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Abstract. We introduce the concept of Fair Signature Exchange (FSE). FSE enables a client to ob-
tain signatures on multiple messages in a fair manner: the client receives all signatures if and only
if the signer receives an agreed-upon payment. We formalize security definitions for FSE and present
a practical construction based on the Schnorr signature scheme, avoiding computationally expensive
cryptographic primitives such as SNARKs. Our scheme imposes minimal overhead on the Schnorr
signer and verifier, leaving the signature verification process unchanged from standard Schnorr signa-
tures. Fairness is enforced using a blockchain as a trusted third party, while exchanging only a constant
amount of information on-chain regardless of the number of signatures exchanged. We demonstrate
how to construct a batch adaptor signature scheme using FSE, and our FSE construction based on
Schnorr results in an efficient implementation of a batch Schnorr adaptor signature scheme for the
discrete logarithm problem. We implemented our scheme to show that it has negligible overhead com-
pared to standard Schnorr signatures. For instance, exchanging 210 signatures on the Vesta curve takes
approximately 80ms for the signer and 300ms for the verifier, with almost no overhead for the signer
and 2x overhead for the verifier compared to the original Schnorr protocol. Additionally, we propose
an extension to blind signature exchange, where the signer does not learn the messages being signed.
This is achieved through a natural adaptation of blinded Schnorr signatures.



1 Introduction

Consider a scenario where a server holds a signing key and a client wishes to obtain signatures on a batch of
messages in exchange for payment. For example, the client might be purchasing a set of certificates, or a set
of one-time use tokens. In most existing applications, clients are forced to trust the server and pay upfront,
receiving the signatures later. However, this model is unsuitable for decentralized environments where no
party can be inherently trusted. Conversely, the server cannot send the signatures upfront, as the client’s
reliability to pay cannot be guaranteed.

In this paper, we introduce a new cryptographic primitive called Fair Signature Exchange (FSE). The
primary goal of FSE is to enable a signer to atomically and conditionally exchange signatures on a batch
of messages. Exchanging signatures is a special case of fair exchange, and it is well-established that this is
impossible for two parties to achieve without the help of a trusted third party (TTP) [21]. A natural idea
is to instantiate the TTP using a blockchain. Tas et al. [25] proposed doing so for fair exchange of data as
follows: the server first transmits encrypted data to the client, along with a commitment to the decryption
key and a proof demonstrating that the commitment corresponds to the decryption key of the ciphertext.
Subsequently, the client posts a conditional payment transaction on the blockchain, which is activated only
if the commitment to the decryption key is correctly opened on the blockchain. This method is sound and
requires only constant communication on the blockchain. However, it suffers from several drawbacks: the
server-to-client communication overhead is high due to encryption overhead, and server-side computations
are costly because the server must generate a Succinct Non-interactive Argument of Knowledge (SNARK)
proof that the commitment opens to a valid decryption key corresponding to the encrypted message.

In this work, we propose a simpler primitive called Fair Signature Exchange (FSE). FSE provides a flexible
framework involving two parties, signer, and client, both of which have access to a TTP. The client possesses
a set of messages {mi} and a public key pk, while the signer holds the corresponding secret key sk. The
objective is for client to conditionally obtain signatures {σi} on messages {mi} from signer, in exchange
for some agreed-upon payment. We present am FSE construction which minimizes communication using
the blockchain while also reducing server-to-client communication. Importantly, our scheme does not rely
on arguments of knowledge or SNARKs, significantly reducing the computational burden on the server.
Our construction is based on the Schnorr signature scheme. We provide formal definitions for FSE akin to
standard signature security definitions and prove the security of our construction. Additionally, we implement
our scheme and show that it has almost zero overhead on the signer and only 2x overhead on the verifier
compared to the original Schnorr protocol and importantly, the verification procedure remains the same.
FSE can used to build the batch version of adaptor signatures for the discrete logarithm relation, which
facilitates the atomic exchange of a single signature and a discrete logarithm of a public group element.
An adaptor signature is a cryptographic primitive that efficiently facilitates such atomic exchange using
a blockchain as a trusted third party (we elaborate more on adaptor signatures in Section 2). Adaptor
signatures are widely used in decentralized finance (DeFi), payment channels (batch atomic swaps) and
multi-chain bridges; however, unlike FSE, they are limited to exchanging one signature (or payment) at a
time, which becomes impractical when dealing with multiple accounts or transactions simultaneously.

2 Related work

The closest to our work are the fair-data exchange (FDE) construction [25], and adaptor signatures [15]. Our
work is inspired by FDE but for signatures. We can exchange data significantly more efficiently by focusing
on exchanging signatures.

Fair data exchange (FDE). In the FDE setting, the client holds a commitment to some data, which
the server possesses. The concept of fairness is defined in two parts: the client cannot obtain the data
without paying the server (Server Fairness) and the server cannot receive payment without revealing the
data to the client (Client Fairness). Tas et al., in [25] presents two concrete constructions of FDE. In both
constructions, the server encrypts the data with a random key. It sends the ciphertexts to the client, along
with a commitment to the key, and a zero-knowledge proof that the ciphertexts encrypt the correct data
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with the key and commitment to the key opens to the key. The server and client then exchange the key
for some agreed-upon payment via the trusted third party. However, their constructions are expensive since
they require data encryption and arguments of knowledge.

Akin to FDE, in FSE, signer has some secret key sk and client has the corresponding public input pk, but
this secret value sk is never revealed to the client. Furthermore, unlike the setting in [25], FSE must address
the risk of a faulty client attempting to learn a signature on one message by querying signatures for other
messages. This was not a concern in the server fairness definition of [25]. Additionally, in our scheme, we
only rely on the hardness of discrete logarithm, without requiring expensive SNARKs, as in [25].

Adaptor signatures. An adaptor signature is a cryptographic protocol that extends standard digital sig-
natures to enable conditional commitments. In this scheme, the signer generates an incomplete signature
with respect to a NP statement Y . Any client with the corresponding witness y can obtain the full signature.
Adaptor signatures are extractable, meaning that the signer can compute the witness y using the full signa-
ture and the corresponding incomplete signature. This mechanism is widely used in trustless atomic swaps
within DeFi [16] and payment channels [10, 22, 19]. Adaptor signatures enable trustless cross-chain ex-
changes by embedding a cryptographic secret into partially signed transactions, ensuring atomicity. Consider
Alice (owning Bitcoin) and Bob (owning Ethereum) who agree to exchange assets using a shared secret x
and its hash H(x). Alice locks 1 BTC in a Bitcoin hash time-locked contract (HTLC), allowing Bob to claim
it only by revealing x within a deadline. Instead of fully signing the transaction, Alice provides an adaptor
signature, which can only be finalized by revealing x. Concurrently, Bob locks 10 ETH in an Ethereum
HTLC, allowing Alice to claim it with x. This setup ensures the exchange cannot be completed unless both
parties act. Bob finalizes Alice’s adaptor signature to claim the Bitcoin, which reveals x in the process. Alice
then uses x to unlock the Ethereum on Bob’s HTLC. If either party fails to act before the deadlines, the
locked funds are returned to their respective owners, preserving security. This mechanism ensures atomicity:
either both exchanges are completed, or neither happens. One attractive feature of adaptor signatures is that
they do not require the blockchain to support smart contracts, only require the support of HTLC. As we
mentioned earlier, FSE can be used to extend adaptor signatures for the discrete logarithm relation to the
batch setting, wherein the client can get multiple signatures in exchange for a single secret discrete logarithm
value. Batching is particularly useful for complex DeFi scenarios e.g. batch atomic swaps. The key efficiency
of our scheme lies in using a single secret value to complete all transactions (signatures), regardless of the
batch size. The signer can extract the secret witness when any one of the signatures from the batch is posted
onchain by the client. In contrast, classic adaptor signature schemes would require a unique secret for each
transaction, resulting in a linear increase in blockchain communications.

Functional adaptor signatures. Functional Adaptor Signatures (FAS) [26] is an extension of adaptor
signatures that enables a server and a client to fairly exchange a signature for a function evaluation f(x)
where x is some secret value. In this protocol, the server learns nothing about x beyond the value of f(x), and
can compute f(x) if and only if the client gets a valid signature. On a similar vein as FDE, the client encrypts
x using functional encryption to get cx. The client and server then use adaptor signatures to exchange the
functional secret key for f for a signature. The server can then decrypt cx using the functional secret key to
obtain f(x).

3 Preliminaries

Notations. For any integer n, we use [n] to denote the ordered set {1, 2, . . . , n}. For any non-empty set S,
we let s ←$ S indicate that s is sampled uniformly at random from S, and we use |S| to denote the size
of S. We use λ to denote the security parameter. We denote negligible functions with negl(λ). A machine
is called probabilistic polynomial time (PPT) if it is a probabilistic algorithm that runs in poly(λ) time.
All algorithms are probabilistic unless stated otherwise. By y ← A(x1, . . . , xn), we denote the operation of
running algorithm A on inputs (x1, . . . , xn) with uniformly random coins and letting y denote the output.
If A has oracle access to some algorithm E, we write y ← AE(·)(x1, . . . , xn).

