
Attribute Based Encryption for Turing Machines from Lattices

Shweta Agrawal⋆, Simran Kumari⋆, Shota Yamada†

⋆IIT Madras, India
shweta@cse.iitm.ac.in, sim78608@gmail.com

†AIST Tokyo, Japan
yamada-shota@aist.go.jp

Abstract

We provide the first attribute based encryption (ABE) scheme for Turing machines supporting unbounded collusions
from lattice assumptions. In more detail, the encryptor encodes an attribute x together with a bound t on the machine
running time and a message m into the ciphertext, the key generator embeds a Turing machine M into the secret key
and decryption returns m if and only if M(x) = 1. Crucially, the input x and machine M can be of unbounded size,
the time bound t can be chosen dynamically for each input and decryption runs in input specific time.

Previously the best known ABE for uniform computation supported only non-deterministic log space Turing
machines (NL) from pairings (Lin and Luo, Eurocrypt 2020). In the post-quantum regime, the state of the art supports
non-deterministic finite automata from LWE in the symmetric key setting (Agrawal, Maitra and Yamada, Crypto 2019).

In more detail, our results are:
1. We construct the first ABE for NL from the LWE, evasive LWE (Wee, Eurocrypt 2022 and Tsabary, Crypto 2022)

and Tensor LWE (Wee, Eurocrypt 2022) assumptions. This yields the first (conjectured) post-quantum ABE for
NL.

2. Relying on LWE, evasive LWE and a new assumption called circular tensor LWE, we construct ABE for all
Turing machines. At a high level, the circular tensor LWE assumption incorporates circularity into the tensor
LWE (Wee, Eurocrypt 2022) assumption.

Towards our ABE for Turing machines, we obtain the first CP-ABE for circuits of unbounded depth and size from the
same assumptions – this may be of independent interest.

1

Contents
1 Introduction 3

1.1 Our Results . 3
1.2 Technical Overview . 4

2 Preliminaries 8
2.1 Garbled Circuits . 8
2.2 Identity-Based Encryption . 9
2.3 Turing Machines . 10
2.4 Attribute Based Encryption . 11
2.5 Tensors . 14
2.6 Lattice Preliminaries . 14
2.7 GSW Homomorphic Encryption and Evaluation . 17
2.8 BGG+ Homomorphic Evaluation Procedures . 18

3 Bootstrapping Randomized Homomorphic Evaluation 19
3.1 Preparation . 19
3.2 Noise Removal for Randomized Encoding . 21
3.3 Randomized Bootstrapping a.k.a Structure Restoration . 21

4 Ciphertext Policy ABE for Unbounded Depth Circuits 25
4.1 Construction . 25
4.2 Our Assumption . 27
4.3 Security Proof . 28

5 Generic compiler: ABE for Turing Machines and NL 33
5.1 Generalized Bundling of Functionality . 33
5.2 ABE for Turing Machines . 39
5.3 ABE for NL . 41

2

1 Introduction
Attribute based encryption (ABE) [SW05, GPSW06] is a fundamental primitive in cryptography that enables fine-grained
access control on encrypted data. In an ABE scheme, the ciphertext encodes a secret message m and a public attribute
x, the secret key encodes a (public) function f , and decryption outputs m if and only if f (x) = 1. Security posits that
an adversary cannot distinguish between an encryption of (m0, x) and (m1, x) given secret keys that do not decrypt the
challenge. ABE has two variants – “key-policy” where the function f (typically representing an access control policy) is
embedded in the key, or “ciphertext-policy” where it is embedded in the ciphertext, as the names suggest. These are
denoted by KP-ABE and CP-ABE respectively.

Traditionally, the function f is represented by a circuit and while there has been fantastic progress in building ABE
supporting general circuits [GPSW06, GVW13, BGG+14, AY20a, Wee22, HLL23], there are inherent limitations to the
circuit model. Circuits force the size of the input to be fixed ahead of time and also incur worst case running time on
every input – this is dissatisfying from both the theoretical and practical perspective. To overcome these limitations, a
line of works [Wat12, GKP+13, AS16, AM18, KNTY19, GWW19, GW20, AMY19a, AMY19b, LL20a] has studied
ABE for uniform models of computation but success has been much more limited. Without relying on heavy hammers
such as indistinguishability obfuscation or compact functional encryption, the state of art ABE in this regime1 supports
non-deterministic log space Turing machines from pairings [LL20a]. In the post-quantum regime, the situation is
even less satisfactory – the state of the art construction supports non-deterministic finite state automata from learning
with errors (LWE) but only in the symmetric key setting [AMY19a]. In the public key setting, even ABE for DFA
– supporting unbounded lengths and with provable security – is not known, to the best of our knowledge. Thus, an
outstanding open question is:

Can we extend ABE for uniform computation beyond NL?

1.1 Our Results
In this work, we take a leap forward and provide the first ABE scheme for Turing machines supporting unbounded
collusions from lattice assumptions. In more detail, the encryptor encodes an attribute x together with a bound t on
the machine running time and a message m into the ciphertext, the key generator embeds a Turing machine M into
the secret key and decryption returns m if and only if M(x) = 1. Crucially, the input x and machine M can be of
unbounded size, the time bound t can be chosen dynamically for each input and decryption runs in input specific time.

In more detail, our results are:

1. We construct the first ABE for NL from the LWE, evasive LWE [Wee22, Tsa22] and Tensor LWE [Wee22]
assumptions. This yields the first (conjectured) post-quantum ABE for NL.

2. Relying on LWE, evasive LWE and a new assumption called circular tensor LWE, we construct ABE for all
Turing machines. At a high level, the circular tensor LWE assumption incorporates circularity into the tensor
LWE (Wee, Eurocrypt 2022) assumption.

Towards our ABE for Turing machines, we obtain the first CP-ABE for circuits of unbounded depth and size from the
same assumptions – this may be of independent interest.

Our Assumptions. Below, we describe the evasive and circular tensor LWE assumptions. Below, we adopt the
convention by Wee [Wee22] and let the underline denote that noise is added to the term, whose exact value is not
important.

Evasive LWE. The evasive LWE assumption [Wee22] states that if

if B, A, P, sTB, sTA, sTP, aux ≈ B, A, P, $, $, $, aux
then B, A, P, sTB, sTA, B−1(P), aux ≈ B, A, P, $, $, B−1(P), aux

1In this work, we only consider ABE with unbounded collusion resistance.

3

Above B−1(P) is a low norm Gaussian matrix such that B B−1(P) = P, and A, P are sampled in a correlated way. In
the public coin version of this assumption, the auxiliary information aux above contains random coins using during the
sampling. We rely on the private coin version of this assumption, similarly to prior work [ARYY23, VWW22].

Tensor Circular LWE. Similar to how circularity was incorporated into the evasive LWE assumption by [HLL23], we
will need to incorporate it in the tensor LWE assumption introduced by Wee [Wee22]. The tensor LWE assumption
states that for all x1, · · · , xQ ∈ {0, 1}ℓ , we have

1O : A,
{
(s(I⊗ ri))

T(A− xi ⊗G), ri
}

i∈[Q]
≈c 2O : A, {$, ri}i∈[Q]

In the original formulation s is uniform and r is sampled from a discrete Gaussian. We will require s to be small, i.e.
also sampled from a discrete Gaussian.

Our tensor circular LWE assumption basically incorporates the circular terms into the assumption. For notational
brevity, we denote s(I⊗ ri) by sri . In more detail, for all x1, . . . , xQ ∈ {0, 1}L,

Acirc,
{

1O, Asri
, Ssri

, sT
ri
(Acirc − Ssri

)⊗G), ri
}

i∈[Q]
≈c Acirc,

{
2O, $, $, $, ri

}
i∈[Q]

Above Asri
is the FHE public key corresponding to secret sri , and Ssri

= hctsri
(sri) is an FHE ciphertext.

The rationale of security for tensor LWE does not change with the addition of the circular terms, to the best of our
knowledge. While we do not see any attack on this strengthening of tensor LWE, we note that the usage of tensor LWE
in our construction is inherited from the construction by Wee [Wee22]. Any improvements to Wee’s construction are
likely to lead to improvements in our setting as well.

1.2 Technical Overview
Next, we outline the main technical ideas developed in our work.

Using KP-ABE and CP-ABE for circuits to build ABE for TM. The starting point of our work is the compiler by
Agrawal et al. [AMVY21] that shows how to construct public key functional encryption (FE) for Turing machines using
two circuit FE schemes in tandem, one ciphertext-policy and one key-policy. In more detail, their construction, building
upon techniques developed in [AMY19a], relies on two restricted FE schemes: one that supports decryption in the case
|(x, 1t)| > |M| and one that supports the case where |(x, 1t)| ≤ |M|. Here, x is the input chosen by the encryptor and
is of unbounded length, M is the Turing machine chosen by the key generator and t is an upper bound on the runtime of
the Turing machine on a given input x. We note that t can be chosen by the encryptor dynamically for each x and is not
a-priori bounded. These restricted schemes are then run in parallel so that the first scheme can be used to decrypt the
ciphertext when |(x, 1t)| > |M| and the second scheme can be used otherwise.

It was shown by [AMVY21] that the first sub-scheme can be instantiated using a CP-FE that supports unbounded
size and unbounded depth circuits while the second can be instantiated using a KP-FE for unbounded size but bounded
depth circuits. If the first scheme only supports bounded depth (but still supports unbounded size), this still yields
an FE for a smaller class of computation NL. While the techniques of [AMVY21] were developed for the setting of
bounded key FE, they can be adapted to the setting of unbounded key ABE as well. We skip the details here and refer
the reader to Section 5 for the detailed compiler. Since KP-ABE for unbounded size but bounded depth circuits has been
known since 2013 [GVW13, BGG+14], it remains to find a CP-ABE for unbounded size, unbounded depth circuits to
instantiate the compiler.

CP-ABE for Unbounded Size Circuits. Traditionally ciphertext-policy schemes have been much harder to construct
than their key-policy cousins – for instance, while KP-ABE for circuits has been known for over a decade from the
standard LWE assumption, it was only very recently that the first CP-ABE for circuits was discovered [Wee22], and that
too by relying on new lattice assumptions called the evasive and tensor LWE assumptions. Moreover, of these, the
evasive LWE is actually a fairly strong, non-falsifiable assumption. Yet, these assumptions have generated significant
excitement in the community since they enabled progress on problems that had remained “stuck” for a while.

4

Wee’s construction supports circuits of unbounded size but only bounded depth. While this will turn out to be a
significant barrier, this construction is all that we have to begin with. Let us recap this construction below and then try
to adapt it to suit our needs.

Overview of Wee’s CP-ABE. Wee’s construction can be seen as broadly following a two step outline: (i) start with a
CP-ABE which satisfies only single key security, (ii) add collusion resistance via randomization of keys. Indeed, this
two-step recipe for CP-ABE has been used before [AY20b, BV22], where the first step is common to all works (barring
minor syntactic differences) and can be based on LWE, while the second step has been implemented using pairings in
[AY20b] and using heuristic lattice methods in [BV22]. Wee’s construction achieves randomization of keys via tensors.

In more detail, from prior work on lattice based KP-ABE [BGG+14], it is known that given an input x ∈ {0, 1}ℓ,
and a matrix A ∈ Zn×ℓm

q , one can homomorphically evaluate a circuit f : {0, 1}ℓ → {0, 1} on an “input encoding”
matrix of form A− x⊗G by multiplying on the right by a low norm matrix HA, f ,x to obtain the term A f − f (x)G.
Here, G is a special gadget matrix defined as follows. Let g = [1, 2, 22, . . . , 2log q]T and G = I⊗ gT.

Towards CP-ABE, let the public key be the matrix A and the ciphertext for function f and message µ be of the form
sTA f + µ⌈q/2⌉ for some randomly sampled LWE secret s. To decrypt correctly, we would ideally want the secret key
encoding attribute x to be sT(A− x⊗G) – this would let us recover the mask sTA f via homomorphic computation
and subtract it from the ciphertext to recover the message (after rounding out a suitably bounded noise).

Of course, the key generator cannot know the encryption randomness s, and indeed this randomness will change for
every ciphertext (among an unbounded number) so the above does not work 2. At this stage, to enable key generation,
the evasive LWE assumption described above comes to our rescue. Loosely speaking, the evasive LWE assumption
can be seen as a kind of “secret sharing” mechanism to generate our desired term sT(A− x⊗G) when the encryptor
holds randomness s and the key generator holds attribute x. The encryptor will now additionally provide an extra
LWE sample sTB under a public matrix B and the key generator will provide a low norm Gaussian matrix R such that
B R = (A− x⊗G). For readability, R is referred to as B−1(A− x⊗G) in the literature. Now, the decryptor can
compute:

(sTB)B−1(A− x⊗G) = sT(A− x⊗G)

and decryption can proceed as desired. However, while we achieve correctness, the above scheme is not secure. It is
easy to see that an attacker, given keys for any x and x̄ can trivially break security. To achieve collusion resistance, it is
necessary to randomize keys so that mix and match attacks are thwarted.

Randomizing keys. Wee [Wee22] observed that the correctness of the evaluation algorithm is preserved even under
tensoring with random Gaussian vectors r – in more detail, one can evaluate f even on the randomized (A− x⊗G)⊗ r
to recover (A f − f (x)G)⊗ r by simply augmenting the low norm multiplication matrix to HA, f ,x ⊗ I. This is just a
direct application of the mixed product property on tensors (see Section 2.6 for a refresher).

Armed with this technique, a modification of the above construction that is not immediately broken is:

ct f = sT(A f ⊗ I) + µ · g, sTB,

skx = B−1((A− x⊗G)⊗ r), r

To decrypt, we compute

(sT(A f ⊗ I) + µ · g)(I⊗ r) ≈ sT(A f ⊗ r) + µg · (I⊗ r)

sTB(B−1((A− x⊗G)⊗ r)) · (HA, f ,x ⊗ I) ≈ sT(A f ⊗ r)

and subtract the second from the first to recover µ. Now, for different keys, the random vectors ri are different and mix
and match attacks no longer apply.

The above scheme needs to be refined further to admit a proof, but we skip the details here for ease of exposition.
We only remark that to support arbitrary (bounded) depth, Wee needs to make an additional assumption called tensor
LWE as discussed above.

2A simple twist to this scheme yields a construction satisfying single-key security though by [SS10]

5

Overcoming bounded depth. Wee’s construction only supports circuits of bounded depth, primarily because the
evaluation algorithms used on the ciphertext and public key only support bounded depth. In this context, the recent
exciting work by Hsieh et al. [HLL23] provides hope since they adapted the public key and ciphertext evaluation
algorithms to support circuits of unbounded depth, and provided the first KP-ABE for circuits from a generalization of
the evasive LWE assumption, called the circular small secret evasive LWE assumption.

One may hope that plugging in the algorithms of [HLL23] (henceforth HLL) into the CP-ABE construction of
[Wee22] can give a CP-ABE of unbounded depth, but as we shall see this approach runs into multiple difficulties. While
this approach is what we will finally make work, it is via several new ideas, new assumptions and an involved security
proof. We proceed to outline these next.

Unbounded Evaluation by HLL. The work of HLL supports unbounded homomorphism via two steps: (i) noise
removal and (ii) bootstrapping. Suppose we evaluate on the lattice encoding sT(A− x⊗G) as described previously
and obtain sT(A f − f (x)G) + elarge where elarge is large noise, as the name suggests. We would like to reduce this
noise, so that we can continue homomorphic evaluation. HLL provide a noise removal procedure inspired by the
modulus reduction technique developed in the context of levelled FHE [BV11, BGV14], which allows to perform
public operations and recover a noiseless encoding of the desired function f (x). Unfortunately, the recovered encoding
does not have the right structure and disallows further homomorphic computation. In more detail, their noise removal
procedure allows to obtain a term

RndPadA f (s)− f (x) sTG

where the second summand is what we want but the first is an ill-formed mask that is not amenable to homomorphism.
The exact details of what this term looks like and how one obtains it are not too important here, and we will defer these
to the technical sections. However, having reached this point, the obvious question is whether and how one can proceed
to obtain a well formed encoding of f (x) which has noise within the desired bound and permits further computation.

Bootstrapping or Structure Restoration. HLL provide a clever way out of the predicament by using circular security
of LWE based FHE. At a high level, circular security posits that an FHE ciphertext remains pseudorandom even if it
encrypts its own secret key. HLL first observe that if there was a way to compute sTA′f − RndPadA f (s) then this could
be combined with the term obtained above to recover (sTA′f − f (x) sTG) which has the right shape and allows to
continue homomorphic evaluation. Thus, it suffices to compute the term sTA′f − RndPadA f (s).

To do so, they leverage the algebraic structure of the GSW FHE scheme [GSW13] together with an elegant “automatic
decryption” technique by Brakerski et al. [BTVW17]. In more detail, recall that in the GSW FHE scheme, the secret key
is sT, a ciphertext for message yT is a matrix C and decryption computes sTC to recover yT. The work of [BTVW17]
proposes to use the same secret s for encoding the attribute, and set the attribute to be an FHE encryption under s. As
we will see, this causes “automatic decryption” which will be useful to recover the term we are after. In more detail,
HLL additionally provide the following elements in their ciphertext:

S = hcts(s), sT(Acirc − S⊗G)

Given this, one can evaluate the circuit RndPad f (·) homomorphically on the second term to obtain sTA′f −
sThct(RndPadA f (s)) for some matrix A′f . Next, given the structure of GSW ciphertext, sThct(RndPadA f (s))
decrypts automatically to yield RndPad f (s) giving the overall term sTA′f − RndPadA f (s) as desired.

Randomizing Unbounded Homomorphic Evaluation. Let us now try to plug in the unbounded evaluation procedures
of HLL into Wee’s construction. As described above, decryption in Wee’s CP-ABE recovers the terms

sT(A f ⊗ r) + µg · (I⊗ r), sT((A− x⊗G)⊗ r)

By the mixed product property of tensors, this can be written as

sT(I⊗ r)A f + µg · (I⊗ r), sT(I⊗ r)(A− x⊗G)

6

Denoting sT(I⊗ r) as sT
r , we obtain well formed ABE encodings

sT
r A f + µg · (I⊗ r), sT

r (A− x⊗G)

In particular, we can perform the bounded depth evaluation of [BGG+14] as done by Wee [Wee22] to obtain
sT

r (A f − f (x)G)) and plug this into the noise removal procedure of HLL. Taking appropriate care, this works out to
yield

sr
T(RndPadA f (sr)− f (x)G)

which appears suitable for further processing. To continue further, HLL requires the terms

Sr = hctsr(sr), Er = sT
r (Acirc − Sr ⊗G)

Above, the subscript in hct denotes the secret key under which the ciphertext can be decrypted. Thus, by HLL, it suffices
to compute the above terms so as to bootstrap and continue.

Randomized Bootstrapping. Unfortunately, careful examination shows how demanding the above requirement is.
Note that r is chosen by the key generator while s (and hence S = hcts(s)) by the encryptor. To randomize S to
hctsr(sr) might seem intuitively possible at first – after all, this is an FHE ciphertext and can be evaluated upon using
knowledge of r to obtain hcts(sr). However, while modifying the underlying message is indeed easy, modifying the
underlying secret key is anything but! In its full generality, modifying the secret key of an FHE scheme should not even
be possible since it violates semantic security. Yet, there are amazing ways already known to modify the underlying
secret key in FHE schemes – key shrinking in single key FHE [BV11, BGV14] as well as key expansion in multi-key
FHE [CM15, MW16]. Sadly, neither approach (nor anything related) works for us since they require providing some
“advice” terms that cannot be computed in our setting. Note that our situation is additionally complicated by the fact that
we are also required to provide a circular encoding of Sr under the secret sr.

Another difficulty is that if we wish to randomize the circular encoding sT(Acirc − S⊗G) using tensors as discussed
earlier, our key generator would be required to give a term that looks like B−1((Acirc − S⊗G)⊗ r), which it cannot
because unlike before, the inner quantity is not fixed and public but depends on S which is only known to the encryptor.

