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Abstract

With the threat posed by quantum computers on the horizon, systems like Ethereum must transition

to cryptographic primitives resistant to quantum attacks. One of the most critical of these primitives

is the non-interactive multi-signature scheme used in Ethereum’s proof-of-stake consensus, currently

implemented with BLS signatures. This primitive enables validators to independently sign blocks, with

their signatures then publicly aggregated into a compact aggregate signature.

In this work, we introduce a family of hash-based signature schemes as post-quantum alternatives

to BLS. We consider the folklore method of aggregating signatures via (hash-based) succinct arguments,

and our work is focused on instantiating the underlying signature scheme. The proposed schemes are

variants of the XMSS signature scheme, analyzed within a novel and unified framework. While being

generic, this framework is designed to minimize security loss, facilitating efficient parameter selection.

A key feature of our work is the avoidance of random oracles in the security proof. Instead, we define

explicit standard model requirements for the underlying hash functions. This eliminates the paradox

of simultaneously treating hash functions as random oracles and as explicit circuits for aggregation.

Furthermore, this provides cryptanalysts with clearly defined targets for evaluating the security of

hash functions. Finally, we provide recommendations for practical instantiations of hash functions and

concrete parameter settings, supported by known and novel heuristic bounds on the standard model

properties.
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1 Introduction
Given the looming threat posed by large-scale quantum computers, it is clear that major systems need to

transition to post-quantum cryptography. For instance, if Ethereum
1

fails to update its signatures used

for proof-of-stake to a post-quantum secure scheme in time, a quantum-capable adversary could exploit

vulnerabilities, potentially causing damages worth billions of dollars. Even the perception of such a

threat could undermine trust in the system, eroding user confidence and jeopardizing the integrity of

their savings.

Post-Quantum Signatures. A wide range of cryptographic approaches have been explored to develop

post-quantum secure signature schemes. Among these are signatures based on lattices [DLL
+

17,

LDK
+

20, PFH
+

20], codes [Ste94, CFS01], isogenies [DKL
+

20, DLRW24, SEMR24], multivariate systems

of equations [Beu22], or hash functions [BDH11, BHH
+

15, BHK
+

19]. Hash-based signatures, in particular,

are appealing for multiple reasons: minimal assumptions, ease of implementation, conceptual simplicity
2
,

and no use of complex algebra. In this work, we focus on hash-based signatures as a promising candidate

for Ethereum’s proof-of-stake.

Advanced Signatures. Despite the advantages mentioned above, hash-based signatures have a significant

drawback stemming from their lack of algebraic structure. Namely, they typically are not amenable

for turning them into advanced signature variants, such as multi-signatures, threshold signatures,

or aggregate signatures. For instance, consider again proof-of-stake in Ethereum, which relies on a

non-interactive multi-signature scheme: validators cast votes for blocks by signing them, and these

individual signatures are aggregated into a single compact signature stored in the accepted block
3
.

Hash-based signatures do not natively support such aggregation features, posing a challenge for their

direct application in this context.

Aggregating with Succinct Arguments. A potential method for aggregating multiple signatures involves

the use of a succinct argument of knowledge – an argument system where the argument is significantly

smaller than the underlying witness. To aggregate signatures, one can compute a succinct argument

demonstrating knowledge of all individual valid signatures, with the list of signatures serving as the

witness. If succinct argument systems based on hash functions are employed, the resulting multi-

signature scheme can be plausibly post-quantum secure [CMS19]. Throughout this work, we will call

such argument systems pqSNARKs. Using pqSNARKs to aggregate hash-based signatures is an elegant

and modular approach that can directly take advantage of recent improvements on hash-based succinct

arguments, e.g., [HLP24, ZCF24, ACFY24]. However, as we explain next, this approach also introduces

several unique challenges in the design of the signature scheme.

Random Oracle Paradox. If the signature scheme’s verifier relies on random oracles, a paradox arises

when using pqSNARKs for aggregation: in the security proof, the hash function is modeled as a random

oracle, yet it is simultaneously treated as an explicit circuit to be verified within the pqSNARK. Ignoring

this discrepancy has unclear security implications, relying on a non-standard heuristic.

A Cleaner Approach. To circumvent this paradoxical situation, it is critical to design the scheme so

that the verifier’s circuit avoids invoking any random oracle. Instead, we aim to prove security of the

underlying signature scheme assuming precisely stated standard model properties of the hash functions

employed, such as variants of preimage resistance or collision resistance. The random oracle model may

still be used to build heuristic confidence in the plausibility of these properties in isolation. However, the

security of the scheme fundamentally rests on a well-defined set of standard model assumptions about

the hash functions. This provides cryptanalysts with concrete targets to analyze. In addition, it should

be the goal to provide security proofs that are as tight as possible. Tighter proofs reduce the need to

compensate for security losses with overly large parameters, resulting in improved efficiency.

Efficiency Criteria. To efficiently utilize pqSNARKs for aggregation, the underlying hash-based signature

scheme should satisfy the following properties:

• Minimal Hashing. Since the verification process for hash-based signature schemes is typically

dominated by hash function evaluations, the efficiency of aggregation is heavily influenced by the

1
see https://ethereum.github.io/yellowpaper/paper.pdf.

2
For example, a proof-of-stake setting can benefit from simplicity, as it may enable formal verification of the verifier implementation.

3
To be more precise, Ethereum consensus blocks today contain multiple aggregate signatures, each representing a large number

of individual signatures.

3
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amount of data that needs to be hashed. Reducing the amount of hashing required for verification

is thus critical for optimizing aggregation performance.

• Small Signatures. The scheme should come with concretely small signatures to minimize bandwidth

consumption of aggregators. For instance, assuming signatures of size 32 KiB and that Ethereum

uses a four-second slot, where one second is allocated for aggregators to receive signatures
4
, a

committee of, say, 212
signers would require 230

bits to be received within that second, demanding

a bandwidth of at least 1 GiB/s, which is infeasible as a requirement. Signatures of size, say, below

4 KiB would significantly soften this requirement or allow for larger committees.

1.1 Our Work
In this work, we present and analyze hash-based non-interactive multi-signature schemes suitable for

post-quantum proof-of-stake. To this end, we extensively study hash-based signature schemes meeting

the criteria above. Below, we briefly summarize our technical contributions.

Overall Paradigm. We consider the classical approach of turning one-time signatures
5
, such as Winternitz

signatures, into many-time signatures, which originates in Merkle’s PhD thesis [Mer79] and is used in

XMSS [BDH11]. The idea is as follows: the signer uses a Merkle tree to commit to a long sequence of

one-time public keys, and the Merkle root serves as the (many-time) public key. To sign the ith message,

the signer signs the message with the ith one-time secret key and also includes the one-time public

key and a Merkle path in the signature. Note that this yields a synchronized (sometimes called stateful)

signature scheme [GR06], where signing and verification are tied to specific epochs, with at most one

signature per epoch. Such schemes are well-suited for applications like proof-of-stake, as noted
6

in

prior works [FSZ22, FHSZ23]. Building on this, we transform the synchronized signature scheme into a

non-interactive multi-signature scheme by aggregating signatures using succinct arguments. We formally

prove the security of this folklore transformation under the assumption of adaptive knowledge soundness

of the succinct argument system. The main focus of the paper, however, is the underlying signature

scheme.

Unified Analysis Framework. Although the security of the XMSS paradigm can be generically reduced

to the one-time security of the underlying one-time signature, such an analysis tends to be overly loose,

leading to inefficient concrete parameters. On the other hand, performing detailed security analyses

for each variant of XMSS individually would be too labor-intensive. To address this, we introduce

a generalized framework for XMSS based on a novel primitive we term incomparable encodings. This

abstraction allows us to unify and streamline the analysis of XMSS-like schemes. Subsequently, we

instantiate incomparable encodings in multiple ways, yielding a set of schemes. Crucially, we carefully

designed this abstraction to enable achieving the most efficient parameters possible. Our framework

extends similar existing frameworks [BS20, ZCY23] to enable more instantiations, e.g., by allowing

randomized encodings and encoding errors.

Analysis in the Standard Model. In our framework, we show that (strong) unforgeability follows from a

set of simple standard-model assumptions on the underlying hash function. Notably, previous analyses

do not directly apply to our setting. For instance, the tightest security bounds for XMSS rely on modeling

message hashing as a reprogrammable random oracle [HK22, HKRY23].

Instantiation, Parameter Requirements, and New Bounds. To complete the picture and get a concrete

proposal for Ethereum, we discuss how to instantiate the hash functions using either SHA-3 (the

conservative option) or Poseidon2 (the modern alternative). We also show how to select appropriate

output lengths and other parameters to achieve a certain security level. To accomplish this, we leverage

existing heuristic bounds and derive new ones, using the (quantum and classical) random oracle model.

We conclude with a discussion about the efficiency of our proposed instantiations.

4
During each slot, a block must be proposed, distributed to validators, signed, signatures have to be aggregated, and the

aggregate signature propagated.

5
A one-time signature remains secure if at most one honestly generated signature is exposed to the adversary.

6
Note that in proof-of-stake, validators sign one block per epoch, and signing twice per epoch is considered malicious behavior

and punished.

4



1.2 Outline
We structure this paper as follows. In Section 2, we summarize the relevant related work and explain

how our work compares to it. We also discuss which other approaches may be suitable candidates for

post-quantum proof-of-stake. In Section 3, we introduce the relevant technical background, including

definitions for tweakable hash functions, signatures, and non-interactive multi-signatures. We present

and analyze a generalized variant of XMSS signatures and multi-signatures in Section 4. For that, we

introduce a new abstraction that we call incomparable encodings. We then instantiate these encodings

in Section 5, leading to several variants of XMSS. In Sections 6 and 7, we explain how to set concrete

parameters, e.g., output lengths of hash functions for a desired security level, and how to implement

tweakable hash functions. We give benchmarks in Section 8 and conclude in Section 9.

2 Related Work and Alternative Approaches
Before going into the technical details of our work, we discuss how our work compares to previous works

on hash-based signatures. We also discuss other post-quantum aggregate- and multi-signatures, e.g.,

from lattices, and assess whether they are suited for a large scale proof-of-stake setting.

2.1 Aggregation using Succinct Arguments
The idea of using generic succinct arguments to aggregate signatures is somewhat folklore and not new to

our work. For instance, [ACL
+

22] introduces lattice-based succinct arguments and informally mentions

the potential application of aggregating GPV signatures [GPV08]. This idea has also received increased

formal attention within the context of batch arguments, as we explain next.

Batch Arguments for NP. In a (non-interactive) batch argument, we consider a prover and a verifier

holding n public statements stmt1, . . . , stmtn, and the prover additionally holding the respective witnesses

witn1, . . . , witnn, where (stmti, witni) ∈ Γ for some relation Γ. The goal is for the prover to succinctly

convince the verifier of knowledge of all valid witnesses via a publicly verifiable argument string.

Importantly, the argument size should be significantly smaller than the combined size of all witnesses.

This framework is particularly well-suited for applications like signature aggregation, where the witnesses

witni correspond to signatures and the statements stmti to public keys. Batch arguments can also be

viewed as specialized succinct non-interactive arguments of knowledge (SNARKs) tailored for highly

structured relations derived from Γ. The key advantage of batch arguments over generic SNARKs lies

in avoiding the use of non-falsifiable assumptions, which are typically required for general SNARK

constructions [GW11]. Achieving this efficiency from falsifiable assumptions requires a weaker form of

the proof of knowledge property, called somewhere extraction. Intuitively, it requires that one can set up

the common reference string with respect to an index i∗ (without revealing i∗), such that an extractor can

later extract the witness witni∗ .

Waters and Wu [WW22], followed by the work of Devadas et al. [DGKV22], have constructed batch

arguments for NP, and aggregate signatures in the standard model as an application. Their results

established that somewhere extraction suffices to construct aggregate signatures. Notably, [WW22]

relies on pairing-friendly groups and is therefore not post-quantum secure. Conversely, [DGKV22] is

based on lattices and allows multi-hop aggregation (i.e., aggregating aggregates). Unfortunately, it

makes use of heavy cryptographic machinery and is therefore far from being a candidate for practical

deployment. Turning it into a concretely efficient and practical scheme is an interesting direction for

future work. Recent advancements include more expressive policies. For instance, in monotone-policy

batch arguments [BBK
+

23], the prover can show that enough of the statements hold. A promising

application of this are monotone-policy aggregate signatures [BCJP24]. Here, one can publicly derive

a succinct verification key that combines all individual public keys and we can still verify that a large

enough subset signed a message, which is what we ultimately want in the proof-of-stake setting. In

contrast, using non-interactive multi-signatures we also need to publish a bit vector that indicates who

signed along with the aggregate signature. While this is a great improvement in terms of (asymptotic)

efficiency, it comes at the cost of losing accountability. It is also not clear how these relatively novel

constructions perform in practice.

5



Aggregating Hash-Based Signatures with SNARKs. The work most closely related to ours is the recent

study by Khaburzaniya et al. [KCLM22], which employs pqSNARKs to construct hash-based aggregate

and threshold signatures. At a high level, their goals align closely with ours, as both approaches

non-interactively aggregate hash-based signatures using pqSNARKs. Despite these similarities, we

view our contributions as complementary rather than overlapping. Khaburzaniya et al. focus primarily

on optimizing the arithmetization (specifically, the Algebraic Intermediate Representation, AIR) of the

verifier’s circuit for use in a pqSNARK. In contrast, our focus are the underlying signature schemes

themselves. We assume a generic pqSNARK framework and delve into concrete security and rigorous

security proofs, explicitly stating standard model assumptions that the hash functions need to satisfy, as

well as the exact security properties that are required for the pqSNARK. Additionally, our work explores

trade-offs between hashing operations and signature size, offering a broader analysis of the design space.

A significant difference between our approaches is the type of signatures being aggregated. Khaburzaniya

et al. aggregate only one-time signatures, whereas our work covers aggregating synchronized many-time

signatures. Furthermore, their underlying one-time signature scheme is Winternitz with one-bit chunks.

This choice minimizes the number of hash invocations, but it results in a substantial individual signature

size of approximately 8 KiB. The authors argue that individual signature size is less critical than the

computational cost of hash operations. In contrast, our analysis simultaneously considers a variety

of trade-offs between hashing and signature size. We emphasize that individual signature size plays

a crucial role in settings with a lot of signers, especially in reducing bandwidth requirements for the

aggregating party. Another key distinction lies in the level of rigor. Khaburzaniya et al. provide

convincing proof sketches and intuitive arguments but do not present formal security definitions or

analyses. In contrast, we prioritize concrete security and robust formal definitions, ensuring our scheme

meets strong security guarantees and parameters can be set in a theoretically sound way. This level

of rigor is essential for schemes intended for deployment in major blockchains like Ethereum. Clearly

stating assumptions about the underlying hash functions is particularly important when relying on newer

hash functions such as Poseidon. Finally, combining their advancements in verifier circuit optimization

with our in-depth study of signature schemes may be a promising direction for future research.

2.2 Hash-Based Signatures
In this section, we discuss related hash-based constructions, highlight the challenges of reusing parts of

their analysis, and explain how our results and analysis differ.

SPINCS, XMSS, and One-Time Signatures. The schemes most relevant and closely related to our work

are SPHINCS
+

[HBD
+

22], SPHINCS+C [HKRY23], XMSS [BDH11, HBG
+

18], and rapidly verifiable

XMSS [BHRvV21]. One of our key observations is that, in the proof-of-stake setting where validators sign

only once per slot
7
, a synchronized scheme suffices. This eliminates the need for the additional complexity

inherent in SPHINCS
+

and SPHINCS+C. Instead, we can adopt a much simpler XMSS-like structure,

which enables significantly more efficient aggregation using succinct arguments.

Hash-Efficient Variants. As outlined in the introduction, one of our primary goals is to design a

scheme with a minimal number of hashes required for verification. Both SPHINCS+C and rapidly

verifiable XMSS address reduced verification time by focusing on lowering the verifier’s hash complexity.

Specifically, the SPHINCS+C paper introduces a variant of Winternitz one-time signatures that eliminates

the checksum, also discussed and applied to XMSS in [ZCY23]. We adopt this idea in our target sum

Winternitz instantiation within our generalized XMSS framework. In contrast, rapidly verifiable XMSS

retains the checksum but probabilistically reduces the number of verification hashes for honest signers.

However, this reduction is not mandatory, as signatures remain verifiable even if the signer uses plain

Winternitz, unless additional complex checks are imposed. Given this, we favor the simpler approach

inspired by SPHINCS+C.

In [ZCY23], the authors have analyzed the constant-sum encoding approach and showed that it

achieves the optimal encoding rate when the chain elements sum to half of the maximally allowable

value. While this configuration offers the best encoding rate, we also focus on reducing verification

time, particularly by minimizing the number of required hash computations, even at the cost of slightly

increased signing time. To this end, we allow for the flexibility to select a target value larger than half of

7
Throughout the paper, we will use the terms slot and epoch interchangeably.
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the maximally allowable value. As discussed earlier, our work provides a security proof for a generalized

XMSS framework that works with any incomparable encoding scheme.

Generic Yet Tight Analysis without Random Oracles. Integrating the SPHINCS+C methodology with

existing XMSS analyses presents a key challenge to us: achieving the tightest possible security reduction

without relying on random oracles. Addressing this requires adapting existing security proofs and

combining techniques from earlier works. Although neither SPHINCS
+

nor SPHINCS+C rely on random

oracles to prove security [HK22, HKRY23], we cannot directly reuse their proofs. In both schemes, the

integrated XMSS structure is proven secure only under the weaker notion of known message attacks. While

this suffices when XMSS is used within SPHINCS
+

, it falls short when XMSS operates independently.

In contrast, the security proofs for XMSS [BDH11, BHRvV21] rely on modeling message hashing as

a reprogrammable random oracle. This effectively reduces security against chosen message attacks

to security against known message attacks. To address this, we combine elements of earlier proofs

(e.g., [Hül13, KKF21]) with modern techniques to achieve a tighter security reduction without relying

on random oracles. Furthermore, we ensure our analysis is sufficiently general to support multiple

instantiations. This is accomplished by introducing a generalized XMSS framework. We compare this

with similar existing concepts in Remark 6.

Strong Unforgeability. An additional novelty of our work is that we analyze strong unforgeability

security of our generalized XMSS scheme. In contrast, all other proofs (to our knowledge) only focus on

existential unforgeability. Proving the strongest possible security notion is important when a scheme is

meant to be used in a complex system like Ethereum. We have found a work [BDE
+

11] that analyzes

Winternitz one-time signatures with regards to strong unforgeability. However, the result is given for

a less efficient variant of Winternitz scheme and can not be transferred directly to modern versions of

Winternitz. So we could not use that in our proofs.

Other Hash-Based Constructions. A recent paper by Atapoor et al. [AdSGK24] briefly mentions

aggregating hash-based signatures using succinct arguments. The main contribution of their work is to

propose a hash-based signature scheme where the public key is derived from the secret key via a one-way

function, and the signature consists of a succinct zero-knowledge proof of knowledge of the secret key,

tagged with the message. This approach employs succinct arguments for individual signatures, requiring

argument recursion and thus proofs about random oracle relations for aggregation. By contrast, our

approach is significantly simpler, avoiding such recursive arguments.

2.3 Other Post-Quantum Aggregate and Multi-Signatures
While hash-based signatures are appealing, as already explained in the introduction, we still want to

discuss multi-signatures based on other post-quantum assumptions such as lattices or isogenies. We

identify a few examples of lattice-based constructions that warrant further investigation as alternatives

to our hash-based proposal. However, parameter selection for deploying lattice-based constructions is

notably more error-prone compared to purely hash-based approaches.

Fiat-Shamir and Friends. Using any signature scheme based on the Fiat-Shamir heuristic [FS87]

in combination with a succinct argument would cause the paradoxical situation mentioned in the

introduction. Namely, one would, at the same time, treat hash functions as random oracles and as

explicit circuits. In particular, this applies to Dilithium [DLL
+

17, LDK
+

20] and to MPC-in-the-head

and VOLE-in-the-head signatures such as FAEST [BBd
+

23] or Biscuit [BKPV23]. It also holds for Falcon

signatures [PFH
+

20] if random seeds are used. A variant of Falcon without random seeds in combination

with a pqSNARK would be a reasonable route for further exploration, because in this case the random

oracle can be evaluated on the message outside of the circuit that is proven.