Computational assumptions. Let GGen be a group generation algorithm that on input 1λ outputs the
description of a prime order group G. The description contains the prime order p, a generator g ∈ G, and
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a description of the group operation. We will use the multiplicative notation for the group operation. Our
protocol assumes the standard discrete logarithm (DL) assumption in group G, which we formally define in
Definition 6. We denote a random oracle using H that we assume is randomly sampled from random oracle
space H.
Digital signature. It is a cryptographic protocol consisting of four algorithms Π = (Setup, Gen, Sign,
Verify), defined as follows:

– Setup(1λ): The setup algorithm takes as input a security parameter λ and outputs system parameters pp,
e.g. including the description of the message space and the key space.

– Gen(pp): The key generation algorithm takes the system parameters pp and outputs key pair (sk, pk),
where sk is the secret (signing) key and pk is the public (verification) key.

– Sign(sk,m): On input secret key sk and a message m, outputs a signature σ.

– Verify(pk,m, σ): The verification algorithm is a deterministic algorithm that takes the public key pk, a
message m, and a signature σ, and outputs a bit b ∈ {0, 1}. The output b = 1 indicates that the signature
is valid, and b = 0 indicates that it is invalid.

A digital signature scheme is secure if it satisfies correctness and strong unforgeability as defined below:

Definition 1 (Siganture Correctness). Signature scheme Π = (Setup, Gen, Sign, Verify) is correct, if the
following holds:

Pr

b = 1

∣∣∣∣∣∣∣∣
pp← Π.Setup(1λ)

(sk, pk)← Π.Gen(pp)
σ ← Π.Sign(sk, m)

b← Π.Verify(pk, m, σ)

 = 1.

Definition 2 (Signature Strong Unforgeability). A signature scheme Π = (Setup, Gen, Sign, Verify)
has strong existential unforgeability under chosen-message attack, if any PPT adversary A wins the game
defined in Figure 1 with negligible probability.

UnforgeabilityΠA(1
λ)

1 : pp← Π.Setup(1λ)

2 : (pk, sk)← Π.KGen(pp); Q := ϕ

3 : (m∗, σ∗)← ASIGN(·)(pp, pk)

4 : return (m∗, σ∗) ̸∈ Q ∧ Π.Verify(pk, m∗, σ∗) = 1

Oracle SIGN(m)

1 : σ ← Π.Sign(sk, m)

2 : Q = Q ∪ {(m,σ)}
3 : return σ

Fig. 1: Unforgeability game for signature scheme Π

The Schnorr signature scheme [24]. Let (G, p, g) ← GGen(1λ). Let HSig : G2 ×M → Zp be a hash
function modelled as a random oracle, whereM is the message space. The signing key sk ∈ Zp is a random
field element, and pk := gsk ∈ G is the corresponding public verification key. The signature σ on a message
m is then (R, s) ∈ G × Zp. To validate a signature σ = (R, s) on a message m, a validator first computes
c := HSig(R, pk,m) and checks that gs = R · pkc. Schnorr signatures have been proven strongly unforgeable
in the random oracle model [24, 3].

4 Fair Signature Exchange

4.1 Definitions

A Fair Signature Exchange (FSE) protocol is a protocol between client and signer involving a transparent
payment environment E as a trusted third party (TTP) that holds money under addresses belonging to the

4



other parties. The TTP can transfer money from one party’s address to another but requires a transaction
authorizing the transfer with the sender’s signature. It is transparent in the sense that any message sent
to E eventually becomes visible to all other parties. The FSE protocol FSE[Π] initialized with a signature
scheme Π, consists of PPT algorithms (Setup, KeyGen, PSign, PVerify, Execute, Recover). Both the client and
the signer parties are assumed to have access to the functionalities of Π. For the sake of simplicity from now
on, we write FSE instead of FSE[Π].

– FSE.Setup(1λ) → pp is a randomized algorithm that outputs the public parameters for the system (e.g.,
the description of appropriate spaces). All the following algorithms and protocols implicitly take the pp
as input.

– FSE.KeyGen(pp)→ (pk, sk) is a randomized algorithm that samples a secret signing key sk and computes
the corresponding public key pk.

– FSE.PSign(sk, {mi}i∈[n])→ ({σ̃i}i∈[n], aux, comk) is a randomized algorithm that takes as input the secret
key sk and a batch of messages {mi}i∈[n] ∈ Mn. It samples an encryption key k ←$ K, computes partial
(masked) signatures {σ̃i}i∈[n] along with auxiliary data aux and a commitment comk to the key. HereM
denote the message space of Π and K is the key space. We also use FSE.PSign(sk, {mi}i∈[n]; k) to denote
the above process.

– FSE.PVerify(pk, {mi}i∈[n], {σ̃i}i∈[n], aux, comk)→ {0, 1} is a deterministic algorithm that on input public
key pk, partial signatures {σ̃i}i∈[n] auxiliary data aux and a key commitment comk, checks whether the
partial signatures are valid.

– FSE.Execute(⟨client(comk, tok) ↔ E ↔ signer(k)⟩). client and signer communicate independently with the
TTP environment E, at the end of which client receives the opening k to commitment comk, and signer
receives some token tok. This interaction can be realized with the following algorithms, wherein FSE(E)

indicates the algorithm having access to the environment E:

stE,0 ← FSE(E).Init()

stE,1 ← FSE(E).ExeClient0(comk, tok)

(toks, stE,2)← FSE(E).ExeSigner0(k)

In essence, the interaction on E is successful if the signer receives the payment, i.e. toks ̸= ⊥.
– FSE.Recover({σ̃i}i∈[n], aux, k) → {σi}i∈[n] is a deterministic algorithm that, on input partial signatures
{σ̃i}i∈[n], auxiliary data aux and the decryption key k, outputs signatures {σi}i∈[n].

We require the FSE protocol to meet the following properties: completeness, signer fairness, client fairness.
Completeness ensures that if both parties honestly follow the protocol, then in the end, the signer receives
the tokens, and the client receives signatures. The signer fairness property ensures that a malicious client
cannot obtain more valid signatures than it has paid for. Lastly, the client fairness property guarantees that
a dishonest signer would not be paid without committing to valid signatures and subsequently revealing
them to the client. We formalize these properties as follows.

Definition 3 (Completeness). We say that a fair signature exchange scheme FSE[Π] is complete if for any
polynomial batch size n = n(λ), and any set of polynomially long messages {mi}i∈[n] ∈ Mn, the following
holds:

Pr



b = 1 ∧ toks ̸= ⊥ ∧
∀i ∈ [n] : Π.Verify(pk, mi, σi) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← FSE.Setup(1λ)

(sk, pk)← FSE.KeyGen(); k ←$ K
({σ̃i}i∈[n], aux, comk)← FSE.PSign(sk, {mi}i∈[n]; k)

b := FSE.PVerify(pk, {σ̃i}i∈[n], aux, comk)

{σi}i∈[n] := FSE.Recover({σ̃i}i∈[n], aux, k)

stE,0 ← FSE(E).Init()

stE,1 ← FSE(E).ExeClient0(comk, tok)

(toks, stE,2)← FSE(E).ExeSigner0(k)


= 1
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Game SignerFairness
FSE[Π]
A (1λ)

1 : pp← FSE.Setup(1λ)

2 : (pk, sk)← FSE.KGen(pp, 1λ)

3 : S := ϕ, K := ϕ, N := ϕ, c = 0, t = 0

4 : {(m∗
i , σ

∗
i )}i∈t′ ← ASIGN(·), EXEC(·)(pp, pk)

5 : return t < t′ ∧
6 : ∀ i ∈ [t′] : Π.Verify(pk, m∗

i , σ
∗
i ) = 1 ∧

7 : ∀ i ̸= j ∈ [t′] : m∗
i ̸= m∗

j

Oracle SIGN({mi}i∈[n])

1 : c← c+ 1

2 : k ←$ K; K[c] := k

3 : msg ← FSE.PSign(sk, {mi}i∈[n]; k)

4 : S := S ∪ {c}; N [c] = n

5 : return (c, msg)

Oracle EXEC(j, comk)

1 : if j ̸∈ S ∨ comk ̸= com(K[j]) return ⊥
2 : kj := K[j]; nj := N [j]

3 : t = t+ nj

4 : return kj

Fig. 2: Signer fairness game SignerFairness
FSE[Π]
A (1λ) for a fair signature exchange protocol FSE[Π]. Note that

we consider a strong adversary that can start multiple signing sessions, and additionally, run Execute multiple
times for each session.

Definition 4 (Signer Fairness). We say the scheme FSE has signer-fairness if for all PPT adversaries
A, the following quantity is negligible in λ:

AdvsfA,FSE[Π](λ) = Pr[SignerFairness
FSE[Π]
A (1λ) = 1]

where the signer fairness game is as defined in Figure 2.

Definition 5 (Client Fairness). We say the scheme FSE has client-fairness if any PPT adversary A wins
the client fairness game in Figure 3 game with negligible probability.

