
Efficient CPA Attack on Hardware Implementation
of ML-DSA in Post-Quantum Root of Trust

Merve Karabulut
College of Engineering & Computer Science

Florida Atlantic University
mkarabulut2024@fau.edu

Reza Azarderakhsh
College of Engineering & Computer Science

Florida Atlantic University
razarderakhsh@fau.edu

Abstract—Side-channel attacks (SCA) pose a significant threat
to cryptographic implementations, including those designed to
withstand the computational power of quantum computers. This
paper introduces the first side-channel attack on an industry-
grade post-quantum cryptography implementation. Specifically,
we present a Correlation Power Analysis (CPA) attack targeting
the open-source hardware implementation of ML-DSA within a
Silicon Root of Trust framework developed through a multi-party
collaboration involving leading technology companies.

Our attack focuses on the modular reduction process that fol-
lows the Number Theoretic Transform-based polynomial point-
wise multiplication. By exploiting side-channel leakage from a
distinctive unique reduction algorithm and leveraging the zeroiza-
tion mechanism used to securely erase sensitive information by
clearing internal registers, we significantly enhance the attack’s
efficacy. Our findings reveal that an adversary can extract the
secret keys using only 10,000 power traces. With access to these
keys, an attacker could forge signatures for certificate generation,
thereby compromising the integrity of the root of trust. This
work highlights the vulnerabilities of industry-standard root-of-
trust systems to side-channel attacks. It underscores the urgent
need for robust countermeasures to secure commercially deployed
systems against such threats.

Index Terms—Side-channel Attacks, ML-DSA, Quantum-
Resistant Cryptography, Correlation Power Analysis, Zeroiza-
tion, Modular Reduction, Root-of-Trust.

I. INTRODUCTION

Quantum computing presents a significant challenge to
current classical cryptosystems based on the computational
difficulty of problems like integer factorization [1] and discrete
logarithms [2], [3]. Shor’s algorithm demonstrates that these
problems are vulnerable to quantum computers, which can
tackle their complexity in polynomial time [4]. To address
this threat, the National Institute of Standards and Technology
(NIST) initiated the post-quantum cryptography (PQC) stan-
dardization process [5], evaluating multiple candidates for dig-
ital signatures and key encapsulation algorithms. CRYSTALS-
Dilithium, Falcon, and SPHINCS+ were selected as standards
for digital signatures, with CRYSTALS-Dilithium standing
out for its robustness and adaptability. NIST has officially
renamed CRYSTALS-Dilithium as the Modular Lattice Digital
Signature Algorithm (ML-DSA), a term used consistently
throughout this paper [6].

ML-DSA is a lattice-based digital signature scheme derived
from the Fiat-Shamir paradigm [6], with security rooted in

the computational difficulty of finding short vectors in lat-
tices. It combines strong security guarantees with operational
efficiency [7]. However, like many cryptographic schemes,
its implementations might be vulnerable to side-channel at-
tacks [8]–[26], which exploit information leakage through
power consumption, electromagnetic emissions, and other ob-
servable channels. Addressing these vulnerabilities is critical,
as side-channel resilience is essential for secure use in real-
world applications.

Given the critical nature of cryptographic operations, prior
research focuses extensively on analyzing and exploiting side-
channel vulnerabilities [8]–[22] to understand their implica-
tions and propose mitigations [27]–[31]. Most of these studies
target software implementations [8]–[20], as they are more
accessible for evaluation and frequently employed in early-
stage algorithm testing. While post-quantum cryptography can
be implemented in software, the computationally intensive
structure of the ML-DSA algorithm makes hardware imple-
mentations the preferred choice for security-critical applica-
tions such as Root of Trust (RoT) [32]. Prior research on
software implementations often focuses on reference designs
that are unrepresentative of deployed systems.

This leaves a critical gap in pinpointing the vulnerabilities of
hardware implementations, particularly within widely adopted
cryptographic frameworks. In contrast to extensive research
on software implementations, studies targeting hardware side-
channel attacks remain comparatively limited [21], [22]. Ex-
isting works, such as those by Steffen et al. [21] and Wang et
al. [22], focus primarily on standalone operations in ML-DSA
or CRYSTALS-Dilithium hardware implementation, which
are not aligned with NIST’s Federal Information Processing
Standards (FIPS) 204 standardization [6]. Notably, none of
these works target post-quantum cryptographic implementa-
tions used in industry-level applications.

This work addresses a critical gap by targeting a crypto-
graphic Intellectual Property (IP) [34], an implementation of
ML-DSA, within a Silicon Root of Trust framework [32].
This collaborative framework, developed by leading tech-
nology companies, is designed to enhance trust in modern
System-on-Chip (SoC) platforms. It is important to note
that the implementation analyzed in this work represents
an early, work-in-progress version, which continues to
undergo updates and has not yet been finalized. We present

TABLE I: Comparison of Hardware Side-Channel Attacks
on CRYSTALS-Dilithium and ML-DSA

Work Type Implementation Target Op. Traces
(×103)

Success
Rate

Real-World
App.

[21] P Dilithium [33] NTT 350 94.2% ✗

[21] P Dilithium [33] Decoding 50 93.2% ✗

[21] NP Dilithium [33] Pointwise
Mult.

66 – ✗

[22] NP Dilithium [33] Pointwise
Mult.

70 – ✗

This
work

NP ML-DSA [34] Pointwise
Mult.

10 99.99% ✓

P = Profiling, NP = Non-Profiling, Target Op. = Target Operation, Real-World App.
= Real-World Application

the first side-channel attack on a post-quantum cryptography
implementation used in an industry-standard setting. Our ap-
proach achieves a 99.99% success rate using only 10,000
power traces, significantly outperforming prior works. Table I
highlights these advancements, comparing our results with
previous hardware attacks on CRYSTALS-Dilithium and ML-
DSA. For example, Steffen et al. achieved a 94.2% success
rate in profiling attack on Number Theoretic Transform (NTT)
operation using 350,000 traces and a 93.2% success rate in
decoding with 50,000 traces. Similarly, Wang et al. conducted
a CPA attack that required 70,000 traces.

Our non-profiling approach specifically targets the ML-DSA
signing process, eliminating the need for identical devices
or pre-generated templates. This attack effectively exposes
vulnerabilities in the implementation of unprotected ML-DSA
hardware, emphasizing the critical need for robust counter-
measures in post-quantum cryptography implementations. The
contributions of this paper are summarized as follows:

• We present the first side-channel attack targeting the hard-
ware implementation of ML-DSA [34], an open-source
design intended for adoption in hardware platforms by
major technology companies such as the leading technol-
ogy companies. Our findings reveal a critical vulnerability
in a widely used hardware design.

• We target the NTT-based pointwise multiplication op-
eration, identifying and exploiting previously unknown
vulnerabilities. These vulnerabilities allow us to recover
partial secret key coefficients, which are integral to the
certificate generation process within the Silicon RoT.

