
The Meta-Complexity of Secret Sharing*

Benny Applebaum
Tel-Aviv University

Tel-Aviv, Israel
benny.applebaum@gmail.com

Oded Nir
Tel-Aviv University

Tel-Aviv, Israel
odednir123@gmail.com

January 12, 2025

Abstract

A secret-sharing scheme allows the distribution of a secret s among n parties, such that only certain
predefined “authorized” sets of parties can reconstruct the secret, while all other “unauthorized” sets
learn nothing about s. The collection of authorized/unauthorized sets is defined by a monotone function
f : {0, 1}n → {0, 1}. It is known that any monotone function can be realized by a secret-sharing
scheme; thus, the smallest achievable total share size, S(f), serves as a natural complexity measure.

In this paper, we initiate the study of the following meta-complexity question: Given a monotone
function f , is it possible to efficiently distinguish between cases where the secret-sharing complexity of
f is small versus large? We examine this question across several computational models, yielding the
following main results.

(Hardness for formulas and circuits): Given a monotone formula f of size L, it is coNP-hard to
distinguish between “cheap” functions, where the maximum share size is 1 bit and the total share size
is O(L0.01), and “expensive” functions, where the maximum share size is Ω(

√
L) and the total share

size is Ω(L/ logL). This latter bound nearly matches known secret-sharing constructions yielding a
total share size of L bits. For monotone circuits, we strengthen the bound on the expensive case to a
maximum share size of Ω(L/ logL) and a total share size of Ω(L2/ logL). These results rule out the
existence of instance-optimal compilers that map a formula f to a secret-sharing scheme with complexity
polynomially related to S(f).

(Hardness for truth tables): Under cryptographic assumptions, either (1) every n-bit slice function
can be realized by a poly(n)-size secret-sharing scheme, or (2) given a truth-table representation of f
of size N = 2n, it is computationally infeasible to distinguish in time poly(N) between cases where
S(f) = poly(n) and S(f) = nω(1). Option (1) would be considered a breakthrough result, as the
best-known construction for slices has a sub-exponential complexity of 2Õ(

√
n) (Liu, Vaikuntanathan,

and Wee; Eurocrypt 2018). Our proof introduces a new worst-case-to-average-case reduction for slices,
which may be of independent interest.

(Hardness for graphs): We examine the simple case where f is given as a 2-DNF, represented by a
graph G whose edges correspond to 2-terms, and ask whether it is possible to distinguish between cases
where the share size is constant and those where the share size is large, say Ω(log n). We establish several
connections between this question and questions in communication complexity. For instance, we show
that graphs admitting constant-cost secret sharing form a subclass of graphs with constant randomized
communication complexity and constant-size adjacency sketches (Harms, Wild, and Zamaraev; STOC

*This research is supported by ISF grant no. 2805/21 and by the European Union (ERC-2022-ADG) under grant agreement
no.101097959 NFITSC.

1

2022). We leverage these connections to establish new lower bounds for specific graph families, derive a
combinatorial characterization of graphs with constant-size linear secret-sharing schemes, and show that
a natural class of myopic algorithms fails to distinguish cheap graphs from expensive ones.

1 Introduction

Secret-sharing schemes were initially introduced by Shamir and Blakley [Sha79, Bla79] in 1979 and have
since become a fundamental cryptographic tool with a broad range of applications, including secure mul-
tiparty computation protocols [BGW88, CCD88], threshold cryptography [DF91], access control [NW96],
attribute-based encryption [GPSW06, Wat11], and oblivious transfer [SSR08, Tas11]. Technically, secret-
sharing schemes can be seen as a distributed analog of encryption. The objective is to take a secret message
s and “split” it into n shares, s1, . . . , sn, each stored on a different device or “party,” so that the secret can
be reconstructed when “sufficiently many” shares are gathered, while a “small” coalition of parties remains
unable to learn anything about the secret in an information-theoretic sense. (See Definition 3.1 for a formal
definition and [Bei11] for general background).

In its general form [ISN87], the problem is parameterized by an access structure – a monotone function
f : {0, 1}n → {0, 1} which determines which coalitions can recover the secret. Specifically, a coalition
A is authorized if its characteristic vector xA is accepted by f and unauthorized otherwise.1 For instance,
in the common case of threshold secret-sharing, f is a threshold function that accepts all strings with a
Hamming weight above a given threshold. For this scenario, Shamir’s polynomial-based scheme [Sha79]
offers a highly efficient solution: to share a single-bit secret, each party only needs to store a single element
si from a field of size n, resulting in a maximum share complexity of log n bits per party and total share size
of n log n.

The secret-sharing complexity of general functions. Since the work of [ISN87] it is known that every
monotone function admits a secret-sharing scheme. However, determining the optimal share size of the
“worst monotone function” is a well-known long-standing open problem. Known positive results are based
on compilers that construct a secret-sharing scheme for a function f based on its representation under some
computational model, such as monotone DNF/CNF [ISN87], monotone formula [BL88] and monotone
span-program [KW93, BI92]. Consequently, when f is taken to be a worst n-bit monotone function, these
constructions lead to an exponential upper-bound of 2n(1−o(1)). A more recent line of work [ABF+19,
ABNP20, AN21], initiated by [LVW18, LV18], provides improved exponential upper bounds, culminating
in the upper bound 1.5n+o(n) [AN21]. These results “separate” secret-sharing complexity from traditional
computational complexity measures that, by counting arguments, assign 2n(1−o(1)) cost for most functions.
Still, as shown in [ABN+22], these constructions can be captured by a compiler whose starting point is a
representation of f by a “formula-over-slices” – a computational model that turns out to be powerful enough
to break the 2n barrier, but does not allow for sub-exponential 2n

1−ϵ
representation [ABN+22].

On the negative side, despite much effort, the best known lower-bound on the total share size of an
n-bit monotone function is Ω(n2/ log n) due to [Csi96]. Moreover, we have no better lower-bounds even
for non-explicit functions! Indeed, counting-based methods that lead to non-explicit computational lower-
bounds, fail miserably in the context of general secret-sharing schemes.2 This leaves a huge exponential

1Monotonicity here means that for any A ⊂ B, it holds that f(xA) ≤ f(xB). A non-monotone function would not allow for a
secret-sharing scheme, making monotonicity a necessary requirement.

2Such methods can work for limited cases of secret-sharing schemes where the sharing/reconstruction algorithms have small
representation such as in the case of linear secret-sharing (see, e.g., [BFMP17]) or in the case of efficiently-computable secret-

2

gap between the upper-bound and the lower-bound. It is widely believed that some functions require super-
polynomial cost or even exponential cost. (The latter conjecture goes back to Beimel’s 1996 thesis [Bei96].)
However, proving such lower-bounds is currently out of reach even under complexity-theoretic assumptions
(e.g., NP ̸= P). Moreover, unlike the case of, say circuit lower-bounds, we hardly have any explanation for
the lack of such provable lower-bounds. (See [AN23] for some results in this direction.)

The Meta-Complexity of Secret Sharing. In this paper, we shift focus from studying general secret-
sharing schemes for worst-case functions to exploring functions that admit particularly "cheap" secret-
sharing schemes. To understand what makes functions “cheap,” we initiate the study of the following
“meta-complexity” problem:

Given a monotone n-bit predicate f , represented within some computational model, is it
possible to efficiently distinguish between the cases where f is “cheap” (there exists a secret-
sharing scheme for f with a short share size) and where f is “expensive” (any secret-sharing
scheme for f requires a large share size)?

This question follows a recent and fruitful line of research on understanding the computational com-
plexity of approximating various complexity measures (see, e.g., [Sim23]) and is driven by several concrete
motivations:

1. Instance-Optimal Compilers: As previously mentioned, there are efficient compilers that map mono-
tone formulas to secret-sharing schemes with a total share size linear in the formula-size. While this is
optimal for certain simple functions, it is provably wasteful for most functions. Indeed, improvements
in general secret sharing show that, for typical functions, the cost of secret sharing is at least poly-
nomially smaller than the formula size. Inspired by works on instance optimal algorithms [FLN01],
we may hope to achieve instance-optimal secret-sharing compilers (IOSS) that, given a monotone
formula, efficiently generate a secret-sharing scheme with complexity close to the best-achievable
secret-sharing cost of f . The meta-complexity question above can be viewed as a relaxed version of
IOSS, serving as a necessary step towards proving or disproving the existence of IOSS.

2. Better Efficiency via Cheap Functions: In some applications of secret-sharing (e.g., attribute-based
encryption [GPSW06, Wat11]), one may have strict limitations on the resources (say communication)
but some flexibility in choosing which predicate f to use. A positive solution to the meta-complexity
question would allow us to evaluate different choices for f and select the most efficient one, optimiz-
ing trade-offs between efficiency, privacy, and functionality.

3. Explaining the Lack of Lower Bounds: A negative answer to the meta-complexity problem would
help explain the scarcity of lower bounds in secret sharing. Following the well-known natural-proof
framework [RR97], it’s often observed that lower bounds give rise to efficient algorithms for distin-
guishing between easy and hard instances. Therefore, ruling out efficient algorithms for distinguish-
ing cheap functions from expensive ones would act as a barrier against a broad class of lower-bound
techniques.

sharing [LS20]. (See also [AN23] for a more general treatment.)

3

2 Our Results

Before presenting our results, we first establish some notation. We primarily focus on secret-sharing
schemes that distribute a single bit. For a monotone function f : {0, 1}n → {0, 1}, we define the to-
tal share size (resp., maximal share size) as the smallest integer m such that f can be implemented by a
secret-sharing scheme with a total (resp., maximal) share size of m. We denote these complexity measures
by Ssum(f) and Smax(f), respectively. Occasionally, we also consider linear secret-sharing schemes over
the binary field (LSS), where the mapping from the secret and randomness to shares is linear over F2, and
denote the corresponding complexity measures by LSsum(f) and LSmax(f).

We denote by GapSS[a, b] the promise problem where the input consists of a monotone function f , and
the goal is to determine whether the secret-sharing complexity of f is at most a or at least b. We will examine
the complexity of this problem under various computational models (e.g., monotone formulas/circuits, truth
tables, and monotone 2-DNFs) and with respect to different secret-sharing complexity measures. Unless
stated otherwise, we use the total share size as the default measure.

Our main results are negative, demonstrating that even extremely cheap functions (e.g., those with con-
stant share size) are difficult to distinguish from expensive functions. We also provide some simple al-
gorithms that yield weak upper bounds on the complexity of GapSS[a, b]. Furthermore, we reveal new
connections between this problem and questions in the domain of randomized communication complexity
and randomized labeling schemes for graphs. We will now present a detailed account of our results.

2.1 Cheap Formulas are Hard to Recognize

We begin with the case where f is represented as a formula. The following hardness result rules out the
existence of instance-optimal secret-sharing compilers, even those that slightly improve on formula size.

Theorem 2.1 (Gap-SS is coNP-hard for formulas). For every constant ϵ > 0, given a monotone formula f
of size L it is coNP-hard to distinguish between the following cases:

• (Yes) f has an LSS with max-share size of 1 bit and total share size of O(Lϵ) bits.

• (No) Every secret-sharing scheme (SS) for f has max-share size of Ω(
√
L/ logL) and total share size

of Ω(L/ logL).

The proof of the theorem shows how to combine a SAT-instance, given as a non-monotone formula g,
with a formula E that is expensive to realize by any secret-sharing scheme, so that the resulting monotone
formula f is either expensive or cheap depending on the satisfiability of g. To get almost-optimal bounds,
we have to make sure that the expensive formula E provides an optimal trade-off between its size and its
SS-cost. This is done by a combination of Csirmaz’s Lower Bound [Csi96] with techniques from [Bei23,
ABI+23b].

Under the exponential-time hypothesis (ETH) [IP99] we get poly-time hardness even when the total
share size in the Yes-case is polylogarithmic in L or hardness against 2o(n)-time algorithms where n is the
number of variables at the expense of taking ϵ = 0.5 in the case of Yes-instances. (See Theorem 4.3).

Remark 2.2 (Tightness). The theorem is tight in several aspects:

1. (Time) It is known that the task of checking whether an n-bit formula can be realized with 1-bit shares
can be solved in time Õ(22n) [Gol98] (see also [ABI+23a]). Therefore the ETH variant of the theorem
that rules out the existence of a sub-exponential time algorithm provides a tight bound on the running
time.

4

2. (Gap) The main statement (coNP hardness) establishes the largest possible gap. Indeed, the upper
bound on the max-share size in the Yes case cannot be improved below 1 since one can efficiently test
if the max-share size is zero (just check if the monotone formula f computes the trivial zero function
by testing if F (1n) = 0). Also, the lower bound Ω(L/ logL) on the total share size for No-instances
cannot be improved by more than log-factor since any L-size formula can be realized by a secret
sharing of total share size of L.

3. (Minor improvements = Better Lower-bounds) In fact, even an improvement of log-factor for the No
instance (i.e., average-share size of Ω(

√
L)) seems hard since this would imply an explicit construc-

tion of (*) a monotone L-size formula f over n = L/Ω(
√
L) = O(

√
L) variables with total share

size of Ω(n2). (To generate f , apply the reduction to some trivial No-instance of a coNP complete
problem.) Such a construction would improve the 3-decade-old lower-bound of Csirmaz [Csi96]. We
further note that the proof of the theorem employs, as a gadget, a formula E that is known to be
expensive for secret sharing. If this gadget is replaced with an explicit formula that satisfies (*), we
will get rid of the logarithmic loss in the theorem. (Even a non-explicit proof for the existence of
(*) suffices for proving coNP-hardness under non-uniform reductions.) Hence, improving the above
theorem is equivalent to proving better lower-bounds.

We note that, together with known results, the theorem establishes the coNP-completeness of the lan-
guage IDEAL of all monotone formulas g that can be realized by a secret-sharing scheme with 1-bit shares.
(See Section 4).

2.2 Hardness for circuits

We move on to the case where the given function f is represented by a monotone circuit of size L. It is
unknown whether such functions can be realized by secret sharing with total share size S of poly(L), let
alone O(L).3 The following theorem rules out the existence of such a strong compiler for monotone circuits.

Theorem 2.3. For every constant ϵ > 0, given a monotone circuit f of size L it is coNP-hard to distinguish
between the following cases:

• (Yes) f has an LSS with max-share size of 1 bit and total share size of O(Lϵ) bits.

• (No) Every SS for f has max-share size (or even average-share size) of Ω(L/ logL) and total share
size of Ω(L2/ logL).

