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Abstract. This survey provides a comprehensive examination of verifiable computing,
tracing its evolution from foundational complexity theory to modern zero-knowledge
succinct non-interactive arguments of knowledge (ZK-SNARKs). We explore key
developments in interactive proof systems, knowledge complexity, and the application
of low-degree polynomials in error detection and verification protocols. The survey
delves into essential mathematical frameworks such as the Cook-Levin Theorem, the
sum-check protocol, and the GKR protocol, highlighting their roles in enhancing
verification efficiency and soundness. By systematically addressing the limitations of
traditional NP-based proof systems and then introducing advanced interactive proof
mechanisms to overcome them, this work offers an accessible step-by-step introduc-
tion for newcomers while providing detailed mathematical analyses for researchers.
Ultimately, we synthesize these concepts to elucidate the GKR protocol, which serves
as a foundation for contemporary verifiable computing models. This survey not only
reviews the historical and theoretical advancements in verifiable computing over the
past three decades but also lays the groundwork for understanding recent innovations
in the field.
Keywords: Zero-Knowledge · Interactive Proof Systems · Verifiable Computing ·
Sum-Check Protocol · GKR Protocol · Complexity Theory

1 Introduction
Verifiable computing has been a pivotal area of research since the latter part of the
20th century, rooted in the study of computational complexity [Coo71, Lev73]. Early
investigations focused on understanding the inherent difficulty of various computational
problems and developing abstractions that illustrate the hardness of these problems and
the methods to solve them efficiently [GJ79]. As computing power surged, the focus
shifted towards more robust computing models that enable resource-constrained clients
to delegate complex computations to powerful servers. Crucially, these models ensure
that the server can provide a proof of correctness for the delegated tasks, embodying the
essence of verifiable computing [GMR85].

In recent years, the field has witnessed significant advancements [GKR08, BCG+14],
particularly in enhancing the efficiency of verifiable computing protocols on both the client
and server sides [PHGR13, Gro16, BBB+18, GWC19], these advancements often involve
sophisticated mathematical concepts from cryptography. This survey aims to chart the
historical development of verifiable computing, starting with fundamental concepts and
models, identifying their limitations, and progressing towards more powerful and efficient
protocols. To ensure accessibility, each concept introduced is accompanied by one or two
minimal examples with detailed descriptions. Additionally, every claim and analysis is
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supported by rigorous mathematical proofs, with prerequisite mathematical foundations
provided to aid newcomers. The survey is structured as follows:

Section 2: Complexity Theory Foundations We begin by exploring the foundational
concepts of complexity theory developed in the 1980s, including complexity classes such as
P, NP, and NP-completeness. Through the Cook-Levin Theorem [Coo71, Lev73] and the
transformation of NP problems like HAMPATH and SAT, we demonstrate the reducibility
of NP problems to a unified framework, setting the stage for further developments.

Section 3: Interactive Proof Systems (IPS) Recognizing the limitations of NP-
based proof systems in verifying certain problems effectively, we delve into interactive
proof systems. IPS extend NP by incorporating randomness and interaction, enhancing
verification efficiency at the cost of allowing a small probability of error. To address
the practical challenges inherent in traditional IPS, we explore the concept of knowledge
complexity, as originally introduced in [GMR85], this approach enables a P 1 with bounded
computational resources to convincingly demonstrate possession of secret knowledge to V ,
facilitating high-probability verification by quantifying V ’s ability to distinguish between a
simulator and a genuine P , knowledge complexity elucidates how zero-knowledge protocols
maintain the secrecy of underlying information while still proving its validity.

Section 4: The Power of Low-Degree Polynomials This section explores essential
mathematical theories and cryptographic protocols based on Thaler’s seminar PPT [Tha19],
including the Schwartz-Zippel lemma and Reed-Solomon error correction. These underpin
the efficacy of low-degree polynomials in error detection and interactive proof systems.

Section 5: The Sum-Check Protocol We provide a detailed, step-by-step introduction
to the sum-check protocol [LFKN90], proving its soundness and analyzing its runtime
characteristics. While theoretically applicable to all NP problems via SAT reduction, we
highlight its limitation in requiring superpolynomial time for general-purpose computations
by an honest P .

Section 6: The GKR Protocol To overcome the limitations of the sum-check protocol,
we introduce the GKR protocol [GKR08], a sophisticated general-purpose interactive proof
system developed in the 2010s. We demonstrate how the sum-check protocol integrates
into the GKR framework to achieve efficient and sound verification of computations in
polynomial time for both P and V . This protocol forms the foundation for the most recent
verifiable computing models, including ZK-SNARKs.

In conclusion, this survey not only reviews the historical and theoretical advancements
in verifiable computing over the past thirty years but also provides an accessible foundation
for understanding significant recent developments. By assembling the various components
of verifiable computing, we offer a cohesive understanding of the field’s progression towards
efficient and secure computational verification protocols.

1In this survey, we use P and V to represent the prover and the verifier in the interactive proof model.
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2 Preliminaries: Complexity Theory
Complexity theory is a cornerstone of theoretical computer science, focusing on classifying
computational problems based on the resources required to solve them, such as time and
space. This field seeks to understand the fundamental limits of what can be efficiently
computed and to categorize problems according to their inherent difficulty. This section
provides a survey of key concepts in complexity theory, drawing upon the foundational
texts by Michael Sipser [Sip97], M. R. Garey and D. S. Johnson [GJ79].

2.1 P (Polynomial Time)
P (Polynomial time decidable languages) is the class of languages that is decidable in
polynomial time (O(nk)) on a deterministic single-tape Turing machine. Formally, P is
defined as:

P =
⋃
k∈N

Time(nk)

where k is a constant. This definition encompasses all decision problems deemed tractable,
meaning their solutions can be efficiently computed as the input size increases.

2.2 NP (Nondeterministic Polynomial time)
In P, we can avoid brute-force search and solve the problem using efficient algorithms.
However, attempts to avoid brute force in certain other problems, including many interesting
and useful ones, haven’t been successful, and polynomial time algorithms that solve them
aren’t known to exist.

Language View: [Sipd]

• P is the class of language which membership can be decided (solved) quickly.

• NP is The class of language which membership can be verified quickly.

Turing Machine View:

• P is the set of problems solvable in polynomial time by a deterministic TM

• NP is the set of problems verifiable in polynomial time by a deterministic TM
and solvable in polynomial time by a non-deterministic TM.

2.2.1 NTM Decider

A Non-deterministic Turing Machine (NTM) decider is guaranteed to halt on all inputs.
[Sip97] An NTM decider is designed so that every possible computation branch halts,
either by accepting or rejecting the input. This means that for any input the machine is
given, it will always come to a conclusion (halt) within a finite number of steps. There are
no branches where the machine runs forever without deciding the outcome.

2.2.2 Solving NP

The non-deterministic nature of NP gives us an abstraction to imagine a machine (NTM)
that could guess a solution "in parallel" and verify it quickly. If we had such a machine, it
would allow us to "solve" NP problems quickly by magically finding the right solution path.
However, for real-world deterministic machines, we still don’t have efficient algorithms to
solve many NP problems.
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2.2.3 Example: Hamiltonian Path Problem

If a directed or undirected graph, G, contains a Hamiltonian path, a path that visits
every vertex in the graph exactly once. The HAMPATH problem has a feature called
polynomial verifiability that is important to understand its complexity. Verifying the
existence of a Hamiltonian path may be much easier than determining its existence.

Theorem: HAMPATH belongs to NP: On input ⟨G, s, t⟩ (Say G has m nodes):
we non-deterministically write a sequence v1, v2, ..., vm of m nodes, and only accept iff: a.
v1 = s b. vm = t and c. each (vi, vi+1) is an edge and no vi repeats.

We do not know whether the Co-HAMPATH is in NP: The reason is we do not
know whether or not we can give a short certificate for a graph not have a Hamiltonian
path [Sipd].

• If P equaled NP: Then we can test in polynomial time whether a graph has a
Hamiltonian path by directly solving the problem, which yields a short certificate.

• If P not equal to NP: then co-HAMPATH is not an NP problem, since it is not
easily verified.

2.3 NP-Completeness
The Relationship between P and NP indicates that whether all problems can be solved
in polynomial time, typically, without searching. NP-completeness is a cornerstone
concept in computational complexity theory, providing a framework for understanding
the inherent difficulty of computational problems. Building upon the detailed exposition
presented in Michael Sipser’s Lecture Notes [Sipb], this section delves into the foundational
definitions, key theorems, and proof techniques that characterize NP-complete problems.

