
the type of target function of the preprocessing (e.g., matrix & convolution).

4.1 Matrix Triples and Convolutions

Machine Learning (ML) usually requires a large amount of diversified data,
often more than a single company can contribute. MPC offers a solution for
distrustful industry competitors to train and evaluate an ML model without
revealing private input data, which could, for example, contain business secrets
or customer data protected by law. The large demand for privacy-preserving
machine learning (PPML) technologies has also led to targeted improvements of
the underlying MPC protocols. One focus of these optimizations is operations
that often occur in ML tasks, like matrix multiplications or tensor convolutions,
and have therefore, a large impact on the performance of a ML algorithm.

CDNN15 . To securely compute linear regression models without sharing
datasets between parties, Cock et al. [23] propose an MPC protocol, which
aims to reduce linear regression to securely computing products of matrices.
It provides information-theoretic security under the assumption of a trusted
entity, and computational security using a two-party protocol, when such an
entity is unavailable. The whole idea is first to have each party map their fixed
precision real value inputs to elements of a finite field and create the shared
matrices. Then each of them computes over their shares to obtain shares of the
estimated regression coefficient vector. Lastly, parties exchange their shares of
the estimated regression coefficient vector and reconstruct it.

Assume 2 shared matrices X ∈ Zn1×n2
q and Y ∈ Zn2×n3

q , with q the size
of the finite field and n1, n2, n3 the dimensions of the matrices. To create the
shared matrices, each party generates its share of the matrix, by mapping their
respective real value inputs to elements of finite fields and putting them in the
respective positions of the matrix. The remaining positions are filled with zeros;
i.e., the shares X1 and X2 are such that X1 +X2 = X.

22

Table 2: Overview of Protocols in the Special Preprocessing Model.

Work Year Primitive Parties Sec Corruption Offline Online

Matrix & Convolution

CDNN15 [23] 2015 LHE 2 1
Comp: several orders of magnitude

faster [73]

SecureML [68] 2017 LHE&OT 2 1
LHE Comm & Comp: 54× [73]; OT
Comm & Comp: 24− 1270× [73]

SecureNN [87] 2019 LHE 3 1 Comm and Comp: 79− 553× [69]

CKRRSW20
[18]

2020 SHE ≥2 n− 1 Comm: 102× [61]
Comm: 159.2× [61]; Comp:

16− 40× [33]

RRHK23 [82] 2023 LHE ≥2 n− 1 Comm & Comp: 4.82× [18] Comm & Comp: 40.15× [18]

LowGear 2.0
[81]

2023 LHE ≥2 n− 1 Comm: 1.64× [18] Comp: 2.63× [18]

LookUp Tables

TinyTable [31] 2016 OT 2 1 Similar as [34]

Multi-
TinyTable [59]

2017 OT ≥2 n− 1 Comp: 50× [31] Comm & Comp: Same as [31]

SPOP-LUT
[36]

2017 OT 2 1 Comm: 1.2× [63] Comm: 9.5× [2]

FLUTE [14] 2023 OT 2 1 Comm: 100× [36]

MAESTRO
[70]

2024 OT ≥2 <n/2 Comm & Comp: 1.23× [22] Comp: 1.27× [22]

Conversion between Circuit Representations

DaBits [83] 2019
SHE &
OT

≥2 n− 1 Comp: 0.5× SPDZ-based Comp: 10× SPDZ-based

EDaBits [37] 2020
SHE &
OT

≥2 n− 1
Comm: 2− 25× [83]; Comm &

Comp: 13.3× [83]

Coral [52] 2024 RMFE ≥2 n/2 Comm: 3.8× [43]; Comp: 2.5× [43]

Tuples

Arithmetic
Tuple [80]

2022 LHE ≥2 n− 1

Polynomial evaluation almost
constant in the degree of the
polynomial vs. logarithmic for

default MP-SPDZ [58]

23

Let P1 and P2 be two parties, who aim to compute the product Z = XY
jointly; P1 holds (X1, Y1), and P2 holds (X2, Y2). Cock et al. [23] introduce a
trusted entity P0 to help with generating matrix triples to complete the task. P0

chooses random matrices A1, A2 ∈ Zn1×n2
q , B1, B2 ∈ Zn2×n3

q , and T ∈ Zn1×n3
q .

P0 computes A1B2+A2B1, masks it with T , and denotes the result as C. Then,
it distributes (A1, B1, T) to P1, and (A2, B2, C) to P2.

After receiving data, P2 masks its private shares (X2, Y2) by computing
(X2 −A2), (Y2 −B2), and sends the results to P1. P1 computes A1(Y2 −B2) +
B1(X2−A2)+X1Y1, masks it with a random matrix T ′ ∈ Zn1×n3

q , and denotes
the result asW . P1 then sendsW, (X1−A1), (Y1−B1) to P2 and outputs T+T ′.
P2 outputs U , where U = (X1 − A1)Y2 + (Y1 − B1)X2 +X2Y2 +W + C. This
protocol is essentially a straightforward extension of Beaver triples for secure
multiplication for matrices. Its correctness can be trivially verified by inspecting
the value of T + T ′ + U .

Cock et al. [23] demonstrated the performance of their preprocessed matrix
triples experimentally, and compared their work to the previous state-of-the-
art [73]. CDNN15 is several orders of magnitude faster in the online phase, but
the total runtime remains comparable.

SecureML. Mohassel et al. [69] proposed SecureML, a passively secure two-
party system that optimizes ML operations, such as linear regression, where
matrix multiplication is an essential component. In order to perform matrix
multiplications, SecureML proposes two preprocessing methods to generate ma-
trix triples: a LHE-based and an OT-based.

Assume a matrix triple (⟨A⟩, ⟨B⟩, ⟨C⟩) is shared between two parties, P1 and
P2. Matrices ⟨A⟩ and ⟨B⟩ are generated by uniformly sampling each element.
Unlike Cock et al. [23], who use a trusted entity to compute the cross products
⟨A⟩1⟨B⟩2 and ⟨A⟩2⟨B⟩1, SecureML uses a LHE-based method, allowing P1

and P2 to compute these themselves. To generate, for instance, ⟨A⟩1⟨B⟩2, P2

encrypts each element of ⟨B⟩2, and sends them to P1, who will compute the
matrix multiplication on these ciphertexts. P1 masks the resulting ciphertexts
by random values and then sends them back to P2. P2 decrypts these ciphertexts
to obtain the resulting product. The generation of ⟨A⟩2⟨B⟩1 follows a similar
procedure. After this, both parties can construct their shares of the product
⟨C⟩.

