
Great-LaKeys: An Improved Threshold-PRF and
a Novel Exponent-VRF from LWR

Matthias Geihs

Torus Labs

Abstract. Building on the recently proposed LWR-based threshold-
PRF LaKey, we propose two new constructions. First, we propose an
optimized threshold-PRF with significantly reduced round and commu-
nication complexity. We achieve this by improving the underlying bit
truncation protocol, as well as the lower bound on the required number
of LWR instances. Second, we show that the same underlying PRF con-
struction lends itself as a basis for a novel and efficient exponent-VRF.
We implement prototypes of both of our contributions and demonstrate
their practical performance.

1 Introduction

MPC-friendly PRF constructions are an important building block in crypto-
graphic protocols. They enable applications like scalable decentralized key man-
agement [GM23] and secure encryption in MPC [GØS+23]. We refer to [GØS+23]
for a more comprehensive list of applications.

Moreover, the same PRF constructions are often also useful in zero-knowledge
protocols, as their structure often also allows for efficient proving in ZK proof
systems [AABS+20]. The recently proposed notion of an exponent VRF [BHL24]
indeed shows that efficiently provable PRFs are a powerful tool, as they enable
efficient threshold key generation and signing protocols.

Here we present two new constructions that contribute to the state of the art
in the realm of threshold PRFs and exponent VRFs.

1.1 Improved Threshold-PRF

Firstly, we improve the round and communication complexity of the recently
proposed LaKey threshold PRF [GM23]. We achieve this via a novel bit trunca-
tion protocol that merges existing protocols for truncating the highest bits and
lowest bits of a secret-shared integer, into a single protocol for truncating bits at
both ends at the same cost as truncating only the highest bits. We also improve
the analysis of the parameter sizes and thereby are able to further reduce the
communication. We provide an open-source implementation of our tPRF con-
struction using the MP-SPDZ library [Kel20] and compare it with the previous
work.

2 M. Geihs.

1.2 Novel Exponent-VRF

Building on the LWR-based PRF construction underlying LaKey, we observe
that it lends itself well to be turned into an efficient eVRF, using Bulletproofs
[BBB+17] as the proof system. The main observation is that almost all opera-
tions of the PRF are linear, and thereby basically free to prove, except for the bit
truncations, which, however, we also know how to efficiently prove using Bullet-
proofs. The resulting eVRF is relatively simple in its construction, can be made
work for any cyclic group, and is expected to have comparable performance to
the recently proposed DDH-based eVRF from [BHL24] (for which, to the best
of our knowledge, no implementation exists). We provide an open source imple-
mentation of our eVRF construction using the zkcrypto/bulletproofs library
[Zer24] and practically demonstrate its performance.

1.3 Organization

We present preliminaries in section 2. Then we present our threshold-PRF opti-
mizations in section 3. Next, we present our novel LWR-based exponent-VRF in
section 4. Finally, we evaluate the performance of our constructions in section 5.
We also outline some directions for future work in section 6.

1.4 Disclaimer

The paper, at the current time, is a preliminary version and only includes infor-
mal security definitions and proofs.

2 Preliminaries

2.1 Notation

For two probability distributions X and Y over a finite domain D, we define
their statistical distance as

∆(X,Y) =
1

2

∑
a∈D

|Pr[X = a]− Pr[Y = a]| .

By U(D) we denote the uniform distribution over a finite domain D.

2.2 LaKey PRF

A pseudorandom function (PRF) [GGM86] is an efficiently computable function
F : K×X → Y such that for a uniform k in K and a uniform function f : X → Y,
an oracle for F (k, ·) is computationally indistinguishable from an oracle for f(·).

Let l,m, q̄, p̄ ∈ N, where q̄ > p̄, set q = 2q̄, p = 2p̄, and let H : {0, 1}∗ → Zl×m
q

be a cryptographic hash function. The LaKey PRF [GM23] is defined as

Great-LaKeys: Threshold-PRF and Exponent-VRF from LWR 3

FLaKey : Zm
q × {0, 1}∗ → Zp̃; (k, x) 7→ Acc(Trunc(H(x) · k, q̄ − p̄, q̄)) ,

where Trunc : Zl
q → Zl

p;x 7→ ⌊(x mod q)/(q/p)⌋ truncates the highest and lowest
bits (below bit q̄ − p̄ and above bit q̄), and Acc : Zl

p → Zp̃; (x1, . . . , xl) 7→∑l
i=1 xi · pi−1 maps a vector of integers in Zp onto a single integer in Zp̃.