2.3.1 P ≡ NP

You can always eliminate searching. If these classes were equal, any polynomially verifiable
problem would be polynomially decidable.

2.3.2 P ̸= NP

There were cases where you need to search. [Sip97] "Most researchers believe that the two
classes are not equal because people have invested enormous effort to find polynomial time
algorithms for certain problems in NP, without success. Researchers also have tried proving
that the classes are unequal, but that would entail showing that no fast algorithm exists to
replace brute-force search."

Defn: B is NP-complete if :

1. B is a member of NP

2. For all A in NP, A ≤ p B

Every language in NP has the polynomial time reduced to a complete language of NP,
which means if B is NP-complete and B is in P then P = NP. One important advance on
the P versus NP question came in the early 1970s with the work of Stephen Cook and
Leonid Levin.[Coo71, Lev73] which shows that the Boolean Satisfactory Problem (SAT) is
NP-complete.
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NP-completeness is a very important complexity property of any question:

1. Showing NP-complete is strong evidence of computational intractability (hard).

2. Gives a good candidate for proving P ̸= NP.

Michael Sipser in 2020: [Sipc] "Back 20 years ago, I was working very hard to show
the composite number problem is not in P. And then, turns out, composite was in P
(proved by [AKS04]). So it was the wrong to pick the composite number problem, but what
NP-complete is guarantees is that: If you work on a problem, which is NP-complete, you
can’t pick the wrong problem, because if any problem is in NP and not in P, an NP-complete
problem is going to be an example of that. Because if the NP-complete problems in P,
everything in NP is in P."

2.4 The 3SAT Problem
2.4.1 Conjunctive Normal Form (CNF)

A boolean formula ϕ is in Conjunctive Normal Form (CNF) if it has the form:

ϕ = (x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬s ∨ z ∨ u) ∧ ... ∧ (¬z ∨ ¬u)

• Literal: a variable ¬x or a negated variable

• Clause: an OR of the literals.

• CNF: an AND of the clauses.

• 3CNF: a CNF with exactly 3 literals in each clause.

2.4.2 SAT

Boolean satisfiability problem (SAT) is the problem of determining if there exists an
interpretation that satisfies a given Boolean formula. In other words, it asks whether the
variables of a given Boolean formula can be consistently replaced by the values (TRUE or
FALSE) in such a way that the formula evaluates to TRUE.

2.4.3 3SAT is the satisfatory problem restricted to 3CNF formulas

3SAT = {ϕ | ϕ is a satisfiable 3CNF formular}

2.4.4 Theorem: 3SAT ≤ p K-CLIQUE

We will show that we can reduce 3SAT to K-CLIQUE in polynomial time by building a
model on 3SAT. And hence to show that K-CLIQUE problem is also NP-complete.

The K-Clique Problem A k-clique in a graph is a subset of k nodes all directly
connected by edges, the input of k-clique problem is an undirected graph and k. The
output is a clique (closed) with k vertices, if one exists.

K-CLIQUE = {⟨G, k⟩ | graph G contains a k-clique}

The K-Clique Problem is in NP: You can easily verify that a graph has a k-clique
by exhibiting the clique.
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Theorem 1 (3SAT ≤ p K-CLIQUE [Sipb]). Given polynomial-time reduction f that
maps ϕ to ⟨G, k⟩ where ϕ is satisfiable if and only if G has a k-clique. Given the structure
of a CNF, a satisfying assignment to a CNF formula has ≥ 1 true literal in each clause.

Definition 1 (G). G: Assume each literal in the formula is a node in G, where:

• The forbidden edges:

1. No edges within a clause.
2. No edges that go between inconsistent labels (a and ¬a )

• G has all non-forbidden edges.

– k is the number of clauses
– Other than those forbidden edges, all other edges are connected.

Claim: ϕ is satisfiable iff G has k-clique. We will show that we can reduce 3SAT to
K-CLIQUE in polynomial time by constructing a model based on 3SAT.

ϕ = (a ∨ b ∨ ¬c) ∧ (¬a ∨ b ∨ d) ∧ (a ∨ c ∨ ¬e) ∧ ... ∧ (¬x ∨ y ∨ ¬z)

Proof. If ϕ is satisfiable =⇒ G has a k-clique. [Sipb]We begin by taking any satisfying
assignment to ϕ, pick 1 true literal in each clause. assuming that 3SAT is solvable. Then
the corresponding nodes in G are a k-clique:

1. There are at least k nodes: Assign any node to 1 means a valid node G.

2. No forbidden edges among them: based on Definition 1, those nodes on different
clauses have edges connected, and since all the labels came from the same assignment.
(a is true then ¬a is false, we cannot pick the inconsistent nodes in different clauses)

Proof. If G has a k-clique =⇒ it will make ϕ satisfiable. [Sipb]Taking any k-clique
in G. It must have 1 node in each clause, because when we construct 3SAT from given G,
nodes cannot appear in a clique together, since there are k clauses, each clause must have
exactly one node to form a k-clique graph.

Setting each corresponding literal TRUE gives a satisfying assignment to ϕ.,
the reduction f is computable in polynomial time, which suggests that: If k-clique can
be solved in polynomial time, then 3SAT can be solved in polynomial time.
Conversely, a polynomial-time solution to 3SAT implies that all NP problems, including
K-clique, are in P.

2.5 The Cook-Levin Theorem
Once we have one NP-complete problem, we may obtain others by polynomial time
reduction from it, as we’ve seen in K-CLIQUE. However, establishing the first NP-complete
problem is more difficult. Now we do so by proving that SAT is NP-complete. In 1971,
Stephen Cook states that the Boolean satisfiability problem is NP-complete [Coo71].
That means any problem in NP can be reduced in polynomial time by a deterministic
Turing Machine to the boolean satisfiability problem (SAT).
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2.5.1 SAT is in NP

A nondeterministic polynomial time machine can guess an assignment to a given formula
ϕ and accept if the assignment satisfies ϕ.

2.5.2 For each A in NP, we have A ≤ p SAT:

(Any language in NP is polynomial time reducible to SAT).

Proof Idea: [Sip97]Let N be a nondeterministic Turing machine that decides A in nk

time for some constant k. We are trying to proof that for any w belongs to any NP problems,
there is a polynomial time reduction procedure that can transform that w to ϕ(SAT)

Key to the Proof: For any w belongs to any NP problems, it can be determined in
polynomial time by a nondeterministic Turing machine N, say the running time is nk. Then
we can construct a Tableau for N is an nk × nk table whose rows are the configurations
of a branch of the computation of N on input w. Which represents the computation
steps/history of that branch of NTM (N). Based on this Tableau, by carefully define each
part of Phi:

ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕaccept

We can show that the construction time is is O(n2k), the size of ϕ is polynomial in n.
Therefore we may easily construct a reduction that produces ϕ in polynomial time from
the input w of any NP problem.

3 Interactive Proof Systems

3.1 The Limitation of NP Proof Systems
Let’s recall Stephen Cook and Leonid Levin’s influential model definition of NP: [Coo71]
The NP proof-system consists of two communicating deterministic Turing machines A
and B: respectively, the P and the V . Where the P is exponential-time, the V is
polynomial-time. They read a common input and interact in a very elementary way.
On input a string x belonging to an NP language L, A computes a string y (whose length
is bounded by a polynomial in the length of x ) and writes y on a special tape that B can
read. B then checks that fl(y) = x (where fl is a polynomial-time computable function)
and, if so, it halts and accepts.

3.1.1 fl(y) = x

We can understand fl(y) = x in this way: "The output (certificate) y belongs to the input
x, where fl() is a function that can check that y in poly-time."

3.1.2 Formalization vs. Intuition

Sometimes formalization cannot entirely capture the inituitive notions. In the context
of theorem-proving: NP captures a specific form of proving a theorem, where a proof
can be "written down" and verified without interacting with P [GMR85, Section 3] The
certificates, which is like a formal written proof, and V just passively checks it. This is like
reading a proof in a book. Once you have the book, there is no back-and-forth to clarify
or ask questions about the proof.
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3.1.3 Example: Co-HAMPTATH Problem

As we mentioned in the previous section, we do not know whether the complement of
HAMPATH (Co-HAMPATH) is in NP:

• y is easy to be verified: HAMPATH
For the Hamiltonian Path (HAMPATH) problem, given a solution (i.e., a path), it’s
easy for a V to check it in polynomial time.
P can just present the path (certificates, or y), and V checks whether it’s a valid
Hamiltonian path (i.e., visits each vertex exactly once and satisfies the graph’s edges).