Our Approach. We overcome both hurdles together by relying on the following obvious fact, which previously seemed
like a barrier – FHE ciphertexts are good for computing on the underlying messages, not on the underlying keys. We
observe that nothing forces us to provide an FHE ciphertext of s under the secret key s itself! We can have our encryptor
sample a new FHE scheme with unrelated secret, t (say) and provide an FHE encryption of s under the public key
corresponding to t. Now, given knowledge of r, an evaluator can easily compute any complicated circuit, including
those necessary to compute Sr and Er described in Eq. 1. We can also provide an ABE encoding using the same trick
of reusing t as the randomness to cause automatic decryption as was done in HLL.

In more detail, the encryptor can provide

T = hctt(s, sd), D = t⊺(A1 − (1, bits(T))⊗G)

where sd is a PRF seed, and A1 is a public matrix of appropriate dimensions. Now, one can homomorphically evaluate
on the encoding D in bounded depth, using knowledge of T, to obtain

tTA′r + tThctt(Sr, Er) = tTA′r + (Sr, Er)

where A′r is some r dependent matrix and the equality follows by automatic decryption. Recall that:

Sr = hct(Asr , sr), Er = s⊺r (Acirc − (1, bits(Sr))⊗G)

which we require to plug into the HLL bootstrapping procedure.
Now, our desired output is masked by tTA′r so it is unclear we have achieved anything. However, note that we now

have the happy situation that t is known to the encryptor and A′r can be computed by the key generator! So we can plug
back evasive LWE so that the encryptor gives tTC for some fixed matrix C and the key generator gives C−1(A′r) so that
we can recover the term tTA′r and cancel it out. Please see Section 3 for the detailed description.

7

Onward to Unbounded CP-ABE. The core idea for randomizing the bootstrapping discussed above applied carefully
to Wee’s construction allows us to obtain a correct scheme supporting unbounded depth circuits. However, proving
security must still contend with several hurdles. While the high level structure of our proof resembles the proof of Wee’s
CP-ABE, our distributions are significantly more complex and need more work to analyze. To argue indistnguishability
of hybrids, we must rely on the new assumptions described previously. We refer the reader to Section 4 for a detailed
description of the assumptions, the scheme and the proof.

2 Preliminaries
In this section, we define some notation and preliminaries that we require.

Notation. We use bold letters to denote vectors and use the convention of vectors being columns. The notation [a, b]
denotes the set of integers {k ∈ N | a ≤ k ≤ b}. We use [n] to denote the set [1, n]. When we consider a string of
form (x, 1t), we assume that x and 1t can be derived from it and we differentiate (x, 1t) from (x1, 1t−1) for instance.
To do so, we consider the alphabet “," in addition to 0 and 1 and represent each alphabet by 2-bit for example. We say a
function f (n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to denote a negligible function of n. We say
f (n) is polynomial if it is O(nc) for some constant c > 0, and we use poly(n) to denote a polynomial function of n.
We use the abbreviation PPT for probabilistic polynomial-time. We say an event occurs with overwhelming probability
if its probability is 1− negl(λ). For two distributions Xλ and Yλ, Xλ ≈c Yλ denotes that they are computationally
indistinguishable for any PPT algorithm. For a vector x, we let xi denote its i-th entry. For a set S, we let |S| denote the
number of elements in S. For a binary string x, we let |x| denote the length of x.

2.1 Garbled Circuits
Our definition of garbled circuits is based upon the one considered in [GKW16]. For λ ∈ N, let Cinp denote a
family of circuits with inp bit inputs and C = {Cinp(λ)}λ∈N. A garbling scheme for C consists of two algorithms
GC = (Garble, Eval) with the following syntax.

Garble(1λ, C)→ {labi,b}i∈[inp],b∈{0,1}. The garbling algorithm takes as input the security parameter λ and a circuit
C ∈ Cinp(λ). It outputs a set of labels {labi,b}i∈[inp],b∈{0,1}.

Eval({labi}i∈[inp])→ y. The evaluation algorithm takes as input an inp labels {labi}i∈[inp] and outputs y.

Definition 2.1 (Correctness). A garbling scheme GC for circuit family {Cinp(λ)}λ∈N is correct if for all C ∈ Cinp(λ)
and all x ∈ {0, 1}inp(λ), we have

Pr
[
Eval

(
{labi,xi}i∈[inp]

)
̸= C(x) :

(
{labi,b}i∈[inp],b∈{0,1}

)
← Garble(1λ, C)

]
= negl(λ),

where the probability is taken over the random coins of Garble.

Definition 2.2 (Security). A garbling scheme GC = (Garble, Eval) for C = {Cinp(λ)}λ∈N is said to be a secure
garbling scheme if there exists a PPT simulator Sim such that for all λ ∈N, inp, C ∈ Cinp(λ) and x ∈ {0, 1}inp(λ), we
have {

{labi}i∈[inp] : {labi}i∈[inp] ← Sim
(

1λ, 1inp, 1|C|, C(x)
) }

≈c

{
{labi,xi}i∈[inp] : {labi,b}i∈[inp],b∈{0,1} ← Garble

(
1λ, C

) }
Garbled circuits are known to exist from one-way functions [Yao82, BHR12b]. Though the above definition is not as
general as one in [BHR12b], it suffices for our constructions in this paper.

8

Remark 2.3. Note that in the standard syntax of garbling scheme [LP09, BHR12a], the output of the garbling algorithm
consists of labels along with a garbled circuit. On the other hand, the output only consists of labels in our syntax.
However, the former can easily be converted into the latter by including the garbled circuit into a label for example. This
change in syntax is made for simplifying our constructions and notations. We also note that the same primitive is called
decomposable randomized encoding in [GVW12].

Remark 2.4 (Multi-instance security definition). The above definition allows to argue security of a single instance of
GC. In the multi-instance variant, the adversary can adaptively make polynomial number of garbling queries to the
challenger. All queries are answered by honestly generated labels in the real world whereas they are all simulated in the
ideal world. If both worlds are computationally indistinguishable, we say that GC satisfies multi-instance security. Note
that such multi-instance security follows from the standard single instance security (from Definition 2.2 above) by a set
of simple hybrid arguments.

2.2 Identity-Based Encryption
We define identity-based encryption (IBE) [KT18, BF01, Coc01] in this section. An IBE scheme IBE with identity
space I = {Iλ}λ∈N consists of the following algorithms.

Setup(1λ) → (mpk, msk). The setup algorithm takes as input the unary representation of security parameter and
outputs the master public and secret keys mpk and msk.

KeyGen(msk, id) → skid. The key generation algorithm takes as input the master secret key msk and an identity
id ∈ Iλ. It outputs a corresponding secret key skid.

Enc(mpk, id, m)→ ct. The encryption algorithm takes as input the master public parameter mpk, an identity id ∈ Iλ

and a message m ∈ {0, 1}∗. It outputs a ciphertext ct.

Dec(skid, ct)→ m′/⊥. The decryption algorithm takes as input the secret key skid and a ciphertext ct, and outputs
either a message m′ ∈ {0, 1}∗ or ⊥.

Definition 2.5 (Correctness). For correctness, we require that for all λ ∈N, m ∈ {0, 1}∗, id ∈ Iλ,

Pr
[

Dec(skid, ctid) = m | (mpk, msk)← Setup(1λ, 1L),
skid ← KeyGen(msk, id), ctid ← Enc(mpk, id, m)

]
= 1,

where the probability is taken over the random coins of Setup, KeyGen and Enc.

Remark 2.6 (About the identity space.). In this paper, we set the identity space I to be {0, 1}∗ by default. This is without
loss of generality assuming collision resistant hash function and an IBE scheme with sufficiently large identity space
(e.g., Iλ = {0, 1}2λ), since we can hash any string into a string of fixed length using collision resistant hash function.

Remark 2.7 (About the message length.). In the above definition, we assume that the message space is {0, 1}∗. This is
without loss of generality if we consider IND-CPA security for IBE, since it is straightforward to extend the message
space by encrypting each bit (or chunk) of the message in parallel.

Definition 2.8 (IND-CPA Security). An IBE scheme IBE for an identity space Iλ and message space {0, 1}∗ is said to
satisfy indistinguishability based security if for any stateful PPT adversary A, there exists a negligible function negl(.)
such that

AdvIBE,A(1λ) =
∣∣∣Pr
[
Exp(0)IBE,A(1

λ) = 1
]
− Pr

[
Exp(1)IBE,A(1

λ) = 1
]∣∣∣ ≤ negl(λ),

where for each b ∈ {0, 1} and λ ∈N, the experiment Exp(b)IBE,A, modelled as a game between adversary and challenger,
is defined as follows:

1. Setup Phase: On input 1λ from the adversary A, the challenger samples (mpk, msk)← Setup(1λ) and replies
to A with mpk.

9

2. Query phase: During the game, A adaptively makes the following queries in any arbitrary order and unbounded
many times.

(a) Key Queries: A chooses an identity id ∈ Iλ and sends it to the challenger. For each such query, the
challenger replies with skid ← KeyGen(msk, id).

(b) Encryption Queries: A submits to the challenger, an identity id∗ ∈ Iλ and a pair of equal length messages
(m0, m1). The challenger replies with ctid∗ ← Enc(mpk, id∗, mb).

3. Output phase: A outputs it’s guess b′ as output of the experiment.

We say an adversary A is legitimate if during the challenge phase, it is restricted to query for ciphertexts corresponding
to identities id∗ ∈ Iλ whose secret keys are not queried during any key query.

Remark 2.9. Since we are in the public key setting, we can simplify the above experiment so that the encryption query
is allowed for only once. This simplified definition is shown to equivalent to the definition above by a simple hybrid
argument. We adopt the above multi-challenge security definition since it is convenient for our purpose in this paper.

2.3 Turing Machines
Here, we recall the definition of a Turing machine (TM) following [LL20a]. The definition considers Turing machines
with two tapes, namely, input tape and working tape.

Definition 2.10 (Turing Machine). A (deterministic) TM M is represented by the tuple M = (Q, δ, F) where Q is the
number of states (we use [Q] as the set of states and 1 as the initial state), F ⊂ [Q] is the set of accepting state and

δ : [Q]× {0, 1} × {0, 1} → [Q]× {0, 1} × {0,±1} × {0,±1}
(q, b1, b2) 7→ (q′, b′2, ∆i, ∆j)

is the state transition function, which, given the current state q, the symbol b1 on the input tape under scan, and the
symbol b2 on the work tape under scan, specifies the new state q′, the symbol b′2, overwriting b2, the direction ∆i to
which the input tape pointers moves, and the direction ∆j to which the work tape pointer moves. The machine is required
to hang (instead of halting) once it reaches an accepting state, i.e., for all q ∈ [Q] such that q ∈ F and b1, b2 ∈ {0, 1}, it
holds that δ(q, b1, b2) = (q, b2, 0, 0).

For input length n ≥ 1 and space complexity bound s ≥ 1, the set of internal configurations of M is

QM,n,s = [n]× [s]× {0, 1}s × [Q]

where (i, j, W, q) ∈ QM,n,s specifies the input tape pointer i ∈ [n], the work tape pointer j ∈ [s], the content of the
work tape W ∈ {0, 1}s and the machine state q ∈ [Q].

For any bit-string x ∈ {0, 1}n for n ≥ 1 and time/space complexity bounds t, s ≥ 1, the machine M accepts x within
time t and space s if there exists a sequence of internal configurations (computation path of t steps) c0, . . . , ct ∈ QM,n,s
with ck = (ik, jk, Wk, qk) such that (i0, j0, W0, q0) = (1, 1, 0s, 1) (initial configuration),

for all 0 ≤ k < t:

{
δ(qk, x[ik], Wk[jk]) = (qk+1, Wk+1[jk], ik+1 − ik, jk+1 − jk)
Wk+1[j] = Wk[j] for all j ̸= jk (valid transitions);

where x[i] is the i the bit of the string x and Wk[j] is the j the bit of the string Wk, and qt ∈ F (accepting). We also say
M accepts x within time t (without the space bound) if M accepts x within time t and space s = t.

Next, we define time/space bounded computation with non-deterministic Turing machines. The definition is the
same as Definition 2.10, except with the following changes:

• The transition criterion δ can be any relation between (i.e., any subset of the Cartesian product of) [Q]× {0, 1}2

and [Q]× {0, 1} × {0,±q}2, where ((q, b1, b2), (b′2, b′2, ∆i, ∆j)) ∈ δ means that if the current state is q, the
input tape symbol under scan is b1 and the work tape symbol under scan is b2, then it is valid to transit into state
q′, overwrite b2 with b′2, and move the input and work tape pointer by offsets ∆i and ∆j respectively.

10

• The definition of hanging in accepting states is that for all q ∈ [Q] such that q ∈ F and all b1, b2 ∈ {0, 1},

δ ∩
(
{(q, b1, b2)} × ([Q]× {0, 1} × {0,±1}2)

)
= {(q, b1, b2), (q, b2, 0, 0)} .

• In the definition of acceptance

δ(qk, x[ik], Wk[jk]) = (qk+1, Wk+1[jk], ik+1 − ik, jk+1 − jk)

is changed to ((qk, x[ik], Wk[jk]), (qk+1, Wk+1[jk], ik+1 − ik, jk+1 − jk)) ∈ δ.

The following lemma can be obtained by a simple argument on emulating a Turing machine on Boolean circuits. While
we have many other clever methods of simulating Turing machines on circuits (e.g., [PF79]), we use the following
simple one because it evaluates the depth of the circuit as a function on the size of Turing machine, which is usually
regarded as a constant and ignored.

Lemma 2.11 (Emulating a Turing Machine on Circuit). Consider a circuit that takes as input a description of a
(deterministic) Turing machine M = (Q, δ, F), input x to M, a configuration (i, j, W, q) ∈ QM,|x|,|W| and outputs the
next configuration (i′, j′, W ′, q′). We can implement such a circuit with depth poly(log |x|, log |W|, log |M|) and size
poly(|x|, |W|, |M|).

Proof. The circuit is implemented as follows. We focus on the depth of the circuits, since the bound on the size will
be clear from the description. Given the input, it first retrieves the i-th bit x[i] ∈ {0, 1} of the input tape. This can
be done by a circuit with depth O(log |x|), which checks whether i = ν or not for each position ν of the string x in
parallel and returns x[ν] for ν such that ν = i. Similarly, it can retrieve W[j] with depth O(log |W|). Given x[i] and
W[j], it then retrieves δ(q, x[i], W[j]) from δ, which can be done with depth O(log |Q|) similarly to the above. Given
δ(q, x[i], W[j]) = (q′, b′, ∆i, ∆j), the update of i and j can be done in depth O(log |x|) and O(log |W|), respectively.
Writing back the new value b′ can also be done in depth O(log |W|) by finding the right place to write in the tape and
change the value there. From the above discussion, the total depth of the circuit is poly(log |x|, log |W|, log |M|) as
desired.

We also need the following lemma, which can be obtained by a simple observation.

Lemma 2.12 (Checking Transition for Non-deterministic Turing Machine). Consider a circuit that takes as
input a description of a non-deterministic Turing machine M = (Q, δ, F), input x to M, two configurations
(i, j, W, q) ∈ QM,|x|,|W| and (i′, j′, W ′, q′) ∈ QM,|x|,|W| and outputs whether ((i, j, W, q), (i′, j′, W ′, q′)) ∈ δ or not.
We can implement such a circuit with depth poly(log |x|, log |W|, log |M|) and size poly(|x|, |W|, |M|).

Proof. The circuit is implemented as follows. We focus on the depth of the circuits, since the bound on the size will be
clear from the description. Given the input, it first checks whether i′ − i ∈ {0,±1}, j′ − j ∈ {0,±1}. Clearly, this
can be done in depth poly(log |x|, log |W|). It then checks whether W ′[k] = W[k] for all k ∈ [|W|]\{k}, which can
be done in depth poly(log |W|). It then checks whether ((q, x[i], W[j]), (q′, W ′[j], i′ − i, j′ − j)) ∈ δ or not. This
can be checked in depth poly(log |Q|). Therefore, the total depth of the circuit is poly(log |x|, log |W|, log |M|) as
desired.

2.4 Attribute Based Encryption
Let R : X × Y → {0, 1} be a relation where X and Y denote “ciphertext attribute" and “key attribute” spaces,
respectively. Ideally, we would like to have an ABE scheme that handles the relation R directly, where we can encrypt
w.r.t any ciphertext attribute x ∈ X and can generate a secret key for any key attribute y ∈ Y . However, in many cases,
we are only able to construct a scheme that poses restrictions on the ciphertext attribute space and key attribute space. To
capture such restrictions, we introduce a parameter prm and consider subsets of the domains Xprm ⊆ X and Yprm ⊆ Y
specified by it and the function Rprm defined by restricting the function R on Xprm ×Yprm.

An attribute-based encryption (ABE) scheme for R = {Rprm : Xprm ×Yprm → {0, 1}}prm and a message space
M is defined by the following algorithms.

11

Setup(1λ, prm)→ (mpk, msk). The setup algorithm takes as input the unary representation of the security parameter
λ and a parameter prm and outputs a master public key mpk and a master secret key msk.

Enc(mpk, X, µ)→ ctX . The encryption algorithm takes as input a master public key mpk, a ciphertext attribute
X ∈ Xprm, and a message µ ∈ M. It outputs a ciphertext ctX .

KeyGen(msk, Y)→ skY. The key generation algorithm takes as input the master secret key msk and a key attribute
Y ∈ Yprm. It outputs a private key skY.

Dec(mpk, skY, Y, ctX , X)→ µ or ⊥. The decryption algorithm takes as input the master public key mpk, a private
key skY, private key attribute Y ∈ Yprm, a ciphertext ctX and ciphertext attribute X ∈ Xprm. It outputs the
message µ or ⊥ which represents that the ciphertext is not in a valid form.

Definition 2.13 (Correctness). An ABE scheme for relation family R is correct if for all prm, X ∈ Xprm, Y ∈ Yprm
such that R(X, Y) = 0, and for all messages µ ∈ M,

Pr


(mpk, msk)← Setup(1λ, prm),
skY ← KeyGen(msk, Y),
ctX ← Enc(mpk, X, µ) :

Dec
(

mpk, skY, Y, ctX , X
)
̸= µ

 = negl(λ)

where the probability is taken over the coins of Setup, KeyGen, and Enc.

Definition 2.14 (Sel-IND security for ABE). For an ABE scheme ABE = {Setup, Enc, KeyGen, Dec} for a relation
family R = {Rprm : Xprm ×Yprm → {0, 1}}prm and a message spaceM and an adversary A, let us define Sel-IND
security game ExpABE,A(1λ) as follows.

1. A outputs prm and the challenge ciphertext attribute X⋆ ∈ Xprm.

2. Setup phase: On input 1λ, prm, the challenger samples (mpk, msk)← Setup(1λ, prm) and gives mpk to A.

3. Query phase: During the game, A adaptively makes the following queries, in an arbitrary order. A can make
unbounded many key queries, but can make only single challenge query.

(a) Key Queries: A chooses an input Y ∈ Yprm. For each such query, the challenger replies with skY ←
KeyGen(msk, Y).

(b) Challenge Query: At some point, A submits a pair of equal length messages (µ0, µ1) ∈ M2 to
the challenger. The challenger samples a random bit b ← {0, 1} and replies to A with ctX⋆ ←
Enc(mpk, X⋆, µb).

We require that R(X⋆, Y) = 1 holds for any Y such that A makes a key query for Y in order to avoid trivial
attacks.

4. Output phase: A outputs a guess bit b′ as the output of the experiment.

We define the advantage AdvSel-IND
ABE,A (1λ) of A in the above game as

AdvSel-IND
ABE,A (1λ) :=

∣∣∣Pr
[
ExpABE,A(1

λ) = 1|b = 0
]
− Pr

[
ExpABE,A(1

λ) = 1|b = 1
]∣∣∣ .

The ABE scheme ABE is said to satisfy Sel-IND security (or simply selective security) if for any stateful PPT adversary
A, there exists a negligible function negl(·) such that AdvSel-IND

ABE,A (1λ) = negl(λ).

We also consider the very selective version of the security.

