
Founding Zero-Knowledge Proofs of Training on
Optimum Vicinity

Gefei Tan
gefeitan@u.northwestern.edu

Northwestern University

Adrià Gascón
adriag@google.com

Google

Sarah Meiklejohn
s.meiklejohn@ucl.ac.uk

Google & UCL

Mariana Raykova
marianar@google.com

Google

Xiao Wang
wangxiao@northwestern.edu

Northwestern University

Ning Luo
nl27@illinois.edu

UIUC

Abstract

Zero-knowledge proofs of training (zkPoT) allow a party to prove that a model is trained correctly
on a committed dataset without revealing any additional information about the model or the dataset. Ex-
isting zkPoT protocols prove the entire training process in zero knowledge; i.e., they prove that the final
model was obtained in an iterative fashion starting from the training data and a random seed (and poten-
tially other parameters) and applying the correct algorithm at each iteration. This approach inherently
requires the prover to perform work linear to the number of iterations.

In this paper, we take a different approach to proving the correctness of model training. Our approach
is motivated by efficiency but also more urgently by the observation that the prover’s ability to pick the
random seed used for training introduces the potential for it to bias the model. In other words, if the input
to the training algorithm is biased, the resulting model will be biased even if the prover correctly ran the
training algorithm. Rather than prove the correctness of the training process, we thus directly prove the
correctness of the training model using a notion we call optimum vicinity, which bounds the distance
between the trained model and the mathematically optimal model for models that can be viewed as the
solution to a convex optimization problem. We show both theoretically and experimentally that this
ensures the trained model behaves similarly to the optimal model, and show this is not true for existing
approaches. We also demonstrate significant performance improvements as compared to the existing
zkPoT paradigm: the statement proven in ZK in our protocol has a size independent of the number of
training iterations, and our Boolean (respectively arithmetic) circuit size is up to 246× (respectively 5×)
smaller than that of a baseline zkPoT protocol that verifies the whole training process.

1 Introduction

Zero-knowledge proofs (ZKP) [GMR85] allow one party to prove statements about a secret it holds to
another party without revealing any information about the secret. In the past decade, ZKPs have witnessed
huge improvements in efficiency [Gro16, CHM+20, GWC19, BBB+18b, BMRS21, DILO22, BBMHS22,
BBMH+21, YSWW21, BBHR18] and grown in terms of the applications for which they are used, ranging
across cryptocurrency [BCG+14, BBB+18a], formal verification [LAH+22, LWS+24, GAZ+22], and more.
In the domain of machine learning, protocols based on ZKPs have been proposed for proving the correctness
of inference [GGG17, WYX+21, LKKO24] and training [APKP24, GGJ+23].

1

Zero-knowledge proofs of training (zkPoT) have particularly attracted attention due to their ability to
prove that, e.g., certain data were not used in training a model or proving that a model was trained in accor-
dance with certain regulatory requirements (e.g., fairness [SWF+22] or differential privacy [STC+24]),
all while keeping the model and its training data private. To date, all existing zkPoT protocols (e.g.
[APKP24, GGJ+23]) work by having the prover publicly commit to the training data and model and then
prove that it has some inputs—in particular, the training data and random seed1—such that when it runs
a known training algorithm (e.g., stochastic gradient descent) on these inputs, it produces the committed
model.

In this abstraction, the prover runtime is naturally linear in the number of iterations involved in training,
as the prover must prove at each step that it updated the committed model parameters according to the
training algorithm. Beyond efficiency, we also consider the security of this approach in terms of how the
prover selects the random seed used for training. We discuss several options.
• Randomness from the prover [GGJ+23, XZL+23]. Letting the prover choose the randomness is natural

and consistent with how training is typically performed. However, it can lead to an attack wherein a
malicious prover performs rejection sampling on the randomness until the resulting model has desired
properties, e.g., it predicts certain data abnormally. This attack is not prevented by the ZKP but rather
stems from a change in the trust model: plaintext training assumes that the model trainer is honest and
samples randomness faithfully; in the context of zkPoT, the model trainer, as the prover, is no longer
trusted. In this case, the statement being proven (that the prover ran the honest training algorithm) becomes
less meaningful because one of the inputs to this algorithm (the randomness) is adversarially chosen.

• Randomness from the verifier [SBLZ24, SR21, STC+24]. Having the verifier involved in picking the
randomness can prevent the above attack. This is already an additional complication in the case of a single
verifier, as the prover would need to interact with the verifier before training the model, and it becomes
infeasible as we consider multiple verifiers, as it is prohibitively expensive for the prover to repeat the
model training with different randomness for every potential verifier.

• Randomness from a random oracle [LLLX23, CSD24, SAB24]. One could potentially use a “true”
source of randomness, such as an external random beacon [KBPB19, BBBF18] or by applying the Fiat-
Shamir heuristic [FS87] and deriving the randomness using a random oracle [CSD24]. A random beacon
would introduce an external dependency; moreover, it would introduce additional trust assumptions and
constraints into the ML training pipeline. The latter approach also requires us to consider what data the
prover should hash in order to form the randomness. The prover could hash a commitment to the training
data, but here again, the prover could perform rejection sampling on the randomness in the commitment
and thus bias the randomness. The prover could instead hash the training data but would then need to
prove in zero knowledge that the randomness is consistent with the committed training data, which adds
significant overhead.

1.1 Our Contributions

In this paper, we take a different approach to zkPoT. Our approach to proving training does not involve
randomness; instead, we prove statements about the trained model directly. More precisely, we prove not
that we ran the training algorithm but that the model output by training is close to the optimal solution to a
convex optimization problem, i.e., the model that minimizes the loss function LD(w). As we demonstrate,

1The random seed is used to simulate randomness in several different aspects of training, such as setting the initial model
weights and shuffling data, etc.

2

this allows us to to provide a mathematical bound on how much an adversary can influence the prediction
probability. Below, we provide details of our contributions and intuition regarding our main ideas.

Rejection Sampling Attack on Existing zkPoTs. As mentioned before, all existing zkPoT protocols in-
herently can be subjected to a rejection sampling attack, where the prover adversarially chooses the training
randomness. Specifically, a malicious prover can train multiple models using different random seeds. When
executing the zkPoT protocol, it then chooses the seed that introduces a desired bias in the trained model.
Although the prover appears to follow the protocol honestly, this attack allows the prover to manipulate the
model’s outcomes without detection.

In Section 5.1, we describe experiments we ran to evaluate the effectiveness of rejection sampling. We
first trained a reference model with a fixed random seed (r = 0). Subsequently, we trained 1,000 additional
models, each with a unique random seed (r = 1 to r = 1000), and compared their predictions to those of the
reference model. Our results indicate that rejection sampling is highly effective: with only 1,000 different
seeds, up to 13.4% of all confident predictions (i.e., with prediction probability 0–0.45 or 0.55–1) can be
biased towards the opposite class.

Optimum Vicinity: A Meaningful Formulation for zkPoT. To address the vulnerabilities in existing ap-
proaches, we introduce in Section 3 a new definition based on a concept that we call optimum vicinity. The
rejection sampling attack highlights a critical flaw in current zkPoT approaches: they indirectly verify the
trained model by reproducing the training process rather than directly measuring the quality of the trained
model itself. Instead of focusing on replicating the (randomized) training process, our definition measures
the proximity of the trained model to the mathematical true optimal solution derived from the training data.
To formalize this notion, we leverage the fact that many common training algorithms can be viewed as con-
vex optimization problems. This includes many textbook ML models (linear regression, logistic regression,
support vector machines (SVMs), two-layer ReLU neural networks [PE20], naive Bayes, k-nearest neigh-
bors [WS09]) and some neural networks with regularized training, including, e.g., convolutional neural
networks (CNNs) [EP21b, EP21a], polynomial activation networks [BP21], transformers with self-attention
layers [SEO+22b], and generative adversarial networks (GANs) [SEO+22a]. In these cases, the final model
can be seen as the (unique) optimal solution to a convex optimization problem involving the training data.

However, the trained model is often not the mathematically optimal model, as (1) most training algo-
rithms terminate when the model is “sufficiently good”, i.e., before reaching the optimal model, and (2) the
optimal model may not be representable using finite precision numbers, which means any model represented
on computers is only an approximation anyway.

In practice, we can thus show that the trained model is close to the optimal model; i.e., we can in-
corporate a notion of proximity by proving some bounds on the difference between a given model and
the optimal model implied by the training data. Thus, we propose the notion of ϵ-vicinity: a model w is
within the ϵ-vicinity if ∥w − w∗∥2 ≤ ϵ, where w∗ is the mathematically optimal model. Our definition
has a few direct implications. First, the definition is independent of how the model is trained in terms of
the hardware platform or training algorithm. Proving this property also requires no changes to the training
process. Second, for machine learning models where the predictions are of the form of f(x,w) for some
K-Lipschitz function f and data point x, this bound implies similarity in the classification result as well, as
∥f(x,w) − f(x,w∗)∥2 ≤ K · ϵ. However, this definition is non-constructive in the sense that while w∗

always exists for convex optimizations, it is not always computable in its precise form.

Verifying Optimum Vicinity with Real-Number Operations. To summarize, thus far, we are given the
training data D, which decides the loss function LD that takes in any model and outputs a score. We know
that there exists a model w∗ that minimizes LD and want to verify that a model w is ϵ-vicinal to w∗. The
challenge, however, arises in considering how to verify this without explicit calculation of w∗.

3

Our second insight is that although it is difficult (and seemingly impossible) to find the exact distance
between w and w∗, one can find an upper bound instead. In particular, we do know that LD(w∗) is a global
minimum, meaning its gradient ∇LD(w∗) = 0. As such, we can relate the distance between w∗ and w
with the distance between ∇LD(w∗) and ∇LD(w) when the loss function LD is “well behaved”. To be
more precise, it can be shown that when the loss function is m-strongly convex, we have that

∥w −w∗∥2 ≤
∥∇LD(w)∥2

m
,

where m may not have an explicit formula and, even when it does, may depend on w∗. Therefore, our focus
is to, again, get a meaningful bound on m. We observe that when the loss function includes a regularization
term (λ/2) · ∥w∥22, m can be lower bounded by λ. This means that we have

∥w −w∗∥2 ≤
∥∇LD(w)∥2

λ
.

Because of the two relaxations in optimum vicinity up to this point, it is possible that the prover has a
w satisfying ϵ-vicinity but is able to prove only ϵ′-vicinity, where ϵ′ > ϵ. We show in Section 5.3 that such
a gap is usually small (ϵ′ − ϵ ≤ 0.0001) when λ is in a reasonable range (λ ≥ 0.25). In practice, the prover
can always train a model so that the gradient is even smaller.
ZK Proof of Optimum Vicinity Without Real-Number Operations. So far, we assume that the verifica-
tion operates on real numbers, which is mathematically sound but cannot be realized on modern computers
or within cryptographic protocols. To enable ZKPs of optimum vicinity, we need to translate this bound
to computation on bounded arithmetic. Our high-level idea is to perform a bounded approximation of the
above formula while keeping track of the error. If the error always overapproximates by some value ∆fp,
the resulting proof would be (ϵ + ∆fp)-vicinity, i.e., it would hurt tightness but not soundness. Therefore,
our final task is to efficiently and accurately overapproximate the computation of the gradient of the loss
function.