Non-Interactive Constructions. Boneh and Kim [BK20] have proposed two lattice-based constructions:

one enables non-interactive aggregation of Lyubashevsky and Micciancio’s one-time signatures [LM08],

while the other supports many-time signatures but requires interaction. The MMSAT scheme [DHSS20]

achieves asymptotically linear-size aggregate signatures, with size O(log k)+2nk for k signers and security

parameter n. For moderate values of k (e.g., k = 1000), these signatures can be significantly smaller than

pqSNARKs. The scheme is based on a somewhat exotic lattice assumption called Vandermonde-SIS.

Another line of work constructs lattice-based non-interactive multi-signatures in a synchronized

setting [FSZ22, FHSZ23]. The authors explain that the synchronized setting is well-suited for a proof-of-

stake application and we follow this observation. Their approach, akin to lattice-based XMSS, uses a

7



homomorphic Merkle tree for aggregation. However, individual signatures exceed 32 KiB, making them

impractical for our setting, as noted in the introduction.

A promising approach involves aggregating Falcon signatures [PFH
+

20] using the lattice-based proof

system LaBRADOR [BS23], as explored in recent works [TS23, AAB
+

24]. This method achieves compact

individual and aggregate signatures. However, its security proofs rely on rewinding, which has unclear

implications in the post-quantum setting [LMQW22].

We suspect that recent lattice-based folding schemes [BC24, FKNP24] are a good starting point for

further research on constructing lattice-based non-interactive signature aggregation.

Interactive Constructions. In addition to the non-interactive constructions mentioned above, a number of

post-quantum multi-signature schemes employ interactive signing protocols [DOTT21, Che23, LLL
+

24,

ADP24, DFMS24]. These protocols require multiple rounds of interaction, introducing additional latency

as well as operational overhead related to maintenance and scheduling, particularly in asynchronous

networks. By contrast, non-interactive protocols that support public aggregation of individual signatures

mitigate these challenges. They enable multiple redundant aggregators to independently collect and

merge signatures within predefined time frames, simplifying coordination and reducing complexity.

A middle ground between non-interactive and interactive signing is achieved when a single message-

independent preprocessing round is required per signature. Once this preprocessing is completed,

the message can be signed in a non-interactive, publicly aggregatable manner. In such schemes, the

preprocessing phase can occur well in advance of the time-critical path, allowing the scheme to function

like a non-interactive protocol once the message to be signed becomes available. We are aware of

one example of such a scheme in the lattice setting [BTT22]. However, it suffers from significant

communication complexity, especially in the preprocessing round, requiring a per-signer outgoing

broadcast size of 3500 KiB for 1024 signers, as reported in [Che23].

3 Preliminaries
As common, we use N,R to denote the natural and real numbers, respectively. We use the notation

[L] := {1, . . . , L} ⊆ N to denote the first L natural numbers. We use the notation s $← S to state that

s is sampled uniformly at random from S, where S is a finite set. For a distribution D, x ← D means

that x is sampled from D. Let D1,D2 be distributions on the same support X . Then, their statistical

distance is defined as
1
2

∑
x∈X |Pr [D1 = x]− Pr [D2 = x]|. We often write PrG [E] or Pr [E | G] to denote

the probability that some event E occurs in the experiment G. We denote the event that an experiment

G outputs a bit b by G ⇒ b. For a probabilistic algorithm A, we write y := A(x; ρ) to denote that A
outputs y on input x with random coins ρ, and y ← A(x) if ρ is sampled uniformly at random from the

algorithms randomness space. We use the notation y ∈ A(x) to denote that there are random coins ρ
such that A outputs y on input x with these coins ρ. We denote the running time of an algorithm A by

T(A). We often require algorithms to be efficient, which is not a formally well-specified term, as we are

not working in the realm of asymptotic security. However, we assume the reader to have an intuitive

understanding of what it means, and it means at least that the running time is a polynomial in its input

size. We assume that all algorithms and adversaries have (implicit) access to a set of public system

parameters par. Unless specified otherwise, all oracles that algorithms obtain should be understood as

classical oracles, i.e., algorithms have classical access to these oracles. In all experiments and security

games, we implicitly initialize numerical variables with 0, and lists, maps, and sets as empty. We say that

a function F is efficiently computable if there is an efficient algorithm that computes F .

3.1 Tweakable Hash Functions
In [BHK

+
19], the notion of tweakable hash functions has been introduced. The idea is to unify the

description of the way hashing is done in different hash-based signatures. This abstraction is similar to

the definition of keyed hash functions, although tweakable hash functions have three inputs instead of

two. The first is called a public parameter P ∈ P and is usually meant to be random, and the same for all

the hash function calls related to a user in a hash-based signature. The second input is a tweak T ∈ T . A

tweak is a deterministic value for domain separation that distinguishes different hash function calls in

the scheme. One way to think of it is as a unique identifier or an address of a hash function call. The last

input is the message that we want to hash.
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Definition 1 (Tweakable Hash Function). Consider sets H (the hash space), P (the public parameters

space), T (the tweak space), and letM (the message space). A tweakable hash function is an efficiently

computable function

Th : P × T ×M→ H.

The first property we define for tweakable hash functions, called ϵ-uniformity, is statistical in nature

and serves to bound the efficiency of the signature construction. Specifically, we require that the outputs

of tweakable hash functions are distributed close to uniformly, assuming parts of the input message are

sampled at random. We state this property as a worst-case condition over all parameters (and tweaks and

messages). However, for practical hash functions, this property might only hold for most parameters,

with exceptions being rare and hard to find. It is important to note that we utilize this property solely to

establish a theoretical bound on correctness in Section 5.2. This, in turn, impacts the number of retries a

signer might need, making it a factor of efficiency. The number of retries will in practice be chosen based

on experiments, and can even differ from signer to signer. We could have opted for a cleaner approach

involving an adversarial correctness notion throughout the paper, but this would result in a significantly

less readable presentation.

Definition 2 (Uniformity). Let Th : P ×T ×M→ H be a tweakable hash function, whereM =M0 ×R.

We say that Th is ϵ-uniform for seed spaceR if for all P ∈ P , all T ∈ T , and all m ∈M0, the following

two distributions have statistical distance at most ϵ:

{x | x $← H} and {Th(P, T, (m, ρ)) | ρ $← R}.

To prove the security of hash-based signatures we will rely on certain security properties of tweakable

hash functions. Concretely, we will use established properties that have also been used to prove the

security of SPHINCS
+

in [HK22]:

• single-function, multi-target collision resistance for distinct tweaks;

• single-function, multi-target preimage resistance for distinct tweaks;

• single-function, multi-target undetectability for distinct tweaks.

All three notions allow the adversary to specify the tweaks used in challenges, but the adversary must not

reuse a tweak. The first notion we define is single-function, multi-target collision resistance (for distinct

tweaks). Here, the adversary first gets access to an oracle that evaluates the tweakable hash function for a

random public parameter P not known to the adversary. In the second stage, the adversary learns this

parameter P and is supposed to find a collision to one of the images that it obtained before.

Definition 3 (Multi-Target Collision Resistance). Let Th : P×T ×M→ H be a tweakable hash function as

defined in Definition 1. Let A be a (stateful) algorithm, and p ∈ [|T |]. Consider the following experiment

SM-TCRTh,p(A):

1. Generate a random public parameter P $← P .

2. Run Awith (classical) access to an oracle that takes T ∈ T and M ∈M and works as follows:

• If |Q| ≥ p or there is an M ′ ∈Mwith (T, M ′) ∈ Q, return ⊥.

• Otherwise, insert (T, M) into the list Q and output Th(P, T, M).

3. When A signals to continue, then continue running Awith input P , but without the oracle access.

4. Obtain from A an output (j, M) with M ∈M, j ∈ [|Q|]. Denote the jth entry in Q by (Tj , Mj).

5. Output 1 if Th(P, Tj , Mj) = Th(P, Tj , M) and M ̸= Mj . Otherwise, output 0.

For any such algorithm A, we define the following success probability:

AdvSM-TCR
Th,p (A) := Pr[SM-TCRTh,p(A)⇒ 1].
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The second security notion that we need for is a form of preimage resistance, namely, single-function,

multi-target preimage resistance. We give a general definition here but we will use it only for a single

target. In this notion, the adversary again gets an oracle, but this oracle now chooses the message

randomly, and the goal of the adversary in the second stage is to find any preimage.

Definition 4 (Multi-Target Preimage Resistance). Let Th : P × T ×M→ H be a tweakable hash function

as defined in Definition 1. LetA be a (stateful) algorithm,M′ ⊆M, and p ∈ [|T |]. Consider the following

experiment SM-PRETh,M′,p,(A):

1. Generate a random public parameter P $← P .

2. Run Awith (classical) access to an oracle that takes T ∈ T and works as follows:

• If |Q| ≥ p or there is an x′ ∈M′ with (T, x′) ∈ Q, return ⊥.

• Otherwise, sample x $←M′, insert (T, x) into the list Q and output Th(P, T, x).

3. When A signals to continue, then continue running Awith input P , but without the oracle access.

4. Obtain from A an output (j, M) with M ∈M′, j ∈ [|Q|]. Denote the jth entry in Q by (Tj , xj).

5. Output 1 if Th(P, Tj , M) = Th(P, Tj , xj). Otherwise, output 0.

For any such algorithm A, we define the following advantage:

AdvSM-PRE
Th,M′,p(A) := Pr[SM-PRETh,M′,p(A)⇒ 1].

The third notion we consider is undetectability. Intuitively, undetectability states that the hash

function output is indistinguishable from random. As with preimage resistance we will only utilize a

single-target version of the following notion.

Definition 5 (Multi-Target Undetectability). Let Th : P × T ×M→ H be a tweakable hash function as

defined in Definition 1. Let A be a (stateful) algorithm,M′ ⊆M, and p ∈ [|T |]. Consider the following

experiment SM-UDTh,M′,p(A):

1. Sample b $← {0, 1} and P $← P .

2. Run Awith (classical) access to an oracle that takes T ∈ T and works as follows:

• If |Q| ≥ p or T ∈ Q, return ⊥. Otherwise, insert T into the list Q.

• If b = 0, sample x $←M′ and return y := Th(P, T, x).
• If b = 1, return y $← H.

3. When A signals to continue, then continue running Awith input P , but without the oracle access.

4. Obtain from A a bit b′ ∈ {0, 1} and output b′.

For any such algorithm A, we define the following advantage:

AdvSM-UD
Th,M′,p(A) = |Pr [SM-UDTh,M′,p(A)⇒ 1 | b = 0]− Pr [SM-UDTh,M′,p(A)⇒ 1 | b = 1]| .

We also introduce a new notion, which we will use it in Section 5. Looking ahead, we will use a

tweakable hash function in encodings that we use during signing, and the new notion will be essential to

bound the probability that an adversary finds two messages with the same encoding. To capture multiple

instantiations, some inspired by [HKRY23, BHRvV21, GHHM21], we want to allow the encoding to be

randomized and fail with a certain probability. If the encoding fails, the signer will re-hash the message in

combination with a new randomness. To model this, our new definition is parameterized by a predicate

Prop that tells the hash oracle in the game when to return a digest and randomness. In our application,

this predicate will tell if the encoding has succeeded. It is worth mentioning that if we set K = 1 and

Prop to be constantly 1, then our new notion matches multi-target extended target-collision resistance with

nonce (nM-eTCR) [GHHM21].
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Definition 6 (Multi-Target Collision Resistance with Random Sampling). Let K ∈ N be an integer. Let

Th : P × T × (M×R)→ H be a tweakable hash function, where the input is split into a message part

M ∈M and a randomness part ρ ∈ R. Let Prop : H → {0, 1} be a function that represents some property

on the output space. Let A be a (stateful) algorithm, and p ∈ [|T |]. Consider the following experiment

SM-rTCRK
Th,p,Prop(A):

1. Generate a random public parameter P $← P .

2. Run Awith an input P and with (classical) access to an oracle that takes T ∈ T and M ∈M and

works as follows:

• If |Q| ≥ p or there is a tuple (T, M ′, ρ′) ∈ Q, for some M ′, ρ′, then return ⊥.

• Otherwise, set ctr := 0 and x := ⊥. While ctr < K and x = ⊥:

(a) Sample ρ $← R.

(b) Set x := Th(P, T, M, ρ).
(c) If Prop(x) = 1: Insert (T, M, ρ) into Q.

(d) Else: Set x := ⊥, ρ := ⊥.

(e) Set ctr := ctr + 1.

• If x = ⊥: Insert (T, M,⊥) into Q.

• Output (x, ρ).

3. Obtain from A an output (j, M∗, ρ∗) with M ∈ M, j ∈ [|Q|]. Denote the jth entry in Q by

(Mj , Tj , ρj).

4. Output 1 if Th(P, Tj , Mj , ρj) = Th(P, Tj , M∗, ρ∗) and (M∗, ρ∗) ̸= (Mj , ρj). Otherwise, output 0.

For any such algorithm A, we define the following advantage:

AdvSM-rTCR,K
Th,p,Prop (A) := Pr[SM-rTCRK

Th,p,Prop(A)⇒ 1].

Heuristic Analysis. In our work, we will reduce the security of hash-based signature schemes to the

security of the presented properties of tweakable hash functions. However, to give concrete security

levels and deduce parameters one needs to estimate the complexity of breaking these properties. To this

end, we present bounds in Table 1, assuming the tweakable hash is heuristically modeled as a classical or

quantum random oracle [BDF
+

11]. Some of these bounds are novel and proven in the Supplementary

Material. For others we had to revisit the proofs to ensure they work for general input and output

spaces. One example is for preimage resistance. The security analysis of this notion in the quantum

random oracle was previously based on a conjecture (see [BH19, BHK
+

19, HK22]). We provide a security

analysis without any conjecture. Another example is for target collision resistance. Here, a security

bound against a quantum adversary was given in [HK22]. We give a bound against classical adversary

in Supplementary Material D and update the quantum bound to work for sets P of arbitrary size. We

also revisit the security bound for undetectability in Supplementary Material B, to show that the proof

from [HK22] still applies for arbitrary tweakable hash functions, without restrictions on input and output

domains.

3.2 Signatures and Multi-Signatures
We now turn to defining signatures and the object we ultimately aim to construct, namely, non-interactive

multi-signatures. As already explained in previous works [FSZ22, FHSZ23], in the proof-of-stake setting

it is sufficient to consider signatures and multi-signatures in the synchronized setting [GR06, AGH10,

HW18, DGNW20]. In these schemes, signatures are computed and verified with respect to an epoch

ep ∈ [L], where L denotes the lifetime of a key, and we assume that every signer only signs one message

per epoch, and that we only aggregate signatures on the same message (as usual in multi-signatures) and

for the same epoch.
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Classical Bound Reference Quantum Bound Reference

AdvSM-TCR
Th,p (A) 2q+1

|H| + 2q
|P| Supp. Mat. D

32(q+1)2

|H| + 32q2

|P| [HK22], Supp. Mat. D

AdvSM-PRE
Th,M′,p=1(A) q+1

|H| + q+1
|M′| [HRS16, BHK

+
19]

8(q+1)2

|H| + 12(q+1)√
|M′|

Supp. Mat. E

AdvSM-UD
Th,M′,p=1(A) q

|M′| [Hül13, DSS05]
12q√
|M′|

[HK22], Supp. Mat. B

AdvSM-rTCR,K
Th,p,Prop (A) (q′+1)

|H| + q′·pK
|R| Supp. Mat. C

8(q′+1)2

|H| + 3pK
2 ·

√
q′

|R| Supp. Mat. C

Table 1: Upper bounds on the success probability of an adversary against properties of tweakable hash

functions Th : P × T ×M→ H, when the hash function is modeled as a (classical or quantum) random

oracle. For SM-rTCR, we assumeM =M0 ×R. Here, q is the number of (quantum or classical) queries

to the hash function and p is the number of classical queries to the challenge oracle, K denotes the

number of queries the challenge oracle in SM-rTCR makes to the hash function. We set q′ := q + pK. We

will only apply undetectability and preimage resistance for the case |M′| = |H|.

Definition 7 (Synchronized Signature Scheme). Let L ∈ N be a natural number. A synchronized signature

scheme with lifetime L is a tuple of efficient algorithms SIG = (Gen, Sig, Ver) with the following syntax:

• Gen(par)→ (pk, sk) takes as input system parameters par and outputs a public key pk and a secret

key sk.

• Sig(sk, ep, m) → σ takes as input a secret key sk, an epoch ep ∈ [L], and a message m ∈ {0, 1}lmsg

and outputs a signature σ.

• Ver(pk, ep, m, σ)→ b is deterministic, takes as input a public key pk, an epoch ep ∈ [L], a message

m ∈ {0, 1}lmsg

, and a signature σ, and outputs a bit b ∈ {0, 1}.

Further, we say that SIG has correctness error at most δ, if for all (pk, sk) ∈ Gen(par), all epochs ep ∈ [L],
and all messages m ∈ {0, 1}lmsg

we have

Pr [Ver(pk, ep, m, σ) = 0 | σ ← Sig(sk, ep, m)] ≤ δ.

Remark 1 (Message Length). Note that throughout the paper, we consider signatures with respect to

messages of a fixed length lmsg. This is without loss of generality, as arbitrarily long messages can first be

compressed using any collision resistant hash function. Clearly, this compression can be done outside of

any pqSNARK circuit, and the compressed message is an input to the circuit.

Definition 8 (Synchronized Security). Let SIG = (Gen, Sig, Ver) be a synchronized signature scheme with

lifetime L, let A be any algorithm. Consider the following experiment SY-UF-CMASIG(A):

1. Generate keys (pk, sk)← Gen(par).

2. Run A on input par and pk, and with (classical) access to the following oracle:

• Sig(ep, m) for ep ∈ [L], m ∈ {0, 1}lmsg

: If Signed[ep] ̸= ⊥, then return ⊥. Otherwise, compute

σ ← Sig(sk, ep, m), set Signed[ep] := (m, σ) and return σ.

3. Obtain from A a forgery (ep∗, m∗, σ∗) with ep∗ ∈ [L] and m∗ ∈ {0, 1}lmsg

. Output 1 if it holds that

Ver(pk, ep∗, m∗, σ∗) = 1 and (m∗, σ∗) ̸= Signed[ep∗]. Otherwise, output 0.

For any algorithm A, we define the following advantage:

AdvSY-UF-CMA
SIG (A) := Pr [SY-UF-CMASIG(A)⇒ 1].

Remark 2 (Strong Unforgeability). Our definition models strong unforgeability, i.e., a forgery is even

considered valid if it is for a message that has been queried before, but with a new signature.
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In a non-interactive multi-signature, we require that individual signatures on the same message can

be publicly aggregated into an (ideally, short) aggregate signature. The aggregate signature can then be

verified with respect to the list of public keys. Again, we consider the synchronized setting.

Definition 9 (Synchronized Multi-Signature Scheme). Let L ∈ N be a natural number. A synchronized

(non-interactive) multi-signature scheme with lifetime L is a tuple of efficient algorithms MS = (Gen, Sig,
Aggregate, Ver) with the following syntax:

• Gen(par)→ (pk, sk) takes as input system parameters par and outputs a public key pk and a secret

key sk.

• Sig(sk, ep, m) → σ takes as input a secret key sk, an epoch ep ∈ [L], and a message m ∈ {0, 1}lmsg

and outputs a signature σ.

• Aggregate(ep, m, ((pki, σi))k
i=1) → σ̄ is deterministic, takes as input an epoch ep ∈ [L], a message

m ∈ {0, 1}lmsg

, and a list of public keys and signatures (pki, σi), and outputs an aggregate signature

σ̄.

• Ver((pki)k
i=1, ep, m, σ̄)→ b is deterministic, takes as input a list of public keys pk1, . . . , pkk, an epoch

ep ∈ [L], a message m ∈ {0, 1}lmsg

, and an aggregate signature σ̄, and outputs a bit b ∈ {0, 1}.