12

Definition 2.15 (VerSel-IND security for ABE). We define VerSel-IND security game similarly to Sel-IND security
game except that the adversary A outputs the key queries Y1, . . . , YQ, where Q is the number of key queries made by
A, along with the challenge ciphertext attribute X⋆ in the beginning of the security game. We define the advantage
AdvVerSel-IND

ABE,A (1λ) of the adversary A accordingly and say that the scheme satisfies VerSel-IND security if the quantity
is negligible.

In the following, we recall definitions of various ABEs by specifying the relation.
Key-policy Attribute Based encryption (kpABE) for circuits. To define kpABE for circuits, we set X = {0, 1}∗
and Y as the set of all circuits and define R(x, C) = C(x). In this paper, we consider circuit class Cinp,dep that
consists of circuits with input length inp := inp(λ) and depth dep := dep(λ). To do so, we set prm = (1inp, 1dep),
Xprm = {0, 1}inp, and Yprm = Cinp,dep.

Ciphertext-policy Attribute Based encryption (cpABE) for circuits. To define cpABE for circuits, we setY = {0, 1}∗
and X as the set of all circuits and define R(C, x) = C(x). In this paper, we consider circuit class Cinp,dep that
consists of circuits with input length inp := inp(λ) and depth dep := dep(λ). To do so, we set prm = (1inp, 1dep),
Xprm = Cinp,dep, and Yprm = {0, 1}inp.

ABE for Turing Machines. To define ABE for Turing machines, we set X = {0, 1}∗, Y to be set of all Turing machine,
and define R : X ×Y → {0, 1} ∪ {⊥} as

R((x, 1t), M) =

{
0 if M accepts x in t steps
1 otherwise.

ABE for NL. To define ABE for NL, we set X = {0, 1}∗, Y to be set of all non-deterministic Turing machines with
two tapes, one of which encodes the input and can only be read, whereas the other tape can be read as well as written.
When we measure the space complexity of the computation, we consider the space being used for the latter tape. We
define R : X ×Y → {0, 1} ∪ {⊥} as

R((x, 1t, 12s
), M) =

{
0 if M accepts x within t steps and space s
1 otherwise.

Note that here, s is in the exponent to reflect the idea that the space for the computation is logarithmically bounded.

We will use the kpABE scheme given by [BGG+14] for our constructions. The following theorem summarizes the
properties of the scheme.

Theorem 2.16 (Properties of [BGG+14]). There exists a key-policy ABE scheme ABE = ABE.(Setup, KeyGen, Enc, Dec)
for function class Cℓ,d which is selectively secure under the LWE assumption and has the following properties. In
particular:

Key Compactness. We have |ABE.skC| ≤ poly(λ, d) for any C ∈ Cℓ,d, where (ABE.mpk, ABE.msk)← ABE.Setup(1λ)
and ABE.skC ← ABE.KeyGen(ABE.msk, C). In particular, the length of the secret key is independent of the
attribute length ℓ and the size of the circuit C.

Parameters Succinctness. We have |ABE.mpk|, |ABE.msk| ≤ poly(λ, d, ℓ) and |ABE.ct| ≤ poly(λ, d, ℓ) + |µ| for
any x ∈ Xλ and µ ∈ Mλ, where (ABE.mpk, ABE.msk)← ABE.Setup(1λ) and ABE.ct← ABE.Enc(ABE.mpk, x, µ).

We will also use the cpABE scheme given by [Wee22]. The following theorem summarizes the properties of the
scheme.

Theorem 2.17 (Properties of [Wee22]). There exists a ciphertext policy ABE scheme cpABE = (cpABE.Setup,
cpABE.KeyGen, cpABE.Enc, cpABE.Dec) for function class Cℓ,d, which is very selectively secure under the evasive
LWE and tensor LWE assumption and has the following properties. In particular:

13

Ciphertext Compactness. We have |cpABE.ct| ≤ poly(λ, d)+ |µ| for any C ∈ Cℓ,d and µ ∈ Mλ, where (cpABE.mpk,
cpABE.msk)← cpABE.Setup(1λ) and cpABE.ct← cpABE.Enc(cpABE.mpk, C, µ). In particular, the size of
the ciphertext is independent from the size of the circuit C and its input length.

Parameters Succinctness. We have |cpABE.mpk|, |cpABE.msk|, |cpABE.skx| ≤ poly(λ, ℓ, d) for any x ∈ {0, 1}ℓ,
where (cpABE.mpk, cpABE.msk)← cpABE.Setup(1λ) and cpABE.sk← cpABE.KeyGen(cpABE.msk, x).

2.5 Tensors
In this work, similarly to [Wee22], we use the tensor product techniques. Let A = (ai,j) ∈ Zm×n

q and B ∈ Zs×t
q . The

tensor product is defined as:

A⊗ B def
=

 a1,1B · · · a1,nB
...

...
am,1B · · · am,nB

 ∈ Zms×nt
q .

Throughout the paper, we will heavily use the mixed-product equality, stated as follows. Let A ∈ Zm×n
q , B ∈ Zs×t

q ,
C ∈ Zn×u

q and D ∈ Zt×v
q ,

(A⊗ B) · (C⊗D) = (AC)⊗ (BD) ∈ Zms×uv
q .

The mixed-product can be naturally generalized following

(A1 ⊗ · · · ⊗Ak) · (B1 ⊗ · · · ⊗ Bk) = (A1B1)⊗ · · · ⊗ (AkBk).

Note that we adopt the same convention as in [Wee22] where matrix multiplication takes precedence over tensor
products, i.e. A⊗ BC = A⊗ (BC).

2.6 Lattice Preliminaries
Here, we recall some facts on lattices that are needed for the exposition of our construction. Throughout this section,
n, m, and q are integers such that n = poly(λ) and m ≥ n⌈log q⌉. In the following, let SampZ(γ) be a sampling
algorithm for the truncated discrete Gaussian distribution over Z with parameter γ > 0 whose support is restricted to
z ∈ Z such that |z| ≤

√
nγ.

Let
g = (20, 21, . . . , 2

m
n+1−1)⊺ , G = In+1 ⊗ g⊺

be the gadget vector and the gadget matrix. For p ∈ Zn
q , we write G−1(p) for the m-bit vector (bits(p[1]), . . . , bits(p[n+

1]))⊺, where bits(p[i]) are m/(n + 1) bits for each i ∈ [n + 1]. The notation extends column-wise to matrices and it
holds that GG−1(P) = P.

Trapdoors. Let us consider a matrix A ∈ Zn×m
q . For all V ∈ Zn×m′

q , we let A−1(V) be an output distribution
of SampZ(γ)m×m′ conditioned on A · A−1(V, γ) = V. A γ-trapdoor for A is a trapdoor that enables one to
sample from the distribution A−1(V, γ) in time poly(n, m, m′, log q) for any V. We slightly overload notation and
denote a γ-trapdoor for A by A−1

γ . The following properties had been established in a long sequence of works
[GPV08, CHKP10, ABB10a, ABB10b, MP12, BLP+13].

Lemma 2.18 (Properties of Trapdoors). Lattice trapdoors exhibit the following properties.

1. Given A−1
τ , one can obtain A−1

τ′ for any τ′ ≥ τ.

2. Given A−1
τ , one can obtain [A∥B]−1

τ and [B∥A]−1
τ for any B.

3. There exists an efficient procedure TrapGen(1n, 1m, q) that outputs (A, A−1
τ0

) where A ∈ Zn×m
q for some

m = O(n log q) and is 2−n-close to uniform, where τ0 = ω(
√

n log q log m).

14

Useful Lemmata.

Lemma 2.19 (tail and truncation of DZ,γ). There exists B0 ∈ Θ(
√

λ) such that

Pr
[

x ← DZ,γ : |x| > γB0(λ)
]
≤ 2−λ for all γ ≥ 1 and λ ∈N.

Lemma 2.20 (Smudging Lemma [WWW22]). Let λ be a security parameter. Take any a ∈ Z where |a| ≤ B. Suppose
γ ≥ Bλω(1). Then the statistical distance between the distributions {z : z ← DZ,γ} and {z + a : z ← DZ,γ} is
negl(λ).

Lemma 2.21 (Leftover Hash Lemma). Fix some n, m, q ∈N. The leftover hash lemma states that if m ≥ 2n log q,
then for A ← Zn×m

q , x ← {0, 1}m and y ← Zn
q the statistical distance between (A, A · x) and (A, y) is negligible.

More concretely, it is bounded by qn
√

21−m.

2.6.1 Hardness Assumptions

Assumption 2.22 (The LWE Assumption). Let n = n(λ), m = m(λ), and q = q(λ) > 2 be integers and χ = χ(λ) be
a distribution over Zq. We say that the LWE(n, m, q, χ) hardness assumption holds if for any PPT adversaryA we have

|Pr[A(A, s⊺A + e⊺)→ 1]− Pr[A(A, v⊺)→ 1]| ≤ negl(λ)

where the probability is taken over the choice of the random coins by the adversary A and A ← Zn×m
q , s ← Zn

q ,
e← χm, and v← Zm

q . We also say that LWE(n, m, q, χ) problem is subexponentially hard if the above probability is
bounded by 2−nϵ · negl(λ) for some constant 0 < ϵ < 1 for all PPT A.

As shown by previous works [Reg09, BLP+13], if we set χ = SampZ(γ), the LWE(n, m, q, χ) problem is as
hard as solving worst case lattice problems such as gapSVP and SIVP with approximation factor poly(n) · (q/γ) for
some poly(n). Since the best known algorithms for 2k-approximation of gapSVP and SIVP run in time 2Õ(n/k), it
follows that the above LWE(n, m, q, χ) with noise-to-modulus ratio 2−nϵ is likely to be (subexponentially) hard for
some constant ϵ.

Assumption 2.23 (Circular Small Secret LWE). [HLL23] Let n, m, m′, q, χ, χ′ be functions of λ and

Āfhe ← Zn×m
q , Ā′ ← Zn×m′

q , r← Dn
Z,χ, s← (r⊺,−1)⊺, efhe ← Dm

Z,χ, e′ ← Dm′
Z,χ′ ,

R← {0, 1}m×(n+1)⌈log2 q⌉m, δfhe ← Zm
q , δ′ ← Zm′

q , ∆← Z
(n+1)×(n+1)⌈log2 q⌉m
q

The circular small-secret LWE assumption csLWEn,m,m′ ,q,χ,χ′ states that{(
1λ,
(

Āfhe
r⊺Āfhe + e⊺fhe

)
,
(

Āfhe
r⊺Āfhe + e⊺fhe

)
R− bits(s)⊗G, Ā′, r⊺Ā′ + (e′)⊺

)}
λ∈N

≈
{(

1λ,
(

Āfhe
δ⊺fhe

)
, ∆, Ā′, (δi)

⊺
)}

λ∈N

Assumption 2.24 (Evasive LWE). [Wee22, ARYY23] Let n, m, t, m′, q ∈N be parameters and λ be a security parameter.
Let χ and χ′ be parameters for Gaussian distributions. Let Samp be a PPT algorithm that outputs

S ∈ Zm′×n
q , P ∈ Zn×t

q , aux ∈ {0, 1}∗

on input 1λ. For a PPT adversary Adv, we define the following advantage functions:

APRE
Adv (λ)

def
= Pr

[
Adv0(B, SB + E, SP + E′, aux) = 1

]
− Pr

[
Adv0(B, C0, C′, aux) = 1

]
15

APOST
Adv (λ)

def
= Pr[Adv1(B, SB + E, K, aux) = 1]− Pr[Adv1(B, C0, K, aux) = 1]

where
(S, P, aux)← Samp(1λ),

B← Zn×m
q ,

C0 ← Zm′×m
q , C′ ← Zm′×t

q ,

E← Dm′×m
Z,χ , E′ ← Dm′×t

Z,χ′

K← B−1(P) with standard deviation O(
√

m log(q)).

We say that the evasive LWE (EvLWE) assumption holds if for every PPT Samp and Adv1, there exists another PPT
Adv0 and a polynomial Q(·) such that

APRE
Adv0

(λ) ≥ APOST
Adv1

(λ)/Q(λ)− negl(λ).

Remark 2.25. In the above definition, all the LWE error terms are chosen from the same distribution DZ,χ. However,
in our security proof, we often consider the case where some of LWE error terms are chosen from DZ,χ and others
from DZ,χ′ with different χ ≫ χ′. The evasive LWE assumption with such a mixed noise distribution is implied
by the evasive LWE assumption with all LWE error terms being chosen from DZ,χ as above definition, since if the
precondition is satisfied for the latter case, that for the former case is also satisfied. To see this, it suffices to observe that
we can convert the distribution from DZ,χ′ into that from DZ,χ by adding extra Gaussian noise.

In the security proof of our constructions, we sometimes want to include information dependent on S into the
auxiliary information. However, this makes the corresponding evasive LWE assumption stronger and not desirable. The
following lemma from [ARYY23] allows us to do this without strengthening the assumption under certain conditions.
In the lemma, we separate the auxiliary information into two parts aux1 and aux2, where aux1 is typically the part
dependent on S. The lemma roughly says that if aux1 is pseudorandom, then we can apply the evasive LWE with
respect to a modified sampler whose aux1 is replaced with a random string to derive the conclusion on postcondition
distribution.

Lemma 2.26 (Lemma 3.4 in [ARYY23]). Let n, m, t, m′, q ∈N be parameters and λ be a security parameter. Let χ
and χ′ be Gaussian parameters. Let Samp be a PPT algorithm that outputs

S ∈ Zm′×n
q , aux = (aux1, aux2) ∈ S × {0, 1}∗ and P ∈ Zn×t

q

for some set S . Furthermore, we assume that there exists a public deterministic poly-time algorithm Reconstruct that
allows to derive P from aux2, i.e. P = Reconstruct(aux2).

We introduce the following advantage functions:

APRE′
Adv (λ)

def
= Pr

[
Adv(B, SB + E, SP + E′, aux1, aux2) = 1

]
− Pr

[
Adv(B, C0, C′, c, aux2) = 1

]
APOST′

Adv (λ)
def
= Pr[Adv(B, SB + E, K, aux1, aux2) = 1]− Pr[Adv(B, C0, K, c, aux2) = 1]

where
(S, aux = (aux1, aux2), P)← Samp(1λ),

B← Zn×m
q

C0 ← Zm′×m
q , C′ ← Zm′×t

q , c← S

E← Dm′×m
Z,χ , E′ ← Dm′×t

Z,χ

K← B−1(P) with standard deviation O(
√

m log(q)).

Then, under the evasive LWE (cited above in Assumption 2.24) with respect to Samp′ that outputs (S, (c, aux2), P)
for random c, if APRE′

Adv (λ) is negligible for any PPT adversary Adv, so is APOST′
Adv (λ) for any PPT adversary Adv.

16

Assumption 2.27 (Tensor LWE). [Wee22] Let n, m, q, ℓ, Q ∈N be parameters and γ, χ > 0 be Gaussian parameters.
For all x1, · · · , xQ ∈ {0, 1}ℓ , we have

A,
{

s⊺(In ⊗ r)(A− x⊺i ⊗G) + e⊺i , ri
}

i∈[Q]
≈c A,

{
c⊺i , ri

}
i∈[Q]

where A← Zn×ℓm
q , s← Zmn

q , ei ← Dℓm
Z,χ, ri ← Dm

Z,γ, ci ← Zℓm
q .

2.7 GSW Homomorphic Encryption and Evaluation
We recall the format (without the distribution) of the (leveled fully) homomorphic encryption [GSW13] and the
correctness property. We adapt the syntax from [HLL23].

Lemma 2.28. The leveled FHE scheme works as follows:

• The keys are

(public) Afhe =

(
Āfhe

s̄⊺Āfhe + e⊺fhe

)
∈ Z

(n+1)×m
q , (secret) s⊺ = (s̄⊺,−1),

where s̄ ∈ Zn,Āfhe ∈ Zn×m
q , and e⊺fhe ∈ Zm.

• A ciphertext of x ∈ {0, 1} is X = AfheR− xG ∈ Z
(n+1)×m
q , where R ∈ Zm×m

q is the encryption randomness.
The decryption equation is

s⊺X = −e⊺fheR− xs⊺G ∈ Zm
q ,

which can be used to extract x via multiplication by G−1(⌊q/2⌋ ιn+1).

• There is an efficient algorithm
MakeHEvalCkt(1n, 1m, q, C) = HEvalC

that takes as input n, m, q and a circuit C : {0, 1}L → {0, 1} and outputs a circuit

HEvalC(X1, . . . , XL) = C

taking L ciphertexts as input and outputting a new ciphertext C.

− The depth of HEvalC is dO(log m log log q), where d is the depth of C.
− Suppose Xℓ = AfheRℓ − x[ℓ]G for ℓ ∈ [L] with x ∈ {0, 1}L, then

C = AfheRC − C(x)G,

where
∥∥R⊺

C

∥∥ ≤ (m + 2)dmaxℓ∈[L]
∥∥R⊺

ℓ

∥∥.

Additionally, in the circular version, ciphertexts of bits(s) are published.

Lemma 2.29. (homomorphic evaluation for vector-valued functions [HLL23]) There is an efficient algorithm

MakeVEvalCkt(1n, 1m, q, C) = VEvalC

that takes as input n, m, q and a vector-valued circuit C : {0, 1}L → Z1×m′
q and outputs a circuit

VEvalC(X1, ..., XL) = C,

taking L ciphertexts as input and outputting a new ciphertext C of different format.

• The depth of VEvalC is d ·O(log m log log q) + O(log2 log q) for C of depth d.

17

• Suppose Xℓ = AfheRℓ − x[ℓ]G for ℓ ∈ [L] with x ∈ {0, 1}L, then

C = AfheRC −
(

0n×m′

C(x)

)
∈ Z

(n+1)×m′
q ,

where
∥∥R⊺

C

∥∥ ≤ (m + 2)d ⌈log q⌉maxℓ∈[L]
∥∥R⊺

ℓ

∥∥. The new decryption equation is

s⊺C = −e⊺fheRC + C(x) ∈ Z1×m′
q .

2.8 BGG+ Homomorphic Evaluation Procedures
In this section we describe the properties of the attribute encoding and its homomorphic evaluation. We adapt the syntax
from [HLL23].

• For L-bit input, the public parameter is Aatt ∈ Z
(n+1)×(L+1)m
q .

• The encoding of x ∈ {0, 1}L is
s⊺(Aatt − (1, x⊺)⊗G) + e⊺att,

where s⊺ = (s̄⊺,−1) with s̄ ∈ Zn and e⊺att ∈ Z(L+1)m.

• There are efficient deterministic algorithms [BGG+14]

EvalC(Aatt, C) = HC and EvalCX(Aatt, C, x) = HC,x

that take as input Aatt, a circuit C : {0, 1}L → {0, 1}, and (for EvalCX) some x ∈ {0, 1}L, and output some
matrix in Z(L+1)m×m.

− Suppose C is of depth d, then
∥∥H⊺

C

∥∥, ∥H⊺
C,x∥ ≤ (m + 2)d.

− They satisfy encoding homomorphism, (Aatt − (1, x⊺)⊗G)HC,x = AattHC − C(x)G.

• There are efficient deterministic algorithms [BTVW17]

MEvalC(Aatt, C) = HC and MEvalCX(Aatt, C, x) = HC,x

that take as input Aatt, a matrix-valued circuit C : {0, 1}L → Zn+1×m′
q , and (for MEvalCX) some x ∈ {0, 1}L,

and output some matrix in Z(L+1)m×m′ .

− Suppose C is of depth d, then
∥∥H⊺

C

∥∥, ∥H⊺
C,x∥ ≤ (m + 2)d ⌈log q⌉.

− The matrix encoding homomorphism is (Aatt − (1, x⊺)⊗G)HC,x = AattHC − C(x).

Dual-Use Technique and Extension. In [BTVW17], the attribute encoded with secret s⊺ is FHE ciphertexts under
key s⊺ (the same, "dual-use") and the circuit being MEvalCX’ed is some HEvalC. This leads to automatic decryption.
Let C be a circuit with Boolean output, x an input, X a bunch of FHE ciphertexts of bits(x) under s⊺, and eatt, e′, e′′

some unspecified noises, then

s⊺(Aatt − (1, bits(X))⊗G) + e⊺att ·HHEvalC ,X

= s⊺AattHHEvalC − s⊺HEvalC(X) + (e′)⊺ (MEvalCX)
= s⊺AattHHEvalC − s⊺C(x)G + (e′′)⊺ (HEval decryption)

= s⊺(AattHHEvalC − C(x)G) + (e′′)⊺.