To this end, we describe in Section 4 two contributions. First, we implement fixed-point interval arith-
metic in zero knowledge to keep track of the upper and lower bounds of every value so that we can propagate
the bound as the computation proceeds. This ensures that all intermediate results are strict overestimations of
their real values, thereby preserving soundness. Second, we present a precise approximation of the sigmoid
function, specifically optimized for interval arithmetic and efficiently verifiable in zero knowledge. All ex-
isting sigmoid approximations lack sufficient accuracy and are incompatible with interval arithmetic because
they fail to maintain both lower and upper bounds. In contrast, our approximation uses two piecewise linear
functions to separately approximate the lower and upper bounds of the sigmoid. This dual-approximation
strategy guarantees compatibility with interval arithmetic while also minimizing approximation error. As
we show in Section 5.4, by carefully combining these two techniques, we are able to maintain soundness,
achieve small overestimation errors, and remain efficient in the final proof.
Summary. Figure 1 summarizes our approach to proving ϵ-vicinity. To prove that a model w is ϵ-vicinal,
we establish an upper bound ϵfp in the proof that overestimates its real distance (ϵreal) to the optimal model
w∗. This upper bound is the result of a series of approximation techniques, which introduce three gaps:

1. Strong convexity gap: ∆sc = |ϵsc − ϵreal| (Section 3.2). Since w∗ is unknown, we upper-bound ϵreal
using the strong convexity of the loss function, resulting in ϵsc.

2. Regularization gap: ∆rg = |ϵreg − ϵsc| (Section 3.3). The strong convexity parameter m is also infeasi-
ble to compute. Therefore, we further upper-bound ϵsc with ϵreg by substituting m with the regularization
parameter λ.

4

𝜖fp
≤ 1

𝜆
||∇ℒ 𝒘 ||2||𝒘 − 𝒘∗||2

𝜖real 𝜖reg

(Section 3.2)

𝜖reg + Δfp

1

𝑚
||∇ℒ 𝒘 ||2

𝜖sc

Strong Convexity 𝐿2-Regularization Fixed-Point Interval Arithmetic

& Sigmoid Approximation

≤ ≤

(Section 3.3) (Section 4)

Figure 1: Roadmap for bounding ϵ-vicinity. To prove that a model w is ϵ-vicinal, our approach establish a bound
(ϵfp) on its exact distance to the optimal model w∗ (ϵreal), This process introduces three gaps between ϵreal and ϵfp. We
maintain soundness and restrain the overestimation error for each gap through a series of targeted techniques.

3. Fixed-point gap: ∆fp = |ϵfp − ϵreg| (Section 4). To ensure soundness against fixed-point precision er-
rors, we employ fixed-point interval arithmetic and an accurate sigmoid approximation in the final proof
to obtain ϵfp.

Throughout the paper, we demonstrate how each gap is managed in a sound and tight manner. We stress
that the approximation errors introduced by these three gaps only inflate the bound, resulting in a loss of
tightness but not a loss of soundness. Specifically, since ϵfp ≥ ϵreal, we guarantee that the real distance of w
to the optimal model w∗ is within the proved bound. Our experiments (Section 5) further confirm that this
tightness loss is practically small, ensuring that ϵfp remains a close and reliable approximation of ϵreal.

Evaluation. In Section 5, we evaluate our protocol using five real-world datasets for both logistic regres-
sion and soft-margin SVMs. Our experimental results demonstrate that the protocol: (1) is robust against
rejection sampling attacks, with ϵ-vicinal models preserving nearly all confident predictions of the optimal
model; (2) maintains sound approximation with a low overestimation error at each step (approximately 10−4

and 10−3 for ∆sc +∆rg and ∆fp, respectively); and (3) significantly reduces the Boolean circuit size, up to
246× smaller than the current zkPoT paradigm, which verifies the entire training process in zero knowledge.

2 Preliminaries

In this section, we present notation and definitions of zero-knowledge proof, machine learning, and convex
functions. Additional mathematical definitions and properties are provided in Appendix A.

2.1 Notation

We use bold lower-case letters like x to denote column vectors. For clarity, we sometimes denote the inner
product of vectors using ⟨x,w⟩ = x⊤w. We denote the ℓ2 norm of vector w by ∥w∥2 =

√
w⊤w. We

define signed fixed-point numbers as real numbers represented using a fixed scaling factor. Specifically, we
represent a signed fixed-point number as a signed (m + n)-bit integer with m integer bits and n fractional
bits. The real value r is given by r = x · 2−n.

2.2 Zero-Knowledge Proofs

Zero-knowledge proofs (ZKPs) for circuit satisfiability allow a prover P holding a witness w to prove to a
verifier V that C(w) = 1 for some public circuit C without revealing any information about w. The goal
of this paper is not to design new ZKPs but to use existing protocols to construct an efficient and meaning-
ful zero-knowledge proof of training. Therefore, we abstract the ZKP functionality as shown in Figure 2.
Essentially, we require that the prover can commit to its input first and then prove a statement about the com-
mitted input, along with auxiliary inputs. Most ZKP protocols can instantiate this functionality efficiently,

5

Functionality FZK

Commit: Upon receiving (commit, w) from prover P and (commit) from verifier V , the functionality stores w.
Prove: Upon receiving (prove, C) from P and (prove, C) from V where C is a circuit, retrive w from memory
and check if C(w) equals 1. The functionality aborts if the circuits from two parties are different or if C(w) ̸= 1;
otherwise, send true to both P and V .

Figure 2: Functionality for ZK proofs of circuit satisfiability.
including (but not limited to) zkSNARKs [Gro16, CHM+20, GWC19, Lab17] and proofs based on vector
oblivious linear evaluation (VOLE) [WYY+22, BMRS21, DILO22, BBMHS22, BBMH+21, YSWW21].

2.3 Machine Learning Preliminaries

We consider a generalized framework for training machine learning models. While this paper primarily
focuses on logistic regression and SVMs as examples, our results can be extended to other types of models
where training can be formulated as an optimization problem that minimizes a loss function.

Specifically, a machine learning model is parameterized by a vector w ∈ Rd, which we interchangeably
refer to as the model or the model parameters. Let D = {(xi, yi)}Ni=1 denote the training dataset, where xi ∈
Rd represents input features and yi ∈ R the corresponding labels. Let R denote the space of randomness,
and LD denotes a loss function. A training algorithm is defined as a mapping TrainLD

: D × R → Rd,
where TrainLD

(D, r) takes as input a training dataset D and randomness r ∈ R, and outputs a trained
model w. The training algorithm aims to find a model w that minimizes the loss function LD : Rd → R.
Therefore, the general training objective can be formulated as:

min
w∈Rd

LD(w).

When the dataset D is fixed or implied from the context, we may denote the loss function simply as L(w).
We now define a few models that appear later in the paper.

Logistic regression. Logistic regression is a common machine learning model for binary classification tasks
with inputs xi ∈ Rd and outputs yi ∈ {0, 1}. We consider a model that predicts the label using the sigmoid
function σ(z) = 1/(1 + e−z). The model makes predictions by applying the sigmoid function to w⊤x and
thresholding the probability at 0.5: if σ(w⊤x) > 0.5, the label is predicted as 1, and 0 otherwise. Given a
training dataset of i.i.d. observations Dn := {(xi, yi)}1≤i≤n, logistic regression learns the parameters w by
minimizing the logistic loss function:

Llogit(w) = −
n∑

i=1

[
yi log σ

(
w⊤xi

)
+ (1− yi) log σ

(
−w⊤xi

)]
The convexity of the logistic loss ensures that optimization algorithms, such as gradient descent, can effi-
ciently find the global minimum.

In practice, L2-regularization is often applied to logistic regression to prevent overfitting. It adds a
penalty term proportional to the squared norm of w:

Lλlogit(w) = Llogit(w) +
λ

2
∥w∥22,

where λ > 0 is the regularization parameter.

6

Soft-margin support vector machines (SVMs). For a binary classification tasks with inputs xi ∈ Rd and
outputs yi ∈ {−1, 1}, SVMs predict labels using a linear decision function: f(xi) = w⊤xi + b, where
w ∈ Rd and b ∈ R are the model parameters. SVMs aim to maximize the margin between the two classes
while minimizing classification errors. Soft-margin SVMs, which do not assume linear separability of the
data, achieve this by minimizing a hinge loss function with an L2 regularization term:

LλSVM(w, b) =
n∑

i=1

max(0, 1− yi(w
⊤xi + b)) +

λ

2
∥w∥22,

where λ > 0 is the regularization parameter. For simplicity, we treat b as a constant so the model can be
represented by w alone.

2.4 Convex and Strongly Convex Functions

Our methods require the loss function of the training algorithm to be strongly convex; thus, we provide the
relevant definitions here. We begin by recalling the notions of convex and strongly convex functions for Rd,
which form the foundation for many optimization-based machine learning methods.

Definition 1 (Convex Functions [BV04]). A function f : Rd → R is convex on Rd if for all x, y ∈ Rd and
for all 0 ≤ θ ≤ 1, the following inequality holds:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

A convex function ensures any local minimum is also a global minimum. However, merely knowing a
function is convex does not always guarantee fast convergence. For more efficient optimization, we often
seek stronger conditions on the function’s curvature, which brings us to the definition of strong convexity.

Definition 2 (Strongly Convex Functions [BV04]). A continuously differentiable function f : Rd → R is
m-strongly convex on Rd with parameter m > 0 if for any x, y ∈ Rd, the following inequality holds:

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
m

2
∥y − x∥22.

Alternatively, if f is twice continuously differentiable, f is m-strongly convex if and only if its Hessian
satisfies:

∇2f(x) ⪰ mId ∀x ∈ Rd,

where Id is the d-dimensional identity matrix.

Strong convexity gives us many appealing properties for optimization. Intuitively, it guarantees that the
function grows as fast as a quadratic function, which leads to faster convergence rates in gradient-based
methods. Moreover, it ensures that if gradients change minimally when moving from point x to point y,
then the distance between x and y remains small. This insight also justifies common stopping criteria in
machine learning, where a training algorithm terminates if the gradient becomes sufficiently small.

Formally, we have the following lemma capturing this idea. It is a direct implication of strong convexity.

Lemma 1 (Implication of Strong Convexity [Zho18]). Let f : Rd → R be a continuously differentiable,
m-strongly convex function. Then, for any x, y ∈ Rd,

∥x− y∥2 ≤
1

m
∥∇f(x)−∇f(y)∥2.

7

3 Defining and Verifying Optimum Vicinity

In this section, we propose optimum vicinity, a new definition for proofs of training. Along with the defini-
tion, we also present a practical method for checking the optimum vicinity.

We first formally define ϵ-vicinal models and show how their performance is guaranteed in Section 3.1.
The definition, however, is non-constructive as it depends on the mathematically optimal model, which is
generally not computable. To address this limitation, we derive an upper bound on the distance between the
ϵ-vicinal model and the optimal model in Section 3.2, assuming m-strong convexity of the loss function.
This bound directly relies on the strong convexity parameter m, which is often unknown. In Section 3.3, we
further prove an upper bound for m, allowing for verification of a model’s ϵ-vicinity without knowing the
exact optimal solution or the value of the strong convexity parameter.

3.1 Defining Optimum Vicinity

We define optimal vicinity based on the proximity of a given model to the optimal model. Intuitively, an
optimal model minimizes a specified loss function, and a model is considered ϵ-vicinal if its distance from
an optimal model is at most ϵ.

