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Abstract

Secure Multiparty Computation (MPC) protocols that achieve Iden-
tifiable Abort (IA) guarantee honest parties that in the event that they
are denied output, they will be notified of the identity of at least one
corrupt party responsible for the abort. Cheater identification provides
recourse in the event of a protocol failure, and in some cases can even be
desired over Guaranteed Output Delivery. However, protocols in the lit-
erature typically make use of broadcast as a necessary tool in identifying
cheaters. In many deployments, the broadcast channel itself may be the
most expensive component.

In this work, we investigate if it is inherent that MPC with IA should
bear the full complexity of broadcast. As the implication of broadcast
from IA has been established in previous work, we relax our target to
circumvent this connection: we allow honest parties to differ in which
cheaters they identify, nonetheless retaining the ability to prove claims of
cheating to an auditor.

We show that in the honest majority setting, our notion of Prov-
able Identifiable Selective Abort (PISA) can be achieved without a tra-
ditional broadcast channel. Indeed, broadcast in this setting—which we
term Broadcast with Selective Identifiable Abort (BC-IA)—is achievable
in only two point-to-point rounds with a simple echoing technique. On
the negative side, we also prove that BC-IA is impossible to achieve in
the dishonest majority setting.

As a general result, we show that any MPC protocol that achieves
IA with r broadcasts, can be compiled to one that achieves PISA with
2(r+1) point to point rounds. As a practical application of this method-
ology, we design, implement, and benchmark a six-round honest majority
threshold ECDSA protocol that achieves PISA, and can be deployed in
any environment with point to point communication alone.

∗This publication is part of the gravitation project Challenges in Cyber Security (CiCS)
with file number 024.006.037 which is financed by the Dutch Research Council (NWO).
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1 Introduction

Secure Multiparty Computation (MPC) protocols generally enable groups of
parties to compute functions on their joint private inputs, under precisely de-
fined constraints of what information may be leaked. Feasibility results have
been established for decades, and the practicality of MPC has made major
strides in recent years. While guarantees related to privacy of inputs are mostly
standard across MPC protocols, their failure modes are not. The weakest such
failure mode is “security with abort”, in which an adversary is permitted to
see the output of the computation itself, but deprive honest parties of it. This
relatively weak guarantee allows for highly efficient protocols. Protocols that
achieve “fairness” give the adversary a choice: obtaining the output for itself
will imply that it is delivered to honest parties, but honest parties can be de-
prived of output if the adversary forgoes it as well. The strongest guarantee is
that of “guaranteed output delivery”, in which the adversary is unable to stop
honest parties from receiving the output of the computation.

Foundational results [Cle86] have established that achieving fairness or guar-
anteed output is not just a matter of efficiency or complexity over security with
abort, but in fact feasibility in different settings. In particular—assuming stan-
dard simulation based security—fairness is infeasible in the dishonest majority
setting for general MPC, whereas security with abort is not just feasible in
this setting, but quite practical. However, there does exist an alternative ap-
proach to address the failure mode of security with abort: identification of the
party responsible for crashing the protocol, also known as Identifiable Abort
(IA). Cheater identification may be used in combination with external punitive
measures to serve as a strong disincentive to deviating from the protocol, for
instance via financial penalties or reputational damage. In certain contexts, IA
serves as a stepping stone towards guaranteed output, as cheating parties may
be removed and the computation restarted.

Identifiable Abort is frequently studied as something of a compromise no-
tion when guaranteed output is not possible, however we argue that in certain
contexts cheater identification might even be preferable to guaranteed output.
Note that guaranteed output protocols may detect and recover from cheats, but
this does not imply the unambiguous identification of cheating parties. In many
contexts, it is of far greater importance to identify the corrupt party rather than
to deliver output to everyone. For instance,

• Threshold signatures are used to remove single points of failure in key
management via MPC, and signing nodes may even all be operated by
the same entity—who will likely be more interested in diagnosing which
of its nodes has been compromised, than in receiving the signature.

• Institutions are unlikely to engage with each other at all (MPC or other-
wise) if there is not a certain degree of mutual trust. In the event of a
protocol failure, an acceptable explanation is that some party’s node has
been compromised by an external actor trying to attack the system. It
is therefore imperative to identify which one, so that the situation may
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be remedied immediately, and the system may resume operation after a
reset.

• In many settings, MPC nodes operators are not strictly honest or mali-
cious per se, but rational. Even if they do not collude, they act in their
individual best interests. For example, if an operator knows that (1) out-
put will be delivered regardless of its actions, and (2) it will not be held
accountable for its actions, then it may be incentivized to conserve its
resources and simply not participate in the protocol.

• Security with abort protocols already offer privacy in the event of cheats;
the utility of guaranteed output is to prevent denial of service. The type of
adversary to consider is therefore one that wishes to disrupt the protocol.
In this regard, a disruptive party may still induce a relatively cumber-
some worst case execution path in the guaranteed output case, with no
consequences due to the lack of identification.

For these reasons, we argue that studying cheater identification is worthwhile,
even in settings where guaranteed output delivery may be feasible. While IA for
general MPC has been known to be feasible for as long MPC itself [GMW87b],
the details for its practical realization are still the subject of ongoing research
[BOSS20, CDKs24, BMRS24]. The classic GMW-style approach has each party
prove that honest behaviour in zero-knowledge, whereas modern protocols use
alternative techniques to avoid non-blackbox use of cryptography.

The Overhead of IA. While recent works have made progress towards effi-
cient cheater identification, certain barriers remain to achieving efficiency and
simplicity within the same realm as security with abort. There are essentially
two ways that a misbehaving party can induce a protocol to crash:

• One way is by sending malformed protocol messages—this can be han-
dled by employing zero-knowledge proofs [GMW87a], carefully opening
randomness [CDKs24, BMRS24], or a hybrid of both.

• Another way is by simply staying silent when the protocol prescribes that
it send a message. This is notoriously difficult to mitigate; if Bob com-
plains that he did not receive a message from Alice that he was expecting
on a private channel, whom do we blame? Given that private channels
are inherently unverifiable, the standard solution is to route all communi-
cation through verifiable broadcast.

As IA is known to imply broadcast [CL17] most of these works express their
efficiencies in terms of broadcast invocations. The usage of broadcast is not a
distinguishing feature of any one work, and so the cost of realizing broadcast
in the IA context is not typically explored in depth. Looking ahead, in this
work we will identify certain relaxations to the broadcast primitive that are
meaningful in the IA setting. However when left as an implementation detail
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as in prior work, instantiating the broadcast channel generically has the poten-
tial to be the most expensive or cumbersome element of a real world deployment.

Instantiating Broadcast. We briefly review common options available to
instantiate broadcast available today:

• Blockchains. One approach suggested in previous works is to use an
external resource like a blockchain for broadcast [GMPS21, GKM+22,
ZYP23]. This introduces assumptions external to the system along with
accompanying liabilities, latencies, and financial costs. This may be ac-
ceptable in certain scenarios, but blockchains do not offer a general solu-
tion.

• Broadcast protocols. Assuming a Public Key Infrastructure (PKI),
the feasibility of broadcast for any corruption threshold has been estab-
lished for decades [DS83]. However, it is known that deterministic pro-
tocols for broadcast inherently suffer a round complexity that is linear in
the corruption threshold [FL82, DS83]. While randomization can achieve
O(1) rounds in expectation [KK06], reasoning about composition is sub-
tle [CCGZ19], and even the best known protocols are rather involved and
have large constants [ADD+19].

• Trusted coordinator. A common system architecture is to have a ‘co-
ordinator’ party that issues instructions, routes messages, and aggregates
responses. In the security with abort model, such a coordinator is es-
sentially untrusted, as it can at best compromise liveness of the protocol.
However, using such a coordinator in the IA context to implement a broad-
cast channel (as has been suggested in previous work [Lin22]) substantially
strengthens the trust assumption placed on the coordinator. For instance,
a malicious coordinator may drop messages from an honest party, leading
other parties to falsely identify it as corrupt.

• Context-specific heuristics. It may be possible in certain contexts to
heuristically achieve the specific requirements that broadcast satisfies. For
instance, certain deployments make use of third party messaging services
to implement communcation channels, and these services may be queried
to obtain logs of which parties in the MPC were non-responsive. We do
not further discuss such heuristics in this work, as we focus on provable
security with trust assumptions restricted to the parties involved in the
MPC.

Relative to the security with abort setting where broadcast (with selective abort)
can be achieved by a round of simply echoing messages [GL05], in the IA setting
broadcast appears to induce substantial complexity. Towards achieving practical
cheater identification with simple and complete specifications (i.e. instantiable
over point-to-point channels only), we ask:

Can broadcast protocols in the Identifiable Abort setting be simpler
and more efficient than using generic tools?
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Let us first clarify our target. We wish to enable a provability dimension to
cheater identification, meaning that any aborting party must be able to con-
vince an external auditor of the identity of a corrupt party—a form of “public
identifiability” [BDO14, SV15, KZZ16]. However, we allow an important re-
laxation: honest parties need not be in agreement about which corrupt party
they identify, or indeed whether there even was an abort. The lack of consen-
sus amongst honest parties circumvents the direct connection between IA and
broadcast, while provability to external auditors retains the strong disincentive
for parties to cheat. We capture these requirements in a notion we call Provable
Identifiable Selective Abort (PISA).

With our target notion for general MPC in place, we define a custom notion
of broadcast as relevant to this setting—Broadcast with Selective Identifiable
Abort (BC-IA). Roughly, BC-IA allows for honest receivers to terminate with
either a publicly verifiable certificate of the dealer’s misbehaviour (in the event
of an abort), or a dealer-signed message that is consistent with any other non-
aborting honest party’s output.

1.1 Our Results

We give a multifaceted answer to our question about instantiating broadcast in
the context of cheater identification, as outlined below:

1. An Impossibility. (Theorem 4.1) The t < n setting does not permit a
realization of BC-IA over point-to-point (p2p) channels, regardless of PKI.

2. A Positive Result. (Theorem 4.4) The t < n/2 setting permits a sim-
ple two-round BC-IA protocol over p2p channels, assuming a PKI and a
synchronous network.

3. A Generic Compiler. (Theorem 5.3) Given a protocol that securely com-
putes a functionality with Identifiable Abort in the presence of t < n/2
parties in r broadcast rounds, we obtain a protocol that computes the same
functionality with PISA with tolerance to t < n/2 corruptions in 2(r+1) p2p
rounds. Further, we show that the IA guarantees of the starting protocol can
be retained using just one round of broadcast. In other words, an extension
of this compiler gives a means to reduce the number of broadcast rounds in
an IA protocol to just one (which is optimal).

4. A Concrete Application. (Section 8) We present a targeted application
of this methodology to derive a 6-round honest majority threshold ECDSA
signing protocol that achieves PISA. While existing threshold ECDSA pro-
tocols make use of ideal broadcast to identify cheaters, ours runs over p2p
channels alone, and as such can be deployed without additional dependencies.
We implement and report benchmarks of our protocol to establish that it is
efficient enough to use in practice. Along the way, we develop tools such as
distributed key generation and verifiable secret sharing in this setting, which
may be of independent interest when constructing other discrete logarithm
based protocols that provide cheater identification.
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We begin with a brief technical overview, following which we proceed to give
our results in the same order as enumerated above.

1.2 Technical Overview

Broadcast. We first formalize BC-IA, which is an arguably minimal building
block for Identifiable Abort when we wish for cheats to be certifiable. Note that
certified cheats as well as the signed message are valid outputs for an honest
party, meaning that consensus is not achieved (however, parties that output the
signed message will be in agreement).

Roughly, we consider two grades of certified cheats: a certificate of non-
responsiveness ω, or a certificate of cheating Ω. The former proves that the
dealer did not send a message when it was expected to, whereas the latter proves
conclusively that the dealer sent a malformed message in an attempt to cheat.
We consciously choose to separate these two grades of disruptive behaviour, and
leave it to higher level protocol logic to decide on appropriate penalties. For
instance, non-responsiveness could be punished less harshly (up to a point) as
network faults may be out of the parties’ control.

Unfortunately, we prove that BC-IA is impossible to achieve over point-to-
point channels alone with resilience to n/2 ≤ t < n corruptions. Intuitively, this
is because a dishonest majority of corrupt parties could always collude to certify
an honest sender as non-responsive. Recall that a party may output a message
only if it has been signed by the dealer. This means that a non-responsive dealer
must necessarily induce parties to output a certificate ω. The mechanism by
which this certificate is produced must require the participation of a majority
parties, so that it may not be abused by a corrupt minority. If a majority of
parties is corrupt, then this mechanism can be invoked even against an honest
dealer. Note that a PKI does not help circumvent this impossibility.

In the honest majority (i.e. t < n/2) setting, we construct a protocol in the
PKI model that meets the above BC-IA notion—each party either terminates
with a signed output by the dealer, or a certificate of the dealer’s cheating.
In particular, we show that a simple modification of the classic Goldwasser
Lindell [GL05] echo broadcast yields our desired BC-IA primitive in just two
point-to-point rounds per broadcast. Roughly, our modification is to agument
echo broadcast so that parties sign and echo ⊥ in the event that the dealer does
not send them a signed message. A certificate ω can therefore be assembled to
implicate the dealer, with t+ 1 signed ⊥ messages.

