
On Knowledge-Soundness of Plonk in ROM
from Falsifiable Assumptions

June 20, 2024

Helger Lipmaa 1, Roberto Parisella 2, and Janno Siim 2

1 University of Tartu, Tartu, Estonia
2 Simula UiB, Bergen, Norway

Abstract. Lipmaa, Parisella, and Siim [Eurocrypt, 2024] proved the
extractability of the KZG polynomial commitment scheme under the
falsifiable assumption ARSDH. They also showed that variants of real-
world zk-SNARKs like Plonk can be made knowledge-sound in the ran-
dom oracle model (ROM) under the ARSDH assumption. However, their
approach did not consider various batching optimizations, resulting in
their variant of Plonk having approximately 3.5 times longer argument.
Our contributions are: (1) We prove that several batch-opening proto-
cols for KZG, used in modern zk-SNARKs, have computational special-
soundness under the ARSDH assumption. (2) We prove that interactive
Plonk has computational special-soundness under the ARSDH assump-
tion and a new falsifiable assumption TriRSDH. We also prove that a
minor modification of the interactive Plonk has computational special-
soundness under only the ARSDH assumption. The Fiat-Shamir trans-
form can be applied to obtain non-interactive versions, which are secure
in the ROM under the same assumptions.

Keywords: Batching · KZG · Plonk · special-soundness · zk-SNARKs

1 Introduction

Succinct non-interactive arguments of knowledge
(SNARKs, [Kil94,Mic94,DL08,Gro10,Lip12,Gro16]) allow us to prove the
validity of mathematical statements with a succinct proof. When additionally
accompanied by the zero-knowledge property (zk-SNARKs), the proof leaks
no information besides the statement’s validity. SNARKs and zk-SNARKs
have recently found wide-scale adoption in many applications such as scalabil-
ity [BMRS20] and privacy [BCG+14] of blockchains.

Almost all known zk-SNARKs with constant argument size (with respect
to the length of the prover’s witness w) use the KZG polynomial commitment
scheme [KZG10] (either explicitly or implicitly). This includes Plonk [GWC19],
Marlin [CHM+20], and others [CFF+21,RZ21,LSZ22], but also many related
schemes like lookup arguments [EFG22,CFF+24]. KZG allows the prover to make
a constant-size commitment to a polynomial f(X) and to open later f(z) for some

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

2 Helger Lipmaa , Roberto Parisella , and Janno Siim

point z chosen by the verifier. Crucially, KZG facilitates aggressive optimizations
and batching techniques, which makes it ideal for many applications.

In the knowledge-soundness proof of KZG-based zk-SNARKs, it is neces-
sary to extract f(X) from the commitment. Up until recently, it was only
known how to extract using a knowledge assumption [CHM+20] or an idealized
group model [FKL18,LPS23], both of which have known undesirable features.
Knowledge assumptions are non-falsifiable and not even computational [Nao03].
Pass [Pas16] defines an hierarchy of non-falsifiable intractability assumptions
and states that knowledge assumptions are outside this hierarchy. Furthermore,
knowledge assumption cannot exist when the adversary receives auxiliary in-
put of the unbounded polynomial size and the indistinguishability obfusca-
tion exists [BCPR14]. For idealized group models such as the generic group
model [Sho97,Mau05] and algebraic group model [FKL18], there exist contrived
schemes that are secure in the idealized group model, but insecure when in-
stantiated with any group [Den02,Zha22]. In addition, one uses the Fiat-Shamir
heuristic [FS87] to make the argument system non-interactive, requiring the
random oracle model (ROM). Thus, one relies on two uncomparable idealized
models: an idealized group model (or a knowledge assumption) and the ROM.

This situation changed with the recent work of Lipmaa, Parisella, and
Siim [LPS24]. First, they proved that the KZG polynomial commitment
scheme has computational special-soundness under a falsifiable assumption AR-
SDH. Their notion of special-soundness closely follows the one for proof sys-
tems [CDS94,AFK22]. Suppose an efficient adversary produces n + 1 accept-
ing KZG transcripts3 ([C]1, zi, f̄i, [πi]1), where [C]1 is a commitment, zi is an
evaluation point, f̄i is an evaluation, and [πi]1 is a proof. Assume zi are mutu-
ally distinct and that the ARSDH assumption (a falsifiable assumption defined
in [LPS24], see Definition 1) holds in the respective bilinear group. Lipmaa et
al. [LPS24] prove that one can efficiently extract a polynomial f(X) of degree
≤ n that is consistent with the commitment [C]1 and satisfies f(zi) = f̄i for all
i = 1, . . . , n+1. They show that when casting the KZG as an interactive protocol
between the committer and the verifier, where the evaluation point z is chosen
randomly, it is possible to extract f(X) by rewinding the committer (under the
ARSDH assumption). They call this security notion black-box extractability.

Second, they construct a compiler that transforms a polynomial interactive
oracle proof (IOP) [BFS20] into a public-coin interactive argument system. Re-
call that a polynomial IOP is an interactive information-theoretic proof system
where the prover sends polynomial oracles to the verifier, who replies with ran-
dom strings and (at the end) queries the oracles. Their compiler commits to each
polynomial oracle, opens the polynomials at points the polynomial IOP verifier
requires, and additionally opens each polynomial at a new random point. The
latter extra step guarantees, using black-box extractability, that the polynomials
can be extracted. By picking an efficient polynomial IOP, such as the one under-

3 We use bilinear pairings ê : G1×G2 → GT , where G1,G2,GT are additive groups of
prime order p. We denote by [1]ι a generator of Gι and [a]ι := a [1]ι for a ∈ Zp and
ι ∈ {1, 2, T}. We also follow the notation of Plonk [GWC19].

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 3

Table 1. Comparison of different versions of Plonk, secure under falsifiable assump-
tions. The number of bits are given for the BLS381-12 pairing e : G1 × G2 → GT .
Additionally, n denotes the number of gates, and ℓ is the number of elements in the
public input of the circuit whose satisfiability is being proven.

Argument Proof size (bits) Prover Verifier Assumptions

Plonk’s polynomial
IOP compiled
with [LPS24]

23|F|+ 30|G1|
(17408)

30n G1 Exp.,
O(n logn) F Ops.

46 Pair.,
24 G1 Exp.,

O(ℓ+ logn) F Ops.
ARSDH

SanPlonk (current work)
7|F|+ 9|G1|

(5248)
9n G1 Exp.,

O(n logn) F Ops.
2 Pair., 19 G1 Exp.,
O(ℓ+ logn) F Ops.

ARSDH

Plonk (current work)
6|F|+ 9|G1|

(4992)
9n G1 Exp.,

O(n logn) F Ops.
2 Pair., 18 G1 Exp.,
O(ℓ+ logn) F Ops.

ARSDH,
TriRSDH

lying Plonk or Marlin, one can construct a public-coin constant-size interactive
argument. Applying the Fiat-Shamir transform, [LPS24] achieves a constant-size
SNARK in the ROM under the falsifiable ARSDH assumption.

Unfortunately, after compiling the polynomial IOPs of (say) Plonk or Marlin
with [LPS24]’s approach, one obtains notably less efficient succinct interactive
arguments than their fully-optimized counterparts in [GWC19,CHM+20]. More
precisely, [LPS24]’s compiler introduces the following overheads, making Plonk’s
argument about 3.5 times longer (see Table 1).4

First, each commitment is opened at an additional random point, adding an
overhead of one evaluation of the polynomial and one opening proof per each
polynomial sent by the prover in the polynomial IOP. For example, in Plonk’s
polynomial IOP, the prover sends 7 polynomials, thus inducing an overhead of
7 field elements and 7 group elements in the compiled argument.

Second, [LPS24] proves security only when each polynomial is opened sepa-
rately; that is, the openings are not batched. Optimized argument constructions,
such as Plonk, aggressively batch the opening proofs. For instance, Plonk’s prover
sends only 2 opening proofs, while the prover resulting from [LPS24] sends an
opening proof for each polynomial evaluation in the underlying IOP, on top of
the openings for the extra evaluations introduced by the compiler.

[LPS23] observed that the linearization trick (a well-known batching tech-
nique, where the prover opens a linearized polynomial instead of the original
polynomial, see Section 3.2), used in Plonk and Marlin, is not secure in the AG-
MOS (Algebraic Group Model with Oblivious Sampling), a more realistic variant
of the algebraic group model (AGM, [FKL18]). This follows from the ability of
AGMOS (and real-world) adversaries to sample group elements without knowing
their discrete logarithm. As noted in [LPS23], Lemma 3.3 from Section 3.1 in
[GWC19], used in the soundness proof of Plonk, suffers from the same issue. It

4 Over time, Plonk’s description in [GWC19] has changed due to optimizations and
bug fixes. In the current paper, we refer to the variant of Plonk available at the
moment of writing (namely, the update of [GWC19] from 2024-02-23).

4 Helger Lipmaa , Roberto Parisella , and Janno Siim

holds in AGM but not in the AGMOS, thus necessitating a new security proof
for Plonk. [LPS23,LPS24] left open the problem of defining a different batching
technique that would result in a secure variant of the linearization trick. More-
over, the linearization trick is insecure; it is unclear if this affects the security of
real-life zk-SNARKs. Thus, it is unknown if (say) Plonk is secure in the ROM
under falsifiable assumptions.

Finally, in most applications, one casts the public-coin interactive argument
into a non-interactive one using the Fiat-Shamir heuristic. The resulting non-
interactive argument is secure in the ROM under the same security assumptions
as the initial interactive argument.

One can apply the Fiat-Shamir transform to a knowledge-sound interac-
tive argument, as in, say, [GWC19,CHM+20,RZ21,CFF+21,LSZ22,LPS24], or
to an interactive argument that satisfies a more stringent property like special-
soundness. Suppose a (2µ + 1)-move knowledge-sound, but not special-sound,
interactive proof has knowledge error ϵ. The Fiat-Shamir transformed argument
admits a probability of cheating of at most (Q+ 1)µ · ϵ. Attema et al. [AFK22]
provided examples showing that this bound is nearly optimal. Attema et al. also
showed that special-soundness results in a significantly smaller security loss: in
the case of special-sound proofs, the knowledge error is bounded by (Q + 1)ϵ.
As explained [AFK22], their result also applies to special-sound argument sys-
tems since one can view them as proof systems for an OR language where the
extractor either outputs a witness or a solution to a computational assumption.
Thus, computational special-soundness is the preferred notion for public-coin
interactive argument systems.

The interactive variants of Plonk [GWC19] and other KZG-based zk-SNARKs
like [CHM+20,RZ21,CFF+21,LSZ22] were proven to be knowledge-sound in the
AGM and in the AGMOS [FFR24], but it is not known if they are computation-
ally special-sound in the standard-model under falsifiable assumptions. Of such
zk-SNARKs, Plonk is most widely used due to its (“Plonkish”) arithmetization
that allows to compactify arithmetic circuits and thus significantly decreases the
prover’s computation. In addition, Plonk is updatable and has a small proof and
efficient verification. Thus, in the current paper, we concentrate on Plonk.

Our Results. We improve on [LPS24] by proving that various KZG-based
batch-opening protocols have computational special-soundness, assuming that
KZG satisfies evaluation-binding5 and computational special-soundness. As
shown in [LPS24], KZG satisfies the latter properties under the falsifiable
ARSDH assumption. Importantly, we prove that interactive Plonk has com-
putational special-soundness under falsifiable assumptions. On top of KZG’s
evaluation-binding and computational special-soundness, Plonk relies on a
new falsifiable assumption, n-TriRSDH. We prove a slightly modified variant
of Plonk is secure without relying on TriRSDH (see Table 1). The results

5 Recall that evaluation-binding means that it is computationally hard to find two
opening proofs and two different evaluations f̄1, f̄2 such that they will verify for the
same commitment [C]1 and evaluation point z.

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 5

of [AFK22,DG23,AFKR23] imply that (non-interactive) Plonk is knowledge-
sound, after applying the Fiat-Shamir transform, under the same falsifiable as-
sumptions. Moreover, applying the Fiat-Shamir transform is (optimally) tight.
This results in the first tight security proof of a constant-length zk-SNARK in
the ROM under falsifiable assumptions.

The specific protocols we focus on already open each commitment at a ran-
dom point. It allows us to avoid the inefficiency from [LPS24], where the PIOP
compiler added an additional random opening to each commitment.

Special-Sound Subroutines. We recall the notion of computational κ-special-
soundness for argument systems, where κ = (κ1, . . . , κµ). A κ-tree of transcripts
contains the prover’s messages in the nodes and the verifier’s challenges on the
edges. Each node at depth i−1 has exactly κi edges with distinct challenges, and
every path from the root to a leaf defines one accepting transcript. An argument
satisfies computational κ-special-soundness when there exists an efficient extrac-
tor that can extract a witness from a κ-tree of accepting transcripts produced
by an efficient adversary (except with negligible probability).

We show that the following three multi-round interactive arguments are com-
putationally κ-special-sound for some vector κ, assuming that KZG is compu-
tationally special-sound and evaluation-binding.

First, Batch: A standard 5-round interactive argument for batch-proving that
m KZG commitments open to some values at a joint (randomly sampled) open-
ing point z. Batch opens a linear combination of the KZG commitments. We
construct a tight security reduction (independent of m) to the computational
special-soundness of the KZG. Batch is an important example since it is used in
most KZG-based zk-SNARKs and one of the sources of inefficiency in [LPS24]
comes from not handling batching. It also showcases our proof techniques.

Second, SanLin: A 5-round interactive argument that employs the standard
linearization trick to prove that three KZG-committed polynomials a(X), b(X),
and c(X) satisfy a(X)b(X) = c(X). Lipmaa et al. [LPS23] showed that the basic
variant Lin of this argument (introduced in [CHM+20]) is insecure in the AG-
MOS, and thus insecure in the standard model. Slightly more involved variants
of Lin are used in well-known zk-SNARKs such as Marlin, Plonk, and Lunar. In
Lin, the prover opens polynomials a(X) and Λ(X) := a(z)b(X) − c(X) at z to
a(z) and 0. We show that Lin is not special-sound since the commitment to b(X)
can be obliviously sampled (without knowing its discrete logarithm). Intuitively,
the variant Λi(X) of Λ(X) in ith branch of the transcript tree depends on the
ith value zi of z. Thus, in the special-soundness proof, one has many different
transcripts corresponding to the openings of different polynomial commitments
[Λi]1, each at a single point zi. While one can use KZG’s special-soundness to
open the polynomial commitment [a]1 (which stays the same in all transcripts),
corresponding to a(X), one cannot open [Λi]1 due to our attack.

To correct this, we add a sanitization step, opening b(X) at a random point.
After that, one can use KZG’s special-soundness to extract b(X) and commence
with the special-soundness proof. Compared to the insecure non-sanitized ver-

6 Helger Lipmaa , Roberto Parisella , and Janno Siim

sion, the sanitized variant SanLin has communication only bigger by one field
element. We prove SanLin’s security under computational special-soundness and
evaluation-binding of KZG. While SanLin is only minimally more efficient than
known alternatives, it is a simple example of the novel sanitization technique
(we apply similar sanitization in other protocols). Moreover, it can be used in
any zk-SNARKs that use the linearization trick, thus resulting in more efficient,
secure variants under falsifiable assumptions.

Third, SanLinGen: A 7-round interactive argument that employs the lineariza-
tion trick to prove that KZG-committed polynomials ai(X) and bi(X), i ∈ [1,m],
satisfy

∑m
i=1 ai(X)bi(X) = 0. We show that this argument’s natural variant

LinGen is not computationally special-sound in the standard model. To correct
this, we add a sanitization step that shows that the prover knows how to open
a random linear combination of bi(X). Sanitization increases communication
by one field element, compared to the insecure non-sanitized version, resulting
in significant savings compared to known secure alternatives (see Section 3.3).
We give a tight reduction (again, independent of m) to computational special-
soundness and evaluation-binding of the KZG. SanLinGen is an example of how
sanitization introduces minimal overhead in real-world applications.

Special-Soundness of Plonk. We prove that Plonk [GWC19] has computa-
tional κ-special-soundness under falsifiable assumptions. To maximize efficiency,
Plonk relies heavily on the KZG polynomial commitment scheme’s batching ca-
pabilities, including a variant of the linearization trick. Due to the latter, it is not
obvious that Plonk is special-sound. We use the tools developed for Batch and
SanLinGen to extract polynomials corresponding to most of KZG commitments
made by Plonk’s prover. We then use the extracted polynomials to prove that
Plonk has computational special-soundness under falsifiable assumptions.