This triple (⟨A⟩, ⟨B⟩, ⟨C⟩) will be consumed in the online phase to mask
the shares of ⟨X⟩ and ⟨Y⟩ for securely computing the shares of their product
⟨Z⟩i = −i ·E× F+ ⟨X⟩i × F+E× ⟨Y⟩i + ⟨C⟩i, where i ∈ {1, 2} and ⟨E⟩, ⟨F⟩
are the masked shares. Mohassel et al. [69] experimentally show that for triple
generation, the LHE-based version of SecureML has a 54× speedup compared
to Nikolaenko et al. [73] in both LAN and WAN settings, and the OT-based
protocol is 1270× faster in LAN, and 24× in WAN.

SecureNN . Wagh et al. [87] introduce a 3PC protocol to generate matrix
triples , which completely avoids the use of garbled circuits, allowing efficient
calculation of nonlinear activation functions. Their work is a combination of
SecureML [69], in the sense of the straightforward extension of Beaver triples
to matrix triples, and CDNN15 [23], using a trusted party for the randomness

24

generation and distribution.
SecureNN can be tuned to provide either passive or active security, against

one corrupted party. Using SecureNN for the training phase, the overall execu-
tion time is ∼ 79× faster than SecureML [69] in a LAN setting, and 553× faster
in a WAN setting.

CKRR20 . Chen et al. [20] propose an MPC protocol for matrix multipli-
cations and two-dimensional convolutions, which is maliciously secure, in the
dishonest majority setting. Thus, the preprocessing phase generates correlated
randomness in the form of matrix triples, and convolution triples.

Assume n parties wish to generate a matrix triple (JAKα, JBKα, JCKα) with
C = AB and α the global MAC key. First, each party Pi samples uniformly
random matrices Ai and Bi, encrypts them, and broadcasts the ciphertexts.
The parties will then call the zero-knowledge proof and obtain encryptions of
A =

∑
Ai and B =

∑
Bi with bounded noise. With these, the parties call the

matrix multiplication algorithm of Jiang et al. [56] to compute an encryption of
C = AB. After that, the parties can compute the encryptions of αA, αB, αC.
After performing the distributed decryption, the parties get an authenticated
triple (JAKα, JBKα, JCKα).

Chen et al. [20] propose two optimizations to the preprocessing phase of
SPDZ: (1) They eliminate the sacrificing step of SPDZ by switching to larger
HE parameters, which supports circuits of one more depth. This leads to almost
2× improvement of the overall communication and computation. (2) They
optimize the zero-knowledge proof of plaintext knowledge in the preprocessing
phase of SPDZ, reducing the amortized communication overhead for proving
each ciphertext from 2.5 to roughly 1.5.

Chen et al. [20] implemented their protocols and benchmarked them against
Overdrive LowGear [61]. For multiplying two square matrices of size 128,
CKRR20 reduced the communication cost of the preprocessing phase from 1.54
GB to 12.46 MB. In evaluating the convolution layers of the ResNet50 neural
network, the online communication cost is estimated to be 159.2× lower than
LowGear.

RRHK23 . Although convolutions can be computed by means of matrix
multiplications, this introduces additional computational overhead. To address
this, Rivinius et al. [82] propose a new convolution triple generation protocol to
perform convolutions directly, rather than emulating this process with matrix
multiplication, as previous works do.

Assume a is a 2d image and f is a 2d filter in a convolution. A convolution
triple is (JaKi, JfKi, JcKi), where a, f are random vectors and c = conv2d(a,f).
A convolution triple is generated follows: 1) Each party generates its share of
a and f locally, encrypts one of them (i.e., a) using LHE, and then sends the
ciphertext to all parties; 2) Each party multiplies their own share of f with
the received encrypted shares of a to obtain encrypted pairwise shares, which
are re-randomized and sent back to the party that originally sent them; 3) The
receiving party decrypts the pairwise shares and combines them to obtain a
share of the overall product, which is the convolution of a and f .

In the online phase, one can compute a convolution of a secret shared

25

image JxKi, and a filter JyKi as Jconv2d(x,y)Ki = JcKi + conv2d(JaKi,v) +
conv2d(u, JfKi) + conv2d(u,v), where u := x − a and v := y − f are mask
values. This protocol provides active security in the dishonest majority setting.
Rivinius et al. [82] implemented their work as an extension to MP-SPDZ [58].
For the evaluation of ResNet50, in a LAN setting, the preprocessing phase of
RRHK23 is 4.82× faster than that of Chen et al. [20], and the online phase is
up to 40.15× faster; depth-wise convolutions are up to 18.59× faster. In the
WAN setting, these performance improvements are 3.01×, 41.84×, and 26.53×,
respectively.

LowGear 2.0 . Based on CKRR20 [19] and Overdrive LowGear [61], Hasler
et al. [81] present a new solution for matrix multiplication, especially matrix
squares and inner products. In order to do this, they generate matrix triples,
matrix pairs during the preprocessing phase. These materials can be generated
by both the exchange protocol in LowGear and their optimized version discussed
in Section 3.1.1. Compared to the work of Chen et al. [20], LowGear 2.0 saves
39% in bandwidth, for matrix triple generation, in a two-party setting.

4.2 LookUp Tables

TinyTable . TinyTable [31], an optimization of MiniMac [34], is a maliciously
secure 2PC, which generates random bits for masking and a scrambled version of
the truth tables, in the preprocessing phase. In the online phase, parties do table
lookups, using the scrambled truth tables and masked bits. While MiniMac does
not work well for very tall and skinny structured circuits, TinyTable works for
any circuit with the same performance as MiniMac.

Assume two parties P1 and P2 want to securely compute a Boolean circuit,
which consists of gates G1, . . . , GN . Let w1, . . . , wW be the wire labels,
and b1, . . . , bW the actual values of the wires. For each AND gate Gi, with
input wires wu, wv, the preprocessing phase of TinyTable operates as follows:
1) Obtains authenticated multiplication triples and random bits JriK for each
wire, by invoking the preprocessing algorithm from TinyOT [72]; 2) Computes
JrurvK using the triple assigned to Gi; 3) For all m,n ∈ 0, 1, defines tm,n =
(ru +m)(rv + n) + ro, where tm,n is the bit that needs to be additively secret
shared for entry (m,n) in the table for gate Gi, and ro is the masking bit for
the output wire; 4) Computes Jtm,nK = JrurvK +mJruK + nJrvK + JmnK + JroK,
and then P1 sets Ai[m,n] to be its share of tm,n, where Ai is the table it holds.
P2 sets Bi[m,n] similarly; 5) Opens the wire mask ro for each output gate to
both parties. Opens ri for each input wire wi to the party who owns this wire.
The parties then return the opened masks and table Ai, Bi for each AND gate.

