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Abstract. This paper presents a novel approach to calculating the Lev-
enshtein (edit) distance within the framework of Fully Homomorphic
Encryption (FHE), specifically targeting third-generation schemes like
TFHE. Edit distance computations are essential in applications across
finance and genomics, such as DNA sequence alignment. We introduce an
optimised algorithm that significantly reduces the cost of edit distance
calculations called Leuvenshtein. This algorithm specifically reduces the
number of programmable bootstraps (PBS) needed per cell of the cal-
culation, lowering it from approximately 28 operations—required by the
conventional Wagner-Fisher algorithm—to just 1. Additionally, we pro-
pose an efficient method for performing equality checks on characters,
reducing ASCII character comparisons to only 2 PBS operations. Fi-
nally, we explore the potential for further performance improvements by
utilising preprocessing when one of the input strings is unencrypted. Our
Leuvenshtein achieves up to 205× faster performance compared to the
best available TFHE implementation and up to 39× faster than an opti-
mised implementation of the Wagner-Fisher algorithm. Moreover, when
offline preprocessing is possible due to the presence of one unencrypted
input on the server side, an additional 3× speedup can be achieved.

1 Introduction

The past 20 years have seen a major evolution of the global financial system.
Financial crises, geopolitical events and economic growth have deeply impacted
the direction that banking regulations have taken. One of the major policy shifts
is in the direction of increasing transparency and sharing information between fi-
nancial institutions. For instance, the G20 set targets for cross-border payments
[FSB21] formulating objectives for enhancing cost, speed, financial inclusion and
transparency in an effort to guarantee efficiency and seamlessness of an intercon-
nected financial system. In line with the PSD2 directive [Cou15], which initiated
the open-banking initiative in Europe, the EU has recently proposed the Finan-
cial Data Access framework which will grant consumers and SMEs to authorise
third parties to access their data held by financial institutions. Information shar-
ing among financial institutions is seen as paramount in the fight against financial
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crime and money laundering [MA17], and is also expected to drive GDP gains
of major economies [EC22]. In the previously mentioned initiatives, success can
only be achieved if trust is built among all the actors. Trust can only be built if
security and privacy are guaranteed in the exchange of information. While the
directives are clear, the means to achieve a successful implementation are left to
the actors proposing the services and products.

Considering the recent legislative proposal to make Euro payments instant
[EC22], there is an obligation for payment providers to verify the match between
the bank account number and the name of the beneficiary provided by the payer,
as well as to alert the payer of possible mistakes or suspected fraud before the
payment is made. In such applications, string similarity calculations are ubiqui-
tous to provide robustness against spelling errors [AQA21]. One example is the
edit distance, which calculates the minimum number of edits between two given
strings.

Recently, technologies enabling computation on encrypted data, namely fully
homomorphic encryption (FHE) have become more practical. Informally, FHE
is an encryption scheme that enables a data owner to securely outsource com-
putation on their data to an untrusted processing party, whereby the processing
party computes over encrypted data and stays oblivious of the data and the
computed result. The utility of FHE comes at a performance price, which can
sometimes be prohibitive for time-critical applications. However, the recent ad-
vances in software [CJL+20] and hardware [GBP+23, vDTV23] implementation
of the underlying FHE algorithms show promising performance results, encour-
aging the practitioners to start including FHE in production.

FHE schemes fall into two main categories: second-generation schemes like
BGV [BGV14], BFV [FV12], and CKKS [CKKS17] support parallel compu-
tations on batched ciphertexts but have larger ciphertexts and slower boot-
strapping. Third-generation schemes like TFHE [CGGI20] prioritise speed with
smaller ciphertexts and faster bootstrapping, though they work on small, indi-
vidual messages and require bootstrapping for nearly every operation. TFHE
also allows any function to be applied ‘for free’ during bootstrapping, making it
ideal for fast, logic-based encrypted computations.

In the context of string matching for financial applications, FHE could pose
as an important enabler [Max21]. Instead of physically sharing their customer in-
formation, parties could compute the desired outcome of the matching operation
avoiding data sharing in clear altogether. The institution sending the payment
would encrypt the transaction data using a suitable FHE scheme, and send it to
a third party which would compute the desired matching score in the encrypted
domain and return the encrypted result. This result (and any intermediate vari-
able) can only be decrypted by the payer institution. In the process, according to
the principles of FHE, the third party provably does not learn anything about
the transaction data, and the institution sending the payment does not learn
anything about the customers of the institution receiving the payment.

Another interesting application of approximate string matching is in secure
and privacy-preserving DNA analysis. Approximate string matching is essential



Title Suppressed Due to Excessive Length 3

in DNA analysis, where genetic sequences must be matched while allowing for
slight discrepancies due to mutations. This flexibility is vital for detecting similar
sequences that may vary because of natural mutations or sequencing errors.

Cheon et al. [CKL15] provided the first edit distance algorithm in the context
of somewhat homomorphic encryption. They develop both equality check and
min functions and use this to build up edit distance calculation. They also give
a thorough analysis of the homomorphic depth of their solution. Their meth-
ods were later generalised by Vanegas et al. [VCA23], elaborated for an MPC
context. Later, Aziz et al. [AAM17], Asharov et al. [AHLR18] and Zheng et
al. [ZLS+19] proposed an approximation of the edit distance for genome anal-
ysis for fully homomorphic encryption. All the above techniques are based on
second-generation FHE schemes and are built around arithmetic ciphertexts.

Edit distance calculations for third-generation FHE schemes are less well-
researched. Recently, ZAMA showed an edit distance calculation for TFHE as
a demonstration of the concrete compiler [Zam22a]. This demonstrator is based
on high-level code (i.e., Python) that is transformed to TFHE by the concrete
compiler, and the implementation uses a recursive definition of the edit distance.

1.1 Our contribution

In this paper, we develop a new edit distance algorithm for third-generation
FHE schemes. We develop a new algorithm adapted to TFHE, which we call
Leuvenshtein, and use this to show that the properties of the programmable
bootstrapping play very well with edit distance calculations. The main ideas of
our implementation are:

1. Small representations: We use differential values that represent the differ-
ences between intermediate results, instead of working on the intermediate
results themselves. This reduces the size of the intermediate variables, lead-
ing to a smaller representation and more efficient calculations, significantly
reducing the PBS costs. The size of our intermediate representations is small
enough to fit in one ciphertext encoding 4 bits.

2. Re-using the programmable bootstrap: In each iteration of the Leuven-
shtein algorithm we have to produce two output values (i.e., the horizontal
and vertical differential values). We show that one can rewrite the equations
so that both output values can be computed with the same non-linear parts,
which as a result means that they only differ by a (cheap) addition. As the
main cost is in the non-linear part, which needs to be done using costly
programmable bootstrapping, this technique reduces the calculation cost by
roughly half.

3. Non-linear calculation in only one lookup: During our calculation we
have to compute the minimum of three inputs. A common strategy would
be to do two bivariate lookups that each take two inputs. To enable the
calculation of the non-linear part in only 1 programmable bootstrap, we
propose a denser packing of the inputs. The input to our non-linear part has
a total of 3×3×2 = 18 values, while our 4-bit programmable bootstrap only
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allows a 16-value function. By adapting the non-linear function to start and
end with zeros, we enable a larger effective lookup that can accommodate
the full 18 values, saving another factor two in PBS.

Our resulting Leuvenshtein algorithm requires 28× less PBS compared to
a textbook Wagner-Fischer implementation, and 14.6× compared to a bitsliced
implementation (i.e., from Myers [Mye99]).

Our second contribution is an optimised equality check implementation that
uses significantly fewer programmable bootstraps (PBS). This method allows us
to encode characters more optimally, reducing the number of ciphertexts required
by half. More specifically, using our method we are able to do an equality test
on 7-bit ASCII strings in 2 PBS, instead of the standard 4 PBS as would be
used by a standard equality check (as for example implemented in TFHE-rs).

A third contribution looks at preprocessing to reduce the (online) running
cost. As our improved edit distance calculation only requires 1 PBS per edit
distance, the main cost of the algorithm sits in the equality calculation. In case
one of the input strings is unencrypted, we show that one can do a precalculation
where each encrypted string is compared to each letter of the alphabet and all
the results are stored in a lookup table. During the edit distance calculation one
then only has to perform an (unencrypted) lookup to select the relevant equality
value. This technique is useful when the encrypted string is known in advance,
or when the alphabet is small compared to the string lengths.

Combining these contributions, our implementation of the Levenshtein dis-
tance for ASCII inputs achieves a speedup of up to 278× over the best available
implementation, and a factor 40× over our own state-of-the-art Wagner-Fisher
implementation. In case of one unencrypted input, in some instances a further
3× speedup is possible due to our improved preprocessing.

2 Preliminaries

In this section, we will first introduce the TFHE homomorphic encryption scheme.
Then, we will define edit distances and specifically the Levenshtein distance, in-
cluding the most relevant algorithms to calculate it.

2.1 Notation

For the rest of this work, we will compare two strings a1..m, b1..n, with lengths
of m and n characters, respectively. All characters of the strings come from an
alphabet Σ, and with |Σ| we denote the number of characters in the alphabet.
The ith character of a string will be denoted as ai. When the alphabet size
is larger than the plaintext size, characters are represented through multiple
symbols that are encrypted individually, denoted with a

(j)
i for the jth part of

the ith character of string a. For example, an 8-bit character can be split into
two 4-bit symbols, a(1) and a(2).
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2.2 TFHE

Fully homomorphic encryption (FHE) enables computations to be carried out
on encrypted data. This paper will focus on FHE schemes with programmable
bootstrapping, specifically the Torus Fully Homomorphic Encryption (TFHE)
scheme [CGGI20]. We will provide a high-level introduction to TFHE; for more
details, we refer to [CGGI20, Joy22].

In TFHE, a ciphertext typically holds 1-4 bits of plaintext while allowing for
linear operations such as addition, subtraction, and multiplication with a small
unencrypted value at a relatively low cost. However, these operations increase
the noise in the ciphertexts. Once a certain number of operations have been
performed, a noise reduction procedure called bootstrapping becomes necessary.
Bootstrapping resets the noise, enabling further computations, but it is signif-
icantly more costly than linear operations. It is possible to chain ciphertexts
together to encrypt larger integers.

One key advantage of TFHE is its capability to apply any lookup table (LUT)
to the ciphertext without incurring any cost during bootstrapping. This process,
known as programmable bootstrapping (PBS), facilitates executing highly non-
linear functions on encrypted data. An example of such a LUT is shown in
Table 1.

To illustrate, consider two 2-bit encrypted messages, x and y, both encrypted
in a 4-bit plaintext space. To compare them, we first compute x + (y ≪ 2) ≡
(x + y · 4), resulting in a 4-bit value. The two least significant bits represent x,
and the two most significant bits represent y. Then, we use a lookup table to
check if the first 2 bits of the input equal the last 2 bits.

In more detail, the plaintext space is typically divided into message bits (the
least significant bits of the plaintext space), carry bits (in the middle), and a
padding bit (the most significant bit). The message bits represent plaintext val-
ues after encryption or bootstrapping. In contrast, the carry bits, initially zero,
are filled after linear operations are performed (e.g. the x + (y ≪ 2) operation
as described above). The padding bit is typically kept at zero to simplify the
application of a LUT during programmable bootstrapping.

In more advanced scenarios, one can make an abstraction of the plaintext
and carry space and use the entire plaintext space without the message-carry
division. However, in this scenario, one should generally ensure that the padding
bit remains zero to ensure proper LUT lookups during programmable bootstrap-
ping.

More specifically, we can create the corresponding Lookup Table (LUT) for
any arbitrary function as long as the padding bit is 0. Due to the nature of TFHE
calculations, when the padding bit is 1, the lookup result will be the negative
of the corresponding input with the padding bit 0. For example, if using a 5-bit
plaintext space to evaluate function f through a LUT, and we want to use the
entire 5-bit, we must consider that for input values x = 25/2 = 16 < x < 25 =
32, the function will become f(x) = −f(x − 16). This property is due to the
negacyclic nature of the polynomials and is inherent in any current FHE scheme
with PBS.
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Fig. 1: Subdivision of a 5-bit plaintext in 2-bit message and carry space for a
TFHE ciphertext

Table 1: LUT Table for function f(x) = x − 4 in a 5-bit plaintext space. The
right side can not be chosen, as it is the negative (mod 16) of the left side.

x Output x Output x Output x Output

0 (0 0000) 12 8 (0 1000) 4 16 (1 0000) 4 24 (1 1000) 12
1 (0 0001) 13 9 (0 1001) 5 17 (1 0001) 3 25 (1 1001) 11
2 (0 0010) 14 10 (0 1010) 6 18 (1 0010) 2 26 (1 1010) 10
3 (0 0011) 15 11 (0 1011) 7 19 (1 0011) 1 27 (1 1011) 9
4 (0 0100) 0 12 (0 1100) 8 20 (1 0100) 0 28 (1 1100) 8
5 (0 0101) 1 13 (0 1101) 9 21 (1 0101) 15 29 (1 1101) 7
6 (0 0110) 2 14 (0 1110) 10 22 (1 0110) 14 30 (1 1110) 6
7 (0 0111) 3 15 (0 1111) 11 23 (1 0111) 13 31 (1 1111) 5

Another critical aspect of FHE is that data-dependent branching (e.g., if,
while statements) cannot be used due to its confidential nature. To evaluate
a branch in FHE, all possible outcomes must be calculated. This means that
ideally, programs need to be rewritten to avoid if statements, and if statements
cannot be used to skip irrelevant parts of the execution. We will revisit this topic
in our discussion of edit distance calculation algorithms.

In the following sections, we will use a parameter set with a plaintext size
of 5 bits. In this set, the lowest 4 bits can be freely assigned, while the most
significant bit is utilised for padding. This parameter set is commonly used in
practice.

2.3 Edit distance

The edit distance is a metric used to measure the similarity between two strings
by calculating the number of edit operations needed to transform one string into
another. It differs from the Hamming distance, which only considers the simi-
larity of corresponding characters. For example, the Hamming distance between
‘abcdex’ and ‘xabcde’ is six, while the edit distance is two (one insertion and
one deletion).

The edit distance exists in various variants where each variant allows a dif-
ferent set of operations: the first two operations, ‘insertion’ and ‘deletion’, corre-
spond to the addition or removal of a character. The third operation is ‘substitu-
tion’, which involves replacing one character with another. The fourth operation
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is ‘transposition’, where two adjacent characters swap places. In this work we will
focus on the Levenshtein distance, which considers the first three operations.

There are various versions of the edit distance. For example, costs can be
assigned to each operation, allowing different weights to be applied. When all
operations have a uniform unit cost, it is referred to as simple edit distance. If
non-unit costs are used, it is called general edit distance. In some cases, the goal
is to find the exact value below a specific limit, and once that limit is exceeded,
the exact value becomes unimportant. An approximated edit distance can be
used in such scenarios.

The popular Levenshtein distance is often interchangeably used with edit
distance. These metrics are popular tools in (financial) fraud detection, DNA
sequence comparison, calculating distances between matrix sequences [PHRL19,
SAE+08, BDL+19], and spell checkers.

Calculating the edit distance The Levenshtein distance was originally ob-
tained using a recursive definition. This definition was later converted to an
executable algorithm, the Wagner-Fischer algorithm, using dynamic program-
ming. Since then, more efficient variations have been proposed, improving time
and space complexity. For a comprehensive overview of this plaintext algorithm,
refer to the work of Navarro [Nav01].

Advanced algorithms, such as those based on the Four Russians Method [MP80],
Suffix trees [Knu73], or filtering [Ukk92], are not suitable for implementation in
FHE due to their data-dependent assumptions or alphabet-specific data repre-
sentations. Additionally, algorithms based on nondeterministic finite automaton
(NFA) [Ukk85b] will have the same complexity as the Wagner-Fischer algorithm
in the encrypted domain. The representation of the automaton will have the
same form as the d-matrix. Therefore, specific FHE-friendly optimisations are
needed to speed up the calculations of the edit distance further.

Wagner-Fischer The Wagner-Fischer algorithm [Vin68, WF74] uses dynamic
programming to create a distance matrix (or ‘d-matrix’). Each element in the
matrix represents the edit distance of the corresponding substrings up to that
point in the matrix. For instance, D[i, j] = ed(a1..i, b1..j) corresponds to the edit
distance of the first i characters of string a and the first j characters of string
b. Specifically, in the simple edit distance case, each value of the d-matrix is
determined by the following equation:

D[i, j] =

{
D[i− 1, j − 1] if ai = bj

1 + min(D[i− 1, j], D[i, j − 1], D[i− 1, j − 1]) otherwise.
(1)

To calculate the next value, the algorithm uses three previously computed
values. These dependencies make the algorithm difficult to parallelise. The origi-
nal definition has a time and memory complexity of O(n2). A simple optimisation
is to reduce the space complexity to O(n) by only storing some columns of the
d-matrix. Examples of the d-matrix are given in Figure 2.
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Since its definition, many variations have been proposed to optimise the cal-
culation. They mostly rely on skipping parts of the calculations based on the
alphabet or data-dependent intermediate values [Mye86, Ukk85a]. It is impossi-
ble to port these optimisations to the FHE domain, as we do not know the value
of intermediate variables and can thus not do any data-dependent optimisations.

f r i d a y
0 1 2 3 4 5 6

m 1 1 2 3 4 5 6
o 2 2 2 3 4 5 6
n 3 3 3 3 4 5 6
d 4 4 4 4 3 4 5
a 5 5 5 5 4 3 4
y 6 6 6 6 5 4 3

x a b c
0 1 2 3 4

a 1 1 1 2 3
b 2 2 2 1 2
c 3 3 3 2 1
x 4 3 4 3 2

Fig. 2: d-matrix of the (Simple) Edit distances of d(‘monday’, ‘friday’) = 3
and d(‘abcx’, ‘xabc’) = 2

Myers An alternative approach to Wagner-Fischer was proposed by Myers [Mye99].
This approach targets modern CPUs by rewriting the algorithm in terms of bits
and optimising it for this lead. The main idea is to store the differential values
(or differences between adjacent horizontal and vertical cells) in the d-matrix
instead of absolute distances.

S I T

0 1 2 3

K 1 1 2 3

I 2 2 1 2

D 3 3 2 2

S I T

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

+1+1 +1+1 +1+1

00 +1+1 +1+1

00 -1-1 +1+1

00 -1-1 00

+1+1

+1+1

+1+1

00

+1+1

+1+1

00

-1-1

+1+1

00

-1-1

00

Fig. 3: Edit distance calculation of d(‘KID’, ‘SIT’) = 2 through the Wagner-
Fisher algorithm (left), where the absolute distances are calculated; and the
Myers algorithm (right), which calculates the relative distances.
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In simple edit distance, each neighbouring value in the d-matrix can differ by
at most one (see Eq. 1). The Myers algorithm takes advantage of this by only
representing the horizontal and vertical differences between neighbouring cells in
the d-matrix. This allows Boolean logic to compute the distance, making it pos-
sible to better utilise hardware parallelisation, particularly on CPUs. Note that
from these horizontal and vertical differences, it is straightforward to reconstruct
any value in the d-matrix by choosing a path from the start to the targeted cell
and summing the horizontal and vertical differences along this path.

The core of the algorithm is to store only the neighbour differences using
ternary values {−1, 0, 1}, both in the vertical and horizontal direction:

∆v[i, j] = D[i, j]−D[i− 1, j], (2)
∆h[i, j] = D[i, j]−D[i, j − 1]. (3)

We can use the following equations to directly calculate the ∆v and ∆h
values. When we examine a cell (i, j), we can define ∆vout and ∆hout as the
values ∆v[i, j] and ∆h[i, j]. These are the values we aim to compute in this
cell. The equations above can then be rephrased in terms of the equality eq
between the two relevant characters ai and bj , and the previous values of ∆v
and ∆h which we denote as ∆vin and ∆hin. An overview of the input and output
variables is given in Figure 4.

Fig. 4: Myers cell [Mye99]

We can transform Equation 2 to calculate the outputs ∆vout and ∆hout of a
single d-matrix cell, in function of the inputs eq, ∆vin, ∆hin:

∆vout = min

1,
∆vin + 1−∆hin,
1− eq −∆hin

 (4)

∆hout = min

1,
1 +∆hin −∆vin,
1− eq −∆vin

 . (5)

Building on this concept, it is possible to transform the entire Wagner-Fischer
algorithm to use only Boolean operations and additions. For instance, they define
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two Boolean values to represent the ternary nature of the delta elements. By
leveraging a w bit CPU architecture, the algorithm achieves a time complexity
of O(⌈m/w⌉n). However, the Myers algorithm does not necessarily translate well
to a TFHE environment, where operations can be performed on multi-bit values.
A detailed overview of the Myers algorithm is provided in [Mye99].

3 Encrypted Levenshtein

Edit distance calculation generally involves two phases: equality checking and
the main algorithm. The equality checking phase determines character equality
between the input strings. The main algorithm then uses these equalities to
compute the d-matrix (or differentials in the Myers approach) and determine
the edit distance. This section will focus on the main algorithm, while section 4
will focus on the equality checking phase.

3.1 Main algorithm

This section will develop a new edit distance algorithm suited for the encrypted
domain. Our algorithm improves the Myers approach detailed in section 2.3 in
the FHE case. As a reminder, the main idea of this approach is to calculate the
differential values between two nodes in the edit distance calculation, as given
in Figure 4.

The Myers approach is designed for CPU-optimised operations, such as Boo-
lean operations and additions, by using bitslicing. This makes operations very
efficient on CPU, but they do not necessarily translate to efficient operations in
the TFHE domain. Our approach focuses on optimising for FHE in two steps:

First, our approach uses small multivalue operands (typically in the range
{−1, 0, 1}) instead of binary values in Myers. For example, we represent the
trinary ∆hin and ∆vin operators in one operand instead of splitting into binary
positive and negative parts, as done by Myers. This limits the number of inputs
and outputs that need to be handled and is efficient due to the native multivalue
operations in TFHE.