Definition 3 (ϵ-vicinity). A model w∗ is optimal w.r.t. a loss function L if w∗ ∈ argminw L(w). A model
w ∈ Rd is ϵ-vicinal w.r.t. an optimal model w∗ if ∥w −w∗∥2 ≤ ϵ.

We denote the exact distance ∥w − w∗∥2 by ϵreal. By our definition, any model w that is ϵreal-vicinal
is also ϵ′-vicinal for any ϵ′ ≥ ϵreal. This property will be leveraged to derive a series of upper bounds on
ϵ-vicinity later in the paper. Note an optimal model is always defined w.r.t. a fixed loss function L, and
ϵ-vicinity is measured relative to this optimal model w∗. For clarity, we may omit explicit references to L
or w∗ when the context is clear.
Implications of ϵ-vicinity. ϵ-vicinity provides a quantifiable measure of how closely a given model approx-
imates the optimal model. Theorem 1 further demonstrates that an ϵ-vicinal model with a sufficiently small
ϵ is guaranteed to achieve near-optimal performance. Specifically, an ϵ-vicinal model exhibits only minimal
prediction error, provided the prediction function is Lipschitz continuous w.r.t. the model’s parameter w.

Theorem 1 (Prediction error bound for ϵ-vicinal models). Suppose the prediction of an ϵ-vicinal model
w and an optimal model w∗ on a data point x can be written as f(w,x), where f : Rd × Rd → R is
K-Lipschitz continuous w.r.t. w. Then, it follows that∣∣f(w,x)− f(w∗,x)

∣∣ ≤ K · ϵ.
Proof. By the parameter-wise K-Lipschitz continuity (Definition 5) of f we have

|f(w,x)− f(w∗,x)| ≤ K · ∥w −w∗∥2.
Because w is ϵ-vicinal, we have ∥w −w∗∥2 ≤ ϵ. Combining these results, we have

|f(w,x)− f(w∗,x)| ≤ K · ∥w −w∗∥2 ≤ K · ϵ,
which completes the proof.

According to Theorem 1, verifying that a model is ϵ-vicinal with small ϵ is sufficient to guarantee that
its predictions closely approximate those of the optimal model.

For most common linear models like logistic regression or SVMs, the model’s predictions can be ex-
pressed as a function of ⟨w,x⟩. In this case, we can derive the following corollary:

8

Corollary 1 (Prediction error bound for linear predictor function.). Suppose the prediction can be rep-
resented as f(w,x) = g(⟨w,x⟩), where g is K-Lipschitz continuous in its scalar argument. Then, it follows
that

|f(w,x)− f(w∗,x)| ≤ K · ∥x∥2 · ϵ.
Proof. We first prove f(w,x) = g(⟨w,x⟩) is (K · ∥x∥2)-Lipschitz w.r.t. w. Then, the corollary follows
from Theorem 1. To see this, notice because g is K-Lipschitz continuous, we have

g(⟨w,x⟩)− g(⟨w∗,x⟩) ≤ K · |⟨w,x⟩ − ⟨w∗,x⟩| = K · ⟨w −w∗,x⟩.

Applying the Cauchy-Schwarz inequality on the right-hand side, we have

K · ⟨w −w∗,x⟩ ≤ K · ∥x∥2 · ∥w −w∗∥2.

Combining all, we have

g(⟨w,x⟩)− g(⟨w∗,x⟩) ≤ K · ∥x∥2 · ∥w −w∗∥2.

We conclude f is (K · ∥x∥2)-Lipschitz with respect to w.

This corollary indicates that the prediction error depends on the norm ∥x∥2 of the data point. For
example, the prediction function from a logistic regression model is f(w,x) = σ(⟨w,x⟩). Since σ is
0.25-Lipschitz continuous (its derivative is upper bounded by 0.25), Corollary 1 gives us

|f(w,x)− f(w∗,x)| ≤ 0.25 · ∥x∥2 · ϵ.

In practice, datasets are typically normalized to ensure that ∥x∥2 is small. This normalization also helps
keep the error bound tight, as we demonstrate empirically in Section 5.2 (Figure 7).

3.2 Bounding ϵ-Vicinity via Strong Convexity

Up to this point, we defined ϵ-vicinal models and showed that this concept provides a measure of how closely
a given model approximates the optimal model. In practice, however, the optimal model is often unavailable
or cannot be exactly represented due to finite precision. This makes it infeasible to compute a model’s exact
distance, ϵreal, from the optimal model.

To overcome this issue, we introduce a method to bound ϵreal for any given model under the assumption
of a strongly convex loss function. This approach allows us to directly evaluate how close the model is to
the optimal model without requiring knowledge of the optimal model.

Theorem 2 (Upper bound for ϵ-vicinity). Let w∗ be an (unique) optimal model w.r.t. a continuously
differentiable, m-strongly convex loss function L : Rd → R. Then, any model w ∈ Rd is ϵ-vicinal w.r.t. w∗,
where

ϵ =
1

m
∥∇L(w)∥2.

Proof. SinceL is continuously differentiable and m-strongly convex, the optimal model w∗ satisfies∇L(w∗) =
0. Applying Lemma 1 with x = w and y = w∗, we obtain

∥w −w∗∥2 ≤
1

m
∥∇L(w)−∇L(w∗)∥2 =

1

m
∥∇L(w)∥2.

Therefore, the model w is ϵ-vicinal with ϵ = (1/m) · ∥∇L(w)∥2.

9

Theorem 2 states that if the loss function is m-strongly convex, we can derive an upper bound on
model ϵ-vicinity by using the gradient norm at w and m. We denote this upper bound of by ϵsc, where
ϵreal ≤ ϵsc = (1/m) · ∥∇L(w)∥2. The theorem provides a method for checking ϵ-vicinity that has several
desirable properties:
• Checking ϵ-vicinity does not require access to the optimal model. It can be achieved by checking whether
ϵsc ≤ ϵ holds, without knowing the optimal model.

• The ϵ-vicinity of a model can be verified independently of the training algorithm used to obtain w, en-
abling a clear separation between the proof of training and the training process itself.

• Verification of ϵ-vicinity is deterministic and thus requires no randomness.
Based on these properties, we proceed to formulate a meaningful definition of proof of training derived from
model ϵ-vicinity.

3.3 Proof of Training via Optimum Vicinity.

Theorem 2 gives us a way to verify model ϵ-vicinity even when the optimal model is unknown. Assume a
prover P trained a model w ← TrainL(D, r) on dataset D using a m-strongly convex loss function L. A
verifier V can check whether w is ϵ-vicinal by checking the condition:

ϵ ≥ ϵsc =
1

m
∥∇L(w)∥2.

In our context, since m is dependent on the loss functionL, we need an explicit way to compute m. However,
no explicit formula to compute m is generally known [BV04]. For cases when there is a formula, it is
dependent on the optimal model w∗.

For example, consider the one-dimensional logistic loss function

L(w) = −
n∑

i=1

[
yi log σ(wxi) + (1− yi) log

(
1− σ(wxi)

)]
.

Its second derivative is

L′′(w) =
n∑

i=1

x2i σ
(
wxi

)(
1− σ

(
wxi

))
.

Since L′′(w) is always positive (assuming not all xi = 0), the loss function is locally strongly convex within
any closed interval [Bac14]. To determine m in ϵsc for a model w′, one must find the minimal value of
L′′(w) over the interval w ∈ [w′, w∗]. Notice that L′′(w) is bell-shaped, which ensures that its minimal
value occurs at one of the endpoints of the interval. Consequently, we can express m as:

m = min{L′′(w′),L′′(w∗)}.

We now circle back to the original challenge of not knowing w∗. Thus, additional techniques are required
to estimate or bound m.

Bounding m with regularization. Our key observation is that we can obtain a lower bound of m by
incorporating a regularization term into the loss function. A regularization term, widely used in machine
learning, is added to the loss function to prevent overfitting. We notice that adding an L2 regularization term
(λ/2) · ∥w∥22 will make any convex loss function λ-strongly convex. Therefore, λ ≤ m serves as a lower

10

bound for the strong convexity parameter m. With this lower bound in place, the verifier can directly check
model ϵ-vicinity by verifying whether ϵ ≥ 1

λ∥∇L(w)∥2, without knowing m. We denote this new bound
by ϵreg. This verification process remains sound because the following inequalities hold:

ϵ ≥ ϵreg =
1

λ
∥∇L(w)∥2 ≥

1

m
∥∇L(w)∥2.

Impact of λ on bound tightness. While our method of using λ to bound m is sound, the value of ϵreg is
inversely proportional to the value of λ. In other words, the choice of λ directly affects the tightness of our
bound. If λ is chosen to be too large solely to achieve a tight bound, it can degrade model performance by
over-penalizing it. Therefore, it is crucial that our bound remains tight, i.e., ϵreg − ϵreal is small, when λ is
picked from a wide range of values. Fortunately, as we show in Section 5.3, this gap remains small for a
wide range of commonly used λ. This ensures that a prover can train their model with various λ values and
still prove its ϵ-vicinity with a tight bound.
Optimum vicinity for real-world models. We stress that the above technique is applicable to a wide range
of real-world models as long as the loss function is convex. By adding an L2 regularization term to the
convex loss, it becomes strongly convex, and λ is a lower bound of the strong convexity parameter m.

In this paper, we pick logistic regression and soft-margin SVMs as two motivating real-world exam-
ples. Despite their relative simplicity, logistic regression and SVMs are widely used in numerous applica-
tions [NWH+14, YYH03] and, for this reason, have frequently served as canonical examples in prior zkPoT
work [GGJ+23, STC+24]. We present the theorems deriving their ϵ-vicinity below.

Theorem 3 (ϵ-vicinity bound for logistic regression). Let w∗ be the optimal model w.r.t. the L2-regularized
logistic loss function Lλlogit (Section 2.3). Any logistic regression model w ∈ Rd is ϵ-vicinal w.r.t. w∗, where

ϵ =
1

λ
∥∇Lλlogit(w)∥2.

Theorem 4 (ϵ-vicinity bound for SVMs). Let w∗ be the optimal model w.r.t. the L2-regularized hinge loss
function LλSVM (Section 2.3). Any SVM w ∈ Rd is ϵ-vicinal w.r.t. w∗, where

ϵ =
1

λ
∥∇LλSVM(w)∥2.

Sketch of Proof. Notice that logistic loss and hinge loss are both convex and therefore, with the regulariza-
tion term (λ/2) · ∥w∥22, both Lλlogit and LλSVM become λ-strongly convex. The rest of the proof follows from
Theorem 2. We present the full proof for both theorems in Appendix B.

Generality of our approach. Our analysis assumes Lipschitz continuity for the prediction function and
strong convexity for the loss function. We remark that these properties are commonly found in practical
machine learning models, allowing our approach to be readily applied to a wide range of real-world train-
ing tasks. For example, SVMs and many generalized linear models have Lipschitz-continuous prediction
functions, and virtually all loss functions in machine learning are strongly convex through standard L2

regularization.

4 ZK Proofs of Optimum Vicinity with Finite-Precision Arithmetic

This section introduces our framework for proving model ϵ-vicinity in zero knowledge, completing our
zkPoT definition. In Section 4.1, we define the ideal functionality for ϵ-vicinity verification and present a

11

Functionality FVIC−ZK

Public input: Training algorithm TrainL.
Commit: Upon receiving (commit, D) from prover P and commit from verifier V , store D.
Prove vicinity: Upon receiving (prove,w, ϵ) from prover P and prove from verifier V , where w is the trained
model, the functionality does the following:
1. Fetch the training data D, if no data is stored, abort.