Provable Identifiability in MPC. In the spirit of BC-IA, we extend the
notion of provable identifiability (without agreement) to the more general case
of MPC. We introduce a new notion, namely Provable Identifiable Selective
Abort (PISA), which guarantees that at the end of the MPC protocol, each
honest party either obtains the output of the joint computation or a certifiable
proof of cheating against a corrupt participant. Notably, unlike the case of
BC-IA where certifiable cheats are limited to implicating only the dealer; PISA
allows for any corrupt participant to be identified as the cheater. Further, as the
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name suggests, Provable Identifiable Selective Abort allows for the (provable)
identification of different cheaters by different honest parties.

As BC-IA—a special case of PISA MPC—requires an honest majority, it
follows that PISA MPC does as well. We show that any honest majority IA
protocol that uses a broadcast channel can be compiled into a PISA MPC pro-
tocol that runs over point-to-point channels only. This compiler demonstrates
that consensus on the identified cheater can be traded off to avoid dependence
on broadcast, while retaining provable cheater identification. At a high level,
our compiler replaces each broadcast invocation of the underlying protocol with
an invocation of BC-IA. While BC-IA does not guarantee liveness and safety,
attempting to subvert these properties will provably identify a corrupt party—
this suffices for the failure mode of PISA MPC. If no BC-IA instance aborts,
the broadcast channel of the underlying IA protocol is live and safe, yielding a
perfect emulation. In case the underlying IA protocol identifies a cheater, a cer-
tificate consisting of t+1 signatures on the identity of the corrupt party can be
assembled by virtue of the honest majority. Overall, an MPC protocol achieving
IA by making use of r broadcast invocations is compiled to a PISA protocol that
makes use of r+1 BC-IA invocations, which in turn can be realized in 2(r+1)
point-to-point rounds.

Lastly, we note that since the cheats are certifiable, broadcasting the certifi-
cates (via “true” broadcast) would achieve standard IA with consensus on the
identified cheater. However, this requires the use of standard broadcast, which
may be difficult to instantiate for the reasons outlined previously.

Application: Threshold ECDSA Signing. As a demonstration of the prac-
tical impact of our results, we apply our techniques to construct a threshold
ECDSA signing protocol that achieves Identifiable Abort without broadcast.
We choose this application as ECDSA signing is non-trivial due to its non-
linear arithmetic, and yet poses a tractable problem as its circuit representation
is relatively small. Moreover, threshold ECDSA signing is a widely deployed
application of MPC, and the application is therefore of real-world relevance.

Existing protocols for threshold ECDSA signing with IA are designed for the
dishonest majority setting [CGG+20, CCL+23]. In principle, we could apply
our compiler to these protocols anyway—with ⌈(n + 1)/2⌉ “signing parties”
and n/2 “helper parties” to achieve t < n/2. However this would be overkill,
as dishonest majority protocols are substantially more complex than honest
majority ones. We therefore construct a new honest majority threshold ECDSA
signing protocol that achieves IA in three broadcast rounds. We instantiate the
broadcast channel with our BC-IA primitive, to obtain a protocol that runs in
six point-to-point rounds.

Our new protocol leverages observations from the recent work Doerner et
al. [DKLs24] to reduce ECDSA signing to Distributed Key Generation (DKG)
and two secure multiplications. As building blocks, we design DKG and Verifi-
able Secret Sharing (VSS) protocols for the PISA setting. The VSS protocol is a
simple adaptation of Pedersen’s [Ped91], whereas the DKG protocol augments
VSS to sample an unbiased key in two broadcast rounds. These protocols are
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designed to sample random values in secret shared form, while exposing each
party’s share in publicly committed form—either directly in the exponent, or
masked as in Pedersen commitments. Consequently, parties are able to prove
honest behaviour (eg. when broadcasting their signature shares, which con-
tain products of secrets) via lightweight Schnorr-like zero-knowledge proofs over
these Pedersen commitments.

Finally, we report benchmarks of an implementation of our protocol with
a standard 256-bit curve; its computation cost in the worst case (eg. when a
cheater must be identified) ranges from 15ms for three parties, to 480ms for ten
parties. Of course, real-world performance is likely to be determined by other
factors like network constraints and adversarial slowdowns. We envision our
protocol to be used in scenarios where Denial of Service attacks are a constant
threat, and protocol aborts are rampant—were this not the case, one could use
security with abort protocols. Given this, the performance of different protocols
and approaches will depend to a large extent on deployment conditions.

2 Related Work

Broadcast and its variants. Without a setup (such as a PKI i.e. public-key
infrastructure), broadcast is achievable if any only if t < n/3 [PSL80, LSP82]
However, if we assume a PKI setup, (cryptographically-secure) broadcast is
achievable even against a dishonest majority of corruptions, namely, t < n
[DS83]. With respect to round complexity of deterministic broadcast protocols,
it is known that t + 1 rounds are necessary and sufficient to achieve security
against t corruptions, even assuming access to a public-key infrastructure [FL82,
DS83].

Typically, broadcast protocols in the literature by default consider the notion
of guaranteed output delivery i.e. the protocol terminates with all parties out-
putting the agreed upon value. Broadcast with the weaker security guarantee of
security with selective abort, was explored in the [GL05]. This weak version of
broadcast is achievable in two rounds against t < n corruptions, where honest
parties may not agree on whether the protocol aborted or not (but it is guaran-
teed that honest parties do not output inconsistent values). [FGMv02, FGH+02]
showed that the notion of ‘detectable broadcast’, where corrupt parties can make
the protocol abort but honest parties agree on whether the protocol aborted or
not, is achievable against t < n corruptions.

To the best of our knowledge, our work is the first to explicitly consider the
notion of broadcast with identifiability. Our notion of Broadcast with Selective
Identifiable Abort (BC-IA) allows every honest party who aborted to learn and
verifiably prove to an external party that the sender cheated. It is incompara-
ble to detectable broadcast in terms of guarantees – While detectable broadcast
ensures that honest parties are in agreement about whether an abort occurred
(which BC-IA does not provide), it does not enable identification or certification
of the cheater. As mentioned earlier, in terms of resilience, detectable broad-
cast is achievable against t < n corruptions; while BC-IA is feasible only against
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t < n/2 corruptions. However, in terms of round complexity BC-IA fares sig-
nificantly better as it is achievable in two rounds which is in stark contrast to
existing detectable broadcast protocols that comprise of O(t) rounds.

On Identifiability in MPC. The most common security notion of identi-
fiability that has been explored in MPC is identifiable abort (IA), which was
introduced in [AL10] and is stronger than unanimous abort (UA). IA security
guarantees that parties are in agreement about the identity of (at least one)
cheater, in case the protocol results in an abort. It is known that broadcast
is necessary for IA [CL17], therefore all IA protocols must necessarily rely on
broadcast. Therefore, when broadcast is not available, the best one can hope
for is some kind of selective identifiability, where honest parties may not agree
on the identity of a cheater. This was captured in the notion of selective identi-
fiable abort (SIA), introduced in [DRSY23] which guarantees that each honest
party either obtains the output or learns the identity of a cheater, but it may so
happen that different honest parties identify different cheaters. We enhance this
notion to SIA to be certifiable i.e. the honest party who aborts not only learns
the identity of the cheater, but also obtains a ‘proof-of-cheating’ certificate that
is verifiable by any external party. This is reminiscent to the notion of IA with
public verifiability / auditability in [AO12, BDO14, BOS16, CFY17] where ei-
ther the correctness of the output is attested or a cheater can be found by the
external party. The crucial difference is that such protocols achieving IA with
public verifiability must necessarily rely on broadcast, which is not available in
our setting. Therefore, we allow the party who aborted to obtain a certifiable
proof of cheating privately which would suffice to convince any external party
of the identity of the cheater, whenever needed.

Threshold ECDSA Signing. Given the practical relevance of the problem,
there is a plethora of approaches to constructing threshold ECDSA signing.
We refer the reader to Doerner et al. [DKLs24] for an overview. We will only
touch upon the works that share some common features with ours. Damg̊ard et
al. [DJN+20] constructed an honest majority threshold ECDSA signing protocol
in the security with abort model. While highly efficient, it is susceptible to
denial of service attacks as a cheater can crash the protocol anonymously. Groth
and Shoup [GS22] constructed an ECDSA signing protocol that can operate in
an asynchronous network setting, however with a low corruption tolerance of
t < n/3 that is inherent to the setting. Canetti et al. [CGG+20] and Castagnos
et al. [CCL+23] constructed dishonest majority ECDSA signing protocols that
can trace cheaters. However, they rely on verifiable broadcast channels, which
we are determined to avoid. Nonetheless, the cryptographic machinery that
they use (as necessary for the dishonest majority setting) will likely make their
protocol much slower than ours in most scenarios, as discussed in Section 9.
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3 Preliminaries

Corruption Model. We denote the set of parties as {P1, . . . ,Pn}. We con-
sider a malicious adversary A who can statically corrupt up to a threshold
t < n/2 among the n parties.

Security and Network Model. We follow the real /ideal world simulation
paradigm and analyze the security of our protocols within the Universal Com-
posability security framework of [Can01]. Our target ideal functionality for
ECDSA signing is one that simply computes and outputs and ECDSA signa-
ture upon being requested by enough parties, along with appropriate provisions
for identifying cheaters. This is in contrast to idealized threshold signatures in
the UC framework [CGG+20] which allow the adversary to specify an arbitrary
format for the strings. We assume that parties are connected via pairwise au-
thenticated channels. We consider a synchronous network communication model
where the computation proceeds in rounds and the messages sent in a round are
assumed be delivered to the intended receiver(s) before the next round begins.
Note that especially when we are concerned with certifying parties that do not
send messages when they are supposed to, cheater identification is not mean-
ingful in the asynchronous setting. This is because—as previously observed by
Shoup [Sho23]—corrupt parties that do not send messages are indistinguishable
from honest parties whose messages are adversarially delayed.

Building Blocks and Setup. Our PISA MPC protocol resulting from the
compiler is in the FBC−IA-hybrid model, where FBC−IA denotes the ideal func-
tionality corresponding to Broadcast with Selective Identifiable Abort (BC-IA)
and uses an IA MPC protocol realizing FIA (Appendix C.1) as a building block.

Our ECDSA protocol is in the (FBC−IA,FVSS,FDKG)-hybrid model, where
FBC−IA,FVSS,FDKG denote ideal functionalities corresponding to BC-IA, Verifi-
able Secret Sharing (VSS) 1 and a Distributed Key Generation (DKG) protocol
respectively. We provide formal descriptions of these ideal functionalities to
capture our identifiability notion. BC-IA assumes the presence of a public-key
infrastructure (PKI) setup. The VSS protocol is designed in the FBC model
and uses an openable encryption scheme (Enc,Dec,Open,Vrfy) (Appendix A).
Our DKG protocol is designed in the (FBC,FVSS)-hybrid model. Both, our
DKG protocol and ECDSA signing protocol make use of Simulation-Extractable
Non-Interactive Zero-Knowledge Proofs (NIZKs) in the random oracle model,
which are required to be straight-line simulatable, but witness extraction can be
rewinding—this is because we only rely on extracting witnesses for the security
argument, and not for simulating the protocol. This means that we can use Fiat-
Shamir compiled NIZKs rather than more expensive Fischlin transform [Fis05]
as typically required for UC security.

1We abuse standard notation here, our VSS protocol is a verifiable secret sharing of a
uniformly chosen random secret as opposed to a secret chosen by a designated dealer.
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4 Broadcast With IA

4.1 Property-Based Definition

We begin with a property-based definition of Broadcast with Selective Identifi-
able Abort (BC-IA), although the definition we actually use in our protocols is
formulated in the Real-Ideal paradigm and given in Section 4.3. The property-
based definition is primarily meant to allow for easier comparisons with differ-
ent flavours of broadcast in the literature, which are typically formulated with
property-based definitions as well. We give our dishonest majority impossibility
result relative to this property-based definition, illustrating that this barrier is
not due to UC peculiarities.

(Property-Based Definition) Broadcast with Selective Identifiable Abort
(BC-IA). Let {Pi}i∈[n] denote a set of n parties, among which a designated

party Pd (referred to as the dealer) holds a message msg as input. Consider a
tuple of two algorithms (Deal, Audit).

Deal(msg)→
(
outi ∈ {(m,σd), ω,Ω}

)
i∈[n]

is an algorithm that takes the mes-

sage msg as input and outputs a vector of n values, each of which can
correspond to either a signed message (m,σd) by the dealer or a certifi-
cate of non-responsiveness ω, or a certificate of cheating Ω.

Audit(outi)→ {accept, reject} is an algorithm that takes outi ∈ {(m,σd), ω,Ω}
as input and outputs either accept or reject.

We require the following three properties of a BC-IA protocol with respect
to an adversary A corrupting up to a threshold t of parties.

Validity: Informally, this property extends the validity of standard broadcast
which guarantees that if Pd is honest, then all honest parties output Pd’s
input value. Further, even if Pd is corrupt, the output of each honest party
is verifiable by any external auditor. More formally, if at most t parties
are corrupted, then Audit(outh) → accept holds (with overwhelming
probablity) for each outh output by an honest party Ph(h ∈ H). For an
honest Pd, this output outh = (msg, σd) for all h ∈ H, where σd denotes
a valid signature on msg.

