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Abstract. In this paper, we study the distribution of the gap between terms

in an addition chain. In particular, we show that if 1, 2, . . . , sδ(n) = n is an

addition chain of length δ(n) leading to n, then

sup
1≤l≤δ(n)

(sl+k − sl) � k
n

δ(n)

and

inf
1≤l≤δ(n)

(sl+k − sl) � k
n

δ(n)

for fixed k ≥ 1.

1. Introduction

The notion of an addition chain producing n ≥ 3, introduced by Arnold Scholz,
is a sequence of numbers of the form

1, 2, . . . , sk−1, sk = n

where each term in the sequence is generated by adding two earlier terms and
with repetition allowed. Formally each term in the addition chain is of the form
sk = si + sj (sk > 1) with i ≤ j < k, and the number of terms in the sequence
(excluding 1) is the length of the chain. The length of the smallest such chain
producing n is the shortest length of the addition chain. It is a well-known problem
to determine the length of the shortest addition chain producing numbers 2n − 1
of special forms. A well-known conjecture on the subject, due to Arnold Scholz,
purports:

Conjecture 1.1. Let ι(n) for n ≥ 3 denote the length of the shortest addition
chain producing n, then the inequality

ι(2n − 1) ≤ n− 1 + ι(n)

holds for all n ≥ 2.

The conjecture was studied fairly soon after it was published by Alfred Brauer
when, who obtained some weaker bounds [1]. There had also been amazing com-
putational work to verify the conjecture [2].

Addition chain is a classic concept in number theory that plays a crucial role in
various areas of computational mathematics, including algorithmic number theory,
cryptography, and combinatorics. The study of addition chains has deep impli-
cations in the efficiency of algorithms that require repeated summations or the
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representation of numbers through elementary operations, such as those encoun-
tered in the computation of exponentiations or the efficient generation of large
prime numbers.

Despite their fundamental nature, addition chains are known for their complexity
and subtlety, particularly in their asymptotic properties. The length of an addition
chain, denoted by δ(n), has been extensively studied, researchers trying to under-
stand the upper and lower bounds of δ(n) and to determine the most efficient chains
for large n.

In this work, we study the distribution of the gaps between terms in an addition
chain. Specifically, we obtain bounds for the largest and smallest gap that can occur
between terms, providing information on their asymptotic behavior as a function
of n and the length of the chain δ(n). Our main results established that for fixed
k ≥ 1,

sup
1≤l≤δ(n)

(sl+k − sl)� k
n

δ(n)

and
inf

1≤l≤δ(n)
(sl+k − sl)� k

n

δ(n)
.

2. The regulators and determiners of an addition chain

In this section, we recall the notion of an addition chain and introduce the notion
of the generators of the chain and their accompanying determiners and regulators.

Definition 2.1. Let n ≥ 3, then by an addition chain of length k− 1 producing n,
we mean the sequence

1, 2, . . . , sk−1, sk

where each term sj (j ≥ 3) in the sequence is the sum of two earlier terms i.e
sk = si + sj (sk > 1) with i ≤ j < k, with the corresponding sequence of partition

2 = 1 + 1, . . . , sk−1 = ak−1 + rk−1, sk = ak + rk = n

where ai+1 = ai + ri and ai+1 = si for 2 ≤ i ≤ k. We call the partition ai + ri the
ith generator of the chain for 2 ≤ i ≤ k. We call ai the determiner and ri the
regulator of the ith generator of the chain. We call the sequence (ri) the regulators
of the addition chain and (ai) the determiners of the chain for 2 ≤ i ≤ k. We call
the subsequence (sjm) for 2 ≤ j ≤ k and 1 ≤ m ≤ t ≤ k a truncated addition chain
producing n.

At any rate, we do not expect the regulators to be a part of the chain, although
the determiners must be the terms in the chain.

Lemma 2.2. Let 1, 2, . . . , sk−1, sk be an addition chain producing n ≥ 3 with
associated generators

2 = 1 + 1, . . . , sk−1 = ak−1 + rk−1, sk = ak + rk = n.

Then the following relation for the regulators

k∑
j=2

rj = n− 1

hold.
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Proof. We notice that rk = n− ak. It follows that

rk + rk−1 = n− ak + rk−1

= n− (ak−1 + rk−1) + rk−1

= n− ak−1.

Again we obtain from the following iteration

rk + rk−1 + rk−2 = n− ak−1 + rk−2

= n− (ak−2 + rk−2) + rk−2

= n− ak−2.