2. Compute the optimal model w∗ from D.

3. Check if ∥w∗ −w∥2 ≤ ϵ. If not, the functionality aborts; otherwise, send (checked, ϵ) to both P and V .

Figure 3: Ideal functionality for proving model ϵ-vicinity in zero-knowledge

Protocol ΠVIC−ZK

Commit: P sets w′ = (w,D) and sends (commit, w′) to FZK. V sends commit to FZK.
Prove vicinity:
1. Both parties agree on ϵ, a strongly convex loss function L(·), and its strong convexity parameter m.

2. Let CL,ϵ,m be a boolean circuit where CL,ϵ,m(w, D) = 1 if and only if ϵ ≥ (1/m) · ∥∇LD(w)∥2. P sends
(prove, CL,ϵ,m) to FZK and V sends (verify, CL,ϵ,m) to FZK.

3. V and P receive output ∈ {true,⊥} from FZK and both output (checked, ϵ) if and only if output = true;
otherwise both party output ⊥ and halt.

Figure 4: The protocol ΠVIC−ZK realizing FVIC−ZK in the FZK-hybrid model.

protocol to securely realize it. In Section 4.2, we discuss the challenge of ensuring soundness under finite
numerical precision. To address this challenge, we introduce techniques based on interval arithmetic (Sec-
tion 4.3) and a novel, efficient sigmoid approximation (Section 4.4). These methods collectively maintain
the soundness and improve the efficiency of our zkPoT protocol.

4.1 Proving Model ϵ-Vicinity in ZK

To prove model ϵ-vicinity in ZK, we essentially just need to represent the verification process in a circuit and
prove using any ZK protocol that can instantiate FZK. Figure 3 shows our ideal functionality for proving
ϵ-vicinity in zero-knowledge. We note that the training algorithm, loss function L, and its strong convexity
parameter m are public, and the trained model w and training dataset D are private inputs for the prover.
However, this assumes that the ZK backend can prove real-number operations, which is impossible. Be-
low, we first provide the protocol steps and discuss how to avoid real-number operations in ZK while still
preserving soundness.

Our protocol realizing this functionality in the FZK-hybrid model is presented in Figure 4. The prover
first commits to the model w and dataset D. Then, both parties agree on a circuit CL,ϵ,m where CL,ϵ,m(w;D) =
1 iff. ϵ ≥ (1/m) · ∥∇LD(w)∥2. Finally, both parties send CL,ϵ,m to FZK and receive (checked, ϵ) if the
model passes the verification. We stress in practice that the m is replaced with the regularization parameter
λ as the exact m is unknown (see Section 3.3).

The protocol verifies in ZK whether the claimed ϵ satisfies the upper bound of ϵ-vicinity derived in
Theorem 2. Since ϵsc represents an upper bound on the true model ϵ-vicinity, any valid ϵ satisfying ϵ ≥ ϵsc
guarantees that the committed model w is indeed ϵ-vicinal. The security of ΠVIC−ZK directly reduces to

12

the security of FZK, as it uses FZK to prove circuit satisfiability in a straightforward manner. We state the
following theorem about our protocol security and provide the proof in Appendix B.

Theorem 5 (Protocol security). The protocol ΠVIC−ZK in Figure 4 securely realizes the ideal functionality
FVIC−ZK (Figure 3) in the FZK-hybrid model.

4.2 Maintaining Soundness under Finite Numerical Precision

While the protocol outlined in the previous section establishes a secure zkPoT, its soundness relies on the
assumption that all operations are performed over real numbers with infinite numerical precision. However,
all cryptographic implementations use finite numerical precision formats (e.g., fixed-point numbers), which
could introduce numerical errors and compromise soundness. For example, the upper bound of an ϵ-vicinal
model is given by ϵ ≤ ϵreg, where ϵreg is a real number. Suppose its fixed-point representation is ϵfp =
ϵreg +∆fp where ∆fp is the numerical error. If ∆fp < 0, then ϵfp < ϵreg and the inequality ϵ ≤ ϵfp might no
longer hold.

To address this issue, we compute an overapproximated bound ϵfp ≥ ϵreg in fixed-point. The computa-
tion of this bound for logistic regression requires performing addition, subtraction, multiplication, and the
evaluation of the sigmoid function, each of which is handled independently. Our solution consists of two
main components:
1. Fixed-point interval arithmetic. We first ensure the result of all basic fixed-point operations (addition,

subtraction, and multiplication) is an overapproximation of the real value. This can be achieved using
interval arithmetic [HJVE01], where every real value a is represented as a fixed-point interval [alo, ahi]
with the invariant alo ≤ a ≤ ahi. Interval arithmetic is defined to ensure all operations preserve this
invariant. We use interval arithmetic in ZK to perform all intermediate computations, ensuring that the
final interval provides a sound overapproximation of the bound for ϵ-vicinity.

2. Accurate sigmoid approximation. For sigmoid, although we could theoretically directly apply interval
arithmetic as well to achieve soundness, it would still be too expensive to prove in ZK. Instead, we design
an efficient and accurate sigmoid approximation function tailored for interval arithmetic. Our technique
maintains the invariant of interval arithmetic and is efficient to compute in ZK.

To ensure our bound computed in fixed-point arithmetic is both sound and tight, our solution must meet
these two criteria:
• Soundness: The fixed-point bound must always be greater than or equal to the true bound.

• Tightness: The fixed-point bound should have minimal approximation error ∆fp = ϵfp − ϵreg.
We now present our techniques in detail and show how they collectively ensure soundness and tightness for
fixed-point numbers.

4.3 Fixed-Point Interval Arithmetic

Interval arithmetic for real intervals. Interval arithmetic is a mathematical technique designed to miti-
gate the accumulated errors inherent in finite precision computations. Instead of representing an exact real
value with a single limited-precision number, interval arithmetic associates the value with a closed real
interval. This interval contains all possible real numbers that the exact value could represent, and the inter-
val endpoints can be viewed as the lower and upper bound of the real value. For example, a real number
x ∈ R is associated with an interval [xlo, xhi], where xlo, xhi ∈ R and xlo ≤ x ≤ xhi. This interval

13

provides a robust way to account for errors in finite precision computations. Arithmetic operations on in-
tervals are defined to ensure correctness. For example, given x ∈ [xlo, xhi] and y ∈ [ylo, yhi], the operation
[xlo, xhi] ◦ [ylo, yhi] = [zlo, zhi] must ensure that x ◦ y ∈ [zlo, zhi].

For a, b, c, d ∈ R, interval addition, subtraction, and multiplication can be defined as follows [HJVE01]:
• Interval addition. [a, b] + [c, d] = [a+ c, b+ d].

• Interval subtraction. [a, b]− [c, d] = [a− d, b− c].

• Interval multiplication. [a, b] ∗ [c, d] = [min(S),max(S)], where S = {a ∗ c, a ∗ d, b ∗ c, b ∗ d}.
Interval arithmetic for fixed-point intervals. For our purposes, we employ interval arithmetic on fixed-
point to ensure that the final fixed-point bound is guaranteed to be greater than or equal to the corresponding
real value, i.e., ϵfp ≥ ϵreal. Since fixed-point numbers are a subset of reals, extending interval arithmetic to
fixed-point intervals is straightforward. However, one caveat is that fixed-point arithmetic can be imprecise
due to rounding, which introduces precision errors even when using interval arithmetic. This can be solved
using different rounding modes for the lower and upper bounds. Specifically, let FP(m,n) ⊆ R denote the
set of all reals representable by signed fixed-point numbers with m integer bits and n fractional bits. Let
∗lo, ∗hi denote fixed-point multiplication over FP(m,n) with rounding towards−∞ (round down) and +∞
(round up), respectively. Let a, b, c, d ∈ FP(m,n). We define addition, subtraction, and multiplication of
fixed-point intervals as follows:
• Interval addition. [a, b] + [c, d] = [a+ c, b+ d].

• Interval substraction. [a, b]− [c, d] = [a− d, b− c].

• Interval multiplication. [a, b] ∗ [c, d] = [min(S),max(S)], where S = {a ∗lo c, a ∗lo d, b ∗lo c, b ∗lo
d, a ∗hi c, a ∗hi d, b ∗hi c, b ∗hi d}.

The correctness of addition and subtraction stems from the fact that fixed-point operations in these cases
are exact, provided no overflow occurs. For multiplication, the correctness follows from rounding conser-
vatively for both the lower and upper bound. We refer to [HJVE01] for a comprehensive discussion of
finite-precision interval arithmetic and detailed proofs.

Using fixed-point interval arithmetic, we can guarantee that the final fixed-point interval provides the
lower and upper bound of the real value. Then, we simply use the upper bound endpoint value as our final
overapproximated result.

4.4 Sigmoid Approximation for Interval Arithmetic

Theoretically, interval arithmetic can be applied to sigmoid evaluation as well because the sigmoid function
is monotonic. Consider a real value z ∈ [zlo, zhi]. Then, since sigmoid is monotonically increasing, we have
σ(z) ∈ [σ(zlo), σ(zhi)]. However, directly evaluating sigmoid is still too computationally expensive in ZK.
A natural and widely adopted solution is to use sigmoid approximation.
Issues with existing sigmoid approximation schemes. Previous works have explored various sigmoid
approximations in cryptographic contexts [GGJ+23, MR18, MZ17, APKP24]. Unfortunately, all existing
approaches consider a single approximation function, which fails in interval arithmetic. To see this, consider
a sigmoid approximation function σ′ that has approximation error δ at a point z:

σ′(z) = σ(z) + δ.

14

Now consider the input fixed-point interval z ∈ [z, z]. Here, z = zlo = zhi, which means z is represented
exactly as a fixed-point number. The output of the approximated sigmoid function over this interval is:

σ′([z, z]) = [σ′(z), σ′(z)] = [σ(z) + δ, σ(z) + δ].

Here, the true sigmoid value σ(z) does not lie within the interval [σ(z) + δ, σ(z) + δ] unless δ = 0.
This discrepancy violates the correctness requirement for interval arithmetic and makes existing sigmoid
approximation schemes unsuitable for our purposes.

Our solution: efficient sigmoid approximation for interval arithmetic. The primary issue of prior sig-
moid approximations is that they all use a single approximation function, so they cannot keep track of both
the lower and upper bounds of the true sigmoid values at the same time. To address this issue, we propose
a pair of sigmoid approximation functions that separately handle the lower and upper bound of the input
interval. Specifically, we define two distinct functions σlo and σhi, with the following properties:

σlo(z) ≤ σ(z) and σhi(z) ≥ σ(z), ∀z ∈ R.

In essence, σlo and σhi serve as global lower and upper bounds for the true sigmoid function, respectively. By
constructing σlo and σhi to consistantly underapproximate and overapproximate the true sigmoid function
σ, we ensure that for any input interval z ∈ [zlo, zhi], the true sigmoid value lies within the interval:

σ(z) ∈ [σlo(zlo), σhi(zhi)].