18

To extend the dual-use technique to vector-valued circuits, let the codomain of C be Z1×m′
q , then VEvalC is

Z
(n+1)×m′
q -valued and

s⊺(Aatt − (1, bits(X))⊗G) + e⊺att ·HVEvalC ,X

= s⊺AattVEvalC − s⊺VEvalC(X) + (e′)⊺ (MEvalCX)
= s⊺AattVEvalC − C(x) + (e′′)⊺ (VEval decryption).

Extension to circular encryption means setting x = s, for which we say S, Acirc in place of X, Aatt.

3 Bootstrapping Randomized Homomorphic Evaluation
In this section, we show how to achieve unbounded homomorphism for a randomized attribute encoding of the form

c⊺att = s⊺(In+1 ⊗ r)(Aatt − (1, x⊺)⊗G) + e⊺att = s⊺r (Aatt − (1, x⊺)⊗G) + e⊺att

where s ∈ Zm(n+1), r ∈ Zm, Aatt ∈ Z
(n+1)×m
q , x ∈ {0, 1}L, e⊺att ∈ Zm. We let ∥eatt∥ and ∥(s⊺(In+1 ⊗ r))⊺∥ be

bounded by B. Here B denotes the bound of removable noise. We achieve unbounded homomorphism for the above
randomized attribute encoding using the following steps.

1. Noise removal for randomized encoding. First we transform c⊺att = s⊺r (Aatt − (1, x⊺) ⊗G) + e⊺att into
a noiseless encoding using the procedure RemoveNoise(·) from HLL to achieve RemoveNoise(c⊺att) =
RndPadA(sr)− C(x)s⊺r G where RndPadA(sr) = RemoveNoise(s⊺r A).

2. Structure restoration. Here we transform the noiseless encoding achieved above to an attribute encoding with a
smaller noise, following the blueprint of [HLL23].

Before describing the above steps in detail, we first state a few tools, theorems and lemmas that will be useful later.

3.1 Preparation
Rounding Function. Let Rnd : Zq → Zq be a rounding function defined as Rnd(x) = (q/p) ⌊p/q · x⌉, where p
divides q. We make the following observations for the function Rnd.

Claim 3.1. For x ∈ Zq, Rnd(x) = x + eRnd where |eRnd| ≤ q
2p .

Proof. The rounding function Rnd(x) first rounds p
q · x to the nearest integer, then scales it up to Zq by multiplying

with q
p . Let m be the nearest integer to p

q · x. Then, Rnd(x) = m · q
p . The error eRnd introduced by the rounding process

is defined as eRnd = Rnd(x)− x.
When p

q · x is rounded to m, the error introduced is at most 1
2 . Scaling this error up to Zq by multiplying with q

p , the
maximum error becomes q

p ·
1
2 = q

2p . Therefore, we have |eRnd| ≤ q
2p .

Claim 3.2. For random x, x′ ∈ Zq such that |x− x′| is negligibly smaller than q
p , we have Rnd(x)− Rnd(x′) = 0

with all but negligible probability.

Proof. Let ϵ represent the negligible quantity, such that |x− x′| ≤ ϵ · q
p . The function Rnd operates by scaling x to the

Zp space, rounding it, and then scaling back to Zq. This creates intervals in Zq of size q
p that map to each integer in

Zp. The probability that x and x′ fall into different rounding intervals is related to how close x is to the boundary of a
rounding interval. If x and x′ are within ϵ× q

p of each other, for a small ϵ, and they straddle a rounding boundary, then
they round to different values.
Given a uniform distribution of x and x′ over Zq, the probability of a number falling within ϵ× q

p of a rounding

19

boundary is approximately 2ϵ because there are two boundaries (upper and lower) for each interval, and each boundary
has a "risk zone" of ϵ× q

p around it.
Therefore, Pr[Rnd(x) ̸= Rnd(x′) | |x− x′| ≤ ϵ · (q/p)] ≤ 2ϵ, which is negligible.

Theorem 3.3 (Noise Removal: [HLL23] Construction 1). There exists a deterministic procedure RemoveNoise(·)
such that for an input u⊺ = s⊺(A− xG) + e ∈ Z1×m

q , where A ∈ Zn+1×m
q , x ∈ {0, 1}, ∥s∥ ≤ B, ∥e∥ ≤ B,

RemoveNoise(u⊺) = RndPadA(s)− xs⊺G ∈ Z1×m
q

where RndPadA(s) = RemoveNoise(s⊺A).

Lemma 3.4. A canonical Boolean circuit of RndPadA(·) is of depth O(log n log log q) and can be efficiently generated
from A ∈ Z

(n+1)×m
q .

Theorem 3.5 (Bootstrapping: [HLL23] Theorem 12). It works as follows:

• The secret is s = (s̄⊺,−1)⊺ ∈ Zn+1 with bits(s) ∈ {0, 1}(n+1)⌈log q⌉. The circular ciphertext is

S =

(
Āfhe

s̄⊺Āfhe + e⊺fhe

)
(R1, · · · , R(n+1)⌈log q⌉)− bits(s)⊗G ∈ Z

(n+1)×m(n+1)⌈log q⌉
q

where Āfhe ∈ Z
(n+1)×m
q , e⊺fhe ∈ Zm, and Ri ∈ Zm×m

q for 1 ≤ i ≤ (n + 1) ⌈log q⌉.
Let LS = m(n + 1)2 ⌈log q⌉2, so that bits(S) ∈ {0, 1}1×LS .

• The circular encoding is s⊺(Acirc − (1, bits(S)) ⊗ G) + e⊺circ where Acirc ∈ Z
(n+1)×(LS+1)m
q and ecirc ∈

Z(LS+1)m.

• There are efficient deterministic algorithms

EvalRndPad(Acirc, A) = HRndPad
A and EvalRndPadS(Acirc, A, S) = HRndPad

A,S

such that ∥∥∥(HRndPad
A)

⊺
∥∥∥,
∥∥∥(HRndPad

A,S)
⊺
∥∥∥ ≤ 2O(log5 λ).

Moreover, when S is indeed of the correct form for RndPadA(·) defined in Theorem 3.3,

s⊺(Acirc − (1, bits(S))⊗G)HRndPad
A,S

= s⊺AcircHRndPad
A − RndPadA(s) + e⊺fheRRndPadA

where
∥∥∥R⊺

RndPadA

∥∥∥ ≤ 2O(log4 λ).

Theorem 3.6 (Unbounded Homomorphic Evaluation: [HLL23] Construction 2). Let C : {0, 1}L → {0, 1} and
x ∈ {0, 1}L. Suppose

s = (s̄⊺,−1)⊺, , R ∈ {0, 1}m×m(n+1) log q, S =

(
Āfhe

s̄⊺Āfhe + e⊺fhe

)
R− bits(s)⊗G

c⊺att = s⊺(Aatt + (1, x)⊗G) + e⊺att, c⊺circ = s⊺(Acirc − (1, bits(S))⊗G) + e⊺circ,

where ∥s∥ ≤ B, ∥eatt∥,
∥∥e⊺fhe

∥∥, ∥ecirc∥ ≤ 2−λB.

There are two efficient algorithms

UEvalC(Aatt, Acirc, C) = AC, UEvalCX(Aatt, ct⊺att, Acirc, ct⊺circ, C, x, S) = c⊺C,x

satisfying, with all but negligible probability, c⊺C,x = s⊺(AC − C(x)G) + e⊺C,x and

∥eC,x∥ ≤ (∥efhe∥+ ∥ecirc∥) · 2poly(log q) ≤ B.

20

3.2 Noise Removal for Randomized Encoding
Here we use the RemoveNoise(·) procedure from Theorem 3.3 to remove noise from a randomized attribute encoding
c⊺att = s⊺r (A− C(x)G) + e⊺ ∈ Z1×m

q with ∥sr∥, ∥e∥ ≤ B. Here we have s⊺r = s⊺(In+1 ⊗ r), s ∈ Zm(n+1), r ∈
Zm, A ∈ Z

(n+1)×m
q , and e ∈ Zm.

We have the following using Theorem 3.3.

RemoveNoise(s⊺r (A− C(x)G) + e⊺) = RndPadA(sr)− C(x)s⊺r G.

3.3 Randomized Bootstrapping a.k.a Structure Restoration
To support unbounded evaluation, we transform the noiseless encoding achieved in Section 3.2 back to an attribute
encoding with smaller noise, following the blueprint of [HLL23]. In particular, we want to compute s⊺r A′C −
RndPadA(sr) + (e′)⊺ for some publicly computable matrix A′C and a small noise e′ whose norm is within the bound
of removable noise. Note that, as discussed in the technical overview, this cannot be directly computed during the key
generation or encryption process as it requires the knowledge of both the keygen randomness r and the encryption
randomness s. We divide the structure restoration into two parts.

Step 1: Computing Advice for HLL. We define a new algorithm ComputeAdvicer that enables us to compute
an extra noisy FHE circular encryption S′r = hctsr(sr) + errS using key sr and a circular encoding E′r =
s⊺r (Acirc − (1, bits(S′r))⊗G) + e⊺E where s⊺r = s⊺(In+1 ⊗ r) = (s̄⊺r ,−1)3 is the FHE secret key.

Step 2: HLL Bootstrapping. We use S′r and E′r obtained above to compute s⊺r A− RndPadA(sr) similarly to HLL.

Notations. We set mT = m(m(n + 1) ⌈log q⌉ + λ), LT = m(n + 1)(m(n + 1) ⌈log q⌉ + λ) ⌈log q⌉ , mS =

m(n + 1) ⌈log q⌉ , LS = m(n + 1)2 ⌈log q⌉2, and ℓ = LS(1 + m log q).

Ingredients. We require the following tools.

1. A rounding function Rnd : Zq → Zq where Rnd(x) = q
p

⌊
px
q

⌉
, where p is an integer that divides q.

2. Three pseudorandom functions: PRF1 : {0, 1}λ ×Zm → [−σ′, σ′]1×m, PRF2 : {0, 1}λ ×Zm → {0, 1}m×mS

and PRF3 : {0, 1}λ ×Zm → [−σ′, σ′]1×(LS+1)m.

Next, we describe our ComputeAdvicer procedure.

Step 1: Procedure ComputeAdvicer(Āfhe, Acirc, Apath, T, D, c⊺1). The algorithm ComputeAdvicer, with r ∈ Zm
q

hardwired, has the following functionality.
Input: It takes as input (Āfhe, Acirc, Apath, T, D, c⊺1), where Āfhe ∈ Zn×m

q , Acirc ∈ Z
(n+1)×(LS+1)m
q ,

Apath ∈ Z
(n+1)×(LT+1)m
q , T =

(
Ā′fhe

t̄⊺Ā′fhe + (e′fhe)
⊺

)
R− bits(s, sd)⊗G,∈ Z

(n+1)×mT
q

D = t⊺(Apath − (1, bits(T))⊗G) + e⊺D ∈ Z
(LT+1)m
q , c⊺1 = t⊺(Ar) + e⊺1 ∈ Zℓ

q,

for t = (t̄⊺,−1)⊺ ∈ Zn+1, Ā′fhe ∈ Z
(n+1)×m
q , e′fhe ∈ Zm, R ∈ {0, 1}m×mT , and Ar = ApathHF ∈ Z

(n+1)×ℓ
q .

Here HF is a short matrix computed w.r.t. the function F defined in Figure 1.

3We sample s and r in such a way that s⊺r = (s̄⊺r ,−1) holds.

21

Output: It outputs (S′r ∈ Z
(n+1)×mS
q , E′r ∈ Z

1×(LS+1)m
q), where

S′r =
(

Āfhe
s̄⊺r Āfhe + e⊺fhe

)
R− bits(sr)⊗G + errS, E′r = s⊺r (Acirc − (1, bits(S′r))⊗G) + e⊺circ

for s⊺r = (s̄⊺r ,−1) ∈ Zn+1, efhe ∈ Zm, errS 4 ∈ Z(n+1)×mS , and ecirc ∈ Z
1×(LS+1)m
q .

If the terms e′fhe, eD and e1 are short, then efhe, errS, and ecirc are short. This will be formally proven in Lemma 3.7.
The algorithm ComputeAdvicer works as follows.

1. Defining function to evaluate. Define function F = Fr(·, ·) as in Figure 1. Using the fact that the computation of
modular inner product and the PRF is in NC1, we analyse the depth of F as follows.
Step 1 and 3 can be implemented by a circuit of depth O(log m log log q + log n log log q). Step 2 can be im-
plemented by a circuit of depth O(log n log log q) +O(log(m log q)) ≤ O(log m log log q + log n log log q),
where the first component is w.r.t. inner product and second for the addition. Similarly step 4 can be imple-
mented by a circuit of depth O(log n log log q). Thus the entire computation can be implemented with depth
dF = O(log m log log q + log n log log q).

2. Defining circuits for homomorphic evaluation. Here we define homomorphic evaluation circuits for function F.

− Define VEvalF = MakeVEvalCkt(n, m, q, F) ∈ Zn+1×ℓ
q . From Lemma 2.29, the depth of VEvalF is

(dFO(log m log log q) + O(log2 log q)) = O(log2 m log2 log q + log m log n log2 log q).

− Compute HF = MEvalC(Apath, VEvalF), HF,T = MEvalCX(Apath, VEvalF, T) ∈ Z(LT+1)m×ℓ.

Using the depth bound from Section 2.8, we have

∥(HF)
⊺∥, ∥(HF,T)

⊺∥ ≤ (m + 2)dVEvalF ⌈log q⌉

= (m + 2)O(log2 m log2 log q+log m log n log2 log q) ⌈log q⌉

≤ 2log5 λ.

3. Compute the circuit homomorphically on D. Here we use the homomorphic evaluation circuits to compute on
D.

D ·HF,T = (t⊺(Apath − (1, bits(T))⊗G) + e⊺D)HF,T

= t⊺ApathHF − t⊺VEvalF(bits(T)) + e⊺DHF,T

= t⊺Ar − F(s, sd) + (e′fhe)
⊺RF + e⊺DHF,T

= t⊺Ar − (Sr, Er) + e⊺F .

where e⊺F = (e′fhe)
⊺RF + e⊺DHF,T and by Lemma 2.29, we have∥∥R⊺

F
∥∥ ≤ (m + 2)dF ⌈log q⌉ ·maxi∈[m(n+1)⌈log q⌉+λ]

∥∥R⊺
i

∥∥
≤ (m + 2)dF ⌈log q⌉ ·m = (m + 2)dF ⌈log q⌉ · 3(n + 1) ⌈log q⌉

≤ (m + 2)dFO(log q) ≤ 2O(log4 λ).

4This is an extra noise term in the fhe ciphertext. However, we bound it such that it is still correctly decryptable by secret key sr.

22

Function F

Hardwired constants: r ∈ Dm
Z,σr

.
On input (s ∈ Zm(n+1), sd ∈ {0, 1}λ), proceed as follows:

(a) Set s⊺r := s⊺(In+1 ⊗ r) and parse sr = (s̄⊺r ,−1)⊺.
(b) Compute a⊺r = s̄⊺r Āfhe + PRF1(sd, r).

(c) Compute Sr =

(
Āfhe
a⊺r

)
PRF2(sd, r)− bits(sr)⊗G ∈ Z

(n+1)×m(n+1)⌈log q⌉
q .

Parse Sr ∈ Z
1×m(n+1)2⌈log q⌉
q and set S̄r = Rnd(Sr).

(d) Compute Er := s⊺r (Acirc − (1, bits(S̄r))⊗G) + PRF3(sd, r) ∈ Z
1×(LS+1)m
q .

(e) Output (Sr, Er) ∈ Z1×ℓ
q .

Figure 1: Function F

4. Cancel out masking term. Compute c⊺1 −D ·HF,T.

c⊺1 −D ·HF,T

= t⊺(Ar) + e⊺1 − (t⊺Ar − (Sr, Er) + e⊺F)
= (Sr, Er) + e⊺ = (Sr + e⊺S , Er + e⊺E)

where e⊺ = e⊺1 − e⊺F ∈ Z1×ℓ and ∥eS∥, ∥eE∥ ≤ ∥e∥.

5. Output Output S′r = Rnd(Sr + e⊺S) and E′r = Er + e⊺E.

We encapsulate the property of our algorithm ComputeAdvicer in the following lemma.

Lemma 3.7 (ComputeAdvicer). If σ′, ∥e′fhe∥, ∥eD∥ ≤ 2−2λB′, ∥e1∥ ≤ 2−λ/2B′, q = B′pλω(1), ∥sr∥ ≤ 2−λB′, for
a bound B′ = 2−4λB where B < q/4 is the bound on the removable error, then for procedure ComputeAdvicer defined
above, the output (S′r, E′r) is suitable for HLL Bootstrapping. Specifically, we have

• S̄r = S′r with overwhelming probability.

• S̄r and S′ are valid fhe ciphertexts encrypting bits(sr) using key sr with decryption error ≤ 2−λB

• The error in E′r is bounded as ∥ecirc∥ ≤ 2−λB.

Proof. We show that the output of ComputeAdvicer is valid for HLL bootstrapping.

First we note that since ∥e′fhe∥, ∥eD∥ ≤ 2−2λB′ and
∥∥R⊺

F
∥∥, ∥(HF,T)

⊺∥ ≤ 2poly(log λ), from Step 3 of ComputeAdvicer
we have ∥eF∥ ≤ 2−3λ/2B′. Also, since ∥e1∥ ≤ 2−λ/2B′, from Step 4 we have ∥eS∥, ∥eE∥ ≤ ∥e∥ ≤ ∥e1∥+ ∥eF∥ ≤
B′.

• Equality of S̄r and S′r. We have S̄r = Rnd(Sr) and S′r = Rnd(Sr + e⊺S). From Claim 3.2, we know that
Rnd(Sr) = Rnd(Sr + e⊺S) with overwhelming probability if ∥(Sr − (Sr + e⊺S))

⊺∥ = ∥eS∥ ≤ ϵ
q
p for some

negligible parameter ϵ. Note that ∥eS∥ ≤ B′ ≤ 1
λω(1) q/p. Thus we have Rnd(Sr) = Rnd(Sr + e⊺S) with

overwhelming probability.

23

• Validity of S̄r and S′r.

First we show that S̄r = Sr + err1 ∈ Z
(n+1)×m(n+1)⌈log q⌉
q is a valid fhe encryption of sr. Consider the

decryption equation

s⊺r S̄r = s⊺r Sr + s⊺r err1

= −PRF1(sd, r)PRF2(sd, r)− sr(bits(sr)⊗G) + s⊺r err1

= −sr(bits(sr)⊗G) + err⊺fhe.

which can be used to extract bits(sr) via tensoring by G−1(⌊q/2⌋ ιn+1) if ∥errfhe∥ ≤ 2−λB < q/4, where
errfhe = s⊺r err1 − PRF1(sd, r)PRF2(sd, r).
Note that Claim 3.1 implies ∥err1∥ ≤ q

2p ≤ B′λω(1). Then, we have ∥errfhe∥ ≤ B′ · B′λω(1) + O(m)σ′ ≤
λω(1)(B′)2 + O(m)2−λB′ ≤ 2−λB.
Next, we show that S′r = Sr + eS + err2 ∈ Z

(n+1)×m(n+1)⌈log q⌉
q is a valid fhe encryption of sr. Consider the

decryption equation

s⊺r S′r = s⊺r Sr + s⊺r (eS + err2)

= −s⊺r (bits(sr)⊗G) + (err′fhe)
⊺.

which can be used to extract bits(sr) via tensoring by G−1(⌊q/2⌋ ιn+1) if ∥err′fhe∥ ≤ 2−λB < q/4, where
(err′fhe)

⊺ = s⊺r (eS + err2)− PRF1(sd, r)PRF2(sd, r) and ∥err′fhe∥ ≤ 2−λB. The analysis is similar to ∥efhe∥,
hence omitted.

• Error bound in E′r. We have E′r = s⊺r (Acirc − (1, bits(S̄r))⊗G) + e⊺circ, where e⊺circ = PRF3(sd, r) + e⊺E. We
have ∥ecirc∥ ≤ 2−λB′ + B′ ≤ 2−λB.

Step 2: HLL Bootstrapping On input Acirc, S′r = hctsr(sr) + errS, and E′r = s⊺r (Acirc − (1, bits(S′r))⊗G) +

e⊺circ 5, it does the following6.

1. Defining circuits for homomorphic evaluation. Define the following evaluation circuits/matrices corresponding
to the function RndPadA(·).

− Define VEvalRndPadA = MakeVEvalCkt(RndPadA).

− Compute HRndPad
A = MEvalC(Acirc, VEvalRndPadA) ∈ Z(LS+1)m×m and HRndPad

A,S′r
= MEvalCX(Acirc, VEvalRndPadA ,

S′r) ∈ Z(LS+1)m×m.

Here
∥∥(HRndPad

A)⊺
∥∥,
∥∥∥(HRndPad

A,S′r
)⊺
∥∥∥ ≤ 2O(log5 λ).

2. Compute the matrix homomorphically on E′r. We have

E′r ·HRndPad
A,S′r

=
(
s⊺r (Acirc − (1, bits(S′r))⊗G) + e⊺circ

)
HRndPad

A,S′r

= s⊺r AcircHRndPad
A − RndPadA(sr) + err⊺

5We replace S̄r with S′r in the E′r, since S̄r = S′r with overwhelming probability.
6Note that this doesn’t straightforward follows from HLL. The error terms are different in the circular ciphertext S′r. However, we can still get the

final error with the desired bounds as analysed below.

24

where, using the fact that depth of RndPad is O(log n log log q), we have

∥err∥ ≤(m + 2)O(log n log log q) ·m · (∥PRF1(sd, r)⊺∥+ ∥(s⊺r (eS + err2))
⊺∥)

+ ∥ecirc∥ · 2O(log5 λ).

Assuming ∥PRF1(sd, r)⊺∥, ∥(s⊺r (eS + err2))
⊺∥, ∥ecirc∥ ≤ 2−λB, we get ∥err∥ ≤ 2−λ/2B.

3. Output s⊺r AC − RndPadA(sr) + err⊺, where AC = AcircHRndPad
A .

Restoring the structure. We note that combining the outputs from Section 3.2 and 3.3, we get

s⊺r AC − C(x)s⊺r G + err⊺, where ∥err∥ ≤ 2−λ/2B.

4 Ciphertext Policy ABE for Unbounded Depth Circuits
In this section we present CP-ABE for unbounded depth and size circuits.

4.1 Construction
We construct a CPABE scheme for circuit class C = {C : {0, 1}L → {0, 1}}.

Setup(1λ, 1L). The setup algorithm does the following.

1. Set LS = m(n+ 1)2 ⌈log q⌉2, LT = m(n+ 1)(m(n+ 1) ⌈log q⌉+ λ) ⌈log q⌉, and ℓ = LS(1+m log q).

2. Sample: (B, τ)← TrapGen(1(n+1)(m+2), 1(n+1)(m+2)w, q), Āfhe ← Zn×m
q , A0 ← Z

(n+1)×m
q , Apath ←

Z
(n+1)×(LT+1)m
q , Aatt ← Z

(n+1)×(L+1)m
q , Acirc ← Z

(n+1)×(LS+1)m
q , u← Dm

Z,σr
, where w ∈ O(log q).

3. Output mpk := (Āfhe, A0, Apath, Aatt, Acirc, B, u)7 and msk := τ.

KeyGen(msk, x). The key generation algorithm does the following.

1. For 1 ≤ j ≤ m− 1, sample rj ← DZ,σr
. Set r = (r1, . . . , rm) such that ∑j∈[m] rj = 1.

2. Define function F as in Figure 1 using r, VEvalF = MakeVEvalCkt(n, m, q, F) ∈ Zn+1×ℓ
q and compute

HF = MEvalC(Apath, VEvalF). Set Ar = ApathHF.
3. Sample

K← B−1
τ

A0r
(Aatt − (1, x⊺)⊗G)⊗ r

Ar


4. Output sk := (K, r).

Enc(mpk, C, µ). The encryption algorithm does the following.

1. Sample s0 ← D
(n+1)
Z,σs

, sj ← Dm
Z,σs

for 1 ≤ j ≤ n, t̄← Dn
Z,σs

, e′0 ← D
(n+1)w
Z,σ0

, e′att ← D
m(n+1)w
Z,σatt

, e′1 ←
D(n+1)w

Z,σ1
emsg ← Dm

Z,σmsg
. Set s = (s⊺1 , . . . , s⊺n ,−1m)⊺, t = (t̄⊺,−1)⊺, e⊺B = ((e′0)

⊺, (e′att)
⊺, (e′1)

⊺).
2. Compute

c⊺B := (s⊺0 | s⊺ | t⊺)B + e⊺B, ct⊺msg := s⊺0 A0 + s⊺(ACu⊗ Im) + µ · g⊺ + e⊺msg

where AC ← UEvalC(Acirc, Aatt, C).

7All the algorithms take mpk implicitly.

25

3. For sd← {0, 1}λ and R = (R1, . . . , Rm(n+1)⌈log q⌉+λ), compute fhe ciphertext as follows.

Ā′fhe ← Zn×m
q , e′fhe ← Dm

Z,σ′ , At := (Ā′fhe t̄⊺Ā′fhe + (e′fhe)
⊺)⊺,

T = AtR− bits(s, sd)⊗G ∈ Z
(n+1)×m(m(n+1)⌈log q⌉+λ)
q

where Ri ← {0, 1}m×m for all 1 ≤ i ≤ (m(n + 1) ⌈log q⌉+ λ).
Set LT = m(n + 1)(m(n + 1) ⌈log q⌉+ λ) ⌈log q⌉ so that bits(T) ∈ {0, 1}LT .

4. Computes circular encoding as follows.

eD ← D
(LT+1)m
Z,σ′ , D = t⊺(Apath − (1, bits(T))⊗G) + e⊺D.

5. Output ct = (cB, cmsg, T, D).

Dec(sk, x, ct, C). The decryption algorithm does the following.

1. Parse sk = (K, r⊺) and ct = (At, cB, cmsg, T, D).

2. Compute ct⊺B ·K and parse it as (c⊺0 c⊺att c⊺1) where c0 ∈ Zq, catt ∈ Z
(L+1)m
q , c1 ∈ Zℓ

q.

3. Compute (S′r, E′r)← ComputeAdvicer(Āfhe, Acirc, Apath, T, D, c⊺1).
4. Set c⊺circ := E′r and compute c⊺C,x ← UEvalCX(Aatt, c⊺att, Acirc, c⊺circ, C, x, S′r).

5. Output ct⊺msg · r− c⊺0 − c⊺C,x · u

Parameters. We set our parameters as follows.

n = poly(λ), q = 214λλω(1), p = 210λ, m = O(n log q), B = 27λ,

σr = poly(λ), σs = σ′ = 2λ, σ0 = 27λ, σ1 = 22λλω(1), σmsg = 25λ, σatt = 25λ,

τ = O(
√
(n + 1)(m + 2) log q), χ0 = 26λλω(1), χ1 = 22λλω(1), χatt = 23λ

where χ0, χ1, χatt appear only in the security proof.

Efficiency. Using the above set parameters, we have

|mpk| = poly(λ, L), |sk| = poly(λ, L), |ct| = poly(λ).

Correctness We show the correctness step by step below.

− First, we note that

ctB ·K =
(
(s⊺0 | s⊺ | t⊺)B + e⊺B

)
B−1

τ

A0r
(Aatt − (1, x⊺)⊗G)⊗ r

Ar


(c⊺0 c⊺att c⊺1) = (s⊺0 (A0r) + e⊺0 s⊺((Aatt − (1, x⊺)⊗G)⊗ r) + e⊺att t⊺(Ar) + e⊺1)

where ∥e0∥ ≤ τ
∥∥e′0
∥∥, ∥eatt∥ ≤ τ∥e′att∥, ∥e1∥ ≤ τ

∥∥e′1
∥∥.

− Next, we have ∥sr∥ ≤ σsσr ·m ≤ 2λ · poly(λ) ·m ≤ B and q/p = 23λλω(1).

− Correctness of ComputeAdvicer. From our parameter setting, we have ∥e1∥ ≤ τ · 22λλω(1)
√

λ, ∥eD∥, ∥e′fhe∥ ≤
2λ
√

λ, where e1, eD, e′fhe are the error terms present in the input to procedure ComputeAdvicer. Next, we observe
the following.

26

– The error term in Step 3 is e⊺F = (e′)⊺RF + e⊺DHF,T. We have ∥eF∥ ≤ 2λ+poly(log λ)
√

λ.

– The error term in Step 4 is e⊺ = e⊺1 − e⊺F ∈ Z1×ℓ. We have ∥e∥ ≤ 23λ. This implies ∥eS∥, ∥eE∥ ≤ 23λ.
– The decryption error in S̄r is errfhe = s⊺r err1 − PRF1(sd, r)PRF2(sd, r).

We have ∥errfhe∥ ≤ O(m2) ·poly(λ)25λλω(1)+m · 2λ ≤ 26λ, where we use the fact that the error introduced
by Rnd(·) is bounded by q/2p.

– The decryption error in S′r is (err′fhe)
⊺ = s⊺r (eS + err2)− PRF1(sd, r)PRF2(sd, r).

We have ∥err′fhe∥ ≤ 25λ + O(m2) · poly(λ)25λλω(1) + m · 2λ ≤ 26λ, where we use the fact that the error
introduced by Rnd(·) is bounded by q/2p and ∥sr∥ · ∥eS∥ ≤ 25λ.

– Next, we note that ∥eS∥ ≤ 23λ ≤ 1
2λ ·

q
p . This implies that Rnd(Sr) = Rnd(Sr + e⊺S) with overwhelming

probability.
– The error term in E′r is e⊺circ = PRF3(sd, r) + e⊺E. We have ∥ecirc∥ ≤ 2λ + 23λ ≤ 2−λB.

Using the above observations, we note that the procedure ComputeAdvicer outputs S′r and E′r where E′r encode S′r
with all but negligible probability.

− Next, note that for c⊺att = s⊺((Aatt − (1, x⊺) ⊗ G) ⊗ r) + e⊺att = s⊺r (Aatt − (1, x⊺) ⊗ G) + e⊺att, where
∥sr∥, ∥eatt∥ ≤ B. So, by the correctness of UEvalCX, we have

ct⊺C,x = s⊺r (AC − C(x)G) + e⊺C,x = s(In+1 ⊗ r)(AC − C(x)G) + e⊺C,x,

where, from Step 2 of procedure HLL Bootstrapping, it follows that ∥eC,x∥ ≤ (m + 2)O(log n log log q) · m ·
(∥PRF1(sd, r)⊺∥+ ∥(s⊺r (eS + err2))

⊺∥) + ∥ecirc∥ · 2O(log5 λ).
From our parameter setting and the error analysis above, ∥eC,x∥ ≤ 26λ ≤ 2−λ/2B.

− Next, for C, x such that C(x) = 0, we have the following.

ct⊺msg · r− c⊺0 − ct⊺C,x · u
= (s⊺0 A0 + s⊺(ACu⊗ Im) + µ · g⊺ + e⊺msg) · r− s⊺0 (A0r)− e⊺0
− s⊺(In+1 ⊗ r)ACu− e⊺C,xu

= s⊺(ACu⊗ Im)r + µ · g⊺r + e⊺msgr− e⊺0 − s⊺(ACu⊗ Im)(1⊗ r)− e⊺C,xu

≈ µ ⌊q/2⌉+ e⊺.

where e⊺ = e⊺msgr− e⊺0 − e⊺C,xu and ∥e∥ ≤ 25λ
√

λ ·m ·poly(λ)−O(m) · 2λ
√

λ− 26λ ·poly(λ) ≤ 27λ < q/4,
which is within the bounds of rounding. Hence the decryption outputs µ with all but negligible probability.

4.2 Our Assumption
We detail our assumptions next. We introduce a circular version of the Tensor LWE assumption [Wee22] in similar
spirit to the Evasive Circular assumption [HLL23].

Assumption 4.1 (Circular Tensor LWE). Let s = (s⊺1 , · · · s⊺n ,−1m)⊺ where si ← Dm
Z,σs

, r = (r1, . . . , rm), where
ri ← DZ,σr

such that ∑i∈[m] ri = 1. For i ∈ [Q], set s⊺ri = s⊺(In+1 ⊗ ri) = (s̄⊺ri ,−1) ∈ Zn+1. Suppose

Aatt =

(
Āatt
a⊺att

)
← Z

(n+1)×(L+1)m
q , Āfhe ← Zn×m

q , Acirc =

(
Ācirc
a⊺circ

)
← Z

(n+1)×mcirc
q

and for i ∈ [Q], σatt, σ′ << q, suppose

eatt,i ← D
(L+1)m
Z,σatt

, efhe,i ← [−σ′ , σ′]m , ecirc,i ← [−σ′ , σ′]mcirc

27

δatt,i ← Z
(L+1)m
q , δfhe,i ← Zm

q , δcirc,i ← Zmcirc
q , ∆i ← Z

(n+1)×mS
q

Ri ← {0, 1}m×mS , Sri =

(
Āfhe

s̄⊺ri Āfhe + e⊺fhe,i

)
Ri − bits(sri)⊗G ∈ Z

(n+1)×mS
q

where the parameters are functions of λ.
For all x1, . . . , xQ ∈ {0, 1}L, the circular tensor LWE assumption states that(

1λ, Aatt, Acirc, Āfhe,

{
s̄⊺ri (Āatt − (1, x⊺i)⊗ Ḡ) + e⊺att,i, s̄⊺ri Āfhe + e⊺fhe,i,

Sri , s̄⊺ri (Ācirc − (1, bits(Si))⊗ Ḡ) + e⊺circ,i , ri

}
i∈[Q]

)
λ∈N

≈
(

1λ, Aatt, Acirc, Āfhe,
{

δ⊺
att,i, δ⊺

fhe,i, ∆i, δ⊺
circ,i

}
i∈[Q]

)
λ∈N

Remark 4.2. Here, we choose efhe and ecirc from uniform distribution over an interval rather than from usual Gaussian
distribution. This change makes little difference to the assumption, since when the modulus q is super-polynomial, we
can reduce the problem with Gaussian distribution to the one with uniform distribution with (superpolynomially) larger
width and vice versa, due to the smudging (Lemma 2.20).

4.3 Security Proof
Theorem 4.3. Assuming evasive LWE (assumption 2.24), circular tensor LWE (assumption 4.1) and LWE (assumption
2.22), there exists a CP-ABE scheme for unbounded depth and unbounded size circuits which satisfies very selective
security (Definition 2.15).

Proof. Suppose the ABE adversary A with randomness coinsA queries C and x1, . . . , xQ such that C(x1) = · · · =
C(xQ) = 1. The view of the adversary when bit µ is encoded is:

mpk = (Āfhe, A0, Apath, Aatt, Acirc, B, u),

c⊺B = (s⊺0 | s⊺ | t⊺)B + e⊺B, ct⊺msg = s⊺0 A0 + s⊺(ACu⊗ Im) + µ · g⊺ + e⊺msg

T = AtR− bits(s, sd)⊗G, D = t⊺(Apath − (1, bits(T))⊗G) + e⊺D, {Ki , ri}i∈[Q]


where for i ∈ [Q], we have

Ki = B−1
τ

A0ri
(Aatt − (1, x⊺)⊗G)⊗ ri

Ari


Note that to prove ct⊺msg = s⊺0 A0 + s⊺(ACu⊗ Im) + µ · g⊺ + e⊺msg is indistinguishable from random, it suffices to
show that c⊺msg = s⊺0 A0 + s⊺(ACu⊗ Im) + e⊺msg. We prove the pseudorandomness of the above distribution by
replacing ct⊺msg with c⊺msg.
We invoke the Lemma 2.26 variant of evasive LWE hardness assumption for a matrix B with Gaussian parameter τ and

28

a sampler Samp that outputs (S, P, aux = (aux1, aux2)) defined as follows.

aux1 =

ctmsg = (s0, s)
(

A0
ACu⊗ Im

)
, T =

(
Āfhe

t̄⊺Āfhe + ē⊺fhe

)
R− bits(s, sd)⊗G,

D = t⊺(Apath − (1, bits(T))⊗G) + e⊺D


aux2 = (x1, . . . , xQ, C, coinsA, r1, . . . , rQ, Āfhe, A0, Apath, Aatt, Acirc, u)
S = (s⊺0 | s⊺ | t⊺)
P0 = (A0r1∥, . . . , ∥A0rQ)

P1 = ((Aatt − (1, x⊺)⊗G)⊗ r1∥, . . . , ∥(Aatt − (1, x⊺)⊗G)⊗ rQ)

P2 = (Ar1∥, . . . , ∥ArQ)

P =

P0
P1

P2


We set aux0 = (x1, . . . , xQ, C, coinsA).
By applying evasive LWE, it suffices to show pseudorandomness of the following distribution, given aux0,

mpk = (Āfhe, A0, Apath, Aatt, Acirc, B, u)

c⊺B = (s⊺0 | s⊺ | t⊺)B + e⊺B, c⊺msg = s⊺0 A0 + s⊺(ACu⊗ Im) + e⊺msg,

T = AtR− bits(s, sd)⊗G, D = t⊺(Apath − (1, bits(T))⊗G) + e⊺D,

{c⊺0,i = s⊺0 (A0ri) + e⊺0,i , c⊺att,i = s⊺ri (Aatt − (1, x⊺i)⊗G) + e⊺att,i , c⊺1,i = t⊺Ari + e⊺1,i , ri}i∈[Q]


(1)

where e⊺0,i ← DZ,σ0
, e⊺att,i ← D

(L+1)m
Z,σatt

, e⊺1,i ← D
ℓ
Z,σ1

for i ∈ [Q].

Hyb0. This is the distribution as specified in Equation (1).

Hyb1. This hybrid is same as Hyb0, except we compute c⊺1,i as a function of T, D, Sri , Eri .
Specifically, we compute

c⊺1,i := D HF,T + (Sri , Eri) + e⊺1,i , for i ∈ [Q],

We claim that Hyb0 and Hyb1 are statistically indistinguishable. To see this, note that:

− t⊺(Ari) = D HF,T + (Sri , Eri) + e⊺F,i, where ∥eF,i∥ ≤ 2λ+poly(log λ)
√

λ ≤ 22λ, by our parameter setting.

− We have e⊺1,i ≈s e⊺F,i + e⊺1,i by noise flooding (Lemma 2.20) since λω(1)∥eF,i∥ ≤ λω(1)22λ = χ1.

Thus it suffices to show pseudorandomness of the following, given aux0,



mpk = (Āfhe, A0, Apath, Aatt, Acirc, B, u),

c⊺B = (s⊺0 | s⊺ | t⊺)B + e⊺B, c⊺msg = s⊺0 A0 + s⊺(ACu⊗ Im) + e⊺msg,

T = AtR− bits(s, sd)⊗G, D = t⊺(Apath − (1, bits(T))⊗G) + e⊺D,

{c⊺0,i = s⊺0 (A0ri) + e⊺0,i , c⊺att,i = s⊺ri (Aatt − (1, x⊺i)⊗G) + e⊺att,i , Sri + e⊺S,i, Eri + e⊺E,i, ri}i∈[Q]


Hyb2. This hybrid is same as Hyb1, except we compute

c⊺0,i := c⊺msg · ri − UEvalCX(Aatt, c⊺att,i, Acirc, Eri + e⊺E,i, C, x, S′ri
)u− s⊺ri Gu + e0,i

29

where S′ri
= Rnd(Sri + e⊺S,i). Note that since ∥eS,i∥ ≤ ∥e1,i∥ ≤ 22λλω(1) ≤ 1

2λ q/p, Claim 3.2 implies that
Rnd(Sri + e⊺S,i) = Rnd(Sri) with overwhelming probability, where Rnd(Sri) is encoded in Eri .