Further, we say that MS has correctness error at most δ : N→ R, if for all k ∈ N, all (pki, ski) ∈ Gen(par)
for i ∈ [k], all epochs ep ∈ [L], and all messages m ∈ {0, 1}lmsg

, we have

Pr
[
Ver((pki)k

i=1, ep, m, σ̄) = 0
∣∣∣∣ ∀i ∈ [k] : σi ← Sig(ski, ep, m),

σ̄ ← Aggregate(ep, m, ((pki, σi))k
i=1)

]
≤ δ(k).

Definition 10 (Synchronized Multi-Signature Security). Let MS = (Gen, Sig, Aggregate, Ver) be a synchro-

nized signature scheme with lifetime L, let A be any algorithm. Consider the following experiment

MS-SY-UF-CMASIG(A):

1. Generate keys (pk, sk)← Gen(par).

2. Run A on input par and pk, and with (classical) access to the following oracle:

• Sig(ep, m) for ep ∈ [L], m ∈ {0, 1}lmsg

: If Signed[ep] ̸= ⊥, then return ⊥. Otherwise, compute

σ ← Sig(sk, ep, m), set Signed[ep] := m, and return σ.

3. Obtain from A a forgery (k∗, (pk∗i )k∗

i=1, ep∗, m∗, σ̄∗) with ep∗ ∈ [L] and m∗ ∈ {0, 1}lmsg

. Output 1 if

it holds that Ver((pk∗i )k∗

i=1, ep∗, m∗, σ̄∗) = 1, m∗ ̸= Signed[ep∗], and there is an i such that pk∗i = pk.

Otherwise, output 0.

For any algorithm A, we define the following advantage:

AdvMS-SY-UF-CMA
MS (A) := Pr [MS-SY-UF-CMAMS(A)⇒ 1].

3.3 Merkle Trees
We recall Merkle trees, implemented using tweakable hash functions. Abstractly, a Merkle tree represents

a vector commitment, namely, a succinct commitment to a sequence of values, for which any value can

later be opened using a short opening. In the case of a Merkle tree, this opening is called a Merkle path.

Construction 1 (Merkle Tree). Let L be a set and Th : P × T ×M → H be a tweakable hash function with

L ⊆ M and H2 ⊆M. The Merkle tree using Th with 2h
leafs in leaf space L is defined by the following set of

algorithms:

• BuildTree(P, x1, . . . , x2h)→ ((Xl,i−1)i∈[2h−l])l∈[h], where P ∈ P and xj ∈ L for all j ∈ [2h]:

1. s := 2h
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2. For i ∈ [2h]: X0,i−1 := Th(P, tweakmt(0, i− 1), xi)
3. For l ∈ [h]:

(a) s := s/2
(b) For i ∈ {0, . . . , s− 1}: Xl,i := Th(P, tweakmt(l, i), (Xl−1,2i, Xl−1,2i+1))

• Root(P, x1, . . . , x2h)→ root, where P ∈ P and xj ∈ L for all j ∈ [2h]:

1. ((Xl,i−1)i∈[2h−l])l∈[h] := BuildTree(P, x1, . . . , x2h)
2. root := Xh,0

• Path(P, x1, . . . , x2h , i)→ path, where P ∈ P , xj ∈ L for all j ∈ [2h] and i ∈ [2h]:

1. ((Xl,i−1)i∈[2h−l])l∈[h] := BuildTree(P, x1, . . . , x2h)

2. î := i− 1
3. For l ∈ {0, . . . , h− 1}:

(a) sibl[l] := î⊕ 0x01
(b) î := ⌊̂i/2⌋

4. path := (Xl,sibl[l])0≤l<h

• VerPath(P, root, i, x, path)→ b, where P ∈ P , x ∈ L and i ∈ [2h]:

1. Write path := (X̂l)0≤l<h

2. X := Th(P, tweakmt(0, i− 1), x), î := i− 1
3. For l ∈ {0, . . . , h− 1}:

(a) If î mod 2 = 0: X := Th(P, tweakmt(l + 1, ⌊̂i/2⌋), (X, X̂l))
(b) If î mod 2 = 1: X := Th(P, tweakmt(l + 1, ⌊̂i/2⌋), (X̂l, X))
(c) î := ⌊̂i/2⌋

4. b := 0, if X = root: b := 1

Here, tweakmt : {0, . . . , h} × {0, . . . , 2h − 1} → T denotes a fixed publicly known injective mapping.

Remark 3 (Time-Space Trade-Offs). A signer could decide to store some (or all) of the inner nodes of the

Merkle tree, to avoid recomputing the entire tree in algorithm Path.

Lemma 1 (Correctness of Merkle Trees). Consider a Merkle tree with 2h
leafs in leaf space L as defined in

Construction 1. Then, for every x1, . . . , x2h ∈ L and every i ∈ [2h], we have

VerPath(Root(x1, . . . , x2h), i, xi, Path(x1, . . . , x2h , i)) = 1.

Proof. This follows by inspection.

3.4 Non-Interactive Argument Systems
In the following, we define non-interactive argument systems. We will make black-box use of these

systems for our multi-signature construction, as the focus of our work is to explore the security and

efficiency of hash-based candidates for the underlying signature scheme. Nonetheless, finding a secure,

efficient, and conceptually simple instantiation of such argument systems will be a necessary next step

on the road to post-quantum proof-of-stake.

Definition 11 (Non-Interactive Proof System). Let Γ ⊆ {0, 1}∗ × {0, 1}∗ be a relation, where for a pair

(stmt, witn) ∈ Γ, we refer to stmt as the statement, and witn as the witness. Let H be a random oracle. A

non-interactive argument system for Γ with respect to H is defined to be a pair of efficient algorithms

AS = (ArgProve, ArgVer) with (classical) oracle access to H and the following syntax:
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• ArgProveH(stmt, witn)→ π is deterministic
8
, takes as input a statement stmt and a witness witn, and

outputs an argument string π.

• ArgVerH(stmt, π) → b is deterministic, takes as input a statement stmt and an argument string π,

and outputs a bit b ∈ {0, 1}.

Further, we say that AS has correctness error at most δ, if for all pairs (stmt, witn) ∈ Γ, we have

Pr
[
ArgVerH(stmt, π) = 0 | π := ArgProveH(stmt, witn)

]
≤ δ,

with probability taken over the randomness of H.

Remark 4 (Succinctness). To obtain non-trivial aggregation of signatures, we need that the argument

system is succinct, meaning that the size of π is significantly smaller than the size of the witness.

Remark 5 (Random Oracles). We highlight again that the verifier of the signature scheme should not

make random oracle calls. More precisely, what we need to avoid is that the relation Γ that we prove is

defined with respect to a random oracle. On the other hand, the succinct argument itself can use random

oracles, and it has been shown that for succinctness, non-falsifiable assumptions are necessary [GW11].

The security property of interest is knowledge soundness, which intuitively guarantees that any efficient

prover capable of producing a valid (i.e., verifying) argument string must also know a valid witness. This

is typically formalized by requiring the existence of an efficient extractor that can derive the witness

from the argument string. Knowledge soundness is particularly useful in our setting where we want

to prove that aggregating signatures with a succinct argument yields a secure multi-signature. In the

security proof, we first extract all individual signatures from the aggregate signature and then reduce to

the security of the underlying signature scheme.

The formal definition of knowledge soundness involves significant subtleties, as extensively discussed

by Unruh [Unr17]. These challenges become even more pronounced when considering quantum

adversaries that can query the random oracle in superposition. This is relevant for analyzing argument

systems in the quantum random oracle model (QROM) [BDF
+

11]. Two concrete examples highlight these

subtleties: First, Chiesa et al. [CMS19] demonstrate that modern pqSNARKs based on hash-functions are

knowledge-sound in the QROM. Unfortunately, their definition is non-adaptive, meaning that the statement

cannot depend on the results of random oracle queries. In the context of aggregating signatures, the

statement corresponds to the list of public keys and the message, which can indeed be chosen adversarially

after querying the random oracle. Despite this limitation, the results of Chiesa et al. remain an important

indication that pqSNARKs are a post-quantum secure method for aggregation. Second, Unruh’s final

definition [Unr17] allows the extractor arbitrary black-box access to the adversary, including the ability

to rewind it
9
. However, in applications like signature aggregation, we need to argue that the extracted

individual signature is fresh (i.e., not derived from the signing oracle). Running the adversary multiple

times to extract signatures makes this argument unclear.

To address this, we use a definition of knowledge soundness that is both adaptive and straight-line: (1)

the (quantum) extractor provides the random oracle to the adversary. (2) once the adversary terminates,

the extractor must extract a valid witness. We conjecture that state-of-the-art pqSNARK constructions

satisfy this adaptive straight-line definition
10

. Verifying this conjecture in the quantum setting is an

important avenue for future work.

Definition 12 (Knowledge Soundness). Let Γ ⊆ {0, 1}∗ × {0, 1}∗ be a relation. Let H be random oracle.

Let AS = (ArgProve, ArgVer) be a non-interactive argument system for Γ with respect to H. Let A be an

algorithm. Consider the following experiment, KN-REALAS(A):

1. Run Awith quantum access to H and obtain an output (stmt, π).

2. Output ArgVerH(stmt, π).
8
As we do not require any zero-knowledge property, we can assume that proving is deterministic.

9
Rewinding is particularly problematic in quantum settings, but readers unfamiliar with this issue may disregard it for now.

10
In the classical random oracle model, hash-based pqSNARKs are already known to satisfy strong notions of adaptive straight-line

extractability [CF24].
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Let Ext be another algorithm, and consider the experiment KN-IDEALAS,Ext(A):

1. Run Awith quantum access to an oracle H provided by Ext and obtain an output (stmt, π).

2. Run Ext on input (stmt, π) and obtain witn from Ext.

3. Output ArgVerH(stmt, π) ∧ (stmt, witn) ∈ Γ.

Then, we say that AS is an argument of knowledge with extractor Ext, loss LossAS,Ext : R → R, where

LossAS,Ext is a non-decreasing function, and extraction time θ, if for every quantum algorithm A that

makes at most t quantum queries to H in KN-REALAS(A), we have that KN-IDEALAS,Ext(A) runs in

time θ(t) and

Pr [KN-REALAS(A)⇒ 1] ≤ LossAS,Ext (Pr [KN-IDEALAS,Ext(A)⇒ 1]) .

4 Generalized XMSS Multi-Signature
In this section, we introduce and analyze a generalized variant of XMSS [BDH11] signatures, and show

how to transform it into a multi-signature scheme. Our generalization enables the simultaneous analysis

of multiple variants of XMSS. At the same time, it achieves comparable security to directly analyzing

individual variants, with no additional security loss.

4.1 Incomparable Encoding Schemes
To capture multiple variants of XMSS in a single abstract construction, we introduce the notion of

incomparable encoding schemes. To understand the definition, it is instructive to recall the basic structure of

XMSS signatures. The public key of a XMSS signature is a Merkle root committing to a list of one-time

public keys. In the case of XMSS, these are keys for the Winternitz one-time signature scheme. A

signature for a message m and an epoch ep then contains two components: (1) a one-time signature

computed using skep on the message m, from which a one-time public key pkep can be computed, (2) a

Merkle path linking pkep to the Merkle root. The Winternitz one-time signature and the variants we

consider here use an internal signing mechanism that abstractly has the following properties:

• It signs digests x ∈ ({0, 1}w)v
, i.e., strings of length vw split into w-bit chunks. To sign a message

m ∈ {0, 1}lmsg

, m is first mapped to x.

• This mapping must be incomparable: roughly, there are now two digests x, x′ obtained from distinct

messages such that each chunk of x′ is larger than the respective chunk of x.

For instance, the Winternitz scheme first hashes m into a digest of length κ < vw bits and then augments

the digest with a short checksum of length vw − κ to obtain x. The checksum ensures incomparability.

We now make this abstraction formal by giving the definition of incomparable encoding schemes and

a security notion for it. Such a scheme maps a message m ∈ {0, 1}lmsg

to a codeword x ∈ C. Crucially,

the code C has the incomparability property sketched above. Namely, two distinct codewords are

incomparable. It may still be possible that two messages map to the same codeword, but it should be

computationally hard to find such messages. To model this, we introduce a target collision resistance

notion.

Definition 13 (Incomparable Encoding Scheme). An incomparable encoding (IE) with public parameter

space P , randomness spaceR, lifetime L, chunk size w, code length v, and code C ⊆ {0, . . . , 2w − 1}v
is

an efficiently computable function

IncEnc : P × {0, 1}lmsg ×R× [L]→ C ∪ {⊥},

such that for every distinct codewords x = (x1, . . . , xv) ∈ C and x′ = (x′1, . . . , x′v) ∈ C, we have

(∃i ∈ [v] : xi < x′i) ∧ (∃i ∈ [v] : x′i < xi) .
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Definition 14 (Error of IE). Let IncEnc : P × {0, 1}lmsg ×R× [L]→ C ∪ {⊥} be an incomparable encoding

scheme. We say that IncEnc has error at most δ, if for every P ∈ P , m ∈ {0, 1}lmsg

, and every ep ∈ [L], we

have

Pr
ρ

$←R
[IncEnc(P, m, ρ, ep) = ⊥] ≤ δ.

Definition 15 (Target Collision Resistance for IE). Let IncEnc : P × {0, 1}lmsg × R × [L] → C ∪ {⊥} be

an incomparable encoding scheme with code C ⊆ {0, . . . , 2w − 1}v
. Let K ∈ N be an integer. For any

algorithm A, consider the following experiment T-COLL-RESK
IncEnc,p(A):

1. Sample parameters P $← P .

2. Run A with input P and (classical) access to an oracle that takes as input m ∈ {0, 1}lmsg , ep ∈ [L]
and is defined as follows:

(a) If there exists an entry (m′, ρ, ep, x) ∈ L (with the same ep) or |L| ≥ p , then return ⊥.

(b) Set ctr := 0 and x := ⊥. While ctr < K and x = ⊥:

i. Sample ρ $← R.

ii. Set x := IncEnc(P, m, ρ, ep).
iii. Set ctr := ctr + 1.

(c) If x = ⊥, insert (m,⊥, ep,⊥) into L and return ⊥.

(d) Else (note: x ∈ C), insert (m, ρ, ep, x) into L and return (x, ρ).

3. Get from A a triple (m∗, ρ∗, ep∗) ∈ {0, 1}lmsg × R × [L]. Then compute the encoding x∗ :=
IncEnc(P, m∗, ρ∗, ep∗).

4. Output 1 if and only if there is a pair (m, ρ) ̸= (m∗, ρ∗) with (m, ρ, ep∗, x∗) ∈ L.

For any such A, we define the following advantage:

AdvT-COLL-RES,K
IncEnc,p (A) := Pr

[
T-COLL-RESK

IncEnc,p(A)⇒ 1
]
.

Remark 6 (Related Notions). Our definition of incomparable encodings is somewhat inspired by [ZCY23].

In contrast to them, we allow for randomized encoding functions via an explicit randomness space, we

make the epoch and public parameters an input of the encoding, and we define a computational security

notion resembling target collision resistance for it. We will make use of this notion in the security analysis

of our generalized XMSS signature. Also, our encodings can fail (output ⊥), which allows us to capture

more instantiations. The incomparability notion is also similar to the notion of domination free functions

presented in [BS20]. In contrast to their abstraction, again ours is randomized and takes more inputs.

Also, we apply our abstraction directly to XMSS, whereas they define a generalized variant of Winternitz

one-time signatures. We found that considering XMSS directly yields a tighter analysis.

4.2 Generalized XMSS Signature
With the definition of incomparable encoding schemes at hand, we can now define an abstract version of

the XMSS signature scheme. For that, we make use of hash chains, as defined next.

Construction 2 (Hash Chains). Let Th : P × T ×M → H be a tweakable hash function such that H ⊆M.

Let L, v, w ∈ N and P ∈ P . For a start index k ∈ {0, . . . , 2w − 1}, a number of steps s ∈ {0, . . . , 2w − 1− k},
an element x ∈ H, a chain index i ∈ [v], and epoch ep ∈ [L], we denote the evaluation of the ith hash chain in

epoch ep for s steps starting from x as ChainTh,i,ep(P, k, s, x) ∈ H. Formally:

• ChainTh,i,ep(P, k, s, x)→ y:

1. y := x

2. If s = 0, return y.

3. For j ∈ [s]: y := Th(P, tweak(ep, i, k + j), y)
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Here, we assume tweak : [L]× [v]× [2w − 1]→ T is a fixed publicly known injective mapping. Importantly, we

assume that the image of this mapping is disjoint from the image of tweakmt in Construction 1.

The following lemma is essential for correctness of the generalized XMSS construction. It states that

first walking s steps, and then walking the remaining 2w − 1− s steps results in the same as walking

2w − 1 steps in one go.

Lemma 2 (Associativity of Hash Chains). Let Th : P × T ×M→ H be a tweakable hash function such that

H ⊆M. Let L, v, w ∈ N and P ∈ P . Fix any i ∈ [v], ep ∈ [L], x ∈ H, and s ∈ {0, . . . , 2w − 1− k}. Then, we

have

ChainTh,i,ep(P, 0, 2w − 1, x) = ChainTh,i,ep(P, s, 2w − 1− s, ChainTh,i,ep(P, 0, s, x))

Proof. This follows from the simple observation that the tweaks that are used are the same on both sides.

The tweaks used on the left hand side are tweak(ep, i, 1), . . . , tweak(ep, i, 2w − 1). This is the same as on

the right hand side: namely, the tweaks on the right hand side are tweak(ep, i, 1), . . . , tweak(ep, i, s) and

then tweak(ep, i, s + 1), . . . , tweak(ep, i, 2w − 1).

Construction 3 (Generalized XMSS). Let L = 2h
be a power of two. Let IncEnc : P × {0, 1}lmsg ×R× [L]→

C ∪ {⊥} be an incomparable encoding with public parameter space P , randomness space R, lifetime L, chunk

size w, code length v, and code C ⊆ {0, . . . , 2w − 1}v
. Let Th : P × T ×M→ H be a tweakable hash function,

such that H ⊆ M, H2 ⊆ M, and Hv ⊆ M. Let K ∈ N be an integer. Consider the Merkle tree using Th
with 2h

leafs in leaf space L = Hv
, as defined in Construction 1. We construct a synchronized signature scheme

SIG[IncEnc, Th, K] using hash chains (cf. Construction 2) with lifetime L as follows:

• SIG[IncEnc, Th, K].Gen(par)→ (pk, sk):

1. P $← P
2. For ep ∈ [L]:

(a) For i ∈ [v]: skep,i
$← H

(b) For i ∈ [v]: pkep,i := ChainTh,i,ep(P, 0, 2w − 1, skep,i)
(c) skep := (skep,1, . . . , skep,v)
(d) pkep := (pkep,1, . . . , pkep,v)

3. root := Root(P, pk1, . . . , pkL)
4. pk := (root, P )
5. sk := (P, (pk1, sk1), . . . , (pkL, skL))

• SIG[IncEnc, Th, K].Sig(sk, ep, m)→ σ:

1. Write sk = (P, (pk1, sk1), . . . , (pkL, skL))
2. pathep := Path(P, pk1, . . . , pkL, ep)
3. Set ctr := 0 and x := ⊥. While ctr < K and x = ⊥:

(a) Sample ρ $← R and set x := IncEnc(P, m, ρ, ep)
(b) Set ctr := ctr + 1

4. If x = ⊥, return ⊥
5. Compute σOTS using skep:

(a) Write x = (x1, . . . , xv) ∈ {0, . . . , 2w − 1}v

(b) Write skep = (skep,1, . . . , skep,v)
(c) For i ∈ [v]: σOTS,i := ChainTh,i,ep(P, 0, xi, skep,i)
(d) σOTS := (σOTS,1, . . . , σOTS,v)

6. σ := (ρ, σOTS, pathep)

• SIG[IncEnc, Th, K].Ver(pk, ep, m, σ)→ b:
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1. Write σ = (ρ, σOTS, pathep) and pk = (root, P )
2. x := IncEnc(P, m, ρ, ep)
3. If x /∈ C: return 0
4. Write x = (x1, . . . , xv) ∈ {0, . . . , 2w − 1}v

5. Write σOTS = (y1, . . . , yv) ∈ Hv

6. For each i ∈ [v] compute: pkep,i = ChainTh,i,ep(P, xi, 2w − 1− xi, yi)
7. pkep := (pkep,1, . . . , pkep,v)
8. b := VerPath(P, root, ep, pkep, pathep)

Remark 7 (Generating Keys using PRFs). In practice, the secret key would be generated using a pseudo-

random function to save memory. We omit this optimization here and note that this only changes the

security bound by an additional additive term for the security of the pseudorandom function.