We provide a formal proof of correctness in Appendix C.1.
We now present the constructions of σlo and σhi. Both functions are defined as piecewise linear approx-

imations of the sigmoid function, taking the general form:

f(x) =

a1x+ b1, dmin ≤ x ≤ d1,

a2x+ b2, d1 < x ≤ d2,

. . .

anx+ bn, dn−1 < x ≤ dmax,

where dmin and dmax are the minimal and maximal values of the fixed-point representation.
To make sure σlo and σhi provide the lower and upper bound of the true sigmoid function, our construc-

tion is based on the following principles:
• When z > 0, the sigmoid is concave. A tangent line provides an upper bound, while a line segment

connecting two points provides a lower bound.
• When z < 0, the sigmoid is convex. A tangent line provides a lower bound, while a line segment connect-

ing two points provides an upper bound.
In addition, we address the behavior of the sigmoid function as it approaches its asymptotic values of 0 and
1:
• When σ(z) approaches 0, its asymptote at 0 provides a valid lower bound. Since sigmoid is monotonic,

we can set σhi(z) = σ(d−)+δ for all z < d−, where δ > 0 is a small offset and d− is a negative threshold
value.

• When σ(z) approaches 1, its asymptote at 1 provides a valid upper bound. For a lower bound, similarly,
we set σlo(z) = σ(d+) − δ for all z > d+ , where δ > 0 is a small offset and d+ is a positive threshold
value.

15

Based on these principles, we divide the sigmoid domain into four regions: [dmin, d
−), [d−, 0), [0, d+], and

(d+, dmax]. Different approximations are applied within each region:
1. Lower Bound Function σlo:

• z ∈ [dmin, d
−): set σlo(z) = 0.

• z ∈ [d−, 0): divide the interval into n subintervals. Use the tangent line at the midpoint of each
subinterval for approximation.

• z ∈ [0, d+]: divide the interval into n subintervals. Use line segments connecting the endpoints of each
subinterval for approximation.

• z ∈ (d+, dmax]: set σlo(z) = σ(d+)− δ, where δ > 0.
2. Upper Bound Function σhi:

• z ∈ [dmin, d
−): set σlo(z) = σ(z) + δ, where δ > 0. This ensures σhi(z) > σ(z) for all z < d−.

• z ∈ [d−, 0): divide the interval into n subintervals. Use the tangent line at the midpoint of each
subinterval for approximation.

• z ∈ [0, d+]: divide the interval into n subintervals. Use line segments connecting the endpoints of each
subinterval for approximation.

• z ∈ (d+, dmax]: set σhi(z) = 1.
To minimize approximation error, we implemented a Python script to optimize the partitioning of

[d−, d+]. The subintervals in [d−, 0) and [0, d+] are partitioned based on the curvature of the sigmoid
function: more subintervals are allocated in regions with higher curvature.

We defer a detailed evaluation of our sigmoid approximation to Appendix C.1. We show our sigmoid
approximation provides strict upper and lower bounds for the true sigmoid value and has minimal error
compared with the sigmoid approximation employed in prior zkPoT works [GGJ+23, MR18, MZ17].

5 Implementation and Evaluation

Testbed. We use five real-world datasets of various sizes (#samples × #features) from the UC Irvine
Machine Learning Repository and Kaggle [BK96, MRC14, Pyt23, Pee24]: Adult (30,162 × 44), Bank
(45,211 × 51), Heart (246,013 × 121), Chess1 (524,287 × 19), and Chess2 (1,048,575 × 19). The two
Chess datasets are random samples from a larger collection of 107 million records. Each dataset is Z-score
normalized before training. Our ZK protocol is implemented using the ZK library for boolean circuits from
EMP-toolkit [WMK16] and uses 16 threads. Experiments not directly involving ZK (i.e., those in Sec-
tions 5.1, 5.2, and 5.3) are implemented in Python. For these, we trained logistic regression models and
soft-margin SVMs using the scikit-learn library, with datasets split into 75% training and 25% testing
sets. The tolerance is set to None, ensuring all models are trained for exactly 1,000 epochs. All experiments
are conducted on two Amazon EC-2 c7i.4xlarge instances, each with a 16-core CPU and 32 GB of
RAM.

Experiment Design. We design our experiments to answer the following five key questions:
Q1. How effective are rejection sampling attacks on existing zkPoT protocols?

In Section 5.1, we present a concrete rejection sampling attack that is highly effective on prior zkPoT
approaches: with only 1,000 attempts, a malicious prover can bias up to 13.5% confidently predicted
data points (with probability 0–0.45 or 0.55–1).

Q2. How effectively do ϵ-vicinal models avoid this issue?

16

We demonstrate in Section 5.2 that the predictions of ϵ-vicinal models closely align with those of the
optimal model when the predictions are moderately confident.

Q3. To compute ϵ-vicinity when the optimal model and strong convexity parameter m are unknown, we use
ϵreg to bound ϵreal. How tight is the gap |ϵreg − ϵreal| in practice?

Our experiments in Section 5.3 show that |ϵreg − ϵreal| is typically very small. When λ is tuned to
maximize model accuracy, as is standard in machine learning, the median of these two gaps combined is
less than 0.01. This indicates that both the strong convexity and regularization gaps are tight and reliable.

Q4. When computing our ϵ-vicinal bound, how tight is the overestimation gap ∆fp = |ϵfp − ϵreg| introduced
by interval arithmetic and sigmoid approximation?

As detailed in Section 5.4, |ϵfp−ϵreg| remains minimal when these two techniques are combined, resulting
in final ∆fp values smaller than 8.2× 10−3.

Q5. In our final proof, when all three gaps are combined, is ϵfp small? Does our method offer better efficiency
compared to existing zkPoT approaches?

In Section 5.5, we show that our protocol can prove tight ϵ-vicinity bound (with ϵfp < 0.01) for lo-
gistic regression. This means our protocol guarantees that the proved model perfectly approximates all
confident predictions from the optimal model. Our proof has up to 246× smaller Boolean circuit size
compared with our baseline and is roughly 30× faster than [GGJ+23] for 1,000 epochs. Moreover, the
improvement scales linearly with the number of epochs, as our proof is independent of the number of
training epochs.

5.1 Effectiveness of Rejection Sampling

As discussed before, previous zkPoT approaches are vulnerable to a rejection sampling attack. Specifically,
if the prover wants to influence the prediction for a specific data point x in a binary classification task, it
can locally train the model multiple times, each with a different seed. Once it finds a seed that “flips” the
prediction of x, the prover adopts this seed for the zkPoT protocol.

To demonstrate the effectiveness of this attack, we designed an experiment using logistic regression
on all five datasets. We first train a reference model2 w0 with an initial randomness seed r = 0. We
then train 1,000 additional perturbed models, each with a unique seed r = 1, . . . , 1,000. All models were
trained using identical hyperparameters, including the maximum number of training epochs, regularization
parameter, stopping criterion, etc. By comparing each perturbed model’s predictions on the test set against
those of the optimal model, we observe how changes in randomness alone can drastically affect predicted
probabilities and thus influence classification outcomes.

Figure 5 illustrates the effectiveness of rejection sampling with 1,000 perturbed models on the Adult
dataset. Each box corresponds to data points that are binned by their predicted probabilities from the op-
timal model, and the distribution of points within each box shows how 1,000 perturbed seeds shift these
predictions. The vertical spread of the boxes and their overlap with shaded regions indicate that many data
points initially classified as one class under the optimal model are “flipped” to the other class by certain
random seeds. In other words, by simply changing the seed, the prover can bias predictions from one class
to the other (or vice versa).

2For consistency with experiments in the following section, we refer to this reference model as the “optimal model”.

17

Figure 5: The effectiveness of rejection sampling on the Adult dataset. This figure compares predictions from the
optimal model to those of 1,000 perturbed models, each trained with a different seed. Each box groups data points
by their predicted probabilities from the optimal model and shows how predictions vary with different seeds. Shaded
regions indicate areas where predicted labels shift between classes. The results show that the attack successfully biases
many high-confidence predictions from the optimal model.

Table 1 shows the results of the rejection sampling attack on all five datasets with 1,000 seeds (in the
Attack columns). We observed that the prover can bias up to 13.5% of the confident predictions from the
optimal model. Our experiment thus shows that the rejection sampling attack is not only feasible but also
highly effective, even with a small number of random seeds.

5.2 Prediction Error of ϵ-Vicinal Model

A natural question is if a similar attack could apply when considering optimum vicinity; i.e., rather than
performing rejection sampling on random seeds, a malicious prover could locally train multiple ϵ-vicinal
models and select one that flips predictions as it wishes. Theorem 1, which established that model ϵ-vicinity
provides an upper bound on the prediction error relative to the optimal model’s predictions, suggests that
this is not the case. In this section, we validate this empirically through two experiments.

We first show ϵ-vicinal models are empirically resistant to this attack: with ϵ = 0.01, no confident
prediction can be biased by any of the ϵ-vicinal models. We then calculate the theoretical prediction error
upper bound to validate this robustness is inherent to ϵ-vicinal models.

Evaluating prediction error of ϵ-vicinal models. We first simulate ϵ-vicinal models and evaluate how close
their predicted probabilities align with those of the optimal model. To obtain the set of ϵ-vicinal models,
we randomly sample parameter vectors wi such that each wi lies within an ϵ-radius hypersphere around the
optimal model w∗ (i.e., ∥wi −w∗∥2 ≤ ϵ). As the optimal model is not computable, we approximate it by a
model with negligible gradient. A λ selected through cross-validation is used across all training.

The experiments are run using three sets of ϵ-vicinal models respectively with ϵ = 0.01, 0.05, 0.1. While
ϵ represents worst-case scenarios where the model is far from convergence, its value for model ϵ-vicinity in
practice is typically smaller than these estimates, indicating the prediction error is also much smaller than
our worst-case analysis indicates (see Section 5.5 for the specific ϵfp value derived in practical settings).

Figure 6 shows the results for 1,000 ϵ-vicinal models over the Adult dataset. In these box plots, data
points are grouped by their predicted probabilities from the optimal model, and each box illustrates how

18

Dataset
Confident Predictions Unconfident Predictions

(0–0.45, 0.55–1) (0.45–0.55)

Attack ϵ = 0.1 ϵ = 0.05 ϵ = 0.01 Attack ϵ = 0.1 ϵ = 0.05 ϵ = 0.01

Adult 3.67 0.95 0.00 0.00 43.48 89.28 51.30 10.14
Bank 3.32 0.76 0.01 0.00 45.50 99.47 70.37 15.87

Chess1 13.54 2.48 0.34 0.00 44.60 92.56 56.14 11.30
Chess2 13.40 3.10 0.10 0.00 44.63 93.65 53.30 11.64
Heart 1.50 0.43 0.01 0.00 48.90 99.84 70.38 15.52

Table 1: Label changes under rejection sampling attacks on prior and proposed approaches. This table presents the
percentage of data points whose predicted labels differ from the optimal model under two scenarios: (i) rejection
sampling attack with 1,000 random seeds and (ii) a similar attack on our approach with 1,000 ϵ-vicinal models. Data
points are grouped by the optimal model’s predicted probability. The results demonstrate that the attack significantly
biases predictions in the prior approach, even for high-confidence cases. In contrast, ϵ-vicinal models show strong
robustness, fully preserving confident predictions with ϵ = 0.01.

(a) ϵ = 0.1 (b) ϵ = 0.05 (c) ϵ = 0.01

Figure 6: Prediction error of 1,000 ϵ-vicinal models on the Adult dataset with varying ϵ. Each box groups data points
by their predicted probabilities from the optimal model. Shaded regions highlight areas where predicted labels shift
between classes. ϵ-vicinal models rarely flip predictions from the optimal model, except for cases where the optimal
model cannot confidently classify. Notably, with ϵ = 0.01, no flips occur for high-confidence predictions.