We claim that Hyb1 and Hyb2 are statistically indistinguishable. To see this, note that:

− we have ∥sri∥ ≤ B and ∥eatt,i∥ ≤ 25λ
√

λ ≤ B.
− Next, by the correctness of UEvalCX, we have

c⊺msg · ri − UEvalCX(Aatt, c⊺att,i, Acirc, Eri + e⊺E,i, C, x, Sri + e⊺S,i)u− s⊺ri Gu

= (s⊺0 A0 + s⊺(ACu⊗ Im) + e⊺msg) · ri − s(In+1 ⊗ r)(AC − C(x)G)u + e⊺C,xu− s⊺ri Gu

= (s⊺0 A0 + s⊺(ACu⊗ Im) + e⊺msg) · ri − s⊺(ACu⊗ Im)(1⊗ r) + s⊺ri Gu + e⊺C,xu− s⊺ri Gu

= s⊺0 A0ri + e⊺msg · ri + e⊺C,xu

where ∥eC,x∥ ≤ (m+ 2)O(log n log log q) ·m · (∥PRF1(sd, ri)
⊺∥+ ∥(s⊺r (eS + err2))

⊺∥)+ ∥ecirc∥ · 2O(log5 λ) ≤
26λ, by our parameter setting.

− We have e⊺0,i ≈s e⊺msgri + e⊺C,xu + e⊺0,i by noise flooding (Lemma 2.20) since ∥emsg∥∥ri∥+ ∥eC,x∥∥u∥ ≤
27λλω(1) = χ0.

Thus it suffices to show pseudorandomness of the following, given aux0,

mpk = (Āfhe, A0, Apath, Aatt, Acirc, B, u),

c⊺B = (s⊺0 | s⊺ | t⊺)B + e⊺B, c⊺msg = s⊺0 A0 + s⊺(ACu⊗ Im) + e⊺msg,

T = AtR− bits(s, sd)⊗G, D = t⊺(Apath − (1, bits(T))⊗G) + e⊺D,

{(c⊺0,i)
′ = s⊺ri Gu + e0,i, c⊺att,i = s⊺ri (Aatt − (1, x⊺i)⊗G) + e⊺att,i, Sri + e⊺S,i, Eri + e⊺E,i, ri}i∈[Q]


Hyb3. This hybrid is same as Hyb2, except we sample cB ← Z

(n+1)(m+2)w
q , cmsg ← Zm

q . Note that the LWE secret
s0 does not appear anywhere else. We have Hyb2 ≈c Hyb3, via the LWE assumption.

Thus it suffices to show pseudorandomness of the following distribution, given aux0,

mpk = (Āfhe, A0, Apath, Aatt, Acirc, B, u), cB ← Z
(n+1)(m+2)w
q , cmsg ← Zm

q ,

T = AtR− bits(s, sd)⊗G, D = t⊺(Apath − (1, bits(T))⊗G) + e⊺D,

{(c⊺0,i)
′ = s⊺ri Gu + e0,i, c⊺att,i = s⊺ri (Aatt − (1, x⊺i)⊗G) + e⊺att,i}i∈[Q]

{Sri = hctsri
(bits(sri); PRF2(sd, ri)) + e⊺S,i, Eri = s⊺ri (Acirc − (1, bits(Sri))⊗G) + PRF3(sd, ri) + e⊺E,i, ri}i∈[Q]


Hyb4. This hybrid is same as Hyb3, except we sample At ← Z

(n+1)×m
q , D← Z

1×(LT+1)m
q . We have Hyb3 ≈c Hyb4,

via the LWE assumption. We show that if there exists an adversary A who can distinguish between the two
hybrids with non-negligible advantage, then there is a reduction B that breaks LWE security with non-negligible
advantage. The reduction is as follows.

1. The LWE challenger sends Alwe ∈ Z
n×(LT+2)m
q , b ∈ Z

(LT+2)m
q to B.

2. B parses Alwe =
(
Ā′fhe A′path

)
, where Ā′fhe ∈ Zn×m

q , A′path ∈ Z
n×(LT+1)m
q and b⊺ = [(b̄′)⊺ (b′1)

⊺],

where b̄′ ∈ Zm
q , b′1 ∈ Z

(LT+1)m
q and does the following.

30

− Sets At =

(
Ā′fhe
(b̄′)⊺

)
.

− Computes T = AtR− bits(s, sd)⊗G.

− Sets Āpath = A′path + (1, bits(T))⊗ Ḡ and Apath =

(
Āpath
a⊺path

)
, where apath ← Z

(LT+1)m
q .

− Sends T, D = (b′1)
⊺ −

(
a⊺path − (1, bits(T))⊗ ι⊺n+1 ⊗ g

)
to A.

3. The adversary outputs a bit β′. B forwards the bit β′ to the LWE challenger.

We note that if the LWE challenger sent b = tAlwe + elwe, then B simulated Hyb3 withA else if LWE challenger
sent random b← Z

(LT+2)m
q then B simulated Hyb4 with A.

To see the latter case, we note that if b ← Z
(LT+2)m
q then it implies b̄′ ← Zm

q and b′1 ← Z
(LT+1)m
q .

Uniformity of b̄′ ← Zm
q implies At ← Z

(n+1)×m
q . Randomness of b′1 implies randomness of D = (b′1)

⊺ −(
a⊺path − (1, bits(T))⊗ ι⊺n+1 ⊗ g

)
.

Thus it suffices to show pseudorandomness of the following distribution, given aux0,

mpk = (Āfhe, A0, Apath, Aatt, Acirc, B, u), cB ← Z
(n+1)(m+2)w
q , cmsg ← Zm

q ,

T = AtR− bits(s, sd)⊗G, D← Z
1×(LT+1)m
q ,

{(c⊺0,i)
′ = s⊺ri Gu + e0,i, c⊺att,i = s⊺ri (Aatt − (1, x⊺i)⊗G) + e⊺att,i}i∈[Q]

{Sri = hctsri
(bits(sri); PRF2(sd, ri)) + e⊺S,i, Eri = s⊺ri (Acirc − (1, bits(Sri))⊗G) + PRF3(sd, ri) + e⊺E,i, ri}i∈[Q]


Hyb5. This hybrid is same as Hyb4, except we sample T ← Z

(n+1)×mT
q . We have Hyb4 ≈s Hyb5 using leftover

hash lemma. By leftover hash lemma (Lemma 2.21) we have that the statistical distance between AtR and
a uniform matrix U ← Z

(n+1)×m(λ+L)
q is negligible. This implies that the statistical distance between

AtR− bits(s, sd)⊗G and T ← Z
(n+1)×mT
q is negligible. Thus it suffices to show pseudorandomness of the

following distribution, given aux0,

mpk = (Āfhe, A0, Apath, Aatt, Acirc, B, u), cB ← Z
(n+1)(m+2)w
q , cmsg ← Zm

q ,

T← Z
(n+1)×mT
q , D← Z

1×(LT+1)m
q ,

{(c⊺0,i)
′ = s⊺ri Gu + e0,i, c⊺att,i = s⊺ri (Aatt − (1, x⊺i)⊗G) + e⊺att,i}i∈[Q]

{Sri = hctsri
(bits(sri); PRF2(sd, ri)) + e⊺S,i, Eri = s⊺ri (Acirc − (1, bits(Sri))⊗G) + PRF3(sd, ri) + e⊺E,i, ri}i∈[Q]


Hyb6: In this hybrid, we change all the PRF values computed using sd to random.

We claim that an adversary who can distinguish between Hyb5 and Hyb6 can be used to break PRF security8.
Intuitively, this is because, the PRF seed sd is now no longer used in the distribution.
In more detail, the reduction queries the PRF = (PRF1, PRF2, PRF3) challenger with inputs ri for i ∈ [Q] and
obtains real or random outputs y⊺

1,i ∈ [−σ′, σ′]m, y2,i ∈ {0, 1}m2n⌈log q⌉, y⊺
3,i ∈ [−σ′, σ′](LS+1)m. It embeds

these into the construction of ari
,Sri , Eri as follows:

− Computes a⊺ri = s̄⊺ri Āfhe + y1,i.

8We assume that a single PRF challenger has both PRF1 and PRF2.

31

− Computes Sri =

(
Āfhe
a⊺r

)
y2,i − bits(sr)⊗G, and S̄ri = Rnd(Sri).

− Computes Eri = s⊺ri (Acirc − (1, bits(S̄ri))⊗G) + y3,i + e⊺E,i.

Thus it suffices to show pseudorandomness of the following distribution, given aux0,

mpk = (Āfhe, A0, Apath, Aatt, Acirc, B, u), cB ← Z
(n+1)(m+2)w
q , cmsg ← Zm

q ,

T← Z
(n+1)×mT
q , D← Z

1×(LT+1)m
q ,

{(c⊺0,i)
′ = s⊺ri Gu + e0,i, c⊺att,i = s⊺ri (Aatt − (1, x⊺i)⊗G) + e⊺att,i}i∈[Q]

{Sri = hctsri
(bits(sri)) + e⊺S,i, Eri = s⊺ri (Acirc − (1, bits(Sri))⊗G) + e⊺circ,i + e⊺E,i, ri}i∈[Q]


where ecirc,i ← [−σ′ , σ′](LS+1)m.

Hyb7: In this hybrid, we apply circular tensor LWE (Assumption 4.1). We claim Hyb6 ≈c Hyb7.
To see this, first we observe the following using s⊺ri = (s̄⊺ri ,−1)

− Eri = s⊺ri (Acirc − (1, bits(Sri))⊗G) + e⊺circ,i + e⊺E,i

=
(

s̄⊺ri (Ācirc − (1, bits(Sri))⊗ Ḡ) + e⊺circ,i

)
−
(
a⊺circ − (1, bits(Sri))⊗ ι⊺n+1 ⊗ g

)
+ e⊺E,i.

− c⊺att,i = s⊺ri (Aatt − (1, x⊺i)⊗G) + e⊺att,i

=
(

s̄⊺ri (Āatt − (1, x⊺i)⊗ Ḡ) + e⊺att,i

)
−
(
a⊺att − (1, x⊺)⊗ ι⊺n+1 ⊗ g

)
.

Next we note that

− We can change Sr to random if hct(Asri
, bits(sri)) is indistinguishable from random.

− We can change Er to random if s̄⊺ri (Ācirc − (1, bits(Si))⊗ Ḡ) + e⊺circ,i and Sri are indistinguishable from
random random.

− We can change c⊺att,i to random if s̄⊺ri (Āatt − (1, x⊺i)⊗ Ḡ) + e⊺att,i is indistinguishable from random.

Invoking circular tensor LWE assumption with respect to secret sri , ri, we achieve randomness of the latter terms
in the above.

Thus it suffices to show pseudorandomness of the following distribution, given aux0,
mpk = (Āfhe, A0, Apath, Aatt, Acirc, B, u), cB ← Z

(n+1)(m+2)w
q , cmsg ← Zm

q ,

T← Z
(n+1)×mT
q , D← Z

1×(LT+1)m
q ,

{(c⊺0,i)
′ ← Zq, c⊺att,i ← Z

(L+1)m
q , Sri ← Z

(n+1)×mS
q , Eri ← Z

1×(LS+1)m
q , ri}i∈[Q]


which completes the proof.

Theorem 4.4. Under the LWE assumption, evasive LWE assumption (Assumption 2.24) and circular tensor assumption
(Assumption 4.1), there exists a very selectively secure CP-ABE scheme supporting unbounded depth circuits
{C : {0, 1}L → {0, 1}} and one bit message with efficiency

|mpk| = poly(λ, L), |sk| = poly(λ, L), |ct| = poly(λ).

32

5 Generic compiler: ABE for Turing Machines and NL
For conciseness, we first provide a generic construction of ABE that combines many instance of ABE together in
Section 5.1. This compiler is adapted from [AMVY21], who gave it for FE in the bounded key setting. We then
construct ABE for TM in Section 5.2 and ABE for NL in Section 5.3 by instantiating the generic construction.

5.1 Generalized Bundling of Functionality
Consider an ABE scheme ABE = (ABE.Setup, ABE.KeyGen, ABE.Enc, ABE.Dec) for a parameter prm = 1i, a
relation Ri : Xi ×Yi → {0, 1} ∪ {⊥} for all i ∈ N and a message spaceM. Using such ABE, we will construct a
new ABE with ciphertext attribute space A, key attribute space B and message spaceM. We assume that there exist
efficiently computable maps S : N→ 2N and T : N→ 2N such that maxS(n) and maxT (n) can be bounded by
some fixed polynomial in n. We also assume that there exist maps f with domain A and g with domain B such that

f (x) ∈ ∏
i∈S(|x|)

Xi and g(y) ∈ ∏
i∈T (|y|)

Yi,

where |x| and |y| are the lengths of x and y as binary strings. Namely, f and g are maps such that

f : A ∋ x 7→ { f (x)i ∈ Xi}i∈S(|x|) , g : B ∋ y 7→ {g(y)i ∈ Yi}i∈T (|y|) .

Here, we require that the length of | f (x)|i and |g(x)|i can be computed from the length of |x| alone and they do not
depend on the actual value of x. In this setting, we can construct an ABE scheme Bd-ABE = (Setup, KeyGen, Enc, Dec)
for a two input function Rbndl : A× B→ {0, 1}∗ defined in the following

Rbndl(x, y) =

{
0, if Ri(f (x)i, g(y)i) = 0 for all i ∈ S(|x|) ∩ T (|y|),
1, if Ri(f (x)i, g(y)i) = 1 for all i ∈ S(|x|) ∩ T (|y|).

(2)

where f (x)i ∈ Xi and g(y)i ∈ Yi are the i-th entries of f (x) and g(x), respectively.

Ingredients. We now describe the underlying building blocks used to obtain our ABE construction:

1. An ABE scheme ABE = (ABE.Setup, ABE.KeyGen, ABE.Enc, ABE.Dec) for a parameter prm = 1i, a relation
Ri : Xi ×Yi → {0, 1} ∪ {⊥} for i ∈N and a message spaceM.

2. A garbled circuit scheme GC = (GC.Garble, GC.Eval). We assume that a label is represented by a binary string
and denote its length by L(λ, |C|), where C is the circuit being garbled. We can instantiate it by Yao’s garbled
circuit [Yao82], which can be based on any one-way function.

3. An IBE scheme IBE = (IBE.Setup, IBE.Enc, IBE.KeyGen, IBE.Dec) with IND-CPA security whose identity
space and message space are {0, 1}∗. We assume that the key generation algorithm is deterministic. This is
without loss of generality, since we can use PRF to derandomize the key generation algorithm. We can instantiate
IBE from various standard assumptions including LWE [ABB10a, CHKP10], CDH, and Factoring [DG17].

Construction. Here we provide the description of the construction of Bd-ABE = (Setup, KeyGen, Enc, Dec) for Rbndl

above.

Setup(1λ)→ (mpk, msk). On input the security parameter λ, do the following.

1. Run (IBE.mpk, IBE.msk)← IBE.Setup(1λ).
2. Output the master key pair as (mpk, msk) := (IBE.mpk, IBE.msk).

KeyGen(msk, y)→ sky. On input master secret key msk = IBE.msk, a key attribute y ∈ B, do the following.

33

1. Compute T (|y|) ⊆N, where |y| is the length of y as a binary string.
2. Run (ABE.mpki, ABE.mski)← ABE.Setup(1λ, 1i) for i ∈ T (|y|).
3. Compute g(y) = {g(y)i ∈ Yi}i∈T (|y|).

4. For i ∈ T (|y|), compute
ABE.ski ← ABE.KeyGen(ABE.mski, g(y)i).

5. Let ℓi := |ABE.mpki|. For all i ∈ T (|y|) and j ∈ ℓi, generate a secret key as

IBE.ski,j ← IBE.KeyGen(IBE.msk, (i, j, ABE.mpki,j))

where ABE.mpki,j is the j-th bit of ABE.mpki ∈ {0, 1} as a binary string.
6. Output

sky =

(
T (|y|),

{
ABE.ski, g(y)i,

{
IBE.ski,j

}
j∈[ℓi]

}
i∈T (|y|)

)
. (3)

Enc(mpk, x, µ)→ ctx. On input the encryption key mpk = IBE.mpk, a ciphertext attribute x ∈ A, and a message
µ ∈ M, do the following.

1. Compute S(|x|) ⊂N, where |x| is the length of x as a binary string.
2. Compute f (x) = { f (x)i}i∈S(|x|).
3. Do the following for all i ∈ S(|x|).

(a) Compute the length ℓi of ABE.mpki. This is done without knowing ABE.mpki.
(b) Sample a randomness ri for the encryption algorithm ABE.Enc(ABE.mpki, f (x)i, µ; ri). This is done

without knowing ABE.mpki.
(c) Define a circuit

Ei(·) := ABE.Enc(·, f (x)i, µ; ri)

that takes as input a string str ∈ {0, 1}ℓi and outputs ABE.Enc(str, f (x)i, µi; ri), where str is interpreted
as a master public key of the ABE.

(d) Generate a garbled circuit {
labi,j,b

}
j∈[ℓi],b∈{0,1}

← GC.Garble(1λ, Ei).

(e) For all j ∈ [ℓi] and b ∈ {0, 1}, compute

IBE.cti,j,b ← IBE.Enc
(

IBE.mpk, (i, j, b), labi,j,b

)
.

4. Output

ctx =

(
S(|x|), { f (x)i}i∈S(|x|) ,

{
IBE.cti,j,b

}
i∈S(|x|),j∈[ℓi],b∈{0,1}

)
. (4)

Dec(sky, y, ctx, x)→ µ′ \ ⊥. On input a secret key sky, key attribute y, a ciphertext ctx, and ciphertext attribute x, do
the following.

1. Parse the secret key sky as Eq. (3) and the ciphertext ctx as Eq. (4).
2. For all i ∈ S(|x|) ∩ T (|y|) do the following.

(a) Retrieve ABE.mpki from the ABE.ski.
(b) For all j ∈ [ℓi] compute lab′i,j := IBE.Dec(IBE.ski,j,ABE.mpki,j

, IBE.cti,j,ABE.mpki,j
).

(c) Compute ci := GC.Eval({lab′i,j}j∈[ℓi]
).

(d) Compute zi := ABE.Dec(ABE.ski, g(y)i, ci, f (x)i).
3. Output {zi}i∈S(|x|)∩T (|y|).

34

Correctness. We now show that the above construction is correct via the following theorem.

Theorem 5.1. Suppose ABE, GC and IBE schemes are correct. Then the Bd-ABE scheme is correct.

Proof. We observe that lab′i,j = labi,j,ABE.mpki,j
holds for all lab′i,j recovered in Step 2b of the decryption algorithm by the

correctness of IBE, since the ciphertext and secret key are both generated with respect to the identity (i, j, ABE.mpki,j).
Then, by the correctness of GC, we have ci = ABE.Enc(ABE.mpki, f (x)i, µ; ri) for all i ∈ S(|x|) ∩ T (|y|) recovered
in Step 2c of the decryption algorithm. Finally, if Rbndl(x, y) = 0, then by the definition of Rbndl, we have
Ri(f (x)i, g(y)i) = 0 for all i ∈ S(|x|)∩ T (|y|) and thus by the correctness of ABE, we get zi = µ for all zi recovered
in Step 2d of the decryption algorithm as desired.

Security. We prove the security of the Bd-ABE scheme via the following theorem.

Theorem 5.2. Suppose GC is a secure garbled circuit scheme and IBE is IND-CPA secure identity-based encryption
scheme. Then, assuming ABE is Sel-IND secure (Definition 2.14), so is Bd-ABE. Furthermore, if ABE is VerSel-IND
secure (Definition 2.15), so is Bd-ABE9.

Proof. Here we prove the statement for Sel-IND security. The proof proceeds via a sequence of hybrid games between
the challenger and a PPT adversary A.

Hyb0. This is the real world with β = 0, i.e., the challenge ciphertext is computed using the message µ0. We write the
complete game here to set up the notations and easy reference in later hybrids.

1. A outputs the challenge ciphertext attribute x ∈ A.
2. The challenger generates (IBE.mpk, IBE.msk)← IBE.Setup(1λ), sets mpk = IBE.mpk and sends it to A.
3. Key Queries: The adversary can make key queries, before and after challenge query, in an arbitrary order.