Remark 8 (Verifier Hashing). As explained earlier, the amount of hashing in the verification algorithm

directly influences the computational cost of generating a succinct argument to aggregate signatures. In

the generalized XMSS construction, the verifier performs hashing operations for two primary purposes:

(1) to verify the Merkle path and (2) to traverse the chains. Additionally, there may be further hashing

required to evaluate IncEnc. For (2), the worst case hashing is given by the expression

max
x∈C

∑
i∈[v]

2w − 1− xi = v(2w − 1)−min
x∈C

∑
i∈[v]

xi.

Therefore, we want to use encodings with codewords x for which

∑
i∈[v] xi is as big as possible.

Remark 9 (Number of Repetitions). In practice, different signers are free to choose different values for K,

or even to loop for an unbounded number of times until they find a valid codeword.

Lemma 3 (Correctness of Generalized XMSS). Assuming IncEnc has error at most δ. Then, the scheme

SIG[IncEnc, Th, K], as defined in Construction 3 has correctness error at most δK
. In other words, the correctness

error is at most 2−λ
if we set

K :=
{

1, if δ = 0
λ/ log(1/δ), if δ > 0

.

Proof. Correctness of the construction follows by the correctness of Merkle trees (Lemma 1) and from

Lemma 2, assuming a suitable ρ ∈ R is found. Thus, it remains to upper bound the probability that

during the signing procedure, for all of the K independently sampled ρ ∈ Rwe have IncEnc(m, ρ, ep) = ⊥.

This probability is given by δK
.

We now show that the security of SIG[IncEnc, Th, K] follows from the security of the incomparable

encoding scheme IncEnc and the tweakable hash function Th. Our proof also makes use of techniques

from the latest proofs [Hül13, KKF21, HK22, HKRY23]. One aspect in which it differs significantly from

those is that we consider a form of strong unforgeability.

Theorem 1 (Security of Generalized XMSS). Consider the scheme SIG[IncEnc, Th, K] with parameters n,

v, w, L, K ∈ N and Th, IncEnc as in Construction 3. Then, for every algorithm A, that makes no more than qs

signature queries, there are algorithms Bi with T(A) ≈ T(Bi) for all i and

AdvSY-UF-CMA
SIG[IncEnc,Th](A) ≤ AdvSM-TCR

Th,2·L·v·2w (B1) + AdvT-COLL-RES,K
IncEnc,qs

(B2) + 2 · AdvSM-TCR
Th,L·v·2w (B3)

+ L · v · 2w
(

2w · AdvSM-UD
Th,H,1(B5) + AdvSM-PRE

Th,H,1 (B6)
)

.
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Proof. Write SIG := SIG[IncEnc, Th, K]. We prove the statement by giving a sequence of games. For the

ith game, denoted by Game.i, we let AdvGame.i
SIG (A) be the probability that the game outputs 1.

Game.0: Our starting point is the original synchronized security game for adversary A and scheme

SIG, see Definition 8. To recall, the game first generates a pair (pk, sk) as in the scheme and then gives

the public key pk = (root, P ) to A. The adversary then gets access to an oracle Sig(ep, m) to obtain

signatures for messages m and epochs ep. The oracle can only be called once per epoch, and stores the

resulting message signature pair (m, σ) as Signed[ep] := (m, σ). Finally, the adversary outputs a forgery

(ep∗, m∗, σ∗) and wins if Ver(pk, ep∗, m∗, σ∗) = 1 and (m∗, σ∗) ̸= Signed[ep∗]. In the scheme we consider,

signatures have the form σ = (ρ, σOTS, pathep). That is, the second part of the winning condition states

that (m∗, (ρ∗, σ∗OTS, path∗ep∗)) ̸= Signed[ep∗], where σ∗ = (ρ∗, σ∗OTS, path∗ep∗). We also make the following

assumption, which is without loss of generality: we have Signed[ep∗] ̸= ⊥ at the end of the game, i.e., A
queried the signing oracle for the forgery epoch

11
. By definition, we have

AdvSY-UF-CMA
SIG[IncEnc,Th](A) = AdvGame.0

SIG (A).

Game.1: We now change the winning condition. Informally, we rule out that the adversary forges

by breaking the security of the Merkle tree. More precisely, denote the list of one-time public keys

that the game generated during key generation by pk1, . . . , pkL, i.e., root = Root(P, pk1, . . . , pkL).
Further, let σ∗ = (ρ∗, σ∗OTS, path∗ep) be A’s forgery, and let pk∗ep∗ denote the one-time public key for

this epoch that the verification algorithm recomputes from σ∗OTS and x∗ = IncEnc(P, m∗, ρ∗, ep∗). Let

pathep∗ := Path(P, pk1, . . . , pkL, ep∗) be the Merkle path that the signing oracle Sig(ep∗, ·) would include

in signatures. Now, the game Game.1 would output 0 if

(pkep∗ , pathep∗) ̸= (pk∗ep∗ , path∗ep∗). (1)

Here, the left hand side is what honest signing would compute, and the right hand side is derived from

the forgery. Otherwise, the game checks the winning condition as before. The games only differ if

Equation (1) holds. We will now argue that this event can be bounded by a reduction B1 breaking target

collision resistance, i.e., ∣∣∣AdvGame.0
SIG (A)− AdvGame.1

SIG (A)
∣∣∣ ≤ AdvSM-TCR

Th,2·L·v·2w (B1).

To understand how such a reduction B1 works, consider the part of the Merkle tree that is revealed when

opening the leaf at position ep∗. Assume (pkep∗ , pathep∗) ̸= (pk∗ep∗ , path∗ep∗). Both pairs reveal nodes at

the same positions in the Merkle tree, but because the pairs are not the same, at least one of the nodes

differ. That is, the part of the Merkle tree that is recomputed from the forgery differs from the one that

would be recomputed from an honest signature for that epoch, i.e., from the Merkle tree that the game

originally created during key generation. The nodes in which the two differ can be the leaf in the Merkle

tree (in case pkep∗ ̸= pk∗ep∗), or some internal node on the authentication path. Still, because the forgery

is accepted, the root of the Merkle tree computed from the forgery must match the root of the original

Merkle tree. Due to a pigeon hole argument there must be a collision somewhere in the Merkle tree. We

now sketch how to use it to break target collision resistance.

In a reduction, we would first get a Th(P, ·, ·) oracle. We would use it to simulate the key generation

process in Game.0. To do so we first generate secret elements ski,j , i ∈ [L], j ∈ [v] uniformly at random.

Next, we query Th(P, ·, ·) with the corresponding secret values and tweaks to build all chains and

compute pkep, ep ∈ [L]. Now, we build the Merkle tree. For that, we again use the oracle Th(P, ·, ·). In

this way, we can set up all chains and the Merkle tree without explicit access to P . Then, we would

signal that the first stage of the target collision resistance game is completed, and get P from the game.

In combination with the Merkle root, this serves as the public key, which we then give to A. As we

know all secret keys, we can perfectly simulate the rest of Game.0 for A. If for the forgery it holds that

(pkep∗ , pathep∗) ̸= (pk∗ep∗ , path∗ep∗), there must be a collision as explained above. By recomputing the root

of the Merkle tree from the forged signature we find this collision efficiently and can break target collision

resistance.

11
Otherwise, just build a wrapper adversary around A that queries the signing oracle on a different message after receiving the

forgery from A.
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Game.2: This is the same as Game.1 but we let the game output 0 if we can extract a collision for the

incomparable encoding scheme. More precisely, recall that we consider only the case in which Sig(ep∗, ·)
has been queried, and let (m, σ) = Signed[ep], where σ = (ρ, σOTS, pathep∗). We let the game output 0 if

we have

(m, ρ) ̸= (m∗, ρ∗) ∧ IncEnc(P, m, ρ, ep∗) = IncEnc(P, m∗, ρ∗, ep∗). (2)

Otherwise, the game outputs what Game.1 would output. We can easily bound the difference between

these two games using a reduction B2 against target collision resistance of IncEnc (Definition 15). We

sketch it:

1. Get P as input from the target collision resistance game, and access to an oracle, denoted by O. Use

P to generate (pk, sk) as in Game.1 honestly.

2. Run A as in Game.1 on input pk, and implement Sig(ep, m) as in Game.1, but to compute x use

oracle O on input m, ep.

3. Get from A a forgery, and output (m∗, ρ∗, ep∗) if Equation (2) holds.

First, the simulation of the game provided by the reduction is perfect, and its running time is about that

of A. Second, note that if Equation (2) holds, then B2 breaks the target collision resistance of IncEnc. We

get ∣∣∣AdvGame.1
SIG (A)− AdvGame.2

SIG (A)
∣∣∣ ≤ AdvT-COLL-RES,K

IncEnc,qs
(B2).

Let us summarize what we have now, using the same notation as above: if Game.2 outputs 1, then

(m∗, (ρ∗, σ∗OTS, path∗ep∗)) ̸= (m, (ρ, σOTS, pathep∗)). Due to the changes we have introduced, this means one

of the following must hold:

1. (m, ρ) ̸= (m∗, ρ∗) and x ̸= x∗ for x = IncEnc(P, m, ρ, ep∗) and x∗ = IncEnc(P, m∗, ρ∗, ep∗), or

2. (m, ρ) = (m∗, ρ∗) (consequently: x = x∗), but σOTS ̸= σ∗OTS.

In both cases, we have (pkep∗ , pathep∗) = (pk∗ep∗ , path∗ep∗) with the notation of Game.1. In the following,

we will first eliminate the second case, and then focus on the first one.

Game.3: As already mentioned, we now deal with the second case. Namely, we define Game.3 to

be exactly as Game.2, but it outputs 0 if Game.2 would output 1 and we are in the second case, i.e.,

(m, ρ) = (m∗, ρ∗), but σOTS ̸= σ∗OTS and (pkep∗ , pathep∗) = (pk∗ep∗ , path∗ep∗). To bound the difference

between Game.2 and Game.3, denote σOTS = (y1, . . . , yv) and σ∗OTS = (y∗1 , . . . , y∗v) and assume we are

in this second case. Then, there must be at least one chain i ∈ [v] such that yi ̸= y∗i . At the same time,

because pkep∗ = pk∗ep∗ , we have

ChainTh,i,ep∗(P, xi, 2w − 1− xi, yi) = pkep∗,i = pk∗ep∗,i = ChainTh,i,ep∗(P, x∗i , 2w − 1− x∗i , y∗i )
= ChainTh,i,ep∗(P, xi, 2w − 1− xi, yi),

where we have used that x = x∗. This constitutes a collision somewhere in the chain, on the way from

yi (resp. y∗i ) to pkep∗,i = pk∗ep∗,i. More formally, we can build a reduction B3 that breaks target collision

resistance of Th if we are in this case. It requires L · v · 2w
many targets (one per step in each chain in

each epoch). We leave the reduction as a simple exercise to the reader, and get∣∣∣AdvGame.2
SIG (A)− AdvGame.3

SIG (A)
∣∣∣ ≤ AdvSM-TCR

Th,L·v·2w (B3).

Now that we have ruled out the second case, we can focus on the first case, i.e., the case in which

x ̸= x∗. Note that the verification algorithm checks that x∗ ∈ C and x ∈ C by construction. Therefore, the

definition of the incomparable encoding scheme (Definition 13) ensures that there exists some i ∈ [v]
such that x∗i < xi. From now on, i∗ denotes the minimum i∗. The focus of the following games will be

to consider what happens in this chain i∗. There are two options: either, the value at position xi∗ in

the chain that we recompute from the adversary’s signature σ∗OTS is different from yi. In this case, we

have another collision (as the ends of the chain are the same) and we can again reduce to target collision

resistance. Or, it is the same, in which case our goal will be to reduce to preimage resistance. Subsequent

games implement this intuition.
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Game.4: The game is exactly as Game.3, but it additionally outputs 0 if

ChainTh,i∗,ep∗(P, x∗i∗ , xi∗ − x∗i∗ , y∗i∗) ̸= yi∗ , (3)

where we use the notation from Game.3. Denote the left hand side by ŷ. Clearly, Game.3 and Game.4
only differ if Equation (3) holds. We claim that this again constitutes a collision. To see this, note that

ChainTh,i∗,ep∗(P, xi∗ , 2w − 1− xi∗ , yi∗) = pkep∗,i∗ = pk∗ep∗,i∗ = ChainTh,i∗,ep∗(P, x∗i∗ , 2w − 1− x∗i∗ , y∗i∗)
= ChainTh,i∗,ep∗(P, xi∗ , 2w − 1− xi∗ , ŷ),

where we have again used that pkep∗ = pk∗ep∗ , that the forgery contains a valid signature, and a straight-

forward generalization of Lemma 2. Assuming Equation (3) holds, there must be some collision in that

chain. Again, we can formally obtain an efficient reduction B4 that breaks target collision resistance, and∣∣∣AdvGame.3
SIG (A)− AdvGame.4

SIG (A)
∣∣∣ ≤ AdvSM-TCR

Th,L·v·2w (B4).

From now on, we can hence assume that

ChainTh,i∗,ep∗(P, x∗i∗ , xi∗ − x∗i∗ , y∗i∗) = yi∗ , (4)

and the idea is to use preimage resistance to bound the probability of that. Intuitively, yi∗ is a hash for

which the adversary never learned a preimage, and we can compute a preimage by following the chain

from y∗i∗ . However, note that the preimage of yi∗ is not necessarily uniform, as it is also a hash. To deal

with that, we apply undetectability. To apply undetectability, we will first make sure we know the epoch

ep∗, the chain i∗, and the position in the chain xi∗ in advance, using a guessing argument.

Game.5: We let the game sample (ep∗, i∗, xi∗) $← [L]× [v]× [2w − 1] in the beginning, then run Game.4,

but abort as soon as it is clear that these guesses are not correct. This is a standard guessing argument.

As the view of A does not depend on this guess and the game does not change assuming the guess is

correct, we get

AdvGame.4
SIG (A) ≤ L · v · (2w − 1) · AdvGame.5

SIG (A) ≤ L · v · 2w · AdvGame.5
SIG (A).

Game.6: We change how key generation works. Namely, after sampling (ep∗, i∗, xi∗) as in Game.5, the

game sets up (pk, sk) as in Game.5, with the following exception: the position
12 xi∗ − 1 in the i∗th chain

for epoch ep∗ is sampled uniformly at random (call its value z∗) instead of being a hash of the previous

position. Everything else stays the same. Note that assuming the guess of xi∗ was correct, the reduction

can still simulate the game, e.g., it defines yi∗ to be the hash of z∗. We can easily apply undetectability

(with one target) to get ∣∣∣AdvGame.5
SIG (A)− AdvGame.6

SIG (A)
∣∣∣ ≤ 2w · AdvSM-UD

Th,H,1(B5),

for a reduction B5. The 2w
factor comes from a hybrid argument. To understand that, note that the

undetectability notion challenges the adversary to distinguish from a hash of a random input and a

random string. In our case, we are substituting an intermediate block in one of the chains, which was

generated as a result of several consecutive hashes. To cover this difference, a standard hybrid argument

can be applied which results in the 2w
factor. That is, in the jth hybrid, we would replace the jth element

in the chain with a random value. For a more detailed presentation, we refer the reader to [HK22].

Final Reduction: In the final step, we bound the advantage in Game.6 using an efficient reduction B6
that breaks preimage resistance of Th (for a single target). It works as follows:

1. In the first stage, the reduction has access to an oracle O that takes tweaks as input and returns

images of random messages.

2. The reduction samples (ep∗, i∗, xi∗) as explained in Game.5. It then calls O(T ) with T =
tweak(ep∗, i∗, xi∗) to get yi∗ .

12
Note that xi∗ ≥ 1 and so the position xi∗ − 1 is well defined.
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3. The reduction signals that it completed the first stage, which means it obtains P from the game.

4. The reduction uses P to complete setting up the public key and all information needed to simulate

Game.6 to A. Then, the reduction simulates Game.6 to A.

5. Once A outputs its forgery, the reduction uses Equation (4) to compute a preimage of yi∗ (by

walking the chain) and returns it to the game.

It is clear that the reduction perfectly simulates Game.6 and that its running time is dominated by that of

A. It is also clear that the reduction finds a preimage if Game.6 outputs 1, and so we can conclude with

AdvGame.6
SIG (A) ≤ AdvSM-PRE

Th,H,1 (B6).

4.3 Multi-Signature Construction
We now show how to aggregate individual signatures of our generalized XMSS signature scheme.

Formally, we show how to turn any synchronized signature scheme into a synchronized non-interactive

multi-signature scheme. To this end, we follow a well-known approach, e.g., [KCLM22, ACL
+

22, WW22,

DGKV22]: we use any succinct argument system, and the aggregate signature is the succinct argument

string. We show that security of the resulting multi-signature reduces tightly to knowledge soundness of

the argument system and the synchronized signature. It is important to note that our proof relies on

adaptive knowledge soundness, see Section 3.4.

Construction 4 (Argument-Based Multi-Signature). Let SIG be a synchronized signature scheme with lifetime

L. Consider the relation

Γ :=


(k, ep, m, (pki)k

i=1)︸ ︷︷ ︸
stmt

, (σi)k
i=1︸ ︷︷ ︸

witn

 ∣∣∣∣∣∣ ∀i ∈ [k] : SIG.Ver(pki, ep, m, σi) = 1

 .

Let AS = (ArgProve, ArgVer) be a non-interactive argument system for Γ with respect to a random oracle H. We

construct a synchronized multi-signature scheme with lifetime L, denoted by MS[SIG, AS], as follows:

• MS[SIG, AS].Gen = SIG.Gen and MS[SIG, AS].Sig = SIG.Sig

• MS[SIG, AS].Aggregate(ep, m, ((pki, σi))k
i=1)→ σ̄:

1. stmt := (k, ep, m, (pki)k
i=1), witn := (σi)k

i=1

2. σ̄ := ArgProveH(stmt, witn)

• MS[SIG, AS].Ver((pki)k
i=1, ep, m, σ̄)→ b:

1. stmt := (k, ep, m, (pki)k
i=1)

2. b := ArgVerH(stmt, σ̄)

Lemma 4 (Correctness of Argument-Based Multi-Signature). If AS has correctness error at most δAS and SIG
has correctness error at most δSIG, then the scheme MS[SIG, AS], as defined in Construction 4, has correctness error

at most δ : N→ R with δ(k) = δAS + kδSIG for all k ∈ N.

Proof. We consider an epoch ep and a message m, and k signatures σi ← Sig(ski, ep, m) generated honestly

that are aggregated. By a union bound, the probability that we have ((k, ep, m, (pki)k
i=1), (σi)k

i=1) /∈ Γ is

at most kδSIG. Under the assumption that we have ((k, ep, m, (pki)k
i=1), (σi)k

i=1) ∈ Γ, the probability that

the argument does not verify is at most δAS.

Theorem 2 (Security of Argument-Based Multi-Signature). Consider MS[SIG, AS], as defined in Construc-

tion 4. Assume that AS is an argument of knowledge with extractor Ext, loss LossAS,Ext, and extraction time θ.

Then, for any algorithm A that makes at most t quantum queries to H, there is an algorithm B with

T(B) ≤ θ(t) + T(A) and AdvMS-SY-UF-CMA
MS[SIG,AS] (A) ≤ LossAS,Ext

(
AdvSY-UF-CMA

SIG (B)
)

.
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Proof. Write MS := MS[SIG, AS] for short. Our proof will use a sequence of two games, Game.0 and

Game.1, and a final reduction. We denote the probability that Game.i outputs 1 by AdvGame.i
MS (A).