Game ClientFairness
FSE[Π]
A (1λ)

1 : pp← FSE.Setup(1λ)

2 : (pk, st)← A(pp)
3 : B := ϕ, I := ϕ, F := ϕ, S := ϕ, c← 0

4 : (st)← AVERIFY(·), EXEC(·)(st)

5 : if ∃ i ∈ [c] s.t. B[i] = 1 ∧
6 : ∃ (m, σ) ∈ F [i] : Π.Verify(pk, m, σ) = 0 :

7 : return 1

8 : else return 0

Oracle VERIFY({mi}i∈[n], ({σ̃i}, aux, comk))

1 : c← c+ 1

2 : B[c]← FSE.PVerify(pk, {σ̃i}i∈[n], aux, comk)

3 : I[c]← ({mi}i∈[n], {σ̃i}i∈[n], aux, comk)

4 : S ← S ∪ {c}

Oracle EXEC(j, k, tok)

1 : if j ̸∈ S return ⊥
2 : ({mi}i∈[n], {σ̃i}i∈[n], aux, comk) := I[j]
3 : stE,0 ← FSE.Init()

4 : stE,1 ← FSE.ExeClient0(comk, tok)

5 : (toks, stE,2)← FSE.ExeSigner0(k)

6 : {σi}i∈[n] ← FSE.Recover({σ̃i}i∈[n], aux, k)

7 : S ← S \ {j}
8 : if toks = ⊥ return ⊥
9 : F [j]← {(mi, σi)}i∈[n]

10 : return {σi}i∈[n]

Fig. 3: Client fairness game ClientFairness
FSE[Π]
A (1λ) for a fair signature exchange protocol FSE.
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5 Design

We now describe our construction of the FSE protocol. For simplicity, we assume client has a single message
m and seeks a signature from signer. We consider the case of a vector of messages later in the section.

1. client needs a proof that the commitment com actually opens up to the correct value s, that is, that
σ = (R, s) is a valid signature for the message of client. This is important so that client does not have to
trust signer blindly.

2. The final step, wherein signer reveals the commitment opening s on E and E subsequently transfers
the payment to signer, will be costly when running the protocol for a vector of messages because the
communication on E will grow linearly with the number of messages to be signed. This is not ideal, since
communication on E is much more expensive than direct communication between signer and client. Ideally,
we would like the communication to remains constant and independent of the number of messages.

FSE.Setup(1λ)

1 : (G, p, g)←$ GGen(1λ)

2 : H←$H
3 : return pp := (G, p, g, H)

FSE.KeyGen()

1 : sk←$ Zp

2 : return (sk, pk := gx)

FSE.PVerify(pk, {mi}i∈[n], {σ̃i}i∈[n], aux, comk)

1 : Parse {Ri}i∈[n] ← aux

2 : ∀ i ∈ [n] : ci := H(Ri, mi)

3 : return true if ∀ i ∈ [n] :

4 : comi := Ri · pkci

5 : g2σ̃i ?
= comk · comi

FSE.PSign(sk, {mi}i∈[n])
1 : k ←$ Zp; comk := gk

2 : ∀i ∈ [n] :

3 : ri ←$ Zp; Ri := gri

4 : ci := H(Ri, mi)

5 : si := ri + ci · sk

6 : σ̃i :=
k + si

2

7 : return ({σ̃i}i∈[n], aux := {Ri}i∈[n], comk)

FSE.Recover({σ̃i}i∈[n], aux, k)
1 : Parse {Ri}i∈[n] ← aux

2 : ∀i ∈ [n] : si := 2 · σ̃i − k

3 : return {σi := (Ri, si)}i∈[n]

Fig. 4: FSE protocol for fair signature exchange of Schnorr signatures

We address the first issue by leveraging the inherent structure of Schnorr signatures. Specifically, recall that

the Schnorr verification equation is gs
?
= R·pkc where c = HSig(pk, R,m). Hence, the signer can simply send R

and gs as a commitment to s. client can easily verify this commitment by just checking the Schnorr verification
equation. Importantly, signer does not need to send any additional data to validate these commitments. This
eliminates the need for an argument of knowledge, making our protocol significantly more efficient than a
general-purpose Fair Data Exchange (FDE). To address the second issue, consider the scenario in which
parties need to exchange signatures on n messages. In a naive approach, client and signer would send the
commitments {gsi} and corresponding openings {si} on E, resulting in linear communication in n. Instead,
we propose a modified signing protocol, wherein the signer samples a symmetric encryption key k, and sends
encrypted values {σ̃i} derived from signatures {si} along with a commitment to the key k (Figure 5). More
formally, signer computes the partial signatures σ̃i = (k + si)/2 as illustrated in Figure 4. Later we prove
σ̃i effectively hides the underlying signature si. signer sends these along with a binding commitment to the
key, comk = gk, to client. To exchange a batch of n signatures, client and signer only need to transmit the
decryption key k and its commitment comk through E, reducing the communication complexity in E from
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linear in the batch size to constant. Once client obtains k, they can easily recover the original signatures
si from the masked values σ̃i. Figure 5 depicts the masking process – since the client only sees the partial
signatures, we can prove that the client cannot compute the signatures without the decryption key k via E,
based on the discrete log assumption.

decryption
key (k)

Fig. 5: Let σi represent the field elements of the Schnorr signatures requested by the client. k denotes the
symmetric encryption key, which is uniformly randomly sampled by the server. The expression σ̃i =

σi+k
2

represents the ”encryption” of σi under the key k. The client and server now only need to exchange k via
the transparent environment. Crucially, we can securely use the same key k for all n signatures since the
signature values σi are random and independent, from the view of the client.

An overview of the whole interaction between parties signer, client and E can be seen in Figure 6. Figure 4
provides a formal overview of our proposed scheme. Additionally, Figure 7 presents the interaction via E to
exchange the key k for tokens.

5.1 Analysis

Theorem 1. The fair signature exchange scheme FSE described in Figure 4 is complete.

Proof. Let pp = (G, p, g, H) be the parameters output by the setup algorithm FSE.Setup(1λ) and {mi}i∈[n] ∈
Mn be any set of messages that n ∈ poly(λ). Suppose (sk, pk) is the key pair output by FSE.Gen(), where
pk = gsk. Let k ← Zp, and define

({σ̃i}i∈[n], {Ri}i∈[n], comk)← FSE.PSign(sk, {mi}i∈[n]; k)

Where Ri = gri for random values ri, σ̃i =
k+ri+H(Ri,mi)·sk

2 , and comk = gk. First, we assert that

FSE.PVerify(pk, {mi}i∈[n], {σ̃i}i∈[n], {Ri}i∈[n], comk) = 1

Which holds if and only if g2σ̃i
?
= comk ·Ri · pkci . Expanding this:

g2σ̃i = gk+ri+H(Ri,mi)·sk = gk · gri · (gsk)H(Ri,mi) = comk ·Ri · pkci

Secondly, let {σi}i∈[n] := FSE.Recover({σ̃i}i∈[n], {Ri}i∈[n], k), which implies that σi = (2 · σ̃i− k,Ri). There-
fore, the following holds:
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Fig. 6: Overview of the interaction between signer, client and the environment E, in a Fair signature exchange
(FSE) protocol.

FSE.signer(k) E FSE.client(comk, tok)

transaction with tokens tok

for opening of comk

if comk ̸= gk abort k

if gk = comk then toks ← tok

else toks ← ⊥

toks

retrieve toks

Fig. 7: Interaction of signer and client with the transparent environment E. This can be implemented on
Ethereum using a smart contract, and on Bitcoin using adaptor signatures, similar to [25].

Π.Verify(pk,mi, σi) = 1 ⇐⇒ g2·σ̃i−k ?
= Ri · pkci

Furthermore, we can verify:

g2·σ̃i−k = gri+H(Ri,mi)·sk = gri · (gsk)H(Ri,mi) = Ri · pkci

Finally since comk = gk, according to the definition of transparent environment E, client having tokens tok,
receives k and toks ̸= ⊥. Thus, all three conditions hold with a probability of 1. □

Theorem 2. The fair signature exchange scheme FSE described in Figure 4 satisfies signer fairness. In fact,
for every PPT adversary A, there exist PPT adversaries B1 and B2 such that,

AdvsfA(λ) ≤ qs ·
(
AdvdlB1

(λ) +
n · qH

p

)
+ AdvsufB2,Sch(λ)

where n = n(λ), qs = qs(λ) and qH = qH(λ) are upper bounds on the batch size, number of signing oracle
queries, and number of random oracle queries made by A respectively.
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Proof. We prove the security signer fairness game based on the strong unforgeability of Schnorr signatures and
the DL assumption, as defined in Definitions 2 and 6, respectively. To provide intuition, assume that the ad-
versary A outputs n1 valid message/signature pairs while recovering only n2 messages through FSE.Recover,
where n2 < n1. The adversary must have obtained a signature on a message m∗ in one of the following ways:

– If A has not called FSE.PSign on m∗, we formally construct another adversary capable of breaking the
unforgeability of the Schnorr signature scheme.

– If A has called FSE.PSign on m∗ but has not called FSE.Recover on m∗, this implies that for a random gk,
computing the signature on m∗ enables A to compute k. In this case, we formally construct an adversary
capable of breaking the DL assumption.

Given the security of the Schnorr signature scheme (strong unforgeability) and the DL assumption, We
conclude that, except with negligible probability, A cannot produce a signature for a message that has not
been queried either to the signing oracle or to FSE.Recover. This proves the signer fairness game. The formal
proof can be found in Appendix A.1. □

Theorem 3. The fair signature exchange scheme FSE described in Figure 4 satisfies client fairness. In fact,

every PPT adversary A wins ClientFairness
FSE[Π]
A (1λ) for scheme Figure 4 with an advantage of 0.