For each key query y ∈ B, the challenger does the following.
• It computes the mapping T (|y|) and generates (ABE.mpki, ABE.mski) ← ABE.Setup(1λ, 1i) for

i ∈ T (|y|).
• It computes the mapping g(y) and generates ABE.ski ← ABE.KeyGen(ABE.mski, g(y)i) for all

i ∈ T (|y|).
• It sets ℓi := |ABE.mpki| and computes IBE.ski,j ← IBE.KeyGen(IBE.msk, (i, j, ABE.mpki,j)) for all

i ∈ T (|y|) and j ∈ ℓi.
• It returns sky = (T (|y|), g(y), {ABE.ski}i∈T (|y|), {IBE.ski,j}i∈T (|y|),j∈ℓi

).

4. Challenge Query: A outputs a pair of equal length messages (µ0, µ1) ∈ M2. The challenger does the
following.

• It computes S(|x|) and f (x) = { f (x)i}i∈S(|x|).
• For all i ∈ S(|x|),
− It samples the randomness ri and defines the circuit Ei(·) := ABE.Enc(·, f (x)i, µ0; ri) as in the

construction.
− It generates {labi,j,b}j∈[ℓi],b∈{0,1} ← GC.Garble(1λ, Ei).
− It computes IBE.cti,j,b ← IBE.Enc(IBE.mpk, (i, j, b), labi,j,b).

• It returns ctx = (S(|x|), f (x), {IBE.cti,j,b}i∈S(|x|),j∈[ℓi],b∈{0,1}).

5. A outputs a guess bit β′.

Hyb1. In this hybrid, we change the way challenge query is answered. In particular, the challenger computes
IBE.cti,j,b ← IBE.Enc(IBE.mpk, (i, j, b), labi,j,ABE.mpki,j

), for all i ∈ S(|x|), j ∈ [ℓi], and b ∈ {0, 1}, where
ABE.mpki,j is the j-th bit of ABE.mpki.
Note that we encrypt the same label for both b = 0 and b = 1.

9In the latter case, the adversary can see the public key before declaring all the key queries.

35

Hyb2. In this hybrid, we further change the way challenge query is answered. In particular, we change the way
labi,j,ABE.mpki,j

is generated. The challenger does the following for all i ∈ S(|x|),

• It computes ABE.cti ← ABE.Enc(ABE.mpki, f (x)i, µ0).

• It generates {labi,j}j∈[ℓi]
← GC.Sim(1λ, 1ℓi , 1|Ei(·)|, ABE.cti).

• It sets labi,j,ABE.mpki,j
= {labi,j} for all j ∈ [ℓi].

Hyb3. In this hybrid, we further change the way challenge query is answered. In particular, the challenger computes
ABE.cti ← ABE.Enc(ABE.mpki, f (x)i, µ1) for all i ∈ S(|x|).

The following hybrids are unwinding of the preceding hybrids.

Hyb4. In this hybrid, we change the way challenge query is answered. In particular, we change the way labi,j,ABE.mpki,j

is generated. The challenger does the following for all i ∈ S(|x|).

• It samples an encryption randomness ri and define Ei(·) = ABE.Enc(·, f (x)i, µ1; ri).
• It generates {labi,j,b}j∈[ℓi],b∈{0,1} ← GC.Garble(1λ, Ei).

• It sets labi,j,ABE.mpki,j
= {labi,j,b} for all j ∈ [ℓi], where b = ABE.mpki,j.

Hyb5. In this hybrid, we further change the way challenge query is answered. In particular, the challenger computes
IBE.cti,j,b ← IBE.Enc(IBE.mpk, (i, j, b), labi,j,b), for all i ∈ S(|x|), j ∈ [ℓi], and b ∈ {0, 1}.
This is the real world with β = 1.

Indistinguishability of hybrids We now show that the consecutive hybrids are indistinguishable.

Claim 5.3. Assume that IBE is IND-CPA secure. Then Hyb0 ≈c Hyb1.

Proof. We show that if A can distinguish between Hyb0 and Hyb1 with non-negligible advantage ϵ, then there exists a
PPT adversary B against the IND-CPA security of IBE scheme with advantage ϵ. The reduction is as follows.

1. The IBE challenger generates (IBE.mpk, IBE.msk) ← IBE.Setup(1λ) and samples a bit β̂ ← {0, 1}. It sends
IBE.mpk to B.

2. B invokes A. A outputs the challenge ciphertext attribute x ∈ A. B sets mpk = IBE.mpk and forwards it to A.

3. Key Queries: For a key query y ∈ B, B does the following.

• It computes the mapping T (|y|) and generates (ABE.mpki, ABE.mski) ← ABE.Setup(1λ, 1i) for i ∈
T (|y|).

• It computes the mapping g(y) and generates ABE.ski ← ABE.KeyGen(ABE.mski, g(y)i) for all i ∈ T (|y|).
• It sets ℓi := |ABE.mpki| and sends secret key query for identity (i, j, ABE.mpki,j) for all i ∈ T (|y|) and

j ∈ ℓi to the IBE challenger. The challenger returns {IBE.ski,j}i∈T (|y|),j∈ℓi
.

• It returns sky = (T (|y|), g(y), {ABE.ski}i∈T (|y|), {IBE.ski,j}i∈T (|y|),j∈ℓi
) to A.

4. Challenge Query: A outputs a pair of equal length messages (µ0, µ1). B does the following.

• It sets µ = µ0 and computes {labi,j,b}j∈[ℓi],b∈{0,1}, for all i ∈ S(|x|), as in the honest encryption algorithm.

• It computes {IBE.cti,j,b}i∈S(|x|),j∈[ℓi],b∈{0,1} as follows.
− If b = ABE.mpki,j, it honestly encrypts labi,j,b to obtain IBE.cti,j,b.

36

− If b = 1−ABE.mpki,j, B submits identity (i, j, b) and messages (labi,j,b, labi,j,1−b) to the IBE challenger.
The challenger encrypts

IBE.cti,j,b ←

 IBE.Enc
(

IBE.mpk, (i, j, b), labi,j,b

)
, if β̂ = 0

IBE.Enc
(

IBE.mpk, (i, j, b), labi,j,1−b

)
if β̂ = 1

and returns IBE.cti,j,b to B.
Note that the same label labi,j,ABE.mpki,j

is encrypted for identities (i, j, 0) and (i, j, 1) if β = 1.

• It returns ctx = (S(|x|), f (x), {IBE.cti,j,b}i∈S(|x|),j∈[ℓi],b∈{0,1}) to A.

5. A outputs a guess bit β′. B forwards β′ to the IBE challenger.

We observe that if the IBE challenger samples β̂ = 0, then B simulated Hyb0, else Hyb1 with A. Hence, advantage of
B = |Pr

(
β′ = 1|β̂ = 0

)
− Pr

(
β′ = 1|β̂ = 1

)
| = |Pr(β′ = 1|Hyb0)− Pr(β′ = 1|Hyb1)| = ϵ (by assumption).

Admissibility of B. Observe that B submits identities of the form (i, j, ABE.mpki,j) for secret key queries and
identities of the form (i, j, 1− ABE.mpki,j) for encryption queries. So, B does not make a secret key query for an
identity that is also submitted to the IBE challenger for an encryption query. This establishes the admissibility of B.

Claim 5.4. Assume that GC is secure. Then Hyb1 ≈c Hyb2.

Proof. We show that if A can distinguish between Hyb1 and Hyb2 with non-negligible advantage ϵ, then there exists a
PPT adversary B against the security of GC scheme with advantage ϵ. The reduction is as follows.

1. The GC challenger samples a bit β̂← {0, 1} and starts the game with B.

2. B invokes A. A outputs the challenge ciphertext attribute x ∈ A.

3. B generates (IBE.mpk, IBE.msk)← IBE.Setup(1λ), sets mpk = IBE.mpk and forwards it to A.

4. Key Queries: For a key query y ∈ B,B computes sky = (T (|y|), g(y), {ABE.ski}i∈T (|y|), {IBE.ski,j}i∈T (|y|),j∈ℓi
)

as in Hyb0.

5. Challenge Query: A outputs a pair of equal length messages (µ0, µ1). B does the following for all i ∈ S(|x|).

• It samples ri and defines a circuit Ei(·) := ABE.Enc(·, f (x)i, µ0; ri).
• It submits the circuit Ei(·) and ABE.mpki to the GC challenger. The challenger does the following.
− If β̂ = 0, it computes {lab′i,j,b}j∈[ℓi],b∈{0,1} ← GC.Garble(1λ, Ei) and sets labi,j,ABE.mpki,j

= lab′i,j,ABE.mpki,j
,

where ABE.mpki,j is the j-th bit of ABE.mpki.

− If β̂ = 1, it computes {lab′i,j}j∈[ℓi]
← GC.Sim(1λ, 1ℓi , 1|Ei(·)|, Ei(ABE.mpki)) and sets labi,j,ABE.mpki,j

=

lab′i,j.
− It returns labi,j,ABE.mpki,j

to B.

• It computes IBE.cti,j,b ← IBE.Enc(IBE.mpk, (i, j, b), labi,j,ABE.mpki,j
), for all i ∈ S(|x|), j ∈ [ℓi], and

b ∈ {0, 1}.
• It returns ctx = (S(|x|), f (x), {IBE.cti,j,b}i∈S(|x|),j∈[ℓi],b∈{0,1}) to A.

6. A outputs a guess bit β′. B forwards β′ to the GC challenger.

We observe that if the GC challenger samples β̂ = 0, then B simulated the distribution Hyb1 , else Hyb2 with A.
Hence, advantage of B = |Pr

(
β′ = 1|β̂ = 0

)
− Pr

(
β′ = 1|β̂ = 1

)
| = |Pr(β′ = 1|Hyb1)− Pr(β′ = 1|Hyb2)| = ϵ (by

assumption).

37

Claim 5.5. Assume that ABE is Sel-IND secure. Then Hyb2 ≈c Hyb3.

Proof. We show that if A can distinguish between Hyb2 and Hyb3 with non-negligible advantage ϵ, then there exists
a PPT adversary B against the security of ABE scheme with advantage ϵ. In this game, the ABE challenger is the
challenger corresponding to all the i-th instance of ABE such that i ∈ S(|x|). For i /∈ S(|x|), the reduction B itself
generates such i-the instance ABE. The reduction is as follows.

1. The ABE challenger samples a bit β̂← {0, 1} and starts the game with B.

2. B invokes A. A outputs the challenge ciphertext attribute x ∈ A.

3. B generates (IBE.mpk, IBE.msk) ← IBE.Setup(1λ), sets mpk = IBE.mpk and forwards it to A. B also
computes S(|x|) and f (x) = { f (x)i}i∈S(|x|).

4. B sends the challenge ciphertext attributes f (x)i for the i-th instance of ABE, where i ∈ S(|x|), to the ABE
challenger. The ABE challenger generates (ABE.mpki, ABE.mski) ← ABE.Setup(1λ, 1i) for i ∈ S(|x|) and
returns {ABE.mpki}i∈S(|x|) to B.

5. Key Queries: For a key query y ∈ B, B does the following.

• It computes the mapping T (|y|) and for all i ∈ T (|y|) \ S(|x|), it generates (ABE.mpki, ABE.mski)←
ABE.Setup(1λ, 1i).

• It computes the mapping g(y) = {g(y)i}i∈T (|y|). For all i ∈ T (|y|) ∩ S(|x|), it sends a key query g(y)i
for the i-th instance of ABE to its challenger and gets back ABE.ski. For i ∈ T (|y|) \ S(|x|), B computes
ABE.ski itself.

• It sets ℓi := |ABE.mpki| and computes IBE.ski,j ← IBE.KeyGen(IBE.msk, (i, j, ABE.mpki,j)) for all
i ∈ T (|y|) and j ∈ ℓi.

• It returns sky = (T (|y|), g(y), {ABE.ski}i∈T (|y|), {IBE.ski,j}i∈T (|y|),j∈ℓi
). to A.

6. Challenge Query: A outputs a pair of equal length messages (µ0, µ1). B does the following.

• For all i ∈ S(|x|),
− It sends challenge ciphertext query µ0, µ1 for the i-th instance of ABE to the challenger. The challenger

computes and returns ABE.cti ← ABE.Enc(ABE.mpki, f (x)i, µβ̂).

− It generates {labi,j}j∈[ℓi]
← GC.Sim(1λ, 1ℓi , 1|Ei(·)|, ABE.cti) and computes IBE.cti,j,b ← IBE.Enc(IBE.mpk,

(i, j, b), labi,j), for all j ∈ [ℓi], and b ∈ {0, 1}.
• It returns ctx = (S(|x|), f (x), {IBE.cti,j,b}i∈S(|x|),j∈[ℓi],b∈{0,1}) to A.

7. A outputs a guess bit β′. B forwards β′ to the ABE challenger.

We observe that if the ABE challenger samples β̂ = 0, then B simulated the distribution Hyb2 , else Hyb3 with A.
Hence, advantage of B = |Pr

(
β′ = 1|β̂ = 0

)
− Pr

(
β′ = 1|β̂ = 1

)
| = |Pr(β′ = 1|Hyb1)− Pr(β′ = 1|Hyb2)| = ϵ.

Admissibility of B. Observe that B issues ciphertext queries for the challenge attribute of type { f (x)i}i∈S(|x|) and
key queries of the form {g(y)i}i∈T (|y|)∩S(|x|). Also, by the admissibility of A, it can only issue key queries y ∈ B
such that Rbndl(x, y) = 1 for the challenge ciphertext attribute x ∈ A. Then by the definition of Rbndl, we have
Ri(f (x)i, g(y)i) = 1 for all i ∈ S(|x|) ∩ T (|y|). Thus all the key queries made by B satisfies Ri(f (x)i, g(y)i) = 1.
This establishes the admissibility of B.

The rest of the hybrids, Hyb4 and Hyb5, are simply unwinding the previous hybrids and their proofs of indistin-
guishability are same as their corresponding counterparts in the first set of hybrids and hence, omitted.

38

Circuit Ui,x,t

Hardwired constants: x, t.
On input M = (Q, δ, F) ∈ {0, 1}i, proceed as follows:

1. Parse the input M ∈ {0, 1}i as a description of a Turing machine.

2. Run M on input x for t steps.

3. Output 1 if the state is in F (accept) and 0 otherwise.

Figure 2: : Circuit Ui,x,t.

5.2 ABE for Turing Machines
Here, we provide the construction of ABE for Turing machines. Namely, a ciphertext is associated with (x, 1t) and a
secret key is for a Turing machine M, and the decryption results to 1 if the machine accepts the input within t steps and
0 otherwise. To construct such a scheme, we start with constructing two schemes with partial functionality and then
combine them. The one scheme takes care of the case where |(x, 1t)| > |M|, while the other takes care of the case
where |(x, 1t)| ≤ |M|. The idea for the construction is very similar to FE for TM in [AMVY21].

5.2.1 The Case of |(x, 1t)| > |M|

We first show that by applying the conversion in Section 5.1 to the CP-ABE scheme for unbounded depth circuits
in Section 4, we can obtain an ABE scheme for Turing machines for the case where |(x, 1t)| > |M|. Formally, we
construct an ABE for R> : A× B→ {0, 1}, where A = {0, 1}∗, B is the set of all Turing machines, and

R>((x, 1t), M) =

{
1 (if M accepts x in t steps) ∧

(
|(x, 1t)| > |M|

)
0 otherwise.

.

To apply the conversion, we use various instances of the unbounded depth and size cpABE for prm = 1i, Ri : Xi ×Yi →
{0, 1} ∪ {⊥} whereXi is the set of circuits with input length i, and output length 1, Yi = {0, 1}i, and Ri(C, x) = C(x).
We then set S , T , f , and g as

S(i) = {1, 2, . . . , i− 1}, T (i) = {i}, f (x, 1t) = {Ui,x,t(·)}i∈[|(x,1t)|−1] , g(M) = M

where Ui,x,t(·) is defined as Figure 2. The circuit (in particular, Step 2 of the computation) is padded so that the
circuit size only depends on |(x, 1t)|. Note that Ui,x,t is in Xi even for x and t with unbounded length, since Xi
contains circuits of unbounded size. Then, by inspection, we can observe that for Xi,Yi,S , T , f , g, A, B defined as
above, Rbndl defined as Equation (2) is equivalent to R> except for the case of |(x, 1t)| ≤ |M|. In this case, we have
S(|x|) ∩ T (|y|) = ∅. To handle this, we add the extra step to the decryption algorithm of the former where it outputs
⊥ if S(|x|)∩ T (|y|) = ∅. Since the original scheme is VerSel-IND secure, so is the resulting scheme by Theorem 5.2.

5.2.2 The Case of |(x, 1t)| ≤ |M|

We next show that by applying the conversion in Section 5.1 to the KP-ABE scheme from [BGG+14], we can obtain
an ABE scheme for TM for the case where |(x, 1t)| ≤ |M|. Formally, we construct an ABE for R≤ : A× B →
{0, 1} ∪ {⊥}, where A = {0, 1}∗, B is the set of all non-deterministic Turing machines, and

R≤((x, 1t), M) =

{
1 (if M accepts x within t steps) ∧

(
|(x, 1t)| ≤ |M|

)
0 otherwise.

.

39

Circuit Ui,M

Hardwired constants: Description of a Turing Machine M.
On input y ∈ {0, 1}i, proceed as follows:

1. Parse the input y ∈ {0, 1}i as (x, 1t).

2. Otherwise, run M on input x for t steps.

3. Output 1 if the state is in F (accept) and 0 otherwise.

Figure 3: : Circuit Ui,M.

To apply the conversion, we use various instances of kpABE from [BGG+14] for prm = 1i, Ri : Xi ×Yi → {0, 1}
whereXi = {0, 1}i and Yi is the set of circuits with input length i, depth i · λ, and output length 1, and Ri(x, C) = C(x).
We then set S , T , f , and g as

S(i) = i, T (i) = {1, 2, . . . , i}, f (x, 1t) = (x, 1t), g(M) = {Ui,M(·)}i∈[M] ,

where Ui,M(·) is defined as Figure 3. Here, we check that Ui,M(·) is in Yi. Recall that even though Yi supports circuits
with unbounded size, it has a bound on the depth of the circuit. We therefore argue that the depth of Ui,M(·) does not
exceed iλ, even for unbounded size |M|. We evaluate the depth of Step 2 of the circuit, since this is the only non-trivial
step. By Lemma 2.11, this step can be implemented by a circuit with depth

t · poly(log |x|, log t, log |M|) ≤ i · poly(log λ) ≤ i · λ

Then, by inspection, we can observe that for Xi,Yi,S , T , f , g, A, B defined as above, Rbndl defined as Equation (2) is
equivalent to R≤ except for the case of |(x, 1t)| > |M|. In this case, we have S(|x|) ∩ T (|y|) = ∅. To handle this,
we add the extra step to the decryption algorithm of the former where it outputs ⊥ if S(|x|) ∩ T (|y|) = ∅. Since the
original scheme is Sel-IND secure, so is the resulting scheme by Theorem 5.2.

5.2.3 Putting the Pieces Together

Here, we combine the two schemes we considered so far to obtain the full-fledged scheme. We set A = {0, 1}∗ and B
to be the set of all Turing machines. We also set R1 = R>, R2 = R≤. Xi = A, Yi = B for i = 1, 2. We have already
constructed schemes for R1 and R2 and now combine them. To do so, we set S , T , f , and g as

S(i) = {1, 2}, T (i) = {1, 2}, f (x, 1t) = {(x, 1t), (x, 1t)}, g(M) = {M, M}

We observe that for Xi,Yi,S , T , f , g, A, B defined as above, Rbndl defined as Equation (2) is

Rbndl((x, 1t), M) =


(1, 0) (if M accepts x within t steps) ∧

(
|(x, 1t)| > |M|

)
(0, 1) (if M accepts x within t steps) ∧

(
|(x, 1t)| ≤ |M|

)
(0, 0) otherwise.

.