Secondly, we rewrite the cell equations to allow the calculations in only one
bootstrap. This means that ∆vin, ∆hin, and eq are given as inputs to the PBS,
and ∆vout, ∆hout are extracted as the outputs. To achieve this, we have to
optimise the PBS to perform a lookup that is relevant for both the outputs
∆vout and ∆hout. We then show that we can still perform this lookup in 1 PBS
by carefully manipulating the PBS function.

Combining the PBS calculations Using the Myers approach, our algorithm
calculates two output values ∆vout and ∆hout for each cell, as explained in
Figure 4. The formulas to compute ∆vout, ∆hout are shown below:
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∆vout = min

1,
∆vin + 1−∆hin,
1− eq −∆hin

 (6)

∆hout = min

1,
1 +∆hin −∆vin,
1− eq −∆vin

 . (7)

The first optimisation is to rewrite the equations to have a similar non-linear
operation. We can rewrite both equations to:

∆vout = min(−eq, ∆vin, ∆hin) + (1−∆hin) (8)
∆hout = min(−eq, ∆vin, ∆hin) + (1−∆vin). (9)

In this form, we can focus on min(−eq, ∆vin, ∆hin) in the PBS, and perform
the (1 −∆hin) operations using linear computations without bootstrapping at
low cost. This optimisation reduces the calculation cost with approximately a
factor 2.

Extended lookups A standard approach to calculate the min function in Equa-
tion 9 would be to do two bivariate lookups, which would first combine two inputs
into the key (key = ∆vin + 4 · ∆hin), after which a PBS with relevant lookup
table is performed on this key to calculate the function min(∆vin, ∆hin). In the
second phase, a similar min function is performed between the result of the first
min function and eq. This approach requires two PBS lookups for each cell of
the Leuvenshtein calculation.

In this section we will reduce this further to one PBS per cell in the standard
Levensthein case, by combining the calculation of both min functions. In this
case, we have ∆vin, ∆hin ∈ [−1, 0, 1] and eq ∈ [0, 1]. By combining the inputs
to the min functions in a more dense way (e.g. ∆vin+3 ·∆hin+9 ·eq) one could
reduce the input size. However, even in the best case, this entails a 3×3×2 = 18-
entry lookup table for the min operation, while we only have a 16-entry lookup
table available.

It is important to note the negacyclic nature of the TFHE-PBS lookup. In
TFHE with a 4-bit message (and carry), one can construct any lookup table of
16 values (values 0 to 15). Lookups at values 16 to 31 will result in the negated
value of the corresponding value at position i − 16. This means that if we can
place a zero lookup at position 0, and the value at position 16 is also 0, we can
essentially extend the lookup table with one extra value. We can extend this as
long as the ith and (i+ 16)th values are both 0.

When we rewrite the formulas for ∆vout and ∆hout as:

∆vout = {1 + min(−eq, ∆vin, ∆hin)} −∆hin (10)
∆hout = {1 + min(−eq, ∆vin, ∆hin)} −∆vin. (11)
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The function between brackets returns mostly zeros during the programmable
bootstrap. We will denote this value with M , or Mij , denoting the M value
in the cell at location i, j. Combining this with the following key for the PBS
lookup:

(∆vin + 1) + 3 · (1 +∆hin) + 9 · eq (12)

results in a lookup table of 18 values, which starts and ends with two zeros. This
allows us to fit this lookup table into a 16-value TFHE lookup table, as detailed
in Table 2.

Table 2: LUT Table for function LUTmin : 1 + min(−eq, ∆vin, ∆hin), with x =
(∆vin+1)+3 · (1+∆hin)+9 ·eq in a 5-bit plaintext space. Note that the right
side is the negative of the left side (mod 16) due to the negacyclic nature of the
LUT.

x Output x Output x Output x Output

0 (0 0000) 0 8 (0 1000) 1 16 (1 0000) 0 24 (1 1000) 15
1 (0 0001) 0 9 (0 1001) 0 17 (1 0001) 0 25 (1 1001) 0
2 (0 0010) 0 10 (0 1010) 0 18 (1 0010) 0 26 (1 1010) 0
3 (0 0011) 0 11 (0 1011) 0 19 (1 0011) 0 27 (1 1011) 0
4 (0 0100) 1 12 (0 1100) 0 20 (1 0100) 15 28 (1 1100) 0
5 (0 0101) 1 13 (0 1101) 0 21 (1 0101) 15 29 (1 1101) 0
6 (0 0110) 0 14 (0 1110) 0 22 (1 0110) 0 30 (1 1110) 0
7 (0 0111) 1 15 (0 1111) 0 23 (1 0111) 15 31 (1 1111) 0

Limiting the noise growth In the previous discussion, we simplified the op-
erations in two cases: costly non-linear bootstraps and cheap linear operations
that do not require a bootstrap. In reality, there is a maximum number of linear
operations that can be performed before a bootstrap is needed. In our case the
calculation of the key can exceed this threshold when not taken into account.

We will denote the variance of the noise of one ciphertext with ϵ2PBS (i.e.,
the noise of a ciphertext at bootstrap time when it has not been combined with
another ciphertext). When adding k independent ciphertexts, the noise will be
equivalent to k · ϵ2PBS , while the multiplication of a ciphertext with k results
in a noise equivalent of k2 · ϵ2PBS . These come from standard equations for the
addition and multiplication of stochastic variables.

For the key calculation in Equation 12, one thus has a noise equivalent of:

ϵ2key = ϵ2∆vin + 9 · ϵ2∆hin
+ 81 · ϵ2eq9

. (13)

Note that for now, we assume independence between the variables, which we will
come back to later in this section.
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A first trick to reduce the error is to include the factor 9 at the eq term:
instead of calculating enc(eq) during the equality checking phase, we adapt the
bootstrap to calculate enc(9 · eq). Moreover, this gives us a small speedup since
a scalar multiplication is avoided. We will denote the value 9 ·eq with eq9. This
reduces the noise of the key to:

ϵ2key = ϵ2∆vin
+ 9 · ϵ2∆hin

+ ϵ2eq9
= ϵ2∆vin

+ 9 · ϵ2∆hin
+ ϵ2PBS . (14)

A second thing to notice is that ∆vin and ∆hin themselves are calculated
recursively. Denoting with ∆vi,j the ∆vout of cell (i, j) (and similarly for ∆hout)
and Mi,j = D[i, j]−D[i− 1, j − 1], we get the following formulas:

∆vin =∆vi,j−1

=Mi,j−1 −∆hi−1,j−1

=Mi,j−1 −Mi−1,j−1 +∆vi−1,j−2

=Mi,j−1 −Mi−1,j−1Mi−1,j−1Mi−1,j−1 +Mi−1,j−2 −Mi−2,j−2Mi−2,j−2Mi−2,j−2 + · · ·
∆hin =Mi−1,j −Mi−1,j−1Mi−1,j−1Mi−1,j−1 +Mi−2,j−1 −Mi−2,j−2Mi−2,j−2Mi−2,j−2 + · · ·

(15)

All M are calculated using different inputs, and thus, their respective noise
can be considered independent. However, the formulas of ∆vin and ∆hin have
the same negative M terms (in bold in the equation above), which increases the
noise in the key:

key = ∆vin + 3 ·∆hin + eq9 + Cte

= (Mi,j−1 − 4 ·Mi−1,j−1 + 3 ·Mi−1,j)+

(Mi−1,j−2 − 4 ·Mi−2,j−2 + 3 ·Mi−2,j−1)+

· · ·+
eq9 + Cte

(16)

or:

ϵ2key = NH · ϵ2PBS + 16 ·NM · ϵ2PBS + 9 ·NL · ϵ2PBS + ϵ2PBS (17)

with NH , NM and NL the number of respective M terms (i.e., NH is the number
of Mi,j−1-like terms, NM the number of 4 · Mi−1,j−1-like terms and NL the
number of 3 ·Mi−1,j-like terms).