Recall that in our hardness results for formulas (Theorem 2.1) the “No” case corresponds to functions
with max-share size of Ω(

√
L/ logL) and total share size of Ω(L/ logL). To get a quadratic improvement

for circuits, we design functions with high secret-sharing complexity that can be realized by small circuits.
One could hope to prove hardness even for GapSSckt[L

0.1, Lω(1)], i.e., even when the total share-size
of the No-instance is super-polynomial in L. However, the lack of super-polynomial lower-bound pre-
vents us from doing it unconditionally.4 Instead, we can prove an all-or-nothing result: Either the prob-
lem GapSSckt[L

0.1, Lω(1)] is coNP-hard or the problem is “trivial”, i.e., for infinitely many input lengths

3The best upper-bound that we have is either exponential in the depth (by turning the circuit into a formula) or exponential in
the input length (by applying the general construction for arbitrary monotone functions).

4Indeed, even a quadratic lower-bound of Ω(L2) would imply a quadratic lower-bound of Ω(n2) on the total share-size of an
n-variable function (since n < L), which is open (even non-constructively).

5

there are no “No” instances and an algorithm that always outputs “Yes” solves the problem (infinitely of-
ten). For the case of linear secret-sharing schemes (for which explicit sub-exponential lower-bounds are
known [PR18]), one can prove an unconditional result; namely, that GapLSSckt[L

0.1, 2L
β
] is coNP hard for

some constant β > 0. (See Section 4.3).

2.3 Cheap truth-tables are hard to recognize

We move on to the case where the predicate f : {0, 1}n → {0, 1} is represented by a truth-table of size N =
2n. In this case, the distinguishing algorithm is allowed to run in poly(N) time and so it can efficiently check
non-trivial properties of the function (e.g., the number of satisfying assignments). As a result, strategies like
the one used in the context of formulas or circuits fail, and we resort to cryptographic assumptions. In
particular, we assume the existence of a pseudorandom function with sub-exponential hardness that can be
computed by a polynomial-size formula (see Assumption 5.2). This assumption, hereafter referred to as the
sPRF (for simple PRF) assumption, follows from most standard cryptographic assumptions.5

Our result also relies on the hypothesis that some slice functions are expensive to realize. Formally, we
say that a function f : {0, 1}n → {0, 1} is a slice function if, for some level parameter k, the function
f takes the value 0 (resp., 1) on all inputs of Hamming weight smaller than k (resp., larger than k), and
can take arbitrary values over inputs of weight exactly k. Secret sharing for slices have been extensively
studied [AA18, BKN18, BP18, LV18, ABF+19, AN21, ABN+22, BFN24] and currently the best-known
construction for arbitrary k’s has total share size of 2Õ(

√
logN) [LV18]. The following theorem shows that,

unless this bound can be significantly improved, GapSStt[poly(n), n
ω(1)] is intractable.

Theorem 2.4 (Hardness of gapSS for truth tables). Under the sPRF assumption, one of the following holds:

• (Slices are cheap) Every slice function f can be realized by a secret-sharing scheme with total share
size polynomial in the number of variables.

• (Cheap truth-tables are hard to recognize) Given a monotone function f : {0, 1}n → {0, 1} repre-
sented as a truth table of size N = 2n, no poly(N)-time algorithm can distinguish between the case
where f has an LSS with total share size of poly(n) to the case where the total share size is at least
nω(1).

Put differently, assuming that sPRF holds and that slices are not cheap, it is infeasible to distinguish truth-
tables of functions that can be realized with polynomial cost from functions that require super-polynomial
cost. More aggressively, if one assumes that slices require sub-exponential cost of 2n

ϵ
for some constant

ϵ > 0, then the distinguishing problem remains hard even if the No case is restricted to functions that require
sub-exponetial total share size of 2Ω(nϵ). Indeed, we prove a general version of Theorem 2.4 that provides a
smooth trade-off between the two items. We also note that for linear secret-sharing schemes, an exponential
lower-bound of Ω̃(2n/2) is known, and so the intractability of GapLSStt[poly(n), Ω̃(2

n/2)] follows from the
sPRF assumption. (See Section 5 for these extensions).

Worst-case to average-case reduction. The proof of the theorem (for the non-linear case) relies on a
novel worst-case to average-case reduction for slice functions. Denoting by E(n) the total share size of the
worst slice function over n bits, we show that at least a constant fraction of all the slice functions in the
middle layer k = n/2 require complexity of at least Ω(E(c · n)) for some constants c. (In fact, this holds
for any layer k = αn for constant α ∈ (0, 1).)

5In fact, this cryptographic assumption can be relaxed and replaced with the average-case hardness of the Minimum Formula
Size Problem (MFSP) with respect to 1-sided algorithms. See Section 5.

6

Algorithms. We complement the above lower-bounds by describing several simple algorithms. We show
that given a truth-table f of size N , it is possible to decide whether f can be realized by secret-sharing
scheme with total complexity of S in deterministic time which is double exponential in S. While this bound
is quite poor, it beats the naive bound obtained by enumerating over all possible probability distributions
over {0, 1}S . Our algorithm can be significantly improved if the function is represented as a k-DNF as long
as k is not too large. In the extreme case, when k is a constant, we can check if f can be realized by a secret
sharing whose maximum share size is constant in single-exponential time of exp(poly(n)). (See Section A
for details.)

2.4 Recognizing cheap graphs and randomized communication complexity

In light of the aforementioned hardness results, we move on to study an extremely simple, yet non-trivial,
class of monotone functions known as graph functions. Given a graph G over a set V of nodes, we define
a monotone function fG : 2V → {0, 1} that outputs 1 on a set S ⊂ V if S contains an edge. That is,
the edges of G form the minimal authorized sets of fG, and so fG can be described as a monotone 2-DNF.
Graph secret sharing was studied in many works (e.g., [BSGV92, BSSV95, vD95, Csi05, Csi09, BGP97,
CT13, Sti94, BFM16, BFMP17, BF20]) and proved to be a useful scaled-down version of general monotone
functions. To make the GapSS problem even simpler, we further restrict our attention to the case where G is
a bipartite graph with n left nodes and n right nodes and try to identify the cheapest graphs among this class
that can be realized by a secret-sharing scheme with a constant maximal share size. The hope is that this
class will be simple enough to be recognized efficiently. It turns out that this problem is tightly connected
to questions in the domain of communication complexity.

Let us associate with a bipartite graph a two-party communication problem where Alice gets a left
vertex, Bob gets a right vertex, and their goal is to determine whether their vertices are connected by an
edge. (That is, the biadjacency matrix of the graph is being used as a two-party communication matrix.)
We consider the coRP (resp., the RP model) of randomized communication complexity in which Alice
and Bob share a common random string and are allowed to output the wrong answer on No (resp., Yes)
instances with constant probability. We also consider a slightly non-standard model of Nondeterministic 1-
Equality communication protocols [BBM+20, PSS23] in which the parties are given an advice and a single
access to an equality oracle. (See Section 6 for formal definition). We show that the class of graphs that
have low secret-sharing cost is strongly related to the class of graphs that can be computed with constant
communication complexity in these models.

Theorem 2.5 (Informal). The followings hold for every (family of) bipartite graphs G.

1. LSmax(G) = O(1) if and only if G has O(1) communication in the Nondeterministic 1-Equality
model.

2. If Smax(G) = O(1) then coRP(G) = O(1). Conversely, if RP(G) = O(1), then G can be realized by
a secret-sharing scheme that distributes log n-bit secrets with constant normalized share-size, i.e., the
maximal share size is O(log n).

Here Smax(G) denotes the maximal share-size of the function fG and LSmax(G) denotes its LSS ana-
logue. The proof establishes quantitative lower-bounds and upper-bounds on secret-sharing complexity in
terms of communication complexity. These bounds are dimension-free [HH24], and do not depend on the
size of the graph. (We also derive a dimension-free upper-bound on LSmax(G) in terms of coNP complex-
ity.) Our results continue a recent line of works [GKW15, AV21] that relate the complexity of secret-sharing
schemes to communication complexity measures.

7

Theorem 2.5 allows us to import tools and results from communication complexity to the secret-sharing
domain. For example, communication in the Nondeterministic 1-Equality model is characterized by the
logarithm of the graph’s so-called P4-free cover number [BBM+20].6 Accordingly, we get a combinatorial
criteria for determining whether a graph can be realized by an LSS with constant share-size. This allows
us to derive a new lower-bound on the LSS complexity of a concrete family of graphs (essentially corre-
sponding to the Disjointedness function) that was studied by [LVW17]. (See Corollary 6.4). Unfortunately,
this criteria does not lead directly to an efficient algorithm since this covering number is NP-hard to com-
pute [BBM+20]. Still, one may hope to develop an efficient approximation algorithm, which would enable
us to distinguish between the case where LSmax(G) = O(1) and the case where, say, LSmax(G) = Ω(log n)
or even LSmax(G) = Ω(n0.5).

The second item of the Theorem 2.5 shows that graphs with constant share-size form a sub-class of
graphs with constant randomized complexity – a class that has been extensively studied in the last few years
(see, e.g., [HHH21, HWZ22, HH24, FHHH24] for motivation and additional references). Interestingly, this
class corresponds to the class of graphs that admit constant-size adjacency sketches [HWZ22]. That is, one
can randomly assign to each vertex of the graph a constant-size label such that a decoder algorithm that is
given a pair of labels can tell, with probability 2/3, whether the corresponding vertices are adjacent with-
out seeing the graph. This notion, originally defined by [FK09] can be viewed as a probabilistic version
of the classical notion of adjacency labeling schemes [KNR92], and it is known that constant-size adja-
cency sketches imply deterministic adjacency labeling schemes of logarithmic size [Har20]. The question
of understanding which graphs admit such labeling schemes is a well-known open problem. Understanding
which graphs admit constant share size can be therefore viewed as a refined version of the problem that
addresses an important special case.

Hardness against myopic algorithms. We do not know whether the graph version of GapSS[O(1), g(n)]
is tractable for some non-trivial function g(n) = ω(1). One natural algorithmic strategy is to check whether
the given graph G can be locally-realizable by a cheap secret-sharing scheme. That is, use exhaustive search
to verify that every k-size sub-graph G′ of G can be realized with constant cost of O(1), and accept the
graph if all tests pass. This algorithm accepts Yes instances: Indeed, if the graph G can be realized with
constant max-share size of S then so is every sub-graph of G. The hope is that No instances that require
high-cost will be rejected. That is, if the graph is sufficiently “hard”, then one can find a small obstacle that
explains for its hardness. Unfortunately, we show that this t-myopic algorithm fails even for k =

√
n.

Theorem 2.6 (obstacle against myopic algorithms). There exists a family of bipartite graphs G that requires
shares of size Ω(log n) from any secret-sharing scheme that realizes it, but every induced subgraph of G
with

√
n vertices on each side can be realized with maximal share size 8.

The proof is obtained by sampling a random sparse graph. This follows the approach used in [HHH22,
HH22] to refute similar local-to-global conjectures with respect to adjacency labels/sketches known (i.e.,
the probabilistic universal graph conjecture and the implicit graph conjecture).

We note that the Ω(log n) bound in Theorem 2.6 matches the best-known lower-bound on the maximal-
share size of an n-vertex graph [vD95, Csi09]. (For linear schemes, this can be improved to Ω(

√
n) [BGP97].

In both cases, the best known upper-bound is O(n/ log n) [EP97].)

6This quantity measures the minimum number of P4-free bipartite graphs that are needed to cover the edges of the given graph.
A bipartite graph is P4-free if it is a vertex-disjoint union of complete bipartite graphs. Such graphs arise naturally (sometimes
under different terminology such as “blocky matrices” or “fat matchings”) in computational complexity and communication com-
plexity [PR94, Juk06, AY24, HHH21, HWZ22]. For a survey on the subject see [Xie24].

8

2.5 Discussion and open problems

Our paper provides some initial results on the meta-complexity of secret sharing leaving many interesting
open questions. We list a few of them.

1. Design better GapSS algorithms for truth tables. Is it possible to distinguish in time poly(N) or even
in time NO(logN) between functions whose maximal share size is 2 from functions with 2Ω(n) share
size (assuming that such functions exist)? Can this be done by a myopic algorithm that checks all
k-restrictions of f for some small k = o(n)?

2. Efficiently approximate the P4-free covering number of a graph within a constant (or slightly super-
constant) approximation factor.

3. Is it possible to extend the worst-case to average-case reductions to DNFs or even 2-DNFs (i.e.,
graphs)? Since randomly chosen DNFs are currently cheaper to realize [BF20, AN21], such a reduc-
tion would lead to improvement in the worst-case complexity of graphs, and, by known results, can
even lead to improvements for worst-case general secret-sharing schemes.

4. The question of constructing computationally-efficient information-theoretic secret-sharing schemes
for polynomial-size monotone circuits has been wide open for over four decades. That is, we do
not know whether there exists a compiler that takes a monotone circuit of size nc for some constant
c > 0 and generates an information-theoretic secret-sharing whose sharing and recovery algorithms
run in time, say nc′ for some c′ > c. To rule out such a result, it suffices to prove lower-bounds
against efficient compilers – a task that may be easier than proving information-theoretic lower-bounds
against arbitrary (possibly inefficient) secret-sharing schemes. Is it possible to use meta-complexity
arguments to establish such lower-bounds? Less ambitiously, show that, under some potentially strong
computational assumptions, secret-sharing compilers for monotone circuits must have super-quadratic
overhead improving over the quadratic lower-bound established in this paper.

Organization. Following some preliminaries, we study GapSS for formulas and circuits in Section 4, for
truth-tables in Section 5, and for graphs in Section 6. Our basic algorithms appear in Appendix A.

3 Preliminaries

Definition 3.1 (Secret-sharing schemes and linear secret-sharing schemes). A secret-sharing scheme, with
domain of secrets S, domain of random strings R, and finite domains of shares S1, . . . , Sn, is a deterministic
function D : S ×R → S1 × · · · × Sn. A dealer distributes a secret s ∈ S according to D by first sampling
a random string r ∈ R with uniform distribution, computing a vector of shares D(s, r) = (s1, . . . , sn), and
privately communicating each share si to the ith party. For a binary string x ∈ {0, 1}n representing a set
Ix = {i : xi = 1}, we denote Dx(s, r) as the restriction of D(s, r) to the Ix-entries (i.e., the shares of the
parties in Ix). When r is omitted D(s) (resp., Dx(s)) denotes the probability distribution of D(s, r) (resp.,
Dx(s, r)) induced by sampling r ∈ R uniformly at random.

A secret-sharing scheme D realizes a monotone predicate f : {0, 1}n → {0, 1} if the following two
requirements hold:

1. Perfect Correctness: The secret s can be reconstructed by any authorized set of parties. That is, for
every x such that f(x) = 1 there exists a reconstruction function Reconx such that for every secret

9

s ∈ S and every random string r ∈ R, it holds that Reconx (Dx(s, r)) = s. Equivalently, for any
pair of secrets s ̸= s′, the supports of Dx(s) and Dx(s

′) are disjoint.

2. Perfect privacy: An unauthorized set of parties learns nothing about the secret from its shares. For-
mally, for every x such that f(x) = 0 and every pair of secrets s, s′ ∈ S, the random variables Dx(s)
and Dx(s

′), are identically distributed.

The secret size of D is defined as log |S|, the total share size is defined as
∑

1≤i≤n {log |Si|} and the maximal
share size (or simply share size) of the scheme is defined as the largest share size, i.e., max1≤i≤n {log |Si|}.
The normalized total share size and (rep., normalized maximal share size) is defined as the ratio between
the total share size (resp., maximal share size) and the secret size. The scheme D is a linear secret-sharing
scheme over a finite field F if S = F, R = Fℓ for some integer ℓ ≥ 1, the sets S1, . . . , Sn are vector spaces
over F, and the function D : Fℓ+1 → S1 × · · · × Sn is a linear mapping over F.

By default, we assume that the secret size is 1, i.e., S = {0, 1} and that linear secret-sharing scheme are
defined over the binary field F2. The total share size (resp., maximal share size) of a monotone function f
are taken to be the smallest total share size (resp., smallest maximal share size) of a secret-sharing scheme
that realizes f .

4 Hardness of gap-SS for Formuals and Circuits

4.1 Secret-sharing lower-bound for a simple function

Our hardness result will be based on a secret-sharing lower bound for relatively small formulas/circuits.
The following theorem is based on a combination of Csirmaz’s Lower Bound [Csi96] with techniques
from [Bei23, ABI+23b].

Theorem 4.1. There exists a polynomial-time uniform family of monotone formulas (resp., monotone cir-
cuits) {Et}t∈N such that Et is a size-t formula over Θ(

√
t) variables (resp., size-t circuit over Θ(t) vari-

ables) and has average-share size of at least Ω(
√
t/ log t) (resp., Ω(t/ log t)).

Proof. To prove the theorem, we will describe a monotone function G over O(n) variables whose average-
share size is Ω(n/ log n) and later show that it can be realized by a monotone formula of size O(n2) and
monotone circuit of size S = O(n). We begin by defining a somewhat simpler function F and use it to
construct G.

Let n be an integer and let k = ⌈log n⌉. First, consider the function F that takes n variables x =
(x1, . . . , xn) and k variables y = (y1, . . . , yk) and outputs

F (x, y) =
∨
i

xi ∧
∧
j∈Si

yj

where S1, . . . , Sn range over all subsets of [k].

Claim 4.2. In any secret sharing that realizes F , the total share size of the y’s is Ω(n).

The proof is inspired by an argument of [Bei23].

Proof of claim. Assume that the sets S1, . . . , Sn are ordered in a non-increasing order, i.e., if i < j then
Si ̸⊂ Sj . (If this is not the case, rename the x variable so that the above holds.) Now, consider the monotone

10

function F ′(w, y) that takes the variables w = (w1, . . . , wn) and the y variables, substitutes xi =
∧

j≤iwj

and outputs F (x, y). Csirmaz [Csi96] proved that in any scheme that realizes F ′ the total share size of the
y’s is Ω(n). We will show that the same bound applies to F via an efficient reduction. Indeed, by the closure
properties of secret-sharing [BL88], a secret-sharing for F implies a secret-sharing for F ′ that preserves the
share-size of the y parties. Specifically, we can share the secret according to F among the parties associated
with (x, y), and for each i ∈ [n], re-share the share of the party xi among the parties (w1, . . . , wi) via an
additive secret-sharing. The claim follows.

Let us define a new function G by taking the function F and substituting each variable yi with the
expression

∨
j∈⌈n/k⌉ yi,j where Y = (yi,j)i∈[k],j∈[⌈n/k⌉] are new formal variables. The resulting function G

is now a monotone function over the variables x and Y . By design, for every j ∈ ⌈n/k⌉ one can derive the
function F (x, y1,j , . . . , yk,j) as a sub-function of G (by setting the variable’s (yi,ℓ)i∈[k],ℓ̸=j to zero). Hence,
the total share size of each “column” j of variables (y1,j , . . . , yk,j) is Ω(n) and the total share size is at least
Ω(n2/k) = Ω(n2/ log n). Since G is defined over O(n) variables the average-share size is Ω(n/ log n).
(This transformation was previously used in [ABI+23b]).

The function G can be realized by an O(n2) size formula: Take the O(n log n)-size formula for F
and replace each yi by an OR-tree of size O(n/ log n). To derive an O(n)-size circuit for G, it suffices to
describe an O(n)-size circuit for F . For this, we first construct a circuit Ck of size O(2k) that given k inputs
y = (y1, . . . , yk) outputs all 2k monotone terms (zS =

∧
j∈S yj)S⊂[k]. The circuit is constructed recursively:

Compute Ck−1(y1, . . . , yk−1) = (zS)S⊂[k−1] and output (zS , zS ∧ yk)S⊂[k−1]. Since |Ck| ≤ |Ck−1| + 2k

the circuit size is O(2k). Finally, we can construct a circuit for F based on a circuit for Ck with k = log n
plus O(n) additional gates, and so the total circuit size of G will be O(n), as required.

4.2 Hardness of gap-SS for Formulas

We prove the following theorem:

Theorem 4.3 (Gap-SS is coNP-hard for formulas). For every constant ϵ > 0, given a monotone formula f
of size L it is coNP-hard to distinguish between the following cases:

• (Yes) f has an LSS with max-share size of 1 bit and total share size of O(Lϵ) bits.

• (No) Every SS for f has max-share size (or even average-share size) of Ω(
√
L/ logL) and total share

size of Ω(L/ logL).

Furthermore, under the Exponential-Time Hypothesis (ETH), the following extensions hold.

1. No polynomial-time algorithm can distinguish between the above No case and the case where f has
an LSS with max-share size of 1 bit and total share size of O((logL)c) bits for any constant c > 1.

2. Let n denote the number of variables in f , then no 2o(n)-time algorithm can distinguish between the
above No case and the case where f has an LSS with max-share size of 1 bit and total share size of
O(

√
L) bits.

Proof. The proof is via a Karp reduction R from the coNP-hard problem Tautology. In this problem, we are
given a (non-monotone) formula g over m variables x = (x1, . . . , xm) and the goal is to determine whether
g is a tautology; that is, whether every possible assignment of true/false values to variables yields a true
statement. We assume without loss of generality that the formula is of size M = O(ma) for some constant

11

a ≥ 1. (In fact, the problem is coNP-hard even for O(m)-size formulas, e.g., 3DNF where each variable
occurs a constant number of times.)

Let Et be the t-size monotone formula promised in Theorem 4.1 that has k(t) = O(
√
t) variables and

average-share size of at least S(t) = Ω(
√
t/ log t). The parameter t will be chosen to be large enough so

that t dominates M , i.e., t = Ω(M), and such that the number of variables of Et dominates the number of
variables of g, i.e., k(t) = Ω(m). The exact value of t will be determined later.

The reduction. The reduction R runs in time poly(t+m) and takes g as an input and generates a monotone
formula f over n = 2m + k(t) = O(k(t)) variables. Assume, without loss of generality, that all the NOT
gates of the formula g are placed in the bottom layer. (This can be done by using the standard De-Morgan
based transformation), and let g′ denote the monotonized version of g where the negations of every variable
xi are replaced with a new variable x′i. Define h be the following formula over 2m variables:

h(x,x′) :=
∧

i∈[m]

(xi ∨ x′i).

Then, the desired formula f is defined as follows:

f := h(x,x′) ∧
(
g′(x,x′) ∨ Et(y)

)
.

The formula f has 2m + k(t) = n input variables, x = (x1, . . . , xm), x′ = (x′1, . . . , x
′
m) and y =

(y1, . . . yk(t)) and it is of size Θ(M) + t. We analyze the reduction.

Claim 4.4. The reduction R runs in time poly(t + m) and generates a monotone formula f over n =
2m + k(t) = O(k(t)) variables whose size is L = t + Θ(M) = O(t) such that if g is a tautology then
f can be realized by an LSS with maximal share size of 1 and total share size of 2m, and if g is not a
tautology f can only be realized with an average-share size of Ω(S(t)) and total share size of at least
Ω(S(t)n) = Ω(S(t)k(t)).

Proof of claim. Suppose that g is a tautology, i.e., g(x) = 1 for every assignment x ∈ {0, 1}m. We show
that f(x,x′,y) = h(x,x′) for every x,x′ and y. We distinguish between the following cases. (1) Call
(x,x′) legal if exactly one of each pair of variables (xi, x′i)i∈[m] equals 1 (i.e., x′i = ¬xi). In this case, h
is satisfied and so is f . To see the latter, note that since g is a tautology, g′(x,x′) = 1 by definition. (2)
Next, consider the case where for some i ∈ [m] it holds that xi = x′i = 0. In this case, h = 0 which means
that f is also 0. (3) Finally, assume that h is satisfied and the assignment (x,x′) is strictly larger than some
legal assignment (x0,x

′
0).

7 In this case, the assignment (x,x′,y) satisfies f since f is monotone and since
(x,x′,y) is strictly larger than the assignment (x0,x

′
0,y) that satisfies f by (1). It follows that f = h in all

these cases. It now remains to show that the function computed by h can be realized with share size 1 and
total share size of 2m. This can be done by following its formula representation (as implied by the known
connections between formulas and secret sharing [BL88]): Split the secret s with an additive scheme to m
shares s1, . . . , sm−1, sm, and for every i ∈ [n] deal si to the parties represented by xi and x′i.

Next assume that g is not a Tautology, so there exists a legal assignment x0,x
′
0 such that g′(x0,x

′
0) = 0.

Since the assignment is legal, h(x0,x
′
0) = 1, so the restricted function f(x0,x

′
0,y) simplifies to Et(y).

By Theorem 4.1 the total share size of the residual function is Ω(t2/ log t) and the max-share size is
Ω(t/ log t). Since a lower-bound on the total share size of a residual function implies a similar lower-bound
on the total share size of the original function, the claim follows.

7An assignment z is strictly larger than an assignment w if for each i, it holds that wi ≤ zi and for some i, wi < zi.

12

To derive the main result, take t = mmax(1/ϵ,a). This implies that, on one hand, m = O(Lϵ), and on the
other hand, Ω(S(t)) = Ω(

√
L/ logL) and Ω(S(t)k(t)) = Ω(L/ logL), as required.

To prove the “Furthermore” part, recall that ETH asserts that we cannot determine whether g is a tautol-
ogy in time 2o(m) even when M = O(m)8. To prove the first item, take t = 2m

1/c
. The reduction then runs

in 2o(m) time, produces an instance of size L = 2o(m) whose max-share size (resp., total share size) is either
1 (resp., 2m = (logL)c) in the Yes case, or Ω(L/ logL) (resp., Ω(L2/ logL)) in the No case, as required.
To prove the second item, set the parameter t to m2. The resulting formula f is of size L = O(m2) and has
n = 2m+O(

√
t) = O(m) variables, therefore a 2o(n) algorithm for the secret-sharing problem implies an

algorithm that determines tautology in time 2o(n), contradicting the ETH.

Remark 4.5 (Comparison to [BSGV92]). Blundo et al. [BSGV92] identified some concrete “mildly-hard”
function h whose normalized max-share size is a non-trivial constant c > 1 and proved that it is NP-complete
to determine whether a given monotone formula f contains h as a sub-function. Their reduction maps Yes
instances of SAT to “mildly-hard” access structures and No instances to functions that do not contain the
function h. However, it is not clear whether the latter case is mapped to “easy” access structures, and so
their reduction does not imply NP-hardness of gapSS.

Let us record the following abstract version of Theorem 4.3 whose proof follows from the proof of The-
orem 4.3.

Proposition 4.6 (secret-sharing lower-bounds imply computational hardness). Let E = {Et}t∈N be a
polynomial-time uniform family of t-size monotone formulas (resp., monotone circuits) over k(t) variables
such that any secret sharing that realizes Et has average-share size of at least S(t). Then, for every ϵ > 0
there exists an efficient reduction from Tautology to the following promise problem over L-size monotone
formulas f (resp., circuits):

• (Yes) f has an LSS with max-share size of 1 bit and total share size of O(Lϵ) bits.

• (No) Every SS for f has an average-share size of Ω(S(L−Lϵ)) and total share size of Ω(S(L−Lϵ) ·
k(L− Lϵ)).

Furthermore, the theorem extends to the case where the family E is non-uniform at the expense of getting a
non-uniform reduction. Similarly, the theorem applies to the case where the lower-bound against E holds
only against linear secret-sharing schemes at the expense of relaxing the No-case to LSS.

Getting back to Theorem 4.3, we note that, together with known results, it establishes the coNP-
completeness of the language IDEAL of all monotone formulas g that can be realized by a secret-sharing
scheme with 1-bit shares.

Corollary 4.7. IDEAL is coNP-complete.

Proof. The proof of Theorem 4.3 establishes coNP-hardness (even for the case where f is given as a 3DNF
formula). To prove that the problem is in coNP we use the combinatorial criteria of [ABI+23a] that asserts
that a monotone function f is not in IDEAL if and only if there exists a minimal satisfying assignment (min-
term) M and a maximal unsatisfying assignment (max-term) T whose difference M \T is of even size. The
pair (M,T) thus forms a witness for being out of IDEAL and verification consists of checking that (1) M is
a min-term (i.e., that f(1M) = 1 and that f(1M\{i}) = 0 for every i ∈ M); (2) that T is a max-term (i.e.,
that f(1T) = 0 and that f(1T∪{i}) = 1 for every i /∈ T); and (3) that |M \ T | is odd.

8This is originally proved for Satisfiability [IP99] but the same statement holds for tautology since satisfiability reduces to
tautology via a (trivial) linear-time Cook reduction.

13

The corollary also holds for the language IDEALnon-monotone of all (possibly non-monotone) formulas
that compute a (monotone) function that can be realized by a secret-sharing scheme with 1-bit shares. The
coNP-hardness follows from Theorem 4.3, and membership in coNP holds by either presenting a certificate
for the non-monotonicity of f (i.e., a pair of assignments x ≤ y for which f(x) > f(y)) or by using the
certificate that corresponds to the criteria of [ABI+23a].

4.3 Hardness for circuits

We move on to the case where the given function f is represented by a monotone circuit of size L. It is
unknown whether such functions can be realized by secret sharing with total share size S of poly(L), let
alone O(L).9 Hence, unlike the case of formulas, we can hope to prove meaningful results even when
the total share size S of the “No case” is larger than L. Indeed, the following theorem establishes such a
hardness result with almost quadratic S.

Theorem 4.8. For every constant ϵ > 0, given a monotone circuit f of size L it is coNP-hard to distinguish
between the following cases:

• (Yes) f has an LSS with max-share size of 1 bit and total share size of O(Lϵ) bits.

• (No) Every SS for f has max-share size (or even average-share size) of Ω(L/ logL) and total share
size of Ω(L2/ logL).

Proof. By Theorem 4.1, there exists a polynomial-time uniform family of monotone circuits E = {Et}t∈N
such that Et is a size-t circuit over Θ(t) variables and has average-share size of at least Ω(t/ log t). The
proof follows by instantiating Proposition 4.6 with E.

One could hope to prove hardness even when the total share-size of the No-instance is super-quadratic
larger than L or even super-polynomial in L. However, the lack of super-quadratic lower-bound prevents
us from doing it unconditionally.10 Instead, we can prove an all-or-nothing result: Either the problem is
coNP-hard or the problem is “trivial”, i.e., for infinitely many input lengths there are no “No” instances.

Theorem 4.9 (All-or-nothing hardness for circuits). For constants c ≥ 1 and 0 < ϵ < 1, the input to the
promise problem Πc,ϵ is an L-size monotone circuit f and the goal is to distinguish between

• (Yes) f has an LSS with max-share size of 1 bit and total share size O(Lϵ).

• (No) Every SS for f has average-share size of at least Ω(Lc) bits.

Then, for every ϵ and c, the problem Πc,ϵ is either coNP-hard under non-uniform reduction or trivial in the
sense that, for every constant a > 0 there are infinitely many integers L, such that all the L-size monotone
circuits can be realized with average-share size smaller than a·Lc. Moreover, the same holds for the problem
Πω(1),ϵ where in the No case the lower-bound is Lω(1).

Proof. We begin with the case where c ≥ 1 is a constant. Suppose that the problem is non-trivial. That
is, there is an infinite sequence of monotone circuits E = {Et}t∈N and constant a > 0 such that Et is of

9The best upper-bound that we have is either exponential in the depth (by turning the circuit into a formula) or exponential in
the input length (by applying the general construction for arbitrary monotone functions).

10Indeed, even a quadratic lower-bound of Ω(L2) would imply a quadratic lower-bound of Ω(n2) on the total share-size of an
n-variable function (since n < L), which is open (even non-constructively).

14

size t and for all sufficiently large t’s, the average-share size of Et is at least atc bits. By Proposition 4.6, it
follows that Πc,ϵ is coNP-hard under a non-uniform reduction. Similarly, for super-constant c, assume that
the problem is non-trivial and that E = {Et}t∈N is a family of t-size monotone cicruits with average-share
size of tω(1), then by Proposition 4.6, Πω(1),ϵ is coNP-hard under a non-uniform reduction.

Finally, for linear schemes, we can prove an unconditional hardness result with sub-exponential gap by
exploiting existing LSS lower-bounds.

Theorem 4.10 (Hardness of gapLSS for circuits). There exists a constant β > 0 such that for every ϵ > 0,
given an L-size monotone circuit f it is coNP-hard to distinguish between the following cases:

• (Yes) f has an LSS with max-share size of 1 bit and total share size O(Lϵ).

• (No) Every LSS for f has total share size of 2Ω(Lβ) bits.

Proof. In [PR18], Pitassi and Robere describe a poly-time uniform family of polynomial-size monotone
functions E = {Et}t∈N such that Et is computable by a t-size monotone circuit over k(t) = poly(t) inputs
and where every LSS for Et has total share size of at least 2Ω(tα) for some fixed constant α > 0.11 This
implies that the average-share size is 2Ω(tβ) for some constant β > 0. By Proposition 4.6, the theorem
follows.

5 Hardness of Truth-Table gapSS

In this section, we prove Theorem 2.4. We begin with some cryptographic definitions.

Definition 5.1. An ensemble of S-size circuits (resp., formulas) is given by a probabilistic-time algorithm
D that on an input 1n samples an S(n)-size circuit (resp., formula) f : {0, 1}n → {0, 1}. We say that the
ensemble is T -pseudorandom if for every T (n)-time non-uniform adversary A and every sufficiently large
n, it holds that ∣∣∣∣ Pr

f←D(1n)

[
Af(·)(1n) = 1

]
− Pr

g←Bn

[
Ag(·)(1n) = 1

]∣∣∣∣ ≤ 1/T (n),

where Bn denotes the set of all functions from {0, 1}n to {0, 1}. By default, we assume that D is T (n)-
pseudorandom for some T (n) ∈ 2ω(n), and refer to it simply as a strong-PRF (sPRF in short). In this case,
we may assume that the adversary gets the entire 2n-size truth-table of the function as an input. Measuring
the running-time as a function of the input-length N = 2n, we note that pseudorandomness holds against
any adversary that runs in time polynomial in N (since poly(N) = 2O(n)).

The existence of sPRF (computable by poly(n)-size circuits) is a mild assumption that follows from the
existence of sub-exponentially hard one-way functions [HILL99, GGM86]. We will need a slightly stronger
variant of this assumption in which the sPRF is computable by polynomial-size formulas (or, equivalently
NC1 circuits).

Assumption 5.2. For some polynomial S(n), there exists an sPRF ensemble of S-size formulas.

11The lower-bound applies for LSS over an arbitrary finite field F and it follows from a similar lower-bound on the size of the
monotone span program over F for E.

15

Assumption 5.2 follows from most standard cryptographic assumptions such as the sub-exponential
hardness of lattice problems, the sub-exponential hardness of factoring, the sub-exponential hardness of
the Decisional-Diffie Hellman assumption, or asymptotic variants of ad-hoc constructions of block-ciphers.
(See [BR17] for a survey.)

Recall that a (k, n)-slice function is a function f : {0, 1}n → {0, 1} that takes the value 0 on all
inputs of Hamming weight smaller than k, takes the value 1 on all inputs of Hamming weight larger than
k, and can take arbitrary values over inputs of weight exactly k. When k is unspecified we refer to f as a
slice function. As mentioned in the introduction, our hardness result is based on the hypothesis that secret
sharing is expensive for some slice function.

Hypothesis 5.3 (some slices are E-expensive). There exists a sequence of slice functions

f = {fn : {0, 1}n → {0, 1}}n∈N
that requires super-polynomial total share size of E(n).

The hypothesis is parameterized by a super-polynomial function E. Assuming that existing construc-
tions [LVW18] are almost optimal, E(n) can be taken to be 2Ω(

√
n). More conservatively, one may assume

that E is sub-exponential, i.e., E(n) = 2Ω(nϵ) for some ϵ > 0, or leave it as an specified super-polynomial
function E(n) = nω(1).

In Section 5.1 we prove the following lemma.

Lemma 5.4 (worst-case to average-case hardness of slices). If Hypothesis 5.3 holds with respect to some
cost function E(n) then, for every constant α ∈ (0, 1) there exists a constant β, such that at least 1/4
fraction of (⌈αn⌉ , n)-slices require total share size of E′(n) > E(βn).

In particular, if E(n) = 2Ω(nϵ) (resp., E(n) = nω(1)) then so is E′(n). To prove the following theorem,
we employ the lemma with the special case where α = 0.5 and denote by β the corresponding constant.

Theorem 5.5 (Hardness of gapSS for truth tables, Thm 2.4 restated). Under Assumption 5.2 and Hy-
pothesis 5.3, there exists a polynomial S(n) for which the following holds. Given a monotone function
f : {0, 1}n → {0, 1} represented as a truth table of size N = 2n, no poly(N)-time algorithm can distin-
guish between the following cases:

• (Yes) f has an LSS with total share size of S(n) ∈ polylog(N).

• (No) Every SS for f has total share size of at least E(βn) = nω(1) = (logN)ω(1) where E is the
hardness parameter assumed in Hypothesis 5.3 and β is some universal constant.

Assuming the optimality of existing constructions for slices [LVW18], the No case has total share size
of 2Ω(

√
n) = 2Ω(

√
logN).

Proof. Under Assumption 5.2, there exists an sPRF D computable by formulas of polynomial size S′(n).
Assume, towards a contradiction that there exists a poly(N)-time algorithm A that distinguishes the Yes
case with S(n) = O(S′(n) ·n log n) from the No case. We will use A to break the pseudorandomness of D
as follows. Given a truth table T : {0, 1}n → {0, 1} we define the slice function

h(x) = (T (x) ∨ Thr⌈0.5n⌉+1(x)) ∧ Thr⌈0.5n⌉(x),

where Thrk : {0, 1}n → {0, 1} is the k-threshold function that returns 1 on every input of Hamming weight
at least k. Based on T , we generate the truth-table of h in time O(N), invoke the algorithm A on the
resulting truth table, and return its output A(h).

16

Analysis. Clearly, if T is chosen at random then h is a random ⌈0.5n⌉-slice function. By Hypothesis 5.3
and Lemma 5.4, A outputs “No” with constant probability. On the other, we will show that (*) if T is
sampled from D(1n) then h can be realized with total share-size of S(n) and therefore A outputs “Yes”,
and we get a distinguisher that breaks the security of the sPRF.

To prove (*), first observe that, by assumption, T can be computed by an S′(n)-size non-monotone
formula f . By using De-Morgan law, we can assume that the negation gates are at the bottom layer. Next,
by using a reduction of Berkowitz [Ber82], we can turn the formula to a monotone formula f ′ that agrees
with f on all inputs of Hamming weight k = ⌈0.5n⌉. This is done by replacing each negation gate over a
variable xi by a threshold gate Thrk over all other n− 1 inputs x1, . . . , xi−1, xi+1, . . . , xn. This means that
the monotone formula

f ′′(x) = (f ′(x) ∨ Thrk+1(x)) ∧ Thrk(x),

computes h. Finally, by using standard secret-sharing constructions for formulas over monotone gates, we
get an LSS for f ′′ with complexity of O(S′(n)·n log n). Indeed, f ′ is obtained by taking an S′-size AND/OR
formula over 2n variables and substituting n of its leaves by threshold gates and so it can be realized with
total share size of at most S′(n) · n log n (use formula-based sharing and then re-share the shares bit-by-bit
via Shamir’s scheme over a binary extension field of size at least n + 1), and f ′′ can be realized with an
additional cost of O(n log n) bits.

Remark 5.6 (generalization). A close inspection of the proof shows that the sPRF assumption can be re-
placed with the following average-case hardness of MFSP with respect to 1-sided algorithms. This assump-
tion is parameterized by a polynomial S(·), and it asserts that there is no poly(N)-time algorithm that given
a truth table of size N outputs 1 if the function has a formula of size S(log(N)) (i.e., polynomial in the num-
ber of variables), and outputs 0 with constant probability over a random truth table. This assumption seems
weaker than the existence of PRFs. (See [San20] for a discussion on closely related assumptions).

Next, we prove a similar theorem for linear schemes. In this case, we can prove unconditionally that
most slice functions do not have small LSS, and so all we need is the sPRF assumption.

Theorem 5.7 (Hardness of gapLSS for truth tables). Under Assumption 5.2, there exists a polynomial S(n)
for which the following holds. Given a monotone function f : {0, 1}n → {0, 1} represented as a truth table
of size N = 2n, no poly(N)-time algorithm can distinguish between the following cases:

• (Yes) f has an LSS with total share size of O(S(n)) ∈ polylog(N).

• (No) Every LSS for f has total share size of Ω̃(2n/2) = Ω̃(
√
N) bits.

Proof. The proof is identical to the proof for Theorem 5.5, except that we replace “slices-are-expensive”
hypothesis with an unconditional lower-bound. Specifically, by [ABF+19], all but o(1)-fraction of the n/2-
slice functions cannot be realized by an LSS with total share size smaller than Ω̃(2n/2).

5.1 Slices: worst-case to average-case reduction

Notation. A (k, n)-slice function f can be naturally represented by a binary string z of length
(
n
k

)
. That is,

z is indexed by k-weight strings x ∈ {0, 1}n and its xth entry equals to f(x). We will write fz to denote the
(k, n)-slice that is associated with z. When z is uniformly chosen string of length

(
n
k

)
, we get the uniform

distribution over (k, n)-slices.
For a pair of equal-length strings a, b denote by a ∨ b, a ∧ b and a⊕ b, the bit-wise OR, AND and XOR

of a and b. We write ā to denote the complement of a. The following observation follows easily:

17

Observation 5.8. For every pair of (k, n)-slice functions fa and fb it holds that

fa∨b = fa ∨ fb and fa∧b = fa ∧ fb.

Note that fa⊕b ̸= fa ⊕ fb and ¬fa ̸= fā.

The reduction. We show that an arbitrary (k, n)-slice function fz can be expressed as a constant size
monotone formula over randomly chosen (k, n)-slices such that the marginal distribution of each function
is uniform (but the joint distribution is correlated). We begin with the following simple claim.

Claim 5.9. For every (k, n)-slice fz and (k, n)-slice fr, let a = r ⊕ z, then

fz = fa⊕r = f(ā∧r)∨(a∧r̄) = (fā ∧ fr) ∨ (fa ∧ fr̄).

Proof. The first equality holds since a = r⊕ z, the second one follows from the definition of XOR, and the
last one follows from Observation 5.8.

We sample r uniformly at random by using ℓ =
(
n
k

)
independent random bits. Since each of the strings

r̄, a = r⊕ z and ā is obtained from r by applying a fixed permutation over the set {0, 1}ℓ, it holds that each
of the random variables r, r̄, a = r⊕ z and ā is (marginally) uniform. Hence, we have the following lemma.

Lemma 5.10. Assume the existence of a (k, n)-slice function fz whose total share-size is at least T (n),
then, with probability at least 0.25, a randomly chosen (k, n)-slice has total share size of at least T (n)/4.

Proof. Fix fz , and sample fr and define fā, fa and fr̄ as in the claim above. Let H (for high-cost) denote the
set of (k, n)-slice functions that cannot be realized by a secret sharing scheme with total share size smaller
than T (n)/4. Assume, towards a contradiction, that a random (k, n)-slice falls in H with probability p
smaller than 0.25. By Claim 5.9 and standard closure properties of secret-sharing, it suffices to show that,
with positive probability, the slice functions fr, fā, fa, fr̄ all fall out of H . Indeed, by a union bound, this
happens with probability 1− 4p > 0. The lemma follows.

To prove Lemma 5.4 it remains to prove the following simple “padding” claim.

Claim 5.11 (moving between slices). Let f : {0, 1}n → {0, 1} be a (k, n)-slice function that requires a
total share size of E(n) for some increasing function E. Then, for every constant α ∈ (0, 1) there exists an
integer n′ ∈ [n, n + Θ(n)] and a (⌈αn′⌉ , n′)-slice function g that requires a total share size of E(β(n′))
for β = min(α, (1− α)/2).

Proof. We begin with the case where k ≥ ⌈αn⌉. Choose n′ > n such that k = ⌈αn′⌉ and choose an arbitrary
(k, n′)-slice function g : {0, 1}n′ → {0, 1} that satisfies the following condition: For every assignment of
the form x◦0n′−n where x ∈ {0, 1}n of weight k, set g(x◦0n′−n) = f(x). (For example, g can take zeroes
on all other k-weight assignments). It is not hard to see that any secret-sharing for g with total share size
smaller than E(αn′), implies a secret sharing for f with a total share size smaller than E(αn′) < E(n),
contradicting our assumption. (The inequality follows since αn′ < k ≤ n).

We move on to the case where k < ⌈αn⌉. Let ∆ =
⌈
αn−k
1−α

⌉
, and take k′ = k +∆, n′ = n+∆. It can

be verified that k′ = ⌈αn′⌉. Choose an arbitrary (k′, n′)-slice g that satisfies the following requirement:
For every n-bit string of weight k, it holds that g(x ◦ 1∆) = f(x). Given a secret sharing scheme D for
g we define a secret sharing scheme for f as follows. Fix the shares to the last ∆ parties to some arbitrary
values v = (vn+1, . . . , vn+∆) in the support of D. To share a secret s, sample an s-sharing (s1, . . . , sn′)

18

according to D conditioned on (sn+1, . . . , sn+∆) = (vn+1, . . . , vn+∆), and give the first n shares to the n
parties of f . (Since ∆ < k′ the last ∆ parties form an unauthorized set of g and so the above distribution
is well-defined.) Since the shares of the last ∆ parties are fixed, we can think about them as available to all
parties. This means that the view of any coalition x is exactly the view of a coalition x ◦ 1∆ in g. Privacy
and correctness now follows by noting that for any x it holds that g(x ◦ 1∆) = f(x). For strings of weight
k this holds by design, and for strings of weight smaller than k (resp., larger than k) this follows since g is a
(k′, n′)-slice.

We conclude that if g can be realized with total share size smaller than E(n′ ·(1−α)/2) < E(n), then so
is f , contradicting our assumption. (The inequality follows since n′ ≤ 2

(
n+ αn−k

1−α

)
≤ 2

(
n−k
1−α

)
< 2n

1−α .)

6 GapSS for Graphs via Communication Complexity

In the previous sections we proved hardness results for GapSS in a few regimes. A regime that remains
elusive is the one where we want to determine whether relatively “simple” access structures can be realized
with shares of constant size vs. super-constant size. We devote this section to drawing connections between
this problem and some well-studied two-party communication problems. We start by presenting necessary
definitions in Section 6.1, and then discuss connections between the GapSS problem and different types of
communication protocols in Section 6.2, Section 6.3, Section 6.4. Lower-bounds against myopic algorithms
are given in Section 6.5.

6.1 Graph access structures and CDS access structures

A graph access structure is a monotone function f that has minterms of size exactly 2, and thus it can
be represented by a graph G: Every party is assigned a vertex, and a pair of parties is authorized iff an
edge connects their corresponding vertices. We will call an access structure a bipartite access structure if
it can be represented by a bipartite graph. By abuse of notation, we sometimes identify the graph G with
the corresponding function fG. For example, we write Smax(G) for Smax(fG). It is known that Smax(G) =
O(n/ log n) for every n-vertex graph G [EP97] and the best-known lower-bound is Ω(log n) [vD95, Csi09].
For linear schemes, this can be improved to Ω(

√
n) [BGP97].

We will also consider CDS access structures. These are partial access structures that are also defined
according to bipartite graphs with two parts X,Y , but their correctness and privacy constraints only apply
to coalitions e = (x, y) such that x ∈ X and y ∈ Y , and we put no constraints on larger coalitions.
Secret sharing schemes for CDS access structures are also known as a 2-party conditional disclosure of
secrets protocols [GIKM00] and are closely related to secret sharing for forbidden-graphs [SS97]. We let
CDSmax(G) (resp., LCDSmax) denote the smallest integer k such that G can be realized by a CDS (resp.,
linear CDS over the binary field) with shares of size k. Since every secret sharing scheme that realizes a
graph G is also a CDS for G it holds that

CDSmax(G) ≤ Smax(G) ≤ LSmax(G), and CDSmax(G) ≤ LCDSmax(G) ≤ LSmax(G),

for every bipartite graph G. In fact, CDS seem to be significantly cheaper than graphs. In particular,
for every n-vertex graph G, it is known that CDSmax(G) = no(1) [LVW18], and that LCDSmax(G) =
O(n1/2) [BFMP17]. The latter bound is known to be tight [BFMP17].

19

6.2 Secret Sharing and Nondeterministic 1-Equality Protocols

In this part, we describe the connection between secret sharing and Nondeterministic 1-Equality communi-
cation protocols. In such protocols, the parties are given a nondeterministic advice and then have 1-query
access to an Equality oracle. The complexity of the protocol is measured by the length of the nondetermin-
istic advice.

Definition 6.1 (Nondeterministic 1-Equality communication [BBM+20]). A bipartite graph G = ((X,Y), E)
has a k-bit non-deterministic 1-Equality protocol if there exist a pair of functions A : X×{0, 1}k → {0, 1}∗
and B : Y × {0, 1}k → {0, 1}∗ for which the followings hold:

• If (x, y) ∈ E, then there exists an advice a ∈ {0, 1}k such that A(x, a) = B(y, a).

• If (x, y) /∈ E, then for every a ∈ {0, 1}k it holds that A(x, a) ̸= B(y, a).

Let ∃EQ(G) denote the smallest integer k such that G has k-bit non-deterministic 1-Equality protocol.

We prove the following theorem:

Theorem 6.2 (LSS vs nondeterministic 1-Equality protocols). Every family of bipartite graphs G can be
realized by a linear secret sharing scheme with shares of constant size if and only if G can be computed with
constant communication by a protocol with 1-query access to an Equality oracle. In particular,

∃EQ(G)/2 ≤ LCDSmax(G) ≤ LSmax(G) ≤ 2∃EQ(G).

In order to prove the theorem we will use the following graph-theoretic characterization of nondeter-
ministic 1-Equality protocols due to [BBM+20].

Fact 6.3 ([BBM+20]). A bipartite graph G has a nondeterministic 1-Equality protocol with complexity t
if and only if G can be covered by at most 2t bipartite graphs that do not contain a 4-path as an induced
subgraph (aka P4-free bipartite graphs).

A bipartite graph is P4-free if and only if its edges form a vertex-disjoint set of bicliques. That is, each
connected component of a P4-free bipartite graph is a complete bipartite graph. Accordingly, the minimal
number of P4-free graphs needed to cover the edges of a graph G is a natural combinatorial quantity that
refines the well-studied biclique cover number of a graph. Thus Theorem 6.2 essentially says that a bipartite
graph has an LSS with constant share size iff its P4-free cover number is constant.

Proof of Theorem 6.2. The inequality LCDSmax(G) ≤ LSmax(G) follows by definition. We move on to
prove the rightmost inequality. Let G be a bipartite graph over n vertices and let k := 2∃EQ(G). We prove
that G can be realized by an LSS with maximal share size of k. By Fact 6.3, G can be covered by k P4-free
bipartite graphs G1, . . . , Gk. Viewing each graph as an access structure (whose authorized sets are sets
with an induced edge) it holds that G =

∨
Gi, and so to share a secret s under G, it suffices to share s

independently for every Gi. The latter task can be done with single-bit shares as follows. Recalling that the
edges of Gi form a disjoint union of bicliques, i.e., Gi =

∨
Bi,j , we independently share s according to

each biclique Bi,j by setting the left shares of Bi,j to be a random bit ri,j and the right shares to be ri,j ⊕ s.
Since the bicliques covering Gi are vertex-disjoint, each vertex of Gi receives a single bit.

Next, assume that the bipartite graph G = ((L,R), E) can be realized by a Linear CDS D with share size
k. By Fact 6.3, in order to prove that ∃EQ(G) ≤ 2k, it suffices to show that G can be covered by at most
22k bipartite graphs that are all P4-free. Denote by ρ the randomness complexity of D. By the standard

20

correspondence between LSS and span programs [Bei96, KW93] (see also [Bei11]), the Linear-CDS D
associates with each vertex v a binary k× (ρ+1) binary matrix Mv such that (*) the pair (a, b) ∈ L×R is
an edge if and only if the rows of Ma and Mb span some fixed non-zero target vector e1 (wlog e1 = (1, 0ρ)).
For every pair of row vectors (α, β) ∈ Fk

2 × Fk
2 , let Gα,β be the bipartite graph over (L,R) such that

(a, b) ∈ L × R is an edge if αMa + βMb = e1. By (*), the 22k graphs Gα,β, (α, β) ∈ Fk
2 × Fk

2 cover the
graph G and so it remains to prove that all these graphs are P4-free. Fix some pair (α, β). We show that
every set of 4 vertices that are connected by a path of length 3, induce a 4-cycle, and so the graph does not
contain an induced 4-path. Fix some vertices a, b, c, d that form a path of length three (a, b, c, d) in the graph
Gα,β and assume that a, b ∈ L and b, d ∈ R (the other case is symmetric). Then the edge (a, d) must also
belong to Gα,β since

αMa + βMd = (αMa + βMb)− (βMb + αMc) + (αMc + βMd) = e1 − e1 + e1 = e1,

and the theorem follows.

The theorem establishes a dimension-free relation between Non-deterministic 1-equality protocols (or
the P4-free cover number of the bipartite graph), linear secret sharing, and linear-CDS schemes. The gap
between these measures is exponential, and so for very “cheap” graphs we get tighter bounds. In the extreme,
known results imply that a graph has 1-bit LSS if and only if it is a P4-free bipartite graph. (See Appendix B
for details about this result and about other extensions of the theorem.)

A new lower-bound for disjointness. Let DISJN denote the bipartite graph with N left vertices and N
right vertices where each vertex represents a subset of [⌊logN⌋] and where x and y are connected if the
corresponding sets are disjoint. Theorem 6.2 allows us to settle the the linear-CDS complexity of DISJN .
This quantity was studied by [LVW17] who showed that

√
logN ≤ LCDSmax(DISJN) ≤ logN leaving

a quadratic gap between the lower and upper bound. In [Juk06, BBM+20] it was shown that ∃EQ(G) ≥
0.085 logN and therefore, by Theorem 6.2, we conclude:

Corollary 6.4. LCDSmax(DISJN) = Θ(logN).

We further note that the Lin-CDS complexity of DISJ is of special interest as it is closely related to the
complexity of fuzzy-IBE encryption (see [LVW17] for a discussion). We note that the (non-linear) CDS
complexity of DISJ (that was suggested as an open problem in [AV21]) remains open.

6.3 Secret Sharing and Randomized Communication Complexity

Public-randomness protocols. A public-randomness protocol is one where the players have access to
a shared source of randomness. Equivalently, we think of public-randomness protocols as a distribution
over deterministic protocols. (See, e.g., for [KN97] communication complexity background.) Formally, a
public-randomness BPP protocol P computes a bipartite graph G = ((X,Y), E) if for every input pair x, y
it holds that

Pr
r
[P (x, y; r) = G(x, y)] ≥ 0.9,

where, by abuse of notation, G(x, y) = 1 if (x, y) ∈ E. If the protocol never errs on 1-inputs (i.e., edges)
it is referred to as a coRP protocol, and if it never errs on 0-inputs (i.e., non-edges) it is referred to as an
RP protocol. We let BPP(G) (resp., coRP(G), RP(G)) denote the smallest integer k for which G admits a
BPP (resp., coRP, RP) protocol in which the parties never communicate more than k bits.

21

The following theorem upper-bounds the coRP complexity of the graph in terms of its share-complexity.
For the converse direction, we relate the RP complexity of the graph to its normalized share size. Formally,
for an n-vertex graph G, we let Smax,norm(G, ρ) denote the smallest integer k such that G can be realized by
a secret sharing scheme with secret size ρ and normalized max-share size of k (i.e., max-share size of k · ρ).

Theorem 6.5 (Secret Sharing and Randomized Communication Protocols). For every family G of bipartite
graphs, it holds that

Ω(log(coRP(G))) ≤ CDSmax(G) ≤ Smax(G),

and (weak converse):
Smax,norm(G, log n) ≤ O

(
2RP(G)

)
,

where n denotes the size of G.

Proof. Let G = ((L,R), E) be a bipartite graph. We first prove that a CDS scheme for G with k-bit shares
implies a randomized communication protocol for G with complexity of 2O(k). We begin with the following
basic protocol that is closely related to the protocol from [AV21, Thm. 7]. For every b ∈ {0, 1}, Alice and
Bob use the public randomness of the protocol to invoke the CDS scheme and locally generate a vector of
shares (sbv)v∈L∪R. Given an input x ∈ L (resp., y ∈ R) Alice announces whether s0x = s1x (resp., Bob
announces whether s0y = s1y). If both equalities hold the parties reject; and otherwise they accept. This basic
protocol is repeated T = O(22k) times and the parties reject if at least one of the copies rejects. Otherwise,
the parties accept.

We analyze the basic protocol. Fix (x, y) ∈ L × R. If the set {x, y} is authorized (i.e., the edge (x, y)
exists), the pair (s0x, s

0
y) and the pair (s1x, s

1
y) are distributed over disjoint supports, and therefore the parties

accept with probability 1. On the other hand, if {x, y} is an unauthorized set, the random variable (s0x, s
0
y) is

identically distributed to the random variable (s1x, s
1
y), and since these random variables are supported over

a set of size at most 22k, we get a collision (and the parties accept) with probability at least 2−2k. After
repeating the protocols T = C22k times for a constant C, we get a one-sided error protocol with a constant
error of (1− 2−2k)T < e−C , as required.

We now prove the converse part. Suppose that there exists a randomized RP protocol P for G with
communication complexity k such that for every edge (x, y) in G it holds that

Pr
r
[P (x, y; r) = 1] ≥ 0.9,

and for every non-edge of G the protocol always outputs 0 with probability 1. We will need the following
claim whose proof follows via a standard use of the probabilistic method.

Claim 6.6. For T = O(log n), there exists a sequence of deterministic protocols P1, . . . , PT with commu-
nication complexity of k bits such that for every edge (x, y) ∈ E

Pr
i∈[T]

[Pi(x, y) = 1] > 0.8,

and for every non-edge (x, y) ∈ L×R \ E, Pi(x, y) = 0 for all i ∈ [T].

Proof of claim. For a constant C, sample T = C log n independent protocols from P (viewed as a proba-
bility distribution over deterministic protocols). We show that such a tuple satisfies the claim with positive
probability. By a Chernoff bound, for any fixed (x, y) ∈ E the first equation holds except with probability
exp(−T) which is at most 0.5/n2 for sufficiently large constant C. Hence, by applying a union-bound over
all the edges, the sampled protocols satisfy the equality for each (x, y) ∈ E with probability at least 0.5.
Finally, the second equality holds (with probability 1) since P has zero-error on No instances.