Consistency: Informally, this property guarantees that if there exists a pair of
honest parties who output a signed message, they must in fact output the
same signed message. More formally, if at most t parties are corrupted

and a pair of honest parties Pi and Pj output outi = (m(i), σ
(i)
d ) and

outi = (m(j), σ
(j)
d ) respectively, then outi = outj .

Defamation-Freeness: Informally, this property captures that the adversary
A cannot produce a certificate that implicates an honest dealer. More for-
mally, when the dealer Pd is honest and A controls at most t parties, then
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the probability that A outputs outA ∈ {ω,Ω} such that Audit(outA) =
accept is negligible.

Unforgeability: Informally, this property guarantees that an adversary A will
be unable to induce Audit to accept (msg, σd) if msg was not actually
dealt by the honest dealer Pd. More formally, even after A is allowed to
instruct Pd to deal arbitrarily many messages {msg}, the probability that
A outputs (msg∗, σ∗

d) such that Audit(msg∗, σ∗
d) = 1 and msg∗ ̸∈ {msg}

is negligible.

Lastly, we point that the properties of validity and defamation-freeness to-
gether imply (a) liveness i.e. each honest party outputs a non-⊥ output and
(b) identifiability i.e. each honest party either outputs a signed message by the
dealer or a certificate (either of non-responsiveness or of cheating). We also
note that the outputs are transferrable as they can be verified by any external
party by means of verifying the dealer’s signature or using the Audit algorithm.
Importantly, auditing a transferred output can only verify a cheat, or that a
dealer attempted to broadcast a value—auditing a single party’s output can not
verify consensus amongst honest parties.

The auditability properties we formulate above (unforgeability and defamation-
freeness) mark a departure from standard broadcast definitions. Indeed, we
show below that this notion is impossible to achieve when the adversary con-
trols more than half the parties, even with a PKI. This is in contrast to standard
broadcast definitions, which permit honest parties to terminate with unsigned
canonical outputs when they detect malicious behaviour on the dealer’s part—
such notions can be satisfied by classic protocols [DS83]. This is not to say that
our definition is strictly stronger, as ours allows honest parties to terminate
without consensus.

4.2 Impossibility of BC-IA with t ≥ n/2

We give the details of our argument below.

Theorem 4.1. Consider a model where parties have access to a public-key
infrastructure and only point-to-point channels. Then, Broadcast with Selective
Identifiable Abort among n parties is impossible to achieve against n/2 ≤ t < n
corruptions.

Proof. Assume towards contradiction that protocol Π achieves BC-IA with tol-
erance to n/2 ≤ t < n corruptions. Let A and B denote two disjoint sets of
participants, such that |B| ≥ n/2, |A∪B| = n and the dealer Pd ∈ B. Consider
the following two scenarios:

Scenario 1: The adversary corrupts all parties in B including Pd, and keeps
them silent throughout the execution of Π. More specifically, A instructs
each party in B to simply not send any messages. Note that this scenario
is possible only because A is allowed to corrupt a majority of parties.
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Scenario 2: The adversary corrupts all parties in A, and instructs them to
follow the steps of Π honestly, except that they ignore any message sent
by any party in B.

Upon inspection, it becomes clear that both scenarios are equivalent to a
network adversary severing all connections across A and B. Moreover, the joint
view of all parties in A is identical in both scenarios: it is simply derived by
executing the protocol Π honestly without any messages from any party in B
(messages to parties in B may as well be dropped as they induce effectively no
response).

Let us now examine the output outi of Pi ∈ A in either scenario. In order
to deliver guarantees compliant with BC-IA, there are two possible options in
the overwhelming majority of outcomes:

• Case 1: a certified cheat, outi ∈ {ω,Ω}.

• Case 2: a certified output, outi = (msg∗, σ∗
d).

We argue that both cases contradict the requirements of BC-IA itself. Recall
that in Scenario 2, the dealer Pd is honest. Therefore, Case 1 directly contradicts
defamation-freeness in that scenario; an honest dealer must not be implicated by
a certified cheat. Simultaneously, Case 2 contradicts unforgeability: consider an
A who does not request any dealt instances from the unforgeability challenger,
and therefore any certified output (msg∗, σ∗

d) it is able to produce constitutes
a breach of unforgeability. The adversary is able to obtain such a (msg∗, σ∗

d)
simply by executing Π entirely amongst the corrupt set A—this follows Scenario
1 wherein all of B is effectively offline, and the premise of Case 2 ensures that
(msg∗, σ∗

d) is produced amongst A regardless.
We have thus arrived at a contradiction, completing the proof of Theorem

4.1.

We note that the above proof extends to the following weaker variants (thus,
making the impossibility result stronger):

1. The proof holds even against a fail-stop adversary, as the only deviation from
the protocol in the above proof is to drop messages.

2. Consider a weaker notion of BC-IA, where the cheat can be certified only
jointly by honest parties (as opposed to individually by any honest party
who aborts). The above proof extends easily to this notion as well, one
simply considers the joint outputs of the entire set of parties in A (which the
adversary can use).

Lastly, we highlight another interesting aspect of this impossibility result:
We observe that the proof holds irrespective of the number of rounds that com-
prise Π. Notably, this does not contradict existing O(t) round protocols that
achieve standard broadcast with resilience to t < n corruptions in the PKI
model—our argument makes crucial use of the BC-IA requirement that all out-
puts must be certified (which is not required of standard broadcast).
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4.3 Ideal Functionality

Especially given that we wish to invoke multiple instances in parallel, we for-
mulate an ideal functionality that will allow us to achieve our desired flavour
of BC-IA in the UC framework. We first give the functionality realized by our
broadcast primitive, and then proceed to give the protocol itself. The Audit

component of the property-based notion is replaced by a ‘Transfer’ interface
here, intuitively to enable the transfer of protocol context to external parties.

Functionality 4.2. FBC−IA(n, t, d): Broadcast-IA

This functionality is parameterized by the party count n, the threshold t
such that n ≥ 2t + 1, and the index of the dealer d. This functionality is
accessed by parties {Pi}i∈[n] at most t of whom may be corrupt. Let the
set of honest parties be indexed by H.

Any party, indexed by a global identifier pid, may register at any point
with this functionality. Each such party Ppid is provided with an output
outpid which can be transferred to any other party. The set of such parties
is initially only {Pi}i∈[n], and can be expanded as necessary subsequently.

Deal: On receiving (deal, sid,msg) from Pd such that sid =.. P1∥ . . . ∥Pn∥sid′
and sid is fresh, send (deal-req, sid, d) to S. On receiving (ready, sid) from
all parties,

1. If Pd is not corrupt, then set out = {outi = msg}i∈[n].

2. Otherwise, receive out = {outi ∈ {msg, cheat,⊥}}i∈[n] from S.

Send (dealt, sid, outi) to each Pi. Additionally, for each pid corresponding
to every party h ∈ H, set and store outpid = (sid, outi).

Transfer: Upon receiving (transfer, sid, pid, pid∗) from both Ppid and
Ppid∗

1. If Pd is honest, send outpid to Ppid∗ .

2. Otherwise, receive outpid ∈ {msg∗, cheat,⊥} from S and send to Ppid∗ .

4.4 The Protocol

The protocol assumes a PKI and employs a simple echo broadcast technique
along the lines of Goldwasser and Lindell [GL05], with a provision to output
a certificate of non-responsiveness. Note that in the following description (and
each subsequent one in the paper) the “send to all parties” instruction includes
sending to oneself. The protocol is given informally below:

• Round 1: The dealer Pd signs its message m, and sends m along with
its signature σd to all parties.
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• Round 2: Each Pi that received (m,σd) from the dealer in Round 1
forwards it to all other parties, and any Pi that received no (valid) message
in Round 1 sends ⊥ to all parties instead. Either way, the forwarded
message is accompanied by a signature σi.

• Output, per Pi’s view: In case two conflicting (m,σd), (m
′, σ′

d) values
were received, this immediately implicates Pd as a cheater with a certifi-
cate Ω. In case t + 1 signed ⊥ values were received, this collection of
signatures implicates Pd as non-responsive with a certificate ω. In the
absence of either case of certifiable failure of Pd, any (m,σd) received in
the previous round can be safely output.

We can analyze all possible outcomes as follows:

1. If Pd is honest, (n− t) ≥ t+1 parties will follow the protocol, and all honest
parties output (m,σd). A live network ensures that no ω can be produced
against Pd, and an unforgeable signature scheme rules out any party deriving
a valid Ω.

2. If the dealer sends conflicting (m,σd), (m
′, σ′

d) to any pair of honest parties,
all honest parties will output Ω.

3. If the dealer withholds (m,σd) from all honest parties in Round 1, then
all honest parties will output ω. Note that it is always possible for the
adversary to “upgrade” the cheat from ω to Ω in the view of some subset
of honest parties by sending them conflicting (m,σd), (m

′, σ′
d) values via the

echo phase.

4. Conditioned on at least one honest party having received some (m,σd) from
Pd and no honest party having received a conflicting (m′, σ′

d) in Round 1, the
adversary is free to induce each honest party to output any one of (m,σd),
Ω, or ω in Round 2. Note that all honest parties that output (m,σd) are
in agreement about m, i.e. the one received by the honest party/parties in
Round 1.

Care must be taken in the interpretation of the output of any individual
party, especially in the context of an external retrospective audit. While Ω or ω
undeniably certify Pd’s deviation from the protocol, a signed output (m,σd) does
not certify m as the output of the protocol. This is because if Pd is corrupt, any
colluding Pi could try and pass off an arbitrary (m′, σ′

d) as a “certified” output
to an auditor. However, a collection of t+ 1 parties willing to attest to (m,σd)
having been broadcast can certify the statement—we will use this idea later on
when holding parties accountable for broadcasting messages that are malformed
in context. In particular, while certain malformed messages can immediately
serve to implicate their sender (such as a non-verifying NIZK), others require
establishing protocol context to explain why the message is malformed, such as
a jointly sampled nonce. We give the full protocol below.
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Protocol 4.3. πBC(n, t, d): Broadcast With IA

This protocol is parameterized by the party count n, the threshold t such
that n ≥ 2t + 1, and the index of the dealer d. This protocol is run by
parties {Pi}i∈[n]. The protocol requires a PKI, where the key pair of Pi is

given by (skPKIi , pkPKIi ).
In the event that any Pi aborts (with an accompanying certificate), it

is taken by assumption that Pi sends the certificate to all before halting
the protocol.

Deal:

1. On receiving (deal, sid,msg) from the environment such that sid is fresh,
Pd does the following:

a. Set dealmsg = (deal, sid,msg) and sign it:

σPKI−d ← SignPKI(dealmsg)

b. Send (dealmsg, σPKI−d) to each {Pi}i∈[n]

This completes the first round.

2. Each party Pi does the following, ignoring any unsigned/malformed mes-
sages from the dealer:

a. If some (dealmsg = (deal, sid,msg), σPKI−d) was received from the
dealer, set echomsgi = (echo, dealmsg, σPKI−d). Else, set echomsgi
= (echo, sid,⊥).

b. Set σPKI
i ← SignPKIskPKIi

(echomsgi), and send (echomsgi, σ
PKI
i ) to all par-

ties.

This completes the second round.

3. After collecting all messages (echomsgj , σ
PKI
j ) sent in the above round

(ignoring malformed messages), each Pi does the following:

• If ∃j, j′ ∈ [n] such that echomsgj ̸= echomsgj′ and both contain
valid (but conflicting) dealmsg values, then set

outi =
(
sid, cheat,Ωi = (msgj ,msgj′ , σ

PKI−d
j , σPKI−d

j′ )
)

where (msgj , σ
PKI−d
j ) and (msgj′ , σ

PKI−d
j′ ) are parsed from echomsgj

and echomsgj′ respectively.

• Otherwise if ∃J ⊆ [n] such that |J | > t and echomsgj = (echo, sid,⊥)
for each j ∈ J , set

outi =
(
sid,⊥, ωi = {sid, echomsgj , σ

PKI
j }j∈J

)
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• Otherwise, set outi = (sid, dealt,msgj , σ
PKI
j ) for any j where σPKI

j

verifies.

Output outi as computed above.

Transfer: On receiving (transfer, sid, i, j) from the environment such
that sid is fresh, Pi sends outi to Pj . Pj accepts outi if any of the following
hold:

• outi = (sid, cheat,Ωi) with Ωi containing two different messages, both
with valid signatures from Pd.

• outi = (⊥, ωi) with ωi containing valid signatures by a set of at least
(t+ 1) distinct parties on the message (echo, sid,⊥).

• outi = (sid, dealt,msg, σPKI), which contains a valid signed message
of the dealer.

Theorem 4.4. Assuming a synchronous network and a PKI, protocol πBC(n, t, d)
UC-realizes FBC−IA(n, t, d) in the presence of a malicious adversary that stati-
cally corrupts up to t < n/2 parties.

5 PISA MPC

We are now ready to define and realize the notion of Provable Identifiable Selec-
tive Abort (PISA) for the case of general MPC. Informally, a protocol achieving
PISA guarantees that upon termination, each honest party either obtains the
output of the joint computation, or a certifiable proof of cheating against a
corrupt party. Importantly, PISA allows honest parties to possibly identify dif-
ferent cheaters; however each honest party can provably implicate the cheater it
identified to any external party. Recall that the necessity of an honest majority
for general secure function evaluation with PISA over point to point channels
follows from our impossibility in Section 4.2, as BC-IA is a special case.