The noise can be easily reduced by changing the equation of the key as:

(1−∆vin) + 3 · (1 +∆hin) + 9 · eq, (18)

where ∆vin has been negated. This changes the LUT of the bootstrap in Table 2,
but the general techniques developed are still valid. As the constant near the
Mi−1,j−1Mi−1,j−1Mi−1,j−1 term is now 2 instead of 4, we have an equivalent noise of:

ϵ2key = NH · ϵ2PBS + 4 ·NM · ϵ2PBS + 9 ·NL · ϵ2PBS + ϵ2PBS . (19)
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Fig. 5: The relative value of the noise in each cell of the calculations. The red
line indicates a refresh of the noise is needed using a bootstrap operation. This
is for a parameter set that can handle up to 25 additions.

We now have improved noise equations. To make sure our noise does not
surpass the threshold, we have to refresh the noise in the ∆vin and ∆vout terms
just before the noise threshold is exceeded. Figure 5 depicts the noise in the
ciphertexts, where the red line indicates where refreshing is needed. This example
is for a parameter set that allows a maximum of 25 additions of ciphertexts before
bootstrap is needed.

In practice, the standard parameter sets used in TFHE-rs can typically han-
dle more than 4 000 additions before a bootstrap is needed, according to our
calculations. As such, only in edit distance calculations with very large words
does one have to take these refreshes into account. We have experimentally ver-
ified this calculation by running the bootstrap on increasingly noisy ciphertexts
and testing when an error occurs.

3.2 Skipping irrelevant cells

When calculating the d-matrix (or equivalently, the horizontal and vertical dif-
ferences ∆h and ∆v), certain cells do not influence the final result and thus do
not need to be computed.

This can be understood as follows:

– Maximum Levenshtein Distance: The maximum possible value of the
Levenshtein distance is bounded. In the worst case, it is max(m,n), meaning
that every character in one string needs to be substituted to match the other
string.

– Shortest Path Analogy: Computing the Levenshtein distance is analogous
to finding the shortest path through the d-matrix, where the cost of each
move is defined by Equation 1. Horizontal and vertical steps always have a
cost of 1, while diagonal steps depend on the value of eq.
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– Path Cost Bounds: The minimal cost of traversing from the top-left to
the bottom-right corner of the d-matrix is m+ n (i.e., m vertical steps and
n horizontal steps). This value exceeds the maximum possible Levenshtein
distance, which implies that not all cells are relevant to the computation.

These observations reveal that many cells in the d-matrix are unnecessary
for determining the final distance. Without loss of generality, consider the case
where m = n. According to Ukkonen [Ukk85a], a cell that is k steps away from
the main diagonal has a minimum path cost of 2k (consisting of k horizontal and
k vertical steps). Thus, cells located more than ⌊k/2⌋ steps from the diagonal
can be excluded from computation without affecting the accuracy of the result.

In a more extreme situation, one can compute approximate Levenshtein dis-
tances, where the result is accurate up to a Levenshtein distance of ℓ, but for
larger Levenshtein distances, the output might be wrong (i.e., the output might
be larger than expected). In this case, one only has to compute cells that are
within ⌈ℓ/2⌉ of the diagonal. This is useful when you want to determine if two
strings are approximately equal. Concretely, when m = n, we do not need to
calculate all the m2 cells, but we can reduce this to

m+ 2 ·
ℓ∑

i=1

(m− i) = m · (2ℓ+ 1)− ℓ2 − ℓ. (20)

3.3 The resulting algorithm

Combining all of the above approaches leads to Algorithm 1 on the following
page. This algorithm has as inputs a matrix eq9 and parameter ℓ. Matrix eq9

will contain the equality information for each character pair. That is, element
[i, j] will contain a 9 if xi == yj and otherwise will contain 0. Parameter ℓ will
denote the approximation level. By assigning ℓ = ⌈max(m,n)/2⌉, the exact edit
distance will be calculated.

Table 3: Overview of the PBS load of the different algorithms for a single cell,
using ASCII encoding. The exact number of programmable bootstrap needed
for the WF and Myers algorithm is estimated here, as it depends on the exact
scenario. More information can be found in section 6

Algorithm Levenshtein Improvement factor

WF 28 1×
Myers 13 2.15×
Ours 1 28×

When the characters are encoded using ASCII, the WF and Myers algorithm
would need approximately 28 PBS and 13 PBS to calculate a cell. While the
size of the other algorithms depends on the character encoding and length of the
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Algorithm 1 Leuvenshtein

1: function Edit Distance(eq9, ℓ)
▷ Setup

2: h ← OneMatrix[0..m, 0..n]
3: v ← OneMatrix[0..m, 0..n]
4: LUTmin[key] ← Table 2

▷ Main Algorithm
5: for j ← 1 to n do
6: for i← 1 to m do
7: if |i− j| ≤ ℓ then
8: key ← (1− v[i, j − 1]) + 3 · (1 + h[i− 1, j]) + eq9[i, j]
9: min ← PBS(key, LUTmin)

10: v[i, j] ← min− h[i− 1, j]
11: h[i, j] ← min− v[i, j − 1]

12: return m+Σn
i=0h[m, i]

input strings, our algorithm is independent of these. The cost for our algorithm
will remain constant, requiring only one PBS.

4 Equality checking

In the previous section, we described an algorithm that only uses 1 PBS per cell
to calculate the Levenshtein distance. For each cell, one also has to calculate
the equality between the corresponding characters of the input strings. This
typically costs more than 1 PBS per cell, and thus the equality calculation is
the most expensive operation of the full Levenshtein algorithm in our case. In
this section, we improve the equality calculation in two ways: we introduce a
technique that allows doubling the number of plaintext bits in one PBS equality
operation, and then we propose a new technique to more efficiently look at larger
symbols, notably 7-bit ASCII symbols.

4.1 Doubling the equality PBS size

The standard approach to equality checking involves dividing the binary repre-
sentation of the input letters into chunks of 2-bit and then pairwise comparing
the corresponding bits. This method is also implemented in the software library
TFHE-rs [Zam22b]. For instance, when comparing a 2-bit x with a 2-bit y, one
computes the key x+4 · y and then performs a PBS that maps x == y to 1 and
all other values to 0. Using the standard parameter size (2-bit plaintext, 2-bit
carry), this method can only handle inputs of at most 2 bits.