Multi-TinyTable . TinyTable [31] offers an efficient online evaluation, at
the cost of a heavy preprocessing. To overcome this limitation, Keller et al. [59]
propose a new approach, which significantly reduces the preprocessing cost,
while maintaining a fast online phase. They generalize TinyTable from two-
party to MPC and apply it to evaluating the S-boxes of AES, and 3DES.

To generate a masked lookup table (LUT) (JsK, JTable(s)K), the protocol
samples a random ℓ-bit mask s and bit decomposes it to (s0, ..., sℓ−1), where

26

each si is unknown to all parties. Using these bits, the protocol expands
s into a secret-shared bit vector (s′0, ..., s

′
2ℓ−1), whose sth entry is 1 and is

0 elsewhere. After this, parties obtain the ith entry of the masked lookup
table by locally computing JT(s⊕ i)K. Then the preprocessing phase gener-
ates values (JsK, JTable(s)K), where the masked table JTable(s)K is of the form:
JTable(s)K = (JT(s)K, JT(s⊕ 1)K, ..., JT(s⊕ (2ℓ − 1))K). Given such a table,
evaluating JT(x)K is straightforward. The parties first mask their private in-
put x by h = x ⊕ s and open h. Then they locally retrieve JTable(s)K[h] =
JT(s⊕ h)K = JT(s⊕ s⊕ x)K = JT(x)K.

This protocol is actively secure in the full-threshold setting, and leads to a
very fast online time of over 230000 blocks per second for AES and 45000 for
3DES. A preprocessed lookup table by means of TinyTable [31] has 4 elements,
while by Multi-TinyTable [59] it has N = 2ℓ elements, for ℓ the length of a
random value s. For preprocessing an AES S-box over F28 , this protocol requires
33 multiplications, more than 50 times less than TinyTable. The cost of the
online phase time for evaluating a block cipher is the same as for TinyTable.

SPOP-LUT . Dessouky et al. [36] design a semi-honest secure two-party
protocol that replaces the function representation of 2-input Boolean gate cir-
cuits with a LUT-based representation. This enables the evaluation of complex
functions and reduces the communication complexity.

Assume two parties P0 and P1 have inputs x0, x1 ∈ {0, 1}δ, respectively. and
truth table T : {0, 1}δ→{0, 1}σ, for δ the number of inputs, and σ the number of
outputs. The preprocessing is based on OT extension [63], and outputs random
bits (m0,...,mN) to the sender, say P0, and a random choice s∈{0, 1}σ to the
receiver P1. In the online phase, P1 sends u = s⊕x1 to P0, where x

1∈{0, 1}σ is
the input of P1. P0 first chooses a random value z0, computes V =(v0,...,vN−1),
where vi = T [i⊕ x0]⊕mi⊕u⊕ z0, then sends V to P1. After that, P1 computes
z1 = vx1 ⊕ms.

For an AES S-Box evaluation, over WAN, SPOP-LUT reduces the commu-
nication complexity of the preprocessing by ∼ 9.5× compared to Kolesnikov
and Kumaresan [63], and the communication complexity of the entire protocol
by 2× compared to Asharov et al. [2].

FLUTE . SPOP-LUT [36] proposes two protocol variants: one that has a
good total communication, but higher online communication; and one that has
better online communication, but a higher total communication. FLUTE [14]
proposes a function-dependent preprocessing protocol and combines these two
variants for an efficient preprocessing phase, as well as an efficient online phase.
FLUTE is a two-party semi-honestly secure protocol, but can be easily extended
to MPC and stronger security guarantees.

A lookup table T : {0, 1}δ → {0, 1}σ can be seen as a multi-input and multi-
output boolean gate, which maps δ ≥ 2 input bits to σ output bits according to
an arbitrary boolean function. The main goal of FLUTE is to convert the LUT
description into a boolean expression, made up of AND and XOR gates.

During the preprocessing phase, the key step is to identify the target rows.
Rather than computing LUTs by enumerating all possible inputs and outputs,

27

FLUTE identifies only the rows that evaluate to 1, and then uses a full disjunc-
tive normal form (DNF) representation to express the output as a function of
the inputs. Assume there are α such rows. For each row, they build a term∧δ

i=1L⃗i
j , then set L⃗i

j = xi if xi = 1, and set L⃗i
j = xi if xi = 0. The output z is

represented as the OR of all such terms, z =
∨α

j=1

∧δ
i=1L⃗i

j . Since two different

terms of the form
∧δ

i=1L⃗i
j and

∧δ
i=1L⃗i

j′ can never both evaluate to 1, one can
directly substitute OR operations with XOR operations.

Compared to SPOP-LUT [36], FLUTE improves the online communication
by more than 100×, while keeping the increase in total communication overhead
to less than 4% on average.

MAESTRO . MAESTRO [70] is a set of MPC protocols focusing on the
computation of the S-box of AES, in the honest majority setting, with both
semi-honest and maliciously secure variants. The main protocol in this work is
a secure protocol for computing the multiplicative inverse with a lookup table
of size 16. The core idea is to reduce the computation of multiplicative inver-
sion over GF (28) into the one over GF (24). This can be achieved by using the
isomorphism between GF (28) and GF ((24)2). MAESTRO provides a lookup
table protocol that takes a secret sharing JvK, v ∈ GF (24) and a table T as in-
puts, and outputs the corresponding shared value JTvK. When T is an inversion
table, the outputs will be Tx = v−1. The preprocessing generates shared ran-
domness JrK and its corresponding shared random one-hot vector Je(r)K, where
the rth element is 1, and all others 0. In the online phase, the input is masked
with JrK, and the masked value c, is opened. After that, the table lookup can
be performed as a linear function on e(r). The parties then compute JtK :=⊕N−1

j=0 Je(r)j K·Tc⊕j .
In the 3PC, semi-honest setting, MAESTRO is faster than the work of Chida

et al. [22], by 27% for the online phase, and by 23% for total throughput. For
active security, this work improves the total throughput by 46%−270% in LAN
and by up to 453% in WAN, compared with the work of Chida et al. [22], and
Furukawa et al. [44].

4.3 Conversion between Circuit Representations

DaBits. In 2019, Rotaru and Wood proposed a novel type of preprocess-
ing material, called daBits [83]. Using a preprocessed daBit, which stands for
doubly-shared authenticated bit, one can easily implement a conversion of their
computation from Boolean to arithmetic circuits and vice versa, in the online
phase. The preprocessed daBit is essentially a random bit secret shared both in
Fp and in F2. Using this preprocessed bit in the online phase to mask an input,
together with the simple property of XOR in any field: XOR(x, y) 7→ x+y−2·x·y
one can mask a value in the origin space, open it, and derandomize it in the
target space. daBits [83] offer active security guarantees in the full-threshold
setting, while working for any number of parties, and any generic MPC based
on linear secret sharing. The authors report being able to evaluate a linear Sup-
port Vector Machine with 400 fewer AND gates than the generic GC approach,

28

at the cost of doubling the required preprocessing compared to merely using
SPDZ.