• y is hard to be verified: Co-HAMPATH
The Co-HAMPATH problem asks whether a graph does not have a Hamiltonian
path. Here, proving the non-existence of something becomes far more complex.
If you ask a P to convince you that no Hamiltonian path exists, the proof isn’t as
simple as just pointing to something (like a path). Instead, you’d need to somehow
verify all possible paths don’t work, which could take exponential time.

3.1.4 Limitation of the NP Proof-System

In the NP model, some problems in NP (like HAMPATH) are easily verifiable, but NP does
not capture the complexity of some other problems (often their complements i.e., Co-NP
problems). That’s why problems like Co-HAMPATH are much harder to verify using the
static NP model: In our example, there isno easy way for a P to present a simple
"proof" that no Hamiltonian path exists, and for V to check it efficiently.

3.2 The Interactive Proof Systems
In 1985, Goldwasser et al. [GMR85] introduced an interactive proof-systems to capture a
more general way of communicating a proof.

Much like in computation, BPP [Sip97, Section 10.2.1: The class BPP, pp. 336–339]
(Bounded-error Probabilistic Polynomial time) algorithms provide a probabilistic analog to
P to enhance efficiency while accepting a small chance of error for that speed. In verification,
IP (Interactive Proof) systems provide a way to define a probabilistic analog
of the class NP. IP includes problems not known to be in NP, demonstrating greater
verification power due to randomness and interaction.

3.2.1 Interactive Pairs of Turing Machines

• P (Prover)
An entity with unlimited computational power, aiming to convince V the truth of a
statement.

• V (Verifier)
A probabilistic polynomial-time Turing machine (with a random tape) that interacts
with P to verify the statement’s validity.

3.2.2 Interactions

The interaction consists of multiple rounds where P and V exchange messages. V uses
randomness to generate challenges, and P responds accordingly. The key properties of
such systems are:
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• Completeness: If the statement is true, an honest P can convince V with high
probability.

• Soundness: If the statement is false, no cheating P can convince V except a small
probability.

3.2.3 Example: Quadratic Nonresidue Problem

An integer a is a quadratic residue modulo n if there exists an integer x such that:

x2 ≡ a (mod n)

An integer a is a quadratic nonresidue modulo n if no such integer x exists. Suppose A
(Prover) claim that a is a quadratic nonresidue, and the B (Verifier) wants to check
that using an Interactive Proof System.

An Interactive Proof System to the QAP can be: B begins by choosing m random
numbers {r1, r2, ..., rm}. For each i, 1 ≤ i ≤ m, he flips a coin:

• If it comes up heads he forms t = r2
i (mod m).

• If it comes up tails he forms t = a × ri2 (mod m).

Then B sends t1, t2, ..., tm to A, who having unrestricted computing power, finds which
of ti are quadratic residues, and uses this information this information to tell B the results
of his last m coin tosses. If this information is correct, B accepts.

Why this Will Work?

• If a is really a quadratic nonresidue:
According to the property of quadratic nonresidue:

– t = a × r2
i (mod m) is a quadratic non-residue.

– t = r2
i (mod m) is a quadratic residue.

P can distinguish which side of the coin by looking whether t is a quadratic nonresidue
or residue.

• If a is a quadratic residue (P is lying):
Then both t = a × r2

i (mod m) and x = r2
i (mod m) are quadratic residues.

Which means ti are just random quadratic residues, all ti looks the "same" for P to
guess the coin side, P will respond correctly in the last part of the computation with
probability 1/2m.

3.3 The Power of Interactive Proof Systems
As mentioned in Section 3.1.4, While traditional NP proof systems are powerful for verifying
the existence of solutions, they encounter significant limitations when it comes to proving
the non-existence of solutions. Specifically, NP proof systems are inherently designed to
provide short certificates for yes-instances of decision problems. However, for no-instances,
such as those in the class coNP, no analogous short certificates are known. A quintessential
example is the Co-Hamiltonian Path problem (Co-HAMPATH), where we seek to
verify that a given graph does not contain a Hamiltonian path. Currently, it remains
unknown whether Co-HAMPATH resides in NP , primarily because we lack efficient
methods to certify the absence of a Hamiltonian path.
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Theorem 2 ([Sha92]). coNP ⊆ IP

This theorem, established by Shamir in 1990, reveals a profound capability of interactive
proof systems: they can handle the complements of NP problems efficiently. In other
words, for every problem in coNP, there exists an interactive proof system where a P
can convince a V of the truth of a statement without V needing to check an exhaustive
list of possibilities. This inclusion signifies that interactive proof systems transcend the
limitations of traditional NP proof systems by enabling the verification of no-instances
through interactive protocols.

The detailed proof of this theorem leverages the sum-check protocol, a pivotal technique
in interactive proofs that facilitates the verification of complex statements through a series
of interactive rounds between P and V . For an in-depth exploration of the sum-check
protocol and its role in proving that coNP ⊆ IP, we refer the reader to Section 5.7.

In Practice: By assuming P has unlimited computing power, The theoretical model
introduced in Interactive Proof Systems can describe many languages that cannot be
captured using NP model. But back to practice, seems that this model will only work in
theory until those kinds of unlimited computing machine comes in real life. (Can determine
NP problems in polynomial Time). (i.e., Can quickly determine NP problems like whether
t is a quadratic nonresidue or residue) Is that true?

3.4 Secret Knowledge
It is true that having unlimited computing machine is infeasible in current practice.
However, by assuming P runs in polynomial time with some "secret knowledge" that
can help it communicating with V efficiently. It can convince V that P has that "secret
knowledge" without revealing it.

3.4.1 Eyewitness & Police Officer

Let us try to illustrate the above ideas using an informal example: Assume that a crime x
has happened, B is a police officer and A is the only eyewitness. A is greedy in telling
B that to tell him about what happened in x, $100,000 must be transferred to his bank
account first. For B, it is important to verify whether A has that "secret knowledge" –
details of crime x before making transfer. And for obvious reasons, A cannot just prove
that he has that "secret knowledge" by telling it directly to the police officer B. By using
interactive proof systems, A can convince B that he has that "secret knowledge" x without
revealing it.

3.4.2 Quadratic Nonresidue Problem

In the interactive proof system describe in Quadratic Nonresidue Problem, the key challenge
for P (A) is to determine whether each number ti sent by V (B) is a quadratic residue or a
quadratic nonresidue modulo m. This determination is crucial because it allows P to infer
the results of B’s coin tosses and respond correctly. In this case, the "secret knowledge" for
efficient computation on A is the prime factorization of the modulus m2. If P knows
the prime factors of m, they can efficiently compute the Legendre3 or Jacobi4 symbols to

2Note: In practice, the modulus m is often chosen such that its factorization is hard to obtain (e.g., a
product of two large primes), ensuring that without the secret knowledge, determining quadratic residuosity
remains difficult.

3Legendre, A. M. (1798). Essai sur la théorie des nombres. Paris. p. 186.
4Jacobi, C. G. J. (1837). "Über die Kreisteilung und ihre Anwendung auf die Zahlentheorie". Bericht

Ak. Wiss: 127–136.
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determine quadratic residuosity. This "secret knowledge" enables polynomial P (A) to
interact with B that are otherwise computationally infeasible.

("secret knowledge" + poly-time machine ≡ unlimited computing power)

3.5 The Knowledge Complexity
3.5.1 The Knowledge Computable from a Communication

Which communications (interactions) convey knowledge? [GMR85, Section 3.2] Informally,
those that transmit the output of an unfeasible computation. How to ensure that V gains
no secret knowledge beyond the validity of the statement being proven?

3.5.2 Knowledge Complexity

Simulator: [GMR85] introduce the idea of simulator: An algorithm that can generate
transcripts of the interaction without access to P ’s secret information.

Quantifying Knowledge By linking the chance that V is able to distinguish the
simulator, we quantify the knowledge complexity of proofs. If the simulator can effectively
replicate the interaction, making it indistinguishable to V , the knowledge complexity
is considered zero.

This formalization allows us to assess and prove the zero-knowledge property of certain
interactive proofs by showing that sometimes V cannot gain knowledge because whatever
it sees could be simulated without P ’s help.

The Simulator acts as an algorithm that can generate transcripts of the interaction
between P (A) and V (B) without knowing P ’s secret knowledge. By producing
transcripts that are indistinguishable from those of a real interaction, the simulator
demonstrates that V gains no additional knowledge from the interaction. Therefore, if
such a simulator exists, we say that the proof is zero-knowledge because any information
V receives could have been simulated without P ’s secret.