• We analyze and identify a vulnerability in the reduction
algorithm implemented in the studied hardware [34],
designed specifically for the modulus q = 8380417 =
223−213+1. Unlike commonly used reduction techniques
such as Barrett [35] or Montgomery [36] algorithms,
this implementation leverages a particular structure of the
modulus to optimize performance, inadvertently introduc-
ing exploitable side-channel leakage.

• We demonstrate the efficiency of our side-channel attack
by successfully recovering partial secret key coefficients
with a 99.99% success rate using only 10,000 power
traces. This significantly improves on existing attacks,
which need far more traces for comparable or lower
success rates.

Cryptographic Subsystem

SHA256
SHA512 AES HMAC ECDSA

 Crypto
Key
Vault

ML-DSA

RISC-V Core

Interface
&

Interconnect Subsystem

ROM

AHB - Slave

AHB - Master (LSU)

AHB - Slave

AHB - Master (IFU)

ROMROMROM

Fig. 1: High level of the RoT, which employs classical and
PQC digital signatures for authentication [32].

II. BACKGROUND

This section provides an overview of open-source imple-
mentation of ML-DSA [34] within the silicon RoT internal
block [32], focusing on its parameter settings and operations
involving the secret key, which are of interest to adversaries.
Additionally, it introduces the adversarial capabilities and
outlines the general CPA methods used to recover the secret
key.

A. Notations

Let n and q be two integers, where n = 256 and q =
8380417. We define Rq as the polynomial ring Z[x]/(xn+1).
The infinity norm ∥x∥∞ denotes the maximum absolute value
among all coefficients of a polynomial x.

Matrices are represented by bold capital letters, such as A ∈
Rk×ℓ

q . Vectors are represented by bold lowercase letters, such
as y. For polynomial vector s1 ∈ Rℓ

q , it is pseudorandomly
sampled from the set of ℓ-dimensional polynomial vectors,
where each coordinate polynomial has short coefficients within
the range [−η, η]. Polynomials in the NTT domain [7] are
denoted with a hat (e.g., ĉ, where ĉ = NTT(c)). This notation
is transitive, so ŝ represents each polynomial in s being
individually transformed into the NTT domain. The symbol
”◦” denotes pointwise multiplication, and ”⊥” indicates an
invalid or undefined value. The set Bτ represents all possible
challenge polynomials with exactly τ coefficients of ±1, and
the rest 0. Lastly, H represents the SHAKE algorithm, as
defined in [6]. This cryptographic hash function is used for
key derivation and signature binding operations throughout the
ML-DSA signature scheme.

B. Root of Trust

This hardware security module provides essential RoT ca-
pabilities designed for integration into SoC systems used in
cloud platforms [32]. Figure 1 illustrates RoT block’s high-
level architecture, which consists of a RISC-V core, ROM,
cryptographic subsystem, and an interface & interconnect
subsystem, all interconnected via the AHB (Advanced High-
Performance Bus) protocol. These components collaboratively
enable secure device identity and hierarchical key derivation.
This architecture ensures robust protection against firmware
compromise while facilitating secure initialization and reliable
communication within the SoC system.

TABLE II: Parameter sets of ML-DSA [6]

Security Level ML-DSA-44 ML-DSA-65 ML-DSA-87

Parameter Values

q 8380417 8380417 8380417
d 13 13 13
τ 39 49 60
λ 128 192 256
γ1 217 219 219

γ2
q−1
88

q−1
32

q−1
32

(k, ℓ) (4,4) (6,5) (8,7)
η 2 4 2
β = τ · η 78 196 120
ω 80 55 75

The ROM provides immutable storage for the RoT code,
serving as the foundation for secure initialization and at-
testation. It is directly linked to the RISC-V core, which
features two AHB master interfaces: the Instruction Fetch
Unit (IFU) for fetching instructions and the Load/Store Unit
(LSU) for data transfers. These interfaces interact with the
cryptographic subsystem and the interface and interconnect
subsystem via AHB slave connections. The cryptographic
subsystem supports hashing (SHA-256/SHA-512), encryption
(AES), keyed-hash authentication (HMAC), elliptic curve sig-
natures (ECDSA), and a classical cryptographic key vault [32].

In addition to classical cryptography, the subsystem inte-
grates ML-DSA, a post-quantum digital signature scheme, to
provide quantum resistance. The hardware security module
uses ML-DSA-87 in combination with ECC Secp384r1 to
implement a dual-signature scheme for verifying firmware
integrity, ensuring a security level of approximately 192 bits
for ECDSA [37] and level 5 for ML-DSA. By securing
services such as secure boot, firmware verification, and key
management, ML-DSA is critical in maintaining the integrity
of runtime (RT) code and RoT for Measurement (RTM) [32].

However, our results demonstrate that open-source ML-
DSA implementation introduces vulnerabilities that are ex-
ploitable via side-channel attacks. Specifically, we show that
an adversary can extract the ML-DSA secret keys used to
establish SoC attestation. With these keys, an attacker could
forge signatures, compromise firmware integrity, and ulti-
mately undermine the RoT. This attack highlights the critical
need for robust countermeasures to secure post-quantum cryp-
tographic implementations within hardware security modules
and similar platforms.

C. Configuring ML-DSA

To better understand the significance and vulnerabilities of
open-source ML-DSA implementation in this framework, it is
essential to examine ML-DSA’s algorithm steps and security
properties. ML-DSA is a lattice-based digital signature scheme
secure against quantum computers [6]. Its security is based on
the hardness of the Module Learning With Errors (Module-
LWE) and Module Short Integer Solution (Module-MSIS)
problems [38]. It has been selected by the NIST as the primary
algorithm for quantum-secure digital signatures due to its
efficiency, robust security properties, and scalability.

Algorithm 1 Key Generation [6]
Input: Seed ξ
Output: Public key pk and private key sk

1: (ρ, ρ′,K)← H(ξ)
2: A ∈ Rk×ℓ

q ← ExpandA(ρ)
3: (s1 ∈ Rℓ

q, s2 ∈ Rk
q)← ExpandS(ρ′) ▷ Generate secrets.