2.3 Bit truncation in MPC

[CdH10] features two deterministic bit truncation protocols for MPC. The first
one is for truncating higher order bits (referred to by Mod2m in their paper, here
referred to as TruncHi, shown in Algorithm 1). The second one is for truncating
lower order bits (referred to by Trunc in their paper, here referred to as TruncLo,
Algorithm 2). Both of these protocols rely on protocols PRandM and BitLT as
building blocks, whose functionality and properties we will outline below. In the
protocol descriptions, [a] denotes a secret-sharing of a.

Protocol PRandM(k,m) → ([r′′], [r′], [r′m−1], . . . , [r
′
0]) is a protocol that out-

puts two random secret-shared integers in [r′′] and [r′], and a vector of secret-
shared random bits [r′m−1], . . . , [r

′
0] such that r′′ ∈ [0, 2k+κ−m], r′ ∈ [0, 2m], and

r′ =
∑m−1

i=0 r′i∗2i. Here, κ refers to a globally fixed statistical security parameter.
To generate random integers within a certain range, PRandM consumes relies on
consuming pre-shared random bits. Concretely, an invocation of PRandM(k,m)
consumes k + κ−m+m = k + κ pre-shared random bits.

BitLT(a, [bl−1], . . . , [b0])→ [c] is a protocol that compares a cleartext integer a
with a secret-shared integer in binary form [bl−1], . . . , [b0] (where [bi] ∈ {[0], [1]}).
It outputs [c] = [1] if a <

∑l−1
i=0 bi ∗ 2i and [c] = [0] otherwise. There are various

possible implementations of BitLT, but for our purposes we will rely on an im-
plementation that runs in log(m)+1 online rounds and balances communication
with round complexity.

We remark that there is also a constant round version of the comparison pro-
tocol at the cost of added communication complexity. However, for our smaller
parameter sizes, the round count of the constant-round protocol is the same as
the logarithmic round protocol, and for the larger parameter sizes the round
count difference is still small (within 1 or 2 rounds).

Algorithm 1 TruncHi([a], k,m)→ [a′]

1: ([r′′], [r′], [r′m−1], . . . , [r
′
0])← PRandM(k,m)

2: c← Output(2k−1 + [a] + 2m[r′′] + [r′])
3: c′ ← c mod 2m

4: [u]← BitLT(c′, [r′m−1], . . . , [r
′
0])

5: [a′]← c′ − [r′] + 2m[u]
6: return [a′]

4 M. Geihs.

Algorithm 2 TruncLo([a], k,m)→ [a′′]

1: [a′]← TruncHi([a], k,m);
2: [a′′]← ([a]− [a′])/2m;
3: return [a′′];

2.4 Exponent VRFs

An exponent VRF [BHL24] is defined over a cyclic group with a generator G
and by a set of algorithms KeyGen, Eval, Verify, with the following properties.

KeyGen()→ (k, vk): The key generation algorithm randomly generates a secret
evaluation key k and a public verification key vk.

Eval(k, x)→ (y, Y, π): On input an evaluation key k, and a message x, the eval-
uation algorithm outputs (y, Y, π), where y is a pseudorandom value in the
target domain, Y = G ∗ y, and π is a proof for the correct evaluation.

Verify(vk, x, Y, π)→ {0, 1}: On input a verification key vk, a message x, an ex-
ponent output Y , and a proof π, the verification algorithm outputs 1 if π
certifies that Y is the correct output for input x, and 0 otherwise.

An exponent VRF is considered secure if no polynomial-time adversary can
distinguish outputs of Eval from random values over the same domain. Further-
more, it must be infeasible for any polynomial-time adversary, given a verification
key vk, to produce a triple (x, Y, π) such that Verify(vk, x, Y, π) = 1 and Y is
not a valid output for x, except for with negligible probability.

2.5 Bulletproofs

Bulletproofs [BBB+17] is an efficient zero-knowledge proof system based on
elliptic-curve cryptography. In short, it allows a prover to efficiently generate
a short proof for an arbitrary computation (e.g., expressed as a Rank-1 Con-
straint System or R1CS) such that a verifier can verify the correctness of the
computation much more efficiently than recomputing it themselves. Moreover,
the prover can choose to hide some of the inputs of the computation but still
convince the verifier that it knows corresponding inputs that satisfy certain con-
straints. For example, a prover could convince the verifier that it knows the
secret key belonging a public key without revealing anything other than the
truthfulness of that statement.