3.5.3 Zero Knowledge Interactive Proof System for the QRP

[GMR85, Section 4.2] introduces a zero knowledge IP system for the quadratic residue
problem by carefully designing the protocol and demonstrating the existence of a poly-time
simulator. The difficulties of the proof is that M must compute the coin tosses correctly
as a real P (A) with secret knowledge does. Since the simulator M simulates both sides of
the interaction, it both can know/control the randomness of the coin.
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4 The Power of Low-Degree Polynomials
This section of the survey builds upon the concepts presented by Justin Thaler [Tha19]
during the Proofs, Consensus, and Decentralizing Society Boot Camp in 2019. Thaler’s
insightful discussion on the power of low-degree polynomials in verifiable computing serves
as the backbone for the detailed explanations and proofs provided herein.

4.1 Example: Equality Testing
Two parties (i.e., Alice and Bob) each have an equal-length binary string:

a = (a1, a2, ..., an) ∈ {0, 1}n | b = (b1, b2, ..., bn) ∈ {0, 1}n.

They want to collaborate with each other (No malicious user) to determine whether a ≡ b,
while exchanging as few bits as possible.

4.1.1 A trivial solution

Alice sends a to Bob, who checks whether a ≡ b. The communication cost is n, which is
optimal amongst deterministic protocols.

4.1.2 A logarithmic cost randomized solution

According to [Tha22, Section 2.3], let F be any finite field with |F | ≥ n2, then we interpret
each ai, bi as elements of F : Let p(x) =

∑n
i=1 ai × xi and q(x) =

∑n
i=1 bi × xi

1. Alice picks a random r in F and sends (r, p(r)) to Bob.

2. Bob calculates q(r), outputs EQUAL iff. p(r) ≡ q(r), otherwise output NOT-EQUAL.

• Total Communication Cost: O(log n) bits
Since there are at least total n2 elements in F , to represent each of the elements,
we need log(|F |) = log(n2) = 2 log(n) = O(log n) bits.

3. If a ≡ b: Then Bob outputs EQUAL with probability 1

4. If a ̸= b: Then Bob outputs NOT-EQUAL with probability at least (1 − 1
n ) over the

choice of r in F .

A detailed proof of this statement will be given in the section 4.2.

4.2 Low-degree Polynomials
4.2.1 Field

Field arises from the need for a structured and versatile system in mathematics and science
to perform algebraic operations in a consistent and predictable way.

A field is a set equipped with two operations, addition and multiplication, along with
their respective inverses, subtraction and division (except division by zero). Operations
in a field follow specific rules, such as commutativity, associativity, and distributivity,
ensuring that the result of any operation between elements of the field remains within the
field itself (closure). Here are some non-field examples:

• The set of 2x3 matrices cannot perform multiplication.

• The set of 2x2 matrices, multiplication between any two elements is not commutative.
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• Some of the elements in set Z/6Z (integers modulo 6) do not have multiplicative
inverses.
A number a in Z/6Z has a multiplicative inverse if there exists a number b in Z/6Z
such that a × b ≡ 1 (mod 6). For example, 2, 3, 4 do not have a multiplicative
inverse, in fact, integers mod p (Z/pZ) is a field when p is a prime number.

4.2.2 Reed-Solomon Error Correction

Since there are total n bits of a and b, the lowest-degree polynomials that for us can
ensure the uniqueness of representation of each ai and bi is n. Which means each bit ai

(and correspondingly bi) is uniquely represented as the coefficient of a distinct term in the
polynomial and affects the polynomial differently. And that is why we need to define p(x)
and q(x) in the following way for error detection in equality testing:

p(x) =
n∑

i=1
ai × xi

q(x) =
n∑

i=1
bi × xi

Theorem 3. Any non-zero polynomial d(x) of degree n has at most n roots

Proof. Assume the polynomial has more than n roots. Let r1, r2, ..., rn+1 be distinct
elements of the field F , such that d(ri) = 0 for each i = 1, 2, ..., n + 1. Then the polynomial
d(x) can be written as:

d(x) = (x − r1)(x − r2)...(x − rn+1)q(x)

where q(x) is some polynomial of degree m ≥ 0 and (x − ri) are factors corresponding
to the roots. Then the product of (x − r1)(x − r2)...(x − rn+1) is a polynomial of degree
n + 1. This assumption leads to a contradiction. Hence the polynomial d(x) can have at
most n distinct roots.

Theorem 4. In section 4.1, if a ̸= b, then the probability of Bob is wrong is at most 1
n

Proof. In equality testing, if p(x) ̸= q(x), then the chance that Alice picks a random r
in F such that d(r) = p(r) − q(r) ≡ 0 is at most ( n

|F | ≤ n
n2 ≤ 1

n ). The reason is that a
n-degree polynomial d(r) = p(r) − q(r) has at most n roots, a randomly picked value r in
F of size n2 will only let d(r) equal to zero with a probability ( n

n2 = 1
n ).

4.2.3 Polynomials are Constrained by Their Degree

As we can see that, A polynomial d(x) of degree n over a large field F is uniquely determined
by its values on n + 1 distinct points. (one extra constant coefficient with no variable)

If p(x) is not equal to q(x), then they can only agree on at most n points (d(x) =
p(x) − q(x) = 0), meaning they differ at most everywhere on the field. (Any two
polynomials of degree n can agree in at most n places, unless they agree everywhere.) This
strong divergence is very useful and powerful for error detection.

The Power of Low-degree Polynomials In practice, we aim to keep the degree of a
polynomial as low as possible while ensuring that each term uniquely affects the polynomial.
A polynomial of degree n has n + 1 terms, each with a distinct power of x and a unique
coefficient, which ensures that every term influences the polynomial differently. Low-degree
polynomials are powerful because if two polynomials differ, they will diverge over many



14 A Survey of Interactive Verifiable Computing

points when evaluated multiple times with efficient evaluation. This makes discrepancies
clear across a larger number of evaluations. In cryptography, this property allows for
efficient detection of errors or differences, especially when random evaluations are used.

4.3 Example: Freivalds’s algorithm for Verifying Matrix Products
Input are two (n × n) matrices A, B. The goal is to verify the correctness of A · B. The
time complexity of matrix multiplication is O(n3), this is because each element in the
resulting matrix A · B is computed by taking the dot product of a row of A and a column
of B. For each of n2 elements in the resulting matrix, you perform n multiplications and
additions, leading to a total of O(n3) operations. The best bound of matrix multiplication
algorithm for now is O(n2.371552) [WXXZ24].
If a P claims the answer of A · B is a matrix C? Can V verify it in O(n2) time?

O(n2) Protocol:[Fre77]

1. V picks a random r in F and lets x = (r, r2, ..., rn).

2. V computes C · x and A · (B · x), accepting if and only if they are equal.

Runtime Analysis: V’s runtime dominated by computing 3 matrix-vector products,
each of which takes O(n2) time.

• C · x is one matrix (n × n) times a vector (n × 1), the time complexity is O(n2).
Because each row of B is multiplied by the vector x, requiring n multiplications and
n additions per row, and there are n rows.

• (A · B) · x = A · (B · x) takes two matrix-vector multiplications.
Matrix multiplication is associative, B · x takes O(n2) first, and produces a (n × 1)
matrix M , then A · M will also take O(n2).

Correctness Analysis:

• If C ≡ A · B:
Then V accepts with probability 1

• If C ̸= A · B:
The V rejects with high probability at least (1 − 1

n ).

Simplified Proof. Recall that x = (r, r2, ..., rn). So each matrix-vector multiplication is the
polynomials we’ve seen in section 4.2.2 Reed-Solomon Error Correction at r of the i-th row
of C. So if one row of C does not equal the corresponding row of A · B, the fingerprints for
that row will differ with probability at least (1 − 1

n ), causing V to reject w.h.p.

4.4 Function Extensions
4.4.1 Schwartz-Zippel Lemma

The Schwartz-Zippel Lemma[Sch80] is an extension of univariate error-detection to multi-
variate polynomials. If p and q are distinct l-variate polynomials of total degree at most
d. Then the same kind of statement holds. If we evaluate them at randomly chosen inputs,
they agree at the probability at most d

|F | .
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Total Degree: The total degree of a polynomial is the maximal of the sums of all the
powers of the variables in one single monomial.
For example: deg(x2yz4 − 3y + 4xe5 − xy3z2) = 7 (first monomial).