We present a new method that can handle 4-bit symbols. To compare two
(4-bit) chunks x and y, we subtract both values, resulting in a variable with
a value between −15 and 15, and a value of 0 if and only if both chunks are
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the same. As before, this results in more values than the normal 16-value PBS
lookup. By choosing the following lookup table for the PBS:

LUTeq =

{
1 if (x− y) = 0

0 else,
(21)

we can have a 31-value lookup due to the negacyclic property of the lookup
and the abundance of 0 values. Note that in our Levenshtein calculation, we
sometimes want to calculate eq9, for which we adapt the LUT to:

LUTeq9
=

{
9 if (x− y) = 0

0 else.
(22)

Thus, our new method of equality checking can handle symbols of double
size. For typical large integers where the integer is divided into ciphertexts that
each contains 2-bit chunks, two 2-bit equality checks can be combined into one
by calculating x = 4 ·x(2)+x(1) (and similarly for y), thus halving the PBS cost.
This also means that an equality check for larger inputs can be done at half of
the PBS cost using our method.

4.2 Equality check for large-sized symbols

Larger characters are typically divided into smaller symbols of size t, usually 2
to 4 bits. A sub-equality operation is performed for each pair of chunks, after
which the results of these sub-equality operations are combined to produce the
final equality result.

The TFHE-rs library provides a two-step algorithm for calculating equality.
First, corresponding chunks are compared using the method x + (y ≪ 2), as
described earlier. This will produce a sub-equality that will compare 2-bit or
character data. The ciphertext will contain a one if the two parts are equal, a
zero in the other case.

In the second step, the sub-equality results are summed together, in a trian-
gular way, to find the overall equality. All of the sub-equalities are divided into
groups of maximally t−1 elements. All sub-equalities in a group are summed to-
gether and a PBS is applied to the sum to check if the sum reaches its maximum
possible value, i.e. t−1. The results are now again grouped into maximally t−1
elements, summed together and used in a PBS. This process is repeated until
a single ciphertext is obtained, representing the result of the equality check. If
all of the sub-equalities of step one consist of a one, the final equality result will
also depict a one. Algorithm 2 outlines this approach for characters of at most
30-bit.

For example, when comparing two ASCII characters (7-bit), each character
is encoded into four ciphertexts. After computing the sub-equalities, the four
outcomes are summed, and a PBS is used to verify if the total sum equals 4.

This method can be further improved using a hybrid approach of our custom
equality subcheck and the TFHE-rs combination phase. In this hybrid approach,
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characters are encoded into consecutive 4-bit chunks. In the first part, subcom-
ponents are computed using our subtraction method. In the second part, the
TFHE-rs aggregation step is used to combine the subcomponents efficiently.
This reduces the cost of calculation by roughly half.

Algorithm 2 TFHE-rs compare method for characters with maximum size of
30 bit.
Require: Two encoded characters x and y
Require: x, y are split into n encrypted symbols, n < 16, each symbol has t = 2p size

plaintext
▷ Equal Part

1: for i← 0 to n do
2: z0 ← x(i) + 4 · y(i)

3: eq(i) ← PBS(z0; LUTeq)

▷ Merging Part
4: Acc ← 0
5: for i← 0 to n do
6: Acc ← Acc + eq(i)

7: Acc ← PBS(Acc, LUTmax)
8: return Acc

4.3 Equality check for medium-sized symbols (e.g., ASCII)

While this combination method of TFHE-rs is efficient for large input symbols,
we propose a better method for medium-sized inputs. Specifically, our method
outperforms state-of-the-art for 5- to 16-bit inputs, specifically for ASCII inputs.
For this explanation, we will assume 7-bit input characters and a 4-bit combined
message and carry space.

The first step in our method is to decide on the representation of our char-
acters. We will encode our characters using a 4-bit and a 3-bit symbol, each
encrypted in one ciphertext. We will then perform the equality check between
the 4-bit symbols as explained in the previous section. The result is a single bit
eq denoting equality, which is combined with the 3-bit symbol in the following
way:

2 · (x(2)
i − y

(2)
i ) + (1− eq(1)). (23)

The result of this linear computation is 0 if and only if both the 4-bit symbols
and the 3-bit symbols are the same. Thus, we can perform the same PBS lookup
as before on this result to calculate the equality of the characters. The formal
representation is given in Algorithm 3.
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Algorithm 3 Our equality check for 7-bit characters, split into 4 and 3-bit
Require: Two ASCII encoded characters x and y
Require: x, y are split into 4-bit symbols (x(1), y(1)) and 3-bit symbols (x(2), y(2))
1: z0 ← x(1) − y(1) ▷ first 4 bits of the character
2: eq(1) ← PBS(z0; LUTeq)
3: z1 ← 2 · (x(2) − y(2)) + (1− eq(1)) ▷ last 3 bits of the character
4: eq ← PBS(z1; LUTeq)
5: return eq

The result is that we can perform an ASCII equality check with two PBS,
while other methods would need five lookups when using state-of-the-art 2-bit
equality techniques or three lookups when using our 4-bit equality technique.

4.4 Conclusion

To calculate the equality between two characters, there are three options: TFHE-
rs, our own, or the combined approach. All three approaches demonstrate differ-
ent PBS behaviour. Figure 6 denotes the PBS loads as a function of the input
size. From this analysis, we can see that our method is the best for characters of
up to 16-bit, which is ideal for an ASCII usecase. For larger characters, the com-
bined method performs better. Furthermore, our method reduces the memory
footprint of the encrypted character by up to a factor of two.
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Fig. 6: Comparison of the PBS count for the three equality calculation tech-
niques.
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5 Preprocessing

Even with reduced cost for the equality check as discussed in the previous section,
the equality checking is typically still more expensive than the main algorithm.
More specifically the main algorithm uses 1 PBS per cell, while the equality
calculation costs C PBS calculations per cell with C a constant depending on
the input characters. In this section we will show that in the specific case that
one of the strings is unencrypted, we can perform a preprocessing to speed up
the equality calculations, making their total cost linear in the input size (i.e.
C · |S| ·m, for m the size of the encrypted input).

The idea of this preprocessing is to precompute the output of the equality
for each possible character of the alphabet for the encrypted input (which has
cost |Σ| ·m), similar to a technique proposed by Myers [Mye99] to allow efficient
bitsliced implementations. During the equality check one then can perform a
simple lookup using the unencrypted input character to find the result of the
equality, which does not require any PBS.

More specifically, during the preprocessing phase, we check the equality of
each character in the encrypted string with every possible character in the al-
phabet. The results are then stored in an encrypted table and when the edit
distance is calculated, we can use the unencrypted data to obtain the encrypted
equality information.

For instance, if the word ’abbey’ is the encrypted string and only encodes
lowercase letters, we would store 5×26 elements, as shown in Table 4. Note that
it is also possible to store eq9 = enc(9) and can therefore be used directly in the
key calculation.

Table 4: Preprocessed storage of the word ‘abbey’ using only lowercase letters.
character 1 2 3 4 5

a enc(1) enc(0) enc(0) enc(0) enc(0)
b enc(0) enc(1) enc(1) enc(0) enc(0)
c enc(0) enc(0) enc(0) enc(0) enc(0)
d enc(0) enc(0) enc(0) enc(0) enc(0)
e enc(0) enc(0) enc(0) enc(1) enc(0)
... ... ... ... ... ...
y enc(0) enc(0) enc(0) enc(0) enc(1)
... ... ... ... ... ...

The preprocessing step has a cost of |Σ| · m, where m is the length of the
encrypted string and |Σ| is the size of the character set. This is specifically
useful in the case of matching DNA sequences, we would only need to store the
4 characters. Moreover, if during encryption we know we will only deal with
a specific subset of characters S ⊂ Σ, we can reduce the cost to S · m by
constructing a table only for the characters in S. As an example, this could



Title Suppressed Due to Excessive Length 21

be the case with names where characters like Y and Q might not occur in the
unencrypted query string.