We will use the following algorithmic notation when working with Bullet-
proofs.

Bul.Setup()→ pBul: The setup algorithm outputs public parameters pBul that are
used in the proof system.

Bul.Com(pBul, k, d)→ K: The commitment algorithm generates a commitment
K to a secret k using random blinding value d.

Bul.Prove(pBul, C,X;W)→ π: The prove algorithm generates a proof π for a
constraint system C to be satisfied by inputs X and witness W .

Bul.Verify(pBul, C,X, π)→ {0, 1}: The verify algorithm checks the correctness of
a proof π for a constraint system C and inputs X.

Great-LaKeys: Threshold-PRF and Exponent-VRF from LWR 5

3 Improvements to Threshold-PRF

We present our two improvements to the LaKey threshold PRF construction. The
first one is an improved bit truncation protocol, which lies at the heart of LaKey
and significantly reduces rounds and communication. The second one is a tighter
bound on the statistical distance between the intermediate LWR-based PRF
output and the target distribution, which allows us to choose smaller parameters
and further reduces the computation and communication requirements of LaKey.
We will evaluate the impact of these improvements in section 5.

3.1 Bit truncation with fewer rounds and communication

We present our improved bit truncation protocol in Algorithm 3. The main
observation is that the existing protocols TruncHi and TruncLo (subsection 2.3)
can be merged into a single protocol TruncHiLo that enjoys the same round and
communication complexity as just running TruncHi.

Algorithm 3 TruncHiLo([a], k,m, n)→ [a′]

1: ([r′′], [r′], [r′n−1], . . . , [r
′
0])← PRandM(k, n)

2: c← Output(2k−1 + [a] + 2n[r′′] + [r′])
3: for x ∈ {m,n} do ▷ Can run in parallel.
4: c′ ← c mod 2x

5: [u]← BitLT(c′, [r′x−1], . . . , [r
′
0]);

6: [r′]←
∑x−1

j=0 2j [r′j]

7: [a′
x]← c′ − [r′] + 2x[u]

8: [a′]← ([a′
n]− [a′

m])/2m

9: return [a′]

Correctness. We need to show that for all valid ([a], k,m, n),

TruncHiLo([a], k,m, n) = ⌊(a mod 2n)/2m⌋ .

Let [a′] = TruncHiLo([a], k,m). Observe that [a′] = ([a′n] − [a′m])/2m by the
construction of TruncHiLo, where [a′n] = [a] mod 2n and [a′m] = [a] mod 2m by
the construction of TruncHi. Finally, we observe that we have

(([a] mod 2n)− ([a] mod 2m))/2m = ⌊([a] mod 2n)/2m⌋ ,

because n ≥ m and therefore ([a] mod 2n)− ([a] mod 2m) is divisible by 2m.

Security. We need to show that the protocol does not leak anything about the
secret value a. The only value that is revealed in the protocol is c = 2k−1+[a]+
2n[r′′] + [r′]. We observe that r = 2n[r′′] + [r′] is a random element in Z2k+κ−n

and therefore a+ r does not leak anything about a ∈ Z2k .

6 M. Geihs.

Efficiency. Running TruncHiLo([a], k,m, n) takes log(n) + 1 rounds and con-
sumes k + κ random bits.

3.2 Exact bound on statistical distance to target distribution

For LaKey to be pseudorandom over Zp̃, we require that the statistical distance
between Acc(U(Zl

p)) mod p̃ and U(Zp̃) is negligible. In [GM23], it was established
that the distance is bounded by p̃/pl.

The following Lemma 1 establishes a tighter bound and thereby allows for
choosing smaller l.

Lemma 1. For m,n ∈ N,

∆(U(Zm), U(Zn) mod m) =

∣∣∣∣ (n mod m)2 − (n mod m)m

nm

∣∣∣∣ .

Proof. Writing out the definition, we have

∆(X,Y) =
1

2

∑
a∈Zm

|Pr[X = a]− Pr[Y = a]| .

For a ∈ Zm, we have Pr[X = a] = 1/m and

Pr[Y = a] =

{
n−(n mod m)

nm if a ≥ n mod m,
n−(n mod m)+m

nm if a < n mod m.