4.4.2 Extensions

An extension polynomial bridges the gap between a function defined on a discrete set of
points and a function defined over a continuous (or larger discrete) domain.

A l-variate polynomial g over F is said to extend f if and only if g agrees at all of the
input where f is defined. For example: We are given a function f that maps l-bits binary
strings to a field F . This means f is defined on all possible combinations of l bits ({0, 1}l).
But it is only defined on a finite set of points (the binary strings), which usually cannot
form a field, where we can leverage algegratic tools of polynomials.

A function g is said to extend f if:

• For all x ∈ {0, 1}l, f(x) = g(x).

• g is defined on a larger field

Let’s say l = 1, then f is defined on input set {0, 1}, where f(0) = 2, f(1) = 3. If we
want to extend f to field R (real numbers), then our objective is to find a polynomial g(x)
in R such that g agrees with f on all inputs where f is initially defined. (i.e., g(0) = 2,
and g(1) = 3). We can find g(x) = x + 2 defined for all x in R, not just {0, 1}.

By representing f as a polynomial g, we can apply the rich toolbox of algebraic
methods and theorems available for polynomials. For example, Schwartz-Zippel
Lemma is more powerful when there is a low-degree extension represents that function.

4.4.3 Constructing Low-Degree Extensions

In this section, we present a general way to construct low-degree extensions.

Notations: There is a vector w = (w0, w1, ..., wk−1) in F k. W : Hm → F : We define a
function W : Hm → F such that W (z) = wa(z) if a(z) ≤ k − 1, and W (z) = 0 otherwise.

• W acts as a way to represent the vector w as a function over Hm that for indices
corresponding to elements of w, W (z) returns the corresponding wi, otherwise 0.

• a(z) : Hm → F is the lexicographic order of z, which means transforming an
m-element vector to an index in the original w.

Low-Degree Extension W̃ : F m → F : W̃ is an extension of W input from Hm to F m,
such that W̃ is a polynomial of degree at most |H| − 1 in each variable, which enables
efficient computation and has nice algebraic properties.
The degree of W is at most |H|-1 can be understood in the following cases:

Univariate Case: W (x) : H → F :

• We have n = |H| distinct points in the subset H.

• For each h ∈ |H|, we want W̃ (x) : F → F ) to satisfy W̃ (h) ≡ W (h). A univariate
polynomial of degree at most (|H| − 1) can be uniquely determined by its
values on those n points.
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Multivariate Case: W (x) : Hm → F m

• Similarly, we have a m-dimensional grid Hm, where H ⊆ F and |H| = n.

• A polynomial W̃ (x1, x2, ..., xm) (in m variables) that:

1. Agrees with W on every point in Hm (i.e., W̃ (h) = W (h) for all h ∈ Hm.
2. Has degree at most |H| − 1 in each variable. (i.e., for each variable xi, the

highest exponent of xi in W̃ is ≤ |H| − 1. In other words, just like in the
univariate case (where we need deg(W̃ ) ≤ |H| − 1 to interpolate |H| points),
here each variable is similarly bounded by |H|−1. This ensures W̃ can uniquely
"pass through" all the points specified by W on Hm.

The low-degree extension is the simplest polynomial that fits all the given points in Hm,
The size of H determines how "complex" the polynomial needs to be (i.e., degree) in order
to pass through all those points without ambiguity.

Here is the full definition of W̃ : F m → F :

W̃ (t1, ..., tm) =
k−1∑
i=0

B̃i(t1, ..., tm) · wi.

Indicator Function: B̃i : F m → F The polynomials B̃i act as an indicator functions on
Hm, on that field, B̃i(z) = 1 if and only if i ≡ a(z) = a(t1, ..., tm). Otherwise B̃i(z) = 0.

Outside Hm (in F m/Hm, B̃i takes on values determined by its polynomial extension,
which means when input is outside Hm, W̃ can have sum of multiple terms.

Sum Selection: W̃ : F m → F W̃ is a low-degree polynomial, summing all possible k
indexes i from 0 to k − 1, in the field of Hm. According to the definition of B̃i there will
be only one "selected" corresponding wi which is equal to W̃ .

Lagrange Basis Polynomial: B̃(z, p) : F m → F Also, we can express W̃ (t1, ..., tm) as:

W̃ (z) =
∑

p∈Hm

B̃(z, p) · W (p)

Which constructs the polynomial W̃ by summing the contributions from all basis polyno-
mials B̃(z, p), each weighted by W (p).

• B̃(z, z) = 1, B̃(z, p) = 0 for all z ∈ Hm where z ̸= p

• When z outside Hm, B̃(z, p) can be other values

This means, when z is in F m/Hm, each B̃(z, p) is a polynomial in z and can be
evaluated at any z in F m. And To compute W̃ (z), which means by summing over all
W (p) ∈ Hm that has valid B̃(z, p). Since W is only defined in the field Hm. And the
low-degree polynomial property still holds. By enlarging the input field (F m) while keeping
the degree of W̃ low, this way of constructing LDE W̃ helps us effectively using the power
of randomness to detect the potential error.
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4.4.4 Multilinear Extensions

A multilinear extension of a function f : {0, 1}n → F (where F is a finite field) is a
polynomial f̄ : F n− > F that agrees with f on {0, 1}n and is multilinear, which means
each variable xi in f̄ has a degree at most 1, which make them highly effective to evaluate.
(a univariate f by make other variables constants will become a linear function).

And since multilinear polynomials have minimal degree, the error detection probability
is maximized for a given field size.

5 The Sum-Check Protocol
Suppose given a l-variate polynomial g defined over a finite field F . The purpose of the
sum-check protocol [LFKN90] is to compute the sum:

H :=
∑

b1∈{0,1}

∑
b2∈{0,1}

...
∑

bl∈{0,1}

g(b1, b2, ..., bl)

In applications, this sum will often be over a large number of terms, so V may not
have the resources to compute the sum without help. Instead, she uses the sum-check
protocol to force P to compute the sum for her. V wants to verify that the sum is
correctly computed by P , where g is a known multivariate polynomial over finite field F.

5.1 Initialization
P claims that the total sum equals a specific value H0.

5.2 First Round

Protocol 1 First Round of the Sum-check Protocol

1. P sends a univariate polynomial s1(x1) to V, which is claimed to equal:

s1(x1) :=
∑

b2∈{0,1}

∑
b3∈{0,1}

...
∑

bl∈{0,1}

g(x1, b2, ..., bl)

2. V calculates s1(0) + s1(1) and checks whether that value is equal to H0.
Since s1 is a univariate polynomial, V can compute s1(0) + s1(1) directly (not using
structure of H0) in relatively short amount of time.

3. V picks a random element r1 from F and sends it to P.

4. V sets H1 := s1(r1) for use in the next iteration.

H1 = s1(r1) :=
∑

b2∈{0,1}

∑
b3∈{0,1}

...
∑

bl∈{0,1}

g(r1, b2, ..., bl)
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5.3 Iterative Rounds (i = 2 to l)
For each round i (i from 2 to l):

Protocol 2 Round i to l of the Sum-check Protocol

1. P sends a univariate polynomial si(xi) to V, claimed to equal:

si(xi) :=
∑

bi+1∈{0,1}

...
∑

bl∈{0,1}

g(r1, ..., ri−1, xi, bi+1, ..., bl)

Which represents the partial sum over variables bi+1 to bl, with b1 to bi−1 fixed to
random values chosen by V in previous rounds.

2. V calculates si(0) + si(1) and checks whether that value is equal to Hi−1. Hi−1 is
the sum in the previous iteration: si−1(ri−1):

Hi−1 := si−1(ri−1) :=
∑

bi∈{0,1}

...
∑

bl∈{0,1}

g(r1, ..., ri−1, bi, ..., bl)

3. V picks a random element ri from F and sends it to P.

4. V sets Hi = si(ri) for use in the next iteration.

Hi = si(ri) :=
∑

bi+1∈{0,1}

...
∑

bl∈{0,1}

g(r1, ..., ri, bi+1, ..., bl)

5.4 Final Check
In the final iteration:

Hl = sl(rl) := g(r1, r2, ..., rl)

All bi in the original equation of g(b1, ..., bl) has been fixed to the random number ri chosen
by V in previous l rounds. V then checks whether sl(rl) is equal to g(r1, r2, ..., rl) by
calculating it herself. If sl(rl) is equal to g(r1, ..., rl), V accepts.