EDaBits. Escudero et al. [38] propose a new approach, which generates
extended daBits (edaBits).Unlike a daBit, which is a bit shared in two different
domains, an edaBit consists of a set of random bits (rm−1, ..., r0), each bit is

secret shared as [ri]2 in the binary domain and an integer r =
∑m−1

i=0 ri2
i,

which is secret-shared as [ri]M in the arithmetic domain. An m-length edaBit
can be generated fromm daBits, but the direct edaBits generation is much more
efficient. Each party first samples a value ri ∈ ZM privately and secret shares
it. Next, it bit-decomposes ri, and secret shares the bits in the binary domain.

EdaBits provide active security in the full-threshold setting. For secure
comparisons, edaBits improve 2 − 25× the communication cost compared to
daBits, and the number of comparisons per second is increased by up to 13.3×.

Coral . Coral [52] presents a new RMFE-based mixed-circuit evaluation
method by vectorizing the daBit [83] and edaBit [38] generation methods into
RMFE shares. The main idea is to construct global packed edaBits from pri-
vate ones and correct the arithmetic part using the RMFE-based boolean-to-
arithmetic functionality, which can be implemented with packed daBits.

Let JrKA denote a vector of authenticated arithmetic sharings in Zq. The

packed daBits can be represented as (JrKA, JrK), where r ∈ {0, 1}k and r =
ϕ(r), ϕ : Zk

q→Zq. They are generated with a vectorized version of edaBits.
Then the packed daBits will be consumed to convert a RMFE sharing into a
vector of arithmetic sharings. The consumption procedure in the online phase,
is similar to the standard flow from Damg̊ard et al. [27], which is designed for
traditional boolean sharings. Coral then constructs the RMFE-based edaBit
(JrKA, Jr0K, ..., Jrℓ−1K), where ℓ is the length of the edaBit, r ∈ {0, 1}kq and

r[i] =
∑ℓ−1

j=0ψ(rj)[i]·2j . This packed edaBit is equivalent to k plain edaBits.
The edaBit generation by Coral, in a WAN setting, gives 4× higher through-

put than Tinier [43], when both are paired with LowGear for the arithmetic pro-
tocol. Loose edaBits generation by Coral offers 73.6% communication reduction
compared to Tinier, and 2.5× speedup, in the single-threaded WAN setting.

4.4 Tuples

Arithmetic Tuples. Binomial tuples can reduce the round complexity and
bandwidth compared to using Beaver triples, but have exponential size in the
number of inputs. Reisert et al. [80] generalize both Beaver triples and binomial
tuples, proposing a new form of correlated randomness, called arithmetic tuples.
Using arithmetic tuples, they propose an actively secure protocol that allows
to evaluate any multivariate polynomial in one round of online communication
plus one opening round, with a moderate tuple size.

During the preprocessing phase, a sufficient number of Beaver triples is gen-
erated. Using these Beaver triples, the preprocessing phase then runs the SPDZ
online protocol to compute the tuples. For each party Pi, who holds a secret
shared and authenticated input JxKi, the preprocessing protocol samples a set

29

of random masks (a1,...,al), computes the tuple (a1,...,ak), where l < k. The
protocol then authenticates the tuple and sends J(a1, ..., ak)K to Pi. For exam-
ple, to compute the product of four shared inputs Jx0K · Jx1K · Jx2K · Jx3K, the
preprocessing protocol generates 13-tuple for each party with the form (Ja0K,
Ja1K, Ja2K, Ja3K, Ja0a1K, Ja01K, Ja01a2K, Ja01a3K, Ja2a3K, Ja23K, Ja23a0K, Ja23a1K,
Ja01a2a3 + a23a0a1 − a01a23K).

During the online phase, each party Pi computes and opens JxjKi − JajKi
for all 0 ≤ j < 4. Then each party Pi computes locally and opens Jy01K, Jy23K,
Jy0123Ki, where

Jy01K = (x0 − a0)Jx1Ki + Ja0Ki(x1 − a1) + Ja0a1Ki − Ja01Ki;
Jy23K = (x2 − a2)Jx3Ki + Ja2Ki(x3 − a3) + Ja2a3Ki
− Ja23Ki;
Jy0123Ki = (x0 − a0)(x1 − a1)Ja23Ki + (x0 − a0)Ja1a23Ki
+ (x1 − a1)Ja0a23Ki + (x2 − a2)Ja3a01Ki
+ (x3 − a3)Ja2a01Ki + (x2 − a2)(x3 − a3)
Ja01Ki + Ja0a1a23 + a01a2a3 − a01a23Ki.

The protocol first computes x0x1 and x2x3, masks them with fresh random-
ness a01, a23 respectively. Then the protocol computes the product of all four
variables. Note that, the masking operations lead to a mixed term a23x0x1 +
a01x2x3−a01a23 in the second level multiplication, it will be removed with y0123.
The security of this method follows analogously to Beaver multiplication.

Since the focus of this work is on applications where the offline phase is not
time-critical, Reisert et al. [80] implemented the online phase in the MP-SPDZ
framework [58]. In terms of polynomial evaluation, this work requires lower
bandwidth and an almost constant runtime compared to the default MP-SPDZ
implementation.

5 Discussion

When studying such a large body of research, it is surprising to notice that sev-
eral core ideas are long present in the field of MPC, but they only get formalized
or exploited for practical efficiency gains many years later. For instance, the idea
of commodity-based MPC dates back to the seminal works of Beaver [5, 7], but
it took the research community almost 1, 5 decades to formalize the preprocess-
ing model, which is a prime example of commodity-based MPC. This shows that
important areas of research can greatly benefit from systematization, in order
to reveal such (hidden) ideas, organize existing work in meaningful categories,
and identify gaps to propose directions for future research and applications.

Protocols that fall within what we termed traditional preprocessing model
are the foundation of this research area, and they will remain important, as
they enable the secure computation of general purpose functions. As such, in
their generality, and universal applicability, they remain relevant and useful

30

for practical applications. Yet, our systematization confirmed that MPC in
the special preprocessing model, is strictly more efficient for special functions,
than designing secure computation protocols in a straightforward manner from
generic traditional preprocessing.

Systematizing the seminal works in the traditional preprocessing model shows
that most of the protocols offer active security guarantees, in the full-threshold
setting. This is a realistic assumption in many application scenarios, especially
considering the balance between security and efficiency that this line of work of-
fers. However, when the application scenario at hand mandates more stringent
security guarantees to be in place, we identify that there is a research gap here.
It is therefore an interesting area of investigation for future work, to consider
constructions in the preprocessing model, which offer higher security guaran-
tees, such as identifiable abort, fairness, or guaranteed output delivery, in an
efficient manner.