Game.0: This is the original synchronized multi-signature game as defined in Definition 10. That is,

the game first samples a key pair (pk, sk)← Gen(par) and gives pk to A. Then, it runs A with classical

oracle access to a signing oracle. Notably, A also gets quantum access to the random oracle H used

in the argument system AS. Finally, the adversary outputs a forgery (k∗, (pk∗i )k∗

i=1, ep∗, m∗, σ̄∗) with

ep∗ ∈ [L] and m∗ ∈ {0, 1}lmsg

. The game outputs 1 if and only if Ver((pk∗i )k∗

i=1, ep∗, m∗, σ̄∗) = 1, i.e.,

ArgVerH(stmt, σ̄∗) = 1 for stmt := (k, ep, m, (pki)k
i=1), and the signing oracle did not sign m∗ in epoch ep∗.

In this case, we say that m∗ is fresh. It is also required that there is an i0 such that pk∗i0
= pk. By definition:

AdvMS-SY-UF-CMA
MS[SIG,AS] (A) = AdvGame.0

MS (A).

Game.1: This game is the same, with two changes: first, the random oracle H is now provided to A by

the extractor Ext. Second, once the game has checked that ArgVerH(stmt, σ̄∗) = 1 and that m∗ is fresh, it

gives (stmt, π) for π := σ̄∗ to Ext and get witn back. It only outputs 1 if (stmt, witn) ∈ Γ. We claim that

AdvGame.0
MS (A) ≤ LossAS,Ext

(
AdvGame.1

MS (A)
)

. (5)

To see this, we construct an algorithm B̂ that we use in Definition 12. It runs in KN-REALAS(A) (resp.

KN-IDEALAS,Ext(A)) and gets oracle access to H (resp. Ext). It internally simulates Game.0 to A by

forwarding A’s oracle queries to its own oracle. Notably, if the winning condition of Game.0 were to

output 0, B̂ outputs ⊥. Otherwise, B̂ outputs stmt := (k, ep, m, (pki)k
i=1) and π := σ̄. By definition of B̂,

we have

AdvGame.0
MS (A) = Pr

[
KN-REALAS(B̂)⇒ 1

]
.

By the knowledge soundness of AS, we get

Pr
[
KN-REALAS(B̂)⇒ 1

]
≤ LossAS,Ext

(
Pr

[
KN-IDEALAS,Ext(B̂)⇒ 1

])
.

Note that KN-IDEALAS,Ext(B̂) is the same as Game.1, and so

Pr
[
KN-IDEALAS,Ext(B̂)⇒ 1

]
= AdvGame.1

MS (A).

This shows Equation (5). Also, note that B̂makes as many queries to H asAmakes, and therefore Game.1
runs in time at most θ(t) + T(A).
Final Reduction: We can easily bound the probability that Game.1 outputs 1 using a reduction B that

breaks synchronized security of SIG. The reduction gets as input a public key and access to a signing

oracle. It forwards the key toA and simulates Game.1 by relaying signing queries between the adversary

and its own signing oracle. It uses Ext to provide the random oracle to A, as specified in Game.1. If

Game.1 outputs 1, then the extracted witness satisfies witn = (σi)k
i=1, where SIG.Ver(pk, ep∗, m∗, σi0) = 1.

Also, m∗ has never been signed in epoch ep∗ by the signing oracle. Therefore, B can output (ep∗, m∗, σ∗)
with σ∗ := σi0 as its forgery. We get

AdvGame.1
MS (A) ≤ AdvSY-UF-CMA

SIG (B).

As LossAS,Ext is a non-decreasing function, we get the result.

5 Instantiations of Incomparable Encodings
We now give several instantiations of the abstract construction presented in Section 4. To this end, we

specify incomparable encoding schemes and show their security. As corollaries, we obtain concrete

security bounds for our variants of XMSS.
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5.1 Classical Winternitz
The first instantiation that we give is essentially the classical Winternitz construction, using tweakable

hashes
13

. That is, if we plug it into our generalized XMSS construction, we essentially obtain XMSS

(instantiated with tweakable hash functions).

Construction 5 (IE for Winternitz). Let w, L ∈ N be integers. Let Thmsg : P × T × ({0, 1}lmsg × R) →
{0, . . . , 2w − 1}n0

be a tweakable hash function. Set n1 := ⌊log2w (n0(2w − 1))⌋+ 1. Set v := n0 + n1. With

this, we define the encoding function

IncEncW[Thmsg] : P × {0, 1}lmsg ×R× [L]→ C ∪ {⊥},

where C ⊆ {0, . . . , 2w − 1}v
is defined as the image of this function. It is given by the following instructions on

input P ∈ P, m ∈ {0, 1}lmsg , ρ ∈ R, ep ∈ [L]:

1. (x1, . . . , xn0) := Thmsg(P, tweakm(ep), (m, ρ)) for xi ∈ {0, . . . , 2w − 1}

2. c := n0(2w − 1)−
∑n0

i=1 xi. Note: 0 ≤ c ≤ n0(2w − 1)

3. Write c =
∑n1

i=1 ci2w(i−1)
for ci ∈ {0, . . . , 2w − 1}

4. Return (x1, . . . , xn0 , c1, . . . , cn1) ∈ {0, . . . , 2w − 1}v

Here, we assume tweakm : [L]→ T is a fixed publicly known injective mapping.

Lemma 5 (Correctness and Error of Winternitz). The function IncEncW[Thmsg] as defined in Construction 5 is

an incomparable encoding scheme and has error δ = 0.

Proof. All that we have to prove is that IncEncW[Thmsg] is an incomparable encoding, as IncEncW[Thmsg]
never outputs⊥. This is (implicitly) in [BS20], but we recall a proof for completeness. Consider two distinct

codewords (x1, . . . , xn0 , c1, . . . , cn1) ∈ {0, . . . , 2w − 1}v
and (x′1, . . . , x′n0

, c′1, . . . , c′n1
) ∈ {0, . . . , 2w − 1}v

,

i.e., outputs of IncEncW. That is, we know that c =
∑n1

i=1 ci2w(i−1)
is a correct checksum for (x1, . . . , xn0)

and c′ =
∑n1

i=1 c′i2w(i−1)
is a correct checksum for (x′1, . . . , x′n0

). Assume towards contradiction that

xi ≤ x′i and cj ≤ c′j for all i ∈ [n0] and all j ∈ [n1]. Define x̄ =
∑n0

i=1 xi and x̄′ =
∑n0

i=1 x′i. With that, we

have c = n0(2w − 1)− x̄ and c′ = n0(2w − 1)− x̄′. Due to the inequalities, we also know that c ≤ c′ and

x̄ ≤ x̄′. As the two codewords are distinct, at least one of the inequalities xi ≤ x′i and cj ≤ c′j has to be

strict. In the first case, at least one of the xi ≤ x′i is strict. In particular, we have x̄ < x̄′ and therefore

c = n0(2w − 1)− x̄ > n0(2w − 1)− x̄′ = c′.

But this contradicts c ≤ c′. In the second case, at least one of the ci ≤ c′i is strict, i.e., c < c′. But again,

c = n0(2w − 1)− x̄ ≥ n0(2w − 1)− x̄′ = c′,

a contradiction.

Lemma 6 (Target Collision-Resistance of Winternitz). Consider the function IncEncW[Thmsg] as defined in

Construction 5, and any K, p ∈ N. Then, for every algorithm A, there is an algorithm B with T(A) ≈ T(B) and

AdvT-COLL-RES,K
IncEncW[Thmsg],p(A) ≤ AdvSM-rTCR,K

Thmsg,p,Prop(B),

where Prop : {0, 1}∗ → {0, 1} always outputs 1.

Proof. The reduction B runs in the game for target collision resistance with random sampling for the

tweakable hash function Thmsg
, see Definition 6. It is as follows: B gets as input P ∈ P and it gets access

to an oracle, which we denote by O. B runs A in the target collision resistance game for IncEncW[Thmsg],
by giving P as an input and providing the following oracle to A: On input a message m and an epoch ep,

the oracle (simulated by B) first checks if there exists an entry of the form (m′, ρ, ep, x) ∈ L or |L| ≥ p.

13
More precisely, Winternitz’ scheme is a one-time signature scheme, whereas we specify an incomparable encoding. But

plugging our incomparable encoding into the generalized XMSS construction, we obtain (almost) the same as if we implement a

Merkle tree on top of Winternitz. Of course, we use tweakable hashes and the classical Winternitz scheme does not.
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If so, it returns ⊥. Otherwise, it calls O on input tweakm(ep) and m. The oracle forwards the response

(x, ρ) of O to A and inserts (m, ρ, ep, x) into L (or (m,⊥, ep,⊥) if the response was ⊥). Finally, when the

adversary outputs a triple (m∗, ρ∗, ep∗), the reduction first checks if A wins the game, i.e., if there is a

pair (m, ρ) ̸= (m∗, ρ∗) with (m, ρ, ep∗, x∗) ∈ L. If so, say this is the j∗th entry in L. Then, the reduction

forwards (j∗, m∗, ρ∗) to its game.

Clearly, the running time of B is dominated by running A. As different epochs yield different tweaks,

it can be seen that the oracle is simulated perfectly to A. Also, if we assume that A wins the target

collision resistance game of IncEncW[Thmsg], then B wins its game as well.

Corollary 1 (Winternitz Instantiation). Let Thmsg : P × T × ({0, 1}lmsg × R) → {0, . . . , 2w − 1}n0
be a

tweakable hash function. Let Th : P × T × M → H be a tweakable hash function, such that H ⊆ M,

H2 ⊆ M, and Hv ⊆ M. Set K := 1 and Prop : {0, 1}∗ → {0, 1} always outputs 1. Consider the scheme

SIG := SIG[IncEncW[Thmsg], Th, K] obtained from combining Constructions 3 and 5.

Then, this scheme has correctness error 0. Furthermore, for every algorithm A, there are algorithms Bi with

T(A) ≈ T(Bi) for all i and

AdvSY-UF-CMA
SIG (A) ≤ AdvSM-TCR

Th,2·L·v·2w (B1) + AdvSM-rTCR,K
Thmsg,qs,Prop(B2) + 2 · AdvSM-TCR

Th,L·v·2w (B3)

+ L · v · 2w
(

2w · AdvSM-UD
Th,H,1(B5) + AdvSM-PRE

Th,H,1 (B6)
)

,

where qs is the number of signing queries that A makes.

5.2 Target Sum Winternitz
A subtle problem of the Winternitz construction before is that an attacker may compute a signature

with a specifically crafted randomness ρ such that the number of verification hashes is high, which has

a negative impact on aggregation efficiency. To do so, the attacker just has to try to minimize the sum∑
i xi. One approach to get a more explicit control on the number of hashes that the verifier makes

(see Remark 8) is to enforce that the sum

∑
i xi of chunks is always equal to a constant T . One would

regenerate x using a counter or fresh randomness if until it satisfies this constraint. In this case, it is

known that the checksum can be omitted [HKRY23, ZCY23], which intuitively shrinks the signature

size compared to classical Winternitz. We now give an incomparable encoding scheme that uses this

technique.

Construction 6 (IE for Target Sum Winternitz). Let v, w, T ∈ N be integers. Let Thmsg : P ×T × ({0, 1}lmsg ×
R)→ {0, . . . , 2w − 1}v

be a tweakable hash function. Define the code

C :=
{

(x1, . . . , xv) ∈ {0, . . . , 2w − 1}v

∣∣∣∣∣
v∑

i=1
xi = T

}
⊆ {0, . . . , 2w − 1}v.

With this, we define the encoding function

IncEncTSW[Thmsg, T ] : P × {0, 1}lmsg ×R× [L]→ C ∪ {⊥}.

It is given by the following instructions on input P ∈ P, m ∈ {0, 1}lmsg , ρ ∈ R, ep ∈ [L]:

1. x := Thmsg(P, tweakm(ep), (m, ρ))

2. If x /∈ C, return ⊥. Else, return x ∈ {0, . . . , 2w − 1}v

Here, we assume tweakm : [L]→ T is a fixed publicly known injective mapping.

Lemma 7 (Correctness and Error of Target Sum Winternitz). Consider the function IncEncTSW[Thmsg, T ]
as defined in Construction 6, and assume that Thmsg

is ϵ-uniform for seed space R (see Definition 2). Then,

IncEncTSW[Thmsg, T ] is an incomparable encoding scheme and has error

δ = ϵ + (1− ηT /2vw), where (1 + x + · · ·x2w−1)v =
(2w−1)v∑

i=0
ηix

i ∈ R[x].
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Proof. We first show that IncEncTSW[Thmsg, T ] is an incomparable encoding scheme. To this end, let

x, x′ ∈ C be distinct with x = (x1, . . . , xv) and x′ = (x′1, . . . , x′v). Now, assume towards contradiction that

every coordinate of x is larger or equal than the respective coordinate of x′. We know that at least one of

these inequalities has to be strict as x ̸= x′. Then, we have

T =
v∑

i=1
xi >

v∑
i=1

x′i = T,

a contradiction. We now focus on the error of the scheme. For that, we need to fix P ∈ P , a message

m ∈ {0, 1}lmsg

, and an epoch ep ∈ [L]. We consider the experiment of sampling ρ $← R and want to get an

upper bound on

Pr
ρ

[IncEncTSW[Thmsg, T ](P, m, ρ, ep) = ⊥] = Pr
ρ

[x /∈ C] ≤ Pr̄
x

[x̄ /∈ C] + ϵ,

where we have used ϵ-uniformity of Thmsg
and x̄ $← {0, 1}vw

in the last step. Therefore, we want to find

the probability that the sum of v uniform independent values 0 ≤ x̄i < 2w
is not equal to T . The total

number of ways to pick v such values is of course 2vw
. The number of ways that sum to T is exactly the

coefficient of xT
in the expression

(1 + x + · · ·x2w−1)v.

A closed expression could be found using the theory of generating functions, using the identity

(1 + x + · · ·x2w−1)(1− x) = 1− x2w−1.

Lemma 8 (Target Collision-Resistance of Target Sum Winternitz). Consider the function IncEncTSW[Thmsg, T ]
as defined in Construction 5, and any K, p ∈ N. Let Prop : {0, 1}∗ → {0, 1} be the predicate that outputs 1 if and

only if its input is in C. Then, for every algorithm A, there is an algorithm B with T(A) ≈ T(B) and

AdvT-COLL-RES,K
IncEncW[Thmsg],p(A) ≤ AdvSM-rTCR,K

Thmsg,p,Prop(B).

Proof. The reduction works exactly as in the proof of Lemma 6, noting that Prop outputs 1 exactly if the

target collision resistance game for IncEncTSW[Thmsg, T ] (see Definition 15) finds a valid x ̸= ⊥.

Corollary 2 (Target Sum Winternitz Instantiation). Let Thmsg : P ×T × ({0, 1}lmsg ×R)→ {0, . . . , 2w− 1}v

be a tweakable hash function. Let Th : P×T ×M→ H be a tweakable hash function, such thatH ⊆M,H2 ⊆M,

and Hv ⊆ M. Fix integers T ∈ N and K ∈ N. Let Prop : {0, 1}∗ → {0, 1} be the predicate as in Lemma 8.

Consider the scheme SIG := SIG[IncEncTSW[Thmsg, T ], Th, K] obtained from combining Constructions 3 and 6.

Then, this scheme has correctness error at most

(ϵ + (1− ηT /2vw))K
, where (1 + x + · · ·x2w−1)v =

(2w−1)v∑
i=0

ηix
i ∈ R[x].

Furthermore, for every algorithm A, there are algorithms Bi with T(A) ≈ T(Bi) for all i and

AdvSY-UF-CMA
SIG (A) ≤ AdvSM-TCR

Th,2·L·v·2w (B1) + AdvSM-rTCR,K
Thmsg,qs,Prop(B2) + 2 · AdvSM-TCR

Th,L·v·2w (B3)

+ L · v · 2w
(

2w · AdvSM-UD
Th,H,1(B5) + AdvSM-PRE

Th,H,1 (B6)
)

,

where qs is the number of signing queries that A makes.
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6 Parameter Requirements
In this section, we discuss how to set parameters of the schemes. For example, we describe how large the

set of parameters P or the output length of the tweakable hash function has to be, assuming a desired

security level is given. To this end, we proceed in two conceptual steps. First, we use the security bounds

that we get from Theorem 1 and Corollaries 1 and 2, which gives us security levels we need for the

security properties of hash functions. In a second step, to get concrete parameters for (approximately) kC

bits of classical security and kQ bits of quantum security, we then use the heuristic bounds from Table 1.

Again, we note that these are only heuristics and cryptanalysis should focus on the security properties of

hash functions with the desired security levels from the first step. We will split our discussion into the

parameters related to to the encoding IncEnc and Thmsg
(i.e., w, v, |R|), and to the parameters related to

Th (i.e., |P| and |H|). In general, we assume that w, L, lmsg, kC , and kQ are given.

Security Levels for Hash Function Properties. Our goal is that for any adversary A running in time

T(A), the fraction AdvSY-UF-CMA
SIG (A)/T(A) is at most 2−k

, where k = kC or k = kQ depending on whether

A is quantum. Looking at Theorem 1 and Corollaries 1 and 2, we see that the advantage is the sum of five

terms. Consequently, we want that each of these terms, divided by the running time, is at most 2−k−log 5
.

This means we need to ensure the following hardness bounds, for any algorithm A:

AdvSM-TCR
Th,2·L·v·2w (A)/T(A) ≤ 2−(k+log 5). (6)

AdvSM-TCR
Th,L·v·2w (A)/T(A) ≤ 2−(k+log 5+1). (7)

AdvSM-UD
Th,H,1(A)/T(A) ≤ 2−(k+log 5+2w+log L+log v). (8)

AdvSM-PRE
Th,H,1 (A)/T(A) ≤ 2−(k+log 5+w+log L+log v). (9)

AdvSM-rTCR,K
Thmsg,qs,Prop(A)/T(A) ≤ 2−(k+log 5). (10)

Note that the last requirement depends on the instantiation of the incomparable encoding, in particular

on Thmsg
. In the following, we use the heuristics from Table 1 to suggest how to set parameters satisfying

these requirements.

Message Hash and Randomness - Winternitz. We start with the parameters for the instantiations,

focusing first on the Winternitz instantiation (Construction 5). Specifically, we assume that w and qs

are given
14

and we want to determine requirements on |R| and n0, which also dictates how to set v.

What we need to satisfy is Equation (10). We use Table 1, and note that p = qs, K = 1 and therefore

q′ = q + qs. We also note that {0, . . . , 2w − 1}n0
takes the role of H, i.e., we want a lower bound on

|{0, . . . , 2w − 1}n0 | = 2wn0
. We will use that the running time of the adversary must be at least q′ + 1.

Now, start with the classical setting. The bound consists of two terms, and we want each of these terms is

at most 2−(kC+log 5+1)
. From the first term, we get the requirement that wn0 ≥ kC + log 5 + 1. Looking

at the second term, we get the requirement that log |R| ≥ kC + log 5 + log qs + 1. Now, we turn to the

quantum setting. Here, again the bound consists of two terms, and we want each of these terms is at

most 2−(kQ+log 5+1)
. The first term is 8(q′ + 1)2/2wn0

, which when divided by the running time (at least

q′ + 1) becomes 8(q′ + 1)/2wn0
. Now, the first case is that q′ + 1 ≥ 2kQ+log 5+1

. In this case we are done

trivially. In the other case, our requirement becomes

8 · 2kQ+log 5+1

2wn0
≤ 2−(kQ+log 5+1).

Isolating wn0 this becomes wn0 ≥ 2(kQ + log 5 + 1) + 3. Looking at the second term, we divide by the

running time, lower bounded by q′, and get

3
2qsK ·

√
q′

|R|
· q′−1 = 3

2K ·

√
q2

sq′

|R|q′2
= 3

2K ·

√
q2

s

|R|q′
≤ 3

2K ·
√

qs

|R|
,

where we have used qs ≤ q′. If we want that this is at most 2−(kQ+log 5+1)
, then we get a lower bound

log |R| ≥ 2(kQ + log 5 + log 3 + log K) + log qs, and we can use K = 1. With that, we get the following

list of requirements.