5.5 Soundness of the Sum-Check Protocol
Theorem 5. The Sum-check Protocol is Sound and Complete.

Completeness holds by design: If P sends the prescribed messages, then all of V’s check
will pass. Let’s prove the soundness of the protocol:

Proof. The Sum-Check Protocol is Sound:
The Section 5.4 Final Check is the most crucial part, and plays a key role in understanding
this protocol. In the last step, V directly computes g(r1, r2, ..., rl) and sl(rl) to check
whether they are equal, note that this is the only time for V to actually compute l-variate
polynomial g by herself.

This direct comparison is critical because it anchors the entire verification process to
the actual function g. According to Schwartz-Zippel Lemma, in the final check, if sl ≠ g,
then the probability g(r1, ..., rl) equal to sl(rl) is less than d/|F |. (d is the Total Degree of
polynomial g and sl).
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Backward Reasoning: By working backwards from the last iteration, We can under-
stand the correctness of each step based on the validity of the final check:

In the last step, if the equality of g(r1, ..., rl) and sl(rl) holds, with high probability,
sl(xl) must be the correct polynomial of g(r1, ..., xl), because a dishonest P would
need to guess rl to fake sl(xl) in order to pass the test, and the chance of success is less
than d/|F |, where d is the totdal degree of polynomial g over field F .
If V can confirm sl(xl) is correctly formed w.h.p in Final Check where:

sl(xl) := g(r1, ..., rl−1, xl)

Then in iteration (l − 1), sl−1(rl−1) can be written as:

sl−1(rl−1) =
∑

bl∈{0,1}

g(r1, ..., rl−2, rl−1, bl)

= g(r1, ..., rl−1, 0) + g(r1, ..., rl−1, 1)
= sl(1) + sl(2)

Thus, sl−1(xl−1) must be correctly formed w.h.p based on correct sl(xl).

Inductive Case: If si(xi) is correctly formed in round i For any round i, if we can
make sure si(xi) is correctly formed w.h.p that:

si(xi) =
∑

bi+1∈{0,1}

...
∑

bl∈{0,1}

g(r1, ..., ri−1, xi, bi+1, ..., bl)

Backwards to its previous round:

si−1(ri−1) =
∑

bi∈{0,1}

...
∑

bl∈{0,1}

g(r1, ..., ri−1, bi, ..., bl)

=
∑

bi+1∈{0,1}

...
∑

bl∈{0,1}

g(r1, ..., ri−1, 0, bi+1, ..., bl)

+
∑

bi+1∈{0,1}

...
∑

bl∈{0,1}

g(r1, ..., ri−1, 1, bi+1, ..., bl)

= si(1) + si(2)

Then, with high probability, si−1(ri−1) should be correct, which indicate si−1(xi−1) should
also be correctly formed. By induction, in the first round, since s2(x2) is correctly
formed, then w.h.p s1(x1) = s2(0) + s2(1) should be formed correctly. And thus
w.h.p, H0 = s1(0) + s1(1) should be the correct answer. So far, we’ve proved the
soundness of the protocol.

Summary: We’ve proved the soundness of the sum-check protocol by showing that:
According to Schwartz-Zippel Lemma, with high probability a dishonest P cannot initially
fake a incorrect H0 that won’t break the consistent in every round of the protocol and
causes a correct sl(rl) equals to g(r1, ..., rl) in the final round.
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5.6 Analyzing the Sum-Check Protocol
5.6.1 A Scenario where V cannot Compute g(r1, ..., rl)

The soundness is relying on the final check, by validating the final step, V effectively
validates all prior steps due to their interdependence in the chain of validations. For
example, here we show a specific cheating strategy when V cannot compute g(r1, ..., rl) by
herself:

Imagine a dishonest P consistently uses different function j(x) instead of the correct
function g(x) throughout the protocol. In this scenario, P computes all the partial sums
and polynomials correctly with respect to j(x), ensuring consistency at each step, P only
deviates from the correct computation at the final check when V computes g(r1, ..., rl).

During the protocol, V only computes g(x) in the final check, the only point of detection
is the final check, and the probability of detection is d

|F | . But if there is no final check,
which means the protocol ends at round l, V cannot have any guess of what function
P used to compute H0.

5.6.2 Probability of Successful Cheating by P in Sum-check Protocol

In this part, we are going to quantify the probability for a dishonest P can successfully
convince V for the wrong computation H0.
Claim. For sum-check protocol on polynomial g : F l → F with total degree d, if P is
cheating at any round, the upper bound for V to accept is: ld/|F |.
Proof. For any round i, let’s assume what a dishonest P sends to V (si(xi)) is formed
incorrectly (i.e., si(0) + si(1) ̸= si−1(ri−1), deviation at round i), then.

In round i, si(ri) is set to Hi by V (in round l, Hi becomes to g(r1, ..., rl)). The
probability for P to provide si to satisfy polynomial Hi−si(ri) = 0 with randomly
selected ri by V from field F is d

|F | , where d is the total degree of polynomial g and s,
according to Schwartz-Zippel Lemma.

If si(ri) ̸= Hi, P is left to prove a false claim in the recursive call: P must
construct si+1(xi+1) such that si+1(0) + si+1(1) = si(ri). This means si+1(ri+1) must
deviate from true Hi+1, leading to a new error polynomial in subsequent rounds.

Thus, we can get the the cumulative probability of acceptance when P deviates at
round i and V does not detect in rounds i + 1 to l and end up accepting: (l−i)d

|F | .
This summation approach accounts for the fact that each round provides an independent

opportunity for V to catch cheating, effectively adding an "error margin" with each
additional round. Thus, more rounds increase the total soundness error linearly, rather
than multiplicatively, then we have:

P [A] ≤ P [Di] + P [Di+1,l]

≤ d

|F |
+ (l − i)d

|F |

= (l − i + 1)d
|F |

Where A denote "V accepts", Di denote "V does not detect at i", and Di+1,l denote "V
does not detect in {i + 1, . . . , l}".

The possibility of acceptance when P deviates at round i is (l − i + 1)d/|F |.
The worse-case scenario is that if P deviates in the first iteration (i = 1) (Error Margin),
the total probability of acceptance is:

d

|F |
+ (l − 1)d

|F |
= ld

|F |
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5.6.3 Example: l = 2

Let’s consider a minimum sum-check protocol with l = 2 by working backward from the
last iteration to understand the soundness:

1. Final Check:

(a) V computes g(r1, r2)
(b) Comparison with P’s s2(r2)

If the equality holds, with high probability, s2(x2) must be correct polynomial
g(r1, x2), because a dishonest P would need to guess r2 to fake s2(x2).

2. Round 2: Since s2(x2) that P sends to V is confirmed to be correct, the sum:
s2(0) + s2(1) = g(r1, 0) + g(r1, 1) = H1 must be satisfied. This confirms that H1 is
correctly computed based on s2(x2).

3. Round 1: At the end of this round, P sets H1 = s1(r1). Since H1 is now confirmed
to be g(r1, 0) + g(r1, 1), it implies s1(r1) = g(r1, 0) + g(r1, 1), thus s1(x1) is correct
polynomial

∑
b2∈{0,1}g(x1, b2) w.h.p, any deviation would be detected with high

probability due to the random r1.

4. Initialization: V check s1(0) + s1(1) = H0 Since s1(x1) is correct w.h.p, then H0
should be correctly formed based on s1(x1).

V only needs to perform a few evaluations of univariate-polynomials and checks (except
the final check g), making the protocol practical even for large computations.

5.7 coNP ∈ IP
Having introduced the sum-check protocol, we now demonstrate how it empowers interactive
proof systems to verify statements in coNP efficiently. Recall from Section 2.5 the Cook–
Levin Theorem, which establishes that the SAT problem is NP -complete. Consequently,
any problem in NP can be transformed into an instance of SAT in polynomial time. A
canonical example is the HAMPATH problem, which asks whether a given directed graph
G contains a Hamiltonian path.

In this subsection, we turn our attention to complements of NP problems, such as
Co-Hamiltonian Path (Co-HAMPATH), which asks whether a directed graph does not
contain a Hamiltonian path. Traditional NP proof systems do not straightforwardly provide
a “short certificate” for the non-existence of certain structures (e.g., no Hamiltonian path).
Therefore, their capability to verify statements in coNP is limited.

By leveraging the sum-check protocol, we can Specifically, we reduce any coNP problem,
such as Co-HAMPATH, to a corresponding #SAT instance. For instance, proving that
#SAT(ϕ) = 0 (i.e., ϕ has no satisfying assignments) corresponds to showing there is no
Hamiltonian path in G. The key insight is that verifying a #SAT claim via the sum-check
protocol can be done in polynomial time with the help of an interactive P–V framework.