However, we face a significant obstacle compared to the AGM knowledge-
soundness proof in [GWC19]. Namely, an AGM extractor can extract the poly-
nomials corresponding to all KZG commitments made by Plonk’s prover, but
there are three polynomials that our standard-model special-soundness extrac-
tor cannot extract. For those familiar with Plonk, the corresponding polynomial
commitments are [tlo, tmid, thi]1; they are essentially a trifurcation of a single
polynomial commitment [t]1. Trifurcation results in an optimization: without
trifurcation, Plonk’s SRS would be three times longer, resulting in higher prover
costs. The inability to extract comes from the fact that one of the polynomials
that are opened during a Plonk run (r(X), for those familiar with Plonk) depends
on the evaluation point. That is, Plonk uses the linearization trick. When we try
to prove special-soundness, we encounter the same problem as in unsanitized
Lin.

We propose two different solutions to this challenge. We compare different
versions of Plonk in Table 1.

First, (interactive) sanitized Plonk. Using the sanitization techniques de-
veloped for SanLin and SanLinGen, we propose SanPlonk, which differs from
Plonk by batch opening the commitments [tlo]1, [tmid]1, and [thi]1. The ver-

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 7

ifier sends an additional random challenge δ and the prover reveals t̄z =
tlo(z)+ δtmid(z)+ δ2thi(z), where z is an evaluation point used in Plonk and (say)
tlo(X) is a polynomial that was committed to in [tlo]1. We show this modification
is sufficient to extract tlo(X), tmid(X), and thi(X). Thus, we can extract all poly-
nomials that are extracted in a typical AGM proof of Plonk and can commence
with a special-soundness proof, assuming that KZG is evaluation-binding and
has special-soundness. Sanitization adds minimal overhead in real protocols. Af-
ter applying Fiat-Shamir, SanPlonk’s argument has only one more field element
compared to Plonk. See Table 1 for a comparison.

Second, (interactive) Plonk under a novel assumption. Adding an extra ele-
ment to the argument of Plonk is non-ideal; in particular, it would break many
existing implementations. We showed that sanitization is necessary for Lin and
LinGen by demonstrating an attack against their non-sanitized variants. It is
natural to expect that Plonk as a much more complicated protocol cannot have
special-soundness either. Perhaps surprisingly, this is not the case. We prove
that Plonk has computationally special-soundness under an additional falsifiable
assumption n-TriRSDH (Trifurcation Rational SDH, where trifurcation refers to
the division of a particular polynomial commitment to [tlo, tmid, thi]1).

More precisely, instead of opening three polynomial commitments [tlo, tmid,
thi]1, we define a rational function t(X) that we can open. We show that if t(X) is
a polynomial, then the prover was honest and thus, Plonk has computationally
special-soundness. On the other hand, if t(X) is not a polynomial, then we
construct a reduction to the TriRSDH assumption.

Now, n-TriRSDH is a novel assumption, essentially stating that Plonk’s op-
timization trick (trifurcation) retains the security. It states that it should be
difficult to output a tuple of evaluation points zi together with opening proofs
[χi]1, group elements [tlo, tmid, thi]1, and a rational, non-polynomial function
t(X), such that for every i, [χi]1 is an accepting proof that [tlo+zni tmid+z2ni tlo]1
opens to t(zi) at zi. Here, n is the length of the SRS while the number of eval-
uation points and the numerator and denominator of t(X) must satisfy certain
additional conditions, see Definition 2. While TriRSDH is non-standard, it is
falsifiable. Moreover, we prove that TriRSDH is secure in the AGMOS [LPS23],
which is probably the most realistic variant of AGM. It also minimally depends
on the structure of Plonk, only ascertaining that it is “ok” to do the trifurca-
tion. TriRSDH is definitely not a tautological assumption for Plonk: in fact, the
reduction to TriRSDH is the most involved reduction in the current paper.

The combined analysis of Plonk and SanPlonk is involved, taking about ten
pages of the current paper. (If SanPlonk were omitted, the analysis would shorten
slightly.) Part of the reason comes from the fact that we formalized every step
of the proof. Given Plonk’s importance in practice, giving independent (and
different, since we prove special-soundness) and more thorough proofs is crucial.

Fiat-Shamir. We proved that interactive Plonk and SanPlonk have computa-
tional κ-special-soundness (for a slightly different κ) under falsifiable assump-
tions. One can apply the Fiat-Shamir transformation to obtain a zk-SNARK
that is knowledge-sound in the ROM under the same assumptions. The tight-

8 Helger Lipmaa , Roberto Parisella , and Janno Siim

ness of Fiat-Shamir when applied to computationally κ-special-sound arguments
was analyzed in [DG23,AFKR23]. The tightness of Fiat-Shamir is significantly
better for special-sound interactive arguments than for knowledge-sound inter-
active arguments. Notably, this results in tighter security in the ROM, compared
to previous proofs, which had less tight security and relied on both ROM and
AGM/AGMOS. See Appendix B.5 for a brief discussion.

Zero-Knowledge. Up to now, we ignored the issue of zero knowledge. Since sani-
tization means batch-opening certain polynomials at one extra point, one some-
times has to add another randomizer to one of these polynomials to obtain zero
knowledge. Since the needed change is usually standard (instead, the major in-
novation of the current work is in the analysis of special soundness), we ignore
the issue everywhere except for SanPlonk. SanPlonk’s description includes a new
randomizer. In Appendix D, we then prove that SanPlonk has zero knowledge.

2 Preliminaries

Let λ denote the security parameter. f(λ) ≈λ 0 means that f is a negligible
function. PPT (resp. DPT) stands for probabilistic (resp. deterministic) polyno-
mial time. We denote the concatenation of vectors u and v as u∥v. F is a finite
field of prime order p. F[X] is the polynomial ring in variable X over the field
F and F≤n[X] ⊂ F[X] is the set of polynomials of at most degree n. We denote
[a, b] := {a, a + 1, . . . , b}, where a ≤ b are integers. Our notation is inspired by
Plonk [GWC19] (for example, we denote polynomials by using SansSerif), but
we do not follow it universally.

Bilinear Groups. A bilinear group generator Pgen(1λ) returns p = (p,G1,G2,
GT , ê, [1]1, [1]2), where G1, G2, and GT are additive cyclic (thus, abelian) groups
of prime order p, ê : G1 × G2 → GT is a non-degenerate efficiently computable
bilinear pairing, and [1]ι is a fixed generator of Gι. While [1]ι is part of p, we
often give it as an explicit input to different algorithms for clarity. The bilinear
pairing is of Type-3, that is, there is no efficient isomorphism between G1 and
G2. We use the standard bracket notation, that is, for ι ∈ {1, 2, T} and a ∈ Zp,
we write [a]ι to denote a[1]ι. We denote ê([a]1, [b]2) by [a]1 • [b]2 and assume
[1]T = [1]1 • [1]2. Thus, [a]1 • [b]2 = [ab]T for any a, b ∈ F, where F = Zp.

We recall the following falsifiable assumption [LPS24].

Definition 1. The (n+1)-ARSDH (Adaptive Rational Strong Diffie-Hellman)
assumption holds for Pgen in G1 if for any PPT A, AdvarsdhPgen,n,G1,A(λ) :=

Pr

 S ⊂ F ∧ |S| = n+ 1 ∧ [g]1 ̸= [0]1 ∧
[g]1 • [1]2 = [φ]1 • [ZS(x)]2

p← Pgen(1λ);x←$F;
ck← ([(xi)ni=1]1, [1, x]2);
(S, [g, φ]1)← A(ck)

 ≈λ 0 ,

where ZS(X) :=
∏

s∈S(X − s).

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 9

2.1 Polynomial Commitment Schemes

In a (univariate) polynomial commitment scheme (PCS, [KZG10]), the prover
commits to a polynomial f ∈ F≤n[X] and later opens it to f(z) for z ∈ F chosen by
the verifier. A non-interactive polynomial commitment scheme [KZG10] consists
of the following algorithms:
Setup Pgen(1λ) 7→ p: Given 1λ, return system parameters p.
Commitment key generation KGen(p, n) 7→ (ck, tk): Given a system param-

eter p and an upperbound n on the polynomial degree, return (ck, tk), where
ck is the commitment key and tk is the trapdoor. We assume ck implicitly
contains p. In the current paper, we do not use the trapdoor.

Commitment Com(ck, f) 7→ C: Given a commitment key ck and a polynomial
f ∈ F≤n[X], return a commitment C to f.

Opening Open(ck, C, z, f) 7→ (f̄ , π): Given a commitment key ck, a commit-
ment C, an evaluation point z ∈ F, and a polynomial f ∈ F≤n[X], return
(f̄ , π), where f̄ ← f(z) and π is an evaluation proof.

Verification V(ck, C, z, f̄ , π) 7→ {0, 1}: Given a commitment key ck, a commit-
ment C, an evaluation point z, a purported evaluation f̄ =? f(z), and an
evaluation proof π, return 1 (accept) or 0 (reject).

The KZG commitment scheme is a well-known non-interactive PCS [KZG10];
another such scheme is PST (multilinear KZG) [PST13]. Many PCSs have either
an interactive opening or verification phase [BBHR18,BBB+18,BFS20].

A non-interactive PCS PC is complete, if for any λ, p ← Pgen(1λ), n ∈
poly(λ), z ∈ F, f ∈ F≤n[X],

Pr

[
V(ck, C, z, f̄ , π) = 1

(ck, tk)← KGen(p, n);C ← Com(ck, f);
(f̄ , π)← Open(ck, C, z, f)

]
= 1.

A non-interactive PCS PC is binding, if for any PPT A, AdvbindPgen,PC,n,A(λ) :=

Pr

[
C = Com(ck, f) = Com(ck, g)∧
f ̸= g ∧ deg(f) ≤ n, deg(g) ≤ n

p← Pgen(1λ); (ck, tk)← KGen(p, n);
(C, f, g)← A(ck)

]
≈λ 0.

A PCS is evaluation-binding [KZG10] if it is hard to open the same evaluation
point to different evaluations: PC is evaluation-binding for Pgen, if for any n ∈
poly(λ), and PPT adversary A, AdvevbPgen,PC,n,A(λ) :=

Pr

[
V(ck, C, z, f̄ , π) = 1∧
V(ck, C, z, f̄ ′, π′) = 1 ∧ f̄ ̸= f̄ ′

p← Pgen(1λ); (ck, tk)← KGen(p, n);
(C, z, f̄ , π, f̄ ′, π′)← A(ck)

]
≈λ 0 .

Evaluation-binding implies binding. Really, suppose Abind succeeded in breaking
binding, outputting ([c]1, f(X), f ′(X)) such that c = f(x) = f ′(x) and f(X) ̸=
f ′(X). Then, we can find a point z, such that f(z) ̸= f ′(z), open [c]1 at f(α),
and f ′(α), and break evaluation-binding.

We rely on the following terminology from [LPS24]. We call tr = (C, z, f̄ , π)
a transcript of the PCS. We say that a commitment key ck and a transcript

10 Helger Lipmaa , Roberto Parisella , and Janno Siim

tr is accepting when V(ck, tr) = 1. For any n ≥ 1 and any commitment key ck
outputted by KGen(p, n), we define the following relations.

Rck := {(C, f) : C = PC.Com(ck, f) ∧ deg(f) ≤ n} ,

Rck,tr := {(C, f) : (C, f) ∈ Rck ∧ ∀j ∈ [0, n].f(zj) = f̄j} ,
(1)

where tr = (tr0, . . . , trn) contains n+ 1 accepting transcripts trj = (C, zj , f̄j , πj)
such that C is the same in all transcripts, but zj-s are pairwise distinct.

Let n ∈ poly(λ) with n ≥ 1. A non-interactive polynomial commitment
scheme PC is computationally (n+1)-special-sound for Pgen, if there exists a DPT
extractor Extss, such that for any PPT adversary Ass, Adv

ss
Pgen,PC,Extss,n,Ass

(λ) :=

Pr


tr = (trj)

n
j=0 ∧

∀j ∈ [0, n].

(
trj = (C, zj , f̄j , πj)
∧V(ck, trj) = 1

)
∧ (∀i ̸= j.zi ̸= zj) ∧ (C, f) /∈ Rck,tr

p← Pgen(1λ);
(ck, tk)← KGen(p, n);
tr← Ass(ck);
f ← Extss(ck, tr)

 ≈λ 0 .

The KZG [KZG10] polynomial commitment scheme is defined as follows:
KZG.Pgen(λ): return p← Pgen(1λ).
KZG.KGen(p, n): tk = x←$Z∗

p; ck← (p, [(xi)ni=0]1, [1, x]2); return (ck, tk).

KZG.Com(ck, f): return C ← [f(x)]1 =
∑n

j=0 fj [x
j]1.

KZG.Open(ck, C, z, f): f̄ ← f(z); φ(X)← (f(X)−f̄)/(X−z); π ← [φ(x)]1; return
(f̄ , π).

KZG.V(ck, C, z, f̄ , π): Return 1 iff (C − f̄ [1]1) • [1]2 = π • [x− z]2.
KZG is evaluation-binding under the n-SDH assumption [KZG10] and

non-black-box extractable in the AGM [FKL18] under the PDL assump-
tion [Lip12,CHM+20] and in AGMOS [LPS23] under the PDL and TOFR as-
sumptions. All of these are falsifiable assumptions. We refer to the respective
papers for the definition of the assumptions. Lipmaa et al. [LPS24] proved the
following result.

Theorem 1. If the (n+1)-ARSDH assumption holds, then KZG for degree ≤ n
polynomials is computationally (n+ 1)-special-sound: There exists a DPT KZG
special-soundness extractor Extkzgss , such that for any PPT Ass, there exists a
PPT B, such that Advss

Pgen,PC,Extkzgss ,n,Ass
(λ) ≤ AdvarsdhPgen,n,G1,B(λ).

We say that a non-interactive polynomial commitment scheme is triply ho-
momorphic, if: if (Cj , z, f̄j , πj) is an accepting transcript for every j, then so is
(
∑

sjCj , z,
∑

sj f̄j ,
∑

sjπj) for any sj . Clearly, KZG is triply homomorphic.

2.2 Interactive Arguments

Let R ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ be a ternary relation. R contains triples
(srs,x,w) ∈ R where srs is a public common reference string, x is a public
statement, and w is a private witness. We denote the set of valid witnesses for
(srs,x) by R(srs,x) = {w : (srs,x,w) ∈ R}. A statement that has a witness

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 11

is said to be true. We denote the set of true statements by LR = {x : ∃w, srs
s.t. (srs,x,w) ∈ R}. The relation R is an NP-relation if the validity of a witness
w can be verified in time polynomial in |x|+ |srs|. From now on, we assume all
relations to be NP-relations. Let Pgen(1λ) generate system parameters p that
are available to all algorithms. We do not always explicitly write p as an input.

An interactive argument Π = (KGen,P,V) for relation R is an interactive
protocol between two probabilistic machines, a prover P, and a polynomial time
verifier V. The key generator KGen generates a common reference string srs at
the beginning of the protocol. Both P and V take as public input srs and a
statement x and, additionally, P takes as private input a witness w ∈ R(srs,x).
The verifier V either accepts or rejects. Accordingly, we say the transcript (all
messages exchanged in the protocol execution) is accepting or rejecting.

Let κ = (κ1, . . . , κµ) ∈ Nµ. A κ-tree of transcripts for a (2µ+1)-move public-
coin interactive argument Π = (KGen,P,V) is a set of K =

∏µ
i=1 κi transcripts

arranged in the following tree structure. The nodes in this tree correspond to
the prover’s messages and the edges to the verifier’s challenges. Every node at
depth i has precisely κi children corresponding to κi pairwise distinct challenges.
Every transcript corresponds to exactly one path from the root node to a leaf.

Let κ = (κ1, . . . , κµ),N = (N1, . . . , Nµ) ∈ Nµ. A (2µ + 1)-move public-coin
interactive argument Π = (KGen,P,V) for relation R, where V samples the
ith challenge from a set of cardinality Ni ≥ κi for 1 ≤ i ≤ µ, is κ-out-of-N
special-sound if there exists a DPT extractor Extss such that for any PPT Ass,
AdvssPgen,Π,Extss,κ,A(λ) :=

Pr

 T is a κ-tree of
accepting transcripts
∧ (srs,x,w) /∈ R

p← Pgen(1λ); (srs, tk)← KGen(p);
(x, T)← Ass(srs);w← Extss(srs,x, T)

 ≈λ 0 .

In most of the current paper, N1 = · · · = Nµ = |F|. Then, we say for
simplicity that Π has computational κ-special-soundness.

3 Special Soundness of KZG Batching Protocols

It is a standard practice to prove knowledge-soundness of KZG-based interactive
arguments in idealized group models (AGM, AGMOS). Stretching the techniques
of [LPS24], we prove the computational special-soundness of such arguments
under falsifiable assumptions. The earlier (easier) proofs demonstrate our proof
techniques. We show that several known arguments are not special-sound; then,
we apply a novel technique of sanitization to obtain special-soundness.

3.1 Special-Soundness of Batch-KZG

Assume the usual setting of KZG with trapdoor x and degree bound n. Con-
sider the standard interactive protocol Batch from Fig. 1, where the prover
has committed to m polynomials and then engages in a single batch proof

12 Helger Lipmaa , Roberto Parisella , and Janno Siim

KGen(p): x←$F∗; return srs← ([(xs)ns=0]1, [1, x]2) and tdsrs ← x;

P(srs,w = (fs(X))ms=1): for s ∈ [1,m], [fs]1 ← [fs(x)]1; return [(fs)
m
s=1]1;

V: return z←$F; // Evaluation point

P: for s ∈ [1,m], f̄s ← fs(z); return (f̄s)
m
s=1;

V: return v←$F; // Batch coefficient

P: h(X)←
(∑m

s=1 v
s−1(fs(X)− f̄s)

)
/(X − z); return [h]1 ← [h(X)]1;

V: check [
∑m

s=1 v
s−1(fs − f̄s)]1 • [1]2 = [h]1 • [x− z]2;

Fig. 1. The protocol Batch.

TEbatch(ck, T)

Parse T = (trij)i∈[1,n+1],j∈[1,m]; // trij = ([(fs)
m
s=1]1, zi, (f̄si)

m
s=1, vij , [hij]1)

[h′
i1, . . . , h

′
im]⊺1 ← V −1

i [hi1, . . . , him]⊺1; (∗) // See V i in Eq. (2)

for j ∈ [1,m] do
for i ∈ [1, n+ 1] do k.tr′ij ← ([fj]1, zi, f̄ji, [h

′
ij]1); endfor (∗∗)

k.tr′j ← (k.tr′1j , . . . , k.tr
′
n+1,j); endfor

return (k.tr′j)
m
j=1;

Fig. 2. The subroutine TEbatch.

that opens all m polynomials simultaneously at the same point z. Here, [fs]1
are commitments to some polynomials, z is the common evaluation point, f̄s
are purported evaluations of [fs]1 at z, and [h]1 is the batched opening of
all m commitments. Note that Batch’s verifier essentially checks that k.tr =
(
∑m

s=1 v
s−1[fs]1, z,

∑m
s=1 v

s−1f̄s, [h]1) is an accepting KZG transcript.
In Lemma 1, we show how to extract from a transcript tree a tuple of ad-

missible transcripts. In Theorem 2, we use the constructed extractor to establish
Batch’s special-soundness. Thus, Batch can be used without modification when
one moves away from the proofs in idealized group models. This is important
since Batch and its variants are ubiquitous in modern updatable zk-SNARKs
like Plonk [GWC19], Marlin [CHM+20], and others [CFF+21,RZ21,LSZ22].

Lemma 1. Let T = (trij) be an (n+1,m)-tree of Batch’s accepting transcripts,
where trij are as in Fig. 2. The DPT algorithm TEbatch(ck, T) in Fig. 2 computes
a tuple of accepting KZG transcripts (k.tr′j)

m
j=1, such that k.tr′ij = ([fj]1, zi, . . .),

with mutually different zi for i ∈ [1, n+ 1].

Proof. Let T be the given accepting tree of transcripts and

V i =

 1 vi1 v2
i1 ··· vm−1

i1

1 vi2 v2
i2 ··· vm−1

i2...
...

...
...

...
1 vim v2

im ··· vm−1
im

 (2)

be a Vandermonde matrix. Given T ’s structure, zi-s are distinct and vij-s are
distinct for each zi, rendering V i non-singular for every i ∈ [1, n+ 1].

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 13

Extbatchss (ck, T)

(k.tr′s)
m
s=1 ← TEbatch(ck, T);

for s ∈ [1,m] do

f∗s (X)← Extkzgss (ck, k.tr′s); endfor
return (f∗s (X))ms=1;

Bkzg
ss (ck)

T ← Abatch
ss (ck);

(k.tr′s)
m
s=1 ← TEbatch(ck, T);

for s ∈ [1,m] do

f∗s (X)← Extkzgss (ck, k.tr′s);
if ([fs]1, f

∗
s (X)) ̸∈ Rck,k.tr′s then

return k.tr′s;fi endfor
return ⊥;

Fig. 3. The κ-special-soundness extractor Extbatchss and the KZG (n + 1)-special-
soundness adversary Bkzg

ss in Theorem 2.

Define [h′
i1, . . . , h

′
im]⊺1 as in (*) in Fig. 2. As noted above, by the definition

of Batch (see Fig. 1), for any i and j, since trij is accepted by the Batch verifier,
k.trij := ([φij]1, zi, Φij , [hij]1) is accepted by the KZG verifier, where φij :=∑m

s=1 v
s−1
ij fs, Φij :=

∑m
s=1 v

s−1
ij f̄si, and hij =

∑m
s=1 v

s−1
ij h′

is. But then[
f1...
fm

]
1

= V −1
i

[φi1...
φim

]
1
,

(
f̄i1...
f̄im

)
= V −1

i

(
Φi1...
Φim

)
,

[
h′
i1...

h′
im

]
1

:= V −1
i

[
hi1...
him

]
1

.

KZG’s triple homomorphism ensures k.tr′ij (see (**) in Fig. 2) is an accept-
ing KZG transcript. Thus, TEbatch returns accepting KZG transcripts k.tr′j =

(k.tr′1j , . . . , k.tr
′
n+1,j) for j ∈ [1,m], of the claimed form. ⊓⊔

Theorem 2. Let n,m ∈ poly(λ) and κ = (n + 1,m). If KZG is computational
(n+ 1)-special-sound, then Batch is computational κ-special-sound.

Proof. Let Extkzgss be the promised (n + 1)-special-soundness extractor of KZG
and let Abatch

ss be any Batch κ-special-soundness adversary. In Fig. 3, we depict a
κ-special-soundness extractor Extbatchss for Batch and an (n+1)-special-soundness
adversary Bkzgss for KZG. Here, Extbatchss has an oracle access to Extkzgss and Bkzgss

has an oracle access to Abatch
ss and Extkzgss .

Extbatchss inputs ck and a κ-tree T = (trij)i∈[1,n+1],j∈[1,m] of accepting Batch

transcripts, where trij is defined as in Fig. 2. Extbatchss calls the (determinis-
tic) algorithm TEbatch (see Fig. 2) to compute n + 1 valid transcripts k.tr′ij =

([fj]1, zi, . . .) for each polynomial that has to be extracted. Then, Extbatchss calls

m times the (n+ 1)-special-soundness extractor Extkzgss to compute the witness.
Let us bound the advantage of Batch’s adversary Abatch

ss against the extractor
Extbatchss . Assume that T is an (n+1,m)-tree of Batch transcripts, each accepted
by the Batch verifier. Let bad be the event that for at least one s, ([fs]1, f

∗
s (X)) /∈

Rck,k.tr′s . If bad does not occur, then Extbatchss has computed a valid witness for
Batch. Since zi are all distinct, Bkzgss wins the (n + 1)-special-soundness game
if and only if bad happened. Thus, Advss

Pgen,KZG,Extkzgss ,n+1,Bkzg
ss
(λ) = Pr[bad] =

AdvssPgen,Batch,Extbatchss ,n+1,m,Abatch
ss

(λ). This concludes the proof. ⊓⊔

14 Helger Lipmaa , Roberto Parisella , and Janno Siim

Here, as in the rest of the paper, we exploit that the special-soundness ex-
tractor for KZG, defined in [LPS24], is deterministic. Thus, the adversary Bkzgss

does not have to guess for which s the event bad happened. As a result, all our
reductions to KZG’s (n+1)-special-soundness are tight, with a loss independent
from the number m of polynomials whose openings are batched together.

3.2 Lin: Common Linearization Trick

In many zk-SNARKs, one needs to test quadratic equations of type f(X) :=
a(X)b(X)− c(X) = 0, where a(X), b(X), and c(X) are committed polynomials
of low degree. A straightforward way of testing this is by opening a(X), b(X),
and c(X) at a random point z and checking that f(z) = 0. Clearly, z is a root
of non-zero f with probability at most deg(f)/|F|. Since f is also a low-degree
polynomial, f(X) ≡ 0 with an overwhelming probability when deg(f) ≪ |F|.
When using the KZG commitment scheme, the prover in the straightforward
protocol has to send three field and three group elements. One can use Batch to
batch the openings, resulting in three field elements and one group element.

Alternatively, one can batch-open two polynomials, a(X) and Λ(X) :=
a(z)b(X) − c(X) to a(z) and 0 at a random point z. The resulting protocol Lin
(see Fig. 4) is sometimes known as the linearization trick. A variant of Lin was
first used in [CHM+20]; variants of Lin occurs in almost all modern KZG-based
zk-SNARKs. Notably, in Lin, the opening consists of a single field element and
(after using batching) a single group element. See Table 3 for comparison.

Lin is well-known to be knowledge-sound in the AGM. However, as shown
in [LPS23], Lin is not knowledge-sound in the plain model.6 Crucially, the adver-
sary can use oblivious sampling, that is, creating a group element without know-
ing its discrete logarithm. We give a variation of their attack in Appendix A.2.

Since Lin is widely used, making it special-sound in plain model with the
smallest possible overhead is an important independent question. While the win
cannot be large (the difference of Lin and batch-opening is only two field ele-
ments, see Table 3), any gain of efficiency is important. Moreover, Lin is a good
toy example of our new proof technique that we will use in subsequent protocols.

We modify Lin to become special-sound in the plain model. The resulting
protocol SanLin (see Fig. 4) adds sanitization, asking the prover to batch-open
the polynomial b(X) together with a(X) and Λ(X). The latter convinces the
verifier that the prover can open a(X) and b(X). Since c(X) = a(X)b(X), the
prover also knows how to open c(X). Sanitization increases the communication
by just one field element, resulting in a smaller cost than batch-opening [a, b, c]1
(see Table 3). Clearly, the SanLin verifier checks that ([a+v(āb−c)+v2b]1, z, ā+
v2b̄, [h]1) is an accepting KZG transcript.

Theorem 3. Let n ∈ poly(λ) and κ = (2n + 1, 3). If KZG for degree ≤ n
polynomials has computational (n+1)-special-soundness and evaluation-binding,
then SanLin has computational κ-special-soundness.

6 As [LPS23] pointed out, even though there is an attack against Lin, the zk-SNARKs
which use Lin (or some variation of it) may still be secure.

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 15

KGen: x←$F∗; return srs← ([(xs)ns=0]1, [1, x]2) and tdsrs ← x;

P(srs,w = (a(X), b(X), c(X))): [a, b, c]1 ← [a(x), b(x), c(x)]1; return [a, b, c]1;
V: return z←$F;
P: ā← a(z); b̄← b(z); Λ(X)← āb(X)− c(X); return ā , b̄ ;
V: return v←$F;
P: [h]1 ← [(a(x) + vΛ(x)+v2b(X) − (ā+v2b̄))/(x− z)]1; return [h]1;

V: [Λ]1 ← [āb− c]1; check [a+ vΛ+v2b − (ā+v2b̄)]1 • [1]2 = [h]1 • [x− z]2;

Fig. 4. Lin (without highlighted parts) and SanLin (with highlighted parts).

KGen: x←$F∗; return srs← ([(xs)ns=0]1, [1, x]2) and tdsrs ← x;

P(srs,w = (as(X), bs(X))ms=1):
for s ∈ [1,m]: [as, bs]1 ← [as(x), bs(x)]1; return [(as, bs)

m
s=1]1;

V: return z←$F;
P: for s ∈ [1,m]: ās ← as(z); return (ās)

m
s=1;

V: return γ ←$F;
P: return b̄←

∑m
s=1 γ

s−1bs(z);
V: return β←$F;
P: H(X)←

∑m
s=1 β

s−1(as(X)− ās) + βm ·
∑m

s=1 āsbs(X) + βm+1·
(∑m

s=1 γ
s−1bs(X)− b̄

)
;

h(X)← H(X)/(X − z); return [h]1 ← [h(x)]1;
V: check[∑m

s=1 β
s−1(as − ās) + βm ∑m

s=1 āsbs+βm+1
(∑m

s=1 γ
s−1bs − b̄

)]
1
• [1]2 = [h]1 • [x− z]2;

Fig. 5. LinGen (without highlighted parts) and SanLinGen (with highlighted parts).

Compared to Theorem 2, Theorem 3 additionally relies on KZG’s evaluation-
binding. We need evaluation-binding to argue that openings of different polyno-
mial commitments are consistent with each other. Note that KZG is evaluation-
binding under the SDH assumption which follows from the ARSDH assumption.
We postpone the proof to Appendix A.4.

3.3 SanLinGen: Generalized SanLin

Consider LinGen, a natural generalization of Lin, where the prover aims to show
that

∑m
s=1 as(X)bs(X) = 0, where as(X) and bs(X) are 2m committed poly-

nomials. Similarly to Lin, one can use a linearization trick to obtain a simple
protocol LinGen for this task (see Fig. 5). However, since LinGen is a general-
ization of Lin, unsurprisingly LinGen is not extractable in the AGMOS or the
standard model. For sake of compleness, we present an attack in Appendix A.3.

As with Lin, we overcome this issue by employing sanitization, which here
means a batched opening of all polynomials bs(X) at a random point. Crucially,
we are not interested in the actual evaluations bs(z). Thus, it suffices for the
prover to send b̄←

∑m
s=1 γ

s−1bs(z), for a batching coefficient γ, adding a single

16 Helger Lipmaa , Roberto Parisella , and Janno Siim

Table 2. Comparison of different protocols for the relation RLinGen
ck . KS stands for the

knowledge-soundness and SS for the special-soundness. The number of bits are given
for the BLS381-12 pairing.

Method |π| (bits) KS in AGM KS and SS in plain-model

Opening as, bs separately 2m|F|+ 2m|Gs| (1280m) ✓ ✓

Batch-opening as, bs 2m|F|+ |Gs| (512m+ 384) ✓ ✓

LinGen m|F|+ |Gs| (256m+ 384) ✓ ✗

SanLinGen (the current paper) (m+ 1)|F|+ |Gs| (256m+ 640) ✓ ✓

field element to LinGen’s communication. We depict SanLinGen in Fig. 5 and
compare it to more simplistic protocols in Table 2. SanLinGen’s computational
special-soundness proof (see Appendix A.5) is inspired by the proof of SanLin.

Theorem 4. Let n,m ∈ poly(λ) and κ = (2n+1,m,m+2). If KZG for degree
≤ n polynomials has computational (n + 1)-special-soundness and evaluation-
binding, then SanLinGen has computational κ-special-soundness.

4 Special-Soundness of Plonk

In this section, we prove that interactive Plonk [GWC19] has special-soundness,
assuming that KZG is evaluation-binding and specially sound and a new, falsi-
fiable assumption TriRSDH holds. Recall that KZG is evaluation-binding and
specially sound under the ARSDH assumption. In addition, we prove that a san-
itized variant SanPlonk (with one field element of extra communication) of Plonk
has special-soundness without relying on TriRSDH. By applying the Fiat-Shamir
transform to either of the two constructions, one can obtain a zk-SNARKs secure
in the ROM under the same assumptions.

4.1 Preliminaries For Plonk

We recall Plonk [GWC19], a popular zk-SNARK for proving satisfiability of
arbitrary arithmetic circuits. We follow the notation of [GWC19] closely.

Let H be a multiplicative subgroup of F containing the nth roots of unity. Let
ω be a primitive nth root of unity and a generator ofH,H = {1, ω, . . . , ωn−1}. Let
ZH(X) := Xn−1 be the vanishing polynomial on H. For i ∈ [1, n], Li(X) denotes
the ith Lagrange polynomial on H. Namely, Li(X) is the unique polynomial of
at most degree n− 1 such that Li(ω

i) = 1 and Li(ω
j) = 0 for all j ∈ [1, n] \ {i}.

We assume that the number of constraints is upper bounded by n.
Due to the lack of the space, we describe the polynomials (like qM(X))

that define a specific circuit in Appendix B.1. (They are exactly the same as
in [GWC19].)

The SNARK proof relation. We use the notation qXi := qX(ω
i) for the

polynomials defined above. Define P = {qM(X), qL(X), qR(X), qO(X), qC(X),

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 17

Sσ1(X),Sσ2(X),Sσ3(X)}, where the polynomials satisfy the above conditions.
Thus, P is the set of polynomials that defines a given circuit. Given ℓ ≤ n and
P, we wish to prove statements of knowledge for the relation RP ⊂ Fℓ × F3n−ℓ

containing all pairs x = (wi)
ℓ
i=1,w = (wi)

3n
i=ℓ+1 such that

1. For i ∈ [1, ℓ]: qMi = qRi = qOi = qCi = 0 and qLi = −1, which guarantees

qMiwiwn+i + qLiwi + qRiwn+i + qOiw2n+i + qCi = −wi . (3)

We see later that this is needed to force the prover to use the correct x.
2. For all i ∈ [ℓ+ 1, n]:

qMiwiwn+i + qLiwi + qRiwn+i + qOiw2n+i + qCi = 0 , (4)

3. For all i ∈ [1, 3n]:
wi = wσ(i) . (5)

We refer to [GWC19] for the explanation how these constraints are related to
arithmetic circuits.

4.2 Plonk And SanPlonk

We present Plonk and its sanitized variant SanPlonk. While we describe their
interactive versions, to save space, we will omit the adjective “interactive”. We
describe them in parallel, highlighting SanPlonk’s additional sanitization steps.
Compared to Plonk, the SanPlonk batch opens [tlo(z)]1, [tmid(z)]1, and [thi(z)]1
(three group elements sent in Plonk), applying the sanitization technique from
Section 3.2. This results in an interactive argument with two additional rounds
and one more field element sent by the prover, compared to Plonk. We prove the
computational special-soundness of Plonk assuming that (1) KZG is evaluation-
binding and special sound, and (2) a new falsifiable assumption TriRSDH holds.
We prove the computational special-soundness of SanPlonk solely under (1).

Common preprocessed input: n, [x, . . . , xn+5]1, (qMi, qLi, qRi, qOi, qCi)
n
i=1, σ∗,

qM(X) =
∑n

i=1 qMiLi(X), qL(X) =
∑n

i=1 qLiLi(X), qR(X) =
∑n

i=1 qRi · Li(X),
qO(X) =

∑n
i=1 qOiLi(X), qC(X) =

∑n
i=1 qCiLi(X), Sσ1(X) =

∑n
i=1 σ

∗(i) ·
Li(X), Sσ2(X) =

∑n
i=1 σ

∗(n+ i)Li(X), Sσ3(X) =
∑n

i=1 σ
∗(2n+ i)Li(X).

Verifier preprocessed input: [qM]1 := qM(x) · [1]1, [qL]1 := qL(x) · [1]1, [qR]1 :=
qR(x) · [1]1, [qO]1 := qO(x) · [1]1, [qC]1 := qC(x) · [1]1, [sσ1]1 := Sσ1(x) · [1]1 ,
[sσ2]1 := Sσ2(x) · [1]1, [sσ3]1 := Sσ3(x) · [1]1, x · [1]2,

Public input: (ℓ, (wi)
ℓ
i=1).

First round. On input (wi)
3n
i=1, the prover does the following. Sample (b1, . . . ,

b9)←$F. Compute wire polynomials a(X)←
∑n

i=1 wiLi(X)+(b1X+b2)ZH(X),
b(X) ←

∑n
i=1 wn+iLi(X) + (b3X + b4)ZH(X), c(X) ←

∑n
i=1 w2n+i · Li(X) +

(b5X + b6)ZH(X). Send [a(x), b(x), c(x)]1 to V. V replies with β, γ←$F.

18 Helger Lipmaa , Roberto Parisella , and Janno Siim

Second round. The prover computes polynomial z(X) ← L1(X) +∑n−1
i=1

(∏i
j=1

(wj+βωj+γ)(wn+j+βk1ω
j+γ)(w2n+j+βk2ω

j+γ)
(wj+σ∗(j)ωj+γ)(wn+j+σ∗(n+j)ωj+γ)(w2n+j+σ∗(2n+j)ωj+γ)

)
Li+1(X) +

(b7X
2 + b8X + b9)ZH(X) and sends [z(x)]1 to V. V replies with α←$F.

Third round. The prover does the following. Sample α← F. Compute

F0(X) := a(X)b(X)qM(X) + a(X)qL(X) + b(X)qR(X) + c(X)qO(X) + PI(X) + qC(X)

F1(X) := (a(X) + βX + γ) (b(X) + βk1X + γ) (c(X) + βk2X + γ) z(X)

− (a(X) + βSσ1(X) + γ)(b(X) + βSσ2(X) + γ)(c(X) + βSσ3(X) + γ)z(Xω)

F2(X) := (z(X)− 1)L1(X)

F(X) :=F0(X) + αF1(X) + α2F2(X) ,

t(X) := F(X)
ZH(X)

.

(6)

Split t(X) into polynomials t′lo(X), t′mid(X) (both of degree less than n)
and t′hi(X) (of degree at most n + 5), such that t(X) = t′lo(X) +
Xnt′mid(X)+X2nt′hi(X). 7 Sample b10, b11 , b12 ←$F and define tlo(X) := t′lo(X)+

b10X
n+b12X

n+1 , tmid(X) := t′mid(X) − b10−b12X + b11X
n, and thi(X) :=

t′hi(X) − b11. (b12 is required for the zero-knowledge proof of SanPlonk.) Note
that t(X) = tlo(X)+Xntmid(X)+X2nthi(X). Send [tlo(x), tmid(x), thi(x)]1 to the
verifier. The verifier replies with the evaluation randomness z←$F.

Fourth round. The prover does the following. Set ā ← a(z), b̄ ← b(z), c̄ ← c(z),
s̄σ1 ← Sσ1(z), s̄σ2 ← Sσ2(z), z̄ω ← z(ωz). Send (ā, b̄, c̄, s̄σ1, s̄σ2, z̄ω) to the verifier.
The verifier replies with the sanitization randomness δ←$F.

Fourth (Plonk) or fifth (SanPlonk) round. The prover sends
t̄z ← tlo(z) + δtmid(z) + δ2thi(z). The verifier replies with v←$F.

Fifth (Plonk) or sixth (SanPlonk) round. Prover does the following. Compute
the linearization polynomial r(X):

Λ0(X) = āb̄ · qM(X) + ā · qL(X) + b̄ · qR(X) + c̄ · qO(X) + PI(z) + qC(X) ,

Λ1(X) = (ā+ βz+ γ)(b̄+ βk1z+ γ)(c̄+ βk2z+ γ) · z(X)

− (ā+ βs̄σ1 + γ)(b̄+ βs̄σ2 + γ)(c̄+ β · Sσ3(X) + γ)z̄ω ,

Λ2(X) = (z(X)− 1)L1(z) ,

r(X) =Λ0(X) + αΛ1(X) + α2Λ2(X)

−ZH(z) · (tlo(X) + zntmid(X) + z2nthi(X)) .

(7)

Let

H(X) := r(X) + va(X) + v2b(X) + v3c(X) + v4Sσ1(X) + v5Sσ2(X)

+ v6(tlo(X) + δtmid(X) + δ2thi(X)) ,

H̄ := vā+ v2b̄+ v3c̄+ v4s̄σ1 + v5s̄σ2+v6t̄z .

(8)

7 The polynomial is split since we want to avoid committing to t(X) of degree ≈ 3n,
which would force us to increase the SRS size.

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 19

Compute the opening proof polynomials Wz(X) := (H(X)− H̄)/(X − z) and

Wzω(X) = z(X)−z̄ω
X−zω .

[Wz]1 := [Wz(x)]1; [Wzω]1 := [Wzω(x)]1; Send [Wz,Wzω]1;

Verification algorithm.

1. Validate (wi)
ℓ
i=1 ∈ Fℓ and

(
ā, b̄, c̄, s̄σ1, s̄σ2, z̄ω, t̄z

)
∈ F7.

2. Validate ([a]1, [b]1, [c]1, [z]1, [tlo]1, [tmid]1, [thi]1, [Wz]1, [Wzω]1) ∈ G9
1.

3. Compute ZH(z) = zn − 1, L1(z) =
ω(zn−1)
n(z−ω) , and PI(z) =

∑
i∈[ℓ] wiLi(z).

4. Split r into its constant and non-constant terms. Compute r’s constant term:
r0 := PI(z) − L1(z)α

2 − α(ā + βs̄σ1 + γ)(b̄ + βs̄σ2 + γ)(c̄ + γ)z̄ω, and let
r′(X) := r(X)− r0.

5. Sample u←$F and compute the first part of the batched polynomial com-
mitment [D]1 := [r′]1 + u · [z]1:

[D]1 := āb̄ · [qM]1 + ā · [qL]1 + b̄ · [qR]1 + c̄ · [qO]1 + [qC]1

+
(
(ā+ βz+ γ)(b̄+ βk1z+ γ)(c̄+ βk2z+ γ)α+ L1(z)α

2 + u
)
· [z]1

− (ā+ βs̄σ1 + γ) (b̄+ βs̄σ2 + γ)αβz̄ω · [sσ3]1
−ZH(z)([tlo]1 + zn · [tmid]1 + z2n · [thi]1) .

6. Compute full batched polynomial commitment [F]1 := [D]1 + v · [a]1 + v2 ·
[b]1 + v3 · [c]1 + v4 · [sσ1]1 + v5 · [sσ2]1+v6[tlo + δtmid + δ2thi]1 .

7. Compute the batch evaluation E0 := −r0 + vā + v2b̄ + v3c̄ + v4s̄σ1 +
v5s̄σ2+v6t̄z , E1 := z̄ω, and E := E0 + uE1.

8. Batch validate all evaluations:

([Wz]1+u · [Wzω]1)• [x]2
?
= (z · [Wz]1+uzω · [Wzω]1+[F]1− [E]1)• [1]2 . (9)

Clearly, SanPlonk remains complete after the highlighted changes. In Ap-
pendix D, we prove that SanPlonk has zero knowledge.

4.3 Special-Soundness Proof of (San)Plonk’s IP

We state the theorem that Plonk/SanPlonk (both described in the previous sec-
tion) have computational special-soundness. Our proof of Plonk uses the follow-
ing novel falsifiable assumption n-TriRSDH. Intuitively, TriRSDH states that it
must be hard to come up with three polynomial commitments [tlo, tmid, thi]1, dif-
fering evaluation points zi and a rational non-polynomial function F(X)/ZH(X),
and a proof that for every i, [tlo + zitmid + z2ni thi]1 opens to F(zi)/ZH(zi).
That is, TriRSDH formalizes the fact that Plonk’s optimization of not opening
[tlo, tmid, thi]1 does not compromise soundness. Importantly, TriRSDH minimizes
the dependency on any other details; moreover, it is a falsifiable assumption. We
refer to Appendix C for TriRSDH’s security proof in the AGMOS.

20 Helger Lipmaa , Roberto Parisella , and Janno Siim

Definition 2 (n-TriRSDH). Let H be a multiplicative subgroup of F∗ of order

n. Let κkzg = n+ 5 and κz = 4κkzg + 1. For any PPT A, AdvtrirsdhPgen,A,n,H(λ) :=

Pr


∀i ̸= i′.zi ̸= zi′ ∈ F∧
F(X) ∈ F≤κz−1[X] ∧ (ZH(X) ∤ F(X))∧
∀i ∈ [1, κz].

[
tlo + zni tmid + z2ni thi − F(zi)

ZH(zi)

]
1
• [1]2

= [χi]1 • [x− zi]2

x←$F;
ck← ([1, x, . . . , xκkzg]1, [1, x]2); (zi, [χi]1)

κz

i=1,
[tlo, tmid, thi]1,

F(X)

← A(p, ck)
 ≈λ 0 .

Before going on, we note that the Plonk verifier performs batch verification,
using a batching coefficient u created after the prover’s last message. Clearly,
one can unbatch the two verification equations, without having to rewind the
prover. Batching with u just introduces a soundness error 1/|F|. We say that a
Plonk transcript is accepting (Plonk transcript) if it is accepting in the unbatched
case by Plonk’s verifier. That is, Eq. (9) is replaced by two checks, [Wz]1 • [x]2 =
(z · [Wz]1 + [F]1 − [E0]1) • [1]2 and [Wzω]1 • [x]2 = (zω · [Wzω]1 − [E1]1) • [1]2.

We divide the proof into several smaller lemmas. In Section 4.4, we will
analyze a subtree of Plonk’s and SanPlonk’s accepting transcripts for fixed β, γ,
and α, showing that from it, one can extract certain polynomials. In Section 4.5,
we use that result to prove the special-soundness of Plonk and SanPlonk.

In the following, n ∈ poly(λ) and,

κkzg =n+ 5 ,

κPlonk =(κβ = 3n+ 1, κγ = 3n+ 1, κα = 3, κz = 4κkzg + 1, κPlonk
v = 6) ,

κsan =(κβ = 3n+ 1, κγ = 3n+ 1, κα = 3, κz = 4κkzg + 1, κδ = 3, κsan
v = 7)

(10)

corresponding to the branching factors of KZG, Plonk, and SanPlonk. Moreover,
define κv = κPlonk

v in the case of Plonk and κv = κsan
v in the case of SanPlonk.

4.4 Subtree Analysis

In this subsection, we analyze a subtree of Plonk’s transcripts that results from
fixing β, γ, and α. As usual, we start with a tree extractor lemma that gets a tree
of accepting Plonk transcripts as input and outputs many accepting KZG tran-
scripts that open relevant polynomial commitments at many different locations.

Lemma 2 (From Plonk or SanPlonk transcript tree to KZG transcripts).
Let T be a κPlonk-tree of Plonk’s (resp., κsan-tree of SanPlonk’s) accepting tran-

scripts. Let T̂βγα be a (1, 1, 1, κz, κδ,κv)-subtree of T for any fixed β, γ, and α,
with the transcripts in this subtree denoted as

trijk =

(
[a, b, c]1, β, γ, [z]1, α, [tlo, tmid, thi]1, zi, āi, b̄i, c̄i, s̄σ1i, s̄σ2i, z̄ωi,

δij , t̄zij ,vijk, [Wzijk,Wzωijk]1

)
. (11)

The DPT algorithm TE∗plonk(ck, T̂βγα) in Fig. 6 computes a tu-
ple ((k.trk)k, k.tr

ω), where k ∈ [1, κPlonk
v] = [1, 6] in Plonk and

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 21

TE∗plonk(ck, T̂βγα)

1 : Parse T̂βγα = (trijk)i∈[1,κz],j∈[1,κδ],k∈[1,κv]; // trijk as in Eq. (11); κδ = 1 in Plonk

2 : for i ∈ [1, κz] do
3 : [Λ0i]1 ← āib̄i[qM]1 + āi[qL]1 + b̄i[qR]1 + c̄i[qO]1 + PI(z)[1]1 + [qC]1;
4 : [Λ1i]1 ← (āi + βzi + γ)(b̄i + βk1zi + γ)(c̄i + βk2zi + γ)[z]1
5 : − (āi + βs̄σ1 + γ)(b̄i + βs̄σ2 + γ)(c̄i[1]1 + β[Sσ3(x)]1 + γ[1]1)z̄ω,i;
6 : [Λ2i]1 ← [z − 1]1L1(zi);
7 : [ri]1 ← [Λ0i(x)]1 + α[Λ1i]1 + α2[Λ2i]1 − ZH(zi) · ([tlo]1 + zni [tmid]1 + z2ni [thi]1);
8 : [W′

zi11, . . . ,W
′
zi1κv

]⊺1 ← V −1
i1 [Wzi11, . . . ,Wzi1κv

]⊺1;
9 : k.tr1i ← ([ri]1, zi, 0, [W

′
zi11]1); k.tr2i ← ([a]1, zi, āi, [W

′
zi12]1);

10 : k.tr3i ← ([b]1, zi, b̄i, [W
′
zi13]1); k.tr4i ← ([c]1, zi, c̄i, [W

′
zi14]1);

11 : k.tr5i ← ([sσ1]1, zi, s̄σ1i, [W
′
zi15]1); k.tr6i ← ([sσ2]1, zi, s̄σ2i, [W

′
zi16]1);

12 : for j ∈ {1, 2, 3} do t̄zij ← (V −1
ij)7(H̄ij1, . . . , H̄ij7)

⊺; endfor

13 : (t̄zlo,i, t̄zmid,i, t̄zhi,i)
⊺ := C−1

i (t̄zi1, t̄zi2, t̄zi3)
⊺;

14 : [Wlo,i,Wmid,i,Whi,i]1 ← C−1
i [W′

zi17,W
′
zi27,W

′
zi37]

⊺
1;

15 : k.tr7i ← ([tlo]1, zi, t̄zlo,i, [Wlo,i]1); k.tr8i ← ([tmid]1, zi, t̄zmid,i, [Wmid,i]1);

16 : k.tr9i ← ([thi]1, zi, t̄zhi,i, [Whi,i]1);
17 : k.trωi ← ([z]1, ziω, z̄ωi, [Wzωi11]1); endfor
18 : k.trω ← (k.trωi)i∈[1,κz]; for k ∈ [1, κv+ 2] do k.trk ← (k.trki)i∈[1,κz]; endfor

19 : return ((k.trk)k∈[1,κv+ 2], k.tr
ω);

Fig. 6. The subroutine TE∗plonk.

k ∈ [1, κsan
v + 2] = [1, 9] in SanPlonk, of KZG accepting transcripts, such

that (1) k.tr1i, k.tr2i, k.tr3i, k.tr4i, k.tr5i, and k.tr6i open (respectively) [ri]1,
[a]1, [b]1, [c]1, [sσ1]1 and [sσ2]1 to 0, āi, b̄i, c̄i, s̄σ1i, and s̄σ2i at zi, and (2)
k.trωi opens [z]1 to z̄ωi at ziω. In addition, in SanPlonk, k.tr7i, k.tr8i, and k.tr9i
open (respectively) [tlo, tmid, thi]1 to some values t̄zlo,i, t̄zmid,i, and t̄zhi,i at zi.
Moreover, zi are mutually different.

Proof. Let T be a (κβ , κγ , κα, . . .)-tree of accepting transcripts. We fix a

(1, 1, 1, κz, κδ,κ
san
v)-subtree T̂βγα of T for some β, γ, and α. Then, T̂βγα = {trijk}

contains accepting transcripts given in Eq. (11) with mutually different zi.
Let us unload some of the formulas in Fig. 6. First, [Λ0i]1, [Λ1i]1, [Λ2i]1, [ri]1

(lines 3, 4, 6, and 7 in Fig. 6) are commitments to (zi-dependent) the polynomials
Λ0i, Λ1i, Λ2i, and r, defined as in Eq. (7).

Recall that we analyze in the case the verifier individually tests the two
verification equations, ignoring the optimization induced by using the batching
variable u. Let

H̄ijk ← v0ijk · 0 + v1ijkāi + v2ijk b̄i + v3ijk c̄i + v4ijks̄σ1i + v5ijks̄σ2i+v6ijk t̄zij ,

[tδij]1 ← [tlo + δijtmid + δ2ijthi]1 ,

[Hijk]1 ← v0ijk[ri]1 + vijk[a]1 + v2ijk[b]1 + v3ijk[c]1 + v4ijk[sσ1]1 + v5ijk[sσ2]1+v6[tδij]1 .

(12)

Since KZG is triply homomorphic, trijk is an accepting Plonk transcript iff
([Hijk]1, zi, H̄ijk, [Wzijk]1) and k.trωi (line 17 in Fig. 6) are accepting KZG tran-

22 Helger Lipmaa , Roberto Parisella , and Janno Siim

scripts. We get this by slight rewriting of Plonk’s verification equation. In par-
ticular, k.trωi are accepting transcripts, with different values of zi.

We will separate the rest of the proof to the case of Plonk and SanPlonk.
However, the subroutine on Fig. 6 corresponds to both.

Plonk. Here,

V i =

(
1 vi1 ... v5

i1...
...
...

...
1 vi6 ... v5

i6

)
,

is an invertible Vandermonde matrix. According to Eq. (12), (H̄i1, . . . , H̄i6)
⊺ =

V i · (0, āi, b̄i, c̄i, s̄σ1i, s̄σ2i)⊺ and [Hi1, . . . ,Hi6]1 = V i · [ri, a, b, c, sσ1, sσ2]⊺1 . Let
[W′

zi1, . . . ,W
′
zi6]

⊺
1 be as on line 8 of Fig. 6. By the triple homomorphism of KZG,

k.trki are accepting KZG transcripts for every i and k.

SanPlonk. Here,

V ij =

(
1 vij1 ... v6

ij1...
...

...
...

1 vij7 ... v6
ij7

)
and Ci :=

(
1 δi1 δ2i1
1 δi2 δ2i2
1 δi3 δ2i3

)

are invertible Vandermonde matrices. According to Eq. (12), [Hij1, . . . ,Hij7]1
= V ij · [ri, a, b, c, sσ1, sσ2, tδij]

⊺
1 and (H̄ij1, . . . , H̄ij7)

⊺ = V ij · (0, āi, b̄i, c̄i,
s̄σ1i, s̄σ2i, t̄zij)

⊺. Let [W′
zij1, . . . ,W

′
zij7]

⊺
1 be defined as on line 8 of Fig. 6. By

triple homomorphism, k.tr1i, . . . , k.tr6i and k.tr∗7i are accepting KZG transcripts,
where k.tr1i to k.tr6i are as in Fig. 6 and k.tr∗7i := ([tδij]1, zi, t̄zij , [W

′
zij7]1).

Next, Ci · [tlo, tmid, thi]
⊺
1 = [tδi1 , tδi2 , tδi3]

⊺
1 . Define (t̄zlo,i, t̄zmid,i, t̄zhi,i)

⊺ :=
C−1

i · (t̄zi1, t̄zi2, t̄zi3)⊺ and [Wlo,i,Wmid,i,Whi,i]1 := C−1
i [W′

zi17,W
′
zi27,W

′
zi37]

⊺
1 .

Thus, k.tr7i, k.tr7i, and k.tr7i are accepting KZG transcripts for every i. ⊓⊔

Theorem 5 (Subtree extractor). Let T be a κPlonk-tree of Plonk’s (resp.,

κsan-tree of SanPlonk’s) accepting transcripts. Let T̂βγα = (trijk) be a subtree
of T for any fixed β, γ, and α, where trijk are as in Eq. (11). Assume that
KZG is evaluation-binding and computational (κkzg + 1)-special-sound. In the
case of Plonk, assume the n-TriRSDH assumption holds. There exists a DPT
extractor Extsubss that, given T̂βγα, outputs (z(X), a(X), b(X), c(X)), where z(X),
a(X), b(X), and c(X) are consistent with the commitments and all κz openings
of [z, a, b, c]1. Moreover, t(X) (defined as in Eq. (6)) is a polynomial.

Proof. Let T be a (κβ , κγ , κα, κz, κδ,κv)-tree of accepting transcripts and let

T̂βγα be its (1, 1, 1, κz, κδ,κv)-subtree for any fixed α, β, γ. By Lemma 2,

TE∗plonk(ck, T̂βγα) extracts accepting KZG transcripts k.trki and k.trωi for every
i and k. We will consider separately the cases of Plonk and SanPlonk. However,
the extractors and adversaries on figures (say, Fig. 7) correspond to both.

Case of Plonk. In Fig. 7, we depict an extractor Extsubss . Extsubss invokes
Extkzgss (ck, k.trω) and Extkzgss (ck, k.trk) for k ∈ [2, 4], extracting polynomials z(X),
a(X), b(X), and c(X) of at most degree κkzg = n+5. After executing Extsubss , we
use the following procedure to possibly set one of the “bad” flags:

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 23

Extsubss (ck, T̂βγα)

((k.trk)k∈[1,κv+ 2], k.tr
ω)← TE∗plonk(ck, T̂βγα);

z(X)← Extkzgss (ck, k.trω); a(X)← Extkzgss (ck, k.tr2);

b(X)← Extkzgss (ck, k.tr3); c(X)← Extkzgss (ck, k.tr4);

tlo(X)← Extkzgss (ck, k.tr7); tmid(X)← Extkzgss (ck, k.tr8); thi(X)← Extkzgss (ck, k.tr9);
return (z(X), a(X), b(X), c(X) , tlo(X), tmid(X), thi(X));

Fig. 7. Plonk’s/SanPlonk’s special-soundness extractor Extsubss .

Bkzg
ss (ck)

T̂βγα ← Aplonk
ss (ck);

((k.trk)k∈[1,κv+ 2], k.tr
ω)← TE∗plonk(ck, T̂βγα);

(z(X), a(X), b(X), c(X), tlo(X), tmid(X), thi(X))← Extsubss (ck, T̂βγα);
if ([z]1, z(X)) /∈ Rck,k.trω then return k.trω;fi
if ([a]1, a(X)) /∈ Rck,k.tr2 then return k.tr2;fi
if ([b]1, b(X)) /∈ Rck,k.tr3 then return k.tr3;fi
if ([c]1, c(X)) /∈ Rck,k.tr4 then return k.tr4;fi
if ([tlo]1, tlo(X)) /∈ Rck,k.tr7 then return k.tr7;fi
if ([tmid]1, tmid(X)) /∈ Rck,k.tr8 then return k.tr8;fi
if ([thi]1, thi(X)) /∈ Rck,k.tr9 then return k.tr9;fi
return ⊥;

Fig. 8. Plonk’s/SanPlonk’s KZG’s special-soundness adversary Bkzg
ss .

(i) badext ← false; badevb ← false; badtrirsdh ← false;
(ii) if ([z]1, z(X)) /∈ Rck,k.tr1 ∨ ([a]1, a(X)) /∈ Rck,k.tr2 ∨ ([b]1, b(X)) /∈ Rck,k.tr3 ∨

([c]1, c(X)) /∈ Rck,k.tr4 (see Eq. (1)) then badext ← true; abort;
(iii) for i ∈ [κkzg + 2, κz]: if z(ziω) ̸= z̄ωi ∨ a(zi) ̸= āi ∨ b(zi) ̸= b̄i ∨ c(zi) ̸= c̄i

then badevb ← true; abort;
(iv) for i ∈ [1, κz]: if Sσ1(zi) ̸= s̄σ1i ∨ Sσ2(zi) ̸= s̄σ2i then badevb ← true; abort;
(v) if ZH(X) ∤ F(X), where F(X) = F0(X) + αF1(X) + α2F2(X), then

badtrirsdh ← true;
Importantly, only one of the “bad” flags is set at a time. Thus, for example,
badevb = true implies that badext = false. Let E be the event Extsubss succeeds.
Thus, E is the event that a(X), b(X), c(X), and z(X) are consistent with the
commitments and all openings, and t(X) = (F0(X)+αF1(X)+α2F2(X))/ZH(X)
is a polynomial. Let bad be the event none of the bad flags was set. We analyze
the success probability of Extsubss . For this, we make the following claims.
1. Claim 1. Pr[E|bad] = 1.

Really, assume that bad holds. Since badext = badevb = false, we get that
a(X), b(X), c(X), z(X) are consistent with the commitments and all open-
ings. Since badtrirsdh = false, t(X) = (F0(X) + αF1(X) + α2F2(X))/ZH(X)
is a polynomial.

24 Helger Lipmaa , Roberto Parisella , and Janno Siim

Cevb(p, ck)

T̂βγα ← Aplonk
ss (ck); ((k.trk)k∈[1,κv+ 2], k.tr

ω)← TE∗plonk(ck, T̂βγα);

(z(X), a(X), b(X), c(X), tlo(X), tmid(X), thi(X))← Extsubss (ck, T̂βγα);
for i ∈ [κkzg + 2, κz] do

if z(ziω) ̸= z̄ωi then
return ([z]1, ziω, z̄ωi, [W

′
ωij1]1, z(ziω), [(z(x)− z(ziω))/(x− ziω)]1);fi

if a(zi) ̸= āi then return ([a]1, zi, āi, [W
′
ωij2]1, a(zi), [(a(x)− a(zi))/(x− zi)]1);fi

if b(zi) ̸= b̄i then return ([b]1, zi, b̄i, [W
′
ωij3]1, b(zi), [(b(x)− b(zi))/(x− zi)]1);fi

if c(zi) ̸= c̄i then return ([c]1, zi, c̄i, [W
′
ωij4]1, c(zi), [(c(x)− c(zi))/(x− zi)]1);fi

if tlo(zi) ̸= t̄zlo,i then return ([tlo]1, zi, t̄zlo,i, [W
′
ωij7]1, tlo(zi), [(tlo(x)− tlo(zi))/(x− zi)]1);fi

if tmid(zi) ̸= t̄zmid,i then return ([tmid]1, zi, t̄zmid,i, [W
′
ωij8]1, tmid(zi), [(tmid(x)− tmid(zi))/(x− zi)]1);fi

if thi(zi) ̸= t̄zhi,i then return ([thi]1, zi, t̄zhi,i, [W
′
ωij9]1, thi(zi), [(thi(x)− thi(zi))/(x− zi)]1);fi

endfor ;

for i ∈ [1, κz] do

ri(X)← Λ0i(X) + αΛ1i(X) + α2Λ2i(X)− ZH(zi) · (tlo(X) + zni tmid(X) + z2ni thi(X));

if ri(zi) ̸= 0 then return ([ri]1, zi, 0, [W
′
zi11]1, ri(zi), [ri(x)− ri(zi)/(x− zi)]1);

endfor
for i ∈ [1, κz] do

if Sσ1(zi) ̸= s̄σ1i then
return ([sσ1]1, zi, s̄σ1i, [W

′
ωij5]1, Sσ1(zi), [(Sσ1(x)− Sσ1(zi))/(x− zi)]1);fi

if Sσ2(zi) ̸= s̄σ2i then
return ([sσ2]1, zi, s̄σ2i, [W

′
ωij6]1, Sσ2(zi), [(Sσ2(x)− Sσ2(zi))/(x− zi)]1);fi

endfor ;
return ⊥;

Fig. 9. KZG’s evaluation-binding adversary Cevb.

2. Claim 2. There exists a KZG’s (κkzg + 1)-special-soundness adversary Bkzgss

(see Fig. 8), such that Pr[Bkzgss succeeds | badext] = 1.
Recall from Item ii that badext is set if one of the four bad events happens.
Bkzgss just tests which of the cases is true and returns the corresponding
transcript. Clearly, Pr[Bkzgss succeeds | badext] = 1.

3. Claim 3. There exists an evaluation-binding adversary Cevb (see Fig. 9) for
KZG, such that Pr[Cevb succeeds | badevb] = 1.
Assume that badevb = true. (Note that badevb = true means that badext =
false, that is, Extsubss managed to extract all polynomials.) Then, one of the bad
cases in Item iii or Item iv happens. Cevb just finds out which of these events
happens, and depending on the case, returns a collision. By the correctness
of the extraction, and the completeness property of KZG, any of the returned
values in Fig. 9 is a collision. Thus, Pr[Cevb succeeds | badevb] = 1.

4. Claim 4. There exists an n-TriRSDH adversary Dtrirsdh (see Fig. 10), such
that Pr[Dtrirsdh succeeds | badtrirsdh] = 1.
Since the proof of this claim is more complicated, we postpone its proof to
a separate lemma (see Lemma 3).

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 25

Dtrirsdh(p, ck)

1 : T̂βγα ← Aplonk
ss (ck); ((k.trk)k∈[1,κv+ 2], k.tr

ω)← TE∗plonk(ck, T̂βγα);

2 : (z(X), a(X), b(X), c(X))← Extsubss (ck, T̂βγα);
3 : F0(X)← a(X)b(X)qM(X) + a(X)qL(X) + b(X)qR(X) + c(X)qO(X) + PI(X) + qC(X);
4 : F1(X)← (a(X) + βX + γ)(b(X) + βk1X + γ)(c(X) + βk2X + γ)z(X)
5 : −(a(X) + βSσ1(X) + γ)(b(X) + βSσ2(X) + γ)(c(X) + βSσ3(X) + γ)z(ωX);
6 : F2(X)← (z(X)− 1)L1(X);

7 : F(X)← F0(X) + αF1(X) + α2F2(X); (∗∗)
8 : t(X)← F(X)/ZH(X);
9 : if ZH(X) ∤ F(X) then

10 : for i ∈ [1, κz] do
11 : Λ0i(X)← āib̄iqM(X) + āiqL(X) + b̄iqR(X) + c̄iqO(X) + PI(z) + qC(X);
12 : Λ1i(X)← (āi + βzi + γ)(b̄i + βk1zi + γ)(c̄i + βk2zi + γ)z(X)
13 : − (āi + βs̄σ1 + γ)(b̄i + βs̄σ2 + γ)(c̄i + βSσ3(X) + γ)z̄ω,i;
14 : Λ2i(X)← (z(X)− 1)L1(zi);

15 : Λi(X)← Λ0i(X) + αΛ1i(X) + α2Λ2i(X);

16 : χ′
i(X)← Λi(X)−Λi(zi)

X−zi
;

17 : [χi]1 ← 1
ZH(zi)

[χ′
i(x)−W′

zi1]1; endfor

18 : return ((zi, [χi]1)
κz

i=1, [tlo, tmid, thi]1,F(X));fi
19 : return ⊥;

Fig. 10. The TriRSDH adversary Dtrirsdh.

Recalling all three bad events are disjoint,

Pr[E] = Pr[E|bad] Pr[bad] + Pr[E|badext] Pr[badext] + Pr[E|badevb] Pr[badevb]
+ Pr[E|badtrirsdh] Pr[badtrirsdh]
≤ 0 + Pr[badext] + Pr[badevb] + Pr[badtrirsdh]

Since Cevb succeeds whenever badevb is set and KZG is evaluation-binding,
Pr[badevb] = negl(λ). Similarly, Pr[badext] = Pr[badtrirsdh] = negl(λ). Thus,
Pr[E] ≤ negl(λ). This proves the claim.

Case of SanPlonk. We postpone the proof of this case to Appendix B.2. ⊓⊔

We are left to prove the following lemma. Recall that TriRSDH is defined in
Definition 2.

Lemma 3. There exists an n-TriRSDH adversary Dtrirsdh (see Fig. 10), such
that Pr[Dtrirsdh succeeds | badtrirsdh] = 1.

Proof (Proof of Lemma 3). Let Dtrirsdh be the n-TriRSDH adversary in Fig. 10.
Dtrirsdh uses Aplonk

ss to obtain a subtree T̂βγα, runs TE∗plonk on T̂βγα to obtain a

number of accepting KZG transcripts, and then runs Extsubss on T̂βγα to obtain
polynomials (z(X), a(X), b(X), c(X)). After that, Dtrirsdh computes the polyno-
mials Fs(X), F(X) and t(X) (as defined in Eq. (6)). If it satisfies TriRSDH’s

26 Helger Lipmaa , Roberto Parisella , and Janno Siim

requirement ZH(X) ∤ F(X), Dtrirsdh computes the required KZG opening proofs
[χi]1 and outputs a correctly formed TriRSDH adversary’s output. Let us now
argue that the output satisfies TriRSDH’s conditions.

The first three conditions are straightforward. First, the values zi output
by Aplonk

ss are mutually different by the definition of special-soundness. Sec-
ond, F(X) = t(X)ZH(X) from line 7 is a polynomial of degree deg F(X) ≤
max(deg(F1),deg(F2),deg(F3)) ≤ deg a + deg b + deg c + deg z ≤ 4(n + 5) =
4κkzg = z− 1. Third, from badtrirsdh = true it follows that ZH(X) ∤ F(X).

To finish the proof, we now have to verify the fourth condition of TriRSDH
that for all i ∈ [1, κz], [tlo+zni tmid+z2ni thi−F(zi)/ZH(zi)]1• [1]2 = [χi]1• [x−zi]2.
TriRSDH defines linearization polynomials Λ0i(X), Λ1i(X), Λ2i(X) (see Eq. (7))
of F0(X), F1(X), and F2(X), and their batched sum Λi(X) corresponding to
F(X). Clearly, [Λsi(x)]1 = [Λsi]1 (from Fig. 6) for s ∈ [0, 2] and i ∈ [1, κz].

We want to show thatDtrirsdh is successful whenever, given T̂βγα ← Aplonk
ss (ck)

and (z(X), a(X), b(X), c(X)) ← Extsubss (ck, T̂βγα), badtrirsdh = true. Recall from
the proof of Theorem 5 that then badevb = badext = false. Thus, (1) [z]1 = [z(x)]1,
[a]1 = [a(x)]1, [b]1 = [b(x)]1, [c]1 = [c(x)]1, and (2) z(ziω) = z̄ωi, a(zi) = āi,
b(zi) = b̄i, and c(zi) = c̄i for i ∈ [1, κz]. Hence, Fs(zi) = Λsi(zi), F(zi) = Λi(zi),
and t(zi) = Λi(zi)/ZH(zi) for s ∈ {0, 1, 2} and i ∈ [1, κz].
Dtrirsdh defines χ′

i(X) = (Λi(X)−Λi(zi))/(X−zi) = (Λi(X)−F(zi))/(X−zi)
to be the KZG opening polynomial of Λi(X), i ∈ [1, κz], at point zi. Here, the
second equality follows from badevb = badext = false. Recall

[ri]1 = [Λi(x)− ZH(zi) · (tlo + zntmid + z2nthi)]1 (13)

from the lines 3, 4, and 6 in Fig. 6. Since k.tr1i (see line 9 in Fig. 6) is accepting,
it follows from Eq. (13), badevb = badext = false, and the definition of χ′

i(X) that

W′
zi1 · (x− zi) = ri = χ′

i(x)(x− zi) + Λi(zi)− ZH(zi) · (tlo + zntmid + z2nthi)

for i ∈ [1, κz]. Defining [χi]1 as in Fig. 10, we get[
tlo + zntmid + z2nthi − Λi(zi)

ZH(zi)

]
1
• [1]2 = [χi]1 • [x− zi]2 ,

for i ∈ [1, κz]. Now, note that Λi(zi)/ZH(zi) = t(zi). This proves the lemma. ⊓⊔

4.5 Full Special-Soundness Proof

Finally, we are ready to prove the special-soundness of Plonk and SanPlonk. For
this, we combine the subtree analysis of Section 4.4, KZG’s binding (required
to guarantee that extracted polynomials like a(X) are the same in all subtrees),
and an analysis of the permutation argument.

Theorem 6. Let n ∈ poly(λ) and κkzg := n + 5, κPlonk, and κsan be as in
Eq. (10).
1. If KZG is computational (κkzg+1)-special-sound and evaluation-binding, and

n-TriRSDH holds, then Plonk is κPlonk-special-sound.

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 27

Ext∗plonkss (ck,x, T)

Pick an arbitrary (1, 1, 1, κz, κδ,κv)-subtree T̂ of T .

(z(X), a(X), b(X), c(X) , tlo(X), tmid(X), thi(X))← Extsubss (ck, T̂);
for i ∈ [1, n] do

w̄i ← a(ωi); w̄n+i ← b(ωi); w̄2n+i ← c(ωi); endfor

return w← (w̄i)
3n
i=ℓ+1;

Fig. 11. The special-soundness extractor Ext∗plonkss for Plonk/SanPlonk.

2. If KZG is computational (κkzg + 1)-special-sound and evaluation-binding,
then SanPlonk is computational κsan-special-sound.

Proof. Fix P = {qM(X), qL(X), qR(X), qO(X), qC(X),Sσ1(X),Sσ2(X),Sσ3(X)}
for a relation defined by encoding a circuit as in Section 4.1. Let Ass be
a PPT adversary in the computational special-soundness game that outputs
a (κβ , κγ , κα, κz, κδ,κv)-tree T . We describe the special-soundness extractor

Ext∗plonkss for Plonk in Fig. 11. The extractor picks an arbitrary (1, 1, 1, κz, κδ,κv)-

subtree T̂ = T̂βγα of T and runs the subtree extractor Extsubss from Theorem 5 on
it to obtain the polynomials z(X), a(X), b(X), c(X), tlo(X), tmid(X), and thi(X).
In the honest protocol, the witness is encoded in a(X), b(X), and c(X). Namely,
w̄i ← a(ωi), w̄n+i ← b(ωi), w̄2n+i ← c(ωi) for i ∈ [1, n], and w = (w̄i)

3n
i=ℓ+1.

The rest of the proof shows that (x = (w̄i)
ℓ
i=1,w) ∈ RP .

To be sure we compute a correct witness, we must assume that for each βi,
we have κγ mutually different values γij . Whence the double index on challenges
γij , despite they are sent in the same round by Plonk’s prover. One can be
implement this by rewinding the protocol with κβκγ different challenges (βiγij).
Alternatively, one can consider Plonk as the interactive argument where the
prover first receives the challenge β from the verifier, then replies with an empty
message, then receives the challenge γ, and goes on with the execution.8

Let SubTreesT := {T̂βiγijαijk
: i ∈ [1, κβ], j ∈ [1, κγ], k ∈ [1, κα]} be

the set of all (1, 1, 1, κz, κδ,κv)-subtrees of T . For each T̂ ∈ SubTreesT , we
can apply the extractor from Theorem 5 and obtain the subtree transcript
s.trT̂ = (zT̂ (X), aT̂ (X), bT̂ (X), cT̂ (X)), where T̂ = T̂βiγijαijk

and i ∈ [1, κβ],
j ∈ [1, κγ], and k ∈ [1, κα]. Observe that the extracted polynomials may depend

on the specific subtree T̂ .
Next, we argue that the extractor Ext∗plonkss can fail only if one of the following

events happens.
badsub: For some T̂ ∈ SubTreesT , Ext

sub
ss (ck, T̂) outputs s.trT̂ such that either (1)

zT̂ (X) , aT̂ (X), bT̂ (X), and cT̂ (X) are inconsistent with the commitments
[zij , a, b, c]1, or (2) tT̂ ijk(X) (defined as in Eq. (6)) is not a polynomial.

8 We note that this does not change actual Plonk/SanPlonk: when applying Fiat-
Shamir, one defines β = H(view, 0) and γ = H(view, 1). To rewind only γ and not
β, one can reprogram the random oracle at input (view, 1) but not input (view, 0).

28 Helger Lipmaa , Roberto Parisella , and Janno Siim

Abind(ck)

(x, T)← Extkzgss (ck);

for T̂ ∈ SubTreesT do

s.trT̂ ← Extsubss (ck, T̂); endfor // Extracts polynomials from each subtree

for distinct T̂ ̸= T̂ ′ ∈ SubTreesT do
(a(X), b(X), c(X))←WT̂ ; (a

′(X), b′(X), c′(X))←WT̂ ′ ;
if a(X) ̸= a′(X) then return ([a]1, a(X), a′(X));
if b(X) ̸= b′(X) then return ([b]1, b(X), b′(X));
if c(X) ̸= c′(X) then return ([c]1, c(X), c′(X)); endfor

return ⊥;

Fig. 12. The binding adversary Abind in Theorem 6.

badbind: (1) The event badsub does not happen. (2) Define WT̂ :=

{(a(X), b(X), c(X)) : (z(X), a(X), b(X), c(X))← Extsubss (ck, T̂)}. There exist
two subtrees T̂ ̸= T̂ ′ ∈ SubTreesT , such that WT̂ ̸= WT̂ ′ .

Theorem 5 implies that if KZG is evaluation-binding and computationally
special-sound (and n-TriRSDH holds in the case of Plonk), then Pr[badsub] is
negligible. The fact that Pr[badbind] is negligible follows straightforwardly from
the binding property of KZG. For the sake of completeness we present the binding
adversary Abind in Fig. 12.

In the following, suppose that neither badsub or badbind happened. Thus,
WT̂ (X) = WT̂ ′(X) for any T̂ , T̂ ∈ SubTreesT . This justifies the notation
s.trijk = (zij(X), a(X), b(X), c(X)), where a(X), b(X), and c(X) do not de-

pend on the specific subtree T̂ while zij(X) depends on βi and γij . Further-
more, each tijk(X) := Fijk(X)/ZH(X) is a polynomial, where Fijk(X) :=
F0(X) + αijkF1ij(X) + α2

ijkF2ij(X), and F0(X), F1ij(X) and F2ij(X) are de-
fined as in Eq. (6) (but they may depend on βi and γij). But then F0(X) +
αijkF1ij(X) + α2

ijkF2ij(X) = ZH(X)tijk(X). Thus, for every s ∈ [1, n], F0(ω
s) +

αijkF1ij(ω
s) + α2

ijkF2ij(ω
s) = 0. Let

Aij =

(
1 αij1 α2

ij1

1 αij2 α2
ij2

1 αij3 α2
ij3

)
.

be a Vandermonde matrix. Then, Aij · (F0(ω
s),F1ij(ω

s),F2ij(ω
s))⊺ = 0. Since

αij1, αij2, and αij3 are distinct, Aij is invertible. Thus, F0(ω
s) = F1ij(ω

s) =
F2ij(ω

s) = 0. We analyze these three equalities individually.

F0(ω
s) = 0. Let w̄s := a(ωs), w̄n+s := b(ωs), and w̄2n+s := c(ωs). Then,

F0(ω
s) = 0 iff qMsw̄sw̄n+s + qLsw̄s + qRsw̄n+s + qOsw̄2n+s + qCs + PI(ωs) = 0.

For s > ℓ, PI(ωs) = 0 and we obtain the constraint in Eq. (4). Recall that
for s ≤ ℓ, qMs = qRs = qOs = qCs = 0 and qLs = −1 (see Eq. (3)). Thus,
−w̄s + PI(ωs) = −w̄s + ws = 0. It follows that ws = w̄s for 1 ≤ s ≤ ℓ. Hence,
a(X) encoded the public statement x correctly.

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 29

F2ij(ω
s) = 0. We get F2ij(ω

s) = (zij(ω
s) − 1)L1(ω

s) = 0 for all ωs ∈ H. Thus,

zij(ω) = 1.

F1ij(ω
s) = 0. We will conclude from F1ij(ω

s) = 0 that wj = wσ(j) for all j ∈
[1, 3n]. We will first prove a warm-up lemma (Lemma 4), which we will later
expand to a more technical result Lemma 5 that better suits our needs. See
Appendix B.3 for the proof.

Lemma 4. Let σ be a permutation on [1, n] and a1, . . . , an, b1, . . . , bn ∈ F. Let
β1, . . . , βn+1 ∈ F be mutually distinct and γ1, . . . , γn+1 ∈ F be mutually distinct.
If
∏n

s=1(as + βiω
s + γj) =

∏n
s=1(bs + βiω

σ(s) + γj) for all i, j ∈ [1, n+ 1], then
bs = aσ(s) for all s ∈ [1, n].

Next, we prove a more involved version of Lemma 4, that directly applies to
Plonk. Let us first define the polynomials fϑ(Y,Z) :=

∏n
s=1(wϑn+s+kϑω

sY +Z)
and gϑ(Y,Z) :=

∏n
s=1(wϑn+s + Sσ,(ϑ+1)(ω

s)Y + Z). for ϑ ∈ {0, 1, 2}, where
k0 := 1 and k1, k2 are defined as in Section 4.1. See Appendix B.4 for the proof.

Lemma 5. If
∏2

ϑ=0 fϑ(βi, γij) =
∏2

ϑ=0 gϑ(βi, γij) for all i, j ∈ [1, 3n+ 1], then
ws = wσ(s) for all s ∈ [1, 3n].

We prove one more small result before proving our main result.

Lemma 6. For all s, i, j,

(ws+βiSσ1(ω
s)+γij) · (wn+s+βiSσ2(ω

s)+γij) · (w2n+s+βi ·Sσ3(ωs)+γij) ̸= 0.

Proof. Consider ws + βiSσ1(ω
s) + γij as an example. We already noted that

ws +Sσ1(ω
s)Y +Z is an irreducible polynomial, which means it has no roots in

F. Thus, (βi, γij) is not a root and ws+βiSσ1(ω
s)+γij ̸= 0. Similarly, the other

two factors are non-zero. Hence, their product is non-zero. ⊓⊔

We will inductively show that

zij(ω
s+1) =

s∏
t=1

(wt + βiω
t + γij) · (wn+t + βik1ω

t + γij) · (w2n+t + βik2ω
t + γij)

(wt + βiSσ1(ωt) + γij) · (wn+t + βiSσ2(ωt) + γij) · (w2n+t + βiSσ3(ωt) + γij)
. (14)

Since we already showed that zij(ω) = 1, the claim holds for s = 0. Suppose
the statement holds for zij(ω

s). From F1ij(ω
i) = 0 (see Eq. (6)), we conclude

zij(ω
s+1) =

zij(ω
s) · (ws + βiω

s + γij) · (wn+s + βik1ω
s + γij) · (w2n+s + βik2ω

s + γij)

(ws + βiSσ1(ωs) + γij) · (wn+s + βiSσ2(ωs) + γij) · (w2n+s + βiSσ3(ωs) + γij)
.

Note that the division is well-defined according to Lemma 6 and Eq. (14) follows
by expanding zij(ω

s).
Since ωn+1 = ω, we have zij(ω

n+1) = 1, implying that
∏n

t=1(wt + βiω
t +

γij) · (wn+t + βik1ω
t + γij) · (w2n+t + βik2ω

t + γij) =
∏n

t=1(wt + βiSσ1(ω
t) +

γij) · (wn+t + βiSσ2(ω
t) + γij) · (w2n+t + βi · Sσ3(ωt) + γij). We can conclude

from Lemma 5 that wi = wσ(i) for all i ∈ [1, 3n]. Hence, w also satisfies the final
constraint in Eq. (5). ⊓⊔

30 Helger Lipmaa , Roberto Parisella , and Janno Siim

References

AFK22. Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-shamir transfor-
mation of multi-round interactive proofs. In Eike Kiltz and Vinod Vaikun-
tanathan, editors, TCC 2022, Part I, volume 13747 of LNCS, pages 113–142.
Springer, Heidelberg, November 2022. doi:10.1007/978-3-031-22318-1_

5. 1, 1, 1, B.5, 7

AFKR23. Thomas Attema, Serge Fehr, Michael Klooß, and Nicolas Resch. The
fiat–shamir transformation of (γ1, . . . , γµ)-special-sound interactive proofs.
Technical Report 2023/1945, IACR, December 22, 2023. URL: https:

//eprint.iacr.org/2023/1945. 1, 1, B.5

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on Security and Pri-
vacy, pages 315–334. IEEE Computer Society Press, May 2018. doi:

10.1109/SP.2018.00020. 2.1

BBHR18. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast
reed-solomon interactive oracle proofs of proximity. In Ioannis Chatzigian-
nakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors,
ICALP 2018, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl,
July 2018. doi:10.4230/LIPIcs.ICALP.2018.14. 2.1

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy,
pages 459–474. IEEE Computer Society Press, May 2014. doi:10.1109/

SP.2014.36. 1

BCPR14. Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the ex-
istence of extractable one-way functions. In David B. Shmoys, editor,
46th ACM STOC, pages 505–514. ACM Press, May / June 2014. doi:

10.1145/2591796.2591859. 1

BFS20. Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs
from DARK compilers. In Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT 2020, Part I, volume 12105 of LNCS, pages 677–706. Springer,
Heidelberg, May 2020. doi:10.1007/978-3-030-45721-1_24. 1, 2.1

BMRS20. Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda:
Decentralized cryptocurrency at scale. Cryptology ePrint Archive, Report
2020/352, 2020. https://eprint.iacr.org/2020/352. 1

CDS94. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of
partial knowledge and simplified design of witness hiding protocols. In
Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages 174–187.
Springer, Heidelberg, August 1994. doi:10.1007/3-540-48658-5_19. 1

CFF+21. Matteo Campanelli, Antonio Faonio, Dario Fiore, Anäıs Querol, and
Hadrián Rodŕıguez. Lunar: A toolbox for more efficient universal and
updatable zkSNARKs and commit-and-prove extensions. In Mehdi Ti-
bouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part III, vol-
ume 13092 of LNCS, pages 3–33. Springer, Heidelberg, December 2021.
doi:10.1007/978-3-030-92078-4_1. 1, 1, 3.1

CFF+24. Matteo Campanelli, Antonio Faonio, Dario Fiore, Tianyu Li, and Helger
Lipmaa. Lookup arguments: Improvements, extensions and applications to

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215
https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1007/978-3-031-22318-1_5
https://eprint.iacr.org/2023/1945
https://eprint.iacr.org/2023/1945
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1145/2591796.2591859
https://doi.org/10.1145/2591796.2591859
https://doi.org/10.1007/978-3-030-45721-1_24
https://eprint.iacr.org/2020/352
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-030-92078-4_1

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 31

zero-knowledge decision trees. In Qiang Tang and Vanessa Teague, edi-
tors, PKC 2024, Part II, volume 14602 of LNCS, pages 337–369. Springer,
Heidelberg, April 2024. doi:10.1007/978-3-031-57722-2_11. 1

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely,
and Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with universal
and updatable SRS. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768. Springer,
Heidelberg, May 2020. doi:10.1007/978-3-030-45721-1_26. 1, 1, 1, 2.1,
3.1, 3.2

Den02. Alexander W. Dent. Adapting the weaknesses of the random oracle model
to the generic group model. In Yuliang Zheng, editor, ASIACRYPT 2002,
volume 2501 of LNCS, pages 100–109. Springer, Heidelberg, December 2002.
doi:10.1007/3-540-36178-2_6. 1

DG23. Quang Dao and Paul Grubbs. Spartan and bulletproofs are simulation-
extractable (for free!). In Carmit Hazay and Martijn Stam, editors, EU-
ROCRYPT 2023, Part II, volume 14005 of LNCS, pages 531–562. Springer,
Heidelberg, April 2023. doi:10.1007/978-3-031-30617-4_18. 1, 1

DL08. Giovanni Di Crescenzo and Helger Lipmaa. Succinct NP Proofs from an
Extractability Assumption. In Arnold Beckmann, Costas Dimitracopoulos,
and Benedikt Löwe, editors, Computability in Europe, CIE 2008, volume
5028 of LNCS, pages 175–185, Athens, Greece, June 15–20, 2008. Springer,
Heidelberg. 1

EFG22. Liam Eagen, Dario Fiore, and Ariel Gabizon. cq: Cached quotients for
fast lookups. Cryptology ePrint Archive, Report 2022/1763, 2022. https:

//eprint.iacr.org/2022/1763. 1
FFR24. Antonio Faonio, Dario Fiore, and Luigi Russo. Real-world Universal zk-

SNARKs are non-malleable. Technical Report 2024/721, IACR, May 11
2024. URL: https://eprint.iacr.org/2024/721. 1, A.3

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer,
Heidelberg, August 2018. doi:10.1007/978-3-319-96881-0_2. 1, 1, 2.1

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987. doi:10.1007/3-540-47721-7_12. 1

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge argu-
ments. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of
LNCS, pages 321–340. Springer, Heidelberg, December 2010. doi:10.1007/
978-3-642-17373-8_19. 1

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016. doi:
10.1007/978-3-662-49896-5_11. 1

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments of
knowledge. Cryptology ePrint Archive, Report 2019/953, 2019. https:

//eprint.iacr.org/2019/953. 1, 3, 1, 4, 1, 2, 3.1, 4, 4.1, 4.1, B.1, D
Kil94. Joe Kilian. On the complexity of bounded-interaction and noninteractive

zero-knowledge proofs. In 35th FOCS, pages 466–477. IEEE Computer
Society Press, November 1994. doi:10.1109/SFCS.1994.365744. 1

https://doi.org/10.1007/978-3-031-57722-2_11
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/3-540-36178-2_6
https://doi.org/10.1007/978-3-031-30617-4_18
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2024/721
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://doi.org/10.1109/SFCS.1994.365744

32 Helger Lipmaa , Roberto Parisella , and Janno Siim

KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size com-
mitments to polynomials and their applications. In Masayuki Abe, editor,
ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer, Hei-
delberg, December 2010. doi:10.1007/978-3-642-17373-8_11. 1, 2.1, 2.1

Lip12. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In Ronald Cramer, editor,
TCC 2012, volume 7194 of LNCS, pages 169–189. Springer, Heidelberg,
March 2012. doi:10.1007/978-3-642-28914-9_10. 1, 2.1, C.1

LPS23. Helger Lipmaa, Roberto Parisella, and Janno Siim. Algebraic group model
with oblivious sampling. In Guy N. Rothblum and Hoeteck Wee, editors,
TCC 2023, Part IV, volume 14372 of LNCS, pages 363–392. Springer, Hei-
delberg, November / December 2023. doi:10.1007/978-3-031-48624-1_

14. 1, 1, 1, 1, 2.1, 3.2, 6, C, C.1, C.1
LPS24. Helger Lipmaa, Roberto Parisella, and Janno Siim. Constant-size zk-

SNARKs in ROM from falsifiable assumptions. In Marc Joye and Gregor Le-
ander, editors, EUROCRYPT 2024, Part VI, volume 14656 of LNCS, pages
34–64. Springer, Heidelberg, May 2024. doi:10.1007/978-3-031-58751-1_
2. 1, 1, 1, 1, 2, 2.1, 2.1, 3, 3.1

LSZ22. Helger Lipmaa, Janno Siim, and Michal Zajac. Counting vampires:
From univariate sumcheck to updatable ZK-SNARK. In Shweta Agrawal
and Dongdai Lin, editors, ASIACRYPT 2022, Part II, volume 13792 of
LNCS, pages 249–278. Springer, Heidelberg, December 2022. doi:10.1007/
978-3-031-22966-4_9. 1, 1, 3.1

Mau05. Ueli M. Maurer. Abstract models of computation in cryptography (invited
paper). In Nigel P. Smart, editor, 10th IMA International Conference on
Cryptography and Coding, volume 3796 of LNCS, pages 1–12. Springer, Hei-
delberg, December 2005. 1

Mic94. Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–
453. IEEE Computer Society Press, November 1994. doi:10.1109/SFCS.

1994.365746. 1
Nao03. Moni Naor. On cryptographic assumptions and challenges (invited talk). In

Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 96–109.
Springer, Heidelberg, August 2003. doi:10.1007/978-3-540-45146-4_6. 1

Pas16. Rafael Pass. Unprovable Security of Perfect NIZK and Non-interactive Non-
malleable Commitments. Computational Complexity, 25(3):607–666, 2016.
1

PST13. Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures
of correct computation. In Amit Sahai, editor, TCC 2013, volume 7785
of LNCS, pages 222–242. Springer, Heidelberg, March 2013. doi:10.1007/
978-3-642-36594-2_13. 2.1

RZ21. Carla Ràfols and Arantxa Zapico. An algebraic framework for uni-
versal and updatable SNARKs. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 774–
804, Virtual Event, August 2021. Springer, Heidelberg. doi:10.1007/

978-3-030-84242-0_27. 1, 1, 3.1
Sef24. Marek Sefranek. How (not) to simulate PLONK. Technical Report

2024/848, IACR, May 31, 2024. URL: https://eprint.iacr.org/2024/
848. D, 9, D

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-031-48624-1_14
https://doi.org/10.1007/978-3-031-48624-1_14
https://doi.org/10.1007/978-3-031-58751-1_2
https://doi.org/10.1007/978-3-031-58751-1_2
https://doi.org/10.1007/978-3-031-22966-4_9
https://doi.org/10.1007/978-3-031-22966-4_9
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-642-36594-2_13
https://doi.org/10.1007/978-3-642-36594-2_13
https://doi.org/10.1007/978-3-030-84242-0_27
https://doi.org/10.1007/978-3-030-84242-0_27
https://eprint.iacr.org/2024/848
https://eprint.iacr.org/2024/848

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 33

256–266. Springer, Heidelberg, May 1997. doi:10.1007/3-540-69053-0_

18. 1
Zha22. Mark Zhandry. To label, or not to label (in generic groups). In Yevgeniy

Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part III, volume
13509 of LNCS, pages 66–96. Springer, Heidelberg, August 2022. doi:

10.1007/978-3-031-15982-4_3. 1

A Postponed Material from Section 3

A.1 Comparison of Lin And Competitors

We compare SanLin to related approaches in Table 3.

Table 3. Comparison of different arguments to test a(X)b(X)− c(X). KS stands for
the knowledge-soundness and SS for the special-soundness. The number of bits is given
for the BLS381-12 curve.

Method |π| (bits) KS in AGM KS and SS in plain-model

Opening [a, b, c]1 separately 3|F|+ 3|Gι| (1920) ✓ ✓

Batch-opening [a, b, c]1 together 3|F|+ |Gι| (1152) ✓ ✓

Lin |F|+ |Gι| (640) ✓ ✗

SanLin (the current paper) 2|F|+ |Gι| (896) ✓ ✓

A.2 Attacks Against Special-Soundness of Lin

For the following examples, see the description of Lin in Fig. 4.

Example 1 (Lin is not knowledge-sound). The knowledge-soundness adversary
A chooses any ā ∈ F, and samples [q]1←$G1 obliviously. A sets a(X) ← ā,
[b]1 ← [q]1, and [c]1 ← ā[b]1. Since a(X) is a constant function, a(z) = ā. Then,
[Λ(x)]1 = [āb(x) − c(x)]1 = [0]1 and [h]1 = [0]1 and the adversary succeeds in
cheating. However, A does not know b(X) and c(X) as polynomials.

One may ask if knowledge-soundness can be achieved by checking that [h]1 ̸=
[0]1. However, this is not always sufficient.

Example 2. Assume A knows z (e.g., z has low entropy and A can guess A with
a non-negligible probability). A sets a(X) ← ā for any ā ∈ F and picks any
polynomials b′(X) and c′(X) such that

āb′(X)− c′(X) = q(X)(X − z) ,

where q(X) is a non-zero quotient polynomial. Then, A samples obliviously [r]1
and sets [a]1 ← [ā]1, [b]1 ← [b′(x) + r]1, [c]1 ← [c′(x) + ār]1. For the verifier to
accept, the adversary sets (see the definition of [h]1 in Fig. 4)

[h]1 ← [v(āb− c)/(x− z)]1 = v[(ā(b′(x) + r)− (c′(x) + ār))/(x− z)]1

= v[(q(x)(x− z))/(x− z)]1 = v[q(x)]1 .

https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-031-15982-4_3
https://doi.org/10.1007/978-3-031-15982-4_3

34 Helger Lipmaa , Roberto Parisella , and Janno Siim

The latter is non-zero when v and q(x) are non-zero. However, A cannot open
[b]1 and [c]1.

A.3 Attacks Against Special-Soundness of LinGen

Example 3. The adversary A sets each as(X) to be equal to an arbitrary field
element ā∗s ∈ F. Let b̄∗ be any vector orthogonal to ā∗,

∑
ā∗s b̄

∗
s = 0. A samples

[b]1 ←$ G1 obliviously, and then sets [bs]1 ← b̄∗s[b]1. A sets ās ← ā∗s and [h]1 ←
[0]1. Clearly,

∑
s

([as]1 • [bs]1) =
∑
s

[
ā∗s b̄

∗
sb
]
T
=

(∑
s

ā∗s b̄
∗
s

)
[b]T = [0]T ,

and thus[
m∑
s=1

βs−1(as − ās) + βm
m∑
s=1

āsbs

]
1

• [1]2 =

[
m∑
s=1

βs−10 + βm · 0

]
1

= [0]T .

Thus, the LinGen verifier accepts. However, A does not know how to open [b]1
and thus any of [bs]1.

Faonio et al. [FFR24] (a concurrent work) independently found and described
a more general version of this attack. They showed that LinGen is knowledge-
sound exactly if the “left polynomials” as(X) are linearly independent.

A.4 Proof of Theorem 3 (Special-Soundness of SanLin)

We start again with a tree extractor lemma.

Lemma 7. Let T = (trij) be an (2n + 1, 3)-tree of Batch’s accepting tran-
scripts, where trij are as in Fig. 13. The DPT algorithm TEsanlin(ck, T) in
Fig. 13 computes a tuple of accepting KZG transcripts (k.tr′j)

3
j=1, such that

k.tr′i1 = ([a]1, zi, . . .), k.tr
′
i2 = ([c]1, zi, . . .), and k.tr′i3 = ([b]1, zi, . . .), with mutu-

ally different zi for i ∈ [1, 2n+ 1].

Proof (Lemma 7). Let T be the given accepting tree of transcripts and

V i :=

(
1 vi1 v2

i1

1 vi2 v2
i3

1 vi3 v2
i3

)
(15)

be a Vandermonde matrix. Given T ’s structure, zi-s are distinct and vij-s are
distinct for each zi, rendering V i non-singular for every i ∈ [1, 2n+ 1].

Define (h′
i1, h

∗
i2, h

′
i3) as in (*) in Fig. 13. Since the SanLin verifier accepts trij

for each i ∈ [1, 2n + 1] and j ∈ [1, 3], the KZG verifier accepts each k.trij :=

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 35

TEsanlin(ck, T)

Parse T = (trij)i∈[1,2n+1],j∈[1,3]; // trij = ([a, b, c]1, zi, āi, b̄i, vi, [hij]1)

for i ∈ [1, 2n+ 1] do
Parse trij = ([a, b, c]1, zi, āi, b̄i, vij , [hij]1);
[h′

i1, h
∗
i2, h

′
i3]

⊺
1 ← V −1

i [hi1, hi2, hi3]
⊺
1; (∗) // See V i in Eq. (15)

[h′
i2]1 ← āi[h

′
i3]1 − [h∗

i2]1;
k.tr′i1 ← ([a]1, zi, āi, [h

′
i1]1); k.tr′i2 ← ([c]1, zi, āib̄i, [h

′
i2]1);

k.tr′i3 ← ([b]1, zi, b̄i, [h
′
i3]1);

endfor
for j ∈ {1, 2, 3} do k.tr′j ← (k.tr′1j , . . . , k.tr

′
n+1,j); endfor

return (k.tr′1, k.tr
′
2, k.tr

′
3);

Fig. 13. The subroutine TEsanlin

([φij]1, zi, Φij , [hij]1), where φij := a + vijΛi + v2ijb for Λi = āib − c, Φij :=

āi + v2ij b̄i, and hij = h′
i1 + vijh

∗
i2 + v2ijh

′
i3. Clearly,[a

Λi

b

]
1
= V −1

i

[φi1
φi2
φi3

]
1

,
(āi

0
b̄i

)
= V −1

i

[
Φi1

Φi2

Φi3

]
1

.

Since KZG is triply homomorphic,k.tr′i1
k.tr∗i2
k.tr′i3

 :=

([a]1, zi, āi, [h
′
i1]1)

([Λi]1, zi, 0, [h
∗
i2]1)

([b]1, zi, b̄i, [h
′
i3]1)


are accepting KZG transcripts. Since c = āib − Λi, by triple homomorphism,
k.tr′i2 := ([c]1, zi, āib̄i, [h

′
i2]1) is an accepting KZG transcript, where [h′

i2]1 :=
āi[h

′
i3]1 − [h∗

i2]1. Thus, TEsanlin returns accepting KZG transcripts k.tr′1, k.tr
′
2,

and k.tr′3 of the claimed form. ⊓⊔

Proof (Theorem 3). Let Extkzgss be the promised (n+1)-special-soundness extrac-
tor of KZG and let Alin

ss be any SanLin κ-special-soundness adversary. In Fig. 14,
we depict a κ-special-soundness extractor Extsanlinss for SanLin and an (n + 1)-
special-soundness adversary Bkzgss for KZG. Here, Extsanlinss has an oracle access to
Extkzgss and Bkzgss has an oracle access to Alin

ss and Extkzgss .
Extsanlinss inputs ck and a κ-tree T = (trij)i∈[1,2n+1],j∈[1,3] of accepting SanLin

transcripts, where trij is defined as in Fig. 13. Extsanlinss calls the (determinis-
tic) algorithm TEsanlin (see Fig. 13) to compute three valid transcripts k.tr′1 =
([a]1, zi, . . .), k.tr′2 = ([c]1, zi, . . .), and k.tr′3 = ([b]1, zi, . . .) for three polynomials
that have to be extracted. Then, Extsanlinss calls three times the (n + 1)-special-
soundness extractor Extkzgss to compute the witness (a∗(X), c∗(X), b∗(X)).

Let us bound the advantage of SanLin’s adversary Alin
ss against the extractor

Extsanlinss . Assume that T is a κ-tree of SanLin transcripts, each accepted by the
SanLin verifier. Let us consider the following two events. The event badext happens
when Extsanlinss computes a∗(X), b∗(X), c∗(X) such that ([a]1, a

∗(X)) ̸∈ Rck,k.tr′1

36 Helger Lipmaa , Roberto Parisella , and Janno Siim

Extsanlinss (ck, T)

(k.tr′j)
3
j=1 ← TEsanlin(ck, T);

a∗(X)← Extkzgss (ck, k.tr′1);

c∗(X)← Extkzgss (ck, k.tr′2);

b∗(X)← Extkzgss (ck, k.tr′3);
return (a∗(X), b∗(X), c∗(X));

Bkzg
ss (ck)

T ← Alin
ss (ck); (k.tr′j)

3
j=1 ← TEsanlin(ck, T);

a∗(X)← Extkzgss (ck, k.tr′1);
if ([a]1, a

∗(X)) ̸∈ Rck,k.tr′1
then

return k.tr′1;fi

c∗(X)← Extkzgss (ck, k.tr′2);
if ([c]1, c

∗(X)) ̸∈ Rck,k.tr′2
then

return k.tr′2;fi

b∗(X)← Extkzgss (ck, k.tr′3);
if ([b]1, b

∗(X)) ̸∈ Rck,k.tr′3
then

return k.tr′3;fi
return ⊥;

Cevb(ck)

T ← Alin
ss (ck); (k.tr

′
j)

3
j=1 ← TEsanlin(ck, T);

a∗(X)← Extkzgss (srs, k.tr′1); c
∗(X)← Extkzgss (ck, k.tr′2); b

∗(X)← Extkzgss (ck, k.tr′3);
for i ∈ [n+ 2, 2n+ 1] do // Using the notation from Fig. 13

if āi ̸= a∗(zi) then
return

(
[a]1, zi, āi, [h

′
i1]1, a

∗(zi), [(a
∗(x)− a∗(zi))/(x− zi)]1

)
;fi

if b̄i ̸= b∗(zi) then
return

(
[b]1, zi, b̄i, [h

′
i3]1, b

∗(zi), [(b
∗(x)− b∗(zi))/(x− zi)]1

)
;fi

if āib̄i ̸= c∗(zi) then
return

(
[c]1, zi, āib̄i, [h

′
i2]1, c

∗(zi), [(c
∗(x)− c∗(zi))/(x− zi)]1

)
;fi

endfor
return ⊥;

Fig. 14. The extractor Extsanlinss , the KZG special-soundness adversary Bkzg
ss , and the

evaluation-binding adversary Cevb.

or ([c]1, c
∗(X)) ̸∈ Rck,k.tr′2

or ([b]1, b
∗(X)) ̸∈ Rck,k.tr′3

. The event badevb happens
when the event badext did not happen, but for some i > n+1, either a∗(zi) ̸= āi,
b∗(zi) ̸= b̄i, or c

∗(zi) ̸= āib̄i.

If neither of the events happens, then Extsanlinss has extracted polynomials
a∗(X), b∗(X), c∗(X) of degree at most n, which satisfy a = a∗(x), b = b∗(x),
c = c∗(x). Furthermore, f(X) := a∗(X)b∗(X) − c∗(X) is at most degree 2n
polynomial, which satisfies f(zi) = āib̄i − āib̄i = 0 for i ∈ [1, 2n + 1]. Thus,
f(X) ≡ 0 and a∗(X)b∗(X) = c∗(X), which is what we needed to show.

To bound Pr[badext] and Pr[badevb], we construct adversaries Bkzgss and Cevb
described in Fig. 14. The KZG (n+ 1)-special-soundness adversary Bkzgss follows
the structure of Extsanlinss , but when the extraction of one of the polynomials fails
(which can be deterministically tested), Bkzgss outputs the respective transcript
vector k.tr′j for j ∈ {1, 2, 3}. Bkzgss wins the (n+1)-special-soundness game exactly
when badevb happens. Thus,

Pr[badext] = Advss
Pgen,KZG,Extkzgss ,n+1,Bkzg

ss
(λ) .

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 37

Finally, we construct the evaluation-binding adversary Cevb. Observe that
when badext does not happen, Extsanlinss knows a∗(X), which satisfies a = a∗(x).
This means, Extsanlinss knows how to compute opening of the commitment [a]1 at
any point zi for i > n+ 1. Since

h(X) :=
a∗(X)− a∗(zi)

X − zi

is a polynomial, Cevb can compute an opening proof [h(x)]1 for the evaluation
a∗(zi). In addition to this opening, we know from the construction of TEsanlin

that k.tr′i1 = ([a]1, zi, āi, [h
′
i1]1) is an accepting KZG transcript. If āi ̸= a∗(zi),

we have found a collision which breaks the evaluation-binding. With the same
reasoning, the conditions Vi ̸= b∗(zi) and āib̄i ̸= c∗(zi) will lead to breaking the
evaluation-binding. This is precisely the strategy that Cevb follows in Fig. 14.
Thus,

Pr[badevb] = AdvevbPgen,KZG,n,Cevb
(λ) .

Thus, we have shown that

AdvssPgen,SanLin,Extsanlinss ,κ,Alin
ss
(λ) = Pr[badext] + Pr[badevb]

=Advss
Pgen,KZG,Extkzgss ,n+1,Bkzg

ss
(λ)+

AdvevbPgen,KZG,n,Cevb
(λ) .

⊓⊔

A.5 Proof of Theorem 4 (Special-Soundness of SanLinGen)

Before proving Theorem 4, we state the following lemma.

Lemma 8. Assume that T = (trijk) is a (2n+ 1,m,m+ 2)-tree of SanLinGen’s
accepting transcripts, where trijk are as in step 17 in Fig. 15. Then the
PPT algorithm TElingen(ck, T) in Fig. 15 computes accepting KZG transcripts
(tras , trbs)

m
s=1, such that tras,i = ([as]1, zi, . . .) and trbs,i = ([bs]1, zi, . . .) for

i ∈ [1, n+ 1], and zi are mutually distinct.

Proof. Let T be the given accepting tree of transcripts. Let

Bij =

 1 βij1 ··· βm+1
ij1

1 βij2 ··· βm+1
ij2...

...
...

...
1 βij,m+2 ··· βm+1

ij,m+2

 and Ci =

 1 γi1 γ2
i1

... γm−1
i1

1 γi2 γ2
i2

... γm−1
i2...

...
...

...
...

1 γim γ2
im

... γm−1
im

 (16)

be Vandemonde matrices. Since T is a tree of transcripts, zi are all distinct, and
for each zi, all γij are disctinct and for each γij all βijk are distinct. Thus, for
each i ∈ [1, 2n+ 1] and j ∈ [1,m], Bij and Ci are non-singular.

By the construction of SanLinGen, trijk is an accepting SanLinGen transcript
iff

k.trijk = ([φijk]1, zi, Φijk, [hijk]1)

38 Helger Lipmaa , Roberto Parisella , and Janno Siim

TElingen(ck, T)

1 : Parse T = (trijk)i∈[1,2n+1],j∈[1,m],k∈[1,m+2];
2 : Parse trijk = ([(as, bs)

m
s=1]1, zi, (āis)

m
s=1, γij , b̄ij , βijk, [hijk]1);

3 : for (i, j) ∈ [1, 2n+ 1]× [1,m] do

4 : [h∗
ij1, . . . , h

∗
ij,m+2]

⊺
1 ← B−1

ij [hij1, . . . , hij,m+2]
⊺
1;

5 :


k.tr∗ij1...
k.tr∗ijm

k.tr∗ij,m+1

k.tr∗ij,m+2

←


([a1]1,zi,āi1,[h
∗
ij1]1)...

([am]1,zi,āim,[h∗
ijm]1)

([
∑m

s=1 āisbs]1,zi,0,[h
∗
ij,m+1]1)

([
∑m

s=1 γs−1
ij bs]1,zi,b̄ij ,[h

∗
ij,m+2]1)

;

6 : endfor
7 : for s ∈ [1,m] do
8 : for i ∈ [1, 2n+ 1] do

9 :

(
b̄′i1
...
b̄′im

)
← C−1

i

(
b̄i1
...
b̄im

)
;

[
h′
i1
...

h′
im

]
1

← C−1
i

[
h∗
i1,m+2

...
h∗
im,m+2

]
1

;

10 : k.tras,i ← k.tr∗i1s; k.trbs,i ← ([bs]1, zi, b̄
′
is, [h

′
is]1);

11 : endfor
12 : tras ← (k.tras,1, . . . , k.tras,n+1); trbs ← (k.trbs,1, . . . , k.trbs,n+1);
13 : endfor
14 : return (tras , trbs)

m
s=1; ./

Fig. 15. The TElingen subroutine.

is an accepting KZG transcript, where

φijk :=
∑m

s=1 β
s−1
ijk as + βm

ijk

∑m
s=1 āisbs + βm+1

ijk

∑m
s=1 γ

s−1
ij bs

and
Φijk :=

∑m
s=1 β

s−1
ijk āis + βm+1

ijk b̄ij .

That is,

(φij1, . . . , φij,m+2)
⊺ =Bij · (a1, . . . , am,

∑m
s=1 āisbs,

∑m
s=1 γ

s−1
ij bs)

⊺ ,

(Φij1, . . . , Φij,m+2)
⊺ =Bij · (āi1, . . . , āim, 0, b̄ij)

⊺ .

Let h∗
ijk, . . . , h

∗
ij,m+2 be defined as in step 4. Then,

(a1, . . . , am,
∑m

s=1 āisbs,
∑m

s=1 γ
s−1
ij bs)

⊺ =B−1
ij · (φij1, . . . , φij,m+2)

⊺ ,

(āi1, . . . , āim, 0, b̄ij)
⊺ =B−1

ij · (Φij1, . . . , Φij,m+2)
⊺ .

Since KZG is triply homomorphic, for all i, j, k, k.tr∗ijk (see step 5) are accepting
KZG transcripts. Thus, one can define tras,i = k.tr∗ijs for j = 1 (one can choose
any value of j).

Finally, one can apply C−1
i to obtain (b̄′i1, . . . , b̄

′
im)⊺ ← C−1

i (b̄i1, . . . , b̄im)⊺

and (h′
i1, . . . , h

′
im)⊺ ← C−1

i (h∗
i1,m+2, . . . , h

∗
im,m+2)

⊺. Since KZG is triple ho-
momorphic and the first elements of k.tr∗ij,m+2 result from Ci(v1, . . . , vm)⊺,

k.trbsi ← ([bs]1, zi, b̄
′
is, [h

′
is]1) is an accepting KZG transcript. ⊓⊔

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 39

ExtSanLinGenss (ck, T)

(tras , trbs)
m
s=1 ← TElingen(ck, T);

for s ∈ [1,m] do

a∗s(X)← Extkzgss (ck, tras);

b∗s(X)← Extkzgss (ck, trbs);
endfor
return (a∗s(X), b∗s(X))ms=1;

Bkzg
ss (ck)

T ← A(ck);
(tras , trbs)

m
s=1 ← TElingen(ck, T);

for s ∈ [1,m] do

a∗s(X)← Extkzgss (ck, tras);
if ([as]1, a

∗
s(X)) ̸∈ Rck,tras

then return tras ;

b∗s(X)← Extkzgss (ck, trbs);
if ([bs]1, b

∗
s(X)) ̸∈ Rck,trbs

then return tras ;

return ⊥;

Cevb(ck)

T ← A(ck); (tras , trbs)
m
s=1 ← TElingen(ck, T);

for s ∈ [1,m] do a∗s(X)← Extkzgss (ck, tras); b
∗
s(X)← Extkzgss (ck, trbs); endfor

Parse (tras , trbs)
m
s=1 as in Fig. 15;

for (s, i) ∈ [1,m]× [n+ 2, 2n+ 1] do

if āis ̸= a∗s(zi) then return
(
[as]1, zi, āis, [h

∗
jki]1, a

∗
s(zi),

[
a∗s (x)−a∗s (zi)

x−zi

]
1

)
;

if b̄′is ̸= b∗s(zi) then return
(
[bs]1, zi, b̄

′
is, [h

′
is]1, b

∗
s(zi),

[
b∗s (x)−b∗s (zi)

x−zi

]
1

)
;

endfor
for i ∈ [1, 2n+ 1] do

if
∑m

s=1 āisb̄
′
is ̸= 0

then return
(
[0]1, zi,

∑m
s=1 āisb̄

′
is, [

∑m
s=1 āish

′
is − h∗

i1,m+1]1, 0, [0]1
)
;

return ⊥;

Fig. 16. The extractor ExtSanLinGenss , the KZG special soundness-adversary Bkzg
ss , and the

KZG evaluation-binding adversary Cevb.

Next, we prove Theorem 4.

Proof (Theorem 4). Recall that a valid witness contains 2m polynomials
(a∗s(X), b∗s(X))ms=1 of degree at most n, such that

∑m
s=1 a

∗
s(X)b∗s(X) ≡ 0 and

a∗s(x) = as, b
∗
s(x) = bs for all s ∈ [1,m].

Let Extkzgss be a (n + 1)-special-soundness extractor Extkzgss of KZG. We de-
pict the (2n+1,m,m+2)-special-soundness extractor ExtSanLinGenