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Abstract. Fully Homomorphic Encryption (FHE) allows a server to
perform computations directly over the encrypted data. In general FHE
protocols, the client is tasked with decrypting the computation result
using its secret key. However, certain FHE applications benefit from the
server knowing this result, especially without the aid of the client. Pro-
viding the server with the secret key allows it to decrypt all the data,
including the client’s private input. Protocols such as Goldwasser et. al.
(STOC’13) have shown that it is possible to provide the server with the
capability of conditional decryption that allows it to decrypt the result
of some pre-defined computation and nothing else. While beneficial to an
honest-but-curious server to aid in providing better services, a malicious
server may utilize this added advantage to perform active attacks on the
overall FHE application to leak secret information. Existing security no-
tions fail to capture this scenario since they assume that only the client
has the ability to decrypt FHE ciphertexts. Therefore, in this paper, we
propose a new security notion named IND-CPAC, that provides the ad-
versary with access to a conditional decryption oracle. We then show that
none of the practical exact FHE schemes are secure under this notion
by demonstrating a generic attack that utilizes this restricted decryption
capability to recover the underlying errors in the FHE ciphertexts. Given
the security guarantee of the underlying (R)LWE hardness problem col-
lapses with the leakage of these error values, we show a full key recovery
attack. Finally, we propose a technique to convert any IND-CPA secure
FHE scheme into an IND-CPAC secure FHE scheme. Our technique uti-
lizes Succinct Non-Interactive Argument of Knowledge, where the server
is forced to generate a proof of an honest computation of the requested
function along with the computation result. During decryption, the proof
is verified, and the decryption proceeds only if the verification holds. Both
the verification and decryption steps run inside a Garbled Circuit and
thus are not observable or controllable by the server.

Keywords: FHE · Conditional Decryption · SNARKs.
⋆ Work partially done while at IIT Kharagpur
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1 Introduction

Fully Homomorphic Encryption [18] has brought a revolution in the cloud com-
putation scenario as it supports computation directly over the encrypted data
without the need to decrypt it first. This allows a resource-constrained client to
encrypt its data before offloading it to a cloud server1. The general use cases of
FHE utilize the server for homomorphic computations on encrypted data while
the client is tasked with encrypting the messages and decrypting the ciphertexts.
The server cannot decrypt the homomorphic computation output as it does not
possess the decryption key, which remains in the possession of the client. The
server cannot be handed over access to the decryption key, as this would allow
the server to decrypt the input ciphertexts, thereby compromising the privacy
of the client data. While this setting suffices for most applications, a large class
of applications may benefit if the server is allowed the added capability of de-
crypting the output of some (pre-decided) homomorphic computation.

One such service in the context of email can be spam filtering, where the
server hosting the email service can apply a spam filter on the received emails
and, based on its outcome, can either forward the email to the intended recip-
ient’s mailbox or quarantine it. In the current scenario, if such an application
has to be deployed in the cloud, the server would have to apply a spam filter
(homomorphically) on the encrypted emails and then send the (still-encrypted)
results of the spam filter to the client to decrypt them. The client now resends the
decrypted result (spam or not spam) in the clear to the server, which aids it to
classify each email as spam or otherwise. Quite clearly, this scheme suffers from
inefficiency and network overhead. Furthermore, the client cannot provide the
decryption service to the server as that would require providing the server with
the secret key, which it can then use to decrypt the emails themselves, thereby
compromising privacy. Therefore, a more practical implementation would require
a protocol where the server can only decrypt the homomorphically computed
output of a pre-defined function (such as a spam filter) and nothing else.

Existing FHE-based protocols assume the server to be honest-but-curious,
which is expected to abide by the protocol specification of a requested compu-
tation. However, in a real-world scenario where these schemes are supposed to
be deployed, a question that needs to be pondered upon is: What if the server is
malicious? Such a server is free to deviate arbitrarily from the protocol specifi-
cation, which includes tampering with the data and the associated computation.
Indeed, the trust bestowed upon the third-party server to respect the laid-down
protocols can be a far-reaching assumption in the present world. The potential
impact of the existence of a malicious server in practice has led to the concept of
Trusted Execution Environments (TEEs) such as Intel SGX [32], Intel TDX [24],
AMD SEV [38] and ARM Trustzone [23], which prevents the processes running
inside a trusted enclave from being tampered with from the outside untrusted
system. Given that these environments assume the server to be actively malicious
and the operating system to be compromised, the entire security guarantees are

1 We use cloud and server interchangeably throughout the paper.
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bestowed upon hardware, leaving very little security responsibility on the soft-
ware. However, given the size of the data and the computational complexity
associated with FHE applications, storing the entire FHE data or running the
entire FHE computations inside the TEEs is not practical. On the other hand,
moving some of the data or computation outside the TEEs makes it vulnerable
to malicious perturbations to the data. As FHE ciphertexts are malleable and
do not provide data integrity guarantees [14], the possible threat of intentional
data tampering by a malicious server is a practical one.

The security of all the practically existing FHE schemes [6,7,12,13,15,16] re-
lies on the underlying (Ring) Learning With Errors or (R)LWE [29,36] hardness
problem to provide robust and efficient homomorphic computations on the cloud.
While the implementations and message-space domains of these FHE schemes
differ, all of them rely on the (R)LWE assumptions and consider the secret key s
and the ephemeral error e added to each ciphertext during encryption as private
to the client. The intractability of (R)LWE equations comes from the fact that
the system of approximate equations is hard to solve without knowledge of the
error terms. Therefore, if the error terms corresponding to each ciphertext are
leaked to the adversary, it can transform the system of approximate equations
to exact equations and then solve it to retrieve the secret key.

The security of FHE schemes has been studied under various security notions,
such as IND-CPA [20], IND-CCA1 [33], IND-CCA2 [35], IND-CPAD [27], IND-
CPArD [30], and Func-CPA [1], where each notion allows an adversary access
to black-box oracles, which it can query on inputs of its choice. These notions
assume that only the client can perform decryption using the decryption key
that it possesses. Thus, they fail to capture the aforementioned scenario where
the server is granted the additional capability to decrypt the result of some fixed
computations and nothing else. Moreover, providing access to such functionality
can grant additional powers to a malicious server that can abuse it to perform
attacks on the underlying FHE schemes. For example, the server can add crafted
perturbations into the resultant ciphertexts of the homomorphic operation. It
can then locally decrypt these tampered ciphertexts to observe the effect of the
added perturbations on the decrypted result. Therefore, it is necessary to eval-
uate the security of such constructions under a separate notion. Throughout
this paper, we refer to this notion as IND-CPAC to encompass the ability of
the adversary to perform conditional decryptions. Given that a variety of FHE
schemes exist in practice that differ due to the underlying mathematical hard
problem and their choice of parameters, their robustness varies against an ad-
versary with the capability of conditional decryptions. In Sect. 3.3, we introduce
the IND-CPAC notion in detail and highlight how it can be used to compare the
security of practical FHE schemes.

Conditional Decryption in Practice. As observed by Goldwasser et al. [19],
the problem of granting the server the ability of conditional decryption can be
solved in practice using Functional Encryption (FE) [5]. Given an encryption
x̂ of some message x and a secret key fskf corresponding to some function
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f , FE allows the server to obtain the value of f(x) in the clear and nothing
else. In terms of FHE applications, this is akin to decrypting the output of a
homomorphic computation function for a particular input ciphertext without
leaking any information about the input. However, FE schemes suffer from the
limitation that the number of secret keys increases linearly with the number of
functions to be evaluated. The authors of [19] overcame this limitation by using
an FHE scheme, along with an Attribute-based Encryption (ABE) scheme [21]
and a Garbled Circuit (GC) scheme [4, 41], to construct a succinct functional
encryption scheme . The central idea is to provide the server with the FHE
decryption function inside a garbled circuit, where the client’s secret key is em-
bedded within the circuit itself. The underlying FHE scheme ensures that the
inputs x (say the email) upon which a function f (say a spam filter) is to be
evaluated remain private, while the ABE scheme ensures that the server can
only decrypt encryption of f(x) (spam or not spam), say f̂(x), and nothing else.
The security of this succinct FE scheme builds upon the security guarantees of
FHE, ABE, and GC and proves to be secure if the underlying FHE, ABE, and
GC schemes are secure. However, while the security guarantees of this construc-
tion hold against a semi-honest server, it falters in the presence of a malicious
server that can deviate arbitrarily from the protocol specification. The reason is
that while the black-box primitives used to construct the overall protocol remain
secure, combining them opens up new avenues for exploitation.

1.1 Contributions

In this paper, we make the following contributions:

1. Introducing IND-CPAC security notion: We introduce a new security
notion for FHE schemes in the presence of a malicious adversary that has
access to a conditional decryption oracle that allows it to decrypt the result
of some homomorphic computation (including modifying the same) but not
any other ciphertexts. We denote this security notion with IND-CPAC where C
denotes the ability of the adversary to perform conditional decryptions. We
further highlight how the existing notions fail to capture this scenario, which
justifies the introduction of a new security notion.

2. Error and Key Recovery Attack: We propose a generic full key recovery
attack on (R)LWE-based exact FHE schemes. Our attack first recovers the
underlying error values in the FHE ciphertexts and removes them to build
a system of exact equations, which is then solved to recover the underlying
secret key. Our attack works on both the secret and public key variants of
the (R)LWE-based exact FHE schemes.