22

For each protocol Pi define a bipartite graph Gi = (L,R,Ei) whose edges correspond to the one-inputs
of Pi, i.e., (x, y) ∈ Ei iff Pi(x, y) = 1. Let ρ : FK

2 → FT
2 be a linear error correcting code whose rate

is constant, i.e., K = Θ(T) and whose distance is larger than 0.2T . (Such a code exists, e.g., via the
probabilistic method [Var57]). Given a K-bit secret s we map it to T bits z = ρ(s) and then, for each
i ∈ [T] share the bit zi to the parties L ∪ R by using a secret sharing for Gi. In Claim 6.7 below we will
show that this can be done by a linear scheme with maximal-share size of at most 2k bits. Hence, each party
holds a share of bit-length at most T · 2k bits, and since the secret is of bit-length Θ(T) the normalized
share size is O(2k). It is not hard to see that the scheme realizes G. Indeed, correctness holds since every
edge (x, y) in G appears in at least 0.8T of the graphs and so the pair (x, y) can recover at least 0.8T of
the z-shares, and then uniquely recover s (by exploiting the large distance of the code). On the other hand,
for privacy, note that any independent set S in G is also an independent set of Gi,∀i ∈ [T]. Therefore the
coalition S learns nothing on the codeword z, and the secret s remains perfectly hidden. (Formally, the view
of such a coalition is distributed independently of the secret.)

It remains to show that Gi can be realized by secret-sharing scheme with max-share size of 2k. Indeed,
we prove the following claim.

Claim 6.7 (Deterministic protocols and secret sharing). If a bipartite graph H admits a k-bit deterministic
protocol with communication of k, then it can be realized by an LSS (over an arbitrary field) with maximal
share size of 2k.

Proof. It is a basic fact in communication complexity that every deterministic protocol P with communica-
tion k for a bipartite graph G induces a partition of the one-inputs (edges) to at most 2k bicliques. We can
thus share the secret s to each of the bicliques independently with share-size 1 by giving the left parties in
the biclique a random field element r and the right parties s− r. Overall, each vertex gets a share of size at
most 2k.

We conclude that Smax,norm(G,C log n)) ≤ O
(
2RP(G)

)
for some constant C. Note that we can take

C = 1, by (possibly) padding the secret and increasing the constant in the big-O notation, and so the second
part of the theorem follows.

From secret-sharing to adjacency sketches. Recall that a family of graphs G has k-size adjacency
sketches if there exists a probabilistic labeling algorithm LG(v) that, given G ∈ G and vertex v, assigns
a k-bit label ℓv to v such that a universal decoder algorithm D that has only access to labels but not to G can
determine with probability 2/3 if two vertices are adjacent. That is, for every G ∈ G and vertices u, v

Pr[D(LG(v), LG(u)) = G(v, u)] ≥ 2/3.

As mentioned in the introduction, graphs with a constant randomized communication complexity can be
realized by constant-size sketches, and vice-versa [HWZ22]. By Theorem 6.5, graphs with constant share-
size give rise to constant-size sketches. Below, we sketch a direct proof for this fact without going through
communication complexity.

Let G be the family of graphs that can be realized by secret sharing schemes with max-share size of k =
O(1) bits. We construct a constant-size adjacency sketch for G with 1-sided error as follows. Independently
share the secret zero and the secret one into (sv)v∈V and (s′v)v∈V , and label each vertex v with its shares
(sv, s

′
v). Given a pair of labels (sv, s′v) and (su, s

′
u) declare an “edge” if (sv, su) ̸= (s′v, s

′
u) and “no-edge”

otherwise. The privacy and correctness of the secret sharing scheme imply that (sv, su) and (s′v, s
′
u) are

identically distributed (resp., have disjoint support) if v and u are not connected (resp., connected). In the

23

former case, collision happens with constant probability of at least 2−k since the shares are of length k. The
error can be amplified by sampling O(2k) independent labels.

6.4 Secret Sharing and coNP Protocols

A co-nondeterministic protocol allows the party to determine the output based on an advice a. Formally, a
k-bit co-nondeterministic protocol for a bipartite graph G = ((X,Y), E) is defined by a pair of functions
A : X × {0, 1}k → {0, 1} and B : Y × {0, 1}k → {0, 1} that satisfy the following properties:

• If (x, y) /∈ E, then there exists a ∈ {0, 1}k such that A(x, a) = B(y, a)) = 1.

• If (x, y) ∈ E, then for every a ∈ {0, 1}k it holds that A(x, a) = 0 or B(y, a) = 0.

We let coNP(G) denote the minimal integer k for which G can be realized by a k-bit co-nondeterministic
protocol.

We prove the following dimension-free bound.

Theorem 6.8 (coNP complexity and LSS). For every family G of bipartite graphs it holds that

LSmax(G) ≤ 3 · 2coNP(G).

Proof. Let G = ((L,R), E) be a bipartite graph with n vertices in each side with coNP complexity k. Then,
the bipartite non-edges of G can be covered by K = 2k independent sets I1, . . . , IK . That is, each non-edge
in any of the independent sets I1, . . . , IK is a non-edge in G and every non-edge of G is a non-edge in at
least on Ij . For each i ∈ [K], define a bipartite graph Gi = (L,R,Ei) where two vertices are connected by
an edge iff at least on of them is not in Ii. That is, for every x ∈ L and y ∈ R, (x, y) ∈ Ei iff {x, y} ̸⊂ Ii.

Associating graphs with their corresponding 2-DNFs, it holds that G =
∧

j∈[K]Gj . To see this, observe
that (1) an edge in G must appear as an edge in all Gj’s (since every non-edge of Gj is a non-edge in G);
and (2) a non-edge in G must appear as a non-edge in some Gj . Therefore, G and

∧
j∈[K]Gj accept exactly

the same inputs. We can therefore use additive secret sharing (for AND) to get a secret-sharing scheme for
G based on secret-sharing schemes for the graphs Gi: Given a secret s generate K uniform bits s1, . . . , sK
subject to

⊕K
i=1 si = s, and share each si according to the graph Gi.

It remains to realize the bipartite graphs Gi. To do, observe that in every Gi the edges can be partitioned
to three disjoint bicliques: 1) edges (x, y) where x ∈ Ii and y ̸∈ Ii; 2) edges (x, y) where x ̸∈ Ii and y ∈ Ii;
3) edges (x, y) where x ̸∈ Ii and y ̸∈ Ii. As we have seen a few times before, we can share a secret s′ to a
biclique by dealing every left party a random bit r and every right one the bit r ⊕ s′. In total, the maximal
share size for every Gi is 3, and the maximal share size for G is 3 · 2k, as required.

The co-nondeterministic complexity is known to lower-bound CDS complexity as proved in [AV21]:

Theorem 6.9 ([AV21]). For every family G of bipartite graphs it holds that

Ω(coNP(G))−O(log log(n)) ≤ CDSmax(G),

where n is the size of the graph.

Together with Theorem 6.8, we get that for every n-vertex bipartite graph G,

Ω(coNP(G))−O(log log(n)) ≤ CDSmax(G) ≤ LCDSmax(G) ≤ LSmax(G) ≤ 3 · 2coNP(G).

24

6.5 Failure of Myopic Algorithms

We prove that myopic algorithms cannot distinguish the case where LSmax(G) = O(1) from the case where
Smax(G) = Ω(log n).

Theorem 6.10. There exists a family of bipartite graphs G that requires shares of size Ω(log n) from any
secret sharing scheme that realizes it, but every induced subgraph of G with

√
n vertices in each side can

be realized by a linear scheme with maximal share size 8.

The proof is based on the probabilistic method. We denote by Mn,p the distribution over n× n Boolean
matrices where each entry is independently 1 with probability p = p(n) and 0 with probability p = 1 − p,
and by BG(n, p) the distribution over bipartite graphs that corresponds to Mn,p. In our proof, we will use
the following fact regarding covers in random matrices, by which matrices sampled from Mn,p with p that
is not “too large” do not have “huge” combinatorial rectangles of 1s:

Fact 6.11 ([PT17], Corollary 4.3). There exists a constant λ0 > 0 such that for every parameter λ0 <
λ(n) < o(n) and p(n) = 1− λ(n)/n the following holds. With probability 1− o(1), the largest combina-
torial rectangle of 1s in Mn,p(n) is of size n2

eλ +O(n).

Proof of Theorem 6.10. We show that when a bipartite graph G is sampled from BG(n, p) with p = n−0.99

it satisfies both the upper and lower bounds required in the theorem. To prove the lower bound we first
notice that Fact 6.11 implies the following lemma:

Lemma 6.12. Let 0 < α < 1 be a constant and let G be a bipartite graph sampled from BG(n, p) with
p = nα

n . Then, with probability 1− o(1) it holds that coNP(G) = Ω(logn).

Proof. By Fact 6.11, the largest 1-monochromatic rectangle in a bipartite graph sampled from BG(n, 1−p)
is of size O(n2−α) with probability 1 − o(1). Switching the roles of zeroes and ones, this means that the
largest 0-monochromatic rectangle in a bipartite graph sampled from BG(n, p) is of size O(n2−α) with
probability 1 − o(1). By a Chernoff bound, such a graph has at least Ω(n2) with probability 1 − o(1).
For graphs that satisfy both properties, the number of zero rectangles that needed to cover all the zero
entries is at least Ω(n2/n2−α) = Ω(nα) and so the non-deterministic communication complexity is at least
α log n−O(1), as required.

Now, by setting α = 0.01 and combining Lemma 6.12 and the inequality CDSmax(G) ≥ Ω(coNP(G))−
O(log log(n)) from Theorem 6.9 we get that with 1− o(1) probability, the CDS complexity of a graph that
is sampled from BG(n, p) with p = n−0.99 is Ω(log n).

We move on to prove that if we sample a matrix M from Mn,n−0.99 , then with high probability every
a× b submatrix of M with a, b ≤

√
n corresponds to a graph that can be realized with shares of size 8. Call

a matrix M good if for every a, b ≤
√
n every a × b submatrix of M contains a row or a column with at

most four 1s. We prove the following lemma.

Lemma 6.13. A matrix M sampled from Mn,n−0.99 is good with probability 1− o(1)

Proof. This statement is trivial when min(a, b) ≤ 4 and so we fix a, b > 4. Since b ≤
√
n, the probability

that a single row in the matrix has at least five 1s is bounded by(√
n

5

)
·
(

1

n0.99

)5

≤ 1

n2.45

25

Hence, if a ≥ b, the probability that there is an a× b submatrix such that each of its a rows contains at least
five 1’s is bounded by (

n

a

)
·
(
n

b

)
·
(

1

n2.45

)a

≤ n2a · 1

n2.45a
= o

(
1

n

)
,

where the last equality holds since a > 4. Similarly, if a < b, the probability that there exists an a × b
submatrix where each of its b columns contains at least five 1’s is bounded by o

(
1
n

)
. Thus, by a union

bound over the n choices of a, b ≤
√
n, the probability that there are a, b ∈ [

√
n] and an a × b submatrix

where every column or row contains at least five 1’s is bounded by o(1).

Fix a good matrix M and let M ′ be some
√
n ×

√
n-submatrix of M . It remains to show that M ′

can be realized by a secret sharing scheme with max-share size of 8. Observe that every submatrix M ′′

of M ′ contains a row or a column with at most four 1’s. By an argument of [HHH22], it follows that M ′

corresponds to the biadjacency matrix of a disjoint union of four bipartite graphs F1, F2, F3, F4 that are all
forests. We need the following simple claim.

Claim 6.14. A forest F can be realized with max-share size of 2.

Proof. It suffices to prove the claim for a tree T and apply the tree secret sharing independently for each
connected component of F . Indeed, given a tree graph with n vertices choose one of them to be the root,
and sample n uniform bits r1, . . . rn. Scan the tree, starting from the root, set the root’s share to be r1, and
set the share of the ith vertex to be (ri, rj⊕s) where j is the father of the ith vertex. Correctness and privacy
are immediate.

We conclude that Fi can be realized with max-share size of 2 and therefore the graph G′ associated with
M ′ can be realized with max-share size of at most 8. The theorem follows.

References

[AA18] Benny Applebaum and Barak Arkis. On the power of amortization in secret sharing: d-uniform
secret sharing and CDS with constant information rate. In Amos Beimel and S. Dziembowski,
editors, TCC 2018, volume 11239 of LNCS, pages 317–344. Springer-Verlag, 2018.

[ABF+19] Benny Applebaum, Amos Beimel, Oriol Farràs, Oded Nir, and Naty Peter. Secret-sharing
schemes for general and uniform access structures. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Part III, volume 11478 of Lecture Notes
in Computer Science, pages 441–471. Springer, 2019.

[ABI+23a] Damiano Abram, Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Varun Narayanan. Cryptog-
raphy from planted graphs: security with logarithmic-size messages. In Theory of Cryptography
Conference, pages 286–315. Springer, 2023.

[ABI+23b] Benny Applebaum, Amos Beimel, Yuval Ishai, Eyal Kushilevitz, Tianren Liu, and Vinod
Vaikuntanathan. Succinct computational secret sharing. In Barna Saha and Rocco A. Serve-
dio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC
2023, Orlando, FL, USA, June 20-23, 2023, pages 1553–1566. ACM, 2023.

26

[ABN+22] Benny Applebaum, Amos Beimel, Oded Nir, Naty Peter, and Toniann Pitassi. Secret sharing,
slice formulas, and monotone real circuits. In Mark Braverman, editor, 13th Innovations in
Theoretical Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berke-
ley, CA, USA, volume 215 of LIPIcs, pages 8:1–8:23. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022.

[ABNP20] Benny Applebaum, Amos Beimel, Oded Nir, and Naty Peter. Better secret sharing via ro-
bust conditional disclosure of secrets. In Konstantin Makarychev, Yury Makarychev, Madhur
Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, pages 280–293. ACM, 2020.

[AN21] Benny Applebaum and Oded Nir. Upslices, downslices, and secret-sharing with complexity
of 1.5n. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021 -
41st Annual International Cryptology Conference, CRYPTO 2021, Part III, volume 12827 of
Lecture Notes in Computer Science, pages 627–655. Springer, 2021.

[AN23] Benny Applebaum and Oded Nir. Advisor-verifier-prover games and the hardness of informa-
tion theoretic cryptography. In 64th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 539–555, 2023.

[AV21] Benny Applebaum and Prashant Nalini Vasudevan. Placing conditional disclosure of secrets in
the communication complexity universe. J. Cryptol., 34(2):11, 2021.

[AY24] Daniel Avraham and Amir Yehudayoff. On blocky ranks of matrices. Comput. Complex.,
33(1):2, 2024.

[BBM+20] Alexander R Block, Simina Brânzei, Hemanta K Maji, Himanshi Mehta, Tamalika Mukherjee,
and Hai H Nguyen. p_4-free partition and cover numbers and application. Cryptology ePrint
Archive, 2020.

[Bei96] Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Technion,
1996.