A standard edit distance calculation requires m·n equality operations. There-
fore, if |Σ| < n (or S < n), this optimisation becomes advantageous. For ex-
ample, with full ASCII, the method becomes more efficient for n > 128. For
lowercase letters, it applies when n > 26, and for DNA sequences, it becomes
beneficial when n > 4.

This approach is particularly useful when matching a plaintext string against
a database. In the case where the database is unencrypted and the query is
encrypted, one needs to do the query only one time and the result can be used for
multiple lookups. If the database is encrypted and the query is not encrypted, one
can preprocessing each encrypted string in the database in an offline preparation
phase. This means that future plaintext equality checks can be done without the
need for additional PBS. Once a new plaintext string needs to be matched, one
only needs to perform a lookup in the table.

6 Results

In this section, we will compare our Leuvenshtein algorithm to the state-of-the-
art in FHE edit distance calculations. A challenge in analysing the efficiency of
our improvements is that there is only one implementation of the Levenshtein
distance available in TFHE, which is an implementation that is used as a demon-
strator for the concrete compiler [Zam22a]. To have more comparison points, we
implemented standard versions of the Wagner-Fischer and Myers algorithms us-
ing the TFHE-rs library. Both algorithms rely on standard 2-bit message and
2-bit carry ciphertexts as fundamental building blocks. In our experiments, we
used ASCII encoding to encrypt each character. The Wagner-Fischer and Myers
algorithms are implemented using the state-of-the-art equality check techniques
as available in the TFHE-rs library.

Our algorithm uses both our improved Levenshtein (algorithm 1) and our
improved equality check (algorithm 3). A complete overview of the algorithm is
given in Algorithm 4 on page 30. We discern four versions of our algorithm in
our experiments:

– Leuvenshtein Exact: Full calculation of all the cells in the edit distance
algorithm.

– Leuvenshtein Exact Skipping: Calculation of all the cells that are rele-
vant for the end result, but skipping irrelevant cells as discussed in subsec-
tion 3.2.

– Leuvenshtein Approx. ℓ = n/4ℓ = n/4ℓ = n/4: Calculation of the approximate edit dis-
tance that is accurate for distances lower than m/4 as discussed in subsec-
tion 3.2. To simplify the discussion we assume m = n for the approximate
results.

– Leuvenshtein Approx. ℓ = 10ℓ = 10ℓ = 10: Calculation of the approximate edit dis-
tance that is accurate for distances lower than 10 as discussed in subsec-
tion 3.2.
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6.1 Counting the bootstraps

In this section, we analyse the theoretical cost of the algorithms, focusing on
the number of bootstraps required. In this theoretical approach, we provide a
first-order approximation that accounts for the bootstraps needed for non-linear
operations in each cell, but we do not include sporadic bookkeeping bootstraps
required for noise reduction.

Table 5: Overview of the PBS load of the different algorithm to match an n-
element with an m-element string. The preprocessing and Levenshtein column
denote the operations per cell, the last column is a first-order approximation of
the total cost over all cells.

Algorithm Preprocessing Levenshtein Total

WF 5 28 33 ·mn
Myers 5 13 18 ·mn

Leuvenshtein Exact 2 1 3 ·mn
Leuvenshtein Exact Skipping 2 1 ≈ 2.25 ·mn

Leuvenshtein Approx. ℓ = m/4 2 1 ≈ 6 · ℓ · n
Leuvenshtein Approx. ℓ = 10 2 1 ≈ 60 · n

From Table 5 one can see that our algorithm significantly reduces the num-
ber of required bootstraps to compute a cell in the encrypted domain. Firstly,
we need only 2.5× fewer PBS for equality calculations. Secondly, we achieve a
reduction of 28× and 13× less PBS compared to the Wagner-Fischer and Myers
algorithms, respectively. Overall, for the full distance calculation, our best exact
method demonstrates a 15× reduction in the number of PBS required over the
Wagner-Fischer algorithm and an 8× improvement over the Myers algorithm.

6.2 Implementation results

We implemented the Wagner-Fischer, Myers, and our custom algorithm using
Rust v1.80.0 and TFHE-rs v0.7.2 [Zam22b] on an Ubuntu 22.04 system. All
experiments were conducted on a dual AMD EPYC 9174F 16-Core Processor
(for a total of 64 threads). The parameter set used for the Wagner-Fischer and
Myers implementations are 2-bit message and 2-bit ciphertext, which is the most
standard choice. For the Leuvenshtein implementation, we opted not to use the
carry space, instead employing 4-bit message 0-bit carry parameter set. This
implementation choice makes the implementation easier, but has little effect
on the performance. All timing results represent the full calculation of the edit
distance, including both preprocessing and the main algorithm. Each experiment
was conducted using the sequential implementation of the shortint API. We will
discuss parallelisation options for these algorithms in next section.
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Table 6: Latency results in seconds of the calculation of the edit distance in the
encrypted domain.

m = 8 m = 100 m = 256

Seq. Seq. Seq.

[CKL15]a 27.54
[Zam22a] 241.10 1× 12h 36m 1× 6d 21hb 1×
WF 77.59 3.1× 3h 24m 3.7× 22h 19m 7×
Myers 17.81 14× 38m 12s 20× 4h 7m 40×

Lvs Exact 2.83 85× 7m 19s 103× 48m 23s 205×
Lvs Exact Skip 2.28 106× 5m 35s 135× 35m 41s 278×

Lvs Apx. ℓ = m
4

1.50 161× 3m 19s 228× 20m 52s 475×
Lvs Apx. ℓ = 10 1m 26s 527× 3m 50s 2588×

a Using the DGHV scheme, an 80-bit security level and other hardware.
b Extrapolated based on 24300 cell calculations.

The results in this table demonstrate that our Leuvenshtein algorithm signif-
icantly outperforms state-of-the-art TFHE algorithms. Specifically, we achieve
up to 278× speedup over the best available algorithm, and 39× speedup over
our Wagner-Fisher implementation. Note that this latter speedup is higher than
the expected 28× speedup from the theoretical analysis, which is mostly due
to the fact that there are more bookkeeping operations in the Wagner-Fisher
implementation needed. While we have included the numbers for edit distance
for second generation FHE, these results are run with different hardware and
lower security settings, and are therefore not suitable for a fair comparison.

Additionally, skipping irrelevant cells as discussed in subsection 3.2 is an
efficient way to optimise the algorithm by 25% for exact calculations, and lim-
iting the accuracy for large edit distances can give another significant efficiency
improvement. These results clearly show that our algorithm consistently outper-
forms existing approaches across all scenarios.

Parallelism: Previous results were achieved using the sequential TFHE-rs
parameter set. Greater efficiency can be attained by developing parallel imple-
mentations. While a comprehensive investigation into parallelisation is left for
future work, we will provide some preliminary insights and suggestions here.

In general one can think of three levels at which to parallelise:

– Parallelisation over operations: Some operations require multiple PBS op-
erations that can be performed in parallel. This is the case for for example
additions or a min function over larger integers (as used in Wagner-Fisher)
or Boolean operations on multiple inputs at the same time (as used in My-
ers). TFHE-rs has a parallel implementation available for these operations.
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This strategy can not be used for our method, as we only have 1 PBS per
cell of the alogrithm.