3. Constructing IND-CPAC-secure FHE: We propose a method that can
be used to convert any IND-CPA secure FHE scheme into an IND-CPAC

secure FHE scheme. Our methods require the server to generate proofs of
honest evaluation of the pre-defined function. The proof is then verified, and
the resultant ciphertext is decrypted only when the verification holds. Both
verification and decryption are done inside a garbled circuit, which prevents
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the server from tampering with these values without breaking the security
guarantees of the garbling scheme itself.

1.2 Organization

The rest of the paper is organized as follows: Sect. 2 introduces the notations and
the necessary background . Sect. 3 explains our threat model and formally defines
the security notion of IND-CPAC. Sect. 4 explains our error and key recovery
attack on (R)LWE-based exact FHE schemes. Sect. 5 explains how the IND-
CPA secure FHE schemes can be converted into IND-CPAC secure FHE schemes.
Sect. 6 outlines future work, and Sect. 7 concludes our paper.

2 Notations and Background

2.1 Notations

Boldface letters like a are used to denote vectors while ai denote their ith coeffi-
cient. Z, Q and R denotes a set of integers, rationals, and reals, resp. S+ denotes
a subset of some set S containing only the positive elements, and Sq denotes a
finite set containing elements from [− q

2 ,
q
2 − 1]. We denote with Sk a set of vec-

tors of dimension k where the coefficients of each vector are uniformly sampled
from set S. x ∈ X denotes that an element x belongs to a set X. For some finite
set S, s $← S denotes that s has been sampled uniformly from S, while s

$← S
denotes that each element of a vector s has been sampled uniformly from S. We
write s← Nµ,σ to denote that s has been sampled from a Gaussian distribution
Nµ,σ parameterized by mean µ and s.d. σ. We use c and m̂ interchangeabily to
denote an FHE ciphertext that encrypts some message m. ⌊·⌋, ⌈·⌉, [·] and [·]q
denotes, resp., the floor, ceil, rounding, and residue modulo q operations, while
| · | denotes the bit length of an element. All logs are in base-2 unless stated
otherwise. We denote with PPT a probabilistic polynomial time machine.

2.2 LWE Problem

Learning With Errors [36] problem is based on the addition of random errors
(sampled from a Gaussian distribution) to each equation in a system of equations,
thus turning it into a system of approximate equations, as follows:

a11s1 + a12s2 + . . .+ a1ksk ≈ b1 mod q

a21s1 + a22s2 + . . .+ a2ksk ≈ b2 mod q

...
am1s1 + am2s2 + . . .+ amksk ≈ bm mod q

For brevity, let k > 1 be an integer and s
$← S, where S ∈ Zk. An LWE sample

is denoted by a tuple (a, b) ∈ Zk
q × Zq, where a

$← Zk
q and b = a · s + e ∈ Zq.
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Here e ← N0,σ (with σ ∈ R+) is an error value. In the ring version denoted
RLWE [29], the ciphertexts are of the form (a,b) ∈ R2

q , where each component
is defined over ring Rq = Zq/(x

k + 1). Here xk + 1 is an irreducible polynomial
over Q provided the ring dimension k is a power of 2. (R)LWE problem has the
following two variants -

– Search problem: having access to polynomially many (R)LWE samples, re-
trieve s.

– Decision problem: distinguish between LWE (resp. RLWE) samples and uni-
formly random samples drawn from Zk

q × Zq (resp. Rq ×Rq).

Both versions are considered hard to solve, even for a quantum computer.
However, once these error values are recovered, they can be removed from the
corresponding ciphertexts to obtain a system of exact equations which can then
be trivially solved.

2.3 Fully Homomorphic Encryption

A fully homomorphic encryption scheme FHE defined over a message space M
and a ciphertext space C is a tuple of PPT algorithms (FHE.KeyGen, FHE.Enc,
FHE.Eval, FHE.Dec) where the algorithms are defined as follows2:

1. FHE.KeyGen(1λ): Upon input the security parameter λ, FHE.KeyGen outputs
a pair of keys (pk, sk) where pk and sk are the public key and secret key,
resp.

2. FHE.Enc(pk,x): Upon input the public key pk and a message x, FHE.Enc
outputs a ciphertext c= x̂.3

3. FHE.Eval(pk,f,c1,· · · ,cn): Upon input the public key pk, a circuit f :Mn →
M and a set of ciphertexts (c1, · · · , cn) that encrypt the messages xs = (x1,
· · · , xn), FHE.Eval outputs a ciphertext c = f̂(xs).

4. FHE.Dec(sk,c): Upon input the secret key sk and a ciphertext c = x̂,
FHE.Dec outputs a message x.

Correctness: An (exact) FHE scheme is said to be correct if, for all m ∈ M,
c ∈ C, and f that can be efficiently evaluated, it holds that:

Pr
[
FHE.Dec(sk,cr) = f(x1, · · · , xn)

]
≥ 1− negl(λ).

where cr =FHE.Eval(pk,f,c1,· · · ,cn).
Security: An FHE scheme is said to be secure if, for all m ∈ M, c ∈ C, and a
PPT adversary A, c does not leak any information about its underlying message
m to A beyond what is publicly known.

2 We explain the working principles of practical (R)LWE-based FHE schemes in Ap-
pendix A.

3 We use (a, b) to generically denote the ciphertexts for (R)LWE-based FHE schemes.
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2.4 Garbled Circuits

A garbling scheme Gb [4,25] defined over a family of circuits F = {fn}, where fn
is a set of boolean circuits that takes n-bit inputs, is a tuple of PPT algorithms
(Gb.Garble, Gb.Enc, Gb.Eval) where the algorithms are defined as follows:

1. Gb.Garble(1λ, f): Upon input the security parameter λ and a circuit f ∈ F ,
Gb.Garble outputs a garbled circuit Γ and a secret key sk, where sk contains
a pair of garbling labels (L0

i , L1
i ) for each bit i of the n-bit input.

2. Gb.Enc(sk,x): Upon input the secret key sk and a message x, where x ∈
{0, 1}n, Gb.Enc outputs an encoding c, where |c| is independent of the size
of f . The encoding c is of the form (Lbi

i ) for each bit bi of x.
3. Gb.Eval(Γ,c): Upon input the garbled circuit Γ and an encoding c, Gb.Eval

outputs a value y = f(x).

Correctness: A Garbling scheme is said to be correct if for all Γ that is a garbling
of a circuit f , and for all messages x, it holds that:

Pr

 (Γ, sk)← Gb.Garble(1λ, f);
c← Gb.Enc(sk,x);

Gb.Eval(Γ,c) = f(x)

 ≥ 1− negl(λ).

Security: A garbling scheme is said to be secure against a PPT adversary A if
it neither leaks x nor f to A and thus ensures both input and circuit privacy.

2.5 Two-outcome Attribute-Based Encryption

A two-outcome attribute-based encryption scheme ABE [19] defined over a class
of predicates P = {pn}, which are represented as circuits that take n-bit inputs,
and a message spaceM, is a tuple of PPT algorithms (ABE.Setup, ABE.KeyGen,
ABE.Enc, ABE.Dec) where the algorithms are defined as follows:

1. ABE.Setup(1λ): Upon input security parameter λ, ABE.Setup outputs a pair
of keys (fmpk, fmsk) where fmpk and fmsk are the master public key and
master secret key, resp.

2. ABE.KeyGen(fmsk,p): Upon input the master secret key fmsk and a pred-
icate p ∈ P, ABE.KeyGen outputs a key fskp corresponding to p.

3. ABE.Enc(fmpk,x,M0,M1): Upon input the master public key fmpk, an
attribute x ∈ {0, 1}n and two messages M0, M1 ∈ M, ABE.Enc outputs a
ciphertext c.

4. ABE.Dec(fskp,c): Upon input the secret key fskp corresponding to predi-
cate p, and a ciphertext c, ABE.Dec outputs M0 if p(x) = 0 and it outputs
M1 if p(x) = 1.

Correctness: A two-outcome ABE scheme is said to be correct if for all predicates
P = {pn}, all attributes x ∈ {0, 1}n, and messages M0,M1 ∈M, it holds that:

Pr


(fmpk, fmsk)← ABE.Setup(1λ);
fskp ← ABE.KeyGen(fmsk,p);
c← ABE.Enc(fmpk,x,M0,M1);

ABE.Dec(fskp,c) =Mp(x)

 ≥ 1− negl(λ).
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Security: A two-outcome ABE scheme is said to be secure against a PPT adver-
sary A if it leaks nothing about M0 to A if p(x) = 1 and about M1 if p(x) = 0.
However, the attribute x is not hidden by ABE and may leak irrespective of the
value of p(x).

Based on the aforementioned security guarantee, one may observe that which
M will be revealed as output depends on the control variable p(x) = b which
is computed on the server side and thus is available to the server. A malicious
server can alter its value, say by setting p(x) = b, to force it to output Mb.

2.6 Functional Encryption

A functional encryption scheme FE defined over a class of functions F = {fn},
which are represented as boolean circuits that take n-bit inputs, is a tuple of
PPT algorithms (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec) where the algorithms
are defined as follows:

1. FE.Setup(1λ): Upon input security parameter λ, FE.Setup outputs a pair
of keys (fmpk, fmsk) where fmpk and fmsk are the master public key and
master secret key, resp.

2. FE.KeyGen(fmsk,f): Upon input the master secret key fmsk and a func-
tion f ∈ F , FE.KeyGen outputs a key fskf corresponding to f .

3. FE.Enc(fmpk,x): Upon input the master public key fmpk and an input
x ∈ {0, 1}n, FE.Enc outputs a ciphertext c.

4. FE.Dec(fskf,c): Upon input the secret key fskf corresponding to predicate
f , and a ciphertext c, FE.Dec outputs a value y = f(x).

Correctness: An FE scheme is said to be correct if for all functions f ∈ F , and
for all inputs x ∈ {0, 1}n, it holds that:

Pr


(fmpk, fmsk)← FE.Setup(1λ);
fskf ← FE.KeyGen(fmsk,f);

c← FE.Enc(fmpk,x);
FE.Dec(fskf,c) = f(x)

 ≥ 1− negl(λ).

Security: An FE scheme is said to be secure against a PPT adversary A if A
learn nothing about the input x apart from the computational result f(x), for a
circuit corresponding to f for which a key was issued (the adversary can learn
this circuit itself).

The security guarantee of FE is different from ABE since, in the case of ABE,
the adversary can know the value of x since it is public. On the other hand, in
the case of FE, the value of x remains hidden from the adversary. In [19], this is
ensured by encrypting the value of x using some FHE scheme.

2.7 Succinct Non-Interactive Argument of Knowledge

A Succinct Non-Interactive Argument of Knowledge SNARK defined over a bi-
nary relation R is a tuple of PPT algorithms (SNARK.Setup, SNARK.Prover,
SNARK.Verifier) where the algorithms are defined as followed:
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1. SNARK.Setup(1λ, CS): Upon input security parameter λ and a constraint
system CS, SNARK.Setup outputs a common reference string crs and a
verification state st.

2. SNARK.Prover(crs,x,w): Upon input a common reference string crs, a
statement x and a witness w, SNARK.Prover outputs a proof π.

3. SNARK.Verifier(st,x,π): Upon input a verification state st, a statement
x and a proof π, SNARK.Verifier outputs a verification bit b ∈ {0, 1}.

Completeness: A SNARK scheme is said to be complete if and only if for any
security parameter λ, statement x and corresponding witness w, and constraint
instance CS, it holds that:

Pr

SNARK.Verifier(st, x, π) = 1

∣∣∣∣∣ CS(x,w) = 1
(crs, st)← SNARK.Setup(1λ, CS)
π ← SNARK.Prover(crs, x, w)

 = 1

Knowledge Soundness: A SNARK scheme satisfies knowledge soundness if and
only if for any PPT algorithm SNARK.Prover∗, there exists a PPT extractor
Extr such that for any security parameter λ, a constraint instance CS and state
z, it holds that:

Pr

SNARK.Verifier(st, x, π̄) = 1
∧

CS(x,w∗) ̸= 1

∣∣∣∣∣ (crs, st)← SNARK.Setup(1λ, CS)
(π̄, x)← SNARK.Prover∗(crs; z)

w∗ ← Extr(crs; z)

 ≤ negl(λ)

3 Security Notions and Threat Model

In this section, we introduce our threat model. We then highlight how the existing
security notions fail to capture the scenario of conditional decryption in practice.
Finally, we define our IND-CPAC security notion.

3.1 Threat Model

The security of public-key encryption schemes, including FHE, in the presence
of an adversary is often evaluated under the IND-CPA, IND-CCA1, and IND-
CCA2 security notions. These notions are defined in the form of a game between
a challenger Ch and a PPT adversary A, where A is given access to various
oracles that it can query upon inputs of its choice. Under the IND-CPA notion,
A is provided access to only an encryption oracle, while under the IND-CCA1
and IND-CCA2 notions, A is additionally provided access to an unrestricted
decryption oracle.4 Given that public-key encryption schemes are required to be
at least IND-CPA secure, existing FHE schemes [6, 7, 13, 15, 16] fall under this
security model [14]. On the other hand, the malleability requirement of FHE
4 A is only allowed to make polynomially many queries to each oracles.
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ciphertexts prevents them from being IND-CCA2 secure [14]. Moreover, none of
the existing FHE schemes [6, 7, 12, 13, 15, 16] are even IND-CCA1 secure since
they require publishing encryption of the secret key to aid in certain ciphertext-
maintenance operations such as bootstrapping and relinearization. Since there is
no restriction on the type of ciphertext that can be used to query the decryption
oracle, an adversary can trivially obtain the secret key by directly querying the
decryption oracle on the publicly available encryption of the secret key [17].

It is well known in the literature that providing access to an unrestricted
decryption oracle that can decrypt any ciphertext of the adversary’s choice will
break the security of all practically existing FHE schemes. However, there exist
practical scenarios where the adversary often obtains access to a restricted de-
cryption oracle (for example, the spam filtering application from Sect. 1). Such
a scenario occurs in protocols where the server is provided the ability to decrypt
the result f̂(x) of some fixed computation f , and nothing else. However, given
the decryption operation runs on the server, which itself is malicious, it is free to
tamper with f̂(x). Moreover, the server can locally decrypt the perturbed f̂(x)
to observe the effect of the perturbation on the final result; whether the result
changes or remains the same. In Sect. 4, we show how an adversary (the server
in our case) can exploit this observation to perform full key recovery attacks on
practical FHE schemes. However, existing security notions fail to capture this
scenario in practice owing to the fact that these notions assume that only the
client has the ability to perform a decryption operation.

Thus, in this paper, we introduce a new security notion termed IND-CPAC

that encompasses the aforementioned practical scenario. Our notion allows a
PPT adversary A access to a conditional decryption oracle that it can query on
ciphertexts c encrypting f(x) for some fixed function f .5 It is additionally allowed
to query the oracle on a perturbed version of c. Given existing FHE schemes
differ from each other based on the choice of the underlying hard problem and
instantiation parameters, the number of perturbations required for a successful
key recovery also differs across multiple FHE schemes. Therefore, this notion can
aid in assessing the resistance of practical FHE schemes against full key recovery
attacks. Finally, given the presence of the conditional decryption setting on the
server, it can covertly carry out the attack without getting detected by the client.
The reason is that the client does not get access to the decryption result, which
remains in the possession of the server. Thus, this setting allows the server to
behave maliciously without the risk of getting exposed.6 We now justify the need
for a new security notion by explaining how the existing notions relevant to the
FHE schemes fail to encompass our threat model.

5 We assume this function f to be one-way; otherwise, A can easily compute f−1 ·f(x)
to obtain x, thereby leaking the input.

6 This is unlike the existing notions where the client performs the decryption and can
detect if the decryption outputs an incorrect result, signifying that the ciphertext
returned by the server is malformed, and so can abort the protocol.
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3.2 Need For New Security Notion

The necessity to define a new security notion arises from the fact that there
exist cases where the adversary is given access to a conditional decryption ora-
cle, which we refer to as DecC(). In other words, the adversary can obtain the
decryptions of ciphertexts c only if they encrypt the result of some pre-defined
function f for which the conditional decryption functionality is provided. These
cases cannot be modeled by the IND-CCA1 notion, which allows an adversary to
query the decryption oracle on any ciphertext of its choice. Moreover, IND-CCA1
attacks such as [10,34] utilize malformed ciphertexts, i.e., ciphertexts not gener-
ated through an honest execution of FHE.Enc() or FHE.Eval() algorithms. Such
ciphertexts will be rejected by DecC() since they are not encryptions of f(x).

There have been further works that, similar to ours, try to capture more real-
istic deployment settings of FHE-based protocols by proposing different security
notions. In this section, we highlight how these notions, namely IND-CPAD [9,11],
IND-CPArD [30], and Func-CPA [1, 2], fail to capture the scenario of the condi-
tional decryption.

IND-CPAD. Introduced in [27], IND-CPAD assumes a passive adversary that
follows the protocol specification honestly. Such an adversary is provided access
to a restricted decryption oracle that can only decrypt ciphertexts generated
through an honest evaluation of FHE.Enc() or FHE.Eval() algorithms. Further-
more, this notion allows the adversary to obtain decryption of f̂(x) for any f ∈ F ,
as long as it is obtained by homomorphically computing f on x̂. Recently, the
authors of [9] and [11] showed IND-CPAD attacks on exact FHE schemes such
as [6, 7, 13, 15, 16]. However, these attacks are either infeasible to carry out in
practice, or they do not work for FHE schemes which perform bootstrapping
after each homomorphic operation. For example, the attack in [11] takes ap-
proximately 300 years to carry out on bootstrapped FHE schemes such as [13]
and [15]. On the other hand, the attack in [9] does not work if a bootstrapping
operation is performed before the decryption operation, as it resets the noise
level and prevents the occurrence of decryption failure, which is exploited in this
attack. Finally, this notion assumes that the decryption operation will run on
the client side for any function, while our threat model assumes the server itself
has the decryption capability (although conditional) for a specific function.

IND-CPArD. Introduced in [30], IND-CPArD is an extension of IND-CPAD no-
tion where the adversary is allowed to tamper with the ciphertext obtained from
querying the FHE.Enc() oracle. Before proceeding with the evaluation of the
requested function f (chosen by the adversary), the FHE.Eval() oracle first en-
sures the validity of the input ciphertexts with the help of the FHE.Dec() oracle.
Evaluation and decryption proceeds, and the adversary receives the decrypted
value only if all the input ciphertexts are found to be valid; otherwise, it receives
a ⊥. One can observe that under this notion, the adversary is allowed to choose
the function f to be evaluated and whose result it wants to obtain. On the
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other hand, in the conditional decryption setting, f is fixed at the beginning for
which the decryption capability is provided. Moreover, their setting requires the
decryption result to be shared with the evaluator (during the validity-checking
step). However, this setting can lead to IND-CCA1 style attacks if the evalua-
tor turns out to be malicious. Finally, their attacks do not apply to symmetric
key FHE setting. The reason is that their setting assumes the encrypting party
(which uses the public key to perform encryptions) to be malicious, which is
trying to recover the secret decryption key. On the other hand, in the symmetric
key setting, the encrypting and decrypting parties are the same entity, which
already possesses the secret decryption key.

Func-CPA. Introduced in [2], Func-CPA notion is defined for client-aided pro-
tocols where a portion of computation is offloaded to the client-side. In this
notion, the adversary is provided access to an oracle that, upon input a cipher-
text x̂ and a function f , first decrypts x̂ to obtain the underlying message x,
evaluates f(x), and then encrypts f(x) before returning it back to the adversary.
Thus, in this notion, an adversary is allowed to see only ciphertexts and no clear
data. On the other hand, this output is trivially leaked to the adversary by the
conditional decryption oracle itself, albeit for a fixed function not chosen by the
adversary.

The comparisons made above highlight that none of the existing security
notions capture the setting where the server is provided an additional capability
of performing local (conditional) decryptions. This necessitates the introduction
of our IND-CPAC notion to better understand the security implications of such
scenarios in practice. We now explain our notion in details.

3.3 IND-CPAC Notion

In this section, we provide an indistinguishability-based definition of our notion.
We begin with the generic IND-CPA notion; the adversary chooses a pair of mes-
sages (m0,m1) of equal length and sends them to the challenger. The challenger
samples a uniform bit b ∈ {0, 1} and returns back the encryption of mb to the
adversary. The goal of the adversary is to determine whether the received chal-
lenge ciphertext c is an encryption of m0 or m1 with a probability significantly
better than 1

2 . To derive IND-CPAC, the adversary is additionally provided ac-
cess to an evaluation oracle that can be queried on any function belonging to
F (where F is a class of functions that the underlying FHE scheme supports).
Finally, the adversary is also provided access to a conditional decryption oracle
that can only be queried on a ciphertext encrypting f(x) for some fixed function
f where x is some plaintext message the adversary can choose. In practice, the
function f is chosen by the client for which conditional decryption is granted to
the server. Moreover, the conditional decryption oracle does not allow the server
to obtain decryption of g(x), where g ∈ F and g ̸= f . Finally, the adversary only
has access to the conditional decryption oracle before it receives the challenge
ciphertext c. We now formally define our notion.
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Definition 1. Let FHE = (FHE.KeyGen, FHE.Enc, FHE.Eval, FHE.Dec) be an
exact public-key fully homomorphic encryption scheme as defined in Sect. 2.3
over a message space M, a ciphertext space C, and a class of functions F . We
define an experiment ΨIND-CPAC,A(1λ) over the security parameter λ between a
challenger Ch and a PPT adversary A, where A is given access to the following
oracles:

– An encryption oracle Enc() that takes as input a message x ∈ M, executes
FHE.Enc(pk, x) to obtain a ciphertext c ∈ C, and returns it back.

– An evaluation oracle Eval() that takes as input ciphertexts (ci, . . ., cj) ∈ C
and a function f ∈ F , executes FHE.Eval(pk, f, ci, . . ., cj) to obtain a
ciphertext cr ∈ C, and returns it back.

– A conditional decryption oracle DecC() defined for a fixed function f ∈ F
that, given an FHE ciphertext c, checks whether FHE.Dec(sk, c) = f(x),
i.e., c is an encryption of f(x), for any x ∈ M and returns the result of
FHE.Dec(sk, c) to A if true, otherwise outputs a ⊥.

IND-CPAC experiment ΨIND-CPAC,A(1
λ):

Query Phase

1. The adversary A queries the Enc() oracle on its messages (mi, . . ., mj)
where i ≤ j and receives their corresponding FHE ciphertexts (ci, . . ., cj).

2. The adversary A queries the Eval() oracle on any function g ∈ F of its
choice and the ciphertexts (ci, . . ., cj) and receives as output a ciphertext cr.

3. The adversary A queries the DecC() oracle on the ciphertext cr. This or-
acle outputs a ⊥ if g ̸= f , where f ∈ F is the function for which condi-
tional decryption is allowed. When g = f , A receives as output the value
f(mi, . . . ,mj). A also queries the DecC() oracle on a series of ciphertexts
c′r = cr+ ϵ, where ϵ is a crafted perturbation added to the ciphertext cr which
varies across each query. In this case, the decrypted value may or may not
be equal to f(mi, . . . ,mj).

Challenge Phase

1. The adversary A chooses two messages (m0,m1) ∈ M of equal length and
sends them to the challenger Ch.

2. The challenger Ch samples a bit bt $← {0, 1} and provides A with a ciphertext
cbt = FHE.Enc(pk, mbt).

Output Phase

1. The adversary A is not allowed to query the DecC() oracle. It outputs a bit
bt′.

2. The game outputs 1 if bt′ = bt, and 0 otherwise.

The construction IND-CPAC is secure if for all PPT adversaries A, there exists
a negligible function negl such that, for all λ,
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Pr[ΨIND-CPAC ,A(1
λ) = 1] ≤ 1

2
+ negl(λ) (1)

where the probability is taken over the randomness used by A and the randomness
used by the game (in FHE.Gen and FHE.Enc).

In Section 4.3, we show that none of the practical (R)LWE-based FHE
schemes [6,7,13,15,16] are secure under the IND-CPAC notion by demonstrating
a full key recovery attack.

Conditional Decryption with Malicious Server

The idea of conditional decryption has shown to be realizable in practice in [19],
which allows a server to decrypt the homomorphic ciphertext f̂(x), where f is a
pre-defined function. The protocol7 provides the server with the FHE decryption
circuit and the corresponding secret key by embedding it into a garbled circuit.
However, to evaluate this garbled circuit and in turn decrypt the value of f̂(x),
the server is required to know the correct set of labels that corresponds to the
individual bits of f̂(x). The client cannot provide the labels corresponding to
these bits, as they are determined by the server after it obtains f̂(x) on its
end. To overcome this issue, the client utilizes an ABE scheme by encrypting
the set of labels corresponding to each bit of f̂(x) to obtain ABE ciphertexts
{c1, . . . , cℓ}. It then generates a set of ABE decryption keys fskif where each key
corresponds to the individual gates that make up the circuit evaluating f . The
client sends both the FHE ciphertexts x̂ and ABE ciphertexts {c1, . . . , cℓ} along
with the ABE decryption keys fskif to the server. The server first performs

the homomorphic evaluation of f on x̂ to obtain f̂(x). It then uses fskif to
decrypt the ABE ciphertexts {c1, . . . , cℓ} to obtain the GC labels. In an honest
execution of this protocol, the ABE decryption will always output the GC labels
that correspond to the bits of f̂(x). The server then uses these labels to evaluate
the garbled circuit, which outputs the value of f(x) in the clear.

In a malicious setting, the server may try to utilize the protocol to decrypt
some ciphertext ĝ(x) that is obtained by homomorphically evaluating another
function g on x̂. However, the protocol will reject such ciphertexts and abort.
The reason is that the client has only issued the ABE decryption key fskif that
corresponds to a function f for which decryption is allowed in the context of the
application. Now, when the ABE ciphertexts {c1, . . . , cℓ} are decrypted using
fskif , the labels obtained will not correspond to the bits of ĝ(x). Executing
the garbled circuit on these labels will output an incorrect value, i.e., a value
different from g(x). This ensures that the server can only obtain the decrypted
result when evaluation is done for the pre-defined function f for which the ABE
keys were obtained and not for any other function g ̸= f .

7 A detailed description of this protocol is provided in Appendix B.
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Correct Decryption

(A) (B)

Incorrect Decryption

Fig. 1: Different error bounds plotted on a number line showing the effects of
perturbation when (A) the positive range and (B) the negative range is chosen.

4 IND-CPAC Attack on FHE Schemes

We now show that the practically existing (R)LWE-based exact FHE schemes
[6,7,13,15,16] are vulnerable to a full key recovery attack under the IND-CPAC

notion. In other words, an adversary, which is the server itself in our case, can
recover the entire secret key of the client even if it has access to a conditional
decryption oracle. To highlight this vulnerability, we present a generic attack that
works across all (R)LWE-based exact FHE schemes existing in practice. Our
attack works by first recovering the underlying error in the FHE ciphertexts,
which are then removed to obtain the noiseless versions of these ciphertexts.
Given the security of (R)LWE comes from the presence of these errors, recovering
them is akin to recovering the underlying secret key. We now present our attack,
where we first show our attack intuition and then provide our attack description.

4.1 Attack Intuition

The ciphertexts in (R)LWE-based FHE schemes are of the form c = (a, b), where
a ∈ Zk

q is a vector of dimension k whose coefficients are sampled uniformly from
Zq and b = a · s + x + e. Here s is the secret key drawn uniformly from either
{0,±1}k or {0, 1}k, x is the plaintext message, and e is an error value sampled
from some Gaussian error distribution. With each homomorphic computation
over these ciphertexts, the underlying error e grows. If this e remains below a
pre-defined error threshold ±eth, decryption results in the correct message x.
On the other hand, once this error grows beyond ±eth, decryption results in an
incorrect message x′ ̸= x, causing a decryption failure. In practice, this growth
of error is controlled by either bringing it down through bootstrapping [18] or by
choosing appropriate parameters during the FHE setup phase to ensure that the
error does not cross the threshold before the entire circuit is evaluated. However,
the server being malicious can introduce crafted error values into the ciphertexts
to induce a decryption failure. Moreover, our threat model provides the server
with a local decryption oracle that it can use to decrypt a ciphertext c = f̂(x)
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(A) Evaluating Circuit 

Dec

(B) Recovering Error 

Incorrect decryption

Solver

(C) Recovering Client Key 

Correct decryption

Fig. 2: End-to-End attack showing how (A) the function f is evaluated, (B) the
underlying error is recovered using a binary search-based approach, and (C)
recovered errors along with original ciphertexts are used to form a system of
exact equations which is then solved to recover the client key.

that is the result of the homomorphic evaluation of f on input x̂. The server
can now introduce these errors in c to transform it into c′ = f̂(x)′ and then
decrypt it locally to check whether it still decrypts to f(x) or not. One must
note that the server can still only decrypt a ciphertext that is either obtained by
homomorphically evaluating f on some input or by perturbing this ciphertext
and nothing else. We now present an attack strategy that can be used to infer
the bound of errors between which e lies and then use it to recover e itself. Once
the errors are recovered, the attacker can recover the underlying secret key s.

4.2 Modifying The Final Result

Fig. 1 shows the plot of the error e and its bound on a number line. From the
figure, we can observe that the value of e is bounded by the range [0, +eth] or
[−eth, 0] depending on whether e is positive or negative, resp. Here +eth and
−eth are the positive and negative thresholds, resp. Now, for the decryption
to be correct, i.e., decrypting c generates the message f(x) and not any other
message x′ ̸= f(x), e needs to be either less than +eth or greater than −eth.
However, since the server neither knows the value nor the sign of e, it does not
know whether it is less than +eth or greater than −eth, and in turn does not
know whether it is bounded by the range [0, +eth] or [−eth, 0]. Thus, to infer
the sign of e, the server has to guess about the same. Suppose it guesses e to be
positive. In this case, it computes a quantity ediff = +eth−0 = +eth and adds it
to c. It then decrypts c and checks whether the decrypted value is equal to f(x)
or not. As depicted in Fig. 1(A), if the server guessed incorrectly and the sign of
e is negative, the final error after perturbation lies within the permissible range
(less than the threshold +eth), albeit in the opposite sign domain. In contrast,
if the server guessed correctly and the sign of e is positive, the final error after
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Algorithm 1 Error Recovery using Binary Search
1: eth := error threshold
2: emin := 0
3: emax := eth
4: c := resultant ciphertext of some homomorphic computation f
5: f(x) := original message in the ciphertext c
6: e := original error in the ciphertext c
7: start ← emin

8: end ← emax

9: etemp ← 0
10: function getError(c, start, end)
11: if start == end− 1 then return etemp

12: else
13: mid ← ⌊ start+end

2
⌋

14: ediff ← eth −mid
15: c ← c+ ediff = a · s+ f(x) + e+ ediff
16: x′ ← DecC(c)
17: c ← c− ediff = a · s+ f(x) + e+ ediff − ediff

= a · s+ f(x) + e
18: if x′ == f(x) then
19: etemp ← mid
20: getError(c, start, mid)
21: else
22: getError(c, mid, end)
23: end if
24: end if
25: end function

the addition of perturbation lies beyond the permissible range (more than the
threshold +eth) in the positive domain.

The server may also start by guessing that the error e is −ve. In that case,
it computes the quantity ediff = −eth − 0 = −eth and adds it to c. As depicted
in Fig. 1(B), if the server guessed incorrectly and the sign of e is positive, the
final error after perturbation lies within the permissible range (less than the
threshold −eth), albeit in the opposite sign domain. In contrast, if the server
guessed correctly and the sign of e is negative, the final error after the addition
of perturbation lies beyond the permissible range (more than the threshold −eth)
in the negative domain. Therefore, it is easy to note that a decryption failure
would only occur when the server correctly guesses the sign of the error.

4.3 Error and Key Recovery Attack

Fig. 2 shows the overall process of our attack, which requires recovering errors e
from at least k ciphertexts, where k is the length of the secret key s. As already
stated in Sect. 2.2, once these errors are recovered, the system of approximate
equations (consisting of at least k equations) can be turned into a system of exact
equations which can then be solved to recover s. However, our attack additionally
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requires recovering the underlying plaintext message f(x) from each ciphertext
c since it is of the form b = a ·s+f(x)+e, and removing both f(x) and e turns it
into b = a · s. The server can recover the message f(x) by first homomorphically
evaluating f on ψ (the set of encrypted client inputs) using the public key pk

to obtain c = f̂(x) and then decrypt it locally. To recover the error, we propose
a binary search-based strategy, as shown in Alg. 1. The server first sets the
values of two variables emin and emax to either 0 and +eth if e was determined
positive, or 0 and −eth if e was determined negative, to cover the entire range
of possible errors. Once done, the server proceeds to use active perturbations in
the ciphertext c and decrypt it locally to observe the effect of the perturbation
on the final result f(x).

The central idea of the attack is that given two bounds emin and emax, we
first determine whether e is closer to emin or emax, which can be found using
the same strategy that was used to determine the sign of e. To elaborate further,
we first set two variables start and end to 0 and eth (+eth or −eth based on
sign of e). The first condition we check is if start becomes equal to end − 1,
which acts as the base case of our recursive algorithm and implies that we are
left with only one error value in the range, which is e itself. Otherwise, as part
of recursion, we compute a term mid as the midpoint of the range [start, end].
Following the notion of binary search, our objective is to divide the range into
two halves and determine whether e lies in the first or second half. We do this
by computing an error term ediff = eth−mid which is then added to the locally
computed ciphertext c. The idea is that if e lies closer to end (right of mid if
taking eth = +eth and left of mid if taking eth = −eth), then adding ediff makes
the overall error (e+ ediff ) in c to cross the threshold eth. Decrypting c at this
point results in a decryption failure, and the server understands that the actual
error e lies in between mid and end. On the other hand, if e lies closer to start
(left of mid if taking eth = +eth and right of mid if taking eth = −eth), then
the addition of ediff will not cause the overall error (e + ediff ) in c to cross
the threshold eth. Quite obviously, decrypting c at this point will not result in
a decryption failure, and the server will understand that e lies in between start
and mid. Therefore, similar to the working process of binary search, the server
can eliminate half of the error space on every iteration and gradually progress
toward the actual error. Once finished, the output of the algorithm is the actual
error e of the ciphertext c.

The server can also use the aforementioned process to determine the value of
eth itself. It can first generate noiseless encryptions (by setting the error values
to zero) of two messages of its choice using a secret key generated by the server
itself. It can then perform a homomorphic gate operation, whose eth it wants
to determine, over these ciphertexts (whose error value remains zero). It can
then run Alg. 1 over the resultant ciphertext by setting emin and emax to 0 and
a large value. Once the error is recovered for each ciphertext, the server can
trivially retrieve the secret key s using linear algebra methods such as Gaussian
elimination [22] or lattice solvers such as LLL [26] or BKZ [37].
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Why this is not a CCA1 attack? We would like to clarify that while the
server can decrypt the ciphertext c (including its perturbed version) on its end,
it needs to be remembered that c is the result of some homomorphic compu-
tation f and not arbitrary ciphertext (which includes the bootstrapping and
relinearization keys). Given that the server is only allowed to decrypt the result
of an evaluation of f , which it does, our attack falls under the IND-CPAC notion
and not the IND-CCA1 notion.

4.4 Comparison across FHE schemes

We note that the number of ciphertexts required to launch the attack is in the or-
der of the size of the key, or more precisely, Ω(k). Concretely, our attack requires
recovering errors from at least k ciphertexts. Therefore, our attack requires to
make at least k + k · log(eth) queries to the DecC() oracle, where k queries are
required to recover the underlying messages while k ·log(eth) queries are required
to recover underlying error values. At this point, we would like to highlight that
the value of both k and eth varies across the FHE schemes due to the difference
in choice of parameters. This further implies that the number of queries made to
the DecC() oracle will also vary across these schemes. Table 1 provides concrete
values of the number of queries required to recover the errors from sufficient ci-
phertexts for three practical FHE schemes, namely TFHE, FHEW, and B/FV.8
From the table, we can observe that even for the same attack vector, the total
number of queries made to the conditional decryption oracle differs across the
three FHE schemes. The reason is that both the length of the key and the to-
tal number of queries required to recover a single error value vary across these
schemes. We can further observe that FHEW requires the minimum number of
queries to be made for a successful key recovery, and TFHE requires the highest
number of queries. However, for B/FV, the result has been shown for the min-
imum parameter set, and the number of queries will surpass that of TFHE for
higher parameter sets. This shows that the query complexity (the total number
of decryption queries made) and, in turn, the IND-CPAC notion can be used in
practice to compare the FHE schemes in terms of their resistance against full
key recovery attacks.

To show the feasibility of our attack, we provide a proof-of-concept (PoC)
code that demonstrates our attack on a well-known LWE-based FHE scheme.9
The PoC is built on TFHE scheme with a key size of 630 bits. We were success-
fully able to recover the underlying errors from 1112 ciphertexts, requiring 35792
decryptions on the server side, which were then used to successfully recover the
entire secret key. The overall attack took around 15 minutes to carry out on a
2nd-gen Intel® Xeon® workstation with 128 GB RAM.

8 The results for BGV will be similar to those of B/FV because of the similarity of
these two schemes. We do not provide results for approximate FHE schemes such as
CKKS [12] since we only focus on exact FHE schemes in this paper.

9 PoC can be found on https://github.com/cracking-tfhe/Anonymous_Repository.

https://github.com/cracking-tfhe/Anonymous_Repository
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Table 1: Shows the key length, total no. of queries required to recover errors
from one ciphertext, and the total no. of queries made to recover errors from
sufficient ciphertexts for three practical exact FHE schemes.

k log(eth) No. of decryption queries
TFHE 630 30 19950

FHEW 500 6 3980

B/FV 1024 16 16850

4.5 Introducing Errors At Lower Levels

We now show why the attack does not work if the perturbations are induced
in ciphertexts generated at lower levels of the circuit that is evaluating f . We
present, without loss of generality, the case where f represents a single (homo-
morphic) addition between two FHE ciphertexts c1 = (a1, b1 = a1 · s+ x1 + e1)
and c2 = (a2, b2 = a2 · s + x2 + e2). This operation produces a ciphertext
c3 = (a3, b3 = a3 · s + x3 + e3), where a3 = a1 + a2, m3 = m1 + m2 and
e3 = e1 + e2. We assume that the sign of e1 is positive, which the server does
not know and is trying to infer. Based on our method from Sect. 4.2, the server
assumes e1 to be positive, computes the quantity ediff = +eth−0 and adds it to
c3. Finally, it decrypts c3 locally to observe the effect of the added error. Now,
based on the sign and value of e2 and the value of e1, we have the following
possibilities of the final error e′3 = e1 + eth + e2 in the ciphertext c3:

1 e2 is positive: In this case, the value of e′3 crosses the error threshold +eth
irrespective of whether e1 > e2 or e1 = e2 or e1 < e2. This induces a decryption
failure, and the server infers the sign of e1 to be positive. The probability of this
combination occurring in practice is P1 = Pr[e1 is positive] × Pr[e2 is positive]
= 1

2 ×
1
2 = 1

4 .

2 e2 is negative but e2 < e1: In this case, the value of e′3 crosses the
error threshold +eth as e2 < e1 and so e1 − e2 > 0. This induces a decryption
failure, and the server infers the sign of e1 to be positive. The probability of this
combination occurring in practice is P2 = Pr[e1 is positive] × Pr[e2 is positive]
× Pr[e1 > e2] = 1

2 ×
1
2 ×

1
3 = 1

12 .

3 e2 is negative but e2 = e1: In this case, the value of e′3 becomes equal
to +eth as e2 = e1 and so e1+ e2 = 0. This does not induce a decryption failure,
and the server mistakenly infers the sign of e1 to be negative. The server may
check this by setting ediff = −eth. However, in this case, e′3 becomes equal to
−eth, and even this does not induce a decryption failure. The probability of this
combination occurring in practice is P3 = Pr[e1 is positive] × Pr[e2 is positive]
× Pr[e1 = e2] = 1

2 ×
1
2 ×

1
3 = 1

12 .

4 e2 is negative but e2 > e1: In this case, the value of e′3 becomes less
than +eth as e2 > e1 and so e1−e2 < 0. This does not induce a decryption failure,
and the server mistakenly infers the sign of e1 to be negative. The server may
check this by setting ediff = −eth. However, in this case, e′3 crosses the error
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threshold −eth, which induces a decryption failure. However, this decryption
failure was due to e2 being negative, but the server assumes that this was caused
due to e1 being negative. Thus the server again mistakenly infers the sign of e1
to be negative. The probability of this combination occurring in practice is P4

= Pr[e1 is positive] × Pr[e2 is positive] × Pr[e1 < e2] = 1
2 ×

1
2 ×

1
3 = 1

12 .

We get similar cases when e1 is negative. We can observe that while the server
infers the correct sign of e1 when cases 1 and 2 occur, it infers the wrong sign
of the error e1 when cases 3 and 4 occurs. Thus the probability of the server to
infer the correct sign of e1 is P± = 2×(P1+P2) = 2×( 14+

1
12 ) = 2×( 3+1

12 ) = 2
3 .10

Now, this probability is for a single ciphertext, and the server needs to extract
the sign of the errors from at least k ciphertexts, which it can do with probability
P k
± = ( 23 )

k. Given that the dimension of the secret key k is set to 1024 and above
during practical instantiations of the FHE schemes, the value of P k

± turns out
to be ≈ 8 × 10−179. This implies that to recover the sign of the errors in at
least k = 1024 ciphertexts, the server needs access to ≈ 10178 ciphertexts, which
is infeasible to obtain in practice. It is thus sufficient to only protect the final
computation in order to prevent our attack. However, in practice, there might
exist other attack vectors that might not be stopped by simply protecting the
final level of the computation. Therefore, instead of providing ad-hoc techniques
to prevent against such attacks, we propose a generic technique that works across
all FHE schemes and is provably secure. Before going into the details of our
technique, we explain how our attack is applicable to the construction of [19].

4.6 Succinct FE in malicious setting

The aforementioned IND-CPAC attack shows that practically existing (R)LWE-
based FHE schemes are insecure in the presence of a malicious adversary. The
implication of this observation is that while the succinct FE construction pre-
sented in [19], which is a prime use-case implementation of conditional decryp-
tion based FHE application, is secure in a semi-honest setting, the security of
the overall FE falters under the IND-CPAC notion. The leakage of the secret
FHE key essentially jeopardizes the underlying privacy guarantee and allows the
adversary (server in this case) to decrypt all ciphertext. The overall security
guarantee of [19] is based on the security guarantees of constituent cryptoprim-
itives, such as FHE, ABE and GC. The specific design in [19] essentially allows
the server to drive inputs to the FHE decryption oracle. Concretely, the bits of
f̂(x) (computed on the server side) unlock the specific input labels of GC (within
which the FHE decryption circuit resides) by driving the specific predicates of
ABE decryption. We note that assuming the predicate evaluation is honest, the
ABE unlocks exactly one of its two inputs. In [19], this input then drives exactly
one wire of the underlying GC. However, when perturbations are introduced in
f̂(x), it leads to incorrect ABE decryption because of erroneous predicate eval-
uation. This in turn unlocks the incorrect GC label, causing the garbled FHE
10 The multiplier 2 comes from the fact that we get cases 1 and 2 once for when e1

is positive and when e1 is negative.
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decryption circuit to output either f(x), or f(x)′ ̸= f(x). A malicious server can
use this output as a distinguisher to recover errors in the underlying (R)LWE
samples central to FHE, thereby leading to the recovery of the full FHE de-
cryption key. Thus, while the security guarantees of FHE, ABE, and GC remain
intact in isolation, the combination of these primitives to implement FHE de-
cryption causes the breakdown of security (leaking the FHE decryption key) in
the malicious server model.11

5 Constructing IND-CPAC-secure FHE

The attack described in the previous section highlights that none of the existing
exact FHE schemes are IND-CPAC secure. In other words, an active adversary
can carry out key recovery attacks on FHE schemes if given access to a con-
ditional decryption oracle. Such attack vectors arise from the lack of integrity
checks in FHE ciphertexts, which allows a malicious adversary to tamper with
the ciphertexts without getting detected.

To alleviate this problem, a recent direction of research is focusing on incorpo-
rating Zero Knowledge Proofs (ZKPs) techniques on top of FHE computations.
These solutions work by using SNARKs (cf. Sect. 2.7 for more details) to gener-
ate proof of honest homomorphic computations by the server. Once generated,
it sends all the ciphertexts (which include the ones corresponding to the inter-
mediate results) associated with the computation along with the proof back to
the decrypting party, which is the client in the general setting. The client uses
these ciphertexts and proof to first verify the integrity of the homomorphic com-
putation and proceeds with decryption only if the verification holds; otherwise,
it aborts the protocol.

The aforementioned technique, termed verifiable FHE (vFHE), was first in-
troduced in [40] and served as a good starting point towards ensuring FHE
integrity through ZKPs. However, its implementation was severely limited to a
small class of HE schemes that do not involve ciphertext-maintenance operations
such as bootstrapping and relinearization. The reason is that the mathematics
of such maintenance operations was found to be incompatible with the chosen
ZKP solutions. However, recent improvements in ZKP techniques have led to the
support for generating proofs of honest evaluation of the ciphertext-maintenance
operations. In this direction, the authors of [3] introduced a method of proving
the correct evaluation of relinearization and mod-switching operations. Similarly,
the authors of [39] showed how to prove the correct evaluation of TFHE [13] boot-
strapping operation. Finally, [31] showed how IND-CPA secure FHE schemes can
be converted to IND-CCA1 secure FHE schemes with the use of ZKP solutions.

The idea of vFHE was originally proposed to mitigate reaction-based at-
tacks on FHE schemes [8, 14, 42] by aiding the client to differentiate between
whether an incorrect decryption was accidental or was intentionally induced
by a malicious server. The proposed technique required the server to gener-
ate individual proofs for each homomorphic computation it performs, including
11 A detailed discussion on this can be found in Appendix C.
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Client
Server

1. Offload
encrypted data

2. Evoke the
eval oracle

3. Verify
proof

4. Decrypt only if
verification holds 5. f(x)

4. Else 

Server side computations

Fig. 3: Schematic of our IND-CPAC secure FHE scheme HECD. The server addi-
tionally generates proof of computation, which is then verified. Decryption only
proceeds if verification holds; otherwise, the construction outputs a ⊥.

ciphertext-maintenance operations. Once done, the proofs along with all the
FHE ciphertexts were sent back to the client to be verified. The client accepted
the (post-decrypted) result of the requested computation only if all the accom-
panying proofs hold.

Our technique of converting IND-CPA secure FHE schemes to IND-CPAC

secure FHE schemes works along similar lines, with the difference that the gen-
erated proofs need not be sent back to the client. In other words, both the proof
generation and verification run on the server side, albeit with the verification
step running inside a garbled circuit (GC), along with the FHE decryption op-
eration. The idea is to allow the conditional decryption oracle to first verify the
proofs on its end to ensure the integrity of the FHE ciphertext and only decrypt
it if verification holds. Given the verification and decryption run on the server
itself (inside a GC), our solution does not incur significant network overhead
as the proofs and ciphertexts are not required to be sent to the client. We now
show our construction that can be used to convert an IND-CPA secure exact
FHE scheme into an IND-CPAC secure exact FHE scheme. Fig. 3 provides a
summary of our construction.

Definition 2. Let FHE = (FHE.KeyGen, FHE.Enc, FHE.Eval, FHE.Dec) be an
exact public-key fully homomorphic encryption scheme as defined in Sect. 2.3
over a message spaceM, a ciphertext space C, and a class of functions F . More-
over, let Π = (SNARK.Setup, SNARK.Prover, SNARK.Verifier) be a SNARK
defined over the language

L = {({ci}, cr)|∃f ∈ F , cr = FHE.Eval(pk, f, {ci})}

Our IND-CPAC secure FHE scheme HECD is a tuple of algorithms (HECD.KeyGen,
HECD.Enc, HECD.Eval, HECD.Dec), where the algorithms are defined as follows:

1. HECD.KeyGen(1λ, CS): Upon input the security parameter λ and a constraint
system CS corresponding to the language L, it executes FHE.KeyGen(1λ) to
obtain the key pair (pk, sk). It further executes Π.Setup(1λ, CS) to obtain
a pair (crs, st). It outputs the pair (pk, crs) while keeping the pair (sk,
st) as secret.

2. HECD.Enc(pk, x): Upon input the public key pk and a message x ∈ M, it
executes FHE.Enc(pk, x) to obtain a ciphertext c. It outputs c.
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3. HECD.Eval(pk, f , {ci}, crs): Upon input the public key pk, a function f ∈ F ,
a set of FHE ciphertexts {ci}, and a common reference string crs, it exe-
cutes FHE.Eval(pk, f , {ci}) to obtain the resultant ciphertext cr. It further
executes Π.Prover(crs, ({ci}, cr), w) to obtain the proof of execution π.
Here the pair ({ci}, cr) serves as the statement, and the intermediate results
obtained during the FHE evaluation serve as the corresponding witness w to
the underlying SNARK protocol. It outputs the pair (cr, π).

4. HECD.Dec(sk, st, π, {ci}, cr): Upon input the secret key sk, the verification
state st, the proof π, and the pair of input-output ciphertexts ({ci}, cr), it
first executes SNARK.Verifier(st, ({ci}, cr), π) and obtains a verification
bit bt. If bt = 1, it executes FHE.Dec(sk, cr) to obtain the decrypted result
f({xi}) which it then outputs. On the other hand, if bt = 0, it outputs a ⊥.

In an instantiation of this protocol, the client can embed both the decryption
and verification steps, along with their corresponding keys, in a garbled circuit.
This prevents the server from tampering with any of these two steps. We now
prove the security of our proposed construction.

Theorem 1. If FHE is a IND-CPA secure fully homomorphic encryption scheme
and Π is a SNARK with knowledge soundness property, then our construction
HECD is an IND-CPAC secure FHE scheme.

Proof. The security of our construction reduces to the properties of the underly-
ing FHE and SNARK schemes. Given an FHE ciphertext cr = f({ci}) and the
associated proof π corresponding to the statement ({ci}, cr), the adversary can
do one of the following things: 1 it does not tamper with either cr or π, 2 it
tampers with cr to turn it into c∗r but leaves the π intact, 3 it leaves cr intact
but tampers with π to turn it into π∗, and 4 it tampers with both cr and π to
turn them into c∗r and π∗.
Correctness: For case 1 ,Π.Verifier(st, ({ci}, cr), π) = 1 from the complete-
ness property of the underlying SNARK scheme, and FHE.Dec(sk, cr) = f({xi})
from the correctness property of the underlying FHE scheme. Our construction
therefore correctly outputs the value of f({xi}).
Security: For case 2 , Π.Verifier(st, ({ci}, c∗r), π) = 0 due to the knowledge
soundness property of the underlying SNARK scheme. Given decryption does
not proceed when the proof does not hold, our construction outputs a ⊥. Cases
3 and 4 follow similar to 2 .

Our construction, following from the knowledge soundness property of the
underlying SNARK, ensures that the proof verification fails upon any perturba-
tion introduced at any point of the homomorphic computation.12 This prevents
the server from obtaining decryptions of invalid ciphertexts (which were not ob-
tained from an honest evaluation of f over {ci}). Finally, the verification and

12 While our attack works only when the perturbation is introduced in the final resul-
tant ciphertext, future attacks under the IND-CPAC notion may succeed by tamper-
ing with the input or intermediate ciphertexts.
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decryption operations are made to execute within a garbled circuit. This ensures
that the server is not able to tamper with the output bit of the verification step
since the garbling step hides its location. In other words, the server cannot run
the verification step honestly (on correct ciphertexts and proof) and then flip
the result of the verification bit before proceeding with the decryption on in-
correct ciphertexts. Doing so would require the server to know the location of
the verification bit inside the garbled circuit, which will be akin to breaking the
security guarantee of the garbled circuit.

6 Discussion and Future Work

Approximate FHE schemes. In this paper, we primarily focus on exact
FHE schemes in which decryption outputs an exact result of the homomorphic
computation while the underlying error is removed. However, approximate FHE
schemes such as [12] also exist in literature where the decryption outputs an
approximation of the result of a homomorphic computation. The approximation
comes from the fact that the decryption outputs a message x+ e where e is the
underlying error value and x is the actual message. Authors in [27] showed that
such schemes can be broken under the IND-CPAD notion since the decryption
oracle trivially leaks the error value as part of the message itself. To counter
these attacks, authors in [28] proposed a post-processing of the decrypted result
x + e to introduce an extra error value that smudges the original error value
e. Our attack is not directly applicable to such schemes since it relies on the
knowledge of the exact value of e, which is smudged during the post-processing
step of [28]. We leave the evaluation of the security of approximate FHE schemes
under our IND-CPAC as future work.

Compact proofs. As highlighted in Sect. 5, there exist practical instantia-
tions of SNARKs that support verifiability of FHE computations, even with the
presence of ciphertext-maintenance operations. However, the primary issue with
these instantiations is that the size of the proof depends on the size of the circuit
being evaluated. In other words, the size of the proof grows with the size of the
circuit, which also affects the size of the verifier circuit since it now has to verify
a large amount of proofs. On the other hand, our solution requires the proofs
to be compact (possibly independent of the size of the circuit to be proven)
and, in turn, the verification step to be as small and simple as possible, given
the same needs to be implemented inside a GC.13 We leave the constructions of
such SNARKS as future work.