Proof. Intuitively, given comk = gk, client can verify the correctness of partial signatures by checking:

FSE.PVerify({mi}i∈[n], {σ̃i}i∈[n], aux, comk) = 1

⇐⇒ g2σ̃i = comk ·Ri · pkci .

By trusting E, client pays signer if and only if it receives the key k such that comk = gk. This ensures that
client makes the payment if and only if it can compute the correct signatures. The formal proof can be found
in Appendix A.2. □

5.2 Constructing Batch Adaptor Signatures from FSE

We define the notation of batch adaptor signature scheme BASΠ,Rel as an extension of adaptor signature
scheme to sign multiple messages simultaneously, with respect to a signature scheme Π and a hard relation
Rel is defined as a tuple of four PPT algorithms:

– {σ̃i} ← pBSign(sk, {mi}, Y ): The pre-signing algorithm takes as input the secret key for Π, a batch of
messages, and a statement Y ∈ LRel, and outputs partial signatures on all the messages.

– b ← pBVrfy(vk, {mi}, Y, {σ̃i}): The pre-verification algorithm is a deterministic algorithm which takes as
input the public key for Π, a batch of messages, a statement Y and corresponding partial signatures {σ̃i},
outputs a bit denoting whether or not all the partial signatures are valid.

– {σi} ← Adapt(vk, {σ̃i}, y): The adapting algorithm takes as input a batch of partial signatures, a witness
y for the statement Y , and outputs full signatures.

– y ← Extract(vk, σ̃i, σi, Y ): The extracting algorithm takes as input a partial signature, a corresponding
full signature, a statement Y , then it either outputs a witness y such that (Y, y) ∈ Rel or ⊥.

Similar to adaptor signatures [15], a batch adaptor signature scheme must satisfy the following properties:

– Partial signature correctness. This means that if the client and the server are both honest, then the client
successfully gets valid signatures on all messages queried and the server learns the witnesses of all the
corresponding instances.

– Partial signature adaptability. Informally, this means that if the partial signatures satisfy verification, i.e.
pBVrfy outputs one, then the client gets valid signatures after running Adapt.

– Unforgeability. A malicious client should not be able to forge a signature.

10



– Witness extractability. This guarantees that a malicious client cannot use a partial signature for a message
m, with respect to a statement Y to produce a valid signature σ without revealing a witness for Y .

Due to space restrictions, we do not formally define the notions listed above, but we will include them in
the full paper. We now discuss how we can construct a Schnorr-signature-based batch adaptor scheme for
the discrete log relation from our FSE construction. The core idea is to think of the encryption key k as the
client’s discrete log witness, and the same witness k is used to compute partial signatures for the whole batch
of messages. More formally, when given the discrete log instance Y as input, the signer samples {ri} values as
in standard Schnorr signing, then sets R̂i to be gri/Y for all i. The challenge values ci’s are computed using

R̂i instead of Ri, and then the signer simply returns
ri+ci·sk

2 . It is easy to see that the FSE.PVerify algorithm
can directly be used to verify the partial signatures. The FSE.Recover algorithm can be used to adapt the
partial signatures to get full signatures. Lastly, given any full signature σi = (R̂i, si) and the corresponding
partial signature σ̂i, the signer can easily compute the discrete log as 2 · σ̂i − si. Figure 8 formally presents
the batch adaptor construction.

BAS.pBSign(sk, {mi}, Y )

1 : ∀i ∈ [n] :

2 : ri ←$ Zp; R
′
i := gri/Y

3 : ci := H(R′
i, mi)

4 : si :=
ri + ci · sk

2

5 : return ({(si, R′
i)}i∈[n])

BAS.Extract(vk, σ̃i, σi, Y )

1 : return 2 · σ̃i − s′i

BAS.pBVrfy(vk, {mi}i∈[n], Y, {σ̃i}i∈[n])
1 : Parse (si, R

′
i)← σ̃i∀i ∈ [n]

2 : ∀ i ∈ [n] : ci := H(R′
i, mi)

3 : return true if ∀ i ∈ [n] :

4 : comi := R′
i · pkci

5 : g2si
?
= Y · comi

BAS.Adapt(vk, {σ̃i}i∈[n], y)
1 : ∀i ∈ [n] : s′i := 2 · σ̃i − y

Fig. 8: The batch adaptor signature scheme BAS based on Schnorr signatures and the discrete log relation,
constructed from our FSE scheme.

Analysis. Partial signature correctness for our construction is straightforward. Adaptability of the scheme
directly follows from client fairness of the FSE scheme. Unforgeability can be proven by relying on signer
fairness of FSE – the client cannot forge more signatures. Lastly, witness extractability holds based on the
unforgeability of the underlying Schnorr signature scheme, similar to the proof in [9]. We will include formal
proofs in the full version of the paper.
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6 Implementation and Evaluation

To assess the performance of our protocol, we implemented it in Rust using the Arkworks framework [1]. Our
source code is publicly available.∗ All experiments were conducted on a consumer-grade PC equipped with
an Intel i5-7200U CPU (2 cores) and 8 GB of RAM. Our simple baseline for measurement is the original
Schnorr protocol. To measure the computation of the signer, we consider the running time of FSE.PSign
algorithm in Figure 4, and for the client, we measure the running time of the algorithms FSE.PVerify and
FSE.Recover. We find that, compared to the original Schnorr protocol, our protocol has only 25% overhead
for the signer for n > 8 signatures (and upto 0.9x for smaller values of n); and under 2x overhead for the
verifier (Figure 10). We evaluate our scheme on two curves: BLS12-381 (pairing-friendly) and Vesta (non-
pairing-friendly). Notably, initiating our scheme on Vesta yields a 2-3x performance improvement compared
to BLS12-381, which is advantageous as we do not require pairing.

Computation comparison to general-purpose FDE [25].We benchmark our protocol against the state-
of-the-art FDE schemes presented in [25], which we refer to as KZG-Paillier and KZG-Elgamal (Figure 9).
For this comparison, we assume that the transferred data consists of a vector of field elements. A single
Schnorr signature comprises a randomly chosen group element R and a secret field element s. We assume s is
transmitted through FDE, allowing us to equate a signature with a field element and assume R is transmitted
in plaintext. Similar to the original experiment in [25], we measure the time required to generate proofs by
the prover and verify proofs by the verifier. The FDE scheme employs KZG polynomial commitment on the
pairing-friendly BLS12-381 curve, introducing additional overhead. It is important to note that the FDE
scheme includes additional costly operations, such as data encryption and KZG commitment generation,
which are not accounted for in their performance evaluation but are irrelevant to our protocol and, therefore,
not included in our comparison. For the sake of comparison, we use BLS12-381 to initialize our scheme too.
As seen in Figure 9, the signer in our FSE protocol is almost 10x more efficient than the KZG-Paillier prover;
relative to the KZG-Elgamal prover, our signer almost has the same time for n = 210 but much faster some
smaller n. The verifier in our FSE scheme is about 10x more efficient than the KZG-Paillier verifier and 100x
more efficient than the verifier in KZG-Elgamal. Hence, our FSE scheme in general is orders of magnitude
more efficient than the general purpose FDE constructions in [25].
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(a) Verifier Performance
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Number of Signatures

FSE Signer

Original Schnorr Signer

(b) Signer Performance

Fig. 10: Comparison of Verifier and Signer performance between FSE scheme and Original Schnorr, both
instantiated with Vesta curve. FSE has almost no overhead on the signer but has a 2x overhead on the
verifier (client) compared to the original Schnorr scheme.

∗https://github.com/h-hafezi/fair_schnorr_signature_exchange
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Fig. 9: Comparison between our FSE scheme and two schemes in [25], all instantiated with BLS12-381. (a)
Verifier Comparison, (b) Prover Comparison. The verifier in our FSE scheme is about 10x more efficient than
KZG-Paillier verifier and 100x more efficient than KZG-Elgamal. Our prover is about 10x more efficient than
the KZG-Paillier prover, while compared to the KZG-Elgamal prover, it is faster for small n and almost has
the same running time for n = 210.

Communication comparison to [25]. Communication using blockchains is extremely expensive. At the
time of writing, publishing 1MB of data on the Ethereum blockchain costs approximately $17,000 USD.
Therefore, minimizing on-chain communication is crucial. Our protocol, like [25], operates FSE for n signa-
tures with constant on-chain communication: only a single group element (comk) and one scalar field element
(k) are published on E, totalling just 136 bytes with BLS12-381. Unlike [25], our protocol also minimizes
off-chain communication. To exchange n signatures (beyond the messages to be signed), the signer and client
only exchange n field elements {σ̃i}i∈[n] and n + 1 group elements: {Ri}i∈[n] along with comk. This con-
trasts sharply with [25], which incurs significant bandwidth overheads, with constants 10x and 50x larger
for KZG-Elgamal and KZG-Paillier, respectively, relative to the data size.
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7 Fair Signature Exchange for Hidden Messages

We extend our protocol from the last section to allow exchanging blind signatures, i.e., signatures on hidden
messages. We start with formally defining blind signatures. In addition, we propose a construction based on
blind Schnorr signatures, but we do not provide a formal proof.

7.1 Blind signatures

A blind signature scheme allows a user to obtain a signature from a signer on a message m in such a way
that (i) the signer is unable to recognize the signature later (blindness, which in particular implies that m
remains hidden from the signer) and (ii) the user cannot compute more signatures than issued by the signer
(unforgeability). Blind signatures have a wide range of applications e.g. e-cash [6, 7, 20, 5, 13], e-voting
[14, 17] and anonymous credentials [4, 2]. We use the formal definition and construction of blind signatures
from [12], which can also be found in Appendix B. Figure 11 presents the blind signing protocol. The other
algorithms, BS.Setup, BS.Gen, and BS.Verify, are defined similarly to the standard Schnorr signature scheme.
This scheme is secure with arbitrary polynomially many concurrent sessions assuming the hardness of the
one-more discrete log assumption (OMDL) and the modified ROS assumption (MROS) in the algebraic
group model (AGM) [11].

BS.Sign(sk) BS.user(pk,m)

r0, r1 ←$ Zp

R0 := gr0 , R1 := gr1
R0, R1

α0, α1, β0, β1 ←$ Zp

R′
0 := R0 · gα0 · pkβ0

R′
1 := R1 · gα1 · pkβ1

c′0 := H(R′
0,m), c′1 := H(R′

1,m)

c0 := c′0 + β0; c1 := c′1 + β1c0, c1

b←$ {0, 1}
s← rb + cb · sk

s, b

if gs ̸= Rb · pkcb then return ⊥
return σ ← (R′

b, s
′ := s+ αb)

Fig. 11: Clause blind Schnorr signature signing protocol

7.2 Fair blind signature exchange (FBSE)

We define FBSE similar to FSE. The two main differences are, (1) the signing protocol is now interactive and
(2) the protocol is defined on top of a blind signature scheme BS, instead of a non-blind signature scheme Π.
Formally, a Blind Fair Signature Exchange (FBSE) signature protocol is a protocol between client and signer
involving a transparent payment environment E. It consists of PPT algorithms (Setup, KeyGen, BlindPSign,
Verify, Execute, Recover), the protocol is initialized with a blind signature scheme BS, where client has a
public key pk and signer has the corresponding secret key sk. Both these parties are assumed to have access
to unbiased random coins and the functionalities of BS.

– FBSE.Setup(1λ) → pp. Probabilistic polynomial-time algorithm that outputs the public parameters for
the system (e.g., the description of appropriate spaces). All the following algorithms and protocols
implicitly take the public parameters; we omit them for brevity.
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– FBSE.KeyGen()→ (pk, sk) is a randomized algorithm that samples a secret signing key sk and computes
the corresponding public key pk.

– FBSE.BlindPSign
(
⟨client(pk, {mi}i∈[n])↔ signer(sk)⟩

)
. Parties client and signer engage in an interactive

protocol, where at the end client receives partial signatures {σ̃i}i∈[n] on the messages along with auxiliary
data aux and commitment comk. For a 3-round protocol, the interaction can be realized by the following
algorithms:

(msgclient,0, stclient,0)← FBSE.client0(pk, {mi}i∈[n])

(msgsigner,1, stsigner)← FBSE.signer1(sk, msgclient,0)

(msgclient,1, stclient,1)← FBSE.client1(stclient,0, msgsigner,1)

(msgsigner,2, k)← FBSE.signer2(stsigner,1, msgclient,1)

({σ̃i}i∈[n], aux, comk)← FBSE.client2(stclient,1, msgsigner,2)

Typically, FBSE.client0 just initiates the session, and thusmsgclient,0 = () and stclient,0 = (pk, {mi}i∈[n], n).
– FBSE.PVerify(pk, {σ̃i}i∈[n], aux, comk) → {0, 1} is a deterministic algorithm that on input public key

pk, partial signatures {σ̃i}i∈[n], auxiliary data aux and commitment comk, checks whether the partial
signatures are formatted correctly.

– FBSE.Execute(⟨client(comk, tok)↔ E↔ signer(k)⟩). client and signer communicate independently with a
transparent third-party environment E, in which at the end, client outputs k which is opening to comk

and signer outputs token tok. This two-round interaction can be realized with the following algorithms,
FBSE(E) indicates the algorithm having access to the transparent environment E:

stE,0 ← FBSE(E).Init()

stE,1 ← FBSE(E).ExeClient0(comk)

(tok, stE,2)← FBSE(E).ExeSigner0(k)

If the interaction is successful then tok ̸= ⊥ otherwise tok = ⊥.
– FBSE.Recover({σ̃i}i∈[n], aux, k). On input partial signatures {σ̃i}i∈[n], decryption key k and auxiliary

data aux, outputs signatures {σi}i∈[n].

Since the definition has been revised, the security definitions must be updated, particularly in light of the
new constraints, e.g. allowing interaction in the signing protocol. We introduce a new definition for client
privacy, where the goal is to ensure that the signer learns nothing about the client’s messages being signed.
The updated security definitions are provided in Appendix B.1.

Our FBSE construction. We observe that our original FSE in Figure 4, can be modified to also work
for exchanging blind signatures. Apart from the signing algorithm, the Setup,KeyGen,Verify and Recover
algorithms remain the same as in Figure 4. For signing, we tweak the interactive protocol from Figure 11 in
the same way as the non-blind Schnorr signature, for example, client first receives the partial signatures {σ̃i}
instead of sending {si} directly, and later client can compute values {si} by obtaining the key k. Figure 12
formally describes the signing algorithm for our blind FSE scheme FBSE, in which at the end, client receives
the partial signatures. Appendix B.4 formally analyses the client privacy and client fairness for our FBSE
scheme. We remark that we do not have a formal proof for signer fairness, but we conjecture that it holds
based on the one-more discrete log assumption.

7.3 Application of FBSE

Here we point out two interesting applications of FBSE:

Decentralized privacy pass. Privacy pass [8] is a cryptographic protocol that enables users to bypass
CAPTCHAs while preserving privacy using anonymous, one-time-use tokens. Each token is blindly signed to
keep serial numbers hidden during issuance, ensuring privacy when the token is redeemed. While centralized
entities like Cloudflare currently issue such tokens, this approach risks censorship and single-point-of-failure.
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signer((p, G, g, H), sk) client((p, G, g, H), pk, {mi}i∈[n])

∀ i ∈ [n] : ri,0, ri,1 ←$ Zp

Ri,0 ← gri,0

Ri,1 ← gri,1 aux0 := {Ri,0, Ri,1}i∈[n]

∀i ∈ [n] :

αi,0, βi,0, αi,1, βi,1 ←$ Zp

R′
i,0 := Ri,0 · gαi,0 · pkβi,0

R′
i,1 = Ri,1 · gαi,1 · pkβi,1

c′i,0 = H(R′
i,0, m)

c′i,1 = H(R′
i,1, m)

ci,0 = c′i,0 + βi,0 mod p

ci,1 = c′i,1 + βi,1 mod p
{ci,0, ci,1}i∈[n]

∀ i ∈ [n] : bi ←$ {0, 1}

k ←$ Zp ; comk ← gk

si := ri,bi + ci,bi · sk mod p

σ̃i :=
k + si

2 {σ̃i}i∈[n], {bi}i∈[n], comk

aux := {R′
i,bi}i∈[n]

return ({σ̃i + αi,bi/2}i∈[n], aux, comk)

Fig. 12: The interactive signing protocol for our fair blind signature exchange scheme FBSE

A decentralized marketplace for anonymous tokens could address these concerns, allowing diverse entities to
issue tokens anonymously. To enable this, blind fair signature exchange protocol incentivizes providers by
allowing clients to obtain tokens in exchange for payment. This interactive system ensures privacy, fairness,
and a more robust decentralized credential ecosystem.

Automated coin shuffling. Consider a smart contract (sc) that, upon receiving a serial number and
a valid signature on it, verifies the serial number’s freshness and transfers $1 to a designated account.
However, the operator of sc cannot trust users to provide valid signatures in advance, nor can users deposit
funds beforehand. Additionally, the operator must remain unaware of the specific serial numbers it signs. By
leveraging FBSE, mutual trust between the operator and the client is unnecessary, the blindness property
ensures that sc does not learn the signed serial numbers, and finally the underlying batching property ensures
minimized communication on the blockchain. This mechanism provides privacy within the pool, proportional
to its size.
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8 Conclusion

Fair Signature Exchange (FSE) is a novel cryptographic primitive inspired by Fair Data Exchange (FDE). It
generalizes the concept of adaptor signatures by extending their functionality to support batching, enabling
conditional and atomic exchange of multiple signatures in a single operation. FSE has significant applications
in decentralized finance (DeFi), including batch atomic swaps and bridges. FSE extends the definition of
adaptor signatures to consider the blockchain in the security definitions as well as batching. In this work, we
formally define FSE and provide comprehensive security definitions as well as a construction based on Schnorr
signatures. Our work includes rigorous proofs of security, showing that FSE achieves its goals while minimizing
communication with the trusted third party (e.g., blockchain) and does not rely on heavy cryptographic
primitives like SNARKs. This makes FSE a lightweight and efficient solution for fair signature exchanges in
decentralized ecosystems.