Denote r = (n mod m). It follows that

∆(X,Y) =
1

2

(∑
a∈Zm:a<r

∣∣∣∣ 1m − n− r +m

nm

∣∣∣∣
)

+

 ∑
a∈Zm:a≥r

∣∣∣∣ 1m − n− r

nm

∣∣∣∣


=
1

2

(
r

∣∣∣∣ 1m − n− r +m

nm

∣∣∣∣+ (m− r)

∣∣∣∣ 1m − n− r

nm

∣∣∣∣)
=

∣∣∣∣r2 − rm

nm

∣∣∣∣ .

⊓⊔

4 Novel Exponent-VRF

We present our novel exponent VRF eLaKey in Definition 1. It is constructed by
composing the LaKey PRF together with an efficient proof system for its correct
evaluation, which we realize using Bulletproofs.

Definition 1 (LaKey-eVRF). Let LaKey denote the LaKey PRF (subsection 2.2)
and let Bul denote the BulletProofs proof system (subsection 2.5). Given (pBul,K, x,
Y ; kPRF, d), let CLaKey be a constraint system for the following constraints:

Great-LaKeys: Threshold-PRF and Exponent-VRF from LWR 7

– K = Bul.Com(pBul, kPRF, d)
– y = LaKey.Eval(kPRF, x)
– Y = pBul.G ∗ y

The eLaKey exponent-VRF is defined as follows.

eLaKey.KeyGen()→ (k, vk).
– Compute kPRF ← LaKey.KeyGen() and pBul ← Bul.Setup().
– For i ∈ [LaKey.m], compute (Ki, di)← Bul.Com(pBul, kPRF,i).
– Set d← (d1, . . . , dm), and K ← (K1, . . . ,Km).
– Set k ← (kPRF, d, pBul) and vk ← (K, pBul).

eLaKey.Eval(k, x)→ (y, Y, π).
– Parse (kPRF, d, pBul)← k.
– Compute y ← LaKey.Eval(kPRF, x) and Y ← pBul.G ∗ y.
– Compute π ← Bul.Prove(pBul, CLaKey, [K,x, Y]; [kPRF, d]).

eLaKey.Verify(vk, x, Y, π)→ {0, 1}.
– Parse (K, pBul)← vk.
– Return Bul.Verify(pBul, CLaKey, [K,x, Y], π).

4.1 Security

The security of eLaKey follows from the security of the LaKey PRF and the
Bulletproofs proof system Bul. The security of the LaKey PRF guarantees that
y is indistinguishable from random for a computationally-bounded attacker that
does not know the secret key. Moreover, by the DLOG assumption we know that
Y = y ∗G does not leak anything about y. Finally, the security of proof system
Bul ensures that π does not leak anything about k or y and is unforgeable.

4.2 Efficient realization of constraint system

We now describe how we efficiently realize constraint system CLaKey in R1CS,
which is supported by Bulletproofs. The main observation is that most of the
operations of LaKey.Eval are linear, except for the bit truncation. Bit truncation,
however, can be efficiently realized through bit decomposition, which we know
can be efficiently represented in R1CS. Figure 1 describes the CLaKey R1CS in
more detail. Here, BitDecomp denotes an algorithm that on input (X;x), where
X is a committed vector and x is a witness, outputs (C,B), where C is a con-
straint system that ensures that B is an element-wise bit decomposition of X,
assuming X is a commitment to x.

4.3 Comparison with eVRFs from [BHL24]

[BHL24] proposes two eVRF constructions, one based on DDH and another one
based on Paillier. Both of their constructions require some tricks to make them
work for practical use cases.

For their DDH-based eVRF, they describe how to instantiate the eVRF when
the target group GT is either secp256k1 or ed25519. For the case of secp256k1,

8 M. Geihs.

Input: pBul;K,x, Y ; kPRF, d
Output: Constraints for Y = pBul.G ∗ LaKey.Eval(kPRF, x) and K = Bul.Com(pBul,

kPRF, d).
Procedure:

1. Set A← LaKey.H(x), Y1 ← A ∗K, and y1 ← A ∗ k.
2. Compute (C1, Y2)← BitDecomp(Y1; y1).
3. Compute Y3 ← LaKey.Acc(LaKey.Trunc(Y2)).
4. Set C2← (Y = Y3) and C3 ← (K = Bul.Com(pBul, kPRF, d)).
5. Output constraints C1, C2, C3.

Fig. 1. R1CS for eLaKey.

the target group needs to be the standard group of points on curve y2 = x3 + 7
over some prime field Fp. To find a corresponding source group, they observe
that, due to a theorem by Silverman and Stange [SS11], curve y2 = x3+7 over Fq,
for some q, has prime order p, and can therefore be used as the source group. A
different observation is made to find a corresponding source group for the target
group ed25519. We remark that no such tricks are required for instantiating our
eVRF eLaKey as we do not need to find a matching source group.