4: t← As1 + s2
5: (t1, t0)← Power2Round(t, d)
6: pk ← pkEncode(ρ, t1)
7: tr ← H(pk)
8: sk ← skEncode(ρ,K, tr, s1, s2, t0) ▷ Encode the private key.
9: return (pk, sk)

Algorithm 2 Signature Generation [6]
Input: Secret key sk, message M
Output: Signature σ

1: (ρ,K, tr, s1, s2, t0)← skDecode(sk)
2: A ∈ Rk×ℓ

q ← ExpandA(ρ)
3: µ← H(tr∥M)
4: ρ′′ ← H(K∥µ)
5: κ← 0, (z,h)←⊥
6: while (z,h) =⊥ do ▷ Rejection sampling loop
7: y← ExpandMask(ρ′′, κ)
8: w← Ay
9: w1 ← HighBits(w)

10: c̃← H(µ∥w1)
11: c ∈ Bτ ← SampleInBall(c̃)
12: z← y + cs1 ▷ Target operation: pointwise multiplication
13: r0 ← LowBits(w − cs2)
14: if ∥z∥∞ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β then
15: (z,h)←⊥
16: else
17: h← MakeHint(−ct0,w − cs2 + ct0)
18: if ∥ct0∥∞ ≥ γ2 or # of 1’s in h > ω then
19: (z,h)←⊥
20: end if
21: end if
22: κ← κ+ ℓ
23: end while
24: return σ = (c̃, z,h)

The parameters in Table II define the scheme for three
security levels, with ML-DSA-87 offering the highest security
level. Across all levels, the modulus q = 8380417 and the base
ring Rq = Zq[x]/(x

256+1) remain constant, while parameters
such as (k, ℓ), τ , and η vary to balance efficiency and security.
At higher levels, larger τ and (k, ℓ) values are used to enhance
robustness, while η determines the coefficient range of secret
polynomials. Derived parameters like β and ω further influ-
ence performance and compliance with constraints. The target
design [34] is implemented with the ML-DSA-87 parameters:
(k, ℓ) = (8, 7), τ = 60, and η = 2. These settings provide
the strongest cryptographic guarantees within the ML-DSA
scheme, ensuring maximum security.

The ML-DSA scheme includes key generation, signature
generation, and signature verification. This paper focuses on
the key generation and signature generation, as these processes
work with secret variables that may be vulnerable to side-
channel attacks. In contrast, the signature verification function
does not operate with secret keys and, therefore, is not relevant

y

μ 𝜌

A

y

wtr

M

ExpandMask

ExpandA

HighBits

𝜌

HH

SampleInBallH
w1

K

t0

s2

s1

Rejection

MakeHint

μ z

r0c̃

w

h

c

 κ

Fig. 2: Illustration of the ML-DSA signing process, highlighting the multiplication of c and s1 in red, which is the primary
target for side-channel analysis.

to this attack. Consequently, this paper does not discuss the
signature verification process.

The key generation procedure, as defined in [6] and detailed
in Algorithm 1, begins with a seed ξ that generates all
cryptographic parameters. Using a hash function H , ξ is
expanded into ρ, ρ′, and K. ρ deterministically generates the
public matrix A ∈ Rk×ℓ

q via ExpandA, while ρ′ derives
the secret polynomials s1 ∈ Rℓ

q and s2 ∈ Rk
q . The public

vector t = As1 + s2, representing a Module-LWE instance,
is split by Power2Round into high-order bits t1 (included
in the public key) and low-order bits t0 (stored in the secret
key). The public key is pk = (ρ, t1), while the private key is
sk = (ρ,K, tr, s1, s2, t0), providing all components required
for signing. This process outputs a compact public key for
efficient transmission and storage and a detailed private key
for signing operations.

The signature generation procedure, as outlined in Algo-
rithm 2 and illustrated in Figure 2, begins with reconstructing
the public matrix A ∈ Rk×ℓ

q using the ExpandA function and
the seed ρ. Also, the secret key sk is decoded to retrieve its
components: ρ, K, tr, s1, s2, and t0. To bind the signature
to the message, the concatenation of tr and the message M is
hashed using H to produce µ. Another hash operation involv-
ing K and µ generates ρ′′, which seeds the pseudorandom
masking polynomial y via the ExpandMask function. The
intermediate vector w = Ay is then computed, followed by
extracting its high-order bits w1 using the HighBits func-
tion. The challenge polynomial c is generated by hashing µ and
w1, and it is subsequently sampled with fixed size Bτ using
SampleInBall. The core operation of the signing process
is the computation of the response polynomial z = y + cs1,
where cs1 represents the pointwise modular multiplication.
The polynomial c and the secret polynomial s1 are central
to this operation, which is highlighted as the primary target in
the proposed attack. This operation is crucial for linking the
signature to the secret key, and its details is further discussed
in Section III. The modular reduction applied during this step
ensures that all coefficients remain within the defined modulus
q. The low-order bits of w − cs2 are extracted as r0, which
are subjected to rejection sampling to ensure z and r0 meet
security constraints. If the constraints are not satisfied, the
process resets (z,h) and derives a new y. After satisfying

the constraints, the hint polynomial h is generated, which
compresses low-order bits to enhance verification efficiency.
The final signature, σ = (c̃, z,h), binds the message M to the
private key components, completing the signing process.

The ML-DSA scheme offers two signing variants: deter-
ministic and hedged. The key distinction lies in the use of
randomness during the generation of the commitment value
y. In the hedged variant, fresh randomness is introduced via
a Random Bit Generator (RBG) to mitigate side-channel and
fault attacks that exploit predictable patterns [6].

Incorporating randomness during the generation of y would
randomize the challenge polynomial c, disrupting the patterns
exploited by side-channel analysis. This would significantly
reduce the effectiveness of the proposed attack by obscuring
the predictable relationship between power consumption and
the processed data. However, the studied implementation [34]
is configured to work with ML-DSA deterministic variant.
Thus, this implementation creates an exploitable vulnerability.

The deterministic signing approach, adopted in the studied
ML-DSA implementation [34], is designed to create stable and
predictable cryptographic outputs tied to the device’s identity.
This approach ensures reproducibility and avoids generating
different signatures for the same device under identical condi-
tions, simplifying device identity management and certificate
creation [39]. However, while this behavior supports specific
design objectives, it inadvertently introduces vulnerabilities.
Specifically, deterministic signing lacks the fresh randomness
required to protect against side-channel attacks [6].

D. Threat Model

This work adheres to the standard assumptions in non-
profiled power side-channel attacks, where the adversary has
physical access to the device and captures power measure-
ments during the execution of the signing operation. The ad-
versary provides input messages and obtains the corresponding
signatures, which are known and non-secret information.

In this context, the adversary targets the Root of Trust
(RoT) during the certificate generation process. The adversary
can provide different firmware payloads as input messages to
the signing process, leveraging the system’s functionality to
generate corresponding certificates. Since the input firmware
is known and updatable, the adversary can carefully control
the inputs while capturing power traces during the certificate

generation operation. Using these power traces, the adversary
exploits side-channel leakage to extract critical secrets, such as
private keys, used in the signing process. This aligns with the
standard non-profiled power side-channel attack assumptions.

For the proposed differential side-channel attack, we employ
the Pearson correlation coefficient as a distinguisher [40].
Unlike profiling attacks, the adversary does not rely on pre-
built templates. Instead, a classical CPA approach is executed
to recover the secret key. The CPA process is carried out in
the following four steps:

• Collect n power traces during the signing operation, each
consisting of m-length power samples. Store these traces
in an n×m matrix T .