[Bei11] Amos Beimel. Secret-sharing schemes: A survey. In Yeow Meng Chee, Zhenbo Guo, San
Ling, Fengjing Shao, Yuansheng Tang, Huaxiong Wang, and Chaoping Xing, editors, Coding
and Cryptology - Third International Workshop, IWCC 2011, volume 6639 of Lecture Notes in
Computer Science, pages 11–46. Springer, 2011.

[Bei23] Amos Beimel. Lower bounds for secret-sharing schemes for k-hypergraphs. In Kai-Min
Chung, editor, 4th Conference on Information-Theoretic Cryptography, ITC 2023, June 6-8,
2023, Aarhus University, Aarhus, Denmark, volume 267 of LIPIcs, pages 16:1–16:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[Ber82] S Berkowitz. On some relationships between monotone and nonmonotone circuit complexity.
Technical report, Technical report, Department of Computer Science, University of Toronto . . . ,
1982.

[BF20] Amos Beimel and Oriol Farràs. The share size of secret-sharing schemes for almost all access
structures and graphs. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptogra-
phy - 18th International Conference, TCC 2020, volume 12552 of Lecture Notes in Computer
Science, pages 499–529. Springer, 2020.

27

[BFM16] Amos Beimel, Oriol Farràs, and Yuval Mintz. Secret-sharing schemes for very dense graphs.
J. Cryptol., 29(2):336–362, 2016.

[BFMP17] Amos Beimel, Oriol Farràs, Yuval Mintz, and Naty Peter. Linear secret-sharing schemes for
forbidden graph access structures. In Yael Kalai and Leonid Reyzin, editors, Theory of Cryp-
tography - 15th International Conference, TCC 2017, Baltimore, MD, USA, November 12-15,
2017, Proceedings, Part II, volume 10678 of Lecture Notes in Computer Science, pages 394–
423. Springer, 2017.

[BFN24] Amos Beimel, Oriol Farràs, and Oded Nir. Secret-sharing schemes for high slices. IACR
Cryptol. ePrint Arch., page 602, 2024.

[BGP97] Amos Beimel, Anna Gál, and Mike Paterson. Lower bounds for monotone span programs.
Comput. Complex., 6(1):29–45, 1997.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In Janos Simon, ed-
itor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pages 1–10.
ACM, 1988.

[BI92] Michael Bertilsson and Ingemar Ingemarsson. A construction of practical secret sharing
schemes using linear block codes. In Jennifer Seberry and Yuliang Zheng, editors, Advances
in Cryptology - AUSCRYPT ’92, Workshop on the Theory and Application of Cryptographic
Techniques, volume 718 of Lecture Notes in Computer Science, pages 67–79. Springer, 1992.

[BKN18] Amos Beimel, Eyal Kushilevitz, and Pnina Nissim. The complexity of multiparty PSM pro-
tocols and related models. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in
Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Part II, volume 10821 of Lecture Notes in Computer
Science, pages 287–318. Springer, 2018.

[BL88] Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and monotone functions. In
Shafi Goldwasser, editor, Advances in Cryptology – CRYPTO ’88, 8th Annual International
Cryptology Conference, volume 403 of Lecture Notes in Computer Science, pages 27–35.
Springer, 1988.

[Bla79] George R. Blakley. Safeguarding cryptographic keys. In Richard E. Merwin, Jacqueline T.
Zanca, and Merlin Smith, editors, Proceedings of the 1979 AFIPS National Computer Confer-
ence, volume 48 of AFIPS Conference proceedings, pages 313–317. AFIPS Press, 1979.

[Bog23] Andrej Bogdanov. Csirmaz’s duality conjecture and threshold secret sharing. In 4th Conference
on Information-Theoretic Cryptography, ITC 2023, June 6-8, 2023, Aarhus University, Aarhus,
Denmark, pages 3:1–3:6, 2023.

[BP18] Amos Beimel and Naty Peter. Optimal linear multiparty conditional disclosure of secrets proto-
cols. In Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryptology - ASIACRYPT
2018 - 24th International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part III, volume
11274 of Lecture Notes in Computer Science, pages 332–362. Springer, 2018.

28

[BR17] Andrej Bogdanov and Alon Rosen. Pseudorandom functions: Three decades later. In Yehuda
Lindell, editor, Tutorials on the Foundations of Cryptography, pages 79–158. Springer Interna-
tional Publishing, 2017.

[BSGV92] Carlo Blundo, Alfredo De Santis, Luisa Gargano, and Ugo Vaccaro. On the information rate
of secret sharing schemes (extended abstract). In Advances in Cryptology - CRYPTO ’92, 12th
Annual International Cryptology Conference, pages 148–167, 1992.

[BSSV95] Carlo Blundo, Alfredo De Santis, Douglas R. Stinson, and Ugo Vaccaro. Graph decompositions
and secret sharing schemes. J. Cryptol., 8(1):39–64, 1995.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure proto-
cols (extended abstract). In Janos Simon, editor, Proceedings of the 20th Annual ACM Sympo-
sium on Theory of Computing, pages 11–19. ACM, 1988.

[Csi96] László Csirmaz. The dealer’s random bits in perfect secret sharing schemes. Studia Sci. Math.
Hungar., 32(3–4):429–437, 1996.

[Csi05] László Csirmaz. Secret sharing schemes on graphs. IACR Cryptol. ePrint Arch., page 59, 2005.

[Csi09] László Csirmaz. An impossibility result on graph secret sharing. Des. Codes Cryptogr.,
53(3):195–209, 2009.

[CT13] László Csirmaz and Gábor Tardos. Optimal information rate of secret sharing schemes on trees.
IEEE Trans. Inf. Theory, 59(4):2527–2530, 2013.

[DF91] Yvo Desmedt and Yair Frankel. Shared generation of authenticators and signatures (extended
abstract). In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO ’91, 11th Annual
International Cryptology Conference, volume 576 of Lecture Notes in Computer Science, pages
457–469. Springer, 1991.

[EP97] Paul Erdös and László Pyber. Covering a graph by complete bipartite graphs. Discret. Math.,
170(1-3):249–251, 1997.

[FHHH24] Yuting Fang, Lianna Hambardzumyan, Nathaniel Harms, and Pooya Hatami. No complete
problem for constant-cost randomized communication. In Proceedings of the 56th Annual ACM
Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024,
pages 1287–1298, 2024.

[FK09] Pierre Fraigniaud and Amos Korman. On randomized representations of graphs using short
labels. In Friedhelm Meyer auf der Heide and Michael A. Bender, editors, SPAA 2009: Pro-
ceedings of the 21st Annual ACM Symposium on Parallelism in Algorithms and Architectures,
Calgary, Alberta, Canada, August 11-13, 2009, pages 131–137. ACM, 2009.

[FLN01] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middleware.
In Peter Buneman, editor, Proceedings of the Twentieth ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, May 21-23, 2001, Santa Barbara, California, USA.
ACM, 2001.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1986.

29

[GIKM00] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy in private
information retrieval schemes. J. Comput. Syst. Sci., 60(3):592–629, 2000.

[GKW15] Romain Gay, Iordanis Kerenidis, and Hoeteck Wee. Communication complexity of conditional
disclosure of secrets and attribute-based encryption. In Rosario Gennaro and Matthew Rob-
shaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, volume 9216 of Lecture
Notes in Computer Science, pages 485–502. Springer, 2015.

[Gol98] Jovan Dj. Golic. On matroid characterization of ideal secret sharing schemes. J. Cryptol.,
11(2):75–86, 1998.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina
De Capitani di Vimercati, editors, Proceedings of the 13th ACM Conference on Computer and
Communications Security, CCS 2006, pages 89–98. ACM, 2006.

[Har20] Nathaniel Harms. Universal communication, universal graphs, and graph labeling. In Thomas
Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, Jan-
uary 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 33:1–33:27. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[HH22] Hamed Hatami and Pooya Hatami. The implicit graph conjecture is false. In 63rd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 -
November 3, 2022, pages 1134–1137. IEEE, 2022.

[HH24] Hamed Hatami and Pooya Hatami. Guest column: Structure in communication complexity and
constant-cost complexity classes. SIGACT News, 55(1):67–93, 2024.

[HHH21] Lianna Hambardzumyan, Hamed Hatami, and Pooya Hatami. Dimension-free bounds and
structural results in communication complexity. Electron. Colloquium Comput. Complex.,
TR21-066, 2021.

[HHH22] Lianna Hambardzumyan, Hamed Hatami, and Pooya Hatami. A counter-example to the prob-
abilistic universal graph conjecture via randomized communication complexity. Discret. Appl.
Math., 322:117–122, 2022.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[HWZ22] Nathaniel Harms, Sebastian Wild, and Viktor Zamaraev. Randomized communication and im-
plicit graph representations. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th
Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022,
pages 1220–1233. ACM, 2022.

[IP99] Russell Impagliazzo and Ramamohan Paturi. Complexity of k-sat. In Proceedings of the
14th Annual IEEE Conference on Computational Complexity, Atlanta, Georgia, USA, May 4-6,
1999, pages 237–240, 1999.

30

[ISN87] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing schemes realizing general access
structure. In Globecom 87, pages 99–102. IEEE, 1987. Journal version: Multiple assignment
scheme for sharing secret. J. Cryptol., 6(1):15-20, 1993.

[Juk06] Stasys Jukna. On graph complexity. Comb. Probab. Comput., 15(6):855–876, 2006.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
1997.

[KNR92] Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of graphs. SIAM J.
Discret. Math., 5(4):596–603, 1992.

[KW93] Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings of the Eigth Annual
Structure in Complexity Theory Conference, pages 102–111. IEEE Computer Society, 1993.

[LS20] Kasper Green Larsen and Mark Simkin. Secret sharing lower bound: Either reconstruction is
hard or shares are long. In Clemente Galdi and Vladimir Kolesnikov, editors, Security and
Cryptography for Networks - 12th International Conference, SCN 2020, Amalfi, Italy, Septem-
ber 14-16, 2020, Proceedings, volume 12238 of Lecture Notes in Computer Science, pages
566–578. Springer, 2020.

[LV18] Tianren Liu and Vinod Vaikuntanathan. Breaking the circuit-size barrier in secret sharing.
In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages 699–708. ACM,
2018.

[LVW17] Tianren Liu, Vinod Vaikuntanathan, and Hoeteck Wee. Conditional disclosure of secrets via
non-linear reconstruction. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptol-
ogy - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 20-24, 2017, Proceedings, Part I, volume 10401 of Lecture Notes in Computer
Science, pages 758–790. Springer, 2017.

[LVW18] Tianren Liu, Vinod Vaikuntanathan, and Hoeteck Wee. Towards breaking the exponential bar-
rier for general secret sharing. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances
in Cryptology – EUROCRYPT 2018 – 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Part I, volume 10820 of Lecture Notes in Computer
Science, pages 567–596. Springer, 2018.

[NW96] Moni Naor and Avishai Wool. Access control and signatures via quorum secret sharing. In
Li Gong and Jacques Stearn, editors, CCS ’96, Proceedings of the 3rd ACM Conference on
Computer and Communications Security, New Delhi, India, March 14-16, 1996, pages 157–
168. ACM, 1996.

[PR94] Pavel Pudlák and Vojtech Rödl. Some combinatorial-algebraic problems from complexity the-
ory. Discret. Math., 136(1-3):253–279, 1994.

[PR18] Toniann Pitassi and Robert Robere. Lifting nullstellensatz to monotone span programs over
any field. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages
1207–1219. ACM, 2018.

31

[PSS23] Toniann Pitassi, Morgan Shirley, and Adi Shraibman. The strength of equality oracles in com-
munication. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science
Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA, volume
251 of LIPIcs, pages 89:1–89:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[PT17] Mozhgan Pourmoradnasseri and Dirk Oliver Theis. The rectangle covering number of random
boolean matrices. Electron. J. Comb., 24(2):2, 2017.

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24–35,
1997.

[San20] Rahul Santhanam. Pseudorandomness and the minimum circuit size problem. In Thomas
Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, Jan-
uary 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 68:1–68:26. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22:612–613, 1979.

[Sim23] Meta-complexity workshop at simons institute for the theory of computing. https://
simons.berkeley.edu/programs/Meta-Complexity2023, 2023.

[SS97] Hung-Min Sun and Shiuh-Pyng Shieh. Secret sharing in graph-based prohibited structures. In
Proceedings IEEE INFOCOM ’97, The Conference on Computer Communications, Sixteenth
Annual Joint Conference of the IEEE Computer and Communications Societies, Driving the
Information Revolution, Kobe, Japan, April 7-12, 1997, pages 718–724, 1997.

[SSR08] Bhavani Shankar, Kannan Srinathan, and C. Pandu Rangan. Alternative protocols for gen-
eralized oblivious transfer. In Shrisha Rao, Mainak Chatterjee, Prasad Jayanti, C. Siva Ram
Murthy, and Sanjoy Kumar Saha, editors, Distributed Computing and Networking, 9th Inter-
national Conference, ICDCN 2008, volume 4904 of Lecture Notes in Computer Science, pages
304–309. Springer, 2008.

[Sti94] Douglas R. Stinson. Decomposition constructions for secret-sharing schemes. IEEE Trans. Inf.
Theory, 40(1):118–125, 1994.

[Tas11] Tamir Tassa. Generalized oblivious transfer by secret sharing. Des. Codes Cryptogr., 58(1):11–
21, 2011.

[Var57] Rom R. Varshamov. Estimate of the number of signals in error correcting codes. Dokl. Akad.
Nauk SSSR, 117:739—-741, 1957.

[vD95] Marten van Dijk. On the information rate of perfect secret sharing schemes. Des. Codes
Cryptogr., 6(2):143–169, 1995.

[Wat11] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and prov-
ably secure realization. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi,
editors, Public Key Cryptography - PKC 2011 - 14th International Conference on Practice and
Theory in Public Key Cryptography, volume 6571 of Lecture Notes in Computer Science, pages
53–70. Springer, 2011.

[Xie24] Daniel Yu-Long Xie. Breaking Graphs into Independent Rectangles. PhD thesis, Purdue Uni-
versity Graduate School, 2024.

32

https://simons.berkeley.edu/programs/Meta-Complexity2023
https://simons.berkeley.edu/programs/Meta-Complexity2023

A Algorithms for recognizing cheap truth tables

We present two simple algorithms for the MinSS problem that given a monotone function f : {0, 1}n →
{0, 1} and a complexity bound S (either on the total share size or on the max-share size) determines whether
f can be realized with complexity at most S.

