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Abstract: Cryptojacking, the unauthorised use of computing resources to mine cryptocurrency, has emerged as a critical

threat in today’s digital landscape. These attacks not only compromise system integrity but also result in increased costs,

reduced hardware lifespan, and heightened network security risks. Early and accurate detection is essential to mitigate

the adverse effects of cryptojacking. This study focuses on developing a semi-supervised machine learning (ML) approach

that leverages an autoencoder for feature extraction and a random forest (RF) model for classification. The objective

is to enhance cryptojacking detection while maintaining a balance between accuracy and interpretability. The proposed

methodology is further enhanced with explainable artificial intelligence (XAI) techniques such as local interpretable

model-agnostic explanations (LIME) to offer insights into model predictions. Results from datasets such as UGRansome

and BitcoinHeist indicate that the semi-supervised approach achieves accuracy rates ranging from 70% to 99%. The

study demonstrates that the proposed model provides an efficient, interpretable, and scalable solution for real-time

cryptojacking detection across various scenarios.

Key words: Cryptojacking detection, semi-supervised learning, explainable AI (XAI), malware analysis, blockchain

security

1. Introduction

Cryptojacking attacks have swiftly risen to prominence as a significant cybersecurity threat. These attacks

exploit computational power without consent, aiming to generate profits for attackers by secretly mining

cryptocurrencies [5]. Cryptojackers employ various methods, such as malicious websites, malware distribution,

compromised servers, and file-less techniques, to execute cryptocurrency mining scripts without the knowledge

or consent of victims. Cryptojacking malware manifests in both web-based and host-based variants [5, 24].

In-browser cryptojacking, where mining scripts run in visitors’ web browsers, has become increasingly prevalent

[24]. These attacks can lead to decreased system performance, increased energy consumption, and financial

losses for victims [5, 24]. The emergence of cryptojacking as a service (CaaS) has further facilitated easier

access to cryptojacking tools and infrastructure for cybercriminals [5], contributing to the proliferation of these

attacks and posing significant risks to individuals and organisations. In addition, the rise in cryptojacking
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malware is largely fueled by the growing interest in cryptocurrencies, particularly Bitcoin (BTC), which makes

tracking and understanding malicious activities challenging. Moreover, the limited research in the field highlights

a noticeable lack of novel datasets to address the issue of cryptojacking detection. As a result, proactive

measures, such as threat intelligence using machine learning (ML), datasets construction, and explainable

artificial intelligence (XAI), are essential for effectively mitigating the risks associated with cryptocurrency

mining attacks [5, 24]. This research seeks to overcome these limitations by developing a highly efficient detection

system for cryptojacking malware, ensuring enhanced protection for users’ devices and resources. The study

makes key contributions to the detection of web-based cryptojacking malware by addressing the limitations and

gaps present in existing research. These contributions collectively advance the field of cryptojacking detection,

offering novel insights and innovative features to improve the effectiveness of malware detection and analysis.

Generally, the lifecycle of web-based cryptojacking begins with the attacker registering with a service provider

to obtain a unique application programming interface (API) key [5]. This key is embedded into a malicious

script, which is then injected into a public website.

When unsuspecting users visit the compromised site, the script executes in the background, exploiting the

users’ device resources to mine cryptocurrency [5]. Since the script is tied to the attacker’s API key, the mined

cryptocurrency is automatically credited to them. This lifecycle highlights the stealthy and rapid proliferation

of web-based cryptojacking malware, posing a significant threat to users’ privacy and device security. Different

ML algorithms are employed to classify and detect crytojacking attacks. Unfortunately, the interpretability

of results poses challenges, prompting research into XAI techniques to make ML models more transparent,

interpretable, and understandable, thereby enhancing reliability and effectiveness in recognising and mitigating

cyberattacks [1]. While there has been extensive research on combating the spread of cryptojacking [12, 24]

there has been relatively little focus on early detection methods.

Traditional signature-based models are ineffective against new attacks, and studies have shown that over

68 % of infections spread extensively within breached networks before being detected [3]. And detecting crypto

ransomware within the first 30 minutes of infiltration could potentially save up to 95 % of costs [3]. Furthermore,

recent advancements suggest that monitoring system APIs, tracking registries, analysing file activities, and

examining network traffic metadata hold promise for identifying cryptomining attacks. Nevertheless, current

tools are primarily tested in simulated environments, and their effectiveness in real-world scenarios still needs to

be verified. Also, challenges persist in collecting sufficient data for training and obtaining accurate ground truths

with high precision. As such, this study uses the UGRansome [3] and BitcoinHeist [17] datasets to promptly

detect behavioural anomalies that may indicate cryptojacking to enable swift response and damage control. The

methodology utilises ML techniques, employing an autoencoder for feature selection and random forest (RF)

for classification. Following this, the study applies local interpretable model-agnostic explanations (LIME), an

XAI technique, to effectively predict and interpret cryptojacking features. Based on the provided context, the

main research question can be formulated as follows: How can ML techniques, specifically the combination of

autoencoders for feature selection and RF models for classification, be enhanced using XAI methods like LIME

to effectively predict and interpret cryptojacking activities?

The research evaluates the performance of autoencoder and RF models for early cryptojacking detection,

focusing on metrics such as accuracy, precision, recall, ROC, and F1 score to identify the most effective algo-

rithm in diverse cryptomining scenarios. It further enhances the interpretability of ML results by integrating

LIME, which provides deeper insights into feature importance and model predictions, uncovering the mecha-

nisms behind cryptojacking recognition. The research hypothesises that combining autoencoder and RF yields
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high detection performance, LIME improves explainability, and experimental datasets enable comprehensive

cryptojacking classification. Various studies have highlighted deficiencies in existing methods to detect crypto-

jacking [14]. For instance, DeCrypto Pro, a framework that selects the optimal ML algorithm based on system

resources is developed in [20]. The authors classified applications as benign or malicious using performance

counters like CPU usage, with a dataset containing both benign and malicious software. The results showed

F1-scores of 95.5 % for long short-term memory (LSTM), 97.62 % for RF, and 89.99 % for K-nearest neigh-

bor (KNN). The effectiveness of ML algorithms for detecting cryptojacking malware is experimented in [8].

Their dataset comprised 220 benign samples and 1,500 cryptojacking Windows portable executables (PE) from

VirusTotal. The study employed both static and dynamic analysis. The former uses models such as LSTM,

attention-based LSTM, and convolutional neural network (CNN), achieving an accuracy of 95 % [8].

The latter involves running the malware in a sandbox to capture system call sequences, resulting in a 99

% success rate. CryingJackpot, an intrusion detection system (IDS) for cryptojacking recognition is presented

in [13]. This IDS utilised unsupervised learning to analyse system events and network flows by employing

clustering algorithms such as K-means and DBSCAN. When evaluated on the CSECIC-IDS2018 dataset, it

achieved an F1-score of 82 %, with subsequent evaluations reaching an F1-score of 97 %. MinerGuard, an

artificial neural network (ANN) that monitors CPU usage to detect cryptojacking malware is demonstrated

in [27]. Their dataset consisted of 850 websites, and MinerGuard achieved an accuracy of 99 %, including

the detection of zero-day attacks. However, it relies on the development version of Google Chrome processes

API [27]. A hybrid approach used in [16] combines block list comparisons, static signatures, and dynamic

analysis. Tested on 1,000 samples, with 30 identified as malicious, their method achieved an accuracy of 99.6

%. Different ML models were employed to detect zero-days attacks by analysing traffic meta-data [4]. The

challenges of accurately selecting impactful features and the high rate of false alarms in ML are highlighted in

[4], emphasising the need for explainability techniques. XAI methods like local interpretable model-agnostic

explanations (LIME) offer valuable insights into key features that can potentially enhance the interpretability

of ML results for detecting zero-days attacks, such as cryptojacking [26]. Building on this, the study aims

to improve cryptojacking detection by utilising the UGRansome and BitcoinHeist datasets, which contain over

80,000 samples. Multiple detection models, including autoencoder, RF, and XAI, are evaluated based on metrics

such as accuracy, precision, recall, ROC, computational speed, and F1 score to identify the best-performing

model. Furthermore, these datasets are employed to apply various cryptojacking analysis approaches.

The goal is to demonstrate the potential of these datasets in facilitating effective cryptojacking detection.

Hence, the research proposes a hybrid/semi-supervised model to improve ML interpretability, offering a more

robust approach for detecting, classifying, predicting, and understanding cryptojacking. The limitations of

the existing literature on cryptojacking detection can be attributed to several key factors. First, many of the

current datasets are large, unstructured, and noisy, highlighting the need for the development of novel, well-

curated cryptojacking datasets. Second, a lack of interpretability in many approaches hampers the ability to

effectively identify malicious transactions, addresses, and activities specific to cryptocurrency mining. Finally,

there is a pressing need for researchers to explore advanced ML techniques for dimensionality reduction and

feature extraction to enhance detection capabilities and model performance [10, 14]. For example, while ML

has been employed to classify zero-day exploits using the UGRansome dataset [3, 25], specific characteristics

and interpretability of cryptojacking have yet to be noticed. In addition, certain methods, including recurrent

neural networks (RNNs) such as LSTM, gated recurrent unit (GRU), and simple RNN, heavily rely on legacy

datasets like UNSW-NB15 and NSL-KDD [15].
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This reliance may restrict their applicability to novel malware types. Although current detection meth-

ods show potential, their success may differ depending on the type of attacks, system setup, and operating

conditions. Even with improved detection methods, novel malware keeps changing, posing fresh hurdles that

demand ongoing research and innovation. The manuscript is structured as follows: Section 2 introduces the

proposed methodology by illustrating the experimental datasets. Section 3 presents the semi-supervised meth-

ods, including the selected ML algorithms, and evaluation metrics. Section 4 discusses the results using LIME.

Lastly, Section 5 concludes.

2. Methodology

Experimental steps delineating the research methodology for implementing the semi-supervised model consists

of pre-processing experimental datasets, refining features, choosing appropriate ML models, and carrying out

experimental tests to validate the selected approach (Figure 1). These steps have been stratified into (i) feature

engineering, (ii) data encoding, (iii) feature extraction, (iv) ML, and (v) LIME (Figure 1). This section outlines

the key characteristics and attributes of the experimental datasets.

Figure 1: The proposed semi-supervised ML Model.

2.1. The UGRansome dataset

The UGRansome dataset is a key resource for identifying zero-day exploits and ransomware [22, 28]. It is a

new cybersecurity dataset created in 2021. The dataset is unique in its inclusion of previously undocumented

zero-day attacks, covering a wide range of notorious ransomware families such as WannaCry, Locky, and Crypto

Locker, along with advanced persistent threats (APT) such as JigSaw, SamSam, and TowerWeb [3, 7, 25].

The original sample contains 207,533 data points, each characterised by 14 distinct attributes. The dataset

is selected for its large sample size, which supports effective training and testing of ML models [23]. The

UGRansome dataset is well-suited for cryptojacking detection because it includes previously undocumented

zero-day attacks, covering a variety of APTs [7, 21]. This makes it highly relevant for identifying emerging

attack patterns, including cryptojacking, which is often coupled with ransomware tactics. Compared to other

datasets, UGRansome is also designed for signature-based detection or dynamic analysis [3, 25]. The publicly

available dataset uses a CSV format with a total file size of 10.0 MB, including 17 ransomware families1. The

non-redundant version of the dataset contains a total of 149,043 instances.

1https://www.kaggle.com/datasets/nkongolo/ugransome-dataset/data
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2.2. The BitcoinHeist dataset

The BitcoinHeist dataset was created by collecting real-world bitcoin transaction data from multiple sources,

including public blockchain records and known cryptocurrency thefts or scams [2]. The dataset includes

transactions downloaded and parsed from January 2009 to December 2018 using a 24-hour interval2. Daily

transactions were extracted on the network to form the BTC graph [2]. Network edges that transferred less

than 0.3 BTC were filtered out [2]. In 24 ransomware families, at least one address appears in more than

one 24-hour time window. Crypto Locker has 13 addresses that appear more than 100 times each [2]. The

Crypto Locker address 1LXrSb67EaH1 appears for a maximum of 420 times [2]. Four addresses have conflicting

ransomware labels between Montreal and Padua data sources [2]. JigSaw APTs have two and one pay-to-script-

hash (P2SH) addresses that start with 3 in the Montreal and Padua data [2]. All other addresses are ordinary

addresses that start with 1. This dataset has 2,916,697 features with ten attributes (Table 1). It includes

different ransomware, covering many notorious families. The BitcoinHeist dataset includes features like income,

neighbors, weight, and loop, which can help model the transactional behavior of cryptocurrency wallets involved

in illicit activities, including cryptojacking (Table 1). It covers ransomware families like Cryptowall, Locky, and

WannaCry, which are closely related to cryptojacking since both exploit computational resources for financial

gain. Identifying ransomware wallet patterns may indirectly assist in detecting cryptojacking transactions [2].

Table 1: The BitcoinHeist dataset’s description

Attributes in the BitcoinHeist dataset
Column Description Type Definition Example
1 Address Qualitative Bitcoin address associated with

transactions.
1LJtBHHV5S

2 Year Quantitative Year when transactions oc-
curred.

2013

3 Day Quantitative Day of the year when the trans-
action occurred.

120

4 Length Quantitative Length of the transaction (num-
ber of characters).

350

5 Weight Quantitative Weight of transactions. 0.0025
6 Count Quantitative Number of transactions involv-

ing the same address.
10

7 Looped Quantitative Number of times the transaction
is repeated.

1

8 Neighbors Quantitative Number of distinct addresses. 5
9 Income Quantitative Total income received in the

transaction.
2.5 BTC

10 Label Qualitative Target transaction variable. Legitimate or illegitimate

2.3. Experimental datasets comparison

The UGRansome and BitcoinHeist datasets are available on Kaggle [2]. They contain ransomware data, making

them well-suited for training and testing ML models for cryptojacking recognition. The UGRansome dataset

provides a comprehensive set of features, such as timestamps, network protocols, ransomware families, and

monetary values in BTC. These attributes allow for the detailed analysis of ransomware behaviors across various

2https://www.kaggle.com/datasets/sapere0/bitcoinheist-ransomware-dataset
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attacks, including botnets, DoS, and port scanning. Similarly, the BitcoinHeist dataset includes attributes

like BTC addresses (e.g., P2SH), transaction years, income, and loops indicating legitimate or illegitimate

transactions. Therefore, the rich feature sets in both datasets will enable robust feature extraction, classification,

and prediction tasks, for effectively engineering and identifying cryptojacking activities.

2.4. Feature engineering

During the feature engineering phase, the study refined the UGRansome dataset by removing three irrelevant

attributes, namely flags, ports, and USD. This refinement process resulted in creating the UGRansome2024

dataset, a streamlined version aimed at reducing dimensionality and enhancing computational efficiency. Specific

BTC addresses within both datasets were renamed to align with their respective transaction types. For instance,

addresses starting with the number 1 were re-labelled as pay-to-public-key-hash (P2PKH), while those beginning

with 3 were renamed to pay-to-script-hash (P2SH) (Figure 1). Furthermore, addresses containing the character

bc1 were renamed to pay-to-witness-public-key-hash (P2WPKH) to reflect the SegWit upgrade in the blockchain

network [2]. The BitcoinHeist dataset underwent substantial optimisation, resulting in a streamlined dataset

with 80,978 rows and 10 columns (Figure 1). After a thorough examination, both datasets were free of missing

values and duplicate entries. The study uses a Python label encoder to encode categorical features in both

datasets.

3. Method

An autoencoder is used as a type of ANN for unsupervised and deep learning (DL). It consists of two main

components: an encoder that compresses the input data into a lower-dimensional representation, and a de-

coder that reconstructs the extracted input from this representation. Let X be the input data, fenc be the

encoding function, and fdec be the decoding function. The goal of training an autoencoder is to minimise

the reconstruction error, typically measured using a loss function such as mean squared error (MSE). In the

autoencoding process, θ represents the parameters of both the encoder and decoder, and n is the number of

training examples. The encoder maps the input data X to a lower-dimensional representation Z = fenc(X).

This process can be mathematically represented as shown in Equation 1.

Z = σ(WX+ b). (1)

Where W is the weight matrix, b is the bias vector, and σ is the activation function. The decoder then

reconstructs the original input X′ = fdec(Z) using the encoded representation Z . This is achieved through

another ANN layer, which maps Z back to X′ . The autoencoder learns a compact representation of the input

data by minimising the reconstruction error, capturing its essential features in the lower-dimensional space.

In turn, RF serves as an ensemble learning method employed for classification tasks [15]. It builds multiple

decision trees by randomly selecting subsets of the training data and features, which helps reduce overfitting

and improve generalisation performance [15]. The final prediction is determined by a majority vote among the

individual trees [15].

3.1. Anomaly detection techniques

The isolation forest (IF) algorithm is used to detect anomalies by isolating observations through random splits

[19]. The anomaly score S(x) for a given observation x is defined in Equation 2. For a given dataset X with

n observations and n features, the IF is described as
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S(x) =
E(h(x))

c(n)
, (2)

where E(h(x)) is the average path length of x , and c(n) is the average of unsuccessful searches depicted

in Equation 3.

c(n) = 2H(n− 1)− 2(n− 1)

n
, (3)

with H(i) being the i-th harmonic number illustrated in Equation 4.

H(i) =

i∑
k=1

1

k
. (4)

If S(x) is close to 1, then x is considered an outlier. Otherwise, it is considered normal. The autoencoder

detects anomalies based on the reconstruction error L(x, x̂), computed as the MSE between the original input

x and its reconstruction x̂ (Equation 5).

L(x, x̂) =
1

n

n∑
i=1

(xi − x̂i)
2. (5)

A threshold ϵ is set such that if L(x, x̂) > ϵ , the observation x is flagged as an anomaly. Pre-processing

these anomalies is crucial for enhancing the performance and reliability of the semi-supervised model. Anomalies,

such as outliers and missing values, could significantly skew results and lead to inaccurate predictions. The study

addressed these issues by pre-processing anomaly data, which improves accuracy and enhances the robustness

of the proposed model, making it less sensitive to noise and variations in the data. Furthermore, clean and well-

preprocessed data reduced training time and the computational resources required, making the entire modeling

process more efficient.

3.2. Local interpretable model-agnostic explanations (LIME)

LIME is utilised to explain individual predictions by perturbing the input data and observing changes in the

output [11]. The formula for computing the value (or weight) of a feature involves the following steps:

1. Generate perturbed samples

Perturbed samples are generated around the original input sample x , denoted as x̃ . The equation for

generating the perturbed samples is given by:

x̃i = x+ ϵi for each perturbed sample x̃i, (6)

where ϵi represents small perturbations added to the original sample x .

2. Model predictions

Next, predictions are made by the model on the perturbed samples x̃i . The prediction function is defined

in Equation 7.

ŷi = f(x̃i), (7)
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where f is the black-box model (in this case, the RF), and ŷi is the prediction for the perturbed sample

x̃i .

3. Weighting samples

The generated samples are weighted based on their similarity to the original instance x . The weighting

function is defined in Equation 8.

wi = exp

(
−D(x, x̃i)

2

2σ2

)
, (8)

where D(x, x̃i) is an Euclidean distance between x and x̃i , and σ is a kernel width parameter [11].

4. Linear model fitting

Finally, a linear model is fit to the weighted samples to interpret the predictions. The linear model is

defined in Equation 9.

g(z) =
∑
j

θjzj , (9)

where g(z) is the linear model, zj represents the features, and θj are the coefficients that represent the

importance of each feature [11]. This study implements LIME as a post-hoc method to generate explanations

after the autoencoder and RF models have been trained [6], (Figure 1). The aim is to enhance the interpretability

of cryptojacking detection in ML-based XAI systems.

3.3. Data pre-processing and feature selection

The datasets were pre-processed, reducing UGRansome to 149,043 and BitcoinHeist to 80,978 observations

(Figure 1). Addresses were labeled as legitimate, illegitimate, signature (S), synthetic signature (SS), and

anomaly (A) (Figure 1). And a 3-layer autoencoder selected key features from these addresses, with RF

classifying and predicting cryptojacking transactions (Figure 1). Lastly, LIME highlighted various relevant

features influencing cryptojacking attacks (Figure 1).

3.4. Parameters fine-tuning

Table 2 outlines the parameters of the proposed model. For the autoencoder, the parameters include the Adam

optimiser, MSE loss function, rectified linear unit (Relu) as the activation function for hidden layers, and

Sigmoid activation function for the output layer.

Table 2: Parameters of the proposed semi-supervised model

Parameters UGRansome (sec) BitcoinHeist (sec)
Autoencoder Adam, ReLU, MSE & Sigmoid 3.5790 4.763
RF Gini & Entropy 0.3281 2.438
LIME RF & Logit 1.0614 2.143

These parameters are used for training the autoencoder. The Adam optimiser is an adaptive learning

rate optimisation algorithm, MSE is a common loss function for regression tasks, and Relu and Sigmoid are

activation functions used in the ANN layers [9]. In turn, Gini and entropy measured the quality of an RF split,

with the number of trees in the forest set to 100 (see Table 2). The LIME model is set to RF with a Logit link
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function to generate local explanations for RF predictions (Table 2). The link function specifies transformations

applied to the output of the interpretable model [11, 26]. The study uses Python libraries such as numpy, Keras,

TensorFlow, pandas, matplotlib, seaborn, scikit-learn, and lime to implement the semi-supervised model. The

execution times for each ML models were measured as follows: autoencoder at 3.5790 seconds, RF at 0.3281

seconds, and LIME at 1.0614 seconds (Table 2).

3.5. Data split

The study used the train test split function from the Python scikit-learn library to randomly partition the

experimental datasets into a training and testing sets while preserving the original class distribution. The

training set comprised 80% of the total samples, and the testing set the remaining 20% [15]. Instead of creating a

separate validation set, four-fold cross-validation is employed to provide a comprehensive performance evaluation

of the models and to mitigate potential biases in the data split.