Recently, Hamilis et al. [49] aim at producing “preprocessing [material] for
life”, as their title implies. This work not only envisions a one-time setup
enabling consequently efficient online computations, but it even extends the
security assumptions, to achieve identifiable abort. Addressing some of the lim-
itations of this work, such as the asymmetry between the parties’ computational
and communication power in the preprocessing phase, serves as an excellent ba-
sis for future work. Considering preprocessing for life, also begs the question as
to how we can design preprocessing protocols for dynamic sets of parties.

It is also evident from our systematization that the work over rings is much
younger than the work over fields, with even more recent advances (about yet
a decade later) over ring extensions leveraging RMFEs. Given the natural fit
of such constructions for computer systems, as well as for operations that have
been traditionally the bottleneck of secure MPC, such as comparisons, further
study of ring-based preprocessing protocols is an interesting future research
prospect. The fact that work over rings is so much younger than preprocessing
over fields, also explains why there is so little work in the special preprocessing
model that leverages such mathematical structures. Thus, we identify special
preprocessing over rings as another interesting area for future research.

The attention towards the special preprocessing model is increasing in the
last few years. Our systematization shows that both the very first attempts to
do special preprocessing, as well as some of the most recent results evolve around
preprocessing material that enables machine learning applications (e.g., matri-
ces and convolutions). Given the current trend of privacy-preserving machine
learning, efficiently producing special preprocessing material for such tasks is
expected to remain relevant.

References

[1] Mark Abspoel, Ronald Cramer, Daniel Escudero, Ivan Damg̊ard, and
Chaoping Xing. Improved single-round secure multiplication using regener-
ating codes. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in

31

Cryptology – ASIACRYPT 2021, Part II, volume 13091 of Lecture Notes
in Computer Science, pages 222–244, Singapore, December 6–10, 2021.
Springer, Cham, Switzerland.

[2] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner.
More efficient oblivious transfer and extensions for faster secure computa-
tion. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 2013: 20th Conference on Computer and Communications Se-
curity, pages 535–548, Berlin, Germany, November 4–8, 2013. ACM Press.

[3] Carsten Baum, Daniele Cozzo, and Nigel P. Smart. Using TopGear in
overdrive: A more efficient ZKPoK for SPDZ. In Kenneth G. Paterson and
Douglas Stebila, editors, SAC 2019: 26th Annual International Workshop
on Selected Areas in Cryptography, volume 11959 of Lecture Notes in Com-
puter Science, pages 274–302, Waterloo, ON, Canada, August 12–16, 2019.
Springer, Cham, Switzerland.

[4] Donald Beaver. Secure multiparty protocols and zero-knowledge proof sys-
tems tolerating a faulty minority. Journal of Cryptology, 4(2):75–122, Jan-
uary 1991.

[5] Donald Beaver. Efficient multiparty protocols using circuit randomiza-
tion. In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO’91,
volume 576 of Lecture Notes in Computer Science, pages 420–432, Santa
Barbara, CA, USA, August 11–15, 1992. Springer, Berlin, Heidelberg, Ger-
many.

[6] Donald Beaver. Correlated Pseudorandomness and the Complexity of Pri-
vate Computations. In Proceedings of the twenty-eighth annual ACM sym-
posium on Theory of computing, pages 479–488, 1996.

[7] Donald Beaver. One-Time Tables for Two-Party Computation. In Comput-
ing and Combinatorics: 4th Annual International Conference COCOON’98
Taipei, Taiwan, RoC, August 12–14, 1998 Proceedings 4, pages 361–370.
Springer, 1998.

[8] Aner Ben-Efraim, Michael Nielsen, and Eran Omri. Turbospeedz: Double
your online SPDZ! Improving SPDZ using function dependent preprocess-
ing. In Robert H. Deng, Valérie Gauthier-Umaña, Mart́ın Ochoa, and Moti
Yung, editors, ACNS 19: 17th International Conference on Applied Cryp-
tography and Network Security, volume 11464 of Lecture Notes in Com-
puter Science, pages 530–549, Bogota, Colombia, June 5–7, 2019. Springer,
Cham, Switzerland.

[9] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Kenneth G. Pa-
terson, editor, Advances in Cryptology – EUROCRYPT 2011, volume 6632
of Lecture Notes in Computer Science, pages 169–188, Tallinn, Estonia,
May 15–19, 2011. Springer, Berlin, Heidelberg, Germany.

32

[10] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic Encryption and Multiparty Computation. In Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, pages 169–188. Springer, 2011.

[11] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Rindal, and Peter Scholl. Efficient two-round OT extension and silent non-
interactive secure computation. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019: 26th Con-
ference on Computer and Communications Security, pages 291–308, Lon-
don, UK, November 11–15, 2019. ACM Press.

[12] Elette Boyle, Niv Gilboa, and Yuval Ishai. Secure computation with prepro-
cessing via function secret sharing. In Dennis Hofheinz and Alon Rosen, ed-
itors, TCC 2019: 17th Theory of Cryptography Conference, Part I, volume
11891 of Lecture Notes in Computer Science, pages 341–371, Nuremberg,
Germany, December 1–5, 2019. Springer, Cham, Switzerland.

[13] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully
Homomorphic Encryption without Bootstrapping. ACM Transactions on
Computation Theory (TOCT), 6(3):1–36, 2014.

[14] Andreas Brüggemann, Robin Hundt, Thomas Schneider, Ajith Suresh, and
Hossein Yalame. FLUTE: Fast and secure lookup table evaluations. In 2023
IEEE Symposium on Security and Privacy, pages 515–533, San Francisco,
CA, USA, May 21–25, 2023. IEEE Computer Society Press.

[15] Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. Amor-
tized complexity of information-theoretically secure MPC revisited. In Ho-
vav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology
– CRYPTO 2018, Part III, volume 10993 of Lecture Notes in Computer
Science, pages 395–426, Santa Barbara, CA, USA, August 19–23, 2018.
Springer, Cham, Switzerland.

[16] Dario Catalano, Ronald Cramer, Giovanni Di Crescenzo, Ivan Darmg̊ard,
David Pointcheval, and Tsuyoshi Takagi. Multiparty Computation, an
Introduction. Contemporary cryptology, pages 41–87, 2005.

[17] Dario Catalano, Mario Di Raimondo, Dario Fiore, and Irene Giacomelli.
MonZ2ka: Fast maliciously secure two party computation on Z2k . In Agge-
los Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors,
PKC 2020: 23rd International Conference on Theory and Practice of Pub-
lic Key Cryptography, Part II, volume 12111 of Lecture Notes in Computer
Science, pages 357–386, Edinburgh, UK, May 4–7, 2020. Springer, Cham,
Switzerland.