ϵ-vicinal model predictions differ from that baseline. Table 1 shows the results across all five datasets,
where the data is grouped by their predicted probabilities from the optimal model. Each column shows the
percentage of data points whose label is changed by at least one ϵ-vicinal model.

Our result shows that all ϵ values preserve the correct classification for nearly all data points. Exceptions
arise only for those with probabilities near the decision boundary (between 0.45 and 0.55), where even the
optimal model lacks strong confidence. In other words, ϵ-vicinal models closely align with the predictions
of the optimal model and prevent inadvertently flipping classes for confidently classified points.

Prediction error bound. We evaluate prediction error bounds on every dataset to confirm that our findings
are not coincidental. Specifically, we use the theoretical upper bound for logistic regression, 0.25∥x∥2 · ϵ, as
derived in Corollary 1 (where K = 0.25 for the sigmoid function). Figure 7 shows our results for ϵ = 0.01.
We find that most data points have an error bound below 0.05. Consequently, ϵ-vicinal models do not
bias predictions outside the 0.45–0.55 range even in the worst case, consistent with empirical observations
(Figure 6 and Table 1). As a result, ϵ-vicinal models inherently limit adversarial bias and can eliminate

19

Figure 7: Prediction error bounds of ϵ-vicinal models across all test datasets. We calculate the theoretical upper bound
for prediction error, 0.25∥x∥2 · ϵ, as derived in Corollary 1, for all datasets with ϵ = 0.01. The prediction error
measures the maximum difference between the predictions of ϵ-vicinal models and the optimal model. Most errors
fall below 0.05, ensuring that ϵ-vicinal models do not bias predictions outside the 0.45–0.55 range even in the worst
case.

Figure 8: Tightness of the ϵ-vicinity upper bound with varying λ values for the Adult dataset (ϵ = 10−4). The tightness
is quantified as the gap between the upper bound ϵreg derived in Theorem 3 and the actual distance to the optimal model
ϵreal. This evaluation is based on 1,000 logistic regression models trained on the Adult dataset. Larger λ values result
in a tighter bound, with all gaps remaining below 6× 10−4.

bias when ϵ is sufficiently small. Later, we show that most of our ϵ values fall within this smaller range in
practice.

5.3 Bound Tightness for ϵ-Vicinal Models

We have demonstrated that ϵ-vicinal models provide strong security guarantees against rejection sampling
attacks when ϵ is small. Since the exact ϵreal cannot be computed, we instead calculate an upper bound ϵreg
(Theorem 2). To retain the security guarantee of ϵ-vicinal models, it is crucial for the gap between ϵreg and
ϵreal to be sufficiently tight. In this section, we quantify how the upper bound ϵreg approximates the true
distance ϵreal.

We first train a reference model w∗ with a large number of epochs and treat it as an estimate of the
optimal model. Next, we randomly generate 1,000 ϵ-vicinal models such that ∥wi − w∗∥2 ≤ ϵ. For
each generated ϵ-vicinal model, we compute both its actual Euclidean distance from the reference model,
ϵreal = ∥wi −w∗∥2, and the upper bound ϵreg = (1/λ) · ∥∇L(wi)−∇L(w∗)∥2, as derived in Theorem 3.

20

Dataset
Ours Baseline

ϵfp Time Comm. #AND #MULT #AND ↑ #MULT ↑
(hour) (GB) (billion) (billion)

Adult 0.0073 0.22 4.28 33.87 0.47 245.91× 4.29×
Bank 0.0084 0.38 11.66 58.78 0.81 245.71× 4.32×

Chess1 0.0077 1.66 138.70 257.30 4.15 246.06× 3.70×
Chess2 0.0080 3.35 203.26 514.60 8.29 246.04× 3, 71×
Heart 0.0081 4.89 106.42 755.38 9.77 245.05× 4.59×

Table 2: End-to-end performance of our protocol vs. the baseline zkPoT implementation for logistic regression. We
benchmark both protocols across various datasets, training for 1,000 epochs. Metrics include the proved upper bound
ϵfp, execution time (Time), communication cost (Comm.), Boolean circuit size (#AND), and estimated arithmetic
circuit size (#MULT). For the baseline, the values represent the factor by which the circuit size increases when proving
the entire training. Communication cost is the maximum data sent by any party. Our protocol achieves significantly
smaller circuit sizes, with up to 246.06× fewer AND gates and 4.59× fewer MULT gates compared to the baseline.

Although w∗ is not the true optimal model, this comparison provides insight into the tightness of the bound:
a tight bound between arbitrary model pairs suggests a similarly tight bound when one model is optimal. As
a result, our experiment corresponds to the first two gaps ∆sc +∆rg in our roadmap in Section 1.

To determine an appropriate ϵreg for generating ϵ-vicinal models, we trained 1,000 logistic regression
models on the Adult dataset for 1,000 epochs and found all ϵreg values were smaller than 10−5. To account
for potential precision errors due to the absence of interval arithmetic, we conservatively set ϵreg = 10−4.
Additionally, we evaluated the impact of varying λ on the bound’s tightness, as discussed in Section 3.3.

Figure 8 presents the absolute differences ϵreg − ϵreal as a box plot for various λ values with ϵ = 10−4.
These results confirm that varying λ influences bound tightness, with all gaps remaining below 6 × 10−4.
This experiment confirms that the combined gap, ∆sc+∆rg, is tightly controlled: the overall tightness error
is of the same order of magnitude as ϵreal.

5.4 Evaluating Fixed-Point Interval Arithmetic

Our ZK proof relies on fixed-point interval arithmetic to ensure soundness, which inherently leads to an
overestimated upper bound ϵfp on ϵ-vicinity. To quantify the impact of this overestimation, we measured
the resulting overestimation error ∆fp when integrating sigmoid approximation into the fixed-point interval
arithmetic. Because exact real-number calculations are infeasible, we used double-precision floating-point
arithmetic as a reference point for comparison. The overestimation error is defined as the difference between
the fixed-point upper bound computed in interval arithmetic and the floating-point “real” upper bound:
∆fp = ϵfp − ϵreg.

Specifically, we set sigmoid approximation with d = 10 (20 subintervals in total) and represented all
values using fixed-point with 16 integer bits and 24 fractional bits for consistency with our final zero-
knowledge implementation. After training 500 logistic regression models, we calculated their overestima-
tion error ∆fp = ϵfp − ϵreg introduced by fixed-point interval arithmetic and sigmoid approximation. Our
result shows all values of ∆fp fall between 6.6× 10−3 and 8.2× 10−3 (see Figure 9 in Appendix C.2 for the
distribution). It confirms that while our fixed-point interval arithmetic does introduce some overestimation
error, it remains small in practice.

21

5.5 End-to-End Performance and Comparison

Finally, we evaluate the end-to-end performance of proving model ϵ-vicinity in ZK. We compare our method
with prior zkPoT protocols that verify the entire training procedure in ZK.

Experiment setup. In practice, a prover would naturally begin by training multiple models locally and
choosing the one that achieves the smallest ϵ-vicinity upper bound to prove it to a verifier. We repli-
cate this process for our end-to-end experiment: for each dataset, we performed cross-validation over
λ ∈ {0.001, 0.01, 0.1, 1}, then train 1,000 logistic regression models and soft-margin SVMs for 1,000
epochs using the λ that yields the best accuracy on the test set. From these models, we select the one with
the smallest ϵ-vicinity upper bound and measure the execution time, communication overhead, and circuit
size to prove ϵ-vicinity in ZK. For our protocol implementation, we integrate both our fixed-point interval
arithmetic and sigmoid approximation techniques into our protocol. We use fixed-point interval arithmetic
(16 integer and 24 fractional bits) and a sigmoid approximation with d = 10 (20 subintervals). We com-
pare these metrics against a baseline zkPoT protocol that verifies the entire training process. Our baseline
protocol uses fixed-point numbers with 16 integer and 24 fractional bits (no interval arithmetic) and is im-
plemented using the ZK library for Boolean circuit from emp-toolkit [WMK16]. We include the result of
soft-margin SVMs in Appendix C.3.

Evaluating performance. Table 2 shows our end-to-end results. Our protocol reliably proves very small ϵfp
across all datasets for both logistic regression and soft-margin SVMs. Consequently, our proofs can serve
as certificates that those ϵ-vicinal models closely approximate the optimal model for most of the confident
predictions: for logistic regression, all models proven have ϵ ≤ 0.01, which ensures that they perfectly
approximate the mathematical optimal model for confident predictions; i.e., for those data points, their
predictions are exactly the same as these from the optimal model. (See Section 5.2 and Table 1 for a detailed
analysis of prediction accuracy under different ϵ values.)

Comparison with prior zkPoT protocols. As already highlighted throughout the paper, existing ap-
proaches to zkPoT have limited security due to their susceptibility to rejection sampling attacks. Never-
theless, we also consider how our protocols compare in terms of efficiency.

We first compare the computational cost of our protocol with that of verifying the complete training
process (1,000 epochs) using the baseline zkPoT implementation. Specifically, we evaluate the Boolean and
arithmetic circuit sizes, as summarized in Table 2. Our protocol achieves a circuit size reduction of up to
246× compared to the baseline zkPoT.

Next, we compare our protocol with the protocol from [GGJ+23]. Using their reported benchmark on
a dataset with 218 samples and 128 features (similar to the Heart dataset), we estimate that the total prover
time for verifying 1,000 epochs of logistic regression using batch gradient descent would be approximately
145 hours, which is roughly 30× longer than our method. However, since their protocol relies on a different
ZKP backend, the execution time should be viewed as a rough estimation. Additionally, we note that their
protocol is optimized for proof size and RAM efficiency. We comment it is possible to integrate their ZK
protocol and other existing or future optimizations into our approach to enhance our proof size and RAM
usage.

Finally, we acknowledge that in some cases, it is not possible to provide a direct comparison (e.g., with
Kaizen [APKP24]) due to the fact that they target neural networks, and thus models cannot be represented
as solutions to convex optimization problems and our techniques cannot apply.

22

Acknowledgements

The work of Xiao Wang and Gefei Tan is supported by Goole Research Awards and NSF awards #2236819
and #2318975.

References

[APKP24] Kasra Abbaszadeh, Christodoulos Pappas, Jonathan Katz, and Dimitrios Papadopoulos. Zero-
knowledge proofs of training for deep neural networks. In Bo Luo, Xiaojing Liao, Jun Xu,
Engin Kirda, and David Lie, editors, ACM CCS 2024, pages 4316–4330. ACM Press, October
2024.

[Bac14] Francis Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for
logistic regression. J. Mach. Learn. Res., 15(1):595–627, January 2014.

[BBB+18a] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE
Symposium on Security and Privacy, pages 315–334. IEEE Computer Society Press, May
2018.

[BBB+18b] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 315–334, 2018.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of
LNCS, pages 757–788. Springer, Cham, August 2018.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046,
2018.

[BBMH+21] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, Benoı̂t Razet, and Peter Scholl.
Appenzeller to brie: Efficient zero-knowledge proofs for mixed-mode arithmetic and Z2k.
In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 192–211. ACM Press,
November 2021.

[BBMHS22] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and Peter Scholl. MozZ2karella:
Efficient vector-OLE and zero-knowledge proofs over Z2k . In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 329–358.
Springer, Cham, August 2022.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin.
In 2014 IEEE Symposium on Security and Privacy, pages 459–474. IEEE Computer Society
Press, May 2014.