To obtain the ABE scheme for TM, we add an extra step for the decryption algorithm of the ABE scheme for Rbndl

obtained above, where we output the message recovered if the decryption succeeds for either left or right slot and ⊥
otherwise. To sum up, we have the following theorem

Theorem 5.6. Assume a VerSel-IND secure cpABE scheme that supports circuits with unbounded depth and a Sel-IND
secure kpABE scheme that supports bounded depth circuits. Then there exists a ABE for Turing machines, presented in
Section 5.2.3, satisfying VerSel-IND security.

40

Instantiating the VerSel-IND secure cpABE scheme from Section 4 and Sel-IND secure kpABE scheme from
[BGG+14], we get the following corollary.

Corollary 5.7. Under the LWE assumption, evasive LWE assumption (Assumption 2.24) and circular tensor LWE
assumption (Assumption 4.1), there exists a very selectively secure ABE for TM with

|mpk| = poly(λ), |sk| = poly(|M|, λ), |ct| = poly(λ, |x|, t)

where the Turing machine M runs on input x for time step t.

5.3 ABE for NL
Here, we provide the construction of ABE for NL. Namely, a ciphertext encrypts a string (x, 1t, 12s

), where x is a string,
t is the time bound, s is the space bound for the computation and a secret key is associated with a non-deterministic
Turing machine M. The decryption is possible if M accepts x within t steps and the space used for the computation
does not exceed s. The idea for the construction is very similar to FE for NL in [AMVY21]. We consider two schemes
that complement each other and then combine them.

Transition Matrix. Before describing the schemes, we need some preparations. Similarly to [LL20b], we represent the
computation of M(x) as a multiplication of matrices. To do so, let us enumerate all the possible internal configurations
that may appear when we run M = (Q, δ, F) on input x with the space for the computation being bounded by s. As an
internal configuration, we have |x| and s choices for the input and work tape pointers, respectively. We also have |Q|
choices for the possible state, and 2s possible choices for the contents of the work tape. Therefore, we have

N := s2s · |x| · |Q|

possible internal configurations. We associate each i ∈ [N] with such configuration and represent the configuration by a
vector ei, which is a unit vector whose entries are all 0 except for the i-th entry that is set to be 1. We also define the
matrix Mat(M, x, s) as

Mat(M, x, s)i,j :=

{
1 if the configuration i can reach j in one step by δ

0 otherwise

where Mat(M, x, s)i,j is the (i, j)-th entry of the matrix.
Furthermore, we consider a special matrix multiplication over {0, 1}, where the multiplication A · B ∈ {0, 1}N1×N3 of
two matrices A ∈ {0, 1}N1×N2 and B ∈ {0, 1}N2×N3 is defined as

(A · B)i,j =
∨

k∈[N2]

(
Bi,k ∧ Ck,j

)
where we denote the (i, j)-th entry of a matrix D by Di,j above. The multiplication can be defined for any size of matrices
and in particular, also defined for computations involving vectors. We then define estt as the vector corresponding to the
initial state of the computation and uacc as

uacc = ∑
i ∈ [N] : i encodes accepting state

ei.

Then, we observe that

e⊤stt ·
(
Mat(M, x, s)i,j

)t · uacc =

{
1 if M accepts x within t steps and space s
0 otherwise

holds from the property of the transition matrix, where we use the special multiplication above.

41

Circuit Ui,x,t,s

Hardwired constants: x, t, s.
On input M ∈ {0, 1}i, proceed as follows:

1. Parse the input M = (Q, δ, F) as a description of a Turing machine.

2. Compute Mat(M, x, s)j,k for all j, k ∈ [N] in parallel, where N = s2s · |x| · |Q|.

3. Compute A := Mat(M, x, s)t.

4. Compute and output e⊤stt ·A · uacc.

Figure 4: Circuit Ui,x,t,s.

5.3.1 The Case of |(x, 1t, 12s
)| > |M|

We first show that by applying the conversion in Section 5.1 to the CP-ABE scheme for circuits in [Wee22], we
can obtain an ABE scheme for NL for the case where |(x, 1t, 12s

)| > |M|. Formally, we construct an ABE for
R> : A× B→ {0, 1}, where A = {0, 1}∗, B is the set of all non-deterministic Turing machines, and

R>((x, 1t, 12s
), M) =

{
1 (if M accepts x within t steps and space s) ∧

(
|(x, 1t, 12s

)| > |M|
)

0 otherwise.
.

To apply the conversion, we use various instances of cpABE from [Wee22] for prm = 1i, Ri : Xi ×Yi → {0, 1} ∪ {⊥}
where Xi is the set of circuits with input length i, depth λ, and output length 1, Yi = {0, 1}i, and Ri(C, x) = C(x).
We then set S , T , f , and g as

S(i) = {1, 2, . . . , i− 1}, T (i) = {i}, f (x, 1t, 12s
) = {Ui,x,t,s(·)}i∈[|(x,1t ,12s)|−1] , g(M) = M

where Ui,x,t,s(·) is defined as Figure 4. The circuit may be padded so that it does not leak more information about the
hardwired constants (x, t, s) beyond |(x, 1t, 12s

)|.
We now show that f is a valid map. Namely, Ui,x,t,s is in Xi even for x and t with unbounded length. Recall that Xi

has a bound on the depth of the circuits it supports, even though it does not have such a bound on the size. We argue that
the depth of Ui,x,t,s is bounded by λ. To do so, we evaluate the depth of each computation step of Ui,x,t,s. First, Step 1
of the computation is trivial. Step 2 can be implemented by a circuit of depth poly(log |x|, log s, log |M|) by Lemma
2.12. Step 3 can be executed by O(log t) multiplication of matrices of size N × N, which can be implemented with
depth O(log N). Therefore, this step can be computed with depth O(log N log t). Step 4 can also be implemented
with depth O(log N). Therefore, the entire computation can be implemented with depth

poly(log s, log |x|, log t, log N, log |M|) ≤ poly(log λ) ≤ λ

as desired. Then, by inspection, we can observe that for Xi,Yi,S , T , f , g, A, B defined as above, Rbndl defined as
Equation (2) is equivalent to R> except for the case of |(x, 1t, 12s

)| ≤ |M|. In this case, we have S(|x|)∩ T (|y|) = ∅.
To handle this, we add the extra step to the decryption algorithm of the former where it outputs⊥ if S(|x|)∩T (|y|) = ∅.
This gives us the construction of ABE for R>. Since the original scheme is VerSel-IND secure, so is the resulting
scheme by Theorem 5.2.

5.3.2 The Case of |(x, 1t, 12s
)| ≤ |M|

We next show that by applying the conversion in Section 5.1 to the KP-ABE scheme from [BGG+14], we can
obtain an ABE scheme for NL for the case where |(x, 1t, 12s

)| ≤ |M|. Formally, we construct an ABE for

42

Circuit Ui,M

Hardwired constants: Description of a Turing Machine M.
On input y ∈ {0, 1}i, proceed as follows:

1. Parse the input y ∈ {0, 1}i as (x, 1t, 12s
).

2. Compute Mat(M, x, s)j,k for all j, k ∈ [N] in parallel, where N = s2s · |x| · |Q|.

3. Compute A := Mat(M, x, s)t.

4. Compute and output e⊤stt ·A · uacc.

Figure 5: Circuit Ui,M.

R≤ : A× B→ {0, 1} ∪ {⊥}, where A = {0, 1}∗, B is the set of all non-deterministic Turing machines, and

R≤((x, 1t, 12s
), M) =

{
1 (if M accepts x within t steps and space s) ∧

(
|(x, 1t, 12s

)| ≤ |M|
)

0 otherwise.
.

To apply the conversion, we use various instances of kpABE from [BGG+14] for prm = 1i, Ri : Xi ×Yi → {0, 1}
where Xi = {0, 1}i and Yi is the set of circuits with input length i, depth λ, and output length 1, and Ri(x, C) = C(x).
We then set S , T , f , and g as

S(i) = i, T (i) = {1, 2, . . . , i}, f (x, 1t, 12s
) = (x, 1t, 12s

), g(M) = {Ui,M(·)}i∈[M] ,

where Ui,M(·) is defined as Figure 5.
We now show that g is a valid map. Namely, Ui,M is in Yi even for M with unbounded size. In particular, we have

to show that the depth of the circuit is bounded by λ. This can be shown by the same argument as for Ui,x,t,s, since
both circuits compute e⊤stt ·Mat(M, x, s)t · uacc from (x, t, s, M) in exactly the same way. Then, by inspection, we
can observe that for Xi,Yi,S , T , f , g, A, B defined as above, Rbndl defined as Equation (2) is equivalent to R≤ except
for the case of |(x, 1t, 12s

)| > |M|. However, this case can be handled by modifying the decryption algorithm as in
Section 5.3.1. This gives us the construction of ABE for R≤. Since the original scheme is Sel-IND secure, so is the
resulting scheme by Theorem 5.2.

5.3.3 Putting the Pieces Together

Here, we combine the two schemes we considered so far to obtain the full-fledged scheme. We set A = {0, 1}∗ and B
to be the set of all Turing machines. We also set R1 = R>, R2 = R≤. Xi = A, Yi = B for i = 1, 2. We have already
constructed schemes for R1 and R2 and now combine them. To do so, we set S , T , f , and g as

S(i) = {1, 2}, T (i) = {1, 2}, f (x, 1t) = {(x, 1t, 12s
), (x, 1t, 12s

)}, g(M) = {M, M}

We observe that for Xi,Yi,S , T , f , g, A, B defined as above, Rbndl defined as Equation (2) is

Rbndl((x, 1t, 12s
), M) =


(1, 0) (if M accepts x within t steps and space s) ∧

(
|(x, 1t, 12s

)| > |M|
)

(0, 1) (if M accepts x within t steps and space s) ∧
(
|(x, 1t, 12s

)| ≤ |M|
)

(0, 0) otherwise.
.

To obtain the ABE scheme for NL, we add an extra step for the decryption algorithm of the ABE scheme for Rbndl

obtained above, where we output the message recovered if the decryption succeeds for either left or right slot and ⊥
otherwise. To sum up, we have the following theorem:

43

Theorem 5.8. Assume a VerSel-IND secure cpABE and Sel-IND secure kpABE scheme that supports circuits with
bounded depth. Then the ABE scheme for NL presented in Section 5.3.3 satisfies VerSel-IND security.

Instantiating the VerSel-IND secure cpABE scheme from [Wee22] and Sel-IND secure kpABE scheme from
[BGG+14], we get the following corollary.

Corollary 5.9. Under the evasive LWE assumption (Assumption 2.24) and tensor LWE assumption (Assumption 4.1),
there exists a very selectively secure ABE for NL with

|mpk| = poly(λ), |sk| = poly(|M|, λ), |ct| = poly(λ, |x|, t, 2s)

where the machine M runs on input x for time step t and takes space s.

44

Acknowledgement. The first author is supported by the Cybersecurity Center of Excellence at IIT Madras and the DST
Swarnajayanti fellowship. The third author was partly supported by JST AIP Acceleration Research JPMJCR22U5, JST
CREST Grant Number JPMJCR22M1, and JSPS KAKENHI Grant Number 19H01109.

45

References
[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model. In

Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 553–572. Springer, Heidelberg,
May / June 2010. (Cited on page 14, 33.)

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed dimension and shorter-
ciphertext hierarchical IBE. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 98–115.
Springer, Heidelberg, August 2010. (Cited on page 14.)

[AM18] Shweta Agrawal and Monosĳ Maitra. FE and iO for Turing machines from minimal assumptions. In Amos
Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS, pages 473–512.
Springer, Heidelberg, November 2018. (Cited on page 3.)

[AMVY21] Shweta Agrawal, Monosĳ Maitra, Narasimha Sai Vempati, and Shota Yamada. Functional encryption for
Turing machines with dynamic bounded collusion from LWE. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 239–269, Virtual Event, August 2021. Springer,
Heidelberg. (Cited on page 4, 33, 39, 41.)

[AMY19a] Shweta Agrawal, Monosĳ Maitra, and Shota Yamada. Attribute based encryption (and more) for
nondeterministic finite automata from LWE. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part II, volume 11693 of LNCS, pages 765–797. Springer, Heidelberg, August 2019. (Cited
on page 3, 4.)

[AMY19b] Shweta Agrawal, Monosĳ Maitra, and Shota Yamada. Attribute based encryption for deterministic finite
automata from DLIN. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of
LNCS, pages 91–117. Springer, Heidelberg, December 2019. (Cited on page 3.)

[ARYY23] Shweta Agrawal, Mélissa Rossi, Anshu Yadav, and Shota Yamada. Constant input attribute based (and
predicate) encryption from evasive and tensor LWE. In CRYPTO 2023, Part IV, LNCS, pages 532–564.
Springer, Heidelberg, August 2023. (Cited on page 4, 15, 16.)

[AS16] Prabhanjan Vĳendra Ananth and Amit Sahai. Functional encryption for Turing machines. In Eyal
Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I, volume 9562 of LNCS, pages 125–153. Springer,
Heidelberg, January 2016. (Cited on page 3.)

[AY20a] Shweta Agrawal and Shota Yamada. CP-ABE for circuits (and more) in the symmetric key setting. In
Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS, pages 117–148.
Springer, Heidelberg, November 2020. (Cited on page 3.)

[AY20b] Shweta Agrawal and Shota Yamada. Optimal broadcast encryption from pairings and LWE. In Anne
Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 13–43.
Springer, Heidelberg, May 2020. (Cited on page 5.)

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, Heidelberg, August 2001. (Cited
on page 9.)

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod Vaikun-
tanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit ABE
and compact garbled circuits. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 533–556. Springer, Heidelberg, May 2014. (Cited on page 3, 4, 5, 7, 13, 18,
39, 40, 41, 42, 43, 44.)

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption
without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–36, 2014. (Cited on
page 6, 7.)

46

[BHR12a] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with applications to
one-time programs and secure outsourcing. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012,
volume 7658 of LNCS, pages 134–153. Springer, Heidelberg, December 2012. (Cited on page 9.)

[BHR12b] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting Yu, George
Danezis, and Virgil D. Gligor, editors, ACM CCS 2012, pages 784–796. ACM Press, October 2012. (Cited
on page 8.)

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical hardness of
learning with errors. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC,
pages 575–584. ACM Press, June 2013. (Cited on page 14, 15.)

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private constrained PRFs (and
more) from LWE. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS,
pages 264–302. Springer, Heidelberg, November 2017. (Cited on page 6, 18.)

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE.
In Rafail Ostrovsky, editor, 52nd FOCS, pages 97–106. IEEE Computer Society Press, October 2011.
(Cited on page 6, 7.)

[BV22] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-inspired broadcast encryption and succinct ciphertext-
policy abe. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2022. (Cited on page 5.)

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a lattice basis.
In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 523–552. Springer, Heidelberg,
May / June 2010. (Cited on page 14, 33.)

[CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE from learning with
errors. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of
LNCS, pages 630–656. Springer, Heidelberg, August 2015. (Cited on page 7.)

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In IMA Int. Conf., 2001.
(Cited on page 9.)

[DG17] Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-Hellman assumption. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 537–569.
Springer, Heidelberg, August 2017. (Cited on page 33.)

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich.
How to run Turing machines on encrypted data. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 536–553. Springer, Heidelberg, August 2013. (Cited on page 3.)

[GKW16] Rishab Goyal, Venkata Koppula, and Brent Waters. Semi-adaptive security and bundling functionalities
made generic and easy. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of
LNCS, pages 361–388. Springer, Heidelberg, October / November 2016. (Cited on page 8.)

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati,
editors, ACM CCS 2006, pages 89–98. ACM Press, October / November 2006. Available as Cryptology
ePrint Archive Report 2006/309. (Cited on page 3.)

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM
Press, May 2008. (Cited on page 14.)

47

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. Springer, Heidelberg, August 2013. (Cited on
page 6, 17.)

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with bounded collusions
via multi-party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume
7417 of LNCS, pages 162–179. Springer, Heidelberg, August 2012. (Cited on page 9.)

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for circuits. In
STOC, 2013. (Cited on page 3, 4.)

[GW20] Junqing Gong and Hoeteck Wee. Adaptively secure abe for dfa from k-lin and more. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 278–308. Springer, 2020.
(Cited on page 3.)

[GWW19] Junqing Gong, Brent Waters, and Hoeteck Wee. Abe for dfa from k-lin. In Advances in Cryptology–CRYPTO
2019: 39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019,
Proceedings, Part II 39, pages 732–764. Springer, 2019. (Cited on page 3.)

[HLL23] Yao-Ching Hsieh, Huĳia Lin, and Ji Luo. Attribute-based encryption for circuits of unbounded depth
from lattices. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages
415–434. IEEE, 2023. (Cited on page 3, 4, 6, 15, 17, 18, 19, 20, 21, 27.)

[KNTY19] Fuyuki Kitagawa, Ryo Nishimaki, Keisuke Tanaka, and Takashi Yamakawa. Adaptively secure and succinct
functional encryption: Improving security and efficiency, simultaneously. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 521–551. Springer,
Heidelberg, August 2019. (Cited on page 3.)

[KT18] Fuyuki Kitagawa and Keisuke Tanaka. Key dependent message security and receiver selective opening
security for identity-based encryption. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part I,
volume 10769 of LNCS, pages 32–61. Springer, Heidelberg, March 2018. (Cited on page 9.)

[LL20a] Huĳia Lin and Ji Luo. Compact adaptively secure ABE from k-Lin: Beyond NC1 and towards NL. In Anne
Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 247–277.
Springer, Heidelberg, May 2020. (Cited on page 3, 10.)

[LL20b] Huĳia Lin and Ji Luo. Succinct and adaptively secure ABE for ABP from k-Lin. In Shiho Moriai and
Huaxiong Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 437–466. Springer,
Heidelberg, December 2020. (Cited on page 41.)

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party computation.
Journal of Cryptology, 22(2):161–188, April 2009. (Cited on page 9.)

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718.
Springer, Heidelberg, April 2012. (Cited on page 14.)

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key FHE. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
735–763. Springer, Heidelberg, May 2016. (Cited on page 7.)

[PF79] Nicholas Pippenger and Michael J Fischer. Relations among complexity measures. Journal of the ACM
(JACM), 26(2), 1979. (Cited on page 11.)

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM,
56(6):34:1–34:40, 2009. (Cited on page 15.)

48

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with public keys. In
Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS 2010, pages 463–472.
ACM Press, October 2010. (Cited on page 5.)

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, 2005. (Cited on page 3.)

[Tsa22] Rotem Tsabary. Candidate witness encryption from lattice techniques. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages 535–559. Springer, Heidelberg,
August 2022. (Cited on page 3.)

[VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and null-IO from evasive
LWE. In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part I, volume 13791 of LNCS,
pages 195–221. Springer, Heidelberg, December 2022. (Cited on page 4.)

[Wat12] Brent Waters. Functional encryption for regular languages. In Annual Cryptology Conference, pages
218–235. Springer, 2012. (Cited on page 3.)

[Wee22] Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive lattice assumptions. In Orr
Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages
217–241. Springer, Heidelberg, May / June 2022. (Cited on page 3, 4, 5, 6, 7, 13, 14, 15, 17, 27, 42, 44.)

[WWW22] Brent Waters, Hoeteck Wee, and David J. Wu. Multi-authority ABE from lattices without random oracles.
In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part I, volume 13747 of LNCS, pages 651–679.
Springer, Heidelberg, November 2022. (Cited on page 15.)

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations extended abstract. In 23rd FOCS, volume 28,
1982. (Cited on page 8, 33.)

49

	Introduction
	Our Results
	Technical Overview

	Preliminaries
	Garbled Circuits
	Identity-Based Encryption
	Turing Machines
	Attribute Based Encryption
	Tensors
	Lattice Preliminaries
	GSW Homomorphic Encryption and Evaluation
	BGG+ Homomorphic Evaluation Procedures

	Bootstrapping Randomized Homomorphic Evaluation
	Preparation
	 Noise Removal for Randomized Encoding
	Randomized Bootstrapping a.k.a Structure Restoration

	Ciphertext Policy ABE for Unbounded Depth Circuits
	Construction
	Our Assumption
	Security Proof

	Generic compiler: ABE for Turing Machines and NL
	Generalized Bundling of Functionality
	ABE for Turing Machines
	ABE for NL