Therefore, by composing these steps—polynomial-time reduction to #SAT plus an
efficient interactive verification protocol (sum-check)—we conclude that every problem in
coNP admits an interactive proof system.

Theorem 6 ([Sha92]). #SAT ⊆ IP.

Let #SAT be the number of satisfying assignments of Boolean formula ϕ.

#SAT = {⟨ϕ, k⟩ | k = #ϕ}
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Proof. #SAT ⊆ IP [Sip97][Chapter 10].
[Sipa]Assume ϕ has m variables (x1, ..., xm), let ϕ(a1, ...ai) be ϕ with x1 = a1, ... , xi = ai

for a1, ..., ai ∈ {0, 1}. Then we call a1, ..., ai presets, the remaining xi+1, ..., xm stay as
unset variables. Then equivalently:

#ϕ(a1, ..., ai) =
∑

ai+1,...,am∈{0,1}

ϕ(a1, ..., am)

#ϕ(a1, ..., ai) = #ϕ(a1, ..., ai, 0) + #ϕ(a1, ..., ai, 1)

We can apply the sum-check protocol on #ϕ if ϕ is a low-degree polynomial. By going
gate-by-gate through ϕ, we can replace each gate with the gate’s arithmetization:

NOT(x) → 1 − x

AND(x, y) → x × y

OR(x, y) → x + y − x × y

To complete the proof of the theorem, we need only show that V operates in probabilistic
polynomial time, let’s use g(x1, ..., xm) : {0, 1}m → {0, 1} to denote the low-degree
polynomial of #ϕ. For 0 ≤ i ≤ m and for a1, ..., ai ∈ {0, 1}, let

g(a1, ..., ai) =
∑

ai+1,...,am∈{0,1}

ϕ(a1, ..., am)

For Boolean formula ϕ with S gates, where each gate can affect the overall degree at most
2 (AND(x, y) = x × y). In the worst-case scenario (where there are all AND gates in ϕ),
the boolean formula ϕ, which is tree-like with each gate having a single output path and
no shared sub-expressions, the degree of the polynomial representing ϕ can be up to 2D,
where D is the depth of the formula. For a balanced formula, the depth D is in O(log S),
therefore, the degree of g is at most 2log S = O(S). So for V , in each round:

Communication Cost: Since polynomial g : {0, 1}m → {0, 1} can be represented by its
coefficients, requiring at most O(S) elements (the degree of g), P sends a polynomial s
of degree equal to g to V, which is in size O(S), and V sends one field element r in each
round. The total communication cost is O(m · S).

V Time Complexity: It takes O(S) time for V to process each of m messages (s in
degree O(S)) of P, and O(S) time to evaluate g(r). The total cost is O(m · S).

In other words, the non-existence of certain objects (e.g., a Hamiltonian path) can be
certified interactively without requiring an exhaustive search over all possibilities by V
using the interactive sum-check protocol.

5.8 Limitation of the Sum-Check Protocol
However, while V’s runtimes scales linearly with the circuit size, the practical limitation lies
in the P’s runtime. In each of the m rounds, P must compute the univariate polynomial
gi by summing over all 2m−i possible assignments of the remaining m − i variables, since
g has degree S, P’s runtime complexity becomes O(Sm · 2m). This exponential time
requirement makes the sum-check protocol impractical for even relatively simple problems,
as P cannot feasibly perform the necessary computations.
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6 General Purpose Interactive Proof Protocol

6.1 Introduction to the GKR Protocol
6.1.1 Recall: The Notion of Interactive Proofs in 1980s

Recall Interactive Proof Systems in 80s[GMR85], when the IP model first came out, it was
only a theoretical model, which means no one cares about the runtime of the all-powerful
P. At that time, the idea[Kal] was people want to see how expressive, which computation
can P prove to a polynomial time V by using interactive proofs.

6.1.2 Delegating Computation: Interactive Proofs for Muggles

In the [GKR08] paper, the author introduced a protocol that can be used to effectively
for both P and V to prove/verify the correctness of general purpose computation.
More formally: For any question/language computable by a boolean circuit C with depth
d and input length n, the protocol can ensure:

• The costs to V grow linearly with the depth d and input size n of the circuit, and
only logarithmically with size S of the circuit.

• P’s running time is polynomial in the input size n.

6.1.3 Blueprint of the Protocol

Layered Circuit: The protocol divides circuit C into d phases, since for each phase i,
if its gates value is wrong, then some gates’ value in phase (i + 1) must be wrong. More
specifically, some gates that are connected to the error gates in layer i+1 must be incorrect.

Local Correctness: We run a local sum-check protocol at each phase/layer to ensure
local correctness by defining a function Vi : F si → F (where si := logSi, the bits to
represent # gates in layer i), for any gate gi in that layer i, running Vi(gi) will give us
the corresponding gate value of gi. By running d-subprotocols of each layer, where each
protocol show connections between layer i and its layer before (i + 1). (More specifically,
if Vi is not correct, then w.h.p Vi+1 is not correct). Eventually, it will be reduced to
a claim about the input values (layer d), which are known to V .

6.2 Notations of the GKR Protocol
Assume without loss of generality, circuit C has d layers, which means that each gate
belongs to a layer, and each gate in layer i is connected by neighbors (determined) only in
layer i + 1. In a nutshell, the goal of the GKR protocol introduces a layered approach to
circuit verification, significantly reducing P ’s runtime to polynomial time.
Notations: [Kal24]Convert C to a layered arithmetic circuit with fan-in 2 with layer d,
and only consists of gates of the form ADD and MULT. fan-in 2 means each gates in
the i-th layer takes inputs from two gates in the (i+1)-th layer. We denote the number of
gates in layer i as Si, and let si to be the number of input elements of layer i. (si = log Si)
We define function Vi(zi) at each layer i to return the value of that gate with index zi

5:

Vi : Hsi → F where H = {0, 1} and si = log Si

5In practice, we often choose m = log Si
log logSi

and H = {0, 1, ..., log S − 1} to ensure F si is not super-
polynomial in size, for simplicity, here we use binary value as input.
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We designate V0 as corresponding to the output of the circuit, and Vd as corresponding
to the input layer. To define Vi for 1 ≤ i ≤ d, recall the function W from Section 4.4.3.
Consider layer i of the circuit C as a vector of Si gates:

g = (g1, g2, . . . , gSi
),

where each gj represents the value of the j-th gate in that layer.
Define the function Vi : Hsi → F as follows:

Vi(z) =
{

ga(z) if a(z) is a valid gate in layer i,

0 otherwise.

Note that for every p ∈ Hsi , we can express Vi(p) in the circuit as:

Vi(p) =
∑

w1,w2∈Hsi+1

(addi(p, w1, w2)×Vi+1(w1)+Vi+1(w2))+(multi(p, w1, w2)Vi+1(w1)×Vi+1(w2))

where addi(multi) takes one gate label p ∈ Hsi of layer i and two gate labels w1, w2 ∈ Hsi+1

in layer i + 1, and outputs 1 if and only if gate p is an addition (multiplication) gate that
takes the output of gate w1, w2 as input, and otherwise 0.

Protocol 3 Constructing Multilinear Extensions of Vi at Layer i
In the i-th phase (1 ≤ i ≤ d): P runs a local protocol with V to argue for the correctness
of Vi. To do this, a local sum-check protocol of layer i will be applied, however, recall
that the sum-check protocol only works if the expression inside the sum is a low-degree
(multi-variate) polynomial, so let’s try to convert Vi(p) to corresponding multilinear
extensions by leveraging the Lagrange basis polynomial introduced in section 4.4.3, for
z ∈ F si :

Ṽi(z) =
∑

p∈Hsi

B̃(z, p) × Ṽi

′
(p)

Where Ṽi

′
(z): F s0 → F refers to the LDE of Vi(p) :

Ṽi

′
(z) =

∑
w1,w2∈Hsi+1

(ãddi(z, w1, w2)×(Ṽi+1(w1)+Ṽi+1(w2)))+(m̃ulti(z, w1, w2)×Ṽi+1(w1)×Ṽi+1(w2))

Let ãddi, m̃ulti : F si+2si+1 → F be the LDEs of addi and multi, respectively. By replacing
Ṽi

′
(p) to its definition, we can get for every zi in F si , let fi,zi

: Hsi+2si+1 → F where:

fi,zi
(p, w1, w2) = B̃(zi, p)×[(ãddi(p, w1, w2)×(Ṽi+1(w1)+Ṽi+1(w2)))+(m̃ulti(p, w1, w2)×Ṽi+1(w1)×Ṽi+1(w2))]

Then Ṽi(zi) : F s0 → F can be expressed as:

Ṽi(zi) =
∑

p∈Hsi

∑
w1,w2∈Hsi+1

fi,zi
(p, w1, w2)
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6.3 GKR Protocol at Layer 0
To begin with, let’s describe the local sum-check protocol at layer 0 (the output layer) to
show the idea of the GKR protocol. Recall:

• Layer 0 (Output Layer): Contains a single gate z0.