[BK96] Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

23

[BMRS21] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. Mac’n’cheese: Zero-
knowledge proofs for boolean and arithmetic circuits with nested disjunctions. In Tal Malkin
and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 92–122,
Virtual Event, August 2021. Springer, Cham.

[BP21] Burak Bartan and Mert Pilanci. Neural spectrahedra and semidefinite lifts: Global con-
vex optimization of polynomial activation neural networks in fully polynomial-time. CoRR,
abs/2101.02429, 2021.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas P.
Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In Anne Can-
teaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages
738–768. Springer, Cham, May 2020.

[CSD24] Dami Choi, Yonadav Shavit, and David Duvenaud. Tools for verifying neural models’ training
data. In Proceedings of the 37th International Conference on Neural Information Processing
Systems, NIPS ’23, Red Hook, NY, USA, 2024. Curran Associates Inc.

[DILO22] Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Improving line-point zero
knowledge: Two multiplications for the price of one. In Heng Yin, Angelos Stavrou, Cas
Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 829–841. ACM Press, November
2022.

[EP21a] Tolga Ergen and Mert Pilanci. Global optimality beyond two layers: Training deep relu
networks via convex programs. In International Conference on Machine Learning, pages
2993–3003. PMLR, 2021.

[EP21b] Tolga Ergen and Mert Pilanci. Implicit convex regularizers of {cnn} architectures: Convex
optimization of two- and three-layer networks in polynomial time. In International Confer-
ence on Learning Representations, 2021.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194. Springer, Berlin, Heidelberg, August 1987.

[GAZ+22] Paul Grubbs, Arasu Arun, Ye Zhang, Joseph Bonneau, and Michael Walfish. Zero-knowledge
middleboxes. In Kevin R. B. Butler and Kurt Thomas, editors, USENIX Security 2022, pages
4255–4272. USENIX Association, August 2022.

[GGG17] Zahra Ghodsi, Tianyu Gu, and Siddharth Garg. Safetynets: verifiable execution of deep
neural networks on an untrusted cloud. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17, page 4675–4684, Red Hook, NY, USA,
2017. Curran Associates Inc.

[GGJ+23] Sanjam Garg, Aarushi Goel, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, Guru-
Vamsi Policharla, and Mingyuan Wang. Experimenting with zero-knowledge proofs of train-
ing. In Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and Engin Kirda, editors,
ACM CCS 2023, pages 1880–1894. ACM Press, November 2023.

24

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of inter-
active proof-systems (extended abstract). In 17th ACM STOC, pages 291–304. ACM Press,
May 1985.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
305–326. Springer, Berlin, Heidelberg, May 2016.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over
Lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Report 2019/953, 2019.

[HJVE01] T. Hickey, Q. Ju, and M. H. Van Emden. Interval arithmetic: From principles to implementa-
tion. J. ACM, 48(5):1038–1068, September 2001.

[KBPB19] John Kelsey, Luı́s TAN Brandão, Rene Peralta, and Harold Booth. A reference for randomness
beacons: Format and protocol version 2. Technical report, National Institute of Standards and
Technology, 2019.

[Lab17] SCIPR Lab. libsnark: a c++ library for zksnark proofs., 2017.

[LAH+22] Ning Luo, Timos Antonopoulos, William R. Harris, Ruzica Piskac, Eran Tromer, and Xiao
Wang. Proving UNSAT in zero knowledge. In Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi, editors, ACM CCS 2022, pages 2203–2217. ACM Press, November 2022.

[LKKO24] Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. vcnn: Verifiable convolutional
neural network based on zk-snarks. IEEE Transactions on Dependable and Secure Comput-
ing, 21(4):4254–4270, 2024.

[LLLX23] Qi Li, Zhuotao Liu, Qi Li, and Ke Xu. martFL: Enabling utility-driven data marketplace with
a robust and verifiable federated learning architecture. In Weizhi Meng, Christian Damsgaard
Jensen, Cas Cremers, and Engin Kirda, editors, ACM CCS 2023, pages 1496–1510. ACM
Press, November 2023.

[LWS+24] Ning Luo, Chenkai Weng, Jaspal Singh, Gefei Tan, Mariana Raykova, and Ruzica Piskac.
Privacy-preserving regular expression matching using TNFA. In Joaquin Garcia-Alfaro, Rafał
Kozik, Michał Choraś, and Sokratis Katsikas, editors, ESORICS 2024, Part II, volume 14983
of LNCS, pages 225–246. Springer, Cham, September 2024.

[MR18] Payman Mohassel and Peter Rindal. ABY3: A mixed protocol framework for machine learn-
ing. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM
CCS 2018, pages 35–52. ACM Press, October 2018.

[MRC14] S. Moro, P. Rita, and P. Cortez. Bank Marketing. UCI Machine Learning Repository, 2014.
DOI: https://doi.org/10.24432/C5K306.

[MZ17] Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable privacy-preserving
machine learning. In 2017 IEEE Symposium on Security and Privacy, pages 19–38. IEEE
Computer Society Press, May 2017.

25

[NWH+14] Che Ngufor, Janusz Wojtusiak, Andrea Hooker, Talha Oz, and Jack Hadley. Extreme logistic
regression: A large scale learning algorithm with application to prostate cancer mortality
prediction. In The Florida AI Research Society, 2014.

[PE20] Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-
time convex optimization formulations for two-layer networks. In International Conference
on Machine Learning, pages 7695–7705. PMLR, 2020.

[Pee24] Joann Peeler. Chess engine training data. https://www.kaggle.com/datasets/
joannpeeler/labeled-chess-positions-109m-csv-format/, 2024. Kag-
gle.

[Pyt23] Kamil Pytlak. 2022 Annual CDC Survey Data on Indicators of Heart
Disease. https://www.kaggle.com/datasets/kamilpytlak/
personal-key-indicators-of-heart-disease, 2023. Kaggle.

[SAB24] Megha Srivastava, Simran Arora, and Dan Boneh. Optimistic verifiable training by control-
ling hardware nondeterminism. In The Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems, 2024.

[SBLZ24] Haochen Sun, Tonghe Bai, Jason Li, and Hongyang Zhang. zkdl: Efficient zero-knowledge
proofs of deep learning training. IEEE Transactions on Information Forensics and Security,
pages 1–1, 2024.

[SEO+22a] Arda Sahiner, Tolga Ergen, Batu Ozturkler, Burak Bartan, John M. Pauly, Morteza Mardani,
and Mert Pilanci. Hidden convexity of wasserstein GANs: Interpretable generative models
with closed-form solutions. In International Conference on Learning Representations, 2022.

[SEO+22b] Arda Sahiner, Tolga Ergen, Batu Ozturkler, John Pauly, Morteza Mardani, and Mert Pilanci.
Unraveling attention via convex duality: Analysis and interpretations of vision transformers.
In International Conference on Machine Learning, pages 19050–19088. PMLR, 2022.

[Soh14] Houshang Sohrab. Basic real analysis, Second edition. Springer New York, 01 2014.

[SR21] César Sabater and Jan Ramon. Zero knowledge arguments for verifiable sampling. In NeurIPS
2021 Workshop Privacy in Machine Learning, 2021.

[STC+24] Ali Shahin Shamsabadi, Gefei Tan, Tudor Ioan Cebere, Aurélien Bellet, Hamed Haddadi,
Nicolas Papernot, Xiao Wang, and Adrian Weller. Confidential-dpproof: Confidential proof
of differentially private training. In International Conference on Learning Representations
(ICLR), 2024.

[SWF+22] Ali Shahin Shamsabadi, Sierra Calanda Wyllie, Nicholas Franzese, Natalie Dullerud,
Sébastien Gambs, Nicolas Papernot, Xiao Wang, and Adrian Weller. Confidential-profitt:
confidential proof of fair training of trees. In The Eleventh International Conference on
Learning Representations, 2022.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient multiparty com-
putation toolkit. https://github.com/emp-toolkit, 2016.

26

https://www.kaggle.com/datasets/joannpeeler/labeled-chess-positions-109m-csv-format/
https://www.kaggle.com/datasets/joannpeeler/labeled-chess-positions-109m-csv-format/
https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease
https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease
https://github.com/emp-toolkit

[WS09] Kilian Q Weinberger and Lawrence K Saul. Distance metric learning for large margin nearest
neighbor classification. Journal of machine learning research, 10(2), 2009.

[WYX+21] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. Mystique: Efficient
conversions for zero-knowledge proofs with applications to machine learning. In Michael
Bailey and Rachel Greenstadt, editors, USENIX Security 2021, pages 501–518. USENIX
Association, August 2021.

[WYY+22] Chenkai Weng, Kang Yang, Zhaomin Yang, Xiang Xie, and Xiao Wang. AntMan: Interactive
zero-knowledge proofs with sublinear communication. In Heng Yin, Angelos Stavrou, Cas
Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 2901–2914. ACM Press, November
2022.

[XZL+23] Zhibo Xing, Zijian Zhang, Meng Li, Jiamou Liu, Liehuang Zhu, Giovanni Russello, and
Muhammad Rizwan Asghar. Zero-knowledge proof-based practical federated learning on
blockchain, 2023.

[YSWW21] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver: Efficient and afford-
able zero-knowledge proofs for circuits and polynomials over any field. In Giovanni Vigna
and Elaine Shi, editors, ACM CCS 2021, pages 2986–3001. ACM Press, November 2021.

[YYH03] Hwanjo Yu, Jiong Yang, and Jiawei Han. Classifying large data sets using svms with hier-
archical clusters. In Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’03, page 306–315, New York, NY, USA,
2003. Association for Computing Machinery.

[Zho18] Xingyu Zhou. On the fenchel duality between strong convexity and lipschitz continuous
gradient. arXiv preprint arXiv:1803.06573, 2018.

A Additional Mathematical Prelimnaries

Our methods require the prediction function to be Lipschitz continuous; thus, we provide the relevant defi-
nitions here.

A.1 Lipschitz Continuous Functions.

We now define the notion of Lipschitz continuity. This property ensures bounded changes in the function’s
output whenever the inputs change, and it plays a crucial role in analyzing error bounds and stability in
optimization and machine learning models.

Definition 4 (Lipschitz Continuity [Soh14]). For any metric spaces (M, d) and (M′, d′) and any X ⊂M,
we say that a function f : X →M′ is K-Lipschitz continuous if there is a constant K > 0 such that

d′(f(x), f(x′)) ≤ K · d(x, x′) ∀x, x′ ∈ X

In this general form, Lipschitz continuity tells us how sensitively a function’s output responds to changes
in its input. In this paper, we focus on how a model’s prediction px = f(w,x) for a fixed data point x varies
with different parameters w. This leads us to define a parameter-wise version of Lipschitz continuity.

27

Definition 5 (Parameter-wise Lipschitz Continuity). Let f : W × X → R be a function taking two inputs
w ∈ W and x ∈ X . We say that f is K-Lipschitz continuous with respect to w if there exists a constant
K > 0 such that, for all w,w′ ∈ W and any x ∈ X ,∣∣f(w,x) − f

(
w′,x

)∣∣ ≤ K ∥w −w′∥2.

This definition is particularly useful in analyzing how small perturbations to the model parameters in-
fluence the resulting predictions on a given data point.

B Additional Proofs of Theorems

We first present a useful lemma stating that the sum of a m-strongly convex function and a convex function
is also m-strongly convex.