8.1 Future work

Fair blind signature exchange. We proposed a definition for fair blind signature exchange with practical
motivations such as coin shuffling and fair exchange of privacy passes. Finally, we proposed a construction
based on the Schnorr blind signature, deferring a complete security proof to future work.

Fair proof exchange. Proof systems are useful tools that help outsource computation trustlessly with
tremendous applications such as roll-ups. One interesting question is how to construct efficient fair proof
exchange which can be the building block for a proof marketplace. Distributed proof systems [23, 18, 27]
involve a coordinator that partitions a computation into smaller chunks. These chunks are then assigned to
worker nodes which compute proofs for their respective chunks. Subsequently, the coordinator aggregates the
individual chunk proofs to produce a proof for the entire computation. Fair proof exchange mechanisms can
incentivize worker nodes for their contributions, while ensuring they are paid if they provide the agreed-upon
proofs.
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A Deferred Proofs

We now prove that our proposed scheme in Figure 4 satisfies signer-fairness and client-fairness.

A.1 Server fairness

Definition 6 (Discrete Logarithm Assumption). We say the discrete logarithm assumption (DL)
holds with respect to group generator GGen(1λ) if for any PPT adversary A, given (G, p, g) ← GGen(1λ)
and x←$ Zp, A(G, p, g, gx) outputs x with negligible probability.

Proof of Theorem 2. Let L = {m∗i , σ∗i }i∈[t′] denote the list of signatures returned by A in the signer
fairness game. Let σ∗i = (R∗i , s

∗
i ) be the signatures returned by A, for all i ∈ [t′]. Let M denote the list of

messages for which A queried the SIGN oracle. Let R :M → G be a map storing the Ri values output by
the challenger in response to a SIGN query by A. Let B :M → N be a map storing the batch number (or
session id) corresponding to the messages for which the SIGN oracle was called. Lastly, let X be a list of
session ids for which the EXECUTE is called, and it does not return ⊥. Let E1 be the event that there exists
a message - signature pair (m∗, σ∗ = (R∗, s∗)) such that (a) either m∗ ̸∈ M, meaning that the adversary
never called the SIGN oracle with m∗ as one of the inputs, (b) or, m∗ ∈ M, R∗ ̸= R[m∗], and B[m∗] is not
in X. Additionally, let E2 denote the event that there exists a message - signature pair (m∗, σ∗ = (R∗, s∗))
such that m∗ ∈ M, the corresponding nonce value R∗ is equal to R(m∗), and, B[m∗] is not in X. We note
that in the event ¬E1 ∧ ¬E2, the number t′ of signatures output by A cannot be greater than t because for
all (m,σ) pairs output by the adversary, both the SIGN and EXEC oracles were called and successfully run.
Hence, the adversary can win the signer fairness game only if either E1 or E2 occurs. This implies that,

Pr[SignerFairness
FSE[Π]
A (1λ) = 1] (1)

= Pr[SignerFairness
FSE[Π]
A (1λ) ∧ E1] (2)

+ Pr[SignerFairness
FSE[Π]
A (1λ) ∧ E2] (3)

Lemmas 1 and 2 below prove the theorem.

Lemma 1. There exists a PPT adversary B1 such that,

Pr[SignerFairness
FSE[Π]
A (1λ) = 1 ∧ E1] ≤ AdvsufB1,Sch(λ)

Proof. We construct an adversary B1 for the strong unforgeability of Schnorr as follows. It receives pp ←
(G, g, p,H), pk from its challenger and simulates the SignerFairness game to A. It first sends pp, pk to A. It
maintains maps M, R and B as described above – they are all initialized as ⊥. It then responds to the oracle
queries as follows:

– SIGN({mi}i∈[n]). As in the signer fairness game, B1 increments the counter c by one, and samples a
random key k ←$ Zp. It then queries its unforgeability challenger for signatures on mi for all i ∈ [n]. Let
{(Ri, si)}i∈[n] be the challenger’s response. It computes comk ← gk, and σ̃i = (k+ si)/2 for all i ∈ [n]. It
stores k and n in the maps K and N respectively. Additionally, it sets M← M ∪ {mi}i∈[n], R[mi]← Ri

and B[mi]← c for all i ∈ [n]. It then returns {σ̃i}i∈[n], comk and aux = {Ri}i∈[n] to A.
– EXEC(j, comk). B1 aborts if j ̸∈ K or if comk ̸= com(K[j]), as in the signer fairness game. Otherwise, it

increments t by n, adds j to X and outputs K[j].
– H(R,m). It queries its challenger for H(R,m) and forwards the response to A.

Eventually, A outputs a list of message - signature pairs, L = {m∗i , σ∗i }i∈[t′]. B1 finds a message-signature
pair (m∗, (R∗, s∗)) ∈ L such that, either m∗ ̸∈ M or, m∗ ∈ M but R∗ ̸= R[m∗] and B[m∗] is not in X. It
aborts if it cannot find any such message. Otherwise, it returns (m∗, (R∗, s∗)) to its challenger. Now, we
argue that if A wins the signer fairness game, and if E1 occurs, then B1 also wins its unforgeability game.
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This is because, conditioned on E1, B1 will not abort because there exists a message in L that satisfies all
the conditions listed above. Additionally, if m∗ ̸∈ M, then, B1 never queried its challenger for a signature on
m∗. Otherwise, if m∗ ∈ M but R∗ ̸= R[m∗], then, the signature (R∗, s∗) on m∗ output by A is different from
the signature (R[m∗], ·) output by the unforgeability challenger. In both cases, B successfully outputs a valid
forgery. This proves the lemma. □

Lemma 2. There exists a PPT adversary B2 such that,

1

qs
· Pr[SignerFairnessFSE[Π]

A (1λ) = 1 ∧ E2]−
n · qH

p
≤ AdvdlB2

(λ)

where qs = qs(λ), n = n(λ) and qH = qH(λ) are upper bounds on the number of SIGN queries, the batch size,
and the number of random oracle queries issued by A respectively.

Proof. We construct a discrete log adversary B2 as follows. It gets as input (G, g, h, p), where p is the order
of the group G, and g is a generator. It plays the role of challenger to A in the SignerFairness game as follows.
First, it samples sk←$ Zp and sets pk← gsk. It then sends pp = (G, g, p), pk to A. To respond to the oracle
queries, B2 maintains some metadata. Specifically, it stores a map H : G×M→ Zp to handle random oracle
queries. It initializes another map A :M→ Zp to store σ̃ values used for responding to SIGN queries. It also
maintains M,R and B as described above. Additionally, let qs be an upper bound on the number of signing
oracle queries issued by A. B2 samples i∗ ←$ [qs], as its guess for the signing session containing a forgery
message. We now describe how B2 responds to oracle queries:

– H(R,m). If (R,m) ∈ H, then simply output H(R,m). Otherwise, it samples c←$ Zp, sets H(R,m)← c
and returns c to A.

– SIGN({mi}i∈[n]). B increments c as in the game. It sets M← M∪{mi}i∈[n] and B[mi]← c for all i ∈ [n].
• If c ̸= i∗, B2 honestly runs the signature protocol. More formally, for each i ∈ [n], it samples ri ←$ Zp,

computes Ri ← gri . It queries ci ← H(Ri,mi) for all i ∈ [n], and then computes si ← ri + ci · sk. It
samples kc ←$ Zp, computes comk ← gkc and stores K[c] ← kc. It computes σ̃i ← (kc + si)/2 and
comi ← gsi for all i ∈ [n]. It then sets R[mi]← Ri for all i ∈ [n], and sends {σ̃i}i∈[n], aux = {Ri}i∈[n]
and comk to A.

• If c = i∗, B sets com∗k ← h.
∗ It samples σ̃1, . . . , σ̃n ←$ Zp.
∗ It then computes com∗i ← g2σ̃i/h, and samples ci ←$ Zp for all i ∈ [n].
∗ It computes R∗i ← com∗i /(pk)

ci for all i ∈ [n].
∗ If, for any i, (R∗i ,mi) ∈ H, B2 aborts. Otherwise, it sets H(R∗i ,mi) = ci for all i ∈ [n].
∗ It sets A[mi]← σ̃i for all i ∈ [n].
∗ Lastly, it sends {σ̃i}i∈[n], aux = {R∗i }i∈[n] and com∗k to A.

– EXECUTE(j, comk). As in the signer fairness game, if j ̸∈ K or if j ̸= i∗ and comk ̸= gK[j], or if j = i∗

and comk ̸= h, then, B2 returns ⊥. Otherwise, if j = i∗ and comk = h, B2 aborts. Otherwise, B2 adds j
to X and simply returns K[j].