14
One can always upper bound qs with qs ≤ L.
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Parameter Requirement 1 (Parameters for Winternitz). Let w, qs be given, and assume we use Construction 5.

Then, if we want (approximately) kC bits of classical security and kQ bits of quantum security, we need to satisfy

the following:

n0w ≥ max{kC + log 5 + 1, 2(kQ + log 5 + 1) + 3}, (11)

log |R| ≥ max{kC + log 5 + log qs + 1, 2(kQ + log 5 + log 3) + log qs}. (12)

Once n0 is set, v can be set as described in Construction 5.

Message Hash and Randomness - Target Sum Winternitz. Turning to the instantiation based on

target sum Winternitz (Construction 6), we see that the only difference to Winternitz in terms of setting

parameters is that we no longer assume K = 1, and that n0w is replaced with vw.

Parameter Requirement 2 (Parameters for Target Sum Winternitz). Let w, qs, K be given, and assume we

use Construction 6. Then, if we want (approximately) kC bits of classical security and kQ bits of quantum security,

we need to satisfy the following:

vw ≥ max{kC + log 5 + 1, 2(kQ + log 5 + 1) + 3}, (13)

log |R| ≥ max{kC + log 5 + log qs + log K + 1, 2(kQ + log 5 + log 3 + log K) + log qs}. (14)

Hash and Parameter Length. Now that we know how to set v, we turn to the parameters related to

Th, e.g., |H| or |P|, which are dictated by Equations (6) to (9). These only depend on the underlying

incomparable encoding via the parameters w and v, which we assume as given for this paragraph. We

start with the classical setting. Focus on Equation (8) first. Looking at Table 1, we know that H takes

the role ofM′, and we know that the running time of an adversary is at least the number of oracle

queries q. Therefore, we need to satisfy that (q/|H|)/q ≤ 2−(kC+log 5+2w+log L+log v)
, or equivalently that

log |H| ≥ kC + log 5 + 2w + log L + log v. Now, continue with Equation (9). The bound consists of

two terms, the first one being (q + 1)/|H|. and the second one being (almost) equal to the term in the

undetectability bound. We lower bound the running time with q + 1, and we want each of the terms to

be at most 2−(kC +log 5+w+log L+log v+1)
. As w ≥ 1, this follows already from the lower bound on log |H|

we have derived from Equation (8). Next, focus on Equations (6) and (7). From Table 1, we get that it is

sufficient to ensure that (
2q + 1
|H|

+ 2q

|P|

) /
q ≤ 2−(kC +log 5+1).

If we upper bound 2q + 1 with 2 ·T(A), then we see that the requirement on |H| we have so far already

ensures that the first term 2/|H| is at most 2−(kC +log 5+2)
for L ≥ 2, v ≥ 1. We also want to make the

second term 2/|P| to be at most 2−(kC+log 5+2)
, so we require log |P| ≥ kC + log 5 + 3. We proceed in a

similar way for the quantum setting, using the appropriate bounds from Table 1. We summarize the

requirements in the following.

Parameter Requirement 3 (Hash and Parameter Length). Let L, w, v be already given, and assume that

w ≥ 1, L, v ≥ 2. Then, if we want (approximately) kC bits of classical security and kQ bits of quantum security,

we need to satisfy the following:

log |H| ≥ max{kC + log 5 + 2w + log L + log v, 2(kQ + log 5 + 2w + log L + log v + log 12)}, (15)

log |P| ≥ max{kC + log 5 + 3, 2(kQ + log 5 + 2) + 5}. (16)

7 Instantiations of Tweakable Hash Functions
Our constructions require two tweakable hash functions Th and Thmsg

. To recall, Th takes three inputs

P ∈ P , T ∈ T and M ∈M, and outputs a hash in a spaceH, where we need thatH,H2,Hv ⊆M. The

function Thmsg
takes four inputs P ∈ P , T ∈ T , M ∈ {0, 1}lmsg

, and
15 R ∈ R. It outputs a list of integers in

{0, . . . , 2w − 1}, of length n0 for Construction 5 and length v for Construction 6. We describe two possible

instantiations. One uses the classical hash function SHA-3 which operates on bit strings. The other

instance is optimized for modern non-interactive argument systems and uses the recent hash function

Poseidon2 [KBM23], which operates on elements of a finite field Fp. Throughout this section, || denotes

concatenation.

15
For simplicity, we write Thmsg(P, T, M, R) instead of Thmsg(P, T, (M, R)) in this section.
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7.1 Tweak Functions
We start by giving a possible instantiation of the tweak functions (see Constructions 1 and 2). The first

function tweak : [L]× [v]× [2w − 1]→ T is defined as

tweak(ep, i, k) = ( ep︸︷︷︸
⌈log L⌉ bits

|| i︸︷︷︸
⌈log v⌉ bits

|| k︸︷︷︸
w bits

|| 0︸︷︷︸
8 bits

). (17)

The second function tweakmt : [log L]× [L]→ T is

tweakmt(l, i) = ( l︸︷︷︸
⌈log(⌈log L⌉)⌉ bits

|| i︸︷︷︸
⌈log L⌉ bits

|| 1︸︷︷︸
8 bits

). (18)

The third function tweakm : [L]→ T for message hashing (Constructions 5 and 6) is

tweakm(ep) = ( ep︸︷︷︸
⌈log L⌉ bits

|| 2︸︷︷︸
8 bits

) (19)

It is clear that the ranges of all three functions are disjoint. One may use larger lengths if this is more

convenient, e.g., encoding ep as one 64-bit integer if L < 264
, as long as this is done consistently.

7.2 Tweakable Hash From SHA-3
SHA-3-256 [Nat15] is a hash function designed in 2007 and later standardized by NIST within the SHA-3

family. It maps an arbitrarily long bit string to a 256-bit output. We simply write SHA-3 for short. For

this instantiation, we use P = {0, 1}lp
, T = {0, 1}lt

,R = {0, 1}lrnd

andH = {0, 1}n
. The message input

M in both Th and Thmsg
is a bit string of some length lm, where lm can take one of the following values

depending on where the hash function is used:

• lm = vn to hash the leaf in Construction 1 with Th = ThSHA-3 (to be used in Construction 3).

• lm = 2n to hash pairs of nodes in Construction 1 Th = ThSHA-3 (to be used in Construction 3).

• lm = n in hash chains in Construction 2 Th = ThSHA-3 (to be used in Construction 3).

• lm = lmsg for message hashing with Thmsg = Thmsg

SHA-3
in Constructions 5 and 6.

Below, we explain how Thmsg

SHA-3
and ThSHA-3 are constructed.

7.2.1 Message Hashing

For message hashing, we define

Thmsg

SHA-3
(P, T, M, R) = Truncateℓw bits

(SHA-3(R||P ||T ||M)) ∈ {0, . . . , 2w − 1}ℓ,

where ℓ = n0 for Construction 5 and ℓ = v for Construction 6, assuming ℓw ≤ 256. Here, Truncateν bits

takes first ν bits of the resulting bit string. Note that we do not add any domain separation for different

spaces of keys or parameters. If this is needed one should prefix the hash input with some encoding of

input spaces.

7.2.2 Chain, Leaf, and Tree Hashing

We then set

ThSHA-3(P, T, M) = Truncaten bits
(SHA-3(P ||T ||M)) .

Note that the tweak value differs for all invocations of our tweakable hash functions so all SHA-3 calls

actually get a different input. The input length is lp + lt + lm bits.
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7.2.3 Resistance to Attacks

SHA-3-256 and its round-reduced versions have been targets of cryptanalytic attacks in the last decade.

At the time of writing, no collision or preimage attack faster than exhaustive search is known for the full

SHA-3-256. In particular, we are not aware of any attacks against the security notions (Definitions 3 to 6)

that we require.

7.3 Tweakable Hash From Poseidon2
Poseidon2 [GKS23] is a family of hash functions which are defined on various prime field domains.

For each prime p and integer t ∈ {4, 8, 12, 16, 20, 24}, Poseidon2 defines a bĳective function (i.e., a

permutation) PoseidonPermp,t on Ft
p. A hash function is obtained via one of two modes:

• Compression Mode. We have

PoseidonCompressp,t,u(x) = Truncateu(PoseidonPermp,t(x) + x) ∈ Fu
p ,

where Truncateu takes first u elements of the output, x ∈ Ft
and + is elementwise addition in Ft

p.

This mode limits the input length to t field elements but is the more efficient one.

• Sponge Mode. Here, PoseidonPerm is iteratively applied to a state, which is an element in Ft
, while

simultaneously absorbing parts of the input. This mode is the most flexible at the expense of some

computational overhead.

For the rest of this section, we assume that Fp is the prime field on which the circuits are constructed for

aggregation proofs.

Padding. As t ∈ {4, 8, 12, 16, 20, 24}, we will need to pad some of our inputs with a vector 0 of zero field

elements to increase its length to the next multiple of 4. Note that this only works if the input length

is at most 24 field elements. In other cases, the sponge mode has to be used. Our description assumes

parameter settings for which only leaf hashing requires the sponge mode.

Classical Security. To apply the heuristic bounds and use Section 6 to set candidate parameters, we need

to assume, as done in the design paper of Poseidon2, that PoseidonCompressp,t,u behaves like a random

oracle of the form Ft → Fu
for all practical purposes, and up to pu

permutation queries. Similarly, the

Sponge mode with capacity c and rate r, which outputs u field elements needs to securely instantiate a

random oracle mapping into Fu
up to min(pu, pc/2) permutation queries [KBM23]. We emphasize again

that this is only for getting heuristic candidate parameters, and security of the scheme ultimately relies on

standard model assumptions about Poseidon2 with these parameters. We encourage any cryptanalytic

effort to study Poseidon2 with regards to these standard model assumptions.

Quantum Security. Similarly, using our heuristics means that we need to assume that PoseidonCompressp,t,u

behaves sufficiently like a quantum random oracle of the form Ft → Fu
, for up to pu/2

quantum queries.

The security of the Sponge mode also degrades: we are only able to claim security up to min(pu/3, pc/3)
permutation queries [Unr21].

Additional Bounds. To summarize, in addition to the bounds from Section 6, we have to additionally

satisfy the following bounds for the Poseidon2 parameters:

Compression Mode. u log p ≥ max(kC , 2kQ), (20)

Sponge Mode. u log p ≥ max(kC , 3kQ), c log p ≥ max(2kC , 3kQ). (21)

Here, kC and kQ denote classical and quantum security levels as in Section 6.

Input Spaces. The public parameter space P is defined as P = Flp
p , where lp is taken such that (16) is

satisfied. The tweak space T is defined as T = {0, 1}lt
where lt is selected to accommodate the tweak

values defined in Equations (17) to (19). The seed spaceR is defined asR = Flp
p , where lp is taken such

that Equation (12) and Equation (14), respectively, are satisfied, depending on whether Construction 5 or

Construction 6 is used. The message spaceM is {0, 1}lmsg

for the message hash Thmsg = Thmsg

Poseidon2
, and it

is Flm
p for various lm for Th = Th

Poseidon2
.

Tweak Encoding. So far, we have described tweaks as being bit strings. To use tweaks in Poseidon2, we

need to encode them as vectors of field elements. This is done as follows, for a tweak T ∈ {0, 1}lt
:
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1. Let ξ be the minimum number such that pξ > 2lt
.

2. Interpret T as base-p integer AT .

3. Then EncT(T ) is the equivalent representation of AT as a vector of ξ elements of Fp.

7.3.1 Message Hashing

We now give more details on how to implement the message hash Thmsg = Thmsg

Poseidon2
.

Outputs. For both instantiations (Constructions 5 and 6), we introduce an additional parameter η′, which

models the number of field elements that the hash function outputs, before injectively mapping them to

an output in {0, . . . , 2w− 1}ℓ
, with ℓ = n0 for Construction 5 and ℓ = v for Construction 6. More precisely,

focus on the instantiation based on Winternitz first (Construction 5). We set η′ to be the minimum such

that η′ log p exceeds the right hand side of (11). Note that this implies that it also exceeds the right hand

side of (20). Then, we find the minimum n0 such that n0w ≥ η′ log p. Finally, we use an injective function

Decodep,η′,w that interprets its input Fη′

p in as an integer in Zpη′ , and represents it in base 2w
to get a

vector in {0, . . . , 2w − 1}n0
. We proceed in a similar way for the target sum Winternitz instantiation

(Construction 6), replacing n0 with v and (11) with (13).

Message Encoding. For message hashing, the input is a bit string in {0, 1}lmsg

. As for tweaks, we need to

encode this bit string as a vector of field elements first, which is done as follows:

1. Let χ be the minimum number such that pχ > 2lmsg
.

2. Interpret M as base-p integer AM .

3. Then EncM(M) is the equivalent representation of AM as a vector of χ elements of Fp.

Hash Function. The total input length is lth-msg-in = lp + ξ + χ + lrnd. Let tth-msg be minimal multiple of

4 that is not smaller than lth-msg-in. Then, we define the tweakable hash function for message hashing as

Thmsg

Poseidon2
(P, T, M, R) = Decodep,η′,w(PoseidonCompressp,tth-msg,η′(R||P ||EncT(T )||EncM(M)||0)),

where 0 represents a padding of tth-msg − lth-msg-in zero field elements and can be empty, if we have

tth-msg = lth-msg-in.

On Uniformity. Note that the mapping that we define in this way does not have a uniform output

distribution. One may be concerned that this causes security issues. However, note that message

hashing needs to satisfy only one security property, namely, multi-target collision resistance with random

sampling (Definition 6). If we set parameters as above, then our heuristic bounds apply to the output of

PoseidonCompress. As decoding is injective, this property is preserved.

This non-uniformity also has an impact on correctness of the signature scheme. Namely, formally

applying ϵ-uniformity (see Definition 2) via Lemma 7 would not yield a sufficient correctness bound. We

do not claim any formal correctness guarantees when using the Poseidon2-based instantiation, but we

note that in our experiments, the correctness error still seemed to be sufficiently small when setting the

target sum as if the message hash were uniform.

7.3.2 Chain, Tree, and Leaf Hashing

For the tweakable hash function Th = Th
Poseidon2

, we need to hash three types of inputs: (1) values within

chains, i.e., values inH, (2) pairs of nodes in the Merkle tree, i.e., values inH2
, and (3) leafs, i.e., values in

Hv
. We defineH to beH := Fη

p, where η is chosen large enough so that Equation (15) is satisfied. This

also implies that η log p exceeds the right hand side of Equation (20). As we also use the sponge mode for

Th
Poseidon2

, we need to respect Equation (21) as well, which means η log p must also exceed the right hand

side of the first inequality in (21).

Chain Hashing. For (1), we use the compression mode, since in this case all inputs fit into 24 field

elements if a 31-bit prime field is used, which is a convenient setting for PoseidonPerm within hash-based

succinct arguments. Let tth-ch be minimal multiple of 4 that is not smaller than lth-ch-in = lp + ξ + η. We

set

Th
Poseidon2

(P, T, M) = PoseidonCompressp,tth-ch,η(P ||EncT(T )||M ||0) for M ∈ H = Fη
p,
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where 0 contains of tth-ch − lth-ch-in zero field elements as before.

Tree Hashing. We now continue with (2), i.e., with hashing pairs of nodes within the Merkle tree. Each

such node is the output of a previous hashing invocation, i.e., we now hash inputs in H2
. Let tth-tr be

minimal multiple of 4 that is not smaller than lth-tr-in = lp + ξ + 2η. We set

Th
Poseidon2

(P, T, M) = PoseidonCompressp,lp+ξ+2η,η(P ||EncT(T )||M ||0) for M ∈ H2 = F2η
p ,

where 0 contains of tth-tr − lth-tr-in zero field elements and can be empty.

Leaf Hashing. We now turn to (3), where we need to hash long inputs inHv
as well, namely, when we

hash the leafs in the Merkle tree, which correspond to v ends of hash chains. To do that, we employ the

sponge mode with the SAFE API [KBM23]. For the sponge mode, we first define the state size and the

capacity c and rate r, measured in the number of state elements and satisfying Equation (21). As we

have already mentioned above, the output length η is selected respecting Equation (21). We then take a

reasonable value for r; for a 31-bit field we set r = 24− c. Then, we define Th
Poseidon2

(P, T, M) as follows,

for input M ∈ Hv = Fvη
p :

1. Produce the capacity value Vc := PoseidonCompressp,24,c(lp||lt||v||η) ∈ Fc
p, where lp, lt, v, η are

interpreted as 32-bit values. Their 128-bit concatenation lp||lt||v||η is interpreted as an element of

F24
p using the base-p representation.

2. Pad P ||EncT(T )||M with (possibly zero) field elements 0 ∈ Fp so that the resulting vector V has

r · s elements for some s, i.e., V = (v0, v1, . . . , vr·s−1).

3. Set S := (0, 0, . . . , 0︸ ︷︷ ︸
r elements

, Vc).

4. For i from 1 to s:

(a) S := S + (vr·i, vr·i+1, . . . , vr·i+r−1, 0, 0, . . . , 0︸ ︷︷ ︸
c elements

) where addition is componentwise.

(b) S := PoseidonPermp,24(S)

5. Output Truncateη(S).

Note that the parameter M is always much bigger than its analogue in chain and tree hashing, which

makes all three functions distinct.

7.3.3 Resistance to Attacks

Poseidon2 (from 2023) is a relatively recent design. Together with Poseidon [GKR
+

21] (from 2019) it

has been the subject of active cryptanalysis, but no attack has been published on any full version of

Poseidon or Poseidon2. We thus expect that the security notions (Definitions 3 to 6) that we require hold

for Poseidon2. A recent initiative aims to further asses the security of Poseidon2
16

.

8 Efficiency
In this section, we compare the schemes we have analyzed in terms of efficiency. We consider the schemes

obtained from instantiating the generalized XMSS framework (Construction 3) with Construction 5 and

Construction 6, for different parameters satisfying the requirements in Section 6, and for the instantiations

of hash functions as in Section 7.

Remark 10. We only present a preliminary set of benchmarks and we plan to extend our benchmarks

in the future. For example, for now we do not benchmark aggregation times using state-of-the-art

pqSNARK implementations. Such benchmarks will be important before our proposed schemes can be

used in Ethereum.

16
See https://www.poseidon-initiative.info/.
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8.1 Setup
We first describe which schemes we compare, which metrics we consider, and how we obtain our

results. We set all parameters following Section 6 using security levels kC = 128 (classical) and kQ = 64
(quantum). This corresponds to NIST’s Level 1 requirements [Nat16]. A justification for this is that

attacking the scheme with Grover’s algorithm [Gro96] requires about 2kQ
sequential time (as opposed to

work), as Grover’s algorithm does not parallelize well [Zal99, Flu17].

Constructions. The constructions we compare use chunk sizes w ∈ {1, 2, 4, 8}. For Construction 6, we set

the target sum to T = ⌈δE⌉, where E = v(2w − 1)/2 would be the expected sum if the message hash was

uniform
17

. We consider cases δ = 1 and δ = 1.1. We consider key lifetimes L = 218
and L = 220

. Note

that longer lifetimes (e.g., L = 232
) are desirable, but benchmarking those requires more engineering

effort, in particular as the secret key and Merkle tree would no longer fit into main memory
18

. We leave

benchmarking such longer lifetimes for future work. For the target sum encoding, we have assumed

K ≤ 4096 to set parameters. For instantiations based on Poseidon2, we assume a 31-bit field. For all

constructions, we determine the remaining parameters following Sections 6 and 7 using a Python script.

The script can be found in the following repository:

https://github.com/b-wagn/hashsig-parameters

The Python script also determines the signature size as well as the worst-case and average-case hash

complexity of verification, which impacts aggregation time.

Implementation and Running Times. To evaluate the computational efficiency, we have created a

prototype Rust implementation of the signature schemes analyzed in this work. In particular, our

implementation follows the abstractions used in this work and instantiations use the parameters

determined using the Python script. It can be found in the following repository:

https://github.com/b-wagn/hash-sig

We benchmark this implementation with Criterion
19

on a MacBook Pro with Apple M3 Pro chip, 18 GB

memory. We have not implemented any parallelization.