• Layer 1: Contains gates wj in Hsi+1 , each associated with their LDEs Ṽi+1(wj).

In layer 0, P and V’s task is to reduce the claim of Ṽ0(z0) = r0 to the claim of Ṽ1(z1) = r1,
where z1 ∈ F s1 is a random value selected by V in layer 1.

Protocol 4 Sum-check Protocol at Layer 0

1. Initial Claim: P claims that Ṽ0(z0) = r0, according to the definition of Ṽ0, r0 is
the output of the circuit C.

2. Round 1: P computes a univariate polynomial g1(w1) : F s1 → F defined as:

g1(w1) =
∑

w2∈Hs1

f0,z0(z0, w1, w2)

Which encapsulates the partial sum over w2 for each fixed w1 in layer 1.
P then sends g1 to V, V needs to ensure that the total sum over all w1 equals r0,
this is done by verifying that: ∑

w1∈Hs1

g1(w1) ≡ r0

V then selects a random value z1 ∈ F s1 and sends to P.

3. Final Round: P computes a univariate polynomial g2(w2) : F s1 → F defined as:

g2(w2) = f0,z0(z0, z1, w2)

P then sends g1 to V, V then picks a random value z2 ∈ F s1 and verify the
correctness of g2 on her own: Let’s recall the definition of fi,zi

: F si+2si+1 → F then
f0,z0(z0, z1, z2) can be defined as:

B̃(z0, z0)×[(ãddi(z0, z1, z2)×(Ṽi+1(z1)+Ṽi+1(z2)))+(m̃ulti(z0, z1, z2)×Ṽi+1(z1)×Ṽi+1(z2))]

V can compute on her own ãddi and m̃ulti on (z0, z1, z2) ∈ F s0+2s1 (as well as other
(p0, w1, w2) ∈ Hs0+2s1 to check the correctness of the circuit). So as B̃.
The computational burden in this verificational task is computing Ṽ1(z1) and Ṽ1(z2),
since they related to the value of gates in layer 2, 3, ...d.
So instead, in this protocol, P sends both these values r1,1 = Ṽ1(z1) and r1,2 = Ṽ1(z2)
to V, and claim they are true. And then using the following interactive reduction
Protocol 5 to "reduce" two claims into a single claim r1 = Ṽ1(z′

1) used in layer 1.

Here we show the Protocol 5 which encodes two claims into a single polynomial, which
efficiently reduces the verification burden across multiple layers. The reduction protocol
combines the claims r1,1 = Ṽ1(z1) and r1,2 = Ṽ1(z2) into a single polynomial f(r), verified
by V through random challenge r, and in the next round P is left to prove the correctness
of f(r) = r1 ≡ Ṽ1(γ(r)), which is a single claim.
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Protocol 5 Reduction Protocol at Layer 0 [GKR15]

1. Initial Claims: At the end of layer 0, P claims that:

r1,1 = Ṽ1(z1) and r1,2 = Ṽ1(z2)

Both P and V agree on two distinct fixed elements t1, t2 ∈ F .

2. Define Linear Map: V defines the unique linear polynomial γ : F → F s1 such
that:

γ(t1) = z1 and γ(t2) = z2

This linear map effectively creates a line connecting z1 and z2 in the field F s1 .

3. P Sends f to V: P constructs and sends univariate polynomial f(t) : F → F to V
that passes two points (t1, r1,1) and (t2, r1,2) defined as:

f(t) = Ṽ1(γ(t)) = Ṽ1(z1) at t = t1 and Ṽ1(z2) at t = t2

4. V Checks f : V checks that f indeed pass those two claimed points:

f(t1) = r1,1 and f(t2) = r1,2

5. Random Challenge by V: If f is also in correct degree, V can argue the correctness
of f(t) = Ṽ1(γ(t)) by choosing a random element r ∈ F and sends it to P.

6. Verification at Layer 1: P and V sets:

z′
1 := γ(r) and r1 := f(r)

and initiates a Sum-check protocol at layer 1 to verify the correctness of single claim:

r1 = Ṽ1(z′
1)

Soundness of the Reduction Protocol: In our example at layer 0, the protocol
proceeds to layer 1 where a new Sum-check protocol is initiated to verify the correctness
of Ṽ1(z1). And just like previous round, in layer 1, V examines the structure of the circuit
to ensure that Ṽ1(z1) is correctly formed computed based on the circuit’s specifications.

Let us say if P attempts to deceive by constructing an incorrectly f ′(t) that only
satisfies f ′(t1) = r1,1 and f ′(t2) = r1,2, it is highly unlikely that f ′(t) will also satisfy
f ′(r) = Ṽ1(γ(r)) for the randomly chosen r. The reason is due to the random selection
of r by V, which ensures that P cannot predict r in advance to tailor f ′(r) accordingly,
and according to Schwartz-Zippel Lemma [Sch80], if f ′(r) does not correctly represent
Ṽ1(γ(r)), the probability that it passes the check at a random r is negligible for large |F |.
In other words, if the value r1 that r1 = f(r) is consistent according to the sum-check
protocol on r1 = Ṽ1(γ(r)) at layer 1, since r is randomly selected by V, this means f(t) is
correctly formed with definition (f(t) = Ṽ1(γ(t))). And since f passes two points (t1, r1,1)
and (t2, r1,2), we can get that:

r1,1 = f(t1) = Ṽ1(z1) and r1,2 = f(t2) = Ṽ1(z2)

are both correct with high probability.
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6.4 GKR Protocol at Layer d and the Final Check
In layer d, which is very similar to previous phases. P wants to convince V that rd = Ṽd(z′

d),
and at the end of the protocol in this layer, P will send g(z) : F sd → F which refers
to the low-degree polynomial of the input, and V can verify on her own. If all the
input matches, this means function g is correctly formed, thus according to the Sum-check
protocol Ṽd is also correctly formed, and in the previous layer, Ṽd−1 is also valid etc. Thus,
according to the Soundness of the Sum-Check Protocol, especially Backward Reasoning,
we can get V0 is correctly formed, which implies C(x) = r0 should be correct w.h.p.

6.5 Analyzing P ’s Runtime Complexity
The traditional Sum-Check Protocol is a foundational component in interactive proof
systems, enabling the verification of polynomial evaluations over exponentially large
domains. Specifically, recall Section 5.8, in each of m rounds, P must compute a univariate
polynomial si(xi) by summing over all 2m−i possible assignments of the remaining m − i
variables. This results in a runtime complexity of O(Sm · 2m) for P , where S denotes
the degree of the polynomial. Such exponential time requirements make the traditional
Sum-Check Protocol impractical for large-scale computations.

In contrast, the GKR Protocol leverages the structured nature of layered arithmetic
circuits to achieve improved efficiency. Each layer i of the circuit comprises Si gates with
a fixed fan-in of 2, performing either addition or multiplication. Recall Protocol 3, the
gate function Ṽi(zi) is defined as:

Ṽi(zi) =
∑

p∈Hsi

∑
w1,w2∈Hsi+1

fi,zi
(p, w1, w2)

where H represents the set of possible gate indices, and fi,zi
encapsulates the computation

performed by each gate in layer i. the GKR Sum-Check Protocol aggregates contributions
gate-by-gate within each layer, which means considering all gates in layer i + 1, and this is
feasible because the values of gates in layer i + 1 are precomputed and stored. As a result,
P ’s runtime at each layer i becomes poly(Si), where Si is the number of gates in that
layer. This polynomial-time complexity starkly contrasts with the exponential runtime of
the traditional Sum-Check Protocol, underscoring the practicality of the GKR Protocol for
delegating and verifying large computations. By capitalizing on the structural properties
of layered arithmetic circuits, the GKR Protocol ensures that P can efficiently perform
verification tasks, maintaining scalability even as the size of the computation grows.
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