5.1 Ideal Functionality for PISA

We begin with a formal description of the ideal functionality for this new notion.
The adversary first learns the output of the computation, and then determines
which honest parties receive this output. Each honest party that is denied
the output is instead given the identity of a corrupt party (determined by the
adversary) along with the type of cheating, and the ability to transfer this
information to any third party. Along the lines of FBC−IA, we provide this latter
feature through a “transfer” interface.
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Functionality 5.1. FPISA(n, t, f) : Provable Identifiable Selective Abort

This functionality is parameterized by the party count n and the threshold
t such that n ≥ 2t+1. It is accessed by parties {Pi}i∈[n] at most t of whom
may be corrupted by an ideal adversary S. Let the set of honest parties be
indexed by H. It is also parameterized by a function f : X1×X2 · · ·×Xn →
Y.
Computation: On receiving (compute, sid, xi), where xi ∈ Xi from every
party Pi for i ∈ [n],

1. Compute y := f({xi}i∈[n]).

2. Send (function-output, sid, y) to S.

3. Receive output = {outputi ∈ {y, (cheat, ci), (⊥, ci)}}i∈[n] from S in re-

sponse, where each ci(i ∈ [n]) corresponds to an index of a corrupt
party.

4. Send (output, sid, outputi) to each Pi. Additionally, for each pid corre-
sponding to every honest party h ∈ H, set and store outpid = (sid, outputi).

Transfer: Upon receiving (transfer, sid, pid, pid∗) from both Ppid and
Ppid∗

1. If the party Ppid is honest and has previously been given outpid, set
outpid∗ = outpid and send it to Ppid∗ .

2. Otherwise, receive outpid ∈ {y, (cheat, c), (⊥, c)} from S, where c corre-
sponds to an index of a corrupt party Pc ∈ {Pi}i∈[n], set outpid∗ = outpid
and send it to Ppid∗ .

We note that the functionality as written allows cheaters, as well as com-
putation outputs to be certified to external parties. The latter does not harm
feasibility of achieving this notion—the functionality itself could compute signed
outputs for example—but may be dropped if desired for efficiency reasons.

5.2 Compiler

In this section, we present a compiler that transforms an MPC protocol ΠIA

achieving Identifiable Abort (IA) in the FBC-hybrid model to an MPC proto-
col ΠPISA that achieves PISA in the FBC−IA hybrid model. The compiler makes
blackbox use of the protocol, and therefore the compiled protocol computes
the same function except with PISA guarantees. Here, IA [AL10, IOZ14] (refer
Appendix C.1 for ideal functionality) refers to the notion where all honest par-
ties either obtain the output or agree on a common cheater, and FBC denotes
the ideal functionality for standard broadcast. We assume an honest majority
among the participants running ΠIA as well as ΠPISA. Note that this assumption
is necessary for ΠPISA, as mentioned earlier.
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The main idea of our compiler is to replace each invocation of broadcast by
ΠIA with a corresponding one to BC-IA instead. We incrementally construct our
compiler by explaining our ideas below. Consider a direct replacement of one
such round of broadcast by a round of BC-IA. There are two possible outcomes:

1. None of the honest parties observed an abort in this BC-IA invocation. By
consistency of BC-IA, broadcast has been emulated perfectly for ΠIA.

2. There is at least one aborting honest party. This party must have obtained
a certifiable proof of cheating against the dealer of a BC-IA invocation. We
instruct this party to transfer this certifiable cheat to other honest parties in
the subsequent round, therefore inducing honest parties to halt the protocol
and return this certificate of cheating as their ΠPISA output. However upon
receiving such a certificate, before halting, each honest party echoes this
certificate to all other honest parties. Note that this mechanism adds at
most two rounds in total: the moment an honest party observes a cheat, all
other honest parties are made aware in the next round, implying that all
honest parties are guaranteed to terminate within two rounds of any honest
party observing a cheat via BC-IA.

Consider the case that no aborts are observed in any BC-IA invocation. Then,
the honest parties must have received all the messages relayed via broadcast in
ΠIA, and are therefore able to compute their outputs as prescribed in ΠIA. By
the guarantees of IA security, this results in one of the two following cases:

1. All honest parties obtain the output (say, y): In this case, the honest parties
simply output y as output of ΠPISA.

2. All honest parties abort, but identify a common cheater (say, Pc): In this
case, we instruct each party to announce the identity of the cheater via
another invocation of BC-IA. Given the honest majority, each honest party
is able to collect at least t + 1 attestations of the fact that Pc is corrupt,
which suffices to convince any external auditor.

We note that a certificate as described above cannot be forged by an adversary
to implicate an honest party because (a) No honest party will identify another
honest party by the guarantees of ΠIA, and (b) the adversary only controls t
parties, whereas t + 1 attestations are required to assemble a certificate. This
completes a high-level description of our compiler.

We give a formal description of the compiler below.

Protocol 5.2. ΠPISA(n, t, f): MPC protocol achieving PISA

This protocol is parameterized by the party count n and the threshold t such
that n ≥ 2t+1. It is also parameterized by a function f : X1×X2 · · ·×Xn →
Y. The protocol is run by parties P1, . . . ,Pn, of which any tmay be corrupt.
The output of this protocol is f(x1, . . . , xn), where xi ∈ Xi denotes Pi’s
input for i ∈ [n]. Any failure in obtaining the output is accompanied by a
certificate implicating a corrupt party. Note that for readability, we do not
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explicitly specify each time that a fresh session identifier sid is required.
Building Block: An R-round MPC protocol ΠIA realizing FIA.

1. For each round r ∈ [R] of ΠIA, do the following:

a. (When r ≥ 2) If any party transferred a cheat (sid, cert = (type, c))
to Pi in the previous BC-IA round, Pi transfers this to all parties
(via the transfer interface of BC-IA as well), and terminates with
output outputi = (type ∈ {cheat,⊥}, c) as appropriate.

b. Suppose ΠIA requires Pi to communicate via point-to-point channels,
then Pi follows the same instructions of ΠIA.

c. Suppose ΠIA requires Pi to invoke FBC as sender with message msg,
then Pi invokes FBC−IA(n, t, i) with (deal, sid,msg).

d. Each Pj (j ∈ [n]) does the following:

• If the BC-IA round terminated with a cheat (sid, cert = (type, i))
against dealer Pi, then Pj transfers this output to all other par-
ties using (transfer, sid, j, k) for k ∈ [n]\j and terminates with
output outputj = (type ∈ {cheat,⊥}, i) as appropriate.

• Else Pj sets msg(i,r) = outij as the message broadcast by Pi in

Round r, where outij denotes Pj ’s output of this BC-IA round
corresponding to dealer Pi. Continue to the next step in ΠIA.

2. Each Pj (j ∈ [n]) computes the output as per ΠIA using {msg(i,r)}i∈[n],r∈[R],
and the point-to-point messages received so far. The output of ΠIA cor-
responds to either an output y or (abort, sid, c), where c is the identity
of the cheater revealed to all honest parties.

• If the output computed is y, then Pj outputs outputj = y and
terminates.

• Else, Pj invokes FBC−IA(n, t, j) with (deal, sid,msg = (abort, c)).

3. Each Pj collects at least t+1 session identifiers sid such that (sid, dealt, (abort, c))
was received from BC-IA for each sid ∈ sid. This constitutes a certificate
of cheating. In order to transfer this certificate to Ppid, parties Pj and
Ppid jointly invoke the BC-IA transfer interface for each sid ∈ sid, and
Ppid verifies that they are all (sid, dealt, (abort, c)).

Round Complexity of ΠPISA. Observe that each invocation of FBC is re-
placed with an invocation of FBC−IA, and there is an additional instance of
BC-IA at the end of the protocol to announce the output of ΠIA. Therefore,
if ΠIA has R BC rounds, then ΠPISA uses (R + 1) BC-IA rounds. Instantiating
BC-IA with our 2 round protocol πBC(n, t, d) (Protocol 4.3) yields an overall
point-to-point round complexity of 2R+ 2 rounds for ΠPISA.

Note that the transfer of cheats detected (if any) in the BC-IA invocation
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corresponding to Round r of ΠIA replaces the BC-IA invocation of Round (r+1),
for r ∈ [R − 1]. Therefore, this does not incur additional overhead in rounds.
Furthermore, there is no need to transfer cheats detected in the BC-IA invo-
cation corresponding to the last Round R of ΠIA, as the parties who did not
detect a cheat can simply proceed to output computation of ΠIA.

Security Analysis. As there must exist a simulator S for any AIA (by virtue
of security of ΠIA), we can use S to construct a simulator for ΠPISA. In order to
argue security, we show how any adversary APISA for ΠPISA can be transformed
into an adversary AIA for ΠIA. In particular, given a challenge execution of
ΠIA, we construct an execution of ΠPISA which APISA attempts to decide is real
or simulated. Observe that ΠPISA is in essence a partial execution of ΠIA—
constructing our reduction is therefore a matter of filtering the correct messages
from ΠIA to ΠPISA for AIA. We specify AIA below:

1. As long as APISA does not abort any of the BC-IA invocations, AIA behaves
the same as APISA i.e. the messages sent in the BC-IA rounds in ΠPISA are
simply sent as corresponding BC rounds in ΠIA and point-to-point messages
are simply forwarded.

2. Consider the first time APISA aborts a BC-IA invocation, say corresponding
to round r of ΠIA by corrupt dealer Pi. This can be done by allowing at
least one honest party to detect a cheat either as output of BC-IA or via a
transfer 2. In this scenario, if none of the honest parties received the intended
message, then AIA simply broadcasts ⊥ on behalf of Pi in Round r of ΠIA .
However, if at least some of the honest parties received a message m, then
AIA does the following: Broadcastm on behalf of Pi in Round r of ΠIA. In the
subsequent BC round, AIA filters messages sent by honest parties in round
(r+1) of ΠIA while forwarding them to APISA in ΠPISA: Only the messages of
honest parties who did not discover the cheat in the previous BC-IA round
are forwarded. From the next round onwards, none of the messages from
honest parties are forwarded (as this corresponds to discovering a cheat and
terminating in ΠPISA).

3. AIA outputs whatever APISA does.

Observe that the only difference between an execution of ΠIA with AIA and
ΠPISA with APISA is that APISA could choose to make some honest parties abort
earlier than others during the BC-IA invocations, unlike in ΠIA where all honest
parties have a consistent view of the BC invocations at all times. Further, we
note that the actions of APISA during the last BC-IA invocation (to announce the
output of ΠIA) does not affect the honest parties’ computation (as their outputs
are already determined once the R rounds of ΠIA have been emulated). With
respect to honest parties that do not abort in ΠPISA, note that their messages

2Note that it is always possible for a corrupt party to transfer a cheat implicating a corrupt
dealer.
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can be simulated identically to the simulation in ΠIA. We can thus conclude
that the indistinguishability of the simulation of ΠPISA is implied by security of
ΠIA.

We are now ready to state the formal theorem.

Theorem 5.3. Suppose a protocol ΠIA among parties {P1, . . . ,Pn} realizes FIA

in the FBC-hybrid model, where n ≥ 2t + 1. Then, the protocol ΠPISA realizes
FPISA in the FBC−IA hybrid model, against a malicious adversary that corrupts
t < n/2 parties.

We state the corollaries that follow when BC-IA is realized using our 2-round
protocol 4.3 and suitable existing instantiations of ΠIA are plugged in: (a) the
two-round IA protocol of [CGZ20] in the CRS model that uses broadcast in both
rounds and (b) the four-round IA protocol of [CRSW22] in the plain model that
uses broadcast in all rounds.

Corollary 5.4. Assuming a common reference string and a PKI setup, there
exists a 6-round PISA MPC protocol against a malicious adversary that corrupts
t < n/2 parties, that uses only point-to-point channels.

Corollary 5.5. Assuming PKI, there exists a 10-round PISA MPC protocol
against a malicious adversary that corrupts t < n/2 parties, that uses only
point-to-point channels.

Notably, the use of PKI in the above results in limited to realizing BC-IA.
As a final remark for this section, we note that in the above description, we

assumed that the same set of parties participate in the underlying protocol ΠIA,
as well as the compiled protocol ΠPISA. This necessitates an honest majority
amongst the parties running ΠIA, as FPISA can be realized only with an honest
majority. However, one could consider a setting where ΠIA is run among a
dishonest majority of participants, say M = {P1, . . . ,Pm}, where m ≥ t + 1;
while an extended set of participants N = {P1, . . . ,Pn}, where n ≥ 2t + 1
are registered with FBC−IA as “helper” nodes (where M ⊂ N ). We discuss a
modified compiler for such a setting in Appendix C.2.