• Generate an n × k intermediate value matrix V corre-
sponding to all possible key guesses. The intermediate
values are calculated based on the controlled input values
and the key candidates from the overall key space.

• Use the power model to map the intermediate value
matrix V to an n×k Hamming Distance matrix H , where
each element Hi,j represents the Hamming Distance
corresponding to Vi,j .

• Compute the correlation coefficients between the Ham-
ming Distance matrix H and the actual power consump-
tion matrix T . Store these coefficients in a correlation
matrix Rk×m. The Pearson correlation coefficient is
calculated as:

Ri,j =

∑n
x=1(Hx,i −Hi)(Tx,j − T j)√∑n

x=1(Hx,i −Hi)2 ·
∑n

x=1(Tx,j − T j)2
.

(1)
Following these steps, the adversary identifies the key guess

that maximizes the correlation, thereby recovering the secret
key without requiring prior profiling.

III. THE PROPOSED SIDE-CHANNEL ATTACK

ML-DSA is fundamentally based on the Module-LWE prob-
lem, which relies on the hardness of recovering secret poly-
nomials from structured linear equations. The cryptographic
strength of ML-DSA hinges on maintaining the secrecy of
key polynomials such as s1, s2, and t0. These polynomials
are interconnected through relationships derived from the ML-
DSA construction.

One of the key relationships in ML-DSA can be represented
by the equation z = y + cs1, as illustrated in Figure 2,
where z and c are known polynomial sets, and s1 is a secret
polynomial. Before multiplication, the polynomials are trans-
formed into the NTT domain to enable efficient computations,
as shown in Figure 3. Extracting s1 enables the recovery
of y, which is used to generate w. Once w is known, the
attacker can compute s2 using the outputs of the MakeHint
function. Ultimately, with s1 and s2, the attacker can solve
t = As1 + s2, effectively compromising the Module-LWE
foundation of ML-DSA. Consequently, recovering s1 provides
the attacker with the full secret key of ML-DSA, enabling them
to forge arbitrary signatures.

NTT

NTT

...
.........

...

Fig. 3: Pointwise multiplication of the polynomial vector s1
and the challenge polynomial c in the NTT domain after
transformation. Here, ĉ and ŝ1 represent the NTT-transformed
forms of c and s1, respectively.

Recovering s1 using CPA requires an operation where s1
interacts with a known, controllable value, and the interaction
must vary based on different inputs to facilitate side-channel
analysis. Since the key generation process produces unique s1
values for each input set, it is not suitable for CPA. Instead, we
focus on the signature generation process, where s1 interacts
with a publicly known and attacker-controllable value. As
specified in line 12 of Algorithm 2, s1 undergoes pointwise
multiplication with c.

As illustrated in Figure 2, c is derived during the signature
generation process from the SampleInBall function, which
uses a hash value c̃ computed as H(µ∥w1). Although w is
a secret value, the high bits of w, which is w1, is public
value. This sequence ensures that c is a publicly known
and controllable polynomial, making it an ideal candidate for
side-channel analysis. This interaction satisfies the criteria for
side-channel analysis, making it a highly effective target for
recovery.

IV. IMPLEMENTATION-LEVEL ANALYSIS

This section provides an in-depth examination of the target
implementation of [34], with a focus on the NTT implementa-
tion block, which is utilized for both NTT transformations and
pointwise operations such as modular multiplication, addition,
and subtraction. Analyzing this block is critical as it reveals the
detailed operation involving the challenge polynomial c and
the secret polynomial s1. Understanding this interaction is es-
sential to pinpointing the vulnerabilities in the implementation
and identifying the specific stages where sensitive information
may leak through side-channel channels.

A. NTT in Target Implementation

In ML-DSA, the polynomials are represented in the NTT
domain to optimize computational efficiency during poly-
nomial arithmetic. The use of the NTT domain enables
faster computations, particularly for polynomial multiplica-
tions. NTT transforms polynomials from their coefficient
representation into a point-value representation, enabling poly-
nomial multiplication as simple element-wise multiplication.
This transformation relies on modular arithmetic and carefully
selected roots of unity. After computations in this transformed
domain, the inverse NTT (INTT) is applied to return the result

Memory
data in

ω0 ω0

ω2 ω1

ω0
ω1
ω2

4 (log q+1)

4 (log q+1)

ROM

2-to-1 M
U

X

4-to-1 M
U

X

Butterfly
Unit

Buffers

Fig. 4: NTT architecture in target implementation [34]. The
design features a 2x2 butterfly architecture for optimized
performance.

to the coefficient domain. The NTT architecture in the target
implementation processes n = 256 coefficients per polyno-
mial using eight iterative stages. These stages correspond to
log2 n = 8.

Figure 4 illustrates the NTT architecture of the studied ML-
DSA module, a pipelined design optimized for processing
four coefficients per cycle. The inputs to the NTT are four
coefficients read from memory and four precomputed n-th root
of unity (ω) stored in ROM. The architecture features a 2x2
butterfly unit configuration with two stages of butterflies, each
stage containing two butterfly units. This pipelined approach
allows the initial stage to compute the first layer of the NTT
transformation for four coefficients in each cycle while the
second stage simultaneously processes the next layer. This
design minimizes memory overhead by eliminating the need
to write intermediate results back to memory between layers.

The memory system in the NTT design stores input coeffi-
cients, intermediate results, and transformed values, with each
memory address holding four coefficients. The memory bus
width is defined as 4∗log2(q−1), where q is the prime modulus
used in the NTT. During operation, coefficients are read in
a specific sequence and buffered to synchronize with the
pipeline. A 4-to-1 multiplexer (MUX) routes the coefficients to
the butterfly units, and after processing, the results are directed
back to memory via a 2-to-1 MUX. The 2-to-1 MUX enables
selection between initializing the memory with polynomials
in the non-NTT domain or passing intermediate NTT values
from the butterfly units to continue with the next stage.

This NTT architecture also facilitates hardware resource
sharing across other ML-DSA operations, such as pointwise
multiplication and pointwise addition and subtraction. Each
butterfly unit consists of a modular adder, a modular subtractor,
and a modular multiplier, all of which operate with the prime
modulus q. Instead of utilizing dedicated multipliers, adders,
and subtractors for pointwise operations, the open-source ML-
DSA implementation [34] design reuses the butterfly units
within the NTT module to perform these tasks. This approach
optimizes resource use but introduces shared vulnerabilities,

Memory
data in

Memory

4 (log q+1)

4 (log q+1) 4 (log q+1)

2-to-1 M
U

X

Pointwise
Multiplication

Fig. 5: Pointwise multiplication architecture in target de-
sign [34]. This design reuses the hardware utilized for the
NTT block.

as all operations rely on the same hardware.