Eventually, A outputs a list of message - signature pairs, L = {m∗i , σ∗i }i∈[t′]. B2 finds a message-signature
pair (m∗, (R∗, s∗)) ∈ L such that, m∗ ∈ M, the corresponding nonce value R∗ is equal to R(m∗), and, B[m∗]
is not in X. It aborts if it cannot find any such message, or if B[m∗] ̸= i∗. Otherwise, let σ̃∗ ← A[m∗]. B2
sends 2σ̃∗− s∗ to its challenger. We argue that if A wins its game and if B2 does not abort, then B2 wins its
discrete log game. To see this, we note that, (m∗, (R∗, s∗)) must be a valid signature for A to win its game.
This means that, gs

∗
= R∗ · (pk)c∗ where c∗ = H(R∗,m∗). Next, if B2 does not abort, then the message m∗

must belong to batch number i∗ and R∗ = R[m∗]. This means that, R∗ must be equal to g2σ̃
∗
/(h · (pk)c∗),

where σ̃∗ = A[m∗], and H(R∗,m∗) = c∗ was sampled B2 was responding to the SIGN query for c = i∗.
Combining this with the above equation, we see that,

gs
∗
=

g2σ̃
∗

h · pkc∗
· pkc

∗
=

g2σ̃
∗

h
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The above implies that h = g2σ̃
∗−s∗ , meaning that B2 indeed computes the correct discrete log, and

hence wins its game. We now analyse the probability of B2 not aborting. Let Eg denote the event that B2
correctly guessed the batch number i∗ for the forgery message m∗. Since B2 samples i∗ from [qs] uniformly
at random, we have that Pr[Eg] = 1/qs. Next, for every i ∈ [n], let Er,i be the event that B2 aborts when
answering a SIGN query because (R∗i ,mi) was already in the map H – in other words, A had queried the
random oracle on these inputs. Since ci is sampled uniformly randomly for all i ∈ [n], R∗i is a uniformly
random element, from the view of the adversary. This means, that Pr[Er,i] ≤ qH/p, where qH is an upper
bound on the number of random oracle queries by A. Then, we get that,

AdvdlB2
(λ) = Pr[SignerFairnessFSE,ΠA (1λ) = 1 ∧ E2 ∧ Eg

∧
i∈[n] ¬Er,i]

≥ Pr[SignerFairnessFSE,ΠA (1λ) = 1 ∧ E2 ∧ Eg]− Pr[
∨

i∈[n] Er,i]

≥ 1
qs

Pr[SignerFairnessFSE,ΠA (1λ) = 1 ∧ E2]− n·qH
p

□

A.2 Client fairness

Proof of Theorem 3. Assume there are indices i ∈ [c] and j ∈ [n] such that B[i] = 1 and (m, σ) := F [j]
with Π.Verify(pk, m, σ) = 0. Let ({mi}i∈[n], {σ̃i}i∈[n], aux, comk) := I[c], where according to the definition,
mj = m. Given that B[i] = 1, it follows that:

FSE.PVerify({mi}i∈[n], {σ̃i}i∈[n], aux, comk) = 1

⇐⇒ g2σ̃i = comk ·Ri · pkci

Additionally, we know that gk = comk; otherwise, F [c] = ⊥. Now, assume for the sake of contradiction that
there exists some i such that Π.Verify(pk,mi, σi) = 0. As shown in Figure 11, this implies that gsi ̸= Ri ·pkci ,
where si = 2σ̃i − k. However, we also have:

Ri · pkci = g2σ̃i · com−1k

= g2σ̃i−k

= gsi

This directly contradicts the assumption that Π.Verify(pk,mi, σi) = 0, thereby completing the proof.
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B Blind FSE

B.1 Blind Signature Definition

Definition 7 (Blind Signature Scheme). A blind signature scheme BS consists of the following algo-
rithms:

– pp ← BS.Setup(1λ): The setup algorithm takes the security parameter λ in unary and returns public
parameters pp.

– (sk, pk) ← BS.Gen(pp): The key generation algorithm takes the public parameters pp and returns a se-
cret/public key pair (sk, pk).

– (b, σ) ← ⟨BS.signer(sk),BS.user(pk,m)⟩: An interactive protocol is run between the signer, with private
input a secret key sk, and the user, with the corresponding public key pk and a private message m. The
signer outputs b = 1 if the interaction completes successfully and b = 0 otherwise, while the user outputs
a signature σ if it terminates correctly, and ⊥ otherwise. For a 2-round protocol, we can describe the
interaction by the following algorithms:

(msguser,0, stuser,0)← BS.user0(pk,m)

(msgsigner,1, stsigner)← BS.signer0(sk,msguser,0)

(msguser,1, stuser,1)← BS.user1(stuser,0,msgsigner,1)

(msgsigner,2, b)← BS.signer1(stsigner,msguser,1)

σ ← BS.user2(stuser,1,msgsigner,2)

Typically, BS.user0 just initiates the session, and thus msguser,0 = () and stuser,0 = (pk,m).

– b ← BS.Verify(pk,m, σ): The (deterministic) verification algorithm takes a public key pk, a message m,
and a signature σ, and returns 1 if σ is valid on m under pk, and 0 otherwise.

Definition 8 (Blindness). We say a blind signature scheme BS (as defined in Definition 7) has blindness
if any PPT adversary A wins the game Figure 13 game with probability ≤ 1

2 + negl(λ).

BlindnessBSA (1λ)

1 : b← {0, 1}
2 : b0 := b; b1 := 1− b

3 : b′ ← AINIT(·),U1(·),U2(·)(1λ)

4 : return (b′ = b)

Oracle U1(i, Ri,0, Ri,1)

1 : if i ̸∈ {0, 1} ∨ sessi ̸= init then return ⊥
2 : sessi := open

3 : (sti,0, ci,0)← BS.client1(pk, Ri,0, mbi)

4 : (sti,1, ci,1)← BS.client1(pk, Ri,1, mbi)

5 : return (ci,0, ci,1)

Oracle INIT(pk, m0, m1)

1 : sess0 := init

2 : sess1 := init

Oracle U2(i, si, βi)

1 : if sessi ̸= open then return ⊥
2 : sessi := closed

3 : σbi ← BS.client2(sti,βi , si)

4 : if sess0 = sessi = closed then

5 : 1 : if σ0 = ⊥ ∨ σ1 = ⊥ then (σ0, σ1) := (⊥, ⊥)
2 : return (σ0, σ1) else return ϵ

Fig. 13: Blindness game for the clause blind Schnorr signature scheme
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Game SignerFairnessFBSE,BSA (1λ)

1 : pp← FBSE.Setup(1λ)

2 : (pk, sk)← FBSE.KGen(pp, 1λ)

3 : S1 := ϕ, S2 := ϕ, K := ϕ, N := ϕ, c = 0, m = 0

4 : {(m∗
i , σ

∗
i )}i∈m′ ← AS1(·), S2(·), EXEC(·)(pp, pk)

5 : return m < m′ ∧
6 : ∀ i ∈ [m′] : BS.Verify(pk, m∗

i , σ
∗
i ) = 1 ∧

7 : ∀ i ̸= j ∈ [m′] : m∗
i ̸= m∗

j

Oracle EXEC(j, comk)

1 : if j ̸∈ S2 ∨ comk ̸= com(K[j]) return ⊥
2 : kj := K[j]; nj := N [j]

3 : m = m+ nj

4 : return kj

Oracle S1(msg)

1 : c← c+ 1

2 : (msg′, st(0)c )← FBSE.signer1(sk, msg)

3 : n := st(0)c .n; N [c] = n

4 : S1 := S1 ∪ {c}
5 : return (c, msg′)

Oracle S2(c, msg)

1 : if c ̸∈ S1 then return ⊥

2 : (msg′, kc, bc)← FBSE.signer2(st
(0)
c , msg)

3 : if bc = 1 then S1 = S1 \ {c}, K[c] = kc, S2 = S2 ∪ {c}
4 : return msg′

Fig. 15: Signer fairness game for fair blind signature exchange protocol FBSE.

Definition 9 (Strong Unforgeability). We say a blind signature scheme BS (as defined in Definition 7)
has strong unforgeability if any PPT adversary A wins Figure 1 game with probability negl(λ).

B.2 FBSE Security Definitions

We require the FBSE for hidden messages to meet the following properties: signer fairness, client fairness, and
client privacy. Intuitively, since the signing protocol is interactive now, it changes oracles in the definitions and
that’s the main difference between the definition of singer/client fairness here and for non-hidden messages.
Finally, client privacy, akin to the concept of a blind signature, ensures that the signer does not learn which
message it has signed through the protocol. We formalize these properties as follows.

Definition 10 (Signer Fairness). We say the scheme FBSE has signer-fairness if any PPT adversary A
wins the signer fairness game in Figure 15 game with negligible probability.

Definition 11 (Client Fairness). We say the scheme FBSE has client-fairness if any PPT adversary A
wins the client fairness game in Figure 16 game with negligible probability.

Definition 12 (Client Privacy). We say the scheme FBSE has client-privacy if any PPT adversary A
wins the client privacy game in Figure 17 game with probability ≤ 1

2 + negl(λ).

B.3 FBSE completeness analysis

The proof is essentially the same as the proof of Theorem 1.