5.3 PISA MPC to Broadcast Optimal IA MPC

Recall that the above compiler (Section 5.2) transforms an IA protocol ΠIA

using broadcast (say in R rounds) to a PISA MPC protocol ΠPISA that uses only
point-to-point channels. If one wishes to retain the IA guarantee of the starting
protocol where parties are in agreement about the identity of the cheater(s),
the compiler can be extended as follows: Consider a protocol Π′

IA which runs
identical to ΠPISA. Next, parties who have locally identified a cheater use one
round of standard broadcast (i.e. one invocation to Fbc) to send the associated
proof of cheating to all. Due to the agreement property offered by standard
broadcast and the fact that the proofs of cheating are verifiable by any party,
the honest parties would now be in agreement about the identified cheater(s).
This extended compiler essentially reduces the number of broadcasts used by
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the starting IA protocol ΠIA to just one round, which is optimal due to the
necessity of broadcast for IA [CL17]. We state the formal theorem below.

Theorem 5.6. Suppose a protocol ΠIA among parties {P1, . . . ,Pn} realizes FIA

in the FBC-hybrid model, where n ≥ 2t+1. Then, there exists a protocol Π′
IA that

invokes FBC in exactly one round and realizes FIA against a malicious adversary
that corrupts t < n/2 parties.

6 Verifiable Secret Sharing Over P2P Channels

In this section, we construct Verifiable Secret Sharing over point-to-point chan-
nels as an important building block towards our final ECDSA protocol. The
intended outcome of this protocol is not just to share a secret, but to jointly sam-
ple a uniformly random secret in Shamir shared form. In addition, we wish for
a commitment—a Pedersen commitment in particular—of each party’s share to
be made publicly available to all parties. Intuitively, all parties’ Pedersen com-
mitments will lie along a degree-t polynomial, and we model adversarial bias
(of the commitments) by letting the adversary simply choose this polynomial.
Note that the perfectly hiding nature of Pedersen commitments ensures that
the secret itself stays perfectly hidden, and uniformly random.

6.1 Ideal Functionality

We begin with a description of the ideal functionality, and then proceed to
describe the protocol.

Functionality 6.1. FVSS(G, n, t): Verifiable Secret Sharing

This functionality is parameterized by the party count n, the threshold t
such that n ≥ 2t+1, and the elliptic curve G = (G, G, q). This functionality
is accessed by parties {Pi}i∈[n] at most t of whom may be corrupt. Let the
set of honest parties be indexed by H.

Share: On receiving (share, sid) from all parties such that sid =.. P1∥ . . . ∥Pn∥sid′
and sid is fresh,

1. Sample d← Zq, and set Ĝ = d ·G.

2. Send Ĝ to the adversary S.

3. Receive the following values from S:

• {vssouti ∈ {VSS-success, cert = (type, c)}}i∈[n], where type ∈
{cheat,⊥} specifies the type of cheating certificate and c corre-
sponds to the index of the corrupt party implicated to Pi as the
cheater.

• C, (x, x̂), {(shi, ŝhi)}i/∈H, where C ∈ G[X] is a degree t polynomial,
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and the rest are Zq values subject to:

shi ·G+ ŝhi · Ĝ = C(i) and x ·G+ x̂ · Ĝ = C(0)

4. Sample the secret s← Zq uniformly at random.

5. Compute ‘opening information’ ŝ of C(0) for the above secret as ŝ =
(x− s)/d+ ŝ

6. Define degree t polynomials f, f̂ ∈ Zq[X] such that

f(0) = s, f̂(0) = ŝ and {f(i) = shi, f̂(i) = ŝhi}i/∈H

7. For each i ∈ H where vssouti = VSS-success, set vssouti = (VSS-success, C, f(i), f̂(i)).

Send (shared, sid, vssouti) to each Pi. Additionally, for each pid corre-
sponding to every party h ∈ H, set and store vssoutpid = (sid, vssouti).

Transfer: Upon receiving (cert-transfer, sid, pid, pid∗) from both Ppid

and Ppid∗

1. If Ppid is honest and vssoutpid is of the form (sid, cert = (type, c)), send
vssoutpid to Ppid∗ .

2. Otherwise, receive vssoutpid of the form (sid, cert = (type, c)) from S
where c indexes a corrupt party, and send it to Ppid∗ .

6.2 The Protocol

Before we give the protocol overview, we note that in this and subsequent pro-
tocols, we make use of the fact that the broadcast protocol πBC accompanies
dealt messages with the dealer’s signature. In formal protocol descriptions we
invoke broadcast through the FBC−IA functionality, and therefore must use its
‘transfer’ interface to access such signatures. In informal descriptions we re-
fer to such signatures directly, as it is far more readable to follow the actual
implementation.

Our honest execution path follows well-established techniques for this task,
along the lines of Feldman [Fel87], Pedersen [Ped92], and Gennaro et al. [GJKR07],
and requires a single broadcast round. Each Pi is instructed to sample secret
polynomials fi, f̂i ∈ Z≤t

q [X], and designate each Pj to receive fi(j), f̂i(j) pri-

vately while Ci(j) = fi(j) · G + f̂i(j) · Ĝ is made public. The joint secret is
therefore defined to be

∑
i fi(0). In case Pi is cheated by Pj in that its pri-

vately communicated fj(i), f̂j(i) do not match the public Cj(i), party Pi saves
the offending ciphertext as a certificate of Pj ’s misbehaviour, accompanied by
a proof of correct decryption.
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• Broadcast Round 1 as initiated by each Pi for i ∈ [t + 1]: Each Pi

samples degree-t polynomials fi, f̂i ∈ Zq, and defines polynomial Ci(x) =

fi(x) ·G+ f̂i(x) · Ĝ.

For each j ∈ [n], Pi prepares a ciphertext ctij ← Encpkj (fi(j), f̂i(j)).
Finally, Pi broadcasts (Ci, cti = {ctij}j∈[n]) via πBC. Note that πBC is
run amongst all n parties.

• Output per Pi: any certificate of cheating by πBC is output, if it exists.
In case ∃j ∈ [t + 1] such that decrypting ctji does not yield fj(i), f̂j(i)
corresponding to Cj , output Ω that consists of its (proven) decryption.

Otherwise, output (C, f(i), f̂(i)) =
∑

j∈[t+1]

(Cj , fj(i), f̂j(i)).

Analysis. By security of πBC, it holds that for each j ∈ [n], every non-aborting
honest Pi agrees on (Cj , ctj). Therefore, any honest party that terminates
successfully will output the same public commitment C. Moreover, every such
Pi also outputs f(i), f̂(i) such that fj(i) ·G+ f̂j(i) · Ĝ = Cj(i).

A rushing Pj can arbitrarily bias C by choosing Cj after seeing every other
party’s message, but this has no effect on the distribution of the joint secret, as
each Ci perfectly hides fi(0).

Any aborting execution reduces to the following cases:

1. An abort in πBC, which will be accompanied by a certificate Ω or ω as relevant.

2. The existence of ctji that does not decrypt to fj(i), f̂j(i) such that fj(i) ·
G + f̂j(i) · Ĝ = Cj(i). This readily yields a certificate Ω as detailed in the
protocol.

Therefore, any honest party that is not in agreement about C or in possession
of a valid decommitment f(i), f̂(i) to C(i) will be able to produce a certificate
Ω or ω to implicate some corrupt Pj for the failure.

Protocol 6.2. πVSS(G, n, t): Honest Majority VSS With IA

This protocol is parameterized by the party count n, the threshold t, and
the elliptic curve G = (G, G, q). Additionally, it makes use of a common
random string Ĝ, whose discrete logarithm relative to G is unknown. The
protocol runs once with parties P1, . . . ,Pn, of which any t may be corrupt.
The private output of this protocol for Pi is (C, f(i), f̂(i)) where C ∈ G[X]

is a common degree-t polynomial, and f(i) · G + f̂(i) · Ĝ = C(i). Any
failure in obtaining the output is accompanied by failure certificate which
we assume is forwarded by the aborting party to others before terminating.
We do not give explicit instructions for the transfer interface, but instead
express inline how the proof of each cheat is transferred upon invocation.

This protocol functions in the FBC-hybrid model, and makes use of an
openable encryption scheme (Enc,Dec,Open,Vrfy) (Appendix A).

Share:
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1. On receiving (init, sid) from the environment Z, each party Pi checks
whether there exists a record of the form (sid, ·) in memory. If not, then
each Pi for i ∈ [t+ 1] does the following:

a. Sample two degree t polynomials fi, f̂i ← Zq[X]

b. Define polynomial Ci ∈ G[X] such that Ci(x) = fi(x) ·G+ f̂i(x) · Ĝ
c. Compute encrypted shares:

cti = {ctij ← EncpkPKIj
(fi(j), f̂i(j))}j∈[n]

d. Invoke an instance of FBC−IA(n, t, i) with (deal, sid,msg = (Ci, cti))
for a fresh sid.

This completes the first phase.

2. Upon completion of the broadcast round, if ∃j ∈ [t + 1] such that the
FBC instance in which Pj was the dealer resulted in an abort of type ∈
{cheat,⊥}, then Pi terminates with output vssouti = (type, j), and
invokes the Transfer interface of FBC when invoked with this sid again.

3. Each party Pi does the following for j ∈ [t+ 1]:

a. Obtain fj(i), f̂j(i) = Decski(ctji)

b. Verify that fj(i) ·G+ f̂j(i) · Ĝ = Cj(i)

• If this fails, open the ciphertext by computing

ζji = (fj(i), f̂j(i), πct)← Open(ski, ctji)

and set

Ωj
i = (bad-ct, ζji, (sid, dealt, (Cj , ctj), σ

PKI
j ))

If Ωj
i is defined for some j ∈ [t + 1], then output vssouti = (cheat, j),

and transmit Ωj
i in addition when invoked with the Transfer interface.

Otherwise, compute the commitment polynomial and shares:

C =
∑

i∈[t+1]

Ci

f(i) =
∑

j∈[t+1]

fj(i)

f̂(i) =
∑

j∈[t+1]

f̂j(i)

and output (VSS-success, C, f(i), f̂(i)).
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The formal theorem appears below, whose proof is deferred to the full ver-
sion.

Theorem 6.3. In the FBC-hybrid model, πVSS(G, n, t) UC-realizes FVSS(G, n, t)
against a malicious adversary that corrupts up to t < n/2 parties.

Zero sharing. As a special case of VSS, the protocol πZero generates a degree
n− 1 verifiable secret sharing of the constant value 0—this is accomplished by
a straightforward tweak of πVSS in which t = n−1 and the constant term of the
polynomial is set to (and verified to be) zero. For completeness, we give this
protocol in Appendix B. We denote the ideal functionality for this special case
of VSS as FZSS (which is defined similar to FVSS adopting the above tweaks).

7 Distributed Key Generation from VSS

Building on the previous section, we show how to construct distributed key
generation (DKG) in the FVSS-hybrid model, so that parties can establish a
public k · G value such that k is secret shared. We first describe the ideal
functionality for DKG, followed by the protocol description.

Functionality 7.1. FDKG(G, n, t): Distributed Key Generation

This functionality is parameterized by the party count n, the threshold t
such that n ≥ 2t+1, and the elliptic curve G = (G, G, q). This functionality
is accessed by parties {Pi}i∈[n] at most t of whom may be corrupt. Let the
set of honest parties be indexed by H.

Dkeygen: On receiving (dkeygen, sid) from all parties such that sid =..

P1∥ . . . ∥Pn∥sid′ and sid is fresh,

1. Receive {(ski, pki)}i/∈H from adversary S where ski ·G = pki.

2. Sample the secret key sk← Zq uniformly at random.

3. Define degree t polynomial f ∈ Zq[X] such that f(0) = sk and f(i) = ski
for i /∈ H.

4. Let F ∈ G[X] be the degree t polynomial such that F (j) = f(j) ·G for
j ∈ [n].

5. Send F to S and receive in response {dkgouti ∈ {key-pair, cert = (type, c)}}i∈[n]

from S, where type ∈ {cheat,⊥} specifies the type of cheating certifi-
cate and c corresponds to the index of the corrupt party implicated to
Pi.

If dkgouti = key-pair, set dkgouti = (key-pair, F, f(i)). Send (DKG-done, sid,dkgouti)
to each Pi. Additionally, for each pid set and store dkgoutpid = (sid,dkgouti).
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Transfer: Upon receiving (cert-transfer, sid, pid, pid∗) from both Ppid

and Ppid∗

1. If Ppid is honest and dkgoutpid is of the form (sid, cert = (type, c)), send
dkgoutpid to Ppid∗ .

2. Otherwise, receive dkgoutpid of the form (sid, cert = (type, c)) from S
where c indexes a corrupt party, and send it to Ppid∗ .

Recall that πVSS establishes polynomials f, f̂ such that each Pi holds f(i), f̂(i)

that correspond to a public C(i) = f(i) · G + f̂(i) · Ĝ. Observe that C(i) is a
Pedersen commitment to which Pi knows an opening. Consider the polynomials
F, F̂ ∈ G[X] such that F (i) = f(i) · G and F̂ (i) = f̂(i) · Ĝ: observe that πVSS

essentially samples F + F̂ , and while this sum can be biased, F itself is perfectly
masked by F̂ , and therefore uniformly random at the termination of πVSS. Our
πDKG protocol therefore serves to simply unmask F by securely prising apart
F and F̂ , so that F—and its discrete logarithm f—may be used as the DKG
polynomial per the usual Feldman format [Fel87, GJKR07].