B. Pointwise Multiplication in Target Implementation

Pointwise multiplication in the target implementation per-
forms element-wise multiplication of two polynomials in the
NTT domain. As shown in Figure 5, the architecture reuses
key NTT components, including memory, multiplexers, and
pointwise multiplication cores instead of butterfly cores, to
optimize resource usage while supporting the modular arith-
metic required for cryptographic operations.

In this implementation, two memories are used to store the
input polynomials, with each memory address holding four
coefficients. The cores execute four modular multiplications
in parallel, enabling the processing of multiple coefficients
concurrently. A multiplexer is used to direct the coefficients
to the appropriate processing units [34].

The modular multiplication cores implement a reduction
algorithm. Pointwise multiplication enables concurrent pro-
cessing and ensures results remain within the finite field de-
fined by q = 8, 380, 417 through modular arithmetic. Modular
reduction maintains all coefficients within the range [0, q)
after multiplying two 23-bit coefficients and obtaining a 46-bit
product.

C. Internal Structure of Modular Reduction

These modular multiplication cores use a unique reduction
algorithm. It is specifically optimized for the prime modulus
q = 8, 380, 417, leveraging the modulus’s advantageous struc-
ture to enhance throughput [34]. Unlike conventional reduction
methods, this design implements a fully pipelined architec-
ture that utilizes shifter and adder logic to perform modular
reduction efficiently and with a constant execution time. The
reduction circuit processes 46-bit intermediate products, which
result from the multiplication of 23-bit coefficients during
pointwise polynomial multiplication.

We explain the modular reduction process using the mul-
tiplication of ŝ1 the secret polynomial and ĉ the challenge
polynomial as an example. These specific variables are chosen
for illustration because they represent the focus of our side-
channel analysis, being the first point of interaction between
the secret key coefficients and deterministically generated,
known values.

ĉ[i] [22:0]

a[k:0]

b[k:0]

q[k:0]

r0,c0

r0

r0

r1

ĉ[i] × ŝ1[i][j](mod q)

c0

a± b (mod q)

ŝ1[i][j] [22:0]

±

+

+

-a[45:0]

a[45:43]

a[42:33]

a[32:23]

a[22:13]

a[12:0]

a[45:43]

a[45:33]

a[45:23]

b[11:10]

b[9:0]

b[11:10]

b[11:0]

c [14:0]
e [22:0]

d [10:0]

f [22:0]

±

2-to-1 M
U

X

+ Modular Operation

Normal Operation

Fig. 6: The internal structure of the modular reduction circuit, as adapted from [34], is optimized for the prime modulus q.
This design is particularly relevant for operations involving the multiplication of the NTT-transformed private polynomial ŝ1
and the NTT-transformed challenge polynomial ĉ, where ŝ1[i][j] represents the j-th coefficient of the i-th polynomial in ŝ1,
and ĉ[i] is the i-th coefficient of ĉ.

The modular reduction begins with the computation of the
46-bit intermediate product:

a = ŝ1[i][j] · ĉ[i],

where ŝ1[i][j] is the j-th coefficient of the i-th polynomial
in ŝ1, and ĉ[i] is the i-th coefficient of ĉ. The modulus q is
defined as:

q = 8, 380, 417 = 223 − 213 + 1,

which allows the reduction to leverage the equivalence:

223 ≡ 213 − 1 (mod q).

The reduction algorithm decomposes the product a into bit
segments:

a = 213a45:23 − a45:23 + a22:0,

where a45:23 and a22:0 represent the higher and lower bit
ranges, respectively. To streamline computation, the reduction
is defined as:

a = 213b− (a45:43 + a45:33 + a45:23) + a12:0,

where:

b = a45:43 + a42:33 + a32:23 + a22:13, b < 212.

Further reduction of b is computed as:

213b = 213d− b11:10,

with:
d10:0 = b11:10 + b9:0.

In the other stage, the 15-bit value c14:0 is computed as:

c14:0 = a45:43 + a45:33.

Additionally, the 23-bit value e22:0 is computed as:

e22:0 = a45:23 + c14:0.

Finally, the modular reduction result is:

a = d10:0 + a12:0 − e22:0,

where:

e22:0 = (a45:43 + a45:33 + a45:23) + b11:10.

D. Exploiting Modular Reduction Registers

Figure 6 exhibits the implementation details of the modular
reduction circuit. This circuit features a three-stage pipelining
process. In the first stage, the intermediate product a =
ŝ1[i][j] · ĉ[i] is computed during pointwise multiplication
and buffered with 46-bit registers. In the second stage, the
reduction circuit performs two modular addition operations in
parallel, and these operations’ intermediate values are stored
in modular addition registers. Finally, the third stage performs
a modular subtraction to ensure the result ranges within [0, q).
Throughout these stages, all intermediate values are stored
in registers, forming potential leakage points that can be
exploited through side-channel analysis.

The attack methodology exploits the deterministic behavior
of the target hardware design, as implemented in the deter-
ministic version of the IP [34], to target specific registers. It
is worth noting that the IP also supports a non-deterministic
configuration, which may impact the applicability of this
methodology. To conduct the attack, different input messages
are provided to the ML-DSA implementation [34], which
computes the corresponding challenge polynomial c. This
polynomial then interacts with the secret key s1 through point-
wise multiplication. Each coefficient of s1 and c is multiplied

Fig. 7: Experimental setup for capturing power traces.

and subsequently processed by the reduction circuit, making
the registers in this pipeline prime candidates for leakage
exploitation.

The first vulnerability arises in the initial set of registers,
which store the 46-bit intermediate product from the point-
wise multiplication. By controlling the input message, the
attacker can determine the exact value of the corresponding
c coefficient. Using this knowledge, a hypothetical table for
CPA is generated for each possible s1 coefficient. Since ŝ1
ranges between 0 and q− 1 after NTT transform, the attacker
generates q−1 hypothetical guesses. CPA is then performed as
described in the II-D, correlating observed power traces with
these hypothetical values. While this approach can reveal the
coefficients of s1, it might be prone to false positives due to
the linear nature of multiplication [41].

To enhance the attack and eliminate these false positives,
we use the next set of registers in the modular addition stage.
These registers store intermediate values computed by the
addition as part of the modular reduction process. The same s1
hypothetical guesses are reused, but the intermediate values in
the CPA are adjusted to reflect the modular addition operation.
By targeting this stage, the attack eliminates the false positives
encountered from the first register set.
Zeroization in Target Design. A key aspect of this design is
its zeroization method, implemented to prevent data recovery.
Zeroization is a method of securely erasing cryptographic
keys, critical security parameters, and electronically stored
data by altering or clearing storage contents to prevent data
recovery [42]. The RoT enforces the ML-DSA module in
the cryptographic IP to perform zeroization after the key
generation and signing processes. All internal registers are
cleared using a software-triggered mechanism, where a single-
cycle pulse on the hardware interface zeroes the first register
before the next cryptographic operation begins. This ensures
that the first pointwise multiplication core always starts with a
clean state by removing residual data from previous operations
and preventing the retention of sensitive information across
cryptographic stages. While the zeroization mechanism in the

Fig. 8: Power traces of the ML-DSA signing operation. The
top trace shows the full signing operation with multiple rejec-
tion loops. The middle trace isolates the NTT and pointwise
multiplication stages, while the bottom trace zooms in on the
initial pointwise multiplication.

studied ML-DSA module [34] is implemented as per FIPS
140-2 standards [42] to enhance security, it inadvertently aids
side-channel analysis. By resetting all internal registers to zero
before the start of key generation and signing operations, the
mechanism simplifies attacks. The predictable initial state of
the registers reduces the complexity of side-channel analysis,
as attackers can leverage this knowledge to calculate the Ham-
ming distance more easily and extract sensitive information.
This dual effect highlights the importance of carefully bal-
ancing security measures to avoid unintentionally introducing
vulnerabilities.