B.4 FBSE server fairness analysis

Signer fairness. We do not have a formal proof, but we conjecture that our scheme can satisfy signer
fairness based on the One-more Discrete log (OMDL) assumption. We leave a formal proof as future work.
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Game BlindClientFairnessFBSE,BSA (1λ)

1 : pp← FBSE.Setup(1λ)

2 : (pk, st)← A(pp)
3 : B := ϕ, I := ϕ, F := ϕ, S := ϕ, c← 0

4 : (out, k)← ACL0(·), CL1(·), CL2, EXEC(pp, pk)

5 : if ∃ i ∈ [c] s.t. B[i] = 1 ∧
6 : ∃ (m, σ) ∈ F [i] : Π.Verify(pk, m, σ) = 0 :

7 : return 1

8 : else return 0

Oracle CL0(pk, {mi}i∈[n])
1 : c = c+ 1

2 : st(0) := (pk, {mi}i∈[n])

3 : M[c] = {mi}i∈[n]

Oracle CL1(c, msg)

1 : (st(1), msg′)← FBSE.client1(st
(0)
c , msg)

2 : return msg′

Oracle CL2(msg)

1 : ({σ̃i}i∈[n], aux, comk)← FBSE.client2(st
(0), msg)

2 : I[c] = ({σ̃i}i∈[n], aux, comk)

3 : B[c]← FBSE.PVerify(pk, {σ̃i}i∈[n], aux, comk)

Oracle EXEC(j, k, tok)

1 : if j ̸∈ S return ⊥
2 : ({σ̃i}i∈[n], aux, comk) := I[j]
3 : {mi}i∈[n] :=M[j]

4 : stE,0 ← FSE.Init()

5 : stE,1 ← FSE.ExeClient0(comk, tok)

6 : (toks, stE,2)← FSE.ExeSigner0(k)

7 : {σi}i∈[n] ← FSE.Recover({σ̃i}i∈[n], aux, k)

8 : S ← S \ {j}
9 : if toks = ⊥ return ⊥

10 : F [j]← {(mi, σi)}i∈[n]

11 : return {σi}i∈[n]

Fig. 16: Client fairness game for fair blind signature exchange protocol FBSE

Game ClientPrivacyFBSE,BSA (1λ)

1 : pp← FBSE.Setup(1λ)

2 : b←$ {0, 1}
3 : b0 ← b, b1 ← 1− b

4 : b′ ← AInit(·), CL1(·), CL2(·)(pp)

5 : return b = b′

Oracle INIT(pk, {m(0)
i }i∈[n], {m

(1)
i }i∈[n])

1 : sess0 := init

2 : sess1 := init

3 : st
(0)
0 := (pk, {m(b0)

i }i∈[n])

4 : st
(1)
0 := (pk, {m(b1)

i }i∈[n])

Oracle CL1(j, msgj)

1 : if j ̸∈ {0, 1} ∨ sessj ̸= init then return ⊥
2 : sessj := open

3 : (st
(j)
1 , msg′j)← FBSE.client1(st

(j)
0 , msgj)

4 : return msg′j

Oracle CL2(j, k, msgj)

1 : if sessj ̸= open then return ⊥

2 : (b(j), {σ̃i}i∈[n], comk, aux)← FBSE.client2(st
(j)
1 , msgj)

3 : if b(j) = false ∨ comk ̸= gk then return ⊥
4 : sessj := closed

5 : {σ(j)
i }i∈[n] ← FBSE.Recover({σ̃i}i∈[n], aux, k)

6 : if sess0 = sess1 = closed return ({σ(b0)
i }i∈[n], {σ(b1)

i }i∈[n])

Fig. 17: Client privacy game for fair blind signature exchange protocol FBSE.

B.5 FBSE client fairness analysis

Theorem 4. Every adversary PPT A wins ClientFairnessFBSE,BSA (1λ) with an advantage of 0.
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Proof. Assume there are indices i ∈ [c] and j ∈ [n] such that B[i] = 1 and (m, σ) := F [j] with Π.Verify(pk, m, σ) =
0. Let {mi}i∈[n] :=M[c] and ({σ̃i}i∈[n], aux, comk) := I[c], where according to the definition,mj = m. Given
that B[i] = 1, it follows that:

FBSE.PVerify({mi}i∈[n], {σ̃i}i∈[n], aux, comk) = 1

⇐⇒ g2σ̃i = comk ·Ri · pkci

Additionally, we know that gk = comk; otherwise, F [c] = ⊥. Now, for the sake of contradiction, assume there
exists some i such that Π.Verify(pk, mi, σi) = 0. As illustrated in Figure 11, this would imply gsi ̸= Ri ·pkci ,
where si = 2σ̃i − k. However, we also have:

Ri · pkci = comi = g2σ̃i · com−1k = g2σ̃i−k = gsi

This directly contradicts the assumption that BS.Verify(pk, mi, σi) = 0, thereby completing the proof.
□

B.6 FBSE client privacy analysis

In ClientPrivacyFBSE,BSA (1λ), the adversarial signerA only observes the messages {c(0)i,0 , c
(0)
i,1 }i∈[n], {c

(1)
i,0 , c

(1)
i,1 }i∈[n]

and the final signatures {σ0
i }i∈[n], {σ1

i }i∈[n]. To analyze this, we define two modified games and argue that
A wins each of these games with approximately the same probability, except for a negligible difference.

– CP*FBSE,BSA (1λ): This game is similar to the original, except that the Oracle Client1(j, msg) is modified so

that, for j = 0, it samples random elements {c(0)i,0 , c
(0)
i,1 }i∈[n] ←$ Z2n

p . It also samples σ
(0)
i,0 , σ

(0)
i,1 randomly

from Zp, for al i ∈ [n]. As in the original game, challenger samples β
(0)
i,0 , β

(0)
i,1 uniformly randomly from

Zp. It then computes {R(0)′
i,b } as follows:

R
(0)′
i,b ←

gσ
(0)
i,b

pkc
(0)
i,b−β

(0)
i,b

∀ i ∈ [n], b ∈ {0, 1}

Additionally, we program the random oracle to satisfy:

H(R
(0)′
i,0 , m

(b0)
i ) = c

(0)
i,0 − β

(0)
i,0 and H(R

(0)′
i,1 , m

(b0)
i ) = c

(0)
i,1 − β

(0)
i,1

The challenger responds with {c(0)i,0 , c
(0)
i,1 }i∈[n] in the oracle query Client1(0, msg). Next, to respond to the

oracle query Client2(·), the challenger uses the signatures σ(0)
i,b as the output for the zeroth session, where

the bit b is chosen for each i ∈ [n] based on the adversary’s choice.

– CP**FBSE,BSA (1λ): This game is defined similarly to CP*, but the Oracle Client1(j, msg) now returns

random elements {c(j)i,0 , c
(j)
i,1}i∈[n] for both j = 0 and j = 1. Additionally, we sample signatures σ

(1)
i,b and

betas β
(1)
i,b uniformly randomly from Zp, for all i ∈ [n], b ∈ {0, 1}, similar to the previous game. We

compute {R(1)′

i,b } as follows:

R
(1)′

i,b ←
gσ

(1)
i,b

pkc
(1)
i,b−β

(1)
i,b

. Lastly, we program the random oracle also to satisfy:

H(R
(1)′
i,0 , m

(b1)
i ) = c

(1)
i,0 − β

(1)
i,0 and H(R

(1)′
i,1 , m

(b1)
i ) = c

(1)
i,1 − β

(1)
i,1

In this game, the challenger uses the uniformly sampled c
(j)
i,b values to respond to the Client1 queries, and

uses the uniformly sampled σ
(j)
i,b values to respond to the Client2 oracle queries.
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Next, we define two following events:

– E1: In CP*, E1 is the event that A queries either H(R
(0)′
i,0 , m

(b0)
i ) or H(R

(0)′
i,1 , m

(b0)
i ) before the challenger

computes R
(0)′
i,0 and R

(0)′
i,1 .

– E2: In CP**, E2 is the event that A queries any of H(R
(0)′
i,0 , m

(b0)
i ), H(R

(0)′
i,1 , m

(b0)
i ), H(R

(1)′
i,0 , m

(b1)
i ), or

H(R
(1)′
i,1 , m

(b1)
i ) before the challenger computes the respective values.

We assert that both events E1 and E2 occur with negligible probability. It simply follows from the fact
that values R values are uniform. Now, we compare the advantage of A in the original game with the modified
games. First, consider:

Pr[ClientPrivacyFBSE,BSA (1λ) = 1] ≤ Pr[ClientPrivacyFBSE,BSA (1λ) = 1 |E1] + Pr[E1]

= Pr[CP*FBSE,BSA (1λ) = 1] + Pr[E1]

Since Pr[E1] is negligible in λ, we conclude that the probability of A winning in ClientPrivacy and CP* differs
by a negligible factor. By similar reasoning, we have:

Pr[CP*FBSE,BSA (1λ) = 1] ≤ Pr[CP*FBSE,BSA (1λ) = 1 |E2] + Pr[E2]

= Pr[CP**FBSE,BSA (1λ) = 1] + Pr[E2]

Since Pr[E2] is negligible in λ, we conclude that the probability of A winning in CP* and CP** also differs
by a negligible factor. Finally, in the game CP**, the adversary only receives randomly selected elements

{c(0)i,0 , c
(0)
i,1 }i∈[n], {c

(1)
i,0 , c

(1)
i,1 }i∈[n] along with randomly sampled signatures {σ(b0)

i }, {σ(b1)
i }. This implies that A

can win this game with a probability of at most 1
2 . Therefore, we conclude that A wins CP with a probability

that is negligibly different from 1
2 .
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