The above prising apart is accomplished in a single broadcast round after
πVSS: each Pi broadcasts Fi = f(i) ·G (which implies a F̂i = f̂(i) · Ĝ given C(i))
along with a proof of knowledge of DLogGFi and DLogĜF̂i. Intuitively, due to
the same reason that Pedersen commitments are binding, there is exactly one
value of Fi, F̂i for which Pi can produce such a proof. The value f(0) therefore
serves as the uniformly sampled secret key with the public F (0), and each Pi

holds a private f(i) along with the public Fi = f(i) ·G.
In more detail, the protocol πDKG proceeds as follows:

• Broadcast Round 1: All parties run πVSS so that each Pi obtains
(C, f(i), f̂(i)) upon successful termination.

• Broadcast Round 2: Each Pi sets Fi = f(i) · G and F̂i = f̂(i) · Ĝ,
and prepares a NIZK to prove knowledge of their respective discrete loga-
rithms: πi

DL∧ ← PDL∧((G, f(i), Fi), (Ĝ, f̂(i), F̂i)). In addition, D is defined
to be CRHF(C), towards certifying agreement on C as the output of the
previous broadcast round.

Pi then broadcasts (D, F̂i, π
i
DL∧).

• Output: Every Pi checks that for j ∈ [n] every VDL∧(π
j
DL∧, (G,Fj), (Ĝ, F̂j)) =

1, where F̂j = C(j) − Fj . In case ∃j ∈ [n] for which this proof doesn’t
verify, Pi is able to produce a certificate Ω to implicate Pj as follows:

1. Find t + 1 (signed) messages broadcast in the previous round that all
agree on D, and assemble them into a certificate ϖBC.

2. Prepare a certificate Ω that consists of C to establish context, ϖBC that
proves that C was indeed the outcome of πVSS, and finally F̂j , π

j
DL∧

accompanied by Pj ’s signature.
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As usual, any certificates of cheating produced in the course of πVSS are
output directly in case of an abort. If no cheating is detected, set F ∈ G[X]
to be the degree t polynomial such that F (j) = Fj , and output (F, f(i)).

Analysis. By security of πVSS, it holds that for each j ∈ [n], every non-
aborting honest Pi agrees on a degree t polynomial C ∈ G[X], and privately

obtains f(i), f̂(i) such that C(i) = f(i) ·G + f̂(i) · Ĝ. Therefore, Fi = f(i) ·G
and F̂i = f̂(i) · Ĝ as broadcast by honest parties in the second round lie on
degree t polynomials F and F̂ respectively.

A corrupt party Pj may choose to broadcast F ∗
j ̸= F (j), but we argue that

it will be unable to produce an accepting proof πj∗
DL∧ for such a value, by con-

structing a reduction to the hardness of computing discrete logarithms in G.
Recall that DLogGĜ is unknown, and that the “honest” pair f(j), f̂(j) such

that C(j) = f(j) · G + f̂(j) · Ĝ is already fully specified by extrapolation of

honest parties’ f(i), f̂(i) values. The reduction therefore embeds the discrete
log challenge in the adversary’s view in the form of Ĝ, and runs the protocol
honestly (controlling t+1 uncorrupt parties) to obtain f(j), f̂(j) as an opening
to the Pedersen commitment C(j). Given that πj∗

DL∧ is a simulation extractable

proof of knowledge, if Pj is able to produce πj∗
DL∧ that proves knowledge of

DLogGF
∗
j and DLogĜF̂

∗
j such that (F ∗

j , F̂
∗
j ) ̸= (Fj , F̂j), the corresponding wit-

ness f∗(j), f̂∗(j) can be efficiently extracted from the adversary with nearly the
same probability. This yields another opening to Pedersen commitment C(j),

which in combination with f(j), f̂(j) can be used to compute

DLogGĜ =
f(j)− f∗(j)

f̂∗(j)− f̂(j)

and therefore satisfy the discrete logarithm challenger with nearly the same
probability a corrupt Pj is able to prove an inconsistent F ∗

j ̸= F (j).
The adversary is then left with the following options:

1. Deviate from the protocol in πVSS, which will result in an honest party ob-
taining certificate Ω or ω as appropriate.

2. Each corrupt Pj broadcasts the honest (D, F̂j , π
j
DL∧), in which case each

honest Pi outputs consistent (F, f(i)).

3. Some corrupt Pj broadcasts a tuple in which πj
DL∧ does not verify. This

results in honest parties assembling a certificate Ω proving Pj ’s deviation
from the protocol by: first establishing the polynomial F as output by πVSS

(certified by ϖBC, a collection of t+1 signatures on D = CRHF(C)), and Pj ’s

signature on the NIZK πj
DL∧ that does not verify relative to the statement

implied by C(j).

Therefore, in every scenario, each honest party Pi either outputs a consis-
tent, uniformly random degree t polynomial F ∈ G[X] such that it holds
DLogG(F (i)) = f(i), or a certificate Ω (or ω) that conclusively proves mali-
cious behaviour on the part of a corrupt Pj .
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Protocol 7.2. πDKG(G, n, t): DKG With IA

This protocol is parameterized by the party count n, the threshold t, and
the elliptic curve G = (G, G, q). The protocol is designed in the (FBC,FVSS)-
hybrid model and makes use of a collision-resistant hash function CRHF and
a simulation-extractable NIZK proof system (PDL∧, VDL∧) to prove knowl-
edge of two discrete logarithms simultaneously. The private output for a
successful execution of this protocol for Pi is (F, f(i)) where F ∈ G[X] is
a common degree-t polynomial, and f(i) is the discrete logarithm of F (i).

We do not give explicit instructions for the transfer interface, but in-
stead express inline how the proof of each cheat is transferred upon invo-
cation.

Generate Key:

1. On receiving (init, sid) from the environment Z, each party Pi checks
whether there exists a record of the form (key-pair, sid, pk, p(i)) in
memory. If not, then each Pi for i ∈ [n] invokes FVSS(G, n, t) in or-

der to generate (VSS-success, C, f(i), f̂(i)).

2. If the VSS round terminated with a cheat (sid, cert = (type, c)) instead,
then Pi terminates with output dkgouti = (type ∈ {cheat,⊥}, j) as
appropriate, and transfers this output to all other parties.

3. Otherwise, each party Pi then does the following:

a. Compute a digest of the public polynomial generated by FVSS as
D = CRHF(C)

b. Define Fi = f(i) ·G and F̂i = f̂(i) · Ĝ
c. Prepare a PoK of discrete logarithm pair,

πi
DL∧ ← PDL∧((G, f(i), Fi), (Ĝ, f̂(i), F̂i))

d. Invoke FBC−IA(n, t, i) with
(
deal, sid, (D,Fi, π

i
DL∧)

)
4. If any party transferred a cheat (sid, cert = (type, c)) in place of a stan-

dard broadcast in the above round, terminate with output dkgouti =
(type ∈ {cheat,⊥}, c) as appropriate. Otherwise, upon completion of
the broadcast round, if ∃j ∈ [t+1] such that the FBC instance in which
Pj was the dealer resulted in an abort of type ∈ {cheat,⊥}, then Pi

terminates with output dkgouti = (type, j), and invokes the Transfer
interface of FBC when invoked with this sid again.

5. Each Pi collects at least t+1 tuples of the form
(
sid, dealt, (D,Fj , π

j
DL∧), σ

PKI
j

)
from the above broadcast round, the crucial detail being that D matches
the one locally computed in Step 3a. These tuples are concatenated to
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form a certificate ϖBC, which serves to show that at least t + 1 parties
attest to D.

6. For every j ∈ [t+1], each party Pi computes F̂j = C(j)−Fj and checks

that VDL∧(π
j
DL∧, (G,Fj), (Ĝ, F̂j)) = 1.

Any proof j ∈ [n] that fails readily yields a certificate

Ωj
i =

(
bad-dkg-proof, D,C, (πj

DL∧, (G,Fj), (Ĝ, F̂j))
)

Pi terminates with output dkgouti = (cheat, j). In order to transfer
this cheat certificate, Pi sends Ωj

i along with invoking the transfer in-
terface of t + 1 instances of FBC−IA from the previous round in which
the output outi contains the same D.

7. In the event that all proofs pass, each Pi outputs (DKG-done, F, f(i)),
where F is the degree t polynomial such that F (j) = Fj for each j ∈ [n].

The formal theorem appears below, whose proof is deferred to the full ver-
sion.

Theorem 7.3. In the (FBC,FVSS)-hybrid model, πDKG(G, n, t) UC-realizes FDKG(G, n, t)
against a malicious adversary that corrupts up to t < n/2 parties.

8 Distributed ECDSA Signing With Identifiable
Abort

We first give the functionality realized by our ECDSA protocol, which is adapted
from Doerner et al. [DKLs24].

Functionality 8.1. FECDSA(G, n, t): Threshold ECDSA

This functionality is parameterized by the party count n, the threshold t,
and the elliptic curve G = (G, G, q). The setup phase runs once with n
parties, and the signing phase may be run many times between (varying)
subgroups of parties indexed by P ⊆ [n] such that |P| = 2t + 1. If any
party is corrupt, then the adversary S may instruct the functionality to
abort or fail, but in so doing it must reveal the index of one corrupt party.

Setup: On receiving (init, sid) from some party Pi such that sid =..

P1∥ . . . ∥Pn∥sid′ and i ∈ [n] and sid is fresh, send (init-req, sid, i) to S.
On receiving (init, sid) from all parties,

1. Sample the joint secret and public keys, (pk, sk)← ECDSAGen(G).

2. Store (secret-key, sid, sk) in memory.
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3. Send (public-key, sid, pk) directly to S.

4. On receiving (release, sid) from S, send (public-key, sid, pk) to all par-
ties and store (pk-delivered, sid) in memory. On receiving (abort, sid,Pc)
where c is the index of a corrupt party, send (abort, sid,Pc) to all parties
and halt.

Signing: On receiving (sign, sid, sigid,m) from any party Pi, parse sigid =..

P∥sigid′ such that |P| = 2t+ 1 and ignore the message if i ̸∈ P or P ̸⊆ [n]
or sigid is not fresh or if (pk-delivered, sid) does not exist in memory.
Otherwise, send (sig-req, sid, sigid, i,m) directly to S.
On receiving (sign, sid, sigid,m) from each Pi for every i ∈ P, sample
σ ← ECDSASign(G, sk,mP1

) and then take the appropriate action:

• If no corrupt parties are indexed by P, send (signature, sid, sigid, σ) to
Pi for every i ∈ P.

• Otherwise, send σ to S and receive in response {sigouti ∈ {signature,
cert = (type, c)}}i∈[n] from S, where type ∈ {cheat,⊥} specifies the
type of cheating certificate and c corresponds to the index of the corrupt
party implicated to Pi.

If sigouti = signature, set sigouti = (signature, σ). Send (sign-done,
sid, sigouti) to each Pi. Additionally, for each pid set and store sigoutpid =
(sid, sigouti).

Transfer: Upon receiving (cert-transfer, sid, pid, pid∗) from both Ppid

and Ppid∗

1. If Ppid is honest and sigoutpid is of the form (sid, cert = (type, c)), send
sigoutpid to Ppid∗ .

2. Otherwise, receive sigoutpid of the form (sid, cert = (type, c)) from S
where c indexes a corrupt party, and send it to Ppid∗ .

8.1 The Protocol

ECDSA Tuples. Our protocol is built upon the “ECDSA tuple” technique
of Abram et al. [ANO+22], which we describe here. Recall that an ECDSA
signature σ on a message m consists of two components (rx, s), where rx is the
x-coordinate of the elliptic curve point R = k ·G (a public value), and the scalar
s = (SHA2(m) + rx · sk)/k (mod q). The idea behind the ECDSA tuple (first
used by Lindell and Nof [LN18]) is that the numerator and denominator of s
can each be individually revealed in masked form. In particular, if ϕ ← Zq is
a uniformly random mask, then one can safely reveal the masked numerator
w = (SHA2(m) + rx · sk) · ϕ, and the masked denominator u = k · ϕ. Intuitively,
u is simply a uniform value from Zq (as ϕ acts as a one-time pad), and w is
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perfectly specified upon fixing u and the s component of the signature—this
implies a straightforward simulation strategy wherein u is sampled uniformly,
and w is computed as s · u. Given the masked numerator and denominator,
computing the signature itself is as simple as just taking their quotient.

The ECDSA tuple itself is correlated randomness that enables the computa-
tion of the masked numerator and denominator information theoretically, much
like a Beaver triple enables secure multiplication. It consists of shares of the
values (k, sk, ϕ, u, v), where v = ϕ · sk and u = ϕ · k. Observe that the denomi-
nator u is already included in the tuple, and the numerator w can be computed
as SHA2(m) ·ϕ+ rx ·v, which is a linear combination of secrets as SHA2(m) and
rx are public.

Securely Computing ECDSA Tuples. Doerner et al. [DKLs24] loosely
sketched how ECDSA tuples can be derived in the honest majority setting,
which we make concrete here. Observe that ECDSA tuples are a depth-1 cor-
relation, meaning that there is an arithmetic circuit that computes it with only
a single layer of (fan-in 2) multiplication gates. If degree t Shamir shares of
k, sk, ϕ are available, completing the tuple by deriving degree 2t shares of u, v is
non-interactive—one multiplication comes “for free” in this setting. Therefore,
honest majority ECDSA signing can follow the structure below:

1. Degree t shares of sk are available by virtue of Distributed Key Generation
executed during the setup phase.

2. The following values are sampled in two rounds during signing:

a. R, and degree t shares of its discrete logarithm k, via Distributed Key
Generation.

b. Degree t shares of ϕ, jointly sampled by each party dealing Shamir shares
of random values.

c. Two degree 2t sharings of zero, jointly sampled by each party dealing
Shamir shares of zero.