[18] Hao Chen, Miran Kim, Ilya Razenshteyn, Dragos Rotaru, Yongsoo Song,
and Sameer Wagh. Maliciously secure matrix multiplication with applica-
tions to private deep learning. Cryptology ePrint Archive, Report 2020/451,
2020.

33

[19] Hao Chen, Miran Kim, Ilya Razenshteyn, Dragos Rotaru, Yongsoo Song,
and Sameer Wagh. Maliciously Secure Matrix Multiplication with Applica-
tions to Private Deep Learning. In Advances in Cryptology–ASIACRYPT
2020: 26th International Conference on the Theory and Application of
Cryptology and Information Security, Daejeon, South Korea, December 7–
11, 2020, Proceedings, Part III 26, pages 31–59. Springer, 2020.

[20] Hao Chen, Miran Kim, Ilya P. Razenshteyn, Dragos Rotaru, Yongsoo Song,
and Sameer Wagh. Maliciously secure matrix multiplication with applica-
tions to private deep learning. In Shiho Moriai and Huaxiong Wang, edi-
tors, Advances in Cryptology – ASIACRYPT 2020, Part III, volume 12493
of Lecture Notes in Computer Science, pages 31–59, Daejeon, South Korea,
December 7–11, 2020. Springer, Cham, Switzerland.

[21] Jung Hee Cheon, Dongwoo Kim, and Keewoo Lee. MHz2k: MPC from HE
over Z2k with new packing, simpler reshare, and better ZKP. In Tal Malkin
and Chris Peikert, editors, Advances in Cryptology – CRYPTO 2021,
Part II, volume 12826 of Lecture Notes in Computer Science, pages 426–
456, Virtual Event, August 16–20, 2021. Springer, Cham, Switzerland.

[22] Koji Chida, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, and Benny Pinkas.
High-throughput secure AES computation. In Proceedings of the 6th
Workshop on Encrypted Computing & Applied Homomorphic Cryptogra-
phy, pages 13–24, 2018.

[23] Martine de Cock, Rafael Dowsley, Anderson CA Nascimento, and Stacey C
Newman. Fast, Privacy Preserving Linear Regression over Distributed
Datasets Based on Pre-distributed Data. In Proceedings of the 8th ACM
Workshop on Artificial Intelligence and Security, pages 3–14, 2015.

[24] Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver: Silent
VOLE and oblivious transfer from hardness of decoding structured LDPC
codes. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology –
CRYPTO 2021, Part III, volume 12827 of Lecture Notes in Computer Sci-
ence, pages 502–534, Virtual Event, August 16–20, 2021. Springer, Cham,
Switzerland.

[25] Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, Peter Scholl, and Chaop-
ing Xing. SPD Z2k : Efficient MPC mod 2k for dishonest majority. In
Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology
– CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Computer
Science, pages 769–798, Santa Barbara, CA, USA, August 19–23, 2018.
Springer, Cham, Switzerland.

[26] I. Damgard, V. Pastro, N.P. Smart, and S. Zakarias. Multiparty computa-
tion from somewhat homomorphic encryption. Cryptology ePrint Archive,
Report 2011/535, 2011.

34

[27] Ivan Damg̊ard, Daniel Escudero, Tore Kasper Frederiksen, Marcel Keller,
Peter Scholl, and Nikolaj Volgushev. New primitives for actively-secure
MPC over rings with applications to private machine learning. In 2019
IEEE Symposium on Security and Privacy, pages 1102–1120, San Fran-
cisco, CA, USA, May 19–23, 2019. IEEE Computer Society Press.

[28] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Christian Miles, and
Nigel P. Smart. Implementing AES via an actively/covertly secure
dishonest-majority MPC protocol. In Ivan Visconti and Roberto De Prisco,
editors, SCN 12: 8th International Conference on Security in Communica-
tion Networks, volume 7485 of Lecture Notes in Computer Science, pages
241–263, Amalfi, Italy, September 5–7, 2012. Springer, Berlin, Heidelberg,
Germany.

[29] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,
and Nigel P. Smart. Practical covertly secure MPC for dishonest majority
- or: Breaking the SPDZ limits. In Jason Crampton, Sushil Jajodia, and
Keith Mayes, editors, ESORICS 2013: 18th European Symposium on Re-
search in Computer Security, volume 8134 of Lecture Notes in Computer
Science, pages 1–18, Egham, UK, September 9–13, 2013. Springer, Berlin,
Heidelberg, Germany.

[30] Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally
secure multiparty computation. In Alfred Menezes, editor, Advances in
Cryptology – CRYPTO 2007, volume 4622 of Lecture Notes in Computer
Science, pages 572–590, Santa Barbara, CA, USA, August 19–23, 2007.
Springer, Berlin, Heidelberg, Germany.

[31] Ivan Damg̊ard, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranel-
lucci. The TinyTable protocol for 2-party secure computation, or: Gate-
scrambling revisited. In Jonathan Katz and Hovav Shacham, editors, Ad-
vances in Cryptology – CRYPTO 2017, Part I, volume 10401 of Lecture
Notes in Computer Science, pages 167–187, Santa Barbara, CA, USA, Au-
gust 20–24, 2017. Springer, Cham, Switzerland.

[32] Ivan Damg̊ard and Claudio Orlandi. Multiparty computation for dishonest
majority: From passive to active security at low cost. In Tal Rabin, editor,
Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in
Computer Science, pages 558–576, Santa Barbara, CA, USA, August 15–
19, 2010. Springer, Berlin, Heidelberg, Germany.

[33] Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multi-
party Computation from Somewhat Homomorphic Encryption. In Annual
Cryptology Conference, pages 643–662. Springer, 2012.

[34] Ivan Damg̊ard and Sarah Zakarias. Constant-overhead secure computation
of Boolean circuits using preprocessing. In Amit Sahai, editor, TCC 2013:
10th Theory of Cryptography Conference, volume 7785 of Lecture Notes

35

in Computer Science, pages 621–641, Tokyo, Japan, March 3–6, 2013.
Springer, Berlin, Heidelberg, Germany.

[35] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A frame-
work for efficient mixed-protocol secure two-party computation. In ISOC
Network and Distributed System Security Symposium – NDSS 2015, San
Diego, CA, USA, February 8–11, 2015. The Internet Society.

[36] Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas
Schneider, Shaza Zeitouni, and Michael Zohner. Pushing the communica-
tion barrier in secure computation using lookup tables. In ISOC Network
and Distributed System Security Symposium – NDSS 2017, San Diego, CA,
USA, February 26 – March 1, 2017. The Internet Society.

[37] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter
Scholl. Improved primitives for MPC over mixed arithmetic-binary circuits.
Cryptology ePrint Archive, Report 2020/338, 2020.