13 A larger verification circuit will not only increase the size of the GC but will require
a significant amount of time to run. The exact runtime will be determined by the
exact instantiation of the SNARK and GC scheme.
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7 Conclusion

Fully homomorphic encryption allows arbitrary computations directly over en-
crypted data while ensuring the result of such computations remains encrypted.
While traditionally the client is tasked with decrypting the FHE ciphertexts, a
wide range of applications benefit from the server having the ability to decrypt
the result of the homomorphic computation. As shown in [19], such conditional
decryption is possible in practice where the server is allowed to decrypt the result
of a fixed computation and nothing else. However, this added functionality can be
exploited by a malicious server to carry out attacks against the underlying FHE
scheme. Existing security notions fail to capture this scenario since they assume
that only the client can decrypt FHE ciphertexts. Therefore, in this paper, we
introduce a new notion denoted IND-CPAC that captures this setting in a better
way. We then show that none of the existing FHE schemes are secure under
our notion by demonstrating a full-key recovery attack that exploits the ability
of the server to perform conditional decryptions locally. Finally, we propose a
technique to convert any IND-CPA secure exact FHE scheme into an IND-CPAC

secure exact FHE scheme. Our construction makes use of SNARKs to generate
proof of honest homomorphic computation. During decryption, the proofs are
verified, and decryption proceeds only when all the verification holds. Both the
verification and the decryption steps run inside a garbled circuit and thus are
tamper-proof. We believe that our analysis will aid the application developers in
building robust protocols utilizing the added benefit of local decryption without
compromising with the security of the underlying FHE scheme.
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A Working of Exact FHE schemes

In this section, we describe the overall working principle of FHE schemes, which
can be divided into three stages, namely encryption, evaluation, and decryption.
In the traditional setting, the evaluation stage runs on the server side while en-
cryption and decryption are performed on the client side. We now briefly explain
each of these stages, which differs between LWE and RLWE FHE schemes.
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A.1 Encryption Stage

In the LWE schemes, a message x is encrypted under a secret key s ∈ B as
c = (a, b), where a

$← Zk
q and b = a · s + x + e. Here, e ← N0,σ is a small

error value. In the RLWE schemes, a message polynomial x is encrypted under
a secret key s ∈ B as c = (b,a), where a

$← Rq and b = −(a · s+ e) + x. Here,
e← N0,σ is a small error polynomial.

A.2 Homomorphic Computation Stage

In the LWE schemes, homomorphic addition between two ciphertexts c1 =
(a1, b1) and c2 = (a2, b2) is defined as cr = c1+c2 = (a1+a2, b1+b2) = (ar, br).
A multiplication between a scalar z and a ciphertext c1 = (a1, b1) is defined as
cr = (z × a1, z × b1) = (ar, br), where z × a1 implies that z is multiplied with
each co-efficient of the vector a1. In practical LWE-based FHE schemes such
as [13, 15], each homomorphic operation is followed by a bootstrapping step
which resets the underlying error value in the resultant ciphertext.14 This step
works by homomorphically decrypting the ciphertext and uses a bootstrapping
key that is an encryption of the decryption key s under a different (secret) key.
In the RLWE schemes, homomorphic addition and scalar multiplication are de-
fined in a similar way as defined in LWE schemes. Additionally, a homomorphic
multiplication between the ciphertexts c1 = (b1,a1) and c2 = (b2,a1) is defined
as c′r = (b1 · b2,b1 · a2 + b2 · a1,a1 · a2). Given this operation increases the
elements in the ciphertext from 2 to 3 ring elements, it is followed by a relin-
earization step in the practical RLWE-based FHE schemes such as [6,7,16]. This
step takes as input a relinearization key and a ciphertext c′r and converts it back
to a ciphertext cr = (br,ar) containing only 2 ring elements.

A.3 Decryption Stage

In the LWE schemes, a ciphertext c = (a, b) encrypted under a secret key s is
decrypted via a two-step process. In the first step, the phase of the underlying
message x is computed as ϕ = b − a · s which gives at output a noisy version
x+ e of the message. In the second step, this phase ϕ is rounded to remove the
error e and recover x. In the RLWE schemes, decrypting a ciphertext c = (b,a)
works in a similar fashion as in the LWE-based schemes, with the difference that
the phase is computed as ϕ = b+ a · s.

One may note that for both LWE- and RLWE-based FHE schemes, the de-
cryption stage outputs the correct message only if the underlying error e in the
ciphertext being decrypted lies below a pre-defined threshold.

14 This step is required since the correctness of the decrypted result does not hold once
the overall error crosses a pre-defined threshold.
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B Conditional Decryption Scheme

Authors in [19] proposed a succinct function encryption scheme FE15 that can be
used to decrypt the result of a homomorphic evaluation of f on some (encrypted)
client input x̂. In this section, we provide a brief overview of their construction
in the form of a game

∏CD
C,S

16 between a client C and a server S. We assume that
the length of the FHE ciphertexts (irrespective of whether they are generated
during encryption or evaluation) is ℓ.
Conditional Decryption of FHE output

∏CD
C,S :

Setup Phase (FE.Setup)

1. The client C runs the ABE.Setup algorithm ℓ times as (fmpki, fmski) ←
FE.Setup(1λ) for each bit of the FHE ciphertext to generate a tuple of
master public keys as MPK = (fmpk1, · · · , fmpkℓ) and master secret keys as
MSK = (fmsk1, · · · , fmskℓ).

Keygen Phase (FE.KeyGen)

1. The client C takes the master secret key MSK and a function f ∈ F that
accepts an n-bit input and then selects FHE.Evalif from a broader set of

functions F ′. Here FHE.Evalif computes the ith-bit of f̂(x), where x is the
input of the client.

2. It then runs the ABE.KeyGen algorithm to generate secret keys for each func-
tion FHE.Evalif as fski ← ABE.KeyGen(fmpki, FHE.Evalif). One may ob-
serve that each function FHE.Evalif is equivalent to the ABE predicates p
from Sect. 2.5.

3. It finally outputs a tuple fskf = (fsk1, · · · , fskℓ) as a secret key for the
function f . Here, each secret key fski acts as a secret key corresponding to
the predicate FHE.Evalif .

Encryption Phase (FE.Enc)

1. The client C chooses its n-bit input x = x1 · · ·xn, where xi is ith-bit of x.
2. It generates a fresh key pair (hpk, hsk) by running FHE.KeyGen(1λ).
3. It then encrypts each bit of x as ψi ← FHE.Enc(hpk,xi) and obtains as

output n FHE ciphertexts ψ = (ψ1, · · · , ψn).
4. It then runs Gb.Garble(1λ, FHE.Dec(hsk,·)), where FHE.Dec(hsk,·) is

the FHE decryption circuit. It receives as output a garbled circuit Γ and a
set of labels {L0

i , L
1
i } for each bit of the FHE ciphertext.

5. Finally, the client C produces the ABE ciphertexts as ci ← ABE.Enc(fmpki,
(hpk, ψ), L0

i , L1
i ), and sends these ciphertexts (c1, · · · , cℓ) along with the

garbled circuit Γ to the server S. It also sends the pair (hpk, ψ) consisting
of FHE public key and ciphertexts to the server S. This is in accordance
with [21] which is the underlying ABE scheme of this construction.

15 Not to be confused with the description of FE from Sect. 2.6.
16 We reuse the same naming convention from [19]; CD stands for conditional decryption.
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Decryption Phase (FE.Dec)

1. The server S runs the ABE decryption algorithm on the ciphertexts (c1, · · · , cℓ)
to obtain the labels of the garbled circuit as Ldi

i ← ABE.Dec(fski, ci),
where di is the ith bit of f̂(x). One may observe that on an honest execution
of this operation, the server only obtains the label Ldi

i and not the other
label L1−di

i .
2. Finally, the server S runs the garbled circuit evaluation algorithm Gb.Eval(Γ,
Ld1
1 , · · · , L

dℓ

ℓ ), which internally runs the FHE decryption circuit FHE.Dec(hsk,
d1, · · · , dℓ).

C Conditional Decryption Scheme in Malicious Setting

In this section, we show that our attack in Sect. 4 does not break the security
guarantees of the underlying building blocks, which include FHE, ABE and
garbled circuits of [19].

FHE. The security guarantee of FHE comes from the fact that given a cipher-
text c = a · s+mbt + e to the adversary that is an encryption of one of the two
messages m0 and m1 of its choice, it cannot determine the value of bt even if
it is given access to an encryption oracle. This is guaranteed by the hardness of
the (R)LWE problem upon which FHE constructions are based. Now, given that
the adversary neither knows the value of s nor that of e, it cannot determine
anyone of them, or for the matter even mbt, by just observing the ciphertext c.
At this point, if the adversary adds a safe error ϵ to c then its total error becomes
e + ϵ. However, the adversary can still not determine the value of s, e or mbt.
This shows that adding a perturbation to an FHE ciphertext does not break its
security guarantee of IND-CPA security.

GC. The security guarantee of a garbling scheme comes from the fact that
given the garbling Γ of a circuit C and the labels Lx1

1 , · · · , L
xℓ

ℓ that encode an
input x = x1 · · ·xℓ, the scheme neither leaks the circuit C nor the input x.
However, it cannot ensure whether the label Lxi

i it received as input was the
one it was supposed to receive in a correct execution of the protocol. Given the
adversary is malicious, it can replace this label with L1−xi

i . The garbled circuit
now evaluates C over x′ that differs from x by the ith bit. However, the scheme
still does not reveal anything about neither C nor x (not even the bit xi as it was
merely changed, which the adversary already knows). This shows that changing
an input label of the garbled circuit does not break its security guarantee of
hiding the inputs and the circuit.

ABE. The security guarantee of the two-outcome ABE scheme comes from the
fact that given a predicate p, an attribute x, and two messages M0 and M1, the
scheme only outputs the message Mp(x) and does not leak anything about the
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message M(1−p(x)). However, the value of p(x) is determined by the value of f̂(x).
Thus, a malicious server can alter the value of p(x) to 1 − p(x) by perturbing
the value of f̂(x). The ABE decryption now outputs the message M(1−p(x)),
but now it hides the message Mp(x). Thus, at all points of time, the adversary
only receives one message as output of the ABE decryption (the one it chose
to receive), while it does not get to know anything about the other message.
This shows that changing the computed value of p(x) in ABE does not break its
security guarantee of only revealing one message and hiding the other one.
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