3. Degree 2t shares of u, v are derived by each party locally multiplying its
shares of ϕ and k, sk respectively, and adding the shares of zero to randomize
the result. They also locally derive shares of w = SHA2(m) · ϕ+ rx · v.

4. Parties broadcast their shares of u and w to reconstruct them, and output
the signature as (R, s = w/u).

Adding Identifiability. Assuming that Verifiable Secret Sharing and Dis-
tributed Key Generation are available with Identifiable Abort, we can augment
the above structure to support identifiability. To begin with, Steps 2b and 2c
employ VSS rather than naive joint sampling. This ensures that by the final
broadcast round in Step 4, each party’s secrets are available in publicly com-
mitted form. In particular, each party’s share of k, sk is available directly in
the exponent due to the respective DKGs, and their shares of ϕ and zero are
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available as Pedersen commitments via VSS. In the final broadcast round, each
party attaches a NIZK to its shares of u and w, proving that they have been
derived correctly relative to their committed secrets. These NIZKs are quite
efficient, following from standard Schnorr-like sigma protocols.

Protocol Overview. Assuming that DKG, VSS, ZSS are available, ECDSA
signing is a single additional broadcast round. We describe the protocol below.

• Setup. Parties execute DKG to derive a public degree t polynomial Fpk ∈
G[X], such that each Pi holds ski where ski ·G = Fpk(i). The public key
is defined to be pk = Fpk(0). The rest of the protocol below pertains to
signing.

• Broadcast Rounds 1 and 2. Parties execute DKG, VSS, and two ZSS
instances in parallel to derive the following values:

– Public: Degree t polynomials FR, C
ϕ ∈ G[X], and degree 2t polyno-

mials Z0, Z1 ∈ G[X] where Z0(0) = Z1(0) = 0. The signing nonce is
determined as R = FR(0).

– Private: Each party Pi holds ki, f
ϕ(i), f̂ϕ(i), z0(i), ẑ0(i), z1(i), ẑ1(i)

from Zq such that,

ki ·G = FR(i) z0(i) ·G+ ẑ0(i) · Ĝ = Z0(i)

fϕ(i) ·G+ f̂ϕ(i) · Ĝ = Cϕ(i) z1(i) ·G+ ẑ1(i) · Ĝ = Z1(i)

Given these values, each Pi locally derives its share of the ECDSA tuple:(
ki, ski, fϕ(i), ui = fϕ(i) · ki + z1(i), vi = fϕ(i) · ski + z0(i)

)
following which Pi’s share of the signature is set to ui and wi = fϕ(i) ·
SHA2(m) + rx · vi.
Notice that each of Pi’s private values are available in publicly commit-
ted form—either directly in the exponent as in pki, FR(i), or as Pedersen
commitments Cϕ(i), Z0(i), Z1(i)—and the signature shares wi, ui are de-
terministic functions of these private values. Therefore, Pi additionally
computes NIZKs πw

i , π
u
i which prove that wi, ui respectively are correctly

derived relative to the public committed inputs. Intuitively, the relations
proven by the NIZK are that the product of the openings to two Peder-
sen commitments is contained in a third, eg. the product of fϕ(i) and ki
(committed in Cϕ(i) and FR(i) respectively) is committed in ui ·G−Z1(i).
We defer specifics to Protocol 8.2.

• Broadcast Round 3. Each Pi broadcasts two sets of values:

– D = CRHF(Fpk, FR, C
ϕ, Z0, Z1) to confirm the output of the DKG

and VSS.

– wi, ui, π
w
i , π

u
i to complete the ECDSA signature.

33



Upon receiving every wj , uj , π
w
j , π

u
j value from all parties, each Pi first

checks that all the NIZKs verify. If a single NIZK—sent by Pj—fails
verification, Pi assembles a certificate Ω that includes the following values:

– (FR, C
ϕ, Z0, Z1) to establish the context of the protocol.

– t + 1 signatures on D = CRHF(Fpk, FR, C
ϕ, Z0, Z1) as received via

broadcast this round, to establish agreement on the above protocol
context.

– (wj , uj , π
w
j , π

u
j ) along with Pj ’s signature as broadcast in this round.

If all NIZKs pass verification, each Pi assembles the signature

σ =

R, s = (
∑
j∈[n]

λj · wj)/(
∑
j∈[n]

λj · uj)


and outputs it, where {λj}j∈[n] is the set of Lagrange coefficients that
interpolate the y-intercept of a degree n− 1 polynomial.

Analysis. Assuming that VSS, DKG, and zero sharing are secure, we only
need analyze the outcomes of the final broadcast round. We enumerate all
possible cases below:

1. Some honest party Pi does not complete VSS/DKG. In this event, Pi must
have obtained a certificate of cheating to implicate a corrupt Pj , which it
then forwards to all parties (who then echo and output it).

2. All honest parties agree upon (Fpk, FR, C
ϕ, Z0, Z1), and get at least t+1 sig-

natures on their hashed digestD. At this point, all parties’ inputs for the final
round are fixed, and the values they are expected to broadcast are a simple
deterministic function of these inputs (randomness for NIZKs notwithstand-
ing). Assuming that each party Pi broadcasts some value (wi, ui, π

w
i , π

u
i ),

there are two possible outcomes in each party’s view:

• All NIZKs verify . In this case, we argue that each (wi, ui) value is
correctly derived. Recall that the NIZKs prove Pedersen commitment
relations, in particular that the product of the first two is committed
in the third. Each (corrupt) Pi’s witness for the NIZK is completely
specified by its DKG and VSS outputs—ignoring linear offsets, wi is de-
rived from the product of fϕ(i), ski, and ui from the product of fϕ(i), ki.
Producing accepting NIZKs for some (w∗

i , u
∗
i ) ̸= (wi, ui) entails using

an alternative witness, i.e. an alternative opening to the same Pedersen
commitments Cϕ(i), Z0(i), Z1(i) generated by VSS. Invoking the extrac-
tor for the NIZK in this event therefore yields an alternative opening
to the same Pedersen commitment (the original one being from VSS),
which directly yields a reduction to computing the discrete logarithm
DLogĜG.
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Therefore in this case, by correctness of the ECDSA tuple, it holds that
a valid ECDSA signature (R, s = (

∑
i λiwi)/(

∑
i λiui)) is obtained.

• Some NIZK πw
i , π

u
i fails verification. In this case, a certificate consisting

of Fpk, FR, C
ϕ, Z0, Z1 (along with t+1 signatures on their hashed digest

D), and signed πw
i , π

u
i themselves, is assembled to implicate Pi to an

external auditor.

This information is sufficient to run the verification algorithm and see
that at least one of the NIZKs does not verify. Moreover, the t+ 1 sig-
natures on the digest D (which must be verified by recomputing CRHF)
validates that Fpk, FR, C

ϕ, Z0, Z1 were indeed the output of their respec-
tive DKG/VSS instances, and that no honest party is in disagreement
about the statement of the NIZK.

Therefore in each case, every honest party either obtains a valid ECDSA signa-
ture on the message, or a certificate implicating a corrupt party.

Protocol 8.2. πECDSA(G, n, t): Honest Majority ECDSA With IA

This protocol is parameterized by the party count n, the threshold t, and
the elliptic curve G = (G, G, q). The setup phase runs once with parties
P1, . . . ,Pn, and the signing phase may be run many times between (vary-
ing) subsets of parties of size 2t + 1. The protocol makes use of the ideal
functionalities FBC, FVSS, FDKG as well as the simulation extractable NIZK
proof system (Pprod, Vprod) to prove products of Pedersen-committed values.
Let {λi}i∈[n] be the set of Lagrange coefficients required to interpolate the
constant term of a degree n − 1 = 2t polynomial, i.e.

∑
i∈[n]

λi · f(i) = f(0)

for any polynomial f ∈ Z≤n
q [X].

Setup:

1. On receiving (init, sid) from the environment Z, each party Pi checks
whether there exists a record of the form (DKG-done, Fpk, ski) in memory.
If not, then each Pi for i ∈ [t + 1] invokes FDKG in order to generate
(DKG-done, Fpk, ski).

In case Pi observes the DKG to fail, it transfers the appropriate certifi-
cate.

Signing:

1. Upon receiving the instruction to sign a message m with fresh signature
ID sigid, each Pi does the following in parallel:

a. Invoke FDKG(G, n, t) to generate (DKG-done, FR, ki)

b. Invoke FVSS(G, n, t) to generate (VSS-success, Cϕ, fϕ(i), f̂ϕ(i))
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c. Invoke FZSS(G, n, 2t) twice to generate (ZSS-success, Z0, z0(i), ẑ0(i))
and (ZSS-success, Z1, z1(i), ẑ1(i)).

This requires two broadcast rounds (when πDKG is used to realize FDKG).

2. If any of the VSS, ZSS, or DKG invoked above terminated with a
cheat (sid, cert = (type, c)), then Pi terminates with output sigouti =
(type ∈ {cheat,⊥}, j) as appropriate, and transfers this output to all
other parties.

3. Otherwise, each Pi does the following:

a. Compute R = FR(0), and parse (rx, ry) = R

b. Prepare signature shares

wi = fϕ(i) · SHA2(m) + fϕ(i) · ski · rx + z0(i)

and
ui = fϕ(i) · ki + z1(i)

c. Derive the Pedersen commitment randomness for the publicly com-
mitted versions of the above values,

ρi,0 = −

(
SHA2(m) · f̂ϕ(i) + ẑ0(i)

)
rx

and ρi,1 = −ẑ1(i)

Prepare proofs that the above values were computed honestly:

πw
i ← PG,Ĝ

prod ((f
ϕ(i), f̂ϕ(i)), (ski, 0), (f

ϕ(i) · ski, ρi,0))

πu
i ← PG,Ĝ

prod ((f
ϕ(i), f̂ϕ(i)), (ki, 0), (ki · fϕ(i), ρi,1))

d. Compute digest D = CRHF(Fpk, FR, Z0, Z1, C
ϕ)

e. Invoke FBC−IA(n, t, i) with (deal, sid, (wi, ui, π
w
i , π

u
i )).

f. Invoke FBC−IA(n, t, i) with (deal, sid, D).

4. If any party transferred a cheat (sid, cert = (type, c)) in place of a
standard broadcast in the above round, terminate with output sigouti =
(type ∈ {cheat,⊥}, c) as appropriate. Otherwise, upon completion of
the broadcast round, if ∃j ∈ [t+1] such that the FBC instance in which
Pj was the dealer resulted in an abort of type ∈ {cheat,⊥}, then Pi

terminates with output sigouti = (type, j), and invokes the Transfer
interface of FBC when invoked with this sid again.

5. Otherwise, upon termination of the broadcast phase, each Pi does the
following:
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a. Parse t+1 signatures on R from the previous broadcast round, store
this collection as ϖBC.

Any party Pj that broadcast a conflicting D∗ ̸= D can be identified
as a cheater with the following certificate:

Ωj
i = (bad-context, ϖBC, D

∗)

where σPKI
j is the signature that accompanied the broadcast value

D∗ from Pj .

b. For each j ∈ [n], check Pj ’s proof by defining the statements

stmtj0 =
(
wj ·G−

(
Z0(j) + SHA2(m) · Cϕ(j)

))
/rx

and
stmtj1 = uj ·G− Z1(j)

and validating the proofs πw
j , π

u
j against them by checking

V G,Ĝ
prod (Cϕ(j), pkj , stmtj0, π

w
j ) = V G,Ĝ

prod (Cϕ(j), Rj , stmtj1, π
u
j ) = 1

A non-verifying proof yields the following certificate of cheating:

Ωj
i =

(
bad-tuple, j, (Fpk, FR, Z0, Z1, C

ϕ, ϖBC), (wj , uj , π
w
j , π

u
j , σ

PKI
j )

)
Ωj

i =
(
bad-tuple, j, (Fpk, FR, Z0, Z1, C

ϕ), (wj , uj , π
w
j , π

u
j , σ

PKI
j )

)
Pi terminates with output sigouti = (cheat, j). In order to transfer
this cheat certificate, Pi sends Ωj

i along with invoking the transfer
interface of t + 1 instances of FBC−IA from the previous round in
which the output outi contains the same D.

c. In case all checks pass, compute

s =

∑
i∈[n]

λi · wi∑
i∈[n]

λi · ui

and output the ECDSA signature (rx, s)

The formal theorem appears below, whose proof is deferred to the full ver-
sion.

Theorem 8.3. In the (FBC,FVSS,FZSS,FDKG)-hybrid model, πECDSA(G, n, t) UC-
realizes FECDSA(G, n, t) against a malicious adversary that corrupts up to t < n/2
parties.

The above protocol requires three broadcast rounds, which when instantiated
with πBC yields a protocol that requires six point-to-point rounds in total.
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9 Performance

We give an accounting of the costs associated with a non-aborting instance of
our protocol below. We give both asymptotic costs, as well as concrete costs for
the commonly used 128-bit security level, i.e. for a 256-bit elliptic curve.