In the Hamming Distance leakage model, power leakage
correlates with the bitwise XOR of a register’s current and
previous states. To exploit this model, the attacker needs to
know or guess the initial state of the register before making
hypotheses about subsequent states. Without zeroization, the
initial state of each register would be unknown, requiring the
attacker to simultaneously guess both the initial state and the
next state of the register. This significantly complicates the
attack, as it doubles the size of the hypothetical guess table
by introducing an additional dimension of uncertainty for each
coefficient.

With zeroization, the registers are guaranteed to start from
a known state of zero per captured execution. This eliminates

(a)

%99.99

%99.99

(b)

(c)

(d)

%99.99

%99.99

(e)

(f)

Fig. 9: Results of the proposed side-channel analysis targeting two registers in the hardware implementation of ML-DSA. The
first row shows the attack results for the multiplication result register, including the correlation plot (a), Pearson correlation
evolution (b), and the rank of the correct key, which reaches the first position (c). The second row presents similar results for
the modular arithmetic operation register, highlighting the correlation plot (d), Pearson correlation evolution (e), and the rank
of the correct key (f).

the need to guess the initial state, reducing the guess table size
by half and simplifying the analysis. The attacker can focus
solely on guessing the next state of the registers based on hy-
pothetical values of the secret coefficients s1. This reduction in
complexity allows the attack to be performed more efficiently,
as the Hamming Distance model aligns with the deterministic
transitions introduced by the zeroization process.

V. EVALUATION RESULT

This section provides an overview of the experimental setup
used to evaluate the proposed side-channel attack, including
the hardware and software configuration for capturing and
analyzing power traces. It also presents the results of leakage
detection and correlation analysis, demonstrating the effective-
ness of the attack in exploiting vulnerabilities in the ML-DSA
hardware implementation.

A. Experimental Setup

The power traces of the signing execution in ML-DSA were
collected using the ChipWhisperer-Lite and the CW305 Artix-
7 FPGA target board [43] for side-channel evaluation. The
experimental setup, shown in Figure 7, includes a Low-Pass
Filter, a PicoScope 6404E oscilloscope [44], and the CW305
FPGA development board, which is equipped with a Xilinx
Artix-7 chip. The FPGA was programmed with the open-
source ML-DSA implementation1, an implementation of ML-
DSA [34], configured to operate at security level 5.

The oscilloscope samples power traces at a frequency of
156.25 MHz, corresponding to a sampling interval of 6.4

1GitHub commit version: https://github.com/chipsalliance/adams-
bridge/tree/1f84699209b3cf77d5658e6b3101d6fec8ed0daa

ns. Two probes are connected to the victim device: Chan-
nel A records the power traces with a noise filter applied,
while Channel B captures the trigger signal. The FPGA
board interfaces with the ChipWhisperer capture board for
data acquisition and synchronization. The CPA analysis was
conducted on a computer equipped with an Intel(R) Xeon(R)
E5-1620 CPU running at 3.50 GHz and 32 GB of memory.
The CPA program was implemented in Python 3.10.

Figure 8 illustrates the power traces captured during the
ML-DSA signing process. The top subplot shows the com-
plete signing operation, including multiple iterations of the
rejection loop caused by out-of-bound signature values. The
middle subplot focuses on the computational stages, including
the INTT and pointwise multiplication. The bottom subplot
zooms in on the pointwise multiplication step, showing the
power transitions recorded during this critical operation. These
power traces form the basis for side-channel evaluation in our
experimental setup.

B. Visualizing Leakage: Evolution of Correlation

To further investigate the vulnerability of the target imple-
mentation, we conducted a CPA attack. The results of the side-
channel analysis are presented in Figure 9, which visualizes
the correlation evolution, Pearson correlation coefficients, and
the rank of the correct key for two critical attack points. These
figures provide a comprehensive overview of the leakage
patterns and highlight the effectiveness of the proposed CPA
methodology in exploiting these vulnerabilities.

The first attack targets the register holding the 46-bit
intermediate result of the multiplication between the 23-bit
coefficients of the secret polynomial vector s1[i] and the chal-

lenge polynomial ĉ[i]. As depicted in Figure 9a, the correlation
plot illustrates the leakage caused by state transitions in this
register. The attack leverages the Hamming Distance leakage
model to correlate the power consumption with transitions in
the register, enabling the adversary to distinguish the correct
key from incorrect guesses. After processing 10,000 traces,
the correlation associated with the correct key surpasses all
other candidates. This observation is further supported by the
Pearson correlation evolution in Figure 9b, which shows the
correct key consistently demonstrating a progressively stronger
and statistically significant correlation (99.99%) compared to
incorrect guesses. The rank of the correct key, shown in
Figure 9c, converges rapidly, demonstrating the success of the
attack in recovering the secret polynomial coefficients. The
effectiveness of this attack is attributed to the predictable na-
ture of the pointwise multiplication operation and the leakage
arising from state transitions within the register storing the
multiplication result.

The analysis was extended to a second attack point: the
modular addition operation within the reduction circuit to
evaluate the generality and robustness of the CPA methodol-
ogy. This stage processes the intermediate multiplication result
through modular arithmetic, temporarily storing intermediate
values in registers. The internal structure of the modular re-
duction submodule, as illustrated in Figure 6, consists of mod-
ular addition and subtraction operations that follow the same
flow and structure. These consistent computational patterns
introduce predictable leakage, making the modular addition
registers an equally viable target for side-channel analysis.
Figure 9d demonstrates the correlation plot for this attack
point, where the correct key is clearly distinguishable from
other guesses. Similarly, the Pearson correlation evolution
in Figure 9e demonstrates that the correct key progressively
achieves higher and statistically significant correlation values
(99.99%) compared to incorrect guesses as the number of
traces increases. The rank of the correct key, presented in
Figure 9f, converges rapidly, further validating the success of
this attack point.