3.6. Evaluation metrics

The evaluation metrics used to assess the proposed model are detailed in Table 3, with true positive (TP),

true negative (TN), false positive (FP), and false negative (FN) defined as per [18]. Table 4 provides a

confusion matrix used to evaluate the classification performance in identifying cryptojacking transactions. In

this context, TP refers to transactions correctly classified as cryptojacking. FP denotes transactions incorrectly

identified as cryptojacking. Conversely, FN represents misclassified cryptojacking transactions. TN encompasses

transactions accurately classified as non-cryptojacking.

Table 3: Evaluation metrics and their descriptions

Equation Description

Accuracy = TP+TN
TP+TN+FP+FN Measures the proportion of correctly classified samples.

Precision = TP
TP+FP Represents the proportion of samples accurately classified as pos-

itive.

Recall = TP
TP+FN Represents the ratio of correctly classified positive samples to the

total number of actual positive samples.

F1 = 2× Precision×Recall
Precision+Recall The harmonic mean of precision and recall.

ROC = TP
TP+FN , FPR = FP

FP+TN Trade-off between TP rate (TPR/sensitivity) and FP rate/FPR
(1-specificity) across thresholds.

Table 4: Confusion matrix

Actual / predicted Positive (cryptojacking) Negative (non-cryptojacking)
Positive (cryptojacking) TP FP

Negative (non-cryptojacking) FN TN

4. Results and discussion

The semi-supervised model underwent evaluation using a four-fold cross-validation approach, and the reported

performance is an average across all folds. As highlighted in Table 5 and Figure 2, the findings offer valuable

insights into the effectiveness of the autoencoder and RF algorithms in classifying cryptojacking attacks. The RF

model demonstrated commendable performance across various metrics showcasing moderate to high accuracy

9
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and precision, hovering around 99% (Table 5 and Figure 2). This performance rate indicates its ability to

differentiate between different classes of cryptojacking effectively compared to other ML algorithms (Figure 3).

The graph in Figure 2 exhibits moderate level of recall, implying that it makes reasonable predictions overall

(Figure 3).

Table 5: Performance metrics of the semi-supervised model

Performance using the BitcoinHeist dataset
Prediction Precision Recall F1-score Support

0 0.80 0.99 0.89 52,447
1 0.61 0.05 0.09 13,553

Accuracy 80%
Performance using the UGRansome dataset

Prediction Precision Recall F1-Score Support
0 0.99 0.99 0.99 12,662
1 0.99 0.99 0.99 19,986
2 1.00 0.99 0.99 12,065

Accuracy 99%

(a) Evaluation metrics using UGRansome data. (b) Evaluation metrics using BitcoinHeist data.

Figure 2: Performance metrics for the BitcoinHeist and UGRansome datasets.

In contrast, the graph in Figure 4 illustrates autoencoder displaying lower performance metrics compared

to the RF. Figure 5 demonstrates the autoencoder’s classification challenges using the BitcoinHeist dataset

where target variables are encoded into 1 (legitimate transactions) and 0 (illegitimate transactions). The RF

experiments demonstrated performance levels on par with or surpassing those of the autoencoder model in most

trials.

4.1. XAI using LIME

Table 6 shows the cryptojacking features provided by LIME for transaction recognition. These features are

strongly related to cryptojacking because they help identify suspicious behaviors and patterns commonly

associated with illicit cryptocurrency mining.

10
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Figure 3: Comparison between model AUC.

(a) Autoencoder confusion matrix. (b) RF confusion matrix.

Figure 4: Confusion matrices for the autoencoder and RF models.

The feature values of address and income indicate compromised wallets and unexpected financial gains,

which are characteristic of cryptojacking operations (Table 6). Similarly, weight and loop values highlight

unusual computational loads and repetitive transactions, often used to conceal malicious activities (Table 6).

The family and threats values signify the malware type involved, with specific families linked to cryptojacking.

Features such as P2SH, P2PKH, and SegWit (e.g., Bech, P2WPKH) represent transaction formats often

exploited for cryptojacking activities, allowing attackers to blend their transactions within legitimate traffic,

(Table 6). Timestamp values help detect abnormal mining patterns over time, while IP addresses can provide

insights into the origin of these malicious activities, such as botnets.

11
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(a) Autoencoder confusion matrix. (b) RF confusion matrix.

Figure 5: Misclassification results of the BitcoinHeist dataset.

These features, when analysed in combination, offer a comprehensive view of cryptojacking detection and

classification (Table 6). In Figure 6, incomes recorded in BTC contributed to illegitimate transaction prediction

by approximately 24%. Figure 7 shows that 100% of signature (S) attack families with seed addresses contribute

to this prediction. Figure 8 illustrates BTC features that contribute to the prediction of seed addresses in

cryptojacking detection. The figure emphasizes significant features such as expended addresses and network

protocol, which strongly influence the model’s decisions when identifying SegWit transactions. The quantitative

values of these features provide insight into their contributions, enhancing the model’s ability to detect signature

(S) attacks with high accuracy. This capability is essential for enabling timely interventions and mitigating the

damage caused by malicious cryptomining activities.

Table 6: LIME’s features values for cryptojacking recognition

Feature Value 1 Value 2 Value 3 Value 4 Prediction Probability
Address 1.00 - - - Legitimate 76%
Income 300.00 - - - Illegitimate 24%
Weight 0.20 - - - Legitimate 25%
Loop 15.00 - - - Illegitimate 24%
Family 1.40 1.40 - 1.40 Signature (S) 100%
Threats 0.20 0.20 - 0.20 Signature (S) 30%
BTC 5.10 3.50 - - Signature (S) 5%
Seed address 3.50 - - - Signature (S) 100%
P2SH 1.40 - - - SegWit 100%
Bech 0.20 - - - SegWit 30%
P2PKH 5.10 - - - SegWit 100%
P2WPKH 3.50 - - - SegWit 100%
Timestamp 5.10 - 5.10 - Signature (S) 100%
IP 3.50 - - - Signature (S) 3%

12
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Figure 6: LIME results using the BitcoinHeist dataset.

Figure 7: Prediction results using the BitcoinHeist dataset.

Figure 8: Transaction prediction using LIME.

4.2. Discussion

This study distinguishes itself from previous research in several key aspects. While Mani et al. [20] and

Darabian et al. [8] focused on the application of ML classifiers such as LSTM, RF, and K-NN for web-based

and host-based cryptojacking detection, our research innovatively combines autoencoders, RF, and LIME,

addressing both high detection accuracy and model interpretability. This contrasts with studies like Gomes

et al. [13], who employed unsupervised learning techniques like K-means and DBSCAN for cryptojacking

detection, but did not integrate interpretability into the process. Wu et al. [27] used ANN models to monitor

CPU usage for cryptojacking detection, with a focus on performance in web-based attacks, but did not include

interpretability or a semi-supervised learning approach [27]. Khan Abbasi et al. [16] proposed a hybrid method

with blocklist comparisons and dynamic analysis to detect host-based cryptojacking, yet their focus is more on
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improving performance through a combination of techniques rather than interpretability [16]. In comparison,

the proposed study emphasises not only detection accuracy and anomaly detection through autoencoders, but

also offers insights into feature contributions using LIME, which is particularly important for understanding the

underlying factors driving cryptojacking activity, such as BTC incomes and signature (S) attacks through seed

addresses. Thus, while prior works focus primarily on detection accuracy, our approach enhances transparency

and adaptability with a semi-supervised framework, better suited for real-world applications with limited labeled

datasets.

5. Conclusion

This study aimed to investigate how advanced ML techniques, specifically autoencoder, RF, and LIME, can be

effectively combined to detect and understand cryptojacking attacks using the UGRansome and BitcoinHeist

datasets. The research question is addressed through a series of evaluations and analyses. The findings

demonstrate that the RF model achieves commendable performance across various metrics, showcasing high

accuracy and precision. The model exhibited moderate recall, indicating reasonable overall predictions, whereas

the autoencoder displayed lower performance metrics. Integrating LIME provides more profound insights into

feature values and model predictions, enhancing the interpretability of the ML results. Specifically, BTC

incomes with seed addresses contributed to illegitimate transactions. The study supports the hypothesis that

the RF model, combined with LIME, offers a robust and interpretable approach to cryptojacking recognition,

outperforming the autoencoder in this context. The blockchain specific findings highlight the model’s utility in

analysing blockchain transactions using experimental datasets. These insights can lead to timely interventions

and mitigation of the damage caused by malicious cryptomining activities. Future research should explore

the scalability of these models in more diverse and extensive datasets to ensure comprehensive and practical

cryptojacking recognition.
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[6] Marilyn Bello, Rosaĺıs Amador, Maŕıa-Matilde Garćıa, Javier Del Ser, Pablo Mesejo, and Óscar Cordón. The level

of strength of an explanation: A quantitative evaluation technique for post-hoc xai methods. Pattern Recognition,

page 111221, 2024.

[7] I. Chaudhary and S. Adhikari. Ransomware detection using machine learning techniques. Researcher CAB: A

Journal for Research and Development, 3(1):96–114, 2024. . URL https://doi.org/10.3126/rcab.v3i1.68424.

14

https://doi.org/10.1007/978-3-319-73951-9_5
https://doi.org/10.3126/rcab.v3i1.68424


/Turk J Elec Eng & Comp Sci

[8] Hamid Darabian, Sajad Homayounoot, Ali Dehghantanha, Sattar Hashemi, Hadis Karimipour, Reza M Parizi, and

Kim-Kwang Raymond Choo. Detecting cryptomining malware: a deep learning approach for static and dynamic

analysis. Journal of Grid Computing, 18:293–303, 2020.

[9] L Dhanya and R Chitra. A novel autoencoder based feature independent ga optimised xgboost classifier for iomt

malware detection. Expert Systems with Applications, 237:121618, 2024.

[10] Omar Dib, Zhenghan Nan, and Jinkua Liu. Machine learning-based ransomware classification of bitcoin transactions.

Journal of King Saud University-Computer and Information Sciences, 36(1):101925, 2024.

[11] Diogo Gaspar, Paulo Silva, and Catarina Silva. Explainable ai for intrusion detection systems: Lime and shap

applicability on multi-layer perceptron. IEEE Access, 12:30164–30175, 2024. .

[12] Hadi Gharavi, Jorge Granjal, and Edmundo Monteiro. Post-quantum blockchain security for the internet of things:

Survey and research directions. IEEE Communications Surveys Tutorials, 26(3):1748–1774, 2024. .

[13] Gilberto Gomes, Luis Dias, and Miguel Correia. Cryingjackpot: Network flows and performance counters against

cryptojacking. In 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA), pages

1–10. IEEE, 2020.

[14] Laith M Kadhum, Ahmad Firdaus, Syifak Izhar Hisham, Waheed Mushtaq, and Mohd Faizal Ab Razak. Features,

analysis techniques, and detection methods of cryptojacking malware: A survey. JOIV: International Journal on

Informatics Visualization, 8(2):891–896, 2024.

[15] Sydney Mambwe Kasongo. A deep learning technique for intrusion detection system using a recurrent neural

networks based framework. Computer Communications, 199:113–125, 2023.

[16] Muhammad Haris Khan Abbasi, Subhan Ullah, Tahir Ahmad, and Attaullah Buriro. A real-time hybrid approach

to combat in-browser cryptojacking malware. Applied Sciences, 13(4):2039, 2023.

[17] Amit Kumar, Neha Sharma, Rahul Chauhan, Kireet Joshi, Retinderdeep Singh, and Meet Kumari. Detecting

ransomware in bitcoin network: Experimental insights. In 2024 IEEE 3rd World Conference on Applied Intelligence

and Computing (AIC), pages 1349–1354, 2024. .

[18] Chao Liu, Boxi Chen, Wei Shao, Chris Zhang, Kelvin K. L. Wong, and Yi Zhang. Unraveling attacks to machine-

learning-based iot systems: A survey and the open libraries behind them. IEEE Internet of Things Journal, 11(11):

19232–19255, 2024. .

[19] Tao Liu, Zhen Zhou, and Lijun Yang. Layered isolation forest: A multi-level subspace algorithm for improving

isolation forest. Neurocomputing, 581:127525, 2024.

[20] Ganapathy Mani, Vikram Pasumarti, Bharat Bhargava, Faisal Tariq Vora, James MacDonald, Justin King, and

Jason Kobes. Decrypto pro: Deep learning based cryptomining malware detection using performance counters. In

2020 IEEE International conference on autonomic computing and self-organizing systems (ACSOS), pages 109–118.

IEEE, 2020.

[21] Elodie Ngoie Mutombo and Mike Wa Nkongolo. Blockchain security for ransomware detection. arXiv preprint

arXiv:2407.16862, 2024.

[22] Steven Jabulani Nhlapo and Mike Nkongolo Wa Nkongolo. Zero-day attack and ransomware detection. arXiv

preprint arXiv:2408.05244, 2024.

[23] Mike Nkongolo. Ransomware detection dynamics: Insights and implications. arXiv preprint arXiv:2402.04594,

2024.

[24] Muhammad Saad and David Mohaisen. Analyzing in-browser cryptojacking. IEEE Transactions on Dependable

and Secure Computing, 21(6):5448–5460, 2024. .

[25] M. Tokmak. Deep forest approach for zero-day attacks detection. In S. Tasdemir and İ. A. Ozkan, editors,
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