
Post-Quantum DNSSEC with
Faster TCP Fallbacks

Aditya Singh Rawat and Mahabir Prasad Jhanwar∗

Ashoka University, Sonipat, India
{aditya.rawat_phd21,mahavir.jhawar}@ashoka.edu.in

Abstract. In classical DNSSEC, a drop-in replacement with quantum-
safe cryptography would increase DNS query resolution times by at least
a factor of 2×. Since a DNS response containing large post-quantum
signatures is likely to get marked truncated (TC) by a nameserver (re-
sulting in a wasted UDP round-trip), the client (here, the resolver) would
have to retry its query over TCP, further incurring a minimum of two
round-trips due to the three-way TCP handshake.
We present TurboDNS: a backward-compatible protocol that eliminates
two round-trips from the preceding flow by 1) sending TCP handshake
data in the initial DNS/UDP flight itself, and 2) immediately streaming
the DNS response over TCP after authenticating the client with a cryp-
tographic cookie. Our experiments show that DNSSEC over TurboDNS,
with either Falcon-512 or Dilithium-2 as the zone signing algorithm, is
practically as fast as the currently deployed ECDSA P-256 and RSA-2048
setups in resolving QTYPE A DNS queries.

Keywords: Network Security · Post-quantum Cryptography Implemen-
tations · DNSSEC

1 Introduction

A quantum computer running Shor’s period finding algorithm [39] is capable of
solving the factoring and the discrete logarithm problem (DLP) in polynomial
time. Public-key cryptosystems (such as RSA and ECDSA), which base their
security on the preceding assumptions, will therefore need to be replaced with
their quantum-safe counterparts in the imminent future.

Many modern protocols deployed over the Internet, such as SSH and TLS,
rely on asymmetric cryptography for their security. The DNS Security Exten-
sions (DNSSEC) [35,37,36], being one such protocol, employs digital signatures
for validation of DNS responses. Being a mission-critical service, the Domain
Name System (DNS) facilitates the navigation of the Internet by translating a
human-readable domain name (www.example.com) to a machine-understandable
IP address (1.2.3.4). Nowadays, DNS services are also used for email authenti-
cation [21], acquisition of TLS certificates by proving a domain’s ownership [5],
and supporting Internet routing security (RPKI) [26,13].

∗M.P. Jhanwar acknowledges the MPhasis F1 Foundation for their research grant.

2 A.S. Rawat and M.P. Jhanwar

Without DNSSEC in place, DNS remains vulnerable to various cache poi-
soning attacks [8,7,22]. An off-path adversary who can guess the 16-bit UDP1

source port and the 16-bit transaction ID of a DNS query can inject a false
domain-to-IP entry into a resolver’s cache, thereby redirecting the users of the
poisoned resolver to a malicious website. Recently, researchers [27,28] even found
critical vulnerabilities in DNS software stacks that shrunk this search space from
232 to 217, effectively enabling them to compromise resolvers’ caches.

With the quantum era on the horizon, the National Institute of Standards and
Technology (NIST) recently selected Crystals-Kyber [12] as Key Encapsulation
Mechanism (KEM), and Falcon [32], Crystals-Dilithium [16] and SPHINCS+ [9]
as digital signature schemes. In comparison to their classical siblings however,
these algorithms (colloquially referred to under the acronym of PQC i.e. Post-
Quantum Cryptography), have markedly larger public key and signature sizes
as demonstrated in Table 1 below.

Table 1. A comparison of public key (pk) and signature (sig) sizes in bytes

Algorithm Assumption Level Quantum-safe pk sig
ECDSA-P256 ECDLP - ✗ 64 64

RSA-2048 Factoring - ✗ 260 256
Falcon-512 Lattice I ✓ 897 666
Dilithium-2 Lattice II ✓ 1312 2420

SPHINCS+-128s Hash I ✓ 32 7856
Falcon-1024 Lattice V ✓ 1793 1280
Dilithium-5 Lattice V ✓ 2592 4595

SPHINCS+-256s Hash V ✓ 64 29792

1.1 DNS Size Constraints

The sizeable footprint of PQC, as catalogued above, will have major implications
for the global DNS infrastructure. A DNS over UDP message, as originally stan-
dardized, was restricted to a maximum size of 512 bytes. Bearing in mind the
headroom required by DNSSEC (for conveying signatures and public keys), this
size ceiling was later increased to a theoretical value of 64 KB with Extension
Mechanisms for DNS (EDNS0) [40] in 2013.

Unfortunately, a DNS packet exceeding the Path MTU (Maximum Transmis-
sion Unit), which is typically 1500 bytes (<< 64 KB), triggers IP fragmentation
at the intermediary routers. The resulting UDP/IP fragments not only may
never arrive [44,11] due to being blocked by stateless firewalls but also can be
used to exhaust a resolver’s resources [24] or to inject spoofed records in a DNS
response [19]. Additionally, the survey of [44] has revealed that approximately
10% of resolvers fail to handle IP fragments correctly.

1DNS primarily uses UDP at the transport layer.

Post-Quantum DNSSEC with Faster TCP Fallbacks 3

In order to avoid the fragility of network layer fragmentation, DNS messages
are recommended to be at most 1232 bytes in size [4,31]. This conservative limit,
derived as 1280 (IPv6 minimum MTU) − 40 (IPv6 Header) − 8 (UDP Header),
is deemed to obviate IP fragmentation on typical network links [3,30].

For conveying DNS messages larger than 1232 bytes, there are currently two
mechanisms available: 1) TCP fallback and 2) Application layer fragmentation.

TCP Fallback. In the Standard DNS flow, a response is marked as trun-
cated (TC-bit set in the HEADER) if the size thereof exceeds either 1) Resolver’s
advertised edns-udp-size (i.e. the maximum message size it can receive over
UDP), or 2) Nameserver’s max-udp-size (i.e. the maximum message size it can
send over UDP). In BIND (a DNS software), valid values for these parameters
range from 512−4096. If the PMTU is unknown, a default value of 1232 is used.

A resolver receiving a truncated response, which is a copy of the original query
but with TC-bit set, proceeds to discard it (incurring a wasted UDP round-trip)
and retries the query (with a new transaction ID) over TCP after performing a
three-way handshake with the server. Figure 1 elucidates this flow for a DNSSEC-
enabled resolver sending a QTYPE A (IPv4 address) query for www.example.com.
The response, which additionally includes one or more PQC signatures, is marked
as TC because of exceeding the UDP limits.

NameserverResolver
www.example.com A?

UDP

www.example.com (TC)
UDP

SYN

SYN-ACK

ACK

www.example.com A?
TCP

Fig. 1. Standard DNS with TCP Fallback

Application Layer Fragmentation. In this approach, fragmentation is
performed at the application (DNS) layer, thereby circumventing network layer
fragmentation. A large DNS message is split across several fragments, such that
the size of each fragment is ≤ 1232 bytes. Each fragment is then sent over
UDP. Thus, the nameserver becomes responsible for the fragmentation of a DNS
response and the resolver for the subsequent reassembly thereof. Modern upper-
layer fragmentation schemes are request-based in that each fragment has to be
explicitly queried for. Currently, there are two such schemes available:

4 A.S. Rawat and M.P. Jhanwar

1) ARRF [18]. When a DNS response exceeds the UDP limits, the resource
records contained therein are fragmented and sent (upon request) in pseudo-
records of Type RRFRAG. Unfortunately, RRFRAG is a non-standard record Type
which could cause middleboxes to drop the message. ARRF is also vulnerable to
memory exhaustion attacks as acknowledged by its authors in [18]. Lastly, ARRF
requires a minimum of two round-trips to reassemble the full response.

2) QBF [33]. Unlike ARRF, this scheme uses only standard record Type(s)
and fragments raw signature/public key bytes stored in RRSIG and DNSKEY
records, respectively. The implication is that the fragments resemble the original
DNS response, except insofar as they carry partial signatures/public keys. Frag-
ments are requested by encoding the desired fragment number in the QNAME field
of the Question section. Additionally, QBF is secure against memory-depletion
attacks and can reconstruct a DNS response in one round-trip.

1.2 Benefits of TCP Fallback over Fragmentation Schemes

In this subsection, we contrast the two foregoing transport methods: Standard
DNS with TCP fallback and UDP-based fragmentation schemes (ARRF/QBF).

Flow/Congestion Control. Both ARRF (in 2nd round-trip) and QBF (in
1st round-trip) send multiple DNS over UDP packets in parallel. Considering the
absence of a TCP-like flow control in UDP, this deluge of DNS packets can poten-
tially exhaust the bandwidth of busy resolvers and nameservers (which typically
handle thousands of queries per second). Moreover, UDP’s lack of a TCP-like
congestion control could conceivably overwhelm the intermediate routers (lead-
ing to packet drops) or middleboxes such as load balancers, firewalls, etc.

Packet Loss. Unlike TCP, UDP does not guarantee a reliable delivery of
packets. In ARRF/QBF, as the number of signatures to transmit or the sizes
thereof grow (from configuring higher NIST levels), the number of DNS packets
that need to be exchanged also naturally increases. Therefore, the probability
of at least one DNS query/response packet getting dropped during transit also
increases, resulting in unforeseen resolution delays or timeouts.

To provide a perspective, given a 1% packet loss rate and SPHINCS+-128s
as the zone signing algorithm, the probability of at least one ARRF/QBF packet
being lost during transit can be calculated as Pr = 1− (0.99)46 = 0.37, where 46
is the (approximate) total number of DNS packets exchanged during the session.
This implies that, with a one-third probability, a ARRF/QBF SPHINCS+-128s
session will require an extra round-trip.

DDoS Amplification and Reflection. Another concern with ARRF/QBF
is their potential to be exploited for a DDoS attack [23,34,38], wherein small
DNS queries with a spoofed source IP address cause large DNS responses (am-
plification) to be sent out from a nameserver to the target IP device (reflection),
eventually overwhelming the latter or the network thereof. In one of the major
DDoS events, attackers were able to generate 300 Gbps of traffic on a Tier 1
provider using open DNS resolvers [1].

Post-Quantum DNSSEC with Faster TCP Fallbacks 5

Note that conducting such off-path attacks over TCP is not feasible because
of the 3-way TCP handshake. This is because the client’s query is forwarded to
the DNS software only after receiving a valid2 client ACK to the server SYN.

Performance. Because of the three-way handshake and the memory re-
quired to maintain the Transmission Control Block (TCB), TCP is generally
slower and more resource intensive than UDP (which is just a thin wrapper
around an IP packet for providing port numbers). This performance penalty is
exacerbated in Standard DNS since a TCP fallback only occurs after the initial
UDP response is explicitly marked TC by the nameserver.

Note that directly initiating a TCP connection (bypassing the UDP flow)
is suboptimal because it is not straightforward to predict whether a response
would be marked TC by the nameserver. Truncation depends on several factors
(often unknown to the resolver) such as: the algorithm3 with which the zone is
signed, nameserver’s max-udp-size, the number of resource records returned in
each RRSet, whether minimal-responses are on/off, whether the response is
NXDOMAIN containing NSEC(3) data, etc.

An alternative that can improve TCP performance in DNS is TCP Fast Open
(TFO) [14]. In the initial SYN and SYN-ACK phase, a client obtains a TFO cookie
(using a new TCP option) from a server. In later connections, the client supplies
this cookie along with the request data in the SYN packet itself. The server, on
verifying the cookie, makes the client’s request available to the application, and
subsequently starts streaming response packets while the handshake is still in
progress. Unfortunately, a non-trivial number of middleboxes drop packets with
unknown TCP options or SYN packets with data [20,29,25].

1.3 Our Contributions

In this work, we bridge the performance gap between Standard DNS and frag-
mentation schemes. We propose TurboDNS: a backward-compatible protocol that
eliminates two rounds trips from the Standard DNS flow. In particular, the re-
solver sends a SYN, along with a cryptographic cookie, inside the initial DNS
over UDP query. Upon truncation, the nameserver also includes a correspond-
ing SYN-ACK in the TC response. Additionally, on a successful validation of the
cookie, the nameserver forwards the resolver’s query to the DNS software and
immediately begins streaming the full DNS response over TCP.

A comparison of TurboDNS with other transport methods is depicted in Table
2. We now outline the salient benefits of TurboDNS.

Fast 1-RTT Resolution. DNSSEC over TurboDNS, with either Falcon-512
or Dilithium-2 as the zone algorithm, is 2× as fast as Standard DNS (SD) in
resolving QTYPE A queries. Moreover TurboDNS, being 30% faster than ARRF,
matches the resolution speeds of QBF. Refer Fig. 2.

2With Acknowledgment Number = Server Sequence Number + 1
3To be specific, the algorithm of the Zone Signing Key (ZSK). The algorithm of the

Key Signing Key (KSK) can be inferred from the DS record received from the zone’s
parent during the referral. Consult §2.2 for a primer on ZSK, KSK and DS record.

6 A.S. Rawat and M.P. Jhanwar

Table 2. A comparison of TurboDNS with Std. DNS (TCP fallback) and ARRF/QBF

TurboDNS Standard DNS (SD) ARRF/QBF

Fast resolution ✓ ✗ ✓

No packet flooding ✓ ✓ ✗

Reliable ✓ ✓ ✗

DDoS resistant ✓ ✓ ✗

Fig. 2. A comparison of DNSSEC resolution times

TCP Robustness. TurboDNS suffers from none of the issues that affect
UDP-based fragmentation schemes. With TCP’s flow and congestion control,
the end-points along with the intermediate devices are not overwhelmed with
packets. Secondly, thanks to TCP’s re-transmission mechanism, any dropped
segment is recovered, thereby ensuring reliability. Finally, owing to cookie vali-
dation, TurboDNS cannot be misused as a DDoS amplifier and reflector.

Backward Compatibility. TurboDNS uses only RFC standardized resource
record Type(s) and wire format to ensure that messages pass through even the
most stringent of firewalls. Moreover, TurboDNS gracefully falls back to the Stan-
dard DNS flow should one of the end-points happen to be protocol-oblivious.

We implement TurboDNS as a daemon that runs atop the DNS software (such
as BIND or PowerDNS) of resolvers/nameservers. With the daemon in place, no
changes to the TCP kernel stack or the DNS software are required. The daemon
also has the ability of re-computing the TCP checksum, maintaining packet
ordering and dropping superfluous re-transmit packets.

Availability. The software artifact germane to this work is available at:
https://github.com/aditya-asr/turbo-dns.

https://github.com/aditya-asr/turbo-dns

Post-Quantum DNSSEC with Faster TCP Fallbacks 7

2 Preliminaries

Notations. The term resource record (RR) is often referred to as simply a record.
|| represents concatenation. X → Y denotes member Y of an abstract structure
X. For e.g., HEADER → ID denotes the ID field in the DNS HEADER. In the
context of networking protocols, A/B indicates A over B (e.g., DNS/UDP —
DNS (Application layer) over UDP (Transport layer)). RTT stands for round-
trip time. (A)NS is short for (Authoritative) Name Server. While writing fully
qualified domain names (FQDNs). we omit the root label (i.e. the trailing period
(.) as in example.com.).