• Broadcast requires two p2p rounds, and broadcasting a message m in-
duces O(|m| + λ) bits of communication between each pair of parties (λ
to account for the dealer’s signature).

• VSS requires a single broadcast round (meaning two p2p rounds), in which
t+1 parties broadcast n ciphertexts and a degree t polynomial each. This
induces O(tnλ) communication between each pair of parties. Concretely,
each party sends 48n2 + 32t+ 64 bytes to every party for a 256-bit curve
with ElGamal encryption. Computation for each party is dominated by
interpolating the t different G[X] polynomials when checking consistency
of their decrypted share with the corresponding public value—nt curve
multiplications in total.

• DKG requires a VSS instance, and another broadcast (four p2p rounds
total) of a hash digest, an elliptic curve point, and a NIZK proving knowl-
edge of two discrete logarithms. The communication complexity in addi-
tion to the VSS is O(nλ) between each pair of parties, which is entirely
subsumed by VSS. Concretely, each party sends 48n2 + 32t + 192 bytes
to every party for a 256-bit curve. Computation in addition to VSS is
dominated by checking t NIZKs that each prove knowledge of two discrete
logarithms in the curve—equivalent to verifying 2t signatures, subsumed
by VSS overall.

• ECDSA setup is equivalent to a single DKG instance.

• ECDSA signing invokes three VSS instances and a single DKG, and
additionally has each party broadcast signature shares (two Zq values)
with accompanying NIZKs. The dominating communication complexity
term is that of the (O(1) number of) VSS instances, as the signature
shares and NIZKs only requires O(nλ) bits between each party. Con-
cretely, each party sends 192n2 + 128n + 960 bytes to every party for a
256-bit curve. Computation, in addition to the VSS and DKG, is dom-
inated by verifying the 2n NIZKs that each prove product relations of
Pedersen commitments—equivalent to verifying 18n signatures.

Note that an aborting instance costs strictly less than a successfully termi-
nating instance. This is in contrast to alternative approaches like Canetti et
al. [CGG+20] whose protocol has a dedicated cheater identification phase in
case of a cheat.

Empirical Wallclock Time. We implemented our protocol in Rust, and
benchmarked it on commodity hardware (Intel i7 14700, 32GB RAM). We av-
eraged our numbers over 100 samples. We plot the results in Figure 1. To give
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Figure 1: Comparison of signing times for state of the art ECDSA signing
protocols, DKLs24 [DKLs24] and CGGMP20 [CGG+20]

a point of comparison, we benchmarked the state of the art dishonest majority
(non-IA) protocol of Doerner et al. [DKLs24] in the same environment. We also
include the running times of the only other threshold ECDSA protocol that
offers identifiable abort, that of Canetti et al. [CGG+20] (numbers taken from
Haitner et al. [HLNR23], which does not include the cost of the extra identifica-
tion phase or broadcast channels). We varied the corruption threshold t from 1
to 10 for our comparison, meaning that the number n of signers in our protocol
is about twice as many as that of Doerner et al. and Canetti et al. for the same
threshold.

Note that this comparison is for the computation time alone, and does not
include network costs. In the optimistic execution path where no party cheats,
the fact that our protocol runs in six (p2p) rounds means that network latency
will likely dictate wallclock time—compare this with only three p2p rounds
for Doerner et al., or four broadcast rounds for Canetti et al. However, given
that our protocol is meant to be used in scenarios where protocol deviations and
failures are rampant, it is more interesting to compare the pessimistic paths. The
worst slowdown an adversary can inflict on our protocol is to force each round to
take the maximal possible time just under the timeout threshold. Therefore if
the network timeout is set to NTO, then our protocol terminates in time roughly
6NTO in the worst case. The protocol of Canetti et al. terminates in time 4×
the worst case timeout complexity of the underlying broadcast channel, which
must also account for the fact that honest signing with their protocol can take
several seconds for computation alone. The protocol of Doerner et al. does
not achieve identifiability, and can be induced to terminate without output if a
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single party deviates from its instructions.
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A Verifiable Decryption

We detail an El-Gamal based encryption scheme that allows for verifiably de-
cryptable ciphertexts. Besides the standard key generation, encryption, and de-
cryption algorithms, a verifiably decryptable scheme also consists of an “open”
algorithm that outputs a proof of correct decryption, and a verification algo-
rithm to check such proofs.

Protocol A.1. : Verifiably Decryptable Encryption Scheme

These protocols are parameterized by a security parameter λand an elliptic
curve G = (G, G, q) such that q ∈ Ω(2λ). The message space is Z2

q, i.e. a
pair of Zq elements. The protocols make use of a simulation extractable
NIZK proof system (Pprod, Vprod) to prove that a Diffie-Hellman tuple is well-
formed. Additionally, they make use of a hash function Hq : {0, 1}∗ 7→ Zq

that is assumed to implement a random oracle.

KeyGen(1λ): .

1. Sample sk← Zq, compute pk = sk ·G.

2. Output (sk, pk).

Encpk(m0,m1): .

1. Sample r ← Zq, compute R = r ·G.

2. Compute K = r · pk and pads k0 = Hq(0||K) and k1 = Hq(1||K).

3. Set ciphertexts ct0 = k0 +m0 and ct1 = k1 +m1.

4. Output (R, ct0, ct1)
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Decsk(ct): .

1. Parse (R, ct0, ct1) := ct

2. Compute K = sk ·R and pads k0 = Hq(0||K) and k1 = Hq(1||K).

3. Set messages m0 = ct0 − k0 and m1 = ct1 − k1.

4. Output (m0,m1)

Open(sk, ct): .

1. Parse (R, ct0, ct1) := ct

2. Compute K = sk ·R and pads k0 = Hq(0||K) and k1 = Hq(1||K).

3. Set messages m0 = ct0 − k0 and m1 = ct1 − k1.

4. Prove that (R, pk,K) is a DH tuple: πDH ← PDH(sk, (R, pk,K))

5. Set opening information πct = (K, πDH)

6. Output (m0,m1, πct)

Vrfy(ct,m0,m1, πct): .

1. Parse (R, ct0, ct1) := ct and (K, πDH) := πct

2. Set pads k0 = Hq(0||K) and k1 = Hq(1||K).

3. Verify that m0
?
= ct0 − k0 and m1

?
= ct1 − k1.

4. Verify that (R, pk,K) is a DH tuple: VDH(πDH, (R, pk,K))
?
= 1

5. Output 1 if all the above checks pass, 0 otherwise.

B Zero Sharing

We provide the zero-sharing protocol πZero for completeness.

Protocol B.1. πZero(G, n, t): Honest Majority Zero-sharing With IA

This protocol is parameterized by the party count n, the threshold t, and
the elliptic curve G = (G, G, q). The protocol runs once with parties
P1, . . . ,Pn, of which any t may be corrupt. The private output of this
protocol for Pi is (C, f(i), f̂(i)) where C ∈ G[X] is a common degree-t

polynomial, and f(i) · G + f̂(i) · Ĝ = C(i). This protocol assumes a PKI
and a broadcast protocol πBC, and makes use of an openable encryption

45



scheme (Enc,Dec,Open,Vrfy).
Differences from πVSS are highlighted like this.

Share:

1. On receiving (init, sid) from the environment Z, each party Pi checks
whether there exists a record of the form (sid, ·) in memory. If not, then
each Pi for i ∈ [t+ 1] does the following:

a. Sample two degree t polynomials fi, f̂i ← Zq[X], conditioned on fi(0) = f̂i(0) = 0.

b. Define polynomial Ci ∈ G[X] such that Ci(x) = fi(x) ·G+ f̂i(x) · Ĝ
c. Compute encrypted shares:

cti = {ctij ← EncpkPKIj
(fi(j), f̂i(j))}j∈[n]

d. Broadcast (Ci, cti)

This completes the first phase. Note that for every successfully ter-
minated broadcast instance j ∈ [t + 1], party Pi has a signed output
(sid, dealt, (Cj , ctj), σ

PKI
j ).

2. Upon completion of the broadcast round, if ∃j ∈ [t + 1] such that πBC

failed to produce output when Pj was the dealer, then Pi terminates
here and sends relevant failure certificate (outi, σ

PKI−o
i ) when activated

with this sid again.

3. Each party Pi does the following for j ∈ [t+ 1]:

a. Obtain fj(i), f̂j(i) = Decski(ctji)

b. Verify that fj(i) ·G+ f̂j(i) · Ĝ = Cj(i)

• If this fails, open the ciphertext by computing

ζji = (fj(i), f̂j(i), πct)← Open(ski, ctji)

and set

Ωj
i = (bad-ct, ζji, (sid, dealt, (Cj , ctj), σ

PKI
j ))

c. Verify that Cj is a degree-t polynomial, and that Cj(0) = 0. If this
verification fails, set

Ωj
i = (bad-poly, (sid, dealt, (Cj , ctj), σ

PKI
j ))
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If Ωj
i is defined for some j ∈ [t+ 1], then output (cheat-detected,Ωj

i )
and echo it to all parties. Otherwise, output

(success, C =
∑

i∈[t+1]

Ci, f(i) =
∑

j∈[t+1]

fj(i), f̂(i) =
∑

j∈[t+1]

f̂j(i))

.

C Supplementary material for PISA MPC

C.1 Ideal Functionality for IA

For the sake of completeness, we recap the ideal functionality for IA below.

Functionality C.1.

SFE with Identifiable Abort FIA. This functionality interacts with
n actively participating parties denoted by P1, . . . ,Pn and with an ideal
adversary S. It is also parameterized by a function f : X1×X2 · · ·×Xn → Y.

SFE: On receiving (compute, sid, xi), where xi ∈ Xi from every party Pi

for i ∈ [n],

1. Compute y := f({xi}i∈[n])

2. Send (candidate-output, sid, y) to S, and receive (stooge, sid, c) in re-
sponse.

3. If c is the index of a corrupt party, then send (abort, sid, c) to all parties.
Otherwise, send (output, sid, y) to all parties.

C.2 Compiler for dishonest majority

In the compiler in Section 5.2, we assumed that the same set of parties partic-
ipate in the starting protocol ΠIA as well as the compiled protocol ΠPISA. This
necessarily requires an honest majority, since FPISA can be realized only with an
honest majority. However, one could consider a setting where ΠIA is run among
a dishonest majority of participants, sayM = {P1, . . . ,Pm}, where m ≥ t+ 1;
while an extended set of participants N = {P1, . . . ,Pn}, where n ≥ 2t + 1 are
registered with FBC−IA (whereM⊂ N ).

Our compiler would not work in such a setting as it relies on there being an
honest majority of participants in ΠIA crucially in the last step, where a party
that is announced to be a cheater by t+ 1 parties executing ΠIA is implicated.
In a setting where there is a dishonest majority of participants in ΠIA, we pro-
pose that the starting protocol ΠIA must have a stronger guarantee, namely its
aborts must be publicly-verifiable [BDO14, SV15, BOSS20]. Publicly-verifiable
IA refers to the notion where as in IA, the honest parties agree on the identity
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of at least one corrupted cheater; furthermore any external party (say, an au-
ditor) can verify the correctness of computation or identify the cheating party,
typically by looking at the protocol transcript on a public bulletin board.

Below, we sketch a compiler that transforms a publicly-verifiable IA protocol
ΠPVIA among the parties in M in the FBC-hybrid model to Π′

PISA among the
parties in N in the FBC−IA-hybrid model. Similar to our Protocol 5.2, the
BC invocations in ΠPVIA are replaced with a BC-IA invocations in Π′

PISA. If
a party detects a cheat during a BC-IA invocation, this cheat is transferred.
Additionally the following steps are executed.

1. If a party inN obtains the dealer’s signed message as the output during a BC-
IA invocation, it initiates another BC-IA invocation as a dealer to echo this
message. If the echo BC-IA invocations of at least t+1 parties in N attest to
the same message m, then we certify m as being broadcast. Intuitively, this
is done to emulate the effect of m being included in the “public transcript”
of ΠPVIA.

2. An honest party inM who has not detected a cheat collects the outputs of
these echo BC-IA invocations.

If none of the BC-IA invocations abort, then output computation can be
carried out by parties in M identical to ΠPVIA. If this results in honest par-
ties obtaining the output y, they simply output y as output of Π′

PISA . Else,
the honest parties must have identified a common cheater, say Pc. Note that
although honest parties are in minority inM, they can convince an auditor of
the validity of the protocol transcript due to the following: For each message
of ΠPVIA, an honest party in M can use its collection of the outputs obtained
during the echo BC-IA invocations to show that this message has been attested
by at least (t+ 1) parties in N . This must hold due to the validity of the echo
BC-IA invocations by the (t+ 1) honest parties in N .

Therefore Pi can output (cheat, c) as output of Π′
PISA , with the correspond-

ing certificate to be transferred as the above collection for each message of ΠPVIA.
Note that this constitutes a valid proof of cheating as (a) the honest majority
in N ensures that the ‘public’ transcript cannot be forged, as each broadcast
message needs to be attested by at least (t+ 1) participants of N and (b) the
public verifiability of ΠPVIA guarantees that an auditor can detect the cheater by
inspecting the public transcript. This completes the description of our modified
compiler.
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