8.2 Results
Now, we discuss the results, which we present in Tables 2 and 3. In particular, we discuss several

trade-offs, and how various parameters impact the efficiency of the schemes.

Impacts of Lifetime. The lifetime L has a linear impact on the running time of key generation, while the

time required for signing and verification is almost unaffected. On the other hand, its impact on signature

size and hashing is minimal, as only the Merkle path changes slightly, along with minor parameter

adjustments (see Equation (15)). We note again that supporting large L results in challenges when it

comes to memory management, as the Merkle tree would not fit in memory.

Impacts of Chunk Sizes. The chain length increases exponentially with the chunk size w, while the

number of chains v only decreases linearly. Thus, increasing w reduces the signature size linearly as

fewer chains are needed. However, verifier hashing and running times are determined by chain length.

This highlights a trade-off between signature size, computational efficiency, and verifier hashing. The

values w = 2 and w = 4 offer the best balance. In contrast, w = 1 results in large signatures, while w = 8
is computationally inefficient and hash-inefficient due to very long chains.

Winternitz vs. Target Sum. Let us now compare the classical Winternitz instantiation (W in Table 2)

and the target sum instantiation (TSW in Table 2). When it comes to key generation time, the classical

Winternitz instantiation is slower due to the additional chains required for the checksum. In terms of

signing time, the target sum instantiation is slower because retries are necessary, until the sum matches

the target sum. For verification, the classical Winternitz instantiation is again slower, and we see that

it has larger signatures and hashing complexities. Both is mostly due to the larger number of chains.

17
Of course, the message hash is not uniform.

18
One can deal with this in many ways, e.g., by first computing half of the Merkle tree, saving it to disk, then computing the other

half, and so on. Another approach, which requires further investigation, is to use a multi-tree version of our variants of XMSS,

similar to [HRB13].

19
See https://docs.rs/criterion/latest/criterion/.
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Encoding Parameters Gen [s] Sign [µs] Ver [µs] Sig [KiB] Hash AC [w] Hash WC [w]
Li

fe
tim

e
L

=
218 W w = 1 17.27 44.93 25.27 4.17 288.47 407.28

W w = 2 17.27 38.91 30.01 2.31 288.95 464.91

W w = 4 33.54 65.90 65.78 1.47 576.54 1021.66

W w = 8 273.44 493.35 542.74 1.06 4644.38 8393

TSW w = 1, δ = 1 16.44 48.51 24.04 3.98 274.38 274.38

TSW w = 1, δ = 1.1 16.50 59.35 22.19 3.98 261.38 261.38

TSW w = 2, δ = 1 16.35 44.84 28.72 2.22 276.62 276.62

TSW w = 2, δ = 1.1 16.39 54.79 26.37 2.22 258.75 258.75

TSW w = 4, δ = 1 31.16 83.08 59.64 1.39 522.44 522.44

TSW w = 4, δ = 1.1 31.17 100.85 54.25 1.39 477.72 477.72

TSW w = 8, δ = 1 244.68 675.19 464.75 1.01 4008.53 4008.53

TSW w = 8, δ = 1.1 244.82 784.85 419.14 1.01 3613.22 3613.22

Li
fe

tim
e

L
=

220 W w = 1 69.37 44.91 25.68 4.22 293.04 411.91

W w = 2 68.64 39.17 30.41 2.46 301.39 480.09

W w = 4 134.28 65.94 66.48 1.52 583.14 1026.41

W w = 8 1091.25 491.08 540.62 1.11 4655.74 8398

TSW w = 1, δ = 1 65.70 48.91 24.31 4.03 279 279

TSW w = 1, δ = 1.1 65.79 59.41 22.63 4.03 266 266

TSW w = 2, δ = 1 65.18 44.89 29.15 2.36 288.12 288.12

TSW w = 2, δ = 1.1 65.06 54.77 26.82 2.36 269.91 269.91

TSW w = 4, δ = 1 124.52 82.89 59.69 1.44 527.19 527.19

TSW w = 4, δ = 1.1 124.54 100.69 54.62 1.44 482.47 482.47

TSW w = 8, δ = 1 978.97 673.45 465.53 1.06 4013.53 4013.53

TSW w = 8, δ = 1.1 979.15 792.64 420.59 1.06 3618.22 3618.22

Table 2: Comparison of instantiations of our generalized XMSS with different incomparable encoding

schemes, all using SHA-3-256. We compare instantiations based on classical Winternitz (Construction 5,

denoted by W) and Target Sum Winternitz (Construction 6, denoted by TSW), with different parameters.

We compare running times, signature size, and verification hash complexity (worst-case: WC, average-

case: AC). Average-case hashing has been determined via simulation. Signature size is given in KiB (1
KiB = 1024 Bytes), hashing is given in words (1 word = 32 Bytes). For TSW, we set the target sum to

T = ⌈δv(2w − 1)/2⌉.

Moreover, it is evident that for the target sum instantiation, the average-case and worst-case hashing

complexities are identical. This highlights that we have an explicit control over hashing complexity in

this variant. Therefore, if one can afford a slight increase in signing time, the target sum instantiation is

clearly preferable.

Signing Time vs. Verifier Hashing. For the target sum instantiation (TSW in Table 2), we see that signing

time can be traded off against verifier hashing by increasing the target sum. Concretely, compare any two

consecutive lines in Table 2 with the same chunk size w and δ = 1 versus δ = 1.1. We can observe that

signing time increases for δ = 1.1 as more retries are needed, while verification time and (verification)

hashing complexity decrease.

Impacts of Hash Functions. When comparing Tables 2 and 3, we observe that Poseidon2-based

instantiations are significantly slower than their SHA-3-based counterparts (concretely, a factor of about

10). Additionally, signature sizes are generally slightly larger for Poseidon2-based instantiations. This is

primarily because the hash function outputs are vectors of field elements (31 bits) rather than vectors of

bytes (8 bits), resulting in less fine-grained control over their length.
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Encoding Parameters Gen [s] Sign [µs] Ver [µs] Sig [KiB] π16 AC π24 AC π16 WC π24 WC

Li
fe

tim
e

L
=

218 W w = 1 179.01 362.59 416.54 4.97 81 97 158 97

W w = 2 168.19 350.04 408.67 2.75 122 59 237 59

W w = 4 330.52 638.08 769.41 1.66 325 41 615 41

W w = 8 2717.28 4820 5820 1.11 2917 31 5355 31

TSW w = 1, δ = 1 172.67 541.45 396.56 4.75 77 93 77 93

TSW w = 1, δ = 1.1 172.29 898.22 376.62 4.75 69 93 69 93

TSW w = 2, δ = 1 166.51 530.83 372.93 2.65 117 57 117 57

TSW w = 2, δ = 1.1 166.22 888.55 351.37 2.65 105 57 105 57

TSW w = 4, δ = 1 312.49 1090.00 650.82 1.58 292 39 292 39

TSW w = 4, δ = 1.1 312.64 1670.00 602.75 1.58 263 39 263 39

TSW w = 8, δ = 1 2501.01 9760.00 4900.00 1.06 2550 30 2550 30

TSW w = 8, δ = 1.1 2499.97 14570.00 4320.00 1.06 2295 30 2295 30

Li
fe

tim
e

L
=

220 W w = 1 780.89 362.44 418.31 5.03 82 99 158 99

W w = 2 705.42 336.30 400.60 2.81 122 61 237 61

W w = 4 1353.18 617.48 746.28 1.72 326 43 615 43

W w = 8 11122.95 4981.20 6039.40 1.34 2917 35 5355 35

TSW w = 1, δ = 1 752.57 520.42 401.32 4.81 77 95 77 95

TSW w = 1, δ = 1.1 731.79 844.01 381.23 4.81 69 95 69 95

TSW w = 2, δ = 1 667.76 527.17 379.56 2.7 117 59 117 59

TSW w = 2, δ = 1.1 668.14 853.66 354.09 2.7 105 59 105 59

TSW w = 4, δ = 1 1249.52 1057.40 661.61 1.64 292 41 292 41

TSW w = 4, δ = 1.1 1248.35 1600.00 603.65 1.64 263 41 263 41

TSW w = 8, δ = 1 9972.32 9509.50 4870.60 1.27 2550 34 2550 34

TSW w = 8, δ = 1.1 9927.97 14271.00 4358.60 1.27 2295 34 2295 34

Table 3: Comparison of instantiations of our generalized XMSS with different incomparable encoding

schemes, all using Poseidon2. We compare instantiations based on Winternitz (Construction 5, denoted

by W) and Target Sum Winternitz (Section 5.2, denoted by TSW), with different parameters. We compare

running times, signature size, and verification hash complexity (worst-case: WC, average-case: AC). For

hashing, we count how often the Poseidon permutation has to be called, and denote the permutation of

width t field elements by πt. Average-case hashing has been determined via simulation. Signature size is

given in KiB (1 KiB = 1024 Bytes). For TSW, we set the target sum to T = ⌈δv(2w − 1)/2⌉.
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9 Conclusion
In this work, we have presented and analyzed variants of XMSS signatures. We have taken care to obtain

a security analysis leading to efficient and theoretically sound parameters, and relying on explicitly stated

standard model properties of the underlying hash functions. In combination with a pqSNARK, we view

our schemes as a family of proposals for use in post-quantum Ethereum. The defining features of our

schemes are their conceptual simplicity, reliance solely on hash functions, and the rigorous theoretical

analysis supporting them. Although we have not discussed specific instantiations of the pqSNARK, our

work complements the broader industry efforts to develop efficient and secure pqSNARKs. That said,

we emphasize that reasonable alternatives exist and merit further investigation, and we refer back to

Section 2 for a comprehensive discussion.

One key takeaway from our study is that the pqSNARK used to aggregate signatures must be adaptively

knowledge-sound. Another important contribution is our characterization of the security properties and

levels required of hash functions (e.g., Poseidon2) for our proposed schemes. These properties provide

concrete targets for cryptanalysis and further research. In particular, we encourage cryptanalysts to study

hash functions like Poseidon2 with regards to the notions we use.
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Supplementary Material

A (Quantum) Random Oracle Tools
To get an impression for how to set parameters, we use heuristic bounds for the security notions we

have defined for tweakable hash functions. To derive these bounds, we use the (classical and quantum)

random oracle model, relying on several tools that we present in this section.

Adaptive Reprogramming. The first tool that we need is adaptive reprogramming, as introduced and

analyzed in [GHHM21]. We first define the experiment, and the recall a bound in the quantum random

oracle model. For convenience, we also state a simple bound in the classical random oracle.

Definition 16 (Adaptive reprogramming [GHHM21]). Let X1, X2 and Y be finite sets, and let A be a

stateful algorithm. Let R, q ∈ N. Consider the following experiment Reprob:

• Sample a random oracle O0
$← Y X1×X2

, i.e., O0 : X1 ×X2 → Y .

• Define a copy of O0 as O1 := O0.

• Run A with (classical or quantum) access to Ob and classical access to oracle Reprogram : X2 → X1,

where A is allowed to make up to q queries to Ob and up to R queries to Reprogram.

• Obtain from A a bit b′ ∈ {0, 1} and output b′.

Here, the oracle Reprogram(x2) is defined the following way:

1. Sample (x1, y) $← X1 × Y .

2. O1 := O
(x1,x2)7→y
1 , i.e., O1 is reprogrammed such that O1(x1, x2) = y.

3. Return x1.

For any such algorithm A, we define the following advantage:

AdvRepro
R,q (A) = |Pr [Repro0(A)⇒ 1]− Pr [Repro1(A)⇒ 1]| .

Lemma 9 ([GHHM21]). Let X1, X2 and Y be finite sets, and letA be any algorithm in the game in Definition 16.

Assume that A issues R many classical calls to Reprogram and q many quantum queries to Ob. Then, we have

AdvRepro
R,q (A) ≤ 3R

2 ·
√

q

|X1|
.

Lemma 10. Let X1, X2 and Y be finite sets, and let A be any classical algorithm in the game in Definition 16.

Assume that A issues R many classical calls to Reprogram and q many classical queries to Ob. Then, we have

AdvRepro
R,q (A) ≤ R · q

|X1|
.

Proof. To detect the reprogramming the adversary must query the random oracle on at least one of the

reprogrammed seeds x1 before the reprogramming query. Since these are chosen uniformly at random

the probability that a x1 collides with one of the q queries that were done before is q/|X1|. With a union

bound, we get the claimed bound.

HRS-Framework for Sets. The second tool that we need is the HRS-framework from [HRS16]. The

idea is that an adversary that is given oracle access to a boolean function should have a hard time

to find an input which evaluates to 1, assuming the boolean function has only a few such inputs.

Although the authors of [HRS16] used functions over a boolean input domain {0, 1}c
, the results naturally

generalize to functions that map an arbitrary set to {0, 1}. Here, we present this adaptation of the

HRS-Framework [HRS16] to arbitrary sets.
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Definition 17 (HRS-Framework for Sets [HRS16]). Let S be a set, and let F = {f : S → {0, 1}} be the

collection of all functions that map elements of S to {0, 1}. Let λ ∈ [0, 1] and ε > 0. Define a family of

distributions Dλ on F such that a function f ← Dλ drawn from Dλ satisfies

f : x 7→

{
1 with probability λ,

0 with probability 1− λ
for any x ∈ S,

where all choices are made independently. The average case search problem Avg-Searchλ is the problem

of finding an x ∈ S such that f(x) = 1 given (classical or quantum) oracle access to f ← Dλ. Namely, for

any algorithm A, we define

AdvAvg-Searchλ
(A) := Pr

[
f(x) = 1

∣∣ f ← Dλ, x← Af (·)
]

.

Lemma 11 ([HRS16], [BHRvV21]). For any algorithm A that makes at most q queries to f , it holds that

AdvAvg-Searchλ
(A) ≤

{
λ(q + 1), if A is a classical algorithm with classical access to f

8λ(q + 1)2, if A is a quantum algorithm with quantum access to f
.

To give a proof for Lemma 11 we follow the same steps as in [HRS16], but we do not make a restriction

to bit strings. We present this proof here for completeness, relying on Theorem 7.2 from [Zha12], as

recalled next.

Theorem 3 ([Zha12]). Fix an integer q, and let Dλ be a family of distributions on {f : X → Y} indexed by

λ ∈ [0, 1]. Suppose there is an integer d such that for every 2q pairs (xi, yi) ∈ X × Y , the function (in λ)

pλ := Pr
f←Dλ

[∀i ∈ {1, . . . , 2q} : f (xi) = yi]

is a polynomial of degree at most d in λ. Then, any quantum algorithm A making q queries can only distinguish

Dλ from D0 with probability at most 2λd2
, i.e.,∣∣∣∣∣ Pr

f
$←D0

[
Af () = 1

]
− Pr

f
$←Dλ

[
Af () = 1

]∣∣∣∣∣ ≤ 2λd2.

Proof of Lemma 11. To translate the result from Theorem 3 to our needs, we set X = S and Y = {0, 1}. Let

k be the number of yi = 1 in an arbitrary collection of 2q pairs {(xi, yi)}2q
i=1. Then, by the definition of pλ

we have

pλ := Pr
f←Dλ

[∀i ∈ {1, . . . , 2q} : f (xi) = yi] = λk(1− λ)2q−k.

Hence, pλ is a polynomial in λ with degree at most 2q. Hence, the advantage in distinguishing f from

Dλ and f from D0 is bounded by 8λq2
. Since the distribution D0 always outputs the constant 0 function,

obtaining a marked item (i.e., x ∈ S with f(x) = 1) for f ← Dλ immediately distinguishes Dλ from D0.

Given an algorithm A that queries f and outputs x after q queries, it is sufficient to do one more query to

check if f(x) = 1 and distinguish Dλ from D0. Thus, we obtain that

AdvAvg-Searchλ
(A) ≤ 8λ(q + 1)2.

The classical bound just follows from the fact that each query can be successful with probability λ
and if the adversary has not found a solution through the first q queries it may output a random guess.

B Multi-Target Undetectability
In this section, we revisit the analysis of undetectability. In [HK22], the analysis was given for a tweakable

hash function of the form P × T × {0, 1}n → {0, 1}n
. We show that the proof also works for the case

of a tweakable hash function Th : P × T ×M → H, i.e., with general input and output domains. We

emphasize that this does not introduce a new proof, and we simply follow the proof from [HK22] while

removing the unnecessary restriction on the function’s input and output spaces.
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Definition 18 (Distinguishing Weights). Let F be the set of all functions of the formM→ {0, 1}, and

define the sets Si = {f ∈ F | wt(f) = i} where wt(f) = |{x | f(x) = 1}|. Let A be a (stateful) algorithm.

Consider the following experiment DistSi,Sj (A):

1. Sample b $← {0, 1}.

2. Run Awith (quantum) access to an oracle f :

• If b = 0, set f $← Si.

• If b = 1, set f $← Sj .

3. After no more than q queries to f from A obtain a bit b′ ∈ {0, 1} and output b′.

For any such algorithm A, we define the following advantage:

AdvDist(Si,Sj)
F,q (A) =

∣∣∣Pr
[
DistSi,Sj (A)⇒ 1 | b = 0

]
− Pr

[
DistSi,Sj (A)⇒ 1 | b = 1

]∣∣∣ .

One can derive the following lemma from Theorem 9.3.2 and Lemma 9.3.6 in [KLM06].

Lemma 12 ([KLM06]). Let Si be as defined above. The advantage of any q query quantum algorithm in

distinguishing S0 from S1 is AdvDist(S0,S1)
F,q (A) ≤ 6q/

√
|M|.

In our reduction we need sets Sl
0 and Sl

1. We say f : [l]×M→ {0, 1}n
is in Sl

i , if f(j, ·) ∈ Si for every

j ∈ [l]. We now show that distinguishing f $← Sl
1 from f $← Sl

0 is as hard as distinguishing f $← S1 from

f $← S0.

Lemma 13. Consider sets S0, S1, Sl
0, Sl

1 as defined above. Then, AdvDist(S0,S1)
F,q (A) = AdvDist(Sl

0,Sl
1)

F,q (A).

Proof. Assume an algorithm A can distinguish f $← S1 from f $← S0. Then, to distinguish f $← Sl
1 from

f $← Sl
0, we run A on f(1, ·). Hence, AdvDist(S0,S1)

F,q (A) ≤ AdvDist(Sl
0,Sl

1)
F,q (A).

To show equality we now give the reduction in the opposite direction. Without loss of generality

we view the elements of M as integers {0, . . . , |M| − 1} or as values in Z|M|. Assume we have an

algorithm that distinguishes f $← Sl
1 from f $← Sl

0. Our task is to distinguish f ′ $← S1 from f ′ $← S0.

To build f from f ′ we sample a random value from M using a random function e : [l] → M, and

set f(i, x) := f ′(x + e(i) mod |M|). One can see that if f ′ was a constant zero function then f is a

collection of constant zero functions, so f ∈ Sl
0. On the other hand, if f ′ ∈ S1 then for each i, the

function f(i, ·) outputs 1 for exactly one random value, since e(i) were chosen uniformly at random,

so f ∈ Sl
1. Also, as all the e(i) are uniform and independent, f is distributed uniformly in Sl

1. Hence,

AdvDist(S0,S1)
F,q (A) ≥ AdvDist(Sl

0,Sl
1)

F,q (A).

Theorem 4. Let Th : P × T ×M→ H a tweakable hash function modeled as quantum random oracle. Consider

any quantum adversary A against undetectability for a givenM′ ⊆ M, for p targets making q queries to Th.

Then, there is a quantum adversary B that makes 2q queries to its oracle and distinguishes Sp
0 from Sp

1 with

AdvSM-UD
Th,M′,p(A) ≤ AdvDist(Sp

0 ,Sp
1 )

F,2q (B) ≤ 12q√
|M′|

.

Proof. The first inequality is show exactly as in [HK22]. Using Lemmata 12 and 13, we get the second

inequality and complete the proof.

C Multi-Target Collision Resistance with Random Sampling
In Definition 6, we have introduced the notion of multi-target collision resistance with random sampling.