[38] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter
Scholl. Improved primitives for MPC over mixed arithmetic-binary cir-
cuits. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in
Cryptology – CRYPTO 2020, Part II, volume 12171 of Lecture Notes in
Computer Science, pages 823–852, Santa Barbara, CA, USA, August 17–
21, 2020. Springer, Cham, Switzerland.

[39] Daniel Escudero, Chaoping Xing, and Chen Yuan. More efficient dishonest
majority secure computation over Z2k via galois rings. In Yevgeniy Dodis
and Thomas Shrimpton, editors, Advances in Cryptology – CRYPTO 2022,
Part I, volume 13507 of Lecture Notes in Computer Science, pages 383–412,
Santa Barbara, CA, USA, August 15–18, 2022. Springer, Cham, Switzer-
land.

[40] David Evans, Vladimir Kolesnikov, and Mike Rosulek. A Pragmatic Intro-
duction to Secure Multi-Party Computation. Foundations and Trends® in
Privacy and Security, 2(2-3):70–246, 2018.

[41] Shimon Even, Oded Goldreich, and Abraham Lempel. A Randomized Pro-
tocol for Signing Contracts. Communications of the ACM, 28(6):637–647,
1985.

[42] Dengguo Feng and Kang Yang. Concretely Efficient Secure Multi-Party
Computation Protocols: Survey and More. Security and Safety, 1:2021001,
2022.

[43] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter
Scholl. A unified approach to MPC with preprocessing using OT. In
Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology – ASI-
ACRYPT 2015, Part I, volume 9452 of Lecture Notes in Computer Science,
pages 711–735, Auckland, New Zealand, November 30 – December 3, 2015.
Springer, Berlin, Heidelberg, Germany.

36

[44] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-
throughput secure three-party computation for malicious adversaries and
an honest majority. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, Advances in Cryptology – EUROCRYPT 2017, Part II, volume
10211 of Lecture Notes in Computer Science, pages 225–255, Paris, France,
April 30 – May 4, 2017. Springer, Cham, Switzerland.

[45] Sanjam Garg, Abhishek Jain, Pratyay Mukherjee, and Mingyuan Wang.
Scalable multiparty computation from non-linear secret sharing. In Annual
International Cryptology Conference, pages 384–417. Springer, 2024.

[46] Niv Gilboa. Two party RSA key generation. In Michael J. Wiener, editor,
Advances in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in
Computer Science, pages 116–129, Santa Barbara, CA, USA, August 15–
19, 1999. Springer, Berlin, Heidelberg, Germany.

[47] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play any Mental
Game, or a Completeness Theorem for Protocols with Honest Majority.
In Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali, pages 307–328. 2019.

[48] Venkatesan Guruswami and Mary Wootters. Repairing reed-solomon codes.
In Daniel Wichs and Yishay Mansour, editors, 48th Annual ACM Sym-
posium on Theory of Computing, pages 216–226, Cambridge, MA, USA,
June 18–21, 2016. ACM Press.

[49] Matan Hamilis, Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Pre-
processing for Life: Dishonest-Majority MPC with a Trusted or Untrusted
Dealer. In 2025 IEEE Symposium on Security and Privacy (SP), pages
41–41. IEEE Computer Society, 2024.

[50] Sebastian Hasler, Pascal Reisert, Marc Rivinius, and Ralf Küsters. Multi-
pars: Reduced-Communication MPC over Z2k. Cryptology ePrint Archive,
2023.

[51] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic.
SoK: General Purpose Compilers for Secure Multi-Party Computation. In
2019 IEEE symposium on security and privacy (SP), pages 1220–1237.
IEEE, 2019.

[52] Zhicong Huang, Wen-jie Lu, Yuchen Wang, Cheng Hong, Tao Wei, and
WenGuang Chen. Coral: Maliciously Secure Computation Framework for
Packed and Mixed Circuits. Cryptology ePrint Archive, 2024.

[53] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending obliv-
ious transfers efficiently. In Dan Boneh, editor, Advances in Cryptology –
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages
145–161, Santa Barbara, CA, USA, August 17–21, 2003. Springer, Berlin,
Heidelberg, Germany.

37

[54] Yuval Ishai and Eyal Kushilevitz. Private Simultaneous Messages Protocols
with Applications. In Proceedings of the Fifth Israeli Symposium on Theory
of Computing and Systems, pages 174–183. IEEE, 1997.

[55] Thomas P. Jakobsen, Marc X. Makkes, and Janus Dam Nielsen. Efficient
implementation of the Orlandi protocol. In Jianying Zhou and Moti Yung,
editors, ACNS 10: 8th International Conference on Applied Cryptography
and Network Security, volume 6123 of Lecture Notes in Computer Science,
pages 255–272, Beijing, China, June 22–25, 2010. Springer, Berlin, Heidel-
berg, Germany.

[56] Xiaoqian Jiang, Miran Kim, Kristin E. Lauter, and Yongsoo Song. Se-
cure outsourced matrix computation and application to neural networks.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018: 25th Conference on Computer and Communi-
cations Security, pages 1209–1222, Toronto, ON, Canada, October 15–19,
2018. ACM Press.

[57] Marc Joye and Benôıt Libert. Efficient cryptosystems from 2k-th power
residue symbols. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture
Notes in Computer Science, pages 76–92, Athens, Greece, May 26–30, 2013.
Springer, Berlin, Heidelberg, Germany.

[58] Marcel Keller. MP-SPDZ: A versatile framework for multi-party compu-
tation. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, ACM CCS 2020: 27th Conference on Computer and Communi-
cations Security, pages 1575–1590, Virtual Event, USA, November 9–13,
2020. ACM Press.

[59] Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl, Eduardo
Soria-Vazquez, and Srinivas Vivek. Faster secure multi-party computation
of AES and DES using lookup tables. In Dieter Gollmann, Atsuko Miyaji,
and Hiroaki Kikuchi, editors, ACNS 17: 15th International Conference on
Applied Cryptography and Network Security, volume 10355 of Lecture Notes
in Computer Science, pages 229–249, Kanazawa, Japan, July 10–12, 2017.
Springer, Cham, Switzerland.

[60] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster ma-
licious arithmetic secure computation with oblivious transfer. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and
Communications Security, pages 830–842, Vienna, Austria, October 24–28,
2016. ACM Press.

[61] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making
SPDZ great again. In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2018, Part III, volume 10822

38

of Lecture Notes in Computer Science, pages 158–189, Tel Aviv, Israel,
April 29 – May 3, 2018. Springer, Cham, Switzerland.

[62] Joe Kilian. Founding Cryptography on Oblivious Transfer. In Proceedings
of the twentieth annual ACM symposium on Theory of computing, pages
20–31, 1988.