– Parallelisation over cells: The edit distance algorithm allows for parallelisa-
tion across multiple cells that are independent of one another. Specifically,
cells equidistant from the first cell can be computed simultaneously. This
approach enables efficient parallel computation for the majority of the cells,
with only the first and last cells experiencing limited parallelisation. For large
string sizes, this strategy achieves near-complete parallelisation, significantly
enhancing execution efficiency. The implementation of this parallelisation
method is deferred to future work.

– Batch inputs matching : In case of multiple edit distance calculations that
need to be performed at the same time, one can easily parallelise the cal-
culation by performing all lookups in parallel. This is especially relevant
to parallellise the workload for database lookup scenarios. Table 7 shows a
comparison of the algorithms under parallel computations.

Table 7: Latency in seconds of parallelised implementation using 64 threads
each calculating one Levenshtein distance. The first results of WF and Myers
in the table only use the parallel TFHE-rs API, the following results use both
the parallel API and batched inputs. Relative speedups compare with sequential
results from Table 6.

m = 8 m = 100 m = 256

Lat. Lat. Lat.

WF (TFHE-rs parallel ops.) 32.28 2.4× 1h 29m 2.4× 9h 8m 2.4×
Myers (TFHE-rs parallel ops.) 12.00 1.5× 15m 28s 2.5× 1h 41m 2.4×

WF (batch inputs) 2.60 29.8× 6m 30s 31.4× 42m 52s 31.2×
Myers (batch inputs) 0.91 19.5× 2m 45s 13.9× 18m 30s 13.4×

Lvs Exact 0.15 18.9× 14.7 29.9× 1m 35 30.5×
Lvs Exact Skip 0.14 16.3× 11.3 29.6× 1m 12 29.7×
Lvs Exact ℓ = m

4
0.11 13.6× 6.88 28.9× 43.7 28.6×

Lvs Exact ℓ = 10 - - 3.39 25.4× 10.4 22.1×

Execution using the TFHE-rs parallel API shows only a modest impact on
execution time (approximately 2.4×), highlighting the need to explore alterna-
tive sources of parallelism. In contrast, our batched inputs significantly accelerate
computation, achieving near-optimal speedup of 32×, which aligns with full core
utilisation of our CPU. This demonstrates that batching is an effective strategy
for maximising parallelism and fully utilising server resources. However, for sin-
gle lookups, alternative parallelisation approaches, such as parallelisation over
cells, will need to be explored.

In certain cases, such as the Myers approach, the optimal 32× speed-up is
not fully realized. This is due to memory management factors, including cache
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saturation and reliance on RAM, which could be addressed with careful memory
handling.

Preprocessing: In section 5 we discussed preprocessing when one of the strings
is not encrypted. Table 4 compares execution of the algorithm with and without
preprocessing, based on the scenarios outlined above. All of the calculations are
done using our Leuvenshtein algorithm.

Table 8: Latency results for the case of one unencrypted string, both the latency
of the building up the preprocessing table and main algorithm are given. All
results in seconds. The relative speedup is given for the main calculation.

n = 8 n = 100 n = 256

pre main pre main pre main

Lvs Exact - No Prep. - 2.83 1× - 439 1× - 2903 1×
Lvs Exact 29.6 0.93 3× 369 146 3× 942 950 3×

Lvs Exact Skip - No Prep. - 2.28 1× - 335 1× - 2141 1×
Lvs Exact Skip 29.5 0.75 3× 367 110 3× 946 717 3×

Lvs Exact ℓ = m
4

- No Prep. - 1.5 1× - 199 1× - 1252 1×
Lvs Exact ℓ = m

4
29.6 0.49 3× 368 65 3× 946 420 3×

Lvs Exact ℓ = 10 - No Prep. - - 86 1× - 230 1×
Lvs Exact ℓ = 10 370 29 3× 941 77 3×

From this table we can see that preprocessing reduces the computation with
a factor 3×, as can be expected from the fact that character equality costs 2
PBS per cell while the Levenshtein calculation costs 1 PBS per cell. Note that
the preprocessing numbers can be improved more if some ASCII characters are
not used.

In general, one can discern three scenarios where preprocessing is useful:

– Single Lookup: In this scenario, a speedup is achievable when the alphabet
size is smaller than the string length (i.e., |Σ| < n), as discussed in section 5.
From the table, one can observe this effect for n = 256, where the total cost
of preprocessing plus the main algorithm is lower than the cost without
preprocessing.

– Encrypted query against a large unencrypted database: In this scenario, pre-
processing needs to be performed only once. After that, only the main algo-
rithm is executed. For large datasets, this approach clearly demonstrates a
speedup approaching a factor of 3×.

– Unencrypted query against an encrypted database: Here, the database can
undergo a one-time preprocessing step, either in plaintext or in the encrypted
domain. Following this, only the main computation cost is incurred, resulting
in a similar speedup of 3×.



26 Legiest et al.

7 Conclusion

This paper introduces a novel method for efficiently computing the edit distance
on encrypted data within the TFHE framework. Our first contribution demon-
strates how to streamline edit distance calculations by employing a compact
ternary representation, reusing programmable bootstrapping (PBS) results, and
computing a three-input minimum function in a single lookup. The resulting
Leuvenshtein algorithm achieves a 28× reduction in the number of PBS opera-
tions compared to traditional approaches.

Our second contribution enhances equality checks, particularly for medium-
sized inputs. For ASCII encoding, we reduced the lookup cost from 5 PBS op-
erations in the state-of-the-art to just 2 PBS operations.

Finally, we introduced a preprocessing stage that precalculates equality checks
when one of the inputs is unencrypted, enabling an additional speedup. For
ASCII inputs, this approach achieves up to a 3× improvement.

Our implementation results demonstrate that the Leuvenshtein algorithm
delivers speedups of up to 278× over the best available implementation, under-
scoring its efficiency. These optimisations significantly advance the practicality
of encrypted edit distance computations, reducing computational overhead and
enhancing scalability for real-world applications.
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8 Our complete algorithm

Algorithm 4 Complete ASCII-based Encrypted Levenshtein

1: function Edit Distance(x1..m, y1..n, ℓ)
▷ Setup

2: h ← OneMatrix[0..m, 0..n]
3: v ← OneMatrix[0..m, 0..n]
4: LUT-eq9 ← [9, 0, 0, . . . ]
5: LUT-eq ← [1, 0, 0, . . . ]
6: LUT-min[key] ← Table 2
7: for i← 1 to m do
8: v[i, 0] ← 1

9: for j ← 1 to n do
10: h[0, j] ← 1

▷ Main Algorithm
11: for j ← 1 to n do
12: for i← 1 to m do
13: if |i− j| < ℓ then
14: z1 ← x

(1)
i − y

(1)
j

15: eq1 ← PBS(z1; LUT-eq)
16: eq1 ← 1− eq1

17: z2 ← x
(2)
i − y

(2)
j

18: z2 ← 2 · z2 + eq1

19: eq9 ← PBS(z2; LUT-eq9)
20: Hin ← h[i− 1, j] + 1
21: Vin ← v[i, j − 1] + 1
22: key ← (1− v[i, j − 1]) + 3 · (1 + h[i− 1, j]) + eq9[i, j]
23: min ← PBS(key, LUT-min)
24: v[i, j] ← min− h[i− 1, j]
25: h[i, j] ← min− v[i, j − 1]

26: return m+Σn
i=0h[m, i]
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