For their Paillier-based eVRF, they remark that efficient range proofs for
Paillier require a trusted setup, which is a relatively strong assumption in itself
that rules out certain pratical use cases where such a setup procedure is not
feasible. Again, our eVRF eLaKey does not have such a limitation.

5 Evaluation

5.1 Threshold-PRF

We implemented our improved threshold PRF construction LaKey2 using MP-
SPDZ [Kel20]. The code is available at github.com/torusresearch/lakey-tprf. As
in [GM23], we target a 256-bit prime field and fix the lattice dimension to 512.
We choose either q̄ = 12 and p̄ = 8, denoted with subscript 12 or q̄ = 32 and
p̄ = 24, denoted with subscript 32.

Table 1 gives an overview of the performance measurements for LaKey2 com-
pared with LaKey. Here, the parameters with a subscript K correspond to the
communication-optimized LaKey variant denoted by OPT in [GM23]. The mea-
surements have been performed on a machine with a 10-core M1 Pro CPU and
32 GB RAM, simulating 3 parties with a reconstruction threshold of 2, and using
protocol mal-shamir.

We observe that LaKey2 significantly outperforms LaKey on all measures.
Computation is reduced by 12% to 17%. Online communication is reduced by
14% to 16% and total communication by 35% to 41% in case of the regular
construction and by 15% to 16% in case of the communication-optimized con-
struction. Round count is reduced significantly to 5 or 6 rounds, depending on

https://github.com/torusresearch/lakey-tprf

Great-LaKeys: Threshold-PRF and Exponent-VRF from LWR 9

the parameter choice, from previously 8 or 10, respectively. The reduction of
the number of required pre-shared random bits is reflected by the lower com-
munication cost. We also show the difference in key sizes between the regular
and the communication-optimized variant of LaKey. Due to the much improved
communication complexity of LaKey2, the communication-optimized variant can
almost be considered obsolete due to the much larger key size.

Table 1. Comparison of LaKey and LaKey2 threshold PRFs.

Protocol Computation Communication Rounds Random Bits Key Size
(ms) (MB, online/total) (B)

LaKey

LaKey12 11.34 0.41 / 6.01 8 4625 768
LaKey32 8.06 0.43 / 3.85 10 2405 768
LaKeyK12 24.79 0.33 / 3.85 8 2753 28416
LaKeyK32 12.86 0.36 / 2.79 10 1541 28416

LaKey2
LaKey212 9.80 0.35 / 3.56 5 2336 768
LaKey232 6.68 0.36 / 2.49 6 1243 768
LaKey2K12 21.84 0.29 / 3.29 5 2336 24576
LaKey2K32 10.78 0.31 / 2.33 6 1243 24576

5.2 Exponent-VRF

We implemented our novel exponent VRF eLaKey using the bulletproofs Rust
library [Zer24]. As scheme parameters we use m = 512, q̄ = 12, and p̄ = 8, and
we target a 255-bit prime field, concretely the scalar field of curve25519. The
source code can be found at github.com/torusresearch/lakey-evrf.

Benchmarks are run on a machine with a 10-core M1 Pro CPU and 32 GB
RAM. The results can be found in Table 2. We observe that key generation and
verification are both well below 100ms. Evaluation is a bit more costly and takes
around 260ms. The proof size is around 1 kB. We expect that these figures can
further be tweaked by experimenting with different parameter sets. Overall, we
expect these figures to suffice for many practical applications, like distributed
key generation and threshold signing.

Comparison to [BHL24]. In comparison to the eVRFs proposed in [BHL24],
we observe the following. For their DDH-based eVRF, the authors estimate a
proof size of about 900 bytes, and proving and verification times of just a few
milliseconds, while the number of constraints is between 1282 and 1537. For their
Pallier-based eVRF, the authors estimate the proving time at about 375ms and
the verification time at about 168ms. They do not make any statements about
the proof size. We note that, to the best of our knowledge, both of their proposed
eVRFs have not been implemented and the provided figures are only estimates.

https://github.com/torusresearch/lakey-evrf

10 M. Geihs.

Table 2. Exponent-VRF eLaKey benchmark results.