2.1 Domain Name System (DNS)

We succinctly review the relevant background on DNS. Consider a canonical
domain name: www.example.com. (i.e. with the trailing period (.)). Each label:
(www), (example), (com) and (.) corresponds to a level within the DNS hierarchy,
with the root (.) being at the apex. Under the root come top-level domains or
TLDs (here, com), and within these are second-level domains (here, example),
and then subdomains (here, www).

A nameserver that contains definitive information for the zone is said to be
authoritative for the zone. For e.g., example.com ANS is authoritative over the
Type A record for www.example.com.

DNS Lookup. To retrieve the IP address of www.example.com, the client
(or more precisely, the stub resolver) sends a recursive QTYPE A DNS query to
its resolver (the local DNS server). The resolver, in the event of not having the
answer in its cache, performs the following steps iteratively :

1. It sends a QTYPE NS query to a root (.) ANS, which subsequently responds
with the following records: 1) A Type NS record containing the domain name
of com ANS 2) A Type A record containing the IP of com ANS.

2. It sends a QTYPE NS query to the com ANS, which responds with the fol-
lowing records: 1) A Type NS record containing the domain of example.com
ANS 2) A Type A record containing the IP of example.com ANS.

3. It sends a QTYPE A query to the example.com ANS, which finally responds
with a Type A record containing the IP of www.example.com.

4. It caches and forwards the received IP to the client.

Wire Format. A DNS message is divided into five sections: HEADER,
Question, Answer, Authority, and Additional. HEADER is always present and has
a constant size of 12 bytes. Table 3 presents the wire format of a DNS HEADER.

The Question section consists of the following fields: QNAME (specifies the
domain name encoded in the DNS name notation. For e.g., test.example is
encoded as [4]test[7]example[0]), QTYPE (specifies the type of DNS records
being requested), and QCLASS (specifies the class of the query, by default set to
IN for Internet). The last three sections (Answer, Authority, and Additional) have
the same format: a possibly empty list of concatenated DNS records.

8 A.S. Rawat and M.P. Jhanwar

Table 3. DNS HEADER Wire Format
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ID

QR OpCode AA TC RD RA Z AD CD RCode

QDCount

ANCount

NSCount

ARCount

— ID: used by requester to match a response to its query
— QR: whether message is a query (0) or a response (1)
— AA: whether response is authoritative (1) or not (0)
— TC: whether response is truncated (1) or not (0)
— AD: whether response has authenticated data (1) or not (0)
— RCode: (0) - no error; (1) or FORMERR - query was malformed; (3) or NXDOMAIN -

domain name does not exist

The DNS resource records (RRs) are database entries that provide informa-
tion about a domain name. Each record has the following sections: NAME (specifies
the domain name), TYPE (indicates the type of RR), CLASS (specifies the class
of data, defaults to IN), TTL (time-to-live in seconds i.e. how long the RR can
stay cached), RDLENGTH (specifies the length in bytes of the RDATA field), and
RDATA (contains the actual data associated with the record). The Type A and
AAAA records contain IPv4 and IPv6 addresses in their RDATA fields, respectively.
The Answer section contains records that answer the question; the Authority sec-
tion contains records that point toward an ANS; the Additional section contains
records which relate to the query, but are not strictly answers to the question.

OPT Record. EDNS0 [40] introduces a pseudo-record called OPT (short for
options) in the Additional section of a DNS message. Unlike traditional records,
pseudo-records do not actually exist in a zone file and are instead created on-the-
fly. In queries, a requester specifies the maximum DNS message size it is willing
to accept (also known as EDNS0 buffer or UDP payload size) in OPT → CLASS.
The requester also indicates its ability to handle DNSSEC records by setting the
DO (DNSSEC OK) bit in OPT → TTL. OPT → RDATA contains a set of options,
with each option encoded as shown in Table 4.

Option-Code 10 is assigned to DNS cookies [17] which provide protection
against common off-path attacks such as denial-of-service, cache poisoning, and
answer forgery. The client cookie and the server cookie are calculated as:

— Client Cookie (8 bytes) = Hash(Client IP || Server IP || Client Secret)
— Server Cookie (8-32 bytes) = Hash(Client IP || Client Cookie || Server Secret)

Post-Quantum DNSSEC with Faster TCP Fallbacks 9

Table 4. OPT RDATA Wire Format
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Option-Code

Option-Length

Option-Data

· · ·

2.2 DNS Security Extensions (DNSSEC)

DNSSEC enhances the security of DNS by ensuring the authenticity and integrity
of resource records. It introduces three4 new types of records: Resource Record
Signature (RRSIG), DNS Public Key (DNSKEY), and Delegation Signer (DS).

1) RRSIG. A signature is computed using a secret key (discussed below)
over a set (called an RRset) of DNS records that have the same NAME, CLASS and
TYPE. The resulting signature is stored in an RRSIG record (consult Table 5).

Table 5. RRSIG Wire Format

RRSIG Record
NAME TYPE = RRSIG CLASS TTL RDLENGTH
RDATA

Type Covered Type of records signed
Algorithm Signature algorithm used

Labels Number of labels in the signed name
Original TTL Original time-to-live of the RRs signed

Signature Expiration When the signature expires
Signature Inception When the records were signed

Key Tag ID of the key that can verify the signature
Signer’s Name Name of the signer

Signature sign(RRSIG→ RDATA∥RR(1)∥RR(2)∥ . . .), where RDATA excludes
Signature and RR(i) is the i-th record in the RRset

2) DNSKEY. A DNSKEY record (refer Table 6) stores a public key. Each
zone employs two types of keys: Zone Signing Key (ZSK) and Key Signing Key
(KSK). KSK is used to sign only DNSKEY RRsets while ZSK is used to sign
everything else. When a resolver receives a DNS response with an RRSIG record,
it uses the associated DNSKEY record to verify the signature contained therein.

3) Delegation Signer (DS). The DS record (see Table 7) plays a vital role
in establishing a secure chain of trust between parent and child zones.

4A fourth Type NSEC(3) record, used to verify the non-existence of a record name
and type, is outside the scope of this work.

10 A.S. Rawat and M.P. Jhanwar

Table 6. DNSKEY Wire Format

DNSKEY Record
NAME TYPE = DNSKEY CLASS TTL RDLENGTH
RDATA

Flags Specifies whether the key is a ZSK or a KSK
Protocol Always set to 0x03 to indicate DNSSEC

Algorithm Signature algorithm of the key
Public Key Contains the raw public key bytes

Whenever a resolver verifies RRSIGs using the ZSKpk of a child, it must also
ascertain the authenticity of that key. Recall that the DNSKEY RRset containing
ZSKpk and KSKpk is signed using the child’s KSKsk. Since KSK is ultimately self-
signed, a resolver must also connect the trust thereof with the child’s parent.

To aid resolvers in this endeavour, the child generates a hash of its KSKpk and
shares it with its parent in a DS record. During a DNS lookup, when a resolver
is referred to a child by its parent, the latter provides a DS record containing the
hash of the child’s KSKpk. This DS record is what indicates to the resolver that
the child zone is DNSSEC-enabled. More importantly, the parent also furnishes
an RRSIG on this DS record using its own ZSKsk. To validate the child zone’s
KSKpk, the resolver hashes it and compares it to the DS record from the parent.
Additionally, the resolver also verifies the associated RRSIG of that DS record
using the ZSKpk of the parent.

Table 7. DS Wire Format

DS Record
NAME TYPE = DS CLASS TTL RDLENGTH
RDATA

Key Tag ID of the KSK which is hashed
Algorithm Signature algorithm of the key

Digest Type Hash algorithm
Digest hash(DNSKEY → NAME ∥ DNSKEY → RDATA)

DNSSEC Lookup. This is similar to the DNS lookup described in §2.1,
except that the resolver now sets the DO bit in its query. The following extra
records are therefore returned at each step:

1. The root (.) nameserver also sends com’s DS and RRSIG thereon created with
(.)’s ZSKsk. Additionally, it sends (on an explicit QTYPE DNSKEY query) (.)’s
DNSKEYs and RRSIG thereon created with (.)’s KSKsk. Here, we assume the
resolver already holds (.)’s KSKpk as the trust anchor.

2. The com nameserver also sends example.com’s DS and RRSIG thereon created
with com’s ZSKsk. Additionally, it sends (on an explicit QTYPE DNSKEY
query) com’s DNSKEYs and RRSIG thereon created with com’s KSKsk.

Post-Quantum DNSSEC with Faster TCP Fallbacks 11

3. The example.com server also sends RRSIG created with its ZSKsk on the
Type A record (the answer IP). Moreover, it sends (on an explicit QTYPE
DNSKEY query) its DNSKEYs and RRSIG thereon created with its KSKsk.

On a successful DNSSEC validation, the resolver sends its answer response
to the client with HEADER → AD set.

2.3 TCP Segment

Table 8 illustrates the TCP segment wire format. The TCP Header (includes all
fields of the segment except Data) ranges from 20−60 bytes in size. The Checksum
is calculated over: TCP Pseudo-Header || TCP Header (with Checksum = 0) ||
TCP Data. Note that a correct Checksum is mandatory for a TCP segment.
Lastly, the Control Bits in the Header consists of six bits as shown in Table 9.

Table 8. TCP Segment Wire Format
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port

Sequence Number

Acknowledgment Number

Offset Reserved Control Bits Window

Checksum Urgent Pointer

TCP Options + Padding

· · ·

Data

Table 9. TCP Segment Control Bits
0 1 2 3 4 5

URG ACK PSH RST SYN FIN

— ACK: Segment is carrying an acknowledgment
— PSH: Push data immediately to the receiver’s application
— SYN: Synchronize sequence numbers
— FIN: Finish (close) the connection

12 A.S. Rawat and M.P. Jhanwar

3 TurboDNS

TurboDNS is backward-compatible protocol that eliminates two round-trips from
Standard DNS with TCP fallback (refer Fig. 1). At a high level, it works as
follows: the initial DNS/UDP query from the client carries a SYN. On the server
side, if the resulting response exceeds the UDP limits, the SYN is consumed and
a SYN-ACK is included in the TC response.

If the client and the server are interacting for the first time, the latter com-
putes a cookie on the client’s IP address and includes it in the DNS response. In
subsequent interactions, the client presents the cookie in its initial DNS/UDP
query. On a successful verification of the cookie, the server starts streaming the
full DNS/TCP response after sending the SYN-ACK in the TC response.

TurboDNS works via a daemon that runs atop the DNS stack of resolvers and
nameservers: the implication being that the DNS software remains completely
unaware of the daemon. Thus, with the daemon installed, no modifications to
the DNS software or the TCP stack are required.

TD-Cookie. Similar to TFO [14], at the core of TurboDNS is a cryptographic
cookie (hereafter referred to as TD-Cookie to differentiate it from regular DNS
cookies5) that verifies a client’s IP ownership without requiring the server to
maintain a per-client state. The TD-Cookie prevents an adversary from 1) ex-
hausting the server’s resources by flooding DNS queries with spoofed SYNs or 2)
mounting an amplified reflection attack on random victims.

When a client and a server interact for the first time (either over UDP or
TCP), the server daemon generates a TD-Cookie as HMAC-SHA256-8(sk, Client
IP), where sk is a secret key held by the daemon and 8 denotes the HMAC output
truncated to first 8 bytes (64-bit entropy). The TD-Cookie is then sent to the
client in OPT → RDATA under the experimental Option-Code = 65001.

Note that TurboDNS does not use regular DNS cookies to authenticate clients.
Since the daemon runs on top of the DNS software, it does not have access to
the Server Secret that is being used to compute the DNS Server Cookie.

We now elucidate the TurboDNS protocol with the aid of Fig. 3 and Fig.
4. Consider a resolver and an example authoritative nameserver (ANS), each
with TurboDNS daemon installed. Further presume that the resolver daemon
has already obtained a valid TD-Cookie from a prior interaction with the ANS.

3.1 Client-side: Sending Query

Assume that the resolver (here, BIND) sends a QTYPE A query (say, Q) to
the ANS asking the IPv4 address of test.example. The resolver daemon, on
intercepting the outbound Q, simulates6 a TC response from the ANS, thereby
triggering a TCP fallback on BIND. The latter subsequently attempts a TCP
handshake by sending a SYN packet.

5Refer the OPT record subsection in §2.1 for a primer on regular DNS cookies.
6Includes swapping source and destination IP/port.

Post-Quantum DNSSEC with Faster TCP Fallbacks 13

R
esolver

(B
IN

D
)

D
aem

on
(TD-Cookie)

D
aem

on
(sk

)
example

A
N

S
(B

IN
D

)

(1)

D
N

S
Q

uery
(ID

1)
QNAME:

test.exam
ple

QTYPE:
A

OPT:
1232

−−−→
U

D
P

✗

(3)
|
S
Y
N
−−−→
T

C
P

✗

(2)
∗

←−−−
U

D
P

D
N

S
R

esponse
(ID

1 ,T
C

)
QNAME:

test.exam
ple

QTYPE:
A

OPT:
1232

(4)

D
N

S
Q

uery
(ID

1)
QNAME:

test.exam
ple

QTYPE:
A

DNSKEY:
S
Y
N

OPT:
1232,

TD-Cookie

−−−→
U

D
P

(5)

D
N

S
Q

uery
(ID

1)
QNAME:

test.exam
ple

QTYPE:
A

OPT:
1232

−−−→
U

D
P

(7)
|
S
Y
N
−−−→
T

C
P

(9)
|V

erify
TD-Cookie

w
ith

sk

(6)
✗
←−−−
U

D
P

D
N

S
R

esponse
(ID

1 ,T
C

)
QNAME:

test.exam
ple

QTYPE:
A

OPT:
1232

(8)
✗
←−−−
T

C
P

|
S
Y
N

-A
C
K

(12)
|
A
C
K
−−−→
T

C
P

✗

(13)

D
N

S
Q

uery
(ID

2)
QNAME:

test.exam
ple

QTYPE:
A

OPT:
1232

−−−→
T

C
P

✗

(11)
←−−−
T

C
P

|
S
Y
N

-A
C
K

(14)
|C

heck
TD-Cookie,Save

ID
2

|W
ait

for
incom

ing
T

C
P

data

(10)
←−−−
U

D
P

D
N

S
R

esponse
(ID

1 ,T
C

)
QNAME:

test.exam
ple

QTYPE:
A

DNSKEY:
S
Y
N

-A
C
K

OPT:
1232,

TD-Cookie

(15)
|
A
C
K

∗
−−−→
T

C
P

(16)

D
N

S
Q

uery
(ID

1)
QNAME:

test.exam
ple

QTYPE:
A

OPT:
1232

∗
−−−→
T

C
P

(21)
←−−−
T

C
P

|
A
C
K

(22)
|C

hange
ID

1
to

ID
2

(23)
←−−−
T

C
P

D
N

S
R

esponse
(ID

2)
QNAME:

test.exam
ple

QTYPE:
A

···
<

Segm
ent

1
>

(24)
←−−−
T

C
P
···

<
Segm

ent
2

>
...

(25)
←−−−
T

C
P
···

<
Segm

ent
n

>

(17)
←−−−
T

C
P

|
A
C
K

(18)
←−−−
T

C
P

D
N

S
R

esponse
(ID

1)
QNAME:

test.exam
ple

QTYPE:
A

···
<

Segm
ent

1
>

(19)
←−−−
T

C
P
···

<
Segm

ent
2

>
...

(20)
←−−−
T

C
P
···

<
Segm

ent
n

>

F
ig.3.

A
n

overview
of

T
u
rb
o
D
N
S

w
hen

response
is

m
arked

truncated
(TC)

*
packet

is
sim

ulated
by

the
daem

on
✗

packet
is

dropped
by

the
daem

on

14 A.S. Rawat and M.P. Jhanwar

R
esolver

(B
IN

D
)

D
aem

on
(TD-Cookie)

D
aem

on
(sk

)
example

A
N

S
(B

IN
D

)

(1)

D
N

S
Q

uery
(ID

1)
QNAME:

test.exam
ple

QTYPE:
A

OPT:
1232

−−−→
U

D
P

✗

(3)
|
S
Y
N
−−−→
T

C
P

✗

(2)
∗

←−−−
U

D
P

D
N

S
R

esponse
(ID

1 ,T
C

)
QNAME:

test.exam
ple

QTYPE:
A

OPT:
1232

(4)

D
N

S
Q

uery
(ID

1)
QNAME:

test.exam
ple

QTYPE:
A

DNSKEY:
S
Y
N

OPT:
1232,

TD-Cookie

−−−→
U

D
P

(5)

D
N

S
Q

uery
(ID

1)
QNAME:

test.exam
ple

QTYPE:
A

OPT:
1232

−−−→
U

D
P

(6)
←−−−
U

D
P

D
N

S
R

esponse
(ID

1)
QNAME:

test.exam
ple

QTYPE:
A

OPT:
1232

(9)
|
A
C
K
−−−→
T

C
P

✗

(10)

D
N

S
Q

uery
(ID

2)
QNAME:

test.exam
ple

QTYPE:
A

OPT:
1232

−−−→
T

C
P

✗

(8)
∗

←−−−
T

C
P

|
S
Y
N

-A
C
K

(11)
|Save

ID
2

(12)
∗

←−−−
T

C
P

|
A
C
K

(13)
|C

hange
ID

1
to

ID
2

(14)
∗

←−−−
T

C
P

D
N

S
R

esponse
(ID

2)
QNAME:

test.exam
ple

QTYPE:
A

OPT:
1232

(7)
←−−−
U

D
P

D
N

S
R

esponse
(ID

1)
QNAME:

test.exam
ple

QTYPE:
A

OPT:
1232,

TD-Cookie

F
ig.4.

A
n

overview
of

T
u
rb
o
D
N
S

w
hen

response
is

not
m

arked
truncated

(TC)

*
packet

is
sim

ulated
by

the
daem

on
✗

packet
is

dropped
by

the
daem

on

Post-Quantum DNSSEC with Faster TCP Fallbacks 15

The daemon intercepts the SYN, encapsulates it inside a DNSKEY record, and
then inserts the record in Q’s Additional section. We choose a DNSKEY record
for encapsulation since it has minimal RDATA fields, with the Public Key field
being opaque (i.e. its content is not meaningful to a protocol-unaware entity).
Lastly, the daemon inserts the TD-Cookie in the OPT record and sends Q.

Concisely, the steps performed by the resolver daemon, on intercepting the
outgoing query Q/UDP, are as follows:

1. Create a copy (say, R′) of Q.
2. Forcing TCP Fallback

(a) Modify R′ as follows7:
— Set R′ → HEADER → QR = 1
— Set R′ → HEADER → AA = 1
— Set R′ → HEADER → TC = 1

(b) Send R′/UDP back to BIND.
(c) Receive SYN/TCP from BIND.

3. Embedding SYN in Q

(a) Create a generic DNSKEY record.
— Set DNSKEY → Algorithm = TurboDNS
— Set DNSKEY → Public Key = SYN8

(b) Insert DNSKEY in Q → Additional section.
4. Embedding TD-Cookie in Q

(a) Insert TD-Cookie in Q → OPT → RDATA.
— Set Option-Code = 65501
— Set Option-Length = 8
— Set Option-Data = TD-Cookie

5. Send Q/UDP to ANS.

3.2 Server-side: Sending Response

The ANS daemon, on detecting the incoming query Q, forwards9 it to BIND.
The resulting response (say, R) will have either of the following status:

1. R is not marked TC. In this case, the daemon forwards the response as
it is to the resolver.

2. R is marked TC. In this event, the daemon extracts the SYN from Q and
sends it to BIND. The subsequent SYN-ACK from BIND is intercepted and en-
capsulated in a DNSKEY record, which is then inserted in R’s Additional section.

Thereafter, the daemon computes HMAC-256-8(sk, Q’s source IP) and com-
pares it against the provided TD-Cookie in the OPT record of Q. If the values
match, the daemon inserts the same TD-Cookie in the OPT record of R. Other-
wise, it inserts the newly computed cookie. R is then sent to the resolver.

7For a primer on the various HEADER flags, refer Table 3.
8The whole IP packet.
9Removing DNSKEY and TD-Cookie is optional as they would be ignored by BIND.

16 A.S. Rawat and M.P. Jhanwar

After verifying TD-Cookie, the nameserver daemon simulates the resolver by
sending an ACK along with Q to BIND over TCP. The ensuing TCP responses
are then forwarded to the resolver.

Succinctly, the nameserver daemon performs the following operations after
intercepting the incoming query Q/UDP:

1. Forward Q to BIND and get response R/UDP.
2. If R is not TC, forward it to resolver. Else, proceed as below.
3. Simulating TCP Handshake

(a) Extract SYN from Q.
(b) Send SYN/TCP to BIND and get SYN-ACK.

4. Embedding SYN-ACK in R

(a) Create a generic DNSKEY record.
— Set DNSKEY → Algorithm = TurboDNS
— Set DNSKEY → Public Key = SYN-ACK

(b) Insert DNSKEY in R → Additional section.
5. Verifying TD-Cookie and Embedding TD-Cookie/HMAC in R

(a) Extract TD-Cookie from Q.
(b) Verify HMAC(sk, Q’s src IP) ?

= TD-Cookie
— If success, insert TD-Cookie in R → OPT → RDATA.
— If failure, insert HMAC output in R → OPT → RDATA.

6. Send R/UDP to resolver.
7. Simulating DNS/TCP Query

(a) If TD-Cookie was verified, then
i. Simulate resolver and send (ACK+Q)/TCP to BIND.
ii. Forward BIND TCP responses to resolver.

3.3 Client-side: Receiving Response

The daemon on the resolver, on intercepting R, checks the status thereof and
proceeds accordingly as follows:

R is not marked TC. In this scenario, the daemon simulates the name-
server by sending a SYN-ACK to BIND, which subsequently sends over TCP: 1)
an ACK and 2) Q with a new HEADER → ID. Now, the daemon simply changes10
the ID in R to the new value and sends it to BIND over TCP.

R is marked TC. Here, the daemon extracts the SYN-ACK from R and sends
it to BIND, the latter subsequently sending an ACK and Q with a new ID.

The daemon then checks the sent TurboDNS cookie in R to infer whether the
validation of TD-Cookie succeeded on the ANS or not (i.e. whether the server
has echoed back TD-Cookie or not). If negative, from this point onwards, the
daemon forwards the outgoing/incoming traffic as it is. If positive, the daemon
drops both the packets (ACK and Q), while saving the new ID in its state.

10Includes re-computing the TCP Checksum.

Post-Quantum DNSSEC with Faster TCP Fallbacks 17

In due course, when TCP response packets arrive from the ANS after a
successful cookie validation, the daemon intercepts the first data segment11 and
updates10 ID therein with the new value, before forwarding it to BIND. The rest
of the trailing segments are forwarded as it is to BIND.

In short, the daemon, on intercepting R/UDP, proceeds as follows:

— If R is not marked TC, simulate ANS as below.
1. Simulating TCP Handshake

(a) Send SYN-ACK/TCP to BIND.
2. Intercept (ACK+Q)/TCP with new Q → HEADER → ID.
3. Simulating DNS/TCP Response

(a) Set R → HEADER → ID = Q → HEADER → ID.
(b) Send R/TCP to BIND.

— If R is marked TC, proceed as below12.
1. Simulating TCP Handshake

(a) Extract SYN-ACK from R.
(b) Send SYN-ACK/TCP to BIND.

2. Intercept (ACK+Q)/TCP with new Q → HEADER → ID.
3. Intercept 1st TCP data segment from ANS.
4. Update DNS HEADER → ID in 1st segment with Q → HEADER → ID.
5. Simulating DNS/TCP Response

(a) Send 1st segment to BIND.
6. Forward all trailing segments to BIND.

3.4 Backward Compatibility

We now discuss what happens in case only one of the end-points implements
TurboDNS while the other one does not.

— TurboDNS-aware Resolver | TurboDNS-oblivious Server. In such a setting,
the server will never send a TD-Cookie to the resolver. Furthermore, in re-
solver’s query, the DNSKEY record containing SYN would be ignored by the
server since the record is present in the Additional section. Thus, the flow
will inevitably become that of Standard DNS.

— TurboDNS-oblivious Resolver | TurboDNS-aware Server. Here, the server will
include a TD-Cookie in OPT → RDATA in its response to the resolver. How-
ever, any Option-Code not understood by the resolver would be ignored
([40], p. 8). Additionally, the server will not find a DNSKEY record contain-
ing SYN in the Additional section of resolver’s query. Hence, the flow effectively
reverts to that of Standard DNS.

11With a relative Server Sequence Number = 1
12Assuming TD-Cookie was accepted by the server daemon.

18 A.S. Rawat and M.P. Jhanwar

3.5 Other Remarks

Packet Ordering. In case of a TC response and a valid cookie, the SYN-ACK
over DNS/UDP must arrive at the client before the trailing TCP data stream.
To this effect, after sending the SYN-ACK, the server daemon waits an extra 1 ms
before simulating the client ACK. However, depending upon network conditions,
larger wait times may be necessary to maintain the packet ordering.
Segment Re-transmits. When the server’s TCP stack receives the simulated
client ACK within a few ms after SYN-ACK, its view as to the round-trip latency of
the connection gets temporarily skewed (i.e. the actual RTT is generally larger).
Thus, after the full DNS/TCP response has been streamed to the client, the
server-side may reach the TCP Retransmission Timeout (RTO) before client
ACKs arrive, leading to unwarranted segment re-transmits.

To avoid unnecessary bandwidth usage, the server daemon drops the packets
in the first re-transmission attempt of BIND’S TCP, with the consequence that
the latter then exponentially backs-off its RTO. In most cases, client ACKs will
arrive before the expiration of the re-adjusted RTO.

4 Security Considerations

It is important to note that TurboDNS does not introduce any changes to
the underlying cryptography of DNSSEC. Thus, the security guarantees of the
DNSSEC protocol (i.e. origin authentication and integrity check of DNS resource
records) remain completely intact.

On a high level, TurboDNS tweaks the Standard DNS flow by 1) Carrying
TCP SYN and SYN-ACK packets inside DNS/UDP messages 2) Streaming TCP
response data after authenticating the client with TD-Cookie. While the former
tweak only changes the delivery mechanism of packets and thus does not in-
troduce any security vulnerability, the latter, however, requires some additional
security considerations against on-path and off-path attackers.

Just like regular DNS cookies, TD-Cookie does not protect against an on-
path adversary (i.e. an attacker who can observe the plaintext DNS traffic such
as an on-path router, bridge, or any device on an on-path shared link). An
on-path attacker who learns the TD-Cookie generated for a client can later
send spoofed DNS requests on behalf of that client. We discuss the appropriate
counter-measures such as response rate limiting (RLL) and secret key rollover
later in this section. An off-path attack, however, is infeasible since it requires
the attacker to simultaneously guess the TD-Cookie (along with the regular DNS
cookie) for a particular client IP address. Security can be further strengthened
by increasing the TD-Cookie size.

Broadly, there are two kinds of attacks that can be performed by an attacker.

1. Resource Exhaustion with Stolen TD-Cookies. If an attacker manages
to steal TD-Cookies from compromised clients, it can then flood DNS queries
containing spoofed SYNs and valid cookies, thereby potentially exhausting a
server’s CPU and memory resources.

Post-Quantum DNSSEC with Faster TCP Fallbacks 19

In this scenario, the best defence is to rate-limit the number of TurboDNS
requests that will be processed per TD-Cookie (and consequently, per source
IP address) in a given time frame. Additionally, the server daemon should
also rotate its sk on a frequent basis.

2. Amplified Reflection Attacks using NATs. Since multiple clients be-
hind a NAT box share the same external IP address, a TD-Cookie issued by a
server daemon to any client will also be valid for the rest of the NATed clients.
Consider an attacker behind a NAT that first obtains a valid TD-Cookie from
server-side. Thereafter, it uses the cookie to issue a flood of DNS queries with
spoofed SYNs of a victim client (behind the same NAT). Since cookie valida-
tion will succeed on the server daemon, large DNSSEC traffic (amplification)
would be sent to the victim (reflection), potentially overwhelming the latter.
Fortunately, a simple tweak obviates this vulnerability. The TD-Cookie can
be calculated as HMAC-SHA256-8(sk, Client IP || Client Cookie), where
Client Cookie is the regular DNS cookie. Since a unique Client Secret is
mixed in Client Cookie calculation, each client computes a unique Client
Cookie, thus resulting in different TD-Cookies being issued to NATed clients.

5 Evaluation

5.1 Implementation

To assess the TurboDNS’s performance, we develop a daemon that runs on top
of a DNS software (such as BIND or PowerDNS). Additionally, the daemon is
designed to be agnostic to the said software (i.e. the underlying DNS provider
can be swapped with a different one). With the daemon in place, no modifications
are required to the DNS software or TCP stack.

Software Setup. We use the source code of QBF [33] as base to build
the TurboDNS daemon. The DNS software is a BIND 9.19.17 fork [2] which
supports NIST level I PQC signatures. In the fork, we further add support for
Level V Falcon and Dilithium schemes. The cryptographic stack is openssl 3.2,
liboqs 0.10.0 [43] and oqs-provider 0.6.0. The daemon is written in C and uses
libnetfilter-queue to intercept incoming and outgoing DNS packets. Docker
4.29 is used for constructing the network scenario (described below). To simulate
network bandwidth and latency, we use Linux’s tc utility. DNS queries are issued
using dig. All experiments are run on a MacBook Air M1 with 8 GB of RAM.

Network Scenario. The DNS network contains the following four partic-
ipants: 1) A client (the user) 2) A resolver 3) A root (.) nameserver 4) An
example authoritative nameserver (ANS). We skip configuring a com TLD to
reduce complexity. Each participant runs as an Ubuntu 22.04 Docker container
with experiment-specific bandwidth and latency constraints. The TurboDNS dae-
mon is installed on the resolver and the ANS. The EDNS0 buffer is set to the
recommended value of 1232. For simplicity, each zone is signed with a single
algorithm and has one ZSK and one KSK. The zone file of the ANS contains 10
Type A records, each with a unique domain name and an associated RRSIG.

20 A.S. Rawat and M.P. Jhanwar

The ANS is configured with minimal-responses no-auth-recursive; (the
default setting that ships with BIND) which means that it will be as complete
as possible when generating responses for iterative queries. Such a response is
called non-minimal and represents the worst-case scenario in terms of message
size. Refer Table 10 for the number and the type of resource records contained
in a non-minimal QTYPE A response from the ANS. To facilitate modifications
to DNS messages without re-adjusting compression name pointers, we also set
message-compression no; in named.conf.

Table 10. A non-minimal QTYPE A response

Header Section
Question Section

QNAME = test.example
QTYPE = A

QCLASS = IN
Answer Section

Type A RR

RRSIG

Authority Section
Type NS RR

RRSIG

Additional Section
Type A RR

RRSIG

OPT

— 1 Type A record in Answer section having the answer IP and 1 covering RRSIG
— 1 Type NS record in Authoritative section containing the nameserver’s domain name

and 1 covering RRSIG
— 1 Type A record in Additional section containing the nameserver’s IP address and

1 covering RRSIG

5.2 Experiments and Results

We comprehensively assess TurboDNS’s performance against Standard DNS and
fragmentation schemes (ARRF and QBF) in terms of resolution times. We con-
duct two experiments targeting NIST level I and V, respectively.

Before the start of an experiment, the resolver pre-fetches the Type DNSKEY
and NS records of all the zones. The implication is that the resolver directly
contacts the ANS in order to resolve the client’s query, rather than starting the
lookup process all the way up from the root. Moreover, as a side effect of the
pre-fetching, the resolver daemon obtains the TD-Cookie from the server-side.

Post-Quantum DNSSEC with Faster TCP Fallbacks 21

We measure the DNS query resolution speed with each participant configured
with the following networking capabilities13,14:

1. High Bandwidth (100 Mbps), Low Latency (10 ms)
2. Low Bandwidth (1 Mbps), High Latency (100 ms)

Specifically, we issue 10 QTYPE A DNS queries from the client to the resolver
and calculate the mean query resolution time. That is, the average time elapsed
between the client sending its query and subsequently receiving a DNSSEC val-
idated response (with HEADER → AD set) from the resolver.

a) Experiment 1. We target NIST level I parameters and sign the zone file with
Falcon-512, Dilithium-2 and SPHINCS+-128s. For a comparison with classical
algorithms, we sign the zone file with RSA-2048 and ECDSA P-256.

Results and Discussion. The results of the experiment are tabulated in
Table 11. Observe that DNSSEC over TurboDNS (TD), with either Falcon or
Dilithium as the underlying scheme, has practically the same resolution time as
that of the currently deployed ECDSA-SD and RSA-SD. Moreover, Falcon-TD
and Dilithium-TD, being ∼ 2× faster than their Standard DNS (SD) counter-
parts, also match the resolution speeds of the corresponding QBF instances.

Interestingly, with SPHINCS+, both TurboDNS and Standard DNS incur an
extra round-trip compared to Falcon and Dilithium. This is because the size
of a SPHINCS+ QTYPE A response exceeds the initcwnd (initial congestion
window) of 10 segments set in the TCP slow start algorithm [10,15]. Given the
default MSS (Maximum Segment Size) of 1220 bytes, the size of initcwnd is
10× 1220 = 12.2 KB. The repercussion of exceeding this initcwnd is that after
sending ∼ 12.2 KB of data, the server waits for the resolver to ACK (acknowledge)
the received packets before continuing with the rest of the transmission.

b) Experiment 2. We now target NIST level V parameters and sign the zone
file with Falcon-1024 and Dilithium-5 (Refer Table 1 for a size comparison be-
tween the two schemes). This is the highest security level on offer and is likely
excessive for DNSSEC. We omit testing SPHINCS+ since the resulting response
would exceed 64 KB, the maximum possible size for a DNS message. We also
exclude ARRF from this experiment as its performance can be extrapolated from
that of QBF (i.e. ARRF is a round-trip slower than QBF).

Results and Discussion. The results of the experiment are shown in Table
11. Compared to Experiment 1, while Falcon-TD/SD remain consistent with
their resolution speeds, Dilithium-TD/SD suffer a penalty of an extra round-
trip because of exceeding TCP’s initcwnd.

13Latency being one-way, RTT = 2× Latency.
14Packet loss rate is set to 0%. This is the best-case scenario for UDP-based frag-

mentation schemes in terms of performance.

22 A.S. Rawat and M.P. Jhanwar

Table 11. Average query resolution time (ms). SD : Standard DNS. TD : TurboDNS.
TCP* : TCP Fallback. A: 100 Mbps, 10 ms. B: 1 Mbps, 100 ms.

Method Via Time A
±1 ms

Time B
±2 ms

ECDSA-P256-SD UDP 44 407

RSA-2048-SD UDP 44 408

Falcon-512-SD TCP* 89 811

Dilithium-2-SD TCP* 89 817

SPHINCS+-128s-SD TCP* 111 1025

Falcon-1024-SD TCP* 89 812

Dilithium-5-SD TCP* 111 1014

Falcon-512-ARRF UDP 64 609

Dilithium-2-ARRF UDP 65 613

SPHINCS+-128s-ARRF UDP 67 633

Falcon-512-QBF UDP 45 410

Dilithium-2-QBF UDP 46 415

SPHINCS+-128s-QBF UDP 48 436

Falcon-1024-QBF UDP 45 411

Dilithium-5-QBF UDP 47 426

Falcon-512-TD TCP* 45 409

Dilithium-2-TD TCP* 46 415

SPHINCS+-128s-TD TCP* 68 622

Falcon-1024-TD TCP* 45 412

Dilithium-5-TD TCP* 67 610

Post-Quantum DNSSEC with Faster TCP Fallbacks 23

6 Related Work

Apart from ARRF [18] and QBF [33], earlier DNS-layer proposals included Sivara-
man’s draft [41] and ATR [42]. The former fragmented a large DNS response
across multiple UDP datagrams, transmitting each fragment sequentially. The
latter involved an ATR module which decided whether to send an additional
truncated (TC) response (right after the original large response) or not. The ba-
sic idea behind ATR was as follows: If the client fails to receive the first large
response (for e.g., it gets fragmented at the network layer and the ensuing frag-
ments get dropped by stateless firewalls), the trailing TC response would at least
trigger an immediate TCP fallback thereon.

Unfortunately, both of these proposals failed to gain traction because they
sent multiple responses to one request. Many firewalls expect a single response
packet per query. Furthermore, many resolvers immediately close their sockets
after receiving the first response packet. Thus, there were concerns about ICMP
flooding since for each trailing packet that could not be delivered, a destination
unreachable packet would be sent back to the nameserver.

While both TFO [14] and TurboDNS employ a cookie-based mechanism to
authenticate the client, the similarities end here. TFO requires support at the OS
and application level, introduces a new TCP option for transporting the cookie,
and involves SYN segments carrying data, the latter two leading to potential
backward-incompatibility. On the other hand, TurboDNS uses the stock TCP
kernel implementation and does not require any additional support from the
DNS software. Moreover, TurboDNS’s cookies are conveyed inside DNS messages
in a backward-compatible manner.

In the domain of TLS, TurboTLS [6] establishes TLS connections in one less
round-trip by sending the initial TLS handshake data over UDP rather than
TCP (compare this with TurboDNS, which sends the TCP handshake data (SYN
and SYN-ACK) inside DNS messages over UDP). Concurrently, a three-way TCP
handshake is also carried out. Once the TCP connection is established, the client
and the server complete the final flight of the TLS handshake over TCP and
continue using it for transferring application data.

7 Conclusion

In this paper, we presented TurboDNS: a backward-compatible protocol that
eliminates two round-trips from Standard DNS with TCP fallback. The TCP
handshake data is exchanged in the initial DNS over UDP flight while the
full DNS response is immediately streamed over TCP after authenticating the
client with a cryptographic cookie. Our experiments show that DNSSEC over
TurboDNS, with either Falcon-512 or Dilithium-2, is as fast as the presently
deployed ECDSA P-256 and RSA-2048 in resolving QTYPE A queries.

24 A.S. Rawat and M.P. Jhanwar

References

1. The ddos that almost broke the internet. https://blog.cloudflare.com/
the-ddos-that-almost-broke-the-internet, accessed: 2024-07-09

2. Oqs-bind. https://github.com/Martyrshot/OQS-bind
3. Defragmenting dns - determining the optimal maximum udp response size for

dns (2020), https://indico.dns-oarc.net/event/36/contributions/776/, ac-
cessed: 2024-07-09

4. Dns flag day. https://www.dnsflagday.net/2020/ (2020)
5. Aas, J., Barnes, R., Case, B., Durumeric, Z., Eckersley, P., Flores-López, A., Hal-

derman, J.A., Hoffman-Andrews, J., Kasten, J., Rescorla, E., Schoen, S., Warren,
B.: Let’s encrypt: An automated certificate authority to encrypt the entire web.
In: SIGSAC CCS (2019)

6. Aguilar-Melchor, C., Bailleux, T., Goertzen, J., Guinet, A., Joseph, D., Stebila,
D.: Turbotls: Tls connection establishment with 1 less round trip (2024), https:
//arxiv.org/abs/2302.05311

7. Ariyapperuma, S., Mitchell, C.J.: Security vulnerabilities in dns and dnssec. In:
ARES (2007)

8. Atkins, D., Austein, R.: Threat analysis of the domain name system (dns). RFC
3833 (2004)

9. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe,
P.: The sphincs+ signature framework. In: SIGSAC CCS (2019)

10. Blanton, E., Paxson, D.V., Allman, M.: Tcp congestion control. RFC 5681 (2009)
11. Bonica, R., Baker, F., Huston, G., Hinden, B., Trøan, O., Gont, F.: Ip fragmenta-

tion considered fragile. RFC 8900 (2020)
12. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,

Schwabe, P., Seiler, G., Stehle, D.: Crystals - kyber: A cca-secure module-lattice-
based kem. In: EuroS&P (2018)

13. Bush, R., Austein, R.: The Resource Public Key Infrastructure (RPKI) to Router
Protocol, Version 1. RFC 8210 (2017)

14. Cheng, Y., Chu, J., Radhakrishnan, S., Jain, A.: TCP Fast Open. RFC 7413 (2014)
15. Chu, J., Dukkipati, N., Cheng, Y., Mathis, M.: Increasing tcp’s initial window.

RFC 6928 (2013)
16. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,

D.: Crystals-dilithium: A lattice-based digital signature scheme. IACR TCHES
(2018)

17. Eastlake, D.E., Andrews, M.P.: Domain name system (dns) cookies. RFC 7873
(2016)

18. Goertzen, J., Stebila, D.: Post-quantum signatures in DNSSEC via request-based
fragmentation. In: PQCrypto (2023)

19. Herzberg, A., Shulman, H.: Fragmentation considered poisonous, or: One-domain-
to-rule-them-all.org. In: IEEE CNS (2013)

20. Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A., Handley, M., Tokuda, H.: Is
it still possible to extend tcp? In: IMC (2011)

21. Jeitner, P., Shulman, H.: Injection attacks reloaded: Tunnelling malicious payloads
over DNS. In: USENIX (2021)

22. Kaminsky, D.: Black ops: It’s the end of the cache as we know
it. https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/
BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf (2008), accessed: 2024-07-09

https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
https://github.com/Martyrshot/OQS-bind
https://indico.dns-oarc.net/event/36/contributions/776/
https://www.dnsflagday.net/2020/
https://arxiv.org/abs/2302.05311
https://arxiv.org/abs/2302.05311
https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf
https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf

Post-Quantum DNSSEC with Faster TCP Fallbacks 25

23. Kampanakis, P., Lepoint, T.: Vision paper: Do we need to change some things?
In: SSR (2023)

24. Kaufman, C., Perlman, R., Sommerfeld, B.: Dos protection for udp-based proto-
cols. In: SIGSAC CCS (2003)

25. Langley, A.: Probing the viability of tcp extensions. https://www.
imperialviolet.org/binary/ecntest.pdf, accessed: 2024-07-25

26. Lepinski, M., Kent, S.: An Infrastructure to Support Secure Internet Routing. RFC
6480 (2012)

27. Man, K., Qian, Z., Wang, Z., Zheng, X., Huang, Y., Duan, H.: Dns cache poisoning
attack reloaded: Revolutions with side channels. In: SIGSAC CCS (2020)

28. Man, K., Zhou, X., Qian, Z.: Dns cache poisoning attack: Resurrections with side
channels. In: SIGSAC CCS (2021)

29. Medina, A., Allman, M., Floyd, S.: Measuring interactions between transport pro-
tocols and middleboxes. In: IMC (2004)

30. Moura, G.C.M., Müller, M., Davids, M., Wullink, M., Hesselman, C.: Fragmenta-
tion, truncation, and timeouts: Are large dns messages falling to bits? In: PAM
(2021)

31. Müller, M., de Jong, J., van Heesch, M., Overeinder, B., van Rijswijk-Deij, R.:
Retrofitting post-quantum cryptography in internet protocols: a case study of
dnssec. SIGCOMM CCR (2020)

32. Prest, T., Fouque, P., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon. tech. rep., national insti-
tute of standards and technology, available at. https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022 (2022)

33. Rawat, A.S., Jhanwar, M.P.: Post-quantum dnssec over udp via qname-based frag-
mentation. In: SPACE (2023)

34. van Rijswijk-Deij, R., Sperotto, A., Pras, A.: Dnssec and its potential for ddos
attacks: a comprehensive measurement study. In: IMC (2014)

35. Rose, S., Larson, M., Massey, D., Austein, R., Arends, R.: Dns security introduction
and requirements. RFC 4033 (2005)

36. Rose, S., Larson, M., Massey, D., Austein, R., Arends, R.: Protocol modifications
for the dns security extensions. RFC 4035 (2005)

37. Rose, S., Larson, M., Massey, D., Austein, R., Arends, R.: Resource records for the
dns security extensions. RFC 4034 (2005)

38. Rossow, C.: Amplification hell: Revisiting network protocols for ddos abuse. In:
NDSS (2014)

39. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SICOMP (1997)

40. da Silva Damas, J., Graff, M., Vixie, P.A.: Extension mechanisms for dns (edns(0)).
RFC 6891 (2013)

41. Sivaraman, M., Kerr, S., Song, L.: Dns message fragments. https://datatracker.
ietf.org/doc/draft-muks-dns-message-fragments/00/

42. Song, L., Wang, S.: Atr: Additional truncation response for large dns response.
https://datatracker.ietf.org/doc/draft-song-atr-large-resp/03/

43. Stebila, D., Mosca, M.: Post-quantum key exchange for the internet and the open
quantum safe project. In: SAC (2017)

44. Van Den Broek, G., Van Rijswijk-Deij, R., Sperotto, A., Pras, A.: Dnssec meets
real world: dealing with unreachability caused by fragmentation. IEEE Communi-
cations Magazine (2014)

https://www.imperialviolet.org/binary/ecntest.pdf
https://www.imperialviolet.org/binary/ecntest.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://datatracker.ietf.org/doc/draft-muks-dns-message-fragments/00/
https://datatracker.ietf.org/doc/draft-muks-dns-message-fragments/00/
https://datatracker.ietf.org/doc/draft-song-atr-large-resp/03/

	Post-Quantum DNSSEC with Faster TCP Fallbacks