We will now show that this notion is indeed plausible by giving an analysis in the (quantum) random

oracle model. As a result, we obtain an upper bound on the success probability of any adversary in

breaking the notion. Naturally, this bound depends on the number of random oracle queries. We prove

the following theorem.
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Theorem 5. Let Th : P × T × (M×R)→ H be a tweakable hash function modeled as a (classical or quantum)

random oracle, that takes a public parameter P ∈ P , a tweak T ∈ T and an input that consists of two parts: a

message M ∈M and a seed ρ ∈ R. Let Prop : H → {0, 1} be any property. Let A be any (classical or quantum)

adversary against multi-target collision resistance with random sampling (Definition 6) that makes at most q
(classical or quantum) queries to the random oracle Th and p classical queries to its challenge oracle. Then, there

exists a (classical or quantum) adversary B against Avg-Search1/|H| that makes no more than q′ = q + pK queries

to its oracle and a (classical or quantum) adversary C in the game Repro as in Definition 16 that makes no more

than q′ = q + pK queries to its random oracle and no more than pK queries to its reprogramming oracle such that:

AdvSM-rTCR,K
Th,p,Prop (A) ≤ AdvAvg-Search1/|H|

(B) + AdvRepro
pK,q+pK(C).

Consequently, from Lemmata 9 to 11, we obtain the following bounds:

AdvSM-rTCR,K
Th,p,Prop (A) ≤ (q′ + 1)

|H|
+ q′pK

|R|
for a classical adversary.

AdvSM-rTCR,K
Th,p,Prop (A) ≤ 8(q′ + 1)2

|H|
+ 3 · pK

2 ·

√
q′

|R|
for a quantum adversary.

Proof. We give a sequence of games Game.i to prove the claim, and denote the probability that the ith

game outputs 1 by AdvGame.i
Th,p,Prop(A).

Game.0: Our initial game is the original game for multi-target collision resistance with random sampling,

see Definition 6. To recall, the adversary gets as input a parameter P and it gets classical access to a

challenge oracle that takes as input some message M ∈M and a tweak T ∈ T . The tweak must be fresh

(not used in the previous queries). The oracle then randomly samples a seed ρ $← R until the digest

x := Th(P, T, M, ρ) satisfies property Prop. If the oracle finds such a seed then it returns (x, ρ). If the

oracle does not manage to find a seed after K tries, it returns ⊥. The task of the adversary is to find a

message and a seed that collides with one of the returned digests under the same tweak. By definition,

we have

AdvSM-rTCR,K
Th,p,Prop (A) = AdvGame.0

Th,p,Prop(A).

Game.1: Now consider Game.1 in which we sample the seed and the output uniformly at random

to answer the challenge queries. To align our responses with the Th we reprogram the hash function.

Intuitively, since Th is modeled as a random oracle, we can bound the probability that the adversary

notices this reprogramming using the Repro game. The formal representation of Game.1 is the following,

where A gets (classical or quantum) access to Th throughout the game:

1. Generate a random public parameter P $← P .

2. Run A on input P with classical access to an oracle that takes T ∈ T and M ∈ M and works as

follows:

• If |Q| ≥ p or there is a tuple (T, M ′, ρ′) ∈ Q, for some M ′, ρ′ return ⊥.

• Otherwise Set ctr = 0 and x = ⊥. While ctr < K and x = ⊥:

(a) Sample ρ $← R.

(b) Sample y $← H.

(c) Program Th(P, T, M, ρ) := y.

(d) If Prop(y) = 1: Insert (T, M, ρ) into Q and set x := y.

(e) Else: Set x := ⊥, ρ := ⊥.

(f) Set ctr := ctr + 1.

• If x = ⊥: Insert (T, M,⊥) into Q.

• Output (x, ρ).

3. Obtain from A an output (j, M∗, ρ∗) with M ∈ M, j ∈ [|Q|]. Denote the jth entry in Q by

(Mj , Tj , ρj).

4. Output 1 if Th(P, Tj , Mj , ρj) = Th(P, Tj , M∗, ρ∗) and (M∗, ρ∗) ̸= (Mj , ρj). Otherwise, output 0.
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Here the difference from Game.0 is in Lines (b) and (c) of the challenge oracle. Instead of querying Th
we generate the output uniformly at random and reprogram Th to match the generated value. Note,

that the call to the challenge oracle in Game.1 can be represented as two calls in the Repro game: a

call to Reprogram and an O1 call afterwards. Here, we consider (P, T, M) ∈ X2 and ρ ∈ X1 = R. In this

reduction, we make at most p ·K reprogramming calls and p ·K + q calls to Th. As a result we obtain

|AdvGame.0
Th,p,Prop(A)− AdvGame.1

Th,p,Prop(A)| ≤ AdvRepro
pK,q+pK(C).

Game.2: We now change how the tweakable hash function (currently modeled as a random oracle) is

defined. Concretely, we define it based on a boolean function f : T ×M×R → {0, 1} with f ← Dλ, for

λ = 1/|H|. Looking ahead, in this way we will later be able to use the HRS framework (see Definition 17).

In addition, we change the reprogramming routine. We will see that these changes are purely conceptual

and do not change the view of the adversary. So we claim that the success probability in Game.2 will

stay the same as in Game.1. First we show how to construct a tweakable hash function from the boolean

function f .

1. Generate a random tweakable hash function Th′ and public parameter P .

2. For each t ∈ T , sample an ordered set St and a pair (ρ∗t , xt) as follows: Set ctr = 0 and x = ⊥. While

ctr < K and x = ⊥:

(a) Sample ρ $← R.

(b) Sample y $← H.

(c) If Prop(y) = 1: Append (ρ, y) to St, set x := y, ρ∗ := ρ, and define (ρ∗t , xt) := (ρ∗, x).
(d) Else: Append (ρ, y) to St and set x = ⊥.

3. Sample random functions gt : M×R→ H \ {xt} for each t ∈ T .

4. Construct a function g : T ×M×R → H the following way: On input (t, m, ρ) check

• If f(Ti, m, ρ) = 1 : Return xt.

• If f(Ti, m, ρ) ̸= 1 : Return gt(m, ρ)

5. Define Th as Th(p, t, (m, ρ)) :=
{

g(t, m, ρ), if p = P.

Th′(p, t, m, ρ), otherwise.

Note that the constructed Th is still a uniformly random function. Next we update our reprogramming

techniques by using the values from our construction of Th. This is a purely conceptual change. The new

game is as follows (with the winning condition as before):

1. Use the parameter P generated in the construction of Th.

2. Run Awith an input P and with (classical) access to an oracle that takes T ∈ T and M ∈M and

works as follows:

• If |Q| ≥ p or there is a tuple (T, M ′, ρ′) ∈ Q, for some M ′, ρ′ return ⊥.

• For each input (ρj , yj) ∈ ST :

– Program Th(P, T, M, ρj) := yj .

• Insert (T, M, ρ∗T ) into Q, where (ρ∗T , xT ) ∈ DT .

• Output (xT , ρ∗T ).

Through these two changes we managed to incorporate the boolean function into the game while keeping

all the distributions the same. As we have argued, we get

AdvGame.1
Th,p,Prop(A) = AdvGame.2

Th,p,Prop(A).

Final reduction: In the previous game we managed to incorporate the boolean function into the

construction of Th and updated the reprogramming routine. As a result, a successful forgery should
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satisfy Th(P, Tj , Mj , ρj) = Th(P, Tj , M∗, ρ∗) = xTj
and (M∗, ρ∗) ̸= (Mj , ρj). This means that (Tj , M∗, ρ∗)

must satisfy the boolean function f by construction. Hence, we can use the forgery in a reduction to

break the AdvAvg-Search1/|H|
property. We get

AdvGame.2
Th,p,Prop(A) ≤ AdvAvg-Search1/|H|

(B).

This concludes the proof.

D Multi-Target Collision Resistance
In this section, we give a bound on success probability against multi-target collision resistance (see

Definition 3) in the random oracle model, assuming a classical adversary. In [HK22], an analysis was

given in the quantum random oracle model. We reuse their proof ideas to derive a bound in the classical

setting. In addition, we give an updated bound for quantum adversary against tweakable hash function,

where |P| ≠ 2k
for some k.

Definition 19 (Distinguishing from Constant Zero). Let fP : P → {0, 1} be the boolean function, with

fP (pp) = 1 if and only if pp = P . Let f0 : P → {0, 1} be the boolean function for which f0(x) = 0 for all

pp ∈ P . Let A be a (stateful) algorithm, and consider the following experiment ZeroDist(A):

1. Generate a random public parameter P $← P .

2. Flip a random coin b $← {0, 1}.

3. If b = 1 give A oracle access to fP . If b = 0 give A oracle access to f0.

4. When A signals to continue, then remove the access to the given oracle and continue running A
with input P .

5. Obtain from A a bit b′ ∈ {0, 1} and output b′.

For any such algorithm A, we define the following advantage:

AdvZeroDist(A) = |Pr [ZeroDist(A)⇒ 1 | b = 0]− Pr [ZeroDist(A)⇒ 1 | b = 1]| .

Lemma 14. Let A be a classical algorithm that makes no more then q classical queries to its oracle. Then, we have

AdvZeroDist(A) ≤ q

|P|
.

Proof. It is straightforward to see that if the oracle has not been queried during the first stage on the

selected public parameter P then indistinguishability holds. The probability that the public parameter

will match one of the q queries is bounded by q/|P|.

To give a more general bound (i.e., for |P| ≠ 2k
) for target collision resistance in the quantum random

oracle model, first recall that in [HK22], the authors rely on the (**) bound from [HRS16], which states

that AdvZeroDist(A) ≤ 4q2/2k
, if P = {0, 1}k

. If 2k < |P| < 2k+1
, without loss of generality we can view P

as being represented by (k + 1)-bit integers in 0, . . . , |P| − 1. In the following lemma, we consider this

setting, and the experiment ZeroDist(A) where the adversary A is quantum and it has quantum access

to the boolean function.

Lemma 15. LetA be a quantum algorithm that makes no more then q quantum queries to its oracle. Then, we have

AdvZeroDist(A) ≤ 8q2

|P|
.

Proof. Assume there is a quantum adversary A that breaks ZeroDist of a boolean function that operates

on P with probability at least ϵ. Then, it is straightforward to show that it can be utilized to break

ZeroDist for K̂ $← {0, 1}k+1
with probability at least 1/2ϵ, since the probability that P ∈ P for a random

P $← {0, 1}k+1
is at least 1/2. Hence, we can conclude that ϵ ≤ 8q2/2k+1 ≤ 8q2/|P|.
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Lemma 16 ([HK22]). Let Th be a tweakable hash function modeled as a random oracle. For any quantum

algorithm A against multi-target collision resistance (see Definition 3) that makes at most q quantum queries to its

random oracle Th, there are quantum adversaries B (making 2q queries) and C (making 2q queries) such that

AdvSM-TCR
Th,p (A) ≤ AdvAvg-Search1/|H|

(B) + AdvZeroDist(C).

We can reuse this result from [HK22] since the reductions work regardless whether the adversary is

quantum or classical, and if the adversary is classical, then so are the reductions. By using the classical

bounds from Lemmata 11 and 14, we get the classical counterpart. We also state the updated bound in

the quantum random oracle model.

Lemma 17. Let Th be a tweakable hash function modeled as a random oracle. For any classical algorithm A
against multi-target collision resistance (see Definition 3) that makes at most q classical queries to its random oracle

Th, we have

AdvSM-TCR
Th,p (A) ≤ 2q + 1

|H|
+ 2q

|P|
.

Lemma 18. Let Th be a tweakable hash function modeled as a random oracle. For any quantum algorithm A
against multi-target collision resistance (see Definition 3) that makes at most q quantum queries to its random

oracle Th, we have

AdvSM-TCR
Th,p (A) ≤ 32(q + 1)2

|H|
+ 32q2

|P|
.

E Multi-Target Preimage Resistance
In this section we derive a new bound for multi-target preimage resistance (see Definition 4) in the

quantum random oracle model. Although there was a security analysis of multi-target preimage

resistance based on some conjecture (see [BH19, BHK
+

19, HK22]), we want to give a bound that is not

relying on any conjecture. To this end, we first introduce the related notion of single-function, multi-target

one-wayness for distinct tweaks and analyze its security, and then reduce multi-target preimage resistance

to it.

E.1 Multi-Target One-Wayness
We start with a definition of single-function, multi-target one-wayness for distinct tweaks. This notion is

different from multi-target preimage resistance in that the challenges are generated uniformly at random

from the output space, rather then by computing a hash of a random input.

Definition 20 (Multi-Target One-Wayness). Let Th : P × T ×M→ H be a tweakable hash function as

defined in Definition 1. Let A be a (stateful) algorithm,M′ ⊆M, and p ∈ [|T |]. Consider the following

experiment SM-OWTh,M′,p(A):

1. Generate a random public parameter P $← P .

2. Run Awith (classical) access to an oracle that takes T ∈ T and works as follows:

• If |Q| ≥ p or there is an y′ ∈ H with (T, y′) ∈ Q, return ⊥.

• Otherwise, sample y $← H, insert (T, y) into the list Q and output y.

3. When A signals to continue, then continue running Awith input P , but without the oracle access.

4. Obtain from A an output (j, M) with M ∈M′, j ∈ [|Q|]. Denote the jth entry in Q by (Tj , yj).

5. Output 1 if Th(P, Tj , M) = yj . Otherwise, output 0.

For any such algorithm A, we define the following advantage:

AdvSM-OW
Th,M′,p(A) := Pr[SM-OWTh,M′,p(A)⇒ 1].
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Theorem 6. Let Th : P × T ×M→ H be a tweakable hash function modeled as a random oracle. Let A be any

quantum adversary against multi-target one-wayness (Definition 20) on subspaceM′ ⊆M, that makes at most q
quantum queries to Th and p classical query to its challenge oracle. Then, there is a quantum adversary B against

Avg-Search1/|H| that makes q queries to its oracle, such that

AdvSM-OW
Th,M′,p(A) ≤ AdvAvg-Search1/|H|

(B) ≤ 8(q + 1)2

|H|
.

Proof. We prove the statement via a sequence of games, where the probability that the ith game outputs

1 is denoted by AdvGame.i
Th,M′,p(A). Without loss of generality we view the set H as n bit representation of

integers {0, . . . , |H| − 1}.
Game.0: Our initial game is the original game for multi-target one-wayness, see Definition 20. By

definition, we have

AdvSM-OW
Th,M′,p(A) = AdvGame.0

Th,M′,p(A).

Game.1: This game is different from Game.0 in the way we construct the hash function Th. For the

construction we will need several random functions:

• Function g : T → H;

• Function Th′ : P × T ×M→ H;

• Function h′ : T ×M′ → H \ {0}n
;

• Boolean function f : T ×M′ → {0, 1} sampled from the distribution D1/|H|, see Definition 17.

Using h′, we construct a random function h : T ×M′ → H, but with the constraint that h(t, x) never

evaluates to g(t). The construction of h is as follows:

1. On input t, x compute h′(t, x) = y′ ∈ H \ {0}n
;

2. If y′ ≤ g(t): Return y′ − 1;

3. If y′ > g(t): Return y′.

With g, h, Th′, and f , we now explain how Th is implemented in this game. First a random P $← P is

sampled. Then, Th works as follows on input pp ∈ P, t ∈ T , x ∈M:

• If pp = P ∧ x ∈M′ ∧ f(t, x) = 1: Return g(t).

• If pp = P ∧ x ∈M′ ∧ f(t, x) ̸= 1: Return h(t, x).

• If pp ̸= P ∨ x /∈M′: Return Th′(pp, t, x).

One can see that the distribution of Th is still uniform. We will use this very P instead of sampling a new

one and use function g to respond to the challenge queries. Concretely, Game.1 is as follows, where A
obtains quantum random oracle access to Th throughout the game:

1. Sample P and use it for Th as explained above.

2. Run Awith (classical) access to an oracle that takes T ∈ T and works as follows:

• If |Q| ≥ p or there is an y′ ∈ H with (T, y′) ∈ Q, return ⊥.

• Otherwise, compute y = g(T ), insert (T, y) into the list Q and output y.

3. When A signals to continue, then continue running Awith input P , but without the oracle access.

4. Obtain from A an output (j, M) with M ∈M′, j ∈ [|Q|]. Denote the jth entry in Q by (Tj , yj).

5. Output 1 if Th(P, Tj , M) = yj . Otherwise, output 0.
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Since all the distributions remained the same the success probability of A also remains the same.

AdvGame.0
Th,M′,p(A) = AdvGame.1

Th,M′,p(A).

Final reduction: The last step is to bound the success probability of the adversary in Game.1. One can

see that any solution for Game.1 corresponds to the solution for the Avg-Search1/|H| problem. Namely,

the adversary must output a solution with the selected public parameter P and in the subspaceM′. For

such a solution we have two options: either f(Tj , M) = 1, or f(Tj , M) ̸= 1. If f(Tj , M) = 1 then (Tj , M)
constitutes a solution for Avg-Search1/|H|. If f(Tj , M) ̸= 1, then Th(P, Tj , M) would evaluate to h(Tj , M),
which was constructed to be never equal to g(Tj) = yj and hence this can not be a solution. Note that

during our reduction we do not have to query f during the challenge queries and only need f for queries

to Th. We denote the number of queries to Th as q, so our reduction does no more then q queries to f .

Hence,

AdvGame.1
Th,M′,p(A) ≤ AdvAvg-Search1/|H|

(B).

This concludes the proof.

E.2 Multi-Target Preimage Resistance
Now that we have a bound on multi-target one-wayness, we can prove a bound on multi-target preimage

resistance.

Theorem 7. Let Th : P × T ×M→ H be a tweakable hash function modeled as a quantum random oracle. Let

A be any quantum adversary against multi-target preimage resistance (Definition 4) on subspaceM′ ⊆M, that

makes at most q quantum queries to Th and p classical query to its challenge oracle. Then, there are quantum

algorithms B making at most q quantum queries to Th and C making at most q + 1 quantum queries such that

AdvSM-PRE
Th,M′,p(A) ≤ AdvSM-OW

Th,M′,p(B) + AdvSM-UD
Th,M′,p(C).

Consequently, we have

AdvSM-PRE
Th,M′,p(A) ≤ 8(q + 1)2

|H|
+ 12(q + 1)√

|M′|
.

using the bounds we already know.

Proof. We prove the statement via a sequence of games, where the probability that the ith game outputs 1
is denoted by AdvGame.i

Th,M′,p(A).
Game.0: Our initial game is the original game for multi-target preimage resistance, see Definition 4. By

definition, we have

AdvSM-PRE
Th,M′,p(A) = AdvGame.0

Th,M′,p(A).

Game.1: This game is different from Game.0 in the way we respond to the challenges. Instead of

sampling a random input and returning a hash of the inputs we return a random value fromH. Note

that the difference in these two games matches exactly the two cases in the undetectability game (see

Definition 5). A precise representation of Game.1 is the following, where A gets quantum random oracle

access to Th throughout the game:

1. Generate a random public parameter P $← P .

2. Run Awith (classical) access to an oracle that takes T ∈ T and works as follows:

• If |Q| ≥ p or there is an y′ ∈ H with (T, y′) ∈ Q, return ⊥.

• Otherwise, sample y $← H, insert (T, y) into the list Q and output y.

3. When A signals to continue, then continue running Awith input P , but without the oracle access.

4. Obtain from A an output (j, M) with M ∈M′, j ∈ [|Q|]. Denote the jth entry in Q by (Tj , yj).

5. Output 1 if Th(P, Tj , M) = yj . Otherwise, output 0.
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It is clear that there is a trivial reduction C such that

|AdvGame.0
Th,M′,p(A)− AdvGame.1

Th,M′,p(A)| ≤ AdvSM-UD
Th,M′,p(C).

Final reduction: The final step is to bound the success probability of the adversary in Game.1. One

can see that the description of Game.1 exactly matches the description of the multi-target one-wayness

experiment for subspaceM′, see Definition 20. Hence,

AdvGame.1
Th,M′,p(A) ≤ AdvSM-OW

Th,M′,p(B).

This concludes the proof.
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