Measurement Value
Key generation 74ms
Evaluation 263ms
Verification 27ms
Proof size 1121B
Constraints 1056

6 Open questions

We foresee at least two interesting future lines of work.
The first question is whether we can also build an oblivious PRF from the

same underlying PRF construction. The main obstacle here is that the LaKey
threshold PRF as a first step requires each protocol participants to map the
public input x onto a random matrix A in Zl×m

q . In our construction, we use a
random oracle for that mapping which we can instantiate using a hash function
like SHA2 or SHA3. If the input is secret, as required for an OPRF, we would
need to find an efficient way to compute this mapping in MPC.

The second question is whether our underlying PRF construction can be
efficiently evaluated in FHE. We have observed that the construction lends itself
well to be run in MPC as well as in ZK proof systems, but while FHE systems
share some similarities, it is currently unclear what the concrete efficiency of an
implementation in FHE would be. Such a construction would be interesting, as
it could also be the basis for an OPRF construction, as shown in [ADD+23],
with the benefit that the security of our PRF is reducible to standard LWE.
First steps in this direction have been made in [DJL+24].

Acknowledgements

Thanks to Andreas Erwig for proposing the idea to investigate LaKey further in
the context of exponent-VRFs, and thanks to Hart Montgomery for his continued
guidance around the topic of LWR-based PRFs.

References

AABS+20. A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe, and A. Szepieniec. Design
of symmetric-key primitives for advanced cryptographic protocols. IACR
Transactions on Symmetric Cryptology, 2020(3):1–45, Sep. 2020.

ADD+23. M. R. Albrecht, A. Davidson, A. Deo, and D. Gardham. Crypto dark
matter on the torus: Oblivious prfs from shallow prfs and fhe. Cryptology
ePrint Archive, Paper 2023/232, 2023. https://eprint.iacr.org/2023/
232.

BBB+17. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bul-
letproofs: Short proofs for confidential transactions and more. Cryptology

https://eprint.iacr.org/2023/232
https://eprint.iacr.org/2023/232

Great-LaKeys: Threshold-PRF and Exponent-VRF from LWR 11

ePrint Archive, Paper 2017/1066, 2017. https://eprint.iacr.org/2017/
1066.

BHL24. D. Boneh, I. Haitner, and Y. Lindell. Exponent-VRFs and their ap-
plications. Cryptology ePrint Archive, Paper 2024/397, 2024. https:
//eprint.iacr.org/2024/397.

CdH10. O. Catrina and S. de Hoogh. Improved primitives for secure multiparty
integer computation. In J. A. Garay and R. D. Prisco, editors, Security
and Cryptography for Networks, 7th International Conference, SCN 2010,
Amalfi, Italy, September 13-15, 2010. Proceedings, volume 6280 of Lecture
Notes in Computer Science, pages 182–199. Springer, 2010.

DJL+24. A. Deo, M. Joye, B. Libert, B. R. Curtis, and M. de Bellabre. Ho-
momorphic evaluation of LWR-based PRFs and application to transci-
phering. Cryptology ePrint Archive, Paper 2024/665, 2024. https:
//eprint.iacr.org/2024/665.

GGM86. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random
functions. J. ACM, 34(4):792–807, 1986.

GM23. M. Geihs and H. Montgomery. Lakey: Efficient lattice-based distributed
prfs enable scalable distributed key management. Cryptology ePrint
Archive, Paper 2023/1254, 2023. https://eprint.iacr.org/2023/1254.

GØS+23. L. Grassi, M. Øygarden, M. Schofnegger, and R. Walch. From farfalle to
megafono via ciminion: The PRF hydra for MPC applications. In C. Hazay
and M. Stam, editors, Advances in Cryptology - EUROCRYPT 2023 -
42nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings,
Part IV, volume 14007 of Lecture Notes in Computer Science, pages 255–
286. Springer, 2023.

Kel20. M. Keller. MP-SPDZ: A versatile framework for multi-party computation.
In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020.

SS11. J. H. Silverman and K. E. Stange. Amicable pairs and aliquot cycles for
elliptic curves. Experimental Mathematics, 20(3):329–357, 2011.

Zer24. Zero-knowledge Cryptography in Rust. Bulletproofs. https://github.
com/zkcrypto/bulletproofs, 2024.

https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2024/397
https://eprint.iacr.org/2024/397
https://eprint.iacr.org/2024/665
https://eprint.iacr.org/2024/665
https://eprint.iacr.org/2023/1254
https://github.com/zkcrypto/bulletproofs
https://github.com/zkcrypto/bulletproofs

	Great-LaKeys: An Improved Threshold-PRF and a Novel Exponent-VRF from LWR