[63] Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for
transferring short secrets. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lec-
ture Notes in Computer Science, pages 54–70, Santa Barbara, CA, USA,
August 18–22, 2013. Springer, Berlin, Heidelberg, Germany.

[64] Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. Dishonest ma-
jority multi-party computation for binary circuits. In Juan A. Garay
and Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014,
Part II, volume 8617 of Lecture Notes in Computer Science, pages 495–512,
Santa Barbara, CA, USA, August 17–21, 2014. Springer, Berlin, Heidel-
berg, Germany.

[65] Yehuda Lindell. Secure Multiparty Computation. Communications of the
ACM, 64(1):86–96, 2020.

[66] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-
and-choose oblivious transfer. In Yuval Ishai, editor, TCC 2011: 8th Theory
of Cryptography Conference, volume 6597 of Lecture Notes in Computer
Science, pages 329–346, Providence, RI, USA, March 28–30, 2011. Springer,
Berlin, Heidelberg, Germany.

[67] Payman Mohassel and Peter Rindal. ABY3: A mixed protocol framework
for machine learning. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference on Com-
puter and Communications Security, pages 35–52, Toronto, ON, Canada,
October 15–19, 2018. ACM Press.

[68] Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable
privacy-preserving machine learning. Cryptology ePrint Archive, Report
2017/396, 2017.

[69] Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Symposium on Security
and Privacy, pages 19–38, San Jose, CA, USA, May 22–26, 2017. IEEE
Computer Society Press.

[70] Hiraku Morita, Erik Pohle, Kunihiko Sadakane, Peter Scholl, Kazunari
Tozawa, and Daniel Tschudi. MAESTRO: Multi-party AES using Lookup
Tables. Cryptology ePrint Archive, 2024.

39

[71] Moni Naor and Benny Pinkas. Oblivious Transfer and Polynomial Evalua-
tion. In Proceedings of the thirty-first annual ACM symposium on Theory
of computing, pages 245–254, 1999.

[72] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and
Sai Sheshank Burra. A new approach to practical active-secure two-party
computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances
in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer
Science, pages 681–700, Santa Barbara, CA, USA, August 19–23, 2012.
Springer, Berlin, Heidelberg, Germany.

[73] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan
Boneh, and Nina Taft. Privacy-preserving ridge regression on hundreds
of millions of records. In 2013 IEEE Symposium on Security and Privacy,
pages 334–348, Berkeley, CA, USA, May 19–22, 2013. IEEE Computer
Society Press.

[74] Claudio Orlandi. LEGO and other cryptographic constructions. Technical
report, Citeseer, 2009.

[75] Emmanuela Orsini. Efficient, Actively Secure MPC with a Dishonest Ma-
jority: A Survey. In Arithmetic of Finite Fields: 8th International Work-
shop, WAIFI 2020, Rennes, France, July 6–8, 2020, Revised Selected and
Invited Papers 8, pages 42–71. Springer, 2021.

[76] Emmanuela Orsini, Nigel P. Smart, and Frederik Vercauteren. Overdrive2k:
Efficient secure MPC over Z2k from somewhat homomorphic encryption.
In Stanislaw Jarecki, editor, Topics in Cryptology – CT-RSA 2020, volume
12006 of Lecture Notes in Computer Science, pages 254–283, San Francisco,
CA, USA, February 24–28, 2020. Springer, Cham, Switzerland.

[77] Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In Jacques Stern, editor, Advances in Cryptology – EU-
ROCRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages
223–238, Prague, Czech Republic, May 2–6, 1999. Springer, Berlin, Heidel-
berg, Germany.

[78] Michael O Rabin. How to Exchange Secrets with Oblivious Transfer. Cryp-
tology ePrint Archive, 2005.

[79] Deevashwer Rathee, Thomas Schneider, and K. K. Shukla. Improved mul-
tiplication triple generation over rings via RLWE-based AHE. In Yi Mu,
Robert H. Deng, and Xinyi Huang, editors, CANS 19: 18th International
Conference on Cryptology and Network Security, volume 11829 of Lecture
Notes in Computer Science, pages 347–359, Fuzhou, China, October 25–27,
2019. Springer, Cham, Switzerland.

[80] Pascal Reisert, Marc Rivinius, Toomas Krips, and Ralf Kuesters. Arith-
metic tuples for MPC. Cryptology ePrint Archive, Report 2022/667, 2022.

40

[81] Pascal Reisert, Marc Rivinius, Toomas Krips, and Ralf Küsters. Overdrive
LowGear 2.0: Reduced-bandwidth MPC without sacrifice. In Joseph K.
Liu, Yang Xiang, Surya Nepal, and Gene Tsudik, editors, ASIACCS 23:
18th ACM Symposium on Information, Computer and Communications
Security, pages 372–386, Melbourne, VIC, Australia, July 10–14, 2023.
ACM Press.

[82] Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Kuesters. Convo-
lutions in overdrive: Maliciously secure convolutions for MPC. Cryptology
ePrint Archive, Report 2023/359, 2023.

[83] Dragos Rotaru and Tim Wood. Marbled Circuits: Mixing Arithmetic and
Boolean Circuits with Active Security. In International Conference on
Cryptology in India, pages 227–249. Springer, 2019.

[84] Adi Shamir. How to Share a Secret. Communications of the ACM,
22(11):612–613, 1979.

[85] Jelle Vos, Mauro Conti, and Zekeriya Erkin. SoK: Collusion-Resistant
Multi-Party Private Set Intersections in the Semi-Honest Model. In 2024
IEEE Symposium on Security and Privacy (SP), pages 465–483. IEEE,
2024.

[86] Sameer Wagh. Pika: Secure computation using function secret sharing
over rings. Proceedings on Privacy Enhancing Technologies, 2022(4):351–
377, October 2022.

[87] Sameer Wagh, Divya Gupta, and Nishanth Chandran. SecureNN: 3-party
secure computation for neural network training. Proceedings on Privacy
Enhancing Technologies, 2019(3):26–49, July 2019.

[88] Qiao Zhang, Chunsheng Xin, and Hongyi Wu. Privacy-Preserving Deep
Learning based on Multiparty Secure Computation: A Survey. IEEE In-
ternet of Things Journal, 8(13):10412–10429, 2021.

[89] Chuan Zhao, Shengnan Zhao, Minghao Zhao, Zhenxiang Chen, Chong-
Zhi Gao, Hongwei Li, and Yu-an Tan. Secure Multi-Party Computation:
Theory, Practice and Applications. Information Sciences, 476:357–372,
2019.

[90] Ian Zhou, Farzad Tofigh, Massimo Piccardi, Mehran Abolhasan, Daniel
Franklin, and Justin Lipman. Secure Multi-Party Computation for Machine
Learning: A Survey. IEEE Access, 2024.

41