By iterating downwards in this manner the relation follows. �

Corollary 2.1. Let n ≥ 2 be fixed positive integer and let 1, 2, . . . , sδ(n)−1, sδ(n) =
n be an addition chain producing n and of length δ(n), with associated sequence
of generators

1 + 1, s2 = a2 + r2, . . . , sδ(n)−1 = aδ(n)−1 + rδ(n)−1, sδ(n) = aδ(n) + rδ(n) = n

then
min{rl}δ(n)l=1 �

n

δ(n)
and max{rl}δ(n)l=1 �

n

δ(n)
.

We now launch a result which turns out to be useful for constructing the shortest
addition chain. In current studies, it has been observed that the regulators play a
major role in deciding subsequent terms in an addition chain. The following result
gives a measure of the scale of our choice of regulators. Precisely, it puts a lower and
an upper threshold on the magnitude of the choice of regulators for the generators
of the shortest addition chain leading to a fixed number n ≥ 2.

Theorem 2.3. Let n ≥ 2 be fixed positive integer and let 1, 2, . . . , sι(n)−1, sι(n) =
n be the shortest addition chain producing n and of length ι(n), with associated
sequence of generators

1 + 1, s2 = a2 + r2, . . . , sι(n)−1 = aι(n)−1 + rι(n)−1, sι(n) = aι(n) + rι(n) = n

then
min{rl}ι(n)l=1 �

n

log n
and max{rl}ι(n)l=1 �

n

log n
.

In particular, the magnitude of the regulators in the generator of the shortest addi-
tion chain producing n must satisfy � n

logn as n −→∞.

Proof. The claim follows using the fact that the length ι(n) of the shortest addition
chain leading to n satisfies ι(n) � log n. �

Theorem 2.3 is crucial both in theoretical analysis and for computational pur-
poses because it provides precise bounds for the size of the regulators of the gen-
erators of an addition chain. These bounds - characterized by their dependence on
the length of the chain and the magnitude n offer key insights into the structure of
addition chains, which is fundamental to their efficient construction and analysis.

From a theoretical point of view, the theorem establishes that the minimum and
maximum scale of the regulators of an addition chain are on the order of n

δ(n) . This
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result rigorously quantifies the regularity and variability within the addition chains
and ensures that the magnitude of the regulators cannot deviate significantly from
this scale.

On the computational side, these results have direct implications for the con-
struction of addition chains. The bound on the regulators guarantees that efficient
addition chains can be systematically constructed without using ”large” regulators
for each generator, which could otherwise increase computational costs. Further-
more, the bounds provide a way to assess the optimality of a given addition chain.

Theorem 2.4. Let n ≥ 2 be fixed positive integer and let 1, 2, . . . , sδ(n)−1, sδ(n) = n
be an addition chain producing n and of length δ(n), with associated sequence of
generators

1 + 1, s2 = a2 + r2, . . . , sδ(n)−1 = aδ(n)−1 + rδ(n)−1, sδ(n) = aδ(n) + rδ(n) = n

then

min
1≤l≤δ(n)

(sl+1 − sl)�
n

δ(n)
and max

1≤l≤δ(n)
(sl+1 − sl)�

n

δ(n)
.

Proof. Let n ≥ 2 be a fixed positive integer and consider an addition chain
1, 2, . . . , sδ(n)−1, sδ(n) = n producing n and of length δ(n), with associated sequence
of generators

1 + 1, s2 = a2 + r2, . . . , sδ(n)−1 = aδ(n)−1 + rδ(n)−1, sδ(n) = aδ(n) + rδ(n) = n

and put (aj) and (rj) to be the sequence of determiners and regulators, respectively,
in the chain. We make the following observations: sδ(n)−1 = aδ(n) = aδ(n)−1 +

rδ(n)−1 = sδ(n)−2 + rδ(n)−1 = aδ(n)−2 + rδ(n)−2 + rδ(n)−1 = · · · = 1 +
δ(n)−1∑
j=1

rj =

n + 1 − rδ(n), where we have used Lemma 2.2. Similarly, we can write aδ(n)−1 =

1+
δ(n)−2∑
j=1

= n+1−rδ(n)−rδ(n)−1. Thus by induction, we can write al = n+1−
δ(n)∑
j=l

rj

for each 3 ≤ l ≤ δ(n). We observe that sl+1−sl = al+2−ai+1 =
δ(n)∑
i=l+1

ri−
δ(n)∑
i=l+2

ri =

rl+1. By corollary 2.1, we deduce that

min
1≤l≤δ(n)

(sl+1 − sl) = min{rl+1}δ(n)l=1 �
n

δ(n)

and

max
1≤l≤δ(n)

(sl+1 − sl) = max{rl+1}δ(n)l=1 �
n

δ(n)
.