The effectiveness of these attacks is further facilitated by
the constrained key guessing space in the hardware imple-
mentation [34], where modular reduction is applied after each
butterfly operation during the NTT computation. Specifically,
the key space in hardware is restricted to [0, q), which is
significantly smaller compared to the broader key range in the
reference software implementation of ML-DSA [45], spanning
[−η− 8(q− 1), η+8(q− 1)]. This smaller key space reduces
the complexity of the attack, making it easier to pinpoint the
correct key.

The results from both attack points conclusively demon-
strate that the open-souce implementation of ML-DSA [34],
an implementation of ML-DSA, remains vulnerable to side-
channel leakage, particularly in the modular arithmetic stages.
The CPA methodology employed in this paper effectively
exploits predictable state transitions and the repetitive nature
of modular arithmetic operations, emphasizing the necessity of
robust countermeasures in hardware implementations of post-

quantum cryptographic algorithms.

VI. DISCUSSION

Our attack uncovers critical vulnerabilities in the targeted
cryptographic implementation [34], specifically targeting the
NTT-based polynomial pointwise multiplication. At the time
of this study, the implementation lacked side-channel coun-
termeasures such as masking [27]–[30] or shuffling [31],
leaving it highly susceptible to side-channel leakage. While
our findings highlight these vulnerabilities, the evaluation and
implementation of countermeasures fall outside the scope of
this work. Instead, our primary objective is to provide a
detailed analysis of the identified weaknesses to inform the
development of more secure cryptographic designs.

This work focuses on pinpointing vulnerabilities in the
ML-DSA hardware implementation [34], particularly those
arising in the NTT-based pointwise multiplication. This study
emphasizes the critical need to address potential vulnerabili-
ties in hardware implementations to prevent exploitation. By
identifying these risks and communicating them to the broader
cryptographic and hardware security communities, we aim to
encourage proactive measures to mitigate side-channel attacks
before they can be leveraged in practice.

It is important to note that the vulnerabilities identified in
this work may not be confined to the NTT-based pointwise
multiplication. Other components of the design [34], such
as encoding, decoding, and NTT, could also leak sensitive
information. Future research should explore these areas to
ensure comprehensive protection against side-channel attacks
and uncover additional weaknesses that may exist in the
design.

Additionally, advanced techniques such as machine
learning-based side-channel analysis [13]–[20] present a
promising avenue for future research. These methods can iden-
tify complex or previously hidden leakage patterns, offering
deeper insights into hardware vulnerabilities and informing
the development of more robust countermeasures. Machine
learning-based approaches also enable more generalized evalu-
ations across different cryptographic implementations, enhanc-
ing their utility in securing hardware designs.

This study underscores the importance of systematically
analyzing and addressing side-channel vulnerabilities in cryp-
tographic implementations. As cryptographic algorithms tran-
sition from theoretical constructs to practical hardware de-
ployments, ensuring resilience against both mathematical and
physical attacks becomes imperative. By exposing these vul-
nerabilities and offering directions for future research, this
work seeks to bridge the gap between theoretical security
and practical robustness, advancing the security of hardware
cryptographic designs in real-world applications.

VII. CONCLUSION

This paper exposes vulnerabilities in the hardware imple-
mentation of ML-DSA [34], specifically within an open-source
Silicon RoT internal block. Using CPA, we demonstrated that
critical cryptographic operations—modular reduction during

NTT-based polynomial pointwise multiplication—are vulner-
able to side-channel leakage. Our analysis shows that an
adversary can extract secret keys with as few as 10,000 power
traces, posing a significant threat to firmware verification
and RoT integrity. These findings underscore the need for
robust countermeasures to secure post-quantum cryptographic
implementations and highlight the importance of addressing
advanced attack methodologies to mitigate emerging risks.

REFERENCES

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, pp. 120–126, Feb. 1978.

[2] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[3] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation,
vol. 48, no. 177, pp. 203–209, 1987.

[4] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proceedings of the 35th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 124–134, 1994.

[5] D. Moody, “Post-quantum cryptography standardization: Announcement
and outline of NIST’s call for submissions,” in International Conference
on Post-Quantum Cryptography (PQCrypto), 2016.

[6] National Institute of Standards and Technology, “FIPS 204: Module-
lattice-based digital signature standard,” tech. rep., U.S. Department of
Commerce, Aug. 2024. Accessed: 2024-11-16.

[7] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehlé, “CRYSTALS – dilithium: Digital signatures from module
lattices.” Cryptology ePrint Archive, Paper 2017/633, 2017.

[8] P. Ravi, M. P. Jhanwar, J. Howe, A. Chattopadhyay, and S. Bhasin,
“Side-channel assisted existential forgery attack on dilithium - a NIST
PQC candidate.” Cryptology ePrint Archive, Paper 2018/821, 2018.

[9] A. Fournaris, C. Dimopoulos, and O. Koufopavlou, Profiling Dilithium
Digital Signature Traces for Correlation Differential Side-Channel At-
tacks, pp. 281–294. Oct. 2020.

[10] R. Primas, P. Pessl, and S. Mangard, “Single-trace side-channel attacks
on masked lattice-based encryption.” Cryptology ePrint Archive, Paper
2017/594, 2017.

[11] Z. Chen, E. Karabulut, A. Aysu, Y. Ma, and J. Jing, “An efficient
non-profiled side-channel attack on the crystals-dilithium post-quantum
signature,” in 2021 IEEE 39th International Conference on Computer
Design (ICCD), pp. 583–590, 2021.

[12] Z. Qiao, Y. Liu, Y. Zhou, J. Ming, C. Jin, and H. Li, “Practical public
template attacks on crystals-dilithium with randomness leakages,” IEEE
Transactions on Information Forensics and Security, vol. 18, pp. 1–14,
2023.

[13] S. Marzougui, V. Ulitzsch, M. Tibouchi, and J.-P. Seifert, “Profiling
side-channel attacks on dilithium: A small bit-fiddling leak breaks it
all.” Cryptology ePrint Archive, Paper 2022/106, 2022.

[14] P. Pessl and R. Primas, “More practical single-trace attacks on the
number theoretic transform,” in Progress in Cryptology–LATINCRYPT
2019: 6th International Conference on Cryptology and Information
Security, Proceedings 6, pp. 130–149, Springer, 2019.

[15] M. J. Kannwischer, P. Pessl, and R. Primas, “Single-trace attacks on
keccak,” Cryptology ePrint Archive, 2020.

[16] J. Han, T. Lee, J. Kwon, J. Lee, I.-J. Kim, J. Cho, D.-G. Han, and B.-Y.
Sim, “Single-trace attack on NIST round 3 candidate dilithium using
machine learning-based profiling,” IEEE Access, vol. PP, pp. 1–1, 12
2021.

[17] I.-J. Kim, T.-H. Lee, J. Han, B.-Y. Sim, and D.-G. Han, “Novel single-
trace ML profiling attacks on NIST 3 round candidate dilithium.”
Cryptology ePrint Archive, Paper 2020/1383, 2020.