Lemma 2. Let f, g, h : Rn → R be continuously differentiable functions. Suppose f(x) = g(x) + h(x),
where g is m-strongly convex and h is convex. Then f is m-strongly convex.

Proof. Since g is m-strongly convex, for any x, y ∈ Rn, we have

g(y) ≥ g(x) +∇g(x)⊤
(
y − x

)
+

m

2
∥y − x∥2.

Meanwhile, because h is convex, we have

h(y) ≥ h(x) +∇h(x)⊤
(
y − x

)
.

Adding these inequalities yields

g(y) + h(y) ≥ g(x) + h(x) +
(
∇g(x) +∇h(x)

)⊤(
y − x

)
+

m

2
∥y − x∥2.

Therefore,
f(y) ≥ f(x) +

(
∇f(x)

)⊤(
y − x

)
+

m

2
∥y − x∥2,

since∇f(x) = ∇g(x) +∇h(x).
Hence, f is m-strongly convex.

Proof of Theorem 3 (ϵ-vicinity for logistic regression).

Proof. We will show that Lλlogit is strongly convex with parameter m = λ. Then, Theorem 3 follows from
Theorem 2. First, note the logistic loss (without regularization)

Llogit(w) = −
n∑

i=1

[
yi log σ

(
w⊤xi

)
+ (1− yi) log σ

(
−w⊤xi

)]
is convex in w. Next, note the regularization term

R(w) =
λ

2
∥w∥22,

is λ-strongly convex. From Lemma 2, we conclude Lλlogit is λ-strongly convex.

28

Proof of Theorem 4 (ϵ-vicinity for soft-margin SVMs).

Proof. We will show LλSVM(w, b) is λ-strongly convex to w. Then, Theorem 4 follows from from Theo-
rem 2. First, note the hinge loss

Lloss(w, b) = max
(
0, 1− yi(w

⊤xi + b)
)

is convex in w. This follows because the maximum of affine functions is convex, and 1− yi(w
⊤xi + b) is

affine in w. Next, note the regularization term

R(w) =
λ

2
∥w∥22,

is λ-strongly convex. From Lemma 2, we conclude LλSVM(w, b) is λ-strongly convex in w.

Proof of Theorem 5 (security of ΠVIC−ZK).

Proof. Corrupted Verifier. We first consider the case where the verifier is corrupted. For a corrupted
verifier V∗, we construct a simulator SV that calls V∗ as a subroutine and interacts withFVIC−ZK to simulates
the view of V∗. SV proceeds as follows:
1. Commit: SV sends commit to FVIC−ZK.

2. Prove vicinity: SV obtains (prove, CL,ϵ,m) from V∗. If the circuit is incorrect, the simulator aborts;
otherwise, send true to V∗.

We first argue V∗’s view is perfectly simulated. To see this, note that V∗’s view only contains one message it
receives from FZK output ∈ {true,⊥}. When V∗ behaves honestly, its view is independent of the message
it sends. If it cheats, it can only do so by sending an incorrect circuit, in which case it will receive ⊥ in both
real-world and ideal-world execution because both FZK and FVIC−ZK will abort.
Now we consider the output of an honest prover P with V∗. If V∗ behaves honestly, P outputs (checked, ϵ)
in both real-world and ideal-world execution. If V∗ cheats, P output ⊥ in both real-world and ideal-world
execution since both FZK and FVIC−ZK will abort. This completes the proof for a corrupted verifier.
Corrupted Prover. We now consider a corrupted prover P∗ and construct a simulator SP who invoke P∗ as
a subroutine and interacts with FVIC−ZK to simulate the view of P∗. The simulator SP proceeds as follows:
1. Commit: SP receives (commit, w′) from P∗, parses w′ as (w, D), and record it.

2. Prove vicinity: SP receives (prove, CL,ϵ,m) from P∗. If the circuit is incorrect or CL,ϵ,m(w;D) ̸= 1, the
simulator aborts; otherwise, send (checked, ϵ) to P∗.

We first argue the view of P∗ is perctly simulated by SP . To see this, note P∗ receives (checked, ϵ) in both
worlds unless it cheated, in which case it receives ⊥, so the view of P∗ is identical in both worlds. We then
only need to consider the output of an honest verifier V in both executions. First note if P∗ behaves honestly,
the output of V in ΠVIC−ZK and FVIC−ZK are as follows:
• Real world: V receives (checked, ϵ) iff. CL,ϵ,m(w, D) = 1, i.e., ϵ ≥ (1/m) · ∥LD(w)∥2.

• Ideal world: V receives (checked, ϵ) iff. ϵ ≥ ∥w −w∗∥2.
As we established in Theorem 2, (1/m) · ∥LD(w)∥2 is an upper bound on ∥w − w∗∥2. Therefore, any ϵ
that passes the check in the real world will also pass the check in the ideal world. Thus, the outputs of V are
identical in both worlds.

If P∗ cheats, it can only do so in the two messages it sends. We consider all three possible cases.

29

Figure 9: Distribution of overestimation error ∆fp for the Adult dataset. ∆fp is measured as the difference between the
double-precision floating-point result (estimating ϵreg) and the fixed-point result ϵfp when computing ϵ-vicinity upper
bound for 500 logistic regression models trained on the Adult dataset. Fixed point numbers have 16 integer bits and
24 fractional bits.

1. P∗ sends an incorrect or different circuit Ĉ ̸= CL,ϵ,m.

2. P∗ commits to a w′ = (ŵ, D̂) such that CL,ϵ,m(ŵ; D̂) ̸= 1.

3. P∗ cheats by doing both 1 and 2.
In all cases, FVIC−ZK and FZK will both abort, and V outputs ⊥. Therefore, the output of V in both the
real-world and ideal-world execution is identical. This completes the proof.

C Additional Evaluation Results

Dataset
Ours Baseline

ϵfp Time Comm. #AND #MULT #AND ↑ #MULT ↑
(hour) (GB) (billion) (billion)

Adult 0.014 0.22 4.25 33.95 0.42 369.04× 13.79×
Bank 0.018 0.38 11.65 58.90 0.73 368.80× 13.52×

Chess1 0.0072 1.66 138.93 258.57 3.19 370.49× 16.15×
Chess2 0.0082 3.31 203.80 517.14 6.38 370.47× 16.15×
Heart 0.061 4.84 106.49 755.98 9.33 367.78× 12.68×

Table 3: End-to-end performance of our protocol vs. the baseline zkPoT implementation for soft-margin SVMs. We
benchmark both protocols across various datasets, training for 1,000 epochs. Metrics include the proved upper bound
ϵfp, execution time (Time), communication cost (Comm.), Boolean circuit size (#AND), and estimated arithmetic
circuit size (#MULT). For the baseline, the values represent the factor by which the circuit size increases when proving
the entire training. Communication cost is the maximum data sent by any party. Our protocol achieves significantly
smaller circuit sizes, with up to 370.49× fewer #AND gates and 16.15× fewer #MULT gates compared to the baseline.

C.1 Sigmoid Approximation

Our sigmoid approximation (§ 4.4) is defined by two functions, σlo and σhi, which provide strict lower and
upper bounds on the true sigmoid function, respectively. For our evaluation, we choose d = 10 segments
(leading to a total of 20 subintervals) for consistency with our final ZK implementation. We plot σlo and σhi

30

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
z

0.0

0.2

0.4

0.6

0.8

1.0
f(

z)
True Sigmoid
σhi

σlo

Piecewise Sigmoid

(a) Function value comparison

−8 −6 −4 −2 0 2 4 6 8
z

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

A
pp

ro
xi

m
at

io
n

E
rr

or

σlo

σhi

Piecewise Sigmoid

(b) Approximation error comparison

Figure 10: Function values and approximation error of our lower bound function σlo, our upper bound function σhi

(d = 10), and the piecewise sigmoid used in [GGJ+23, MR18, MZ17, APKP24].

and compare their approximation error with that of the piecewise approximation employed in prior zkPoT
works [GGJ+23, MR18, MZ17, APKP24]. As shown in Figure 10, our method offers a tighter fit to the true
sigmoid function and has a small approximation error. Moreover, the approximation error of σlo is never
positive, and the error for σhi is never negative, meaning these functions serve as guaranteed lower and
upper bounds for the true sigmoid.

We establish the theorem on the correctness of our sigmoid approximation in interval arithmetic.

Theorem 6 (Correctness of Sigmoid Approximation.). Let σ(z) be the sigmoid function. Suppose there exist
functions σlo(z) and σhi(z) such that for all z ∈ R, σlo(z) ≤ σ(z) ≤ σhi(z). Then, for any z, zlo, zhi ∈ R
such that z ∈ [zlo, zhi], function σlo, σhi satisfy

σ(z) ∈ [σlo(zlo), σhi(zhi)].

Proof. The sigmoid function σ(z) is monotonically increasing. For any z ∈ [zlo, zhi], we have:

σ(zlo) ≤ σ(z) ≤ σ(zhi).

Given that the approximation functions satisfy σlo(zlo) ≤ σ(zlo) and σ(zhi) ≤ σhi(zhi), it follows that:

σlo(zlo) ≤ σ(z) ≤ σhi(zhi).

Therefore, for any z ∈ [zlo, zhi], the sigmoid satisfies:

σ(z) ∈ [σlo(zlo), σhi(zhi)].

C.2 Overestimation Error for Fixed-Point Interval Arithmetic

Figure 9 shows the distribution of the overestimation error ∆fp = ϵfp − ϵreg, introduced by our fixed-point
interval arithmetic and sigmoid approximation. We trained 500 logistic regression models on the Adult
dataset for this experiment. We computed their ϵreg using double-precision floating-point numbers and ϵfp
using our fixed-point interval arithmetic and sigmoid approximation. The result shows all errors are smaller

31

than 8.2 × 10−3. We noticed that the total approximation error is dominated by sigmoid approximation.
This is due, in part, to our choice of a relatively small parameter d = 10 for the sigmoid approximation,
which divides the sigmoid function into only 20 subintervals. Reducing the overestimation error further is
possible by selecting a finer partition for the sigmoid intervals (i.e., increasing d). This will only increase
the number of branching operations in ZK and will be relatively cheap.

C.3 End-to-End Performance for Soft-Margin SVMs

Table 3 presents additional benchmarks of our protocol on soft-margin SVMs. All experiments are done
with the same setup described in Section 5.5.

32

	Introduction
	Our Contributions

	Preliminaries
	Notation
	Zero-Knowledge Proofs
	Machine Learning Preliminaries
	Convex and Strongly Convex Functions

	Defining and Verifying Optimum Vicinity
	Defining Optimum Vicinity
	Bounding -Vicinity via Strong Convexity
	Proof of Training via Optimum Vicinity.

	ZK Proofs of Optimum Vicinity with Finite-Precision Arithmetic
	Proving Model -Vicinity in ZK
	Maintaining Soundness under Finite Numerical Precision
	Fixed-Point Interval Arithmetic
	Sigmoid Approximation for Interval Arithmetic

	Implementation and Evaluation
	Effectiveness of Rejection Sampling
	Prediction Error of -Vicinal Model
	Bound Tightness for -Vicinal Models
	Evaluating Fixed-Point Interval Arithmetic
	End-to-End Performance and Comparison

	Additional Mathematical Prelimnaries
	Lipschitz Continuous Functions.

	Additional Proofs of Theorems
	Additional Evaluation Results
	Sigmoid Approximation
	Overestimation Error for Fixed-Point Interval Arithmetic
	End-to-End Performance for Soft-Margin SVMs