We begin with a simple non-deterministic algorithm for the case where f is given as a truth table and
where S upper-bounds the total share size. Naively, the witness consists of a full description of a pair of
probability distributions over S bits, and so, on the face of it, the length of the witness may be long (e.g., if
the distribution assigns weights of very small magnitude). However, we note that it suffices to describe only
the support of the distributions leading to a non-deterministic algorithm of complexity 2O(S).12

Theorem A.1 (Algorithm for MinSS). Given a truth-table of a monotone function f : {0, 1}n → {0, 1}
of size N = 2n and a bound S > n on the total share-size, there is an algorithm that determines if f
has a secret-sharing of total share size of S in non-deterministic time of 2O(S) where the witness size is
2S+1 + n logS < 2S+1 + S logS.

When S = O(n) we get that the problem is solvable in non-deterministic time of poly(N), i.e., in NP.
Also, by trying all witnesses we get a deterministic algorithm whose complexity is Õ(22

S
). Unfortunately,

this is at least exponential in N and, may even be double-exponential in N (say, Õ(22
N0.5

) if one wants to
check if f has secret sharing of complexity of N0.5.)

Proof. We assume that the function is non-trivial, i.e., f ̸= 0 (otherwise we can simply accept the input).
We begin with some notation. Suppose that f can be realized by a secret-sharing scheme D whose total
share size is at most S where the ith share is of length Si. By definition,

∑
i Si ≤ S and by using padding

we can assume that equality holds. Recall that for a secret b ∈ {0, 1}, the distribution D(b) samples a vector
of shares z = (z[1], . . . , z[n]) where z[i] ∈ {0, 1}Si . It will be convenient to pack z into an S-bit string via
concatenation. Conversely, given an S-bit string z in the support of D(b), we write z[i] to denote the ith
share of z, i.e., the restriction of z to the indices (1 + S1 + · · ·+ Si−1), . . . , (S1 + · · ·+ Si) where S0 = 0.
For a set I ⊂ [n], we let z[I] denote (z[i])i∈I .

Given D, our witness w consists of the following parts: (1) the sequence of indices S1, . . . , Sn ∈ [S]
and (2) A pair of disjoint sets L0, L1 ⊂ {0, 1}S where the set Lb contains all the strings in the support of
D(b).13 The total length of the witness is at most n logS + 2 · 2S .

To verify the validity of a witness w, we first verify that
∑

Si = S and that the sets L0 and L1 are
disjoint. Next, we verify that one can define a probability distribution D(b) over Lb such that both privacy
and correctness constraints hold. This is done as follows.

Correctness: For every minimal authorized set I ⊆ [n], and every pair of strings z0 ∈ L0 and z1 ∈ L1,
we verify that z0[I] ̸= z1[I], and reject the witness if the condition does not hold. It is not hard to verify that
if D is a secret-sharing scheme that realizes f , then the witness passes this test. In the other direction, if L0

and L1 pass the correctness condition then any pair of distributions defined over L0 and L1 resp., meets the
correctness requirements induced by f .

Privacy: We define for each string z ∈ L := L0 ∪ L1 a formal variable pz , and check whether there
exists a pair of probability vectors (pz)z∈L0 and (pz)z∈L1 that satisfies the privacy constraints. That is, we

12The argument also shows that one can always find a distribution whose weights can be succinctly described - see Remark A.2.
13Note that D(0) and D(1) have indeed disjoint supports since the coalition that contains all the parties is authorized (as f ̸= 0)

and so if the sets are not disjoint correctness is violated. In fact, it suffices to keep only one of these sets (say D0) as part of the
witness but we avoid this optimization for simplicity.

33

check if there exists a non-negative real-valued assignment for (pz)z∈L that satisfies the following system
of constraints: For every maximal unauthorized set I ⊂ [n] and every string w ∈ {z[I] : z ∈ L}∑

z∈L0:z[I]=w

pz =
∑

z∈L1:z[I]=w

pz.

In addition, we add the constraints ∑
z∈L0

pz = 1, and
∑
z∈L1

pz = 1.

Since this is a linear system, one can use linear programming to check the existence of a positive solution
in time polynomial in the system size. Noting that we have 2S variables and at most 2n+S equations, the
verification takes poly(2n+S) = 2O(S) time. It is not hard to verify that the test passes if and only if there
exists a pair of distributions over L0 and L1 resp., that realize the privacy requirements induced by f .

Remark A.2 (On the magnitude of the distribution weights). The proof of Theorem A.1 can be used to
show that if f can be realized with total share size of S, then it can be realized with “sharing distributions”
D(0),D(1) over S-bits whose description is not too large. Specifically, since the linear system of inequal-
ities constructed in the proof has constant-size coefficients (plus/minus 1), the system must have a rational
solution. Furthermore, the numerator and denominator in these solutions are of size that is polynomial in
the number of variables and constraints in the linear program and so D(0) and D(1) can be represented as
a distribution vector of length 2S that each of its entries (weights) can be represented by poly(2S) = 2O(S)

bits.
We note that a closely-related observation regarding the rationality of the distribution weights was made

by Bogdanov in [Bog23].

Even when we deal with the simplest case where the maximal share size Smax is constant, the above
theorem yields a deterministic algorithm whose complexity is at least exponential in the size of the truth
table N = 2n. We show that this can be improved for the case of (monotone) k-DNF, i.e., a DNF that each
of its conjunctions contains at most k variables. Specifically, for the case of constant k we get a deterministic
algorithm with complexity of 2polylog(N) improving the 2Ω(N) of the previous theorem. We note that the
case of k = O(1)-DNF captures well-studied classes of functions such as graph access structures, forbidden
graph access structures, and k-hypergraph access structures. Extending the algorithm to larger classes (e.g.,
polynomial size DNF with large terms) remains an interesting open question.

Theorem A.3 (MinSS algorithm for k-DNFs). Given a k-DNF with at most M terms computing a monotone
function f : {0, 1}n → {0, 1} and a bound Smax on the maximal share-size, there is an algorithm that
determines if f has a secret-sharing of maximal share size of Smax in non-deterministic time of M2O(nSmax)

where the witness size is M2kSmax+1.

As a result, we get a deterministic algorithm with complexity that is exponential in O(M2kSmax+nSmax).
Focusing on the case where Smax = O(1) and k = O(1), (and so M ≤

(
n
k

)
= poly(n)), we get a

deterministic algorithm whose complexity is exponential in poly(n). More generally, since Theorem A.1
yields a deterministic algorithm whose complexity is exponential in 2nSmax , the current theorem provides
an improvement whenever M2kSmax ≪ 2nSmax . (I.e., even in the case where, say, k = 0.9n, M ≤ 2n and
Smax > 10.)

34

Proof. Let I1, . . . , IM denote the terms of f , and so we can represent each Ii by a subset of [n] of size at
most k. Given a secret-sharing scheme D that realizes f with max-share size of Smax, we may assume, via
padding, that each share is of size exactly Smax and so D(b) is a distribution over ({0, 1}Smax)n. Accordingly,
for a string z = (z[1], . . . , z[n]) ∈ ({0, 1}Smax)n and a set I ⊂ [n] we let z[I] = (z[i])i∈I . As in the proof
of Theorem A.1, our witness is essentially some representation of the supports of D(0) and D(1). The
main difference is that here, we can get a succinct representation of these sets. Specifically, for each term
Ii, i ∈ [M] and bit b ∈ {0, 1}, we define the list Lb

i to be

Lb
i := {z[Ii] | z ∈ supp(D(b))} ,

and define the lists (L0
1, . . . , L

0
M , L1

1, . . . , L
1
M) as our witness. Since each list is a subset of {0, 1}kSmax it

can be represented by 2kSmax bits (using standard characteristic vector representation) and the total length of
the witness is 2M · 2k·Smax .

Correctness: Given such a witness we first verify that for every i ∈ [M] the lists L0
i and L1

i are disjoint.
This can be done in time O(M2kSmax). Next, we reconstruct “global” sets L0 and L1 that are consistent with
the witness while satisfying the correctness constraints. For this, we initialize empty lists L0 and L1 and put
a string z ∈ ({0, 1}Smax)n in Lb if for every i ∈ [M] it holds that z[Ii] is in Lb

i . (Some strings may not be
added to any list.) Note that (1) L1 and L0 are disjoint; (2) Any pair of distributions over L1 and L0 satisfy
the correctness constraints; and (3) if the witness corresponds to a valid secret sharing D = (D(0),D(1))
then supp(D(b)) ⊂ Lb for every b ∈ {0, 1}. The total time complexity of this step is O(M2nSmax).

Privacy: Next, we verify that there exists a pair of probability distributions over L1 and L0 that satisfy
the privacy requirements. This is done just like in the proof of Theorem A.1 by solving a linear program
over at most 2nSmax variables (one for each string in L0 ∪L1) with at most 2n+nSmax +2 constraints (one for
each maximal unauthorized set T and for each string in {0, 1}|T |Smax and two additional constraints). This
can be done with complexity of 2O(nSmax).

We move on to describe an algorithm for MinLSS, that is based on the equivalence between linear
secret sharing and monotone span programs (from here on abbreviated as MSPs), a computational model
introduced in [KW93]. We define MSPs, state the equivalence between them and LSS and an additional
useful fact, and then follow with the description of the algorithm for MinLSS.

Definition A.4 (Monotone Span Program [KW93]). A monotone span program is a triplet M = (F,M, ρ),
where F is a field, M is an a × b matrix over F, and ρ : {1, . . . , a} → [n] labels each row of M by an
index i ∈ [n]. The size of M is the number of rows of M (i.e., a). For any input x ∈ {0, 1}n, let Mx denote
the sub-matrix obtained by restricting M to the rows labeled by indices i such that xi = 1. We say that
M accepts x if the rows of Mx span the vector e1 = (1, 0, . . . , 0). We say that M computes a monotone
function f if M accepts an input x iff f(x) = 1.

Theorem A.5 (Linear SSS and monotone span programs [KW93]). A monotone function f : {0, 1}n →
{0, 1} can be realized by a linear secret-sharing scheme over a field F with total share size M log |F| iff it
can be computed by a monotone span program of size M over F.

We can always restrict the matrix of a span program to a set of linearly independent columns without
changing the function that is computed by the program, which implies the following well-known fact:

Fact A.6. For every MSP M represented by an (a × b) matrix there exists an MSP M′ that computes the
same function with a matrix of size (a× a).

35

Theorem A.7 (Algorithm for MinLSS). Given a truth-table of a monotone function f : {0, 1}n → {0, 1}
of size N = 2n and a bound S > n on the total share-size, there is an algorithm that determines if f has
a linear secret-sharing of total share size of S in non-deterministic time of 2n · poly(S) where the witness
size is S2.

Proof. By Definition A.4, Theorem A.5 and Fact A.6, the fact that f has a linear secret-sharing scheme
(over F2) with total share size S can be witnessed by an MSP that computes f with a binary matrix M
of dimension S × S. It can be verified that such an MSP computes a function f in time 2n · poly(S)
by enumerating every input x of f and checking via Gaussian elimination whether the linear-algebraic
correctness or privacy constraints of the span program for x are satisfied. I.e., if f(x) = 1 the rows of Mx

should span the unit vector e1, and if f(x) = 0 they should not.

Deterministically, we can run over all the S2 possible monotone span programs over F2 of size S and
verify if they compute the function f with total complexity 2S

2+n · poly(S). We note that when S = O(n),
this algorithm runs in time NO(logN), compared to the algorithm for general schemes that has complexity
2Ω(N) in the worst case.

B More on graphs and communication complexity

We partially extend Theorem 6.2 to the case of general (non-bipartite) graphs.

Theorem B.1 (Linear secret sharing for graphs and P4-free covers). Let G be a graph that can be realized
by a LSS with max-share size k. Then, the edges of G can be covered by at most log n · 22k P4-free graphs.

Proof. The theorem can be derived from Theorem 6.2, where it is shown that bipartite graphs with LSS
with max-share size k can be covered by at most 22k P4-free graphs. Given a graph G, we can cover its
edges by at most log n bipartite graphs G1, . . . , Glogn. This can be done by writing the names of the nodes
using log n bits, and letting Gi denote the graph that contains only the edges of G that connect nodes whose
ith bit is different. By assumption, we have a LSS with k bits for each Gi. Now, we apply Theorem 6.2 and
cover each Gi by 22k P4-free bipartite graphs. Overall, we cover G by log n · 22k P4-free bipartite graphs
as required.

In [BBM+20, Appendix C] the writers show that for every bipartite graph G it holds that ∃EQ(G)=0
iff it is a P4-free graph. By Theorem 6.2, ∃EQ(G) = 0 iff LSmax(G) = 1, and in total we get a covering-
characterization of bipartite graphs that can be realized with 1-bit shares. We extend this characterization to
general graphs, and prove it without going through communication-complexity measures:

Fact B.2 (Graphs with 1-bit shares). A graph G has 1-bit shares iff G is a P4-free bipartite graph.

Proof. First, we show that if a graph G does not have a 1-bit scheme then it is not a P4-free bipartite graph.
By [ABI+23a], an access structure G has 1-bit shares iff for every minterm W and maxterm Z it holds that
|W \Z| is odd. Let G be a graph access structure and let W = {w1, w2} and Z be a minterm and a maxterm
such that |W \Z| is even (W is of size 2 since G is a graph). Due to monotonicity W ⊊ Z, and so if |W \Z|
is even then W and Z are disjoint. This implies that w1 and w2 are not in Z, and since Z is a maxterm there
exist edges between w1 and some zi ∈ Z and between w2 and some zj ∈ Z. If zi and zj are the same party
the graph contains a triangle {w1, w2, zi}, and is therefore not bipartite. If zi and zj are different parties

36

then the edge (zi, zj) cannot exist since Z is unauthorized, and therefore {zi, w1, w2, zj} is a P4 subgraph
of G.

In the other direction, if a graph G contains a triangle {a, b, c}, let W denote the minterm {a, b} and Z
denote a maxterm that contains c (there must exist such a maxterm since c is unauthorized). It must hold
that |W \ Z| is even, and therefore G cannot be realized with 1-bit shares. Similarly, if a graph contains a
P4 subgraph {a, b, c, d} the minterm W = {b, c} and the maxterm Z that contains {a, d} must be disjoint,
and then they also satisfy that |W \ Z| is even.

37

	Introduction
	Our Results
	Cheap Formulas are Hard to Recognize
	Hardness for circuits
	Cheap truth-tables are hard to recognize
	Recognizing cheap graphs and randomized communication complexity
	Discussion and open problems

	Preliminaries
	Hardness of gap-SS for Formuals and Circuits
	Secret-sharing lower-bound for a simple function
	Hardness of gap-SS for Formulas
	Hardness for circuits

	Hardness of Truth-Table gapSS
	Slices: worst-case to average-case reduction

	GapSS for Graphs via Communication Complexity
	Graph access structures and CDS access structures
	Secret Sharing and Nondeterministic 1-Equality Protocols
	Secret Sharing and Randomized Communication Complexity
	Secret Sharing and coNP Protocols
	Failure of Myopic Algorithms

	Algorithms for recognizing cheap truth tables
	More on graphs and communication complexity