[18] R. Wang, K. Ngo, J. Gärtner, and E. Dubrova, “Single-trace side-channel
attacks on CRYSTALS-dilithium: Myth or reality?.” Cryptology ePrint
Archive, Paper 2023/1931, 2023.

[19] A. Berzati, A. C. Viera, M. Chartouny, S. Madec, D. Vergnaud, and
D. Vigilant, “Exploiting intermediate value leakage in dilithium: A
template-based approach.” Cryptology ePrint Archive, Paper 2023/050,
2023.

[20] O. Bronchain, M. Azouaoui, M. ElGhamrawy, J. Renes, and T. Schnei-
der, “Exploiting small-norm polynomial multiplication with physical at-
tacks: Application to CRYSTALS-dilithium.” Cryptology ePrint Archive,
Paper 2023/1545, 2023.

[21] H. Steffen, G. Land, L. Kogelheide, and T. Güneysu, “Breaking and
protecting the crystal: Side-channel analysis of dilithium in hardware.”
Cryptology ePrint Archive, Paper 2022/1410, 2022.

[22] H. Wang, Y. Gao, Y. Liu, et al., “In-depth correlation power analysis
attacks on a hardware implementation of crystals-dilithium,” Cyberse-
curity, vol. 7, no. 21, 2024.

[23] C. Mujdei, A. Beckers, J. M. B. Mera, A. Karmakar, L. Wouters, and
I. Verbauwhede, “Side-channel analysis of lattice-based post-quantum
cryptography: Exploiting polynomial multiplication.” Cryptology ePrint
Archive, Paper 2022/474, 2022.

[24] M. Hamburg, J. Hermelink, R. Primas, S. Samardjiska, T. Schamberger,
S. Streit, E. Strieder, and C. van Vredendaal, “Chosen ciphertext k-
trace attacks on masked CCA2 secure kyber.” Cryptology ePrint Archive,
Paper 2021/956, 2021.

[25] J.-P. D’Anvers, M. Tiepelt, F. Vercauteren, and I. Verbauwhede, “Timing
attacks on error correcting codes in post-quantum schemes.” Cryptology
ePrint Archive, Paper 2019/292, 2019.

[26] G. Rajendran, P. Ravi, J.-P. D’Anvers, S. Bhasin, and A. Chattopadhyay,
“Pushing the limits of generic side-channel attacks on LWE-based KEMs
- parallel PC oracle attacks on kyber KEM and beyond.” Cryptology
ePrint Archive, Paper 2022/931, 2022.

[27] V. Migliore, B. Gérard, M. Tibouchi, and P.-A. Fouque, “Masking
dilithium: Efficient implementation and side-channel evaluation.” Cryp-
tology ePrint Archive, Paper 2019/394, 2019.

[28] M. Azouaoui, O. Bronchain, G. Cassiers, C. Hoffmann, Y. Kuzovkova,
J. Renes, M. Schönauer, T. Schneider, F.-X. Standaert, and C. van
Vredendaal, “Protecting dilithium against leakage: Revisited sensitivity
analysis and improved implementations.” Cryptology ePrint Archive,
Paper 2022/1406, 2022.

[29] J.-S. Coron, F. Gérard, M. Trannoy, and R. Zeitoun, “Improved gadgets
for the high-order masking of dilithium.” Cryptology ePrint Archive,
Paper 2023/896, 2023.

[30] J.-S. Coron, F. Gérard, T. Lepoint, M. Trannoy, and R. Zeitoun, “Im-
proved high-order masked generation of masking vector and rejection
sampling in dilithium.” Cryptology ePrint Archive, Paper 2024/1149,
2024.

[31] J. Lee, J. Han, S. Lee, J. Kwon, K.-H. Choi, J.-W. Huh, J. Cho, and D.-G.
Han, “Systematization of shuffling countermeasures: With an application
to crystals-dilithium,” IEEE Access, vol. 11, pp. 142862–142873, 2023.

[32] C. A. Project, “Caliptra: A datacenter system-on-a-chip (soc) root-of-
trust (rot),” 2024. Revision 2.0, Version 0.5. Available: https://github.
com/chipsalliance/Caliptra, Accessed: 2024-10-25.

[33] L. Beckwith, D. T. Nguyen, and K. Gaj, “High-performance hardware
implementation of CRYSTALS-dilithium.” Cryptology ePrint Archive,
Paper 2021/1451, 2021.

[34] C. Alliance, “Adams-bridge,” 2024. Available: https://github.com/
chipsalliance/adams-bridge, Accessed: 2024-10-25.

[35] P. Barrett, “Implementing the rivest shamir and adleman public key
encryption algorithm on a standard digital signal processor,” in Advances
in Cryptology — CRYPTO’ 86, pp. 311–323, 1987.

[36] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of Computation, vol. 44, pp. 519–521, 1985.

[37] L. Chen, D. Moody, K. Randall, A. Regenscheid, and A. Robinson,
“Recommendations for discrete logarithm-based cryptography: Elliptic
curve domain parameters,” Special Publication (NIST SP) 800-186,
National Institute of Standards and Technology (NIST), 2023.

[38] A. Langlois and D. Stehlé, “Worst-case to average-case reductions for
module lattices.” Cryptology ePrint Archive, Paper 2012/090, 2012.
Accessed: 2024-12-04.

[39] P. England, R. Aigner, K. Kane, A. Marochko, D. Mattoon, R. Spiger,
S. Thom, and G. Zaverucha, “Device identity with dice and riot: Keys
and certificates,” Tech. Rep. MSR-TR-2017-41, Microsoft Research,
September 2017.

[40] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with
a leakage model,” in Cryptographic Hardware and Embedded Systems
- CHES 2004, August 11-13, 2004. Proceedings, vol. 3156 of Lecture
Notes in Computer Science, pp. 16–29, 2004.

[41] E. Karabulut and A. Aysu, “Falcon down: Breaking falcon post-
quantum signature scheme through side-channel attacks.” Cryptology
ePrint Archive, Paper 2021/772, 2021.

[42] National Institute of Standards and Technology, “FIPS 140-2: Security
requirements for cryptographic modules,” tech. rep., U.S. Department
of Commerce, 2001. Change Notice 2, 12/3/2002. Superseded by FIPS
140-3.

[43] C. O’Flynn and Z. D. Chen, “Chipwhisperer: An open-source platform
for hardware embedded security research,” in Constructive Side-Channel
Analysis and Secure Design, pp. 243–260, Springer International Pub-
lishing, 2014.

[44] P. Technology, “Picoscope 6000e series datasheet,” 2024.
Available: https://www.picotech.com/download/datasheets/
picoscope-6000e-series-data-sheet.pdf, Accessed: 2024-11-28.

[45] P. Team, “Crystals-dilithium: Post-quantum digital signature scheme,”
2024. Available: https://github.com/pq-crystals/dilithium, Accessed:
2024-11-28.