�

We now extend Theorem 2.4 concerning the gap between consecutive terms in
an addition chain to the gap between terms in the chain that are not necessarily
consecutive.

Theorem 2.5. Let n ≥ 2 be fixed positive integer and let 1, 2, . . . , sδ(n)−1, sδ(n) = n
be an addition chain producing n and of length δ(n), with associated sequence of
generators

1 + 1, s2 = a2 + r2, . . . , sδ(n)−1 = aδ(n)−1 + rδ(n)−1, sδ(n) = aδ(n) + rδ(n) = n
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then

sup
1≤l≤δ(n)

(sl+k − sl)� k
n

δ(n)

and

inf
1≤l≤δ(n)

(sl+k − sl)� k
n

δ(n)

for fixed k ≥ 1.

Proof. Let n ≥ 2 be a fixed positive integer and consider an addition chain
1, 2, . . . , sδ(n)−1, sδ(n) = n producing n and of length δ(n), with associated sequence
of generators

1 + 1, s2 = a2 + r2, . . . , sδ(n)−1 = aδ(n)−1 + rδ(n)−1, sδ(n) = aδ(n) + rδ(n) = n

and put (aj) and (rj) to be the sequence of determiners and regulators, respectively,
in the chain. We make the following observations: sδ(n)−1 = aδ(n) = aδ(n)−1 +

rδ(n)−1 = sδ(n)−2 + rδ(n)−1 = aδ(n)−2 + rδ(n)−2 + rδ(n)−1 = · · · = 1 +
δ(n)−1∑
j=1

rj =

n + 1 − rδ(n), where we have used Lemma 2.2. Similarly, we can write aδ(n)−1 =

1+
δ(n)−2∑
j=1

= n+1−rδ(n)−rδ(n)−1. Thus by induction, we can write al = n+1−
δ(n)∑
j=l

rj

for each 3 ≤ l ≤ δ(n). We observe that sl+k − sl = al+k+1 − ai+1 =
δ(n)∑
i=l+1

ri −

δ(n)∑
i=l+k+1

ri =
l+k∑
i=l+1

ri. It follows that sl+k − sl ≥ k min{ri}l+ki=1+1. By corollary 2.1,

we deduce that

sup
1≤l≤δ(n)

(sl+k − sl) ≥ k sup
1≤l≤δ(n)

min{ri}l+ki=1+1 � k
n

δ(n)
.

Similarly, we deduce that sl+k − sl ≤ k max{ri}l+ki=l+1 and by Corollary 2.1 we get

inf
1≤l≤δ(n)

(sl+k − sl) ≤ k inf
1≤l≤δ(n)

max{ri}l+ki=1+1 � k
n

δ(n)

thereby ending the proof. �

Utility of Results in Cryptography

The study of gaps between terms in an addition chain, sl+1−sl, has profound im-
plications for both the efficiency and security of cryptographic algorithms. Addition
chains are critical for minimizing the computational cost of modular exponentia-
tion, gx mod p, and scalar multiplication in elliptic curve cryptography (ECC),
kP . These operations are foundational to protocols such as RSA, Diffie-Hellman,
and ECC-based schemes.

Efficiency in Cryptographic Computations. Theoretical bounds on sl+1 − sl
directly inform the construction of addition chains with optimal efficiency. Smaller,
controlled gaps reduce the number of squaring and multiplication operations, lead-
ing to faster modular exponentiation and scalar multiplication. For instance, in
RSA key generation, efficient exponentiation can significantly reduce runtime for
large key sizes, improving overall performance.
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Side-Channel Attack Resistance. Irregular or randomized gaps disrupt side-
channel attack vectors, such as timing and power analysis, which exploit predictable
computation patterns. By characterizing and bounding these gaps, our results en-
able the design of addition chains that balance computational efficiency with ob-
fuscation, adding an additional layer of security to cryptographic implementations.

Broader Implications. Our findings provide a theoretical framework for ana-
lyzing and optimizing addition chains under practical cryptographic constraints.
This contributes to both the design of efficient cryptographic algorithms and the
development of secure implementations resistant to side-channel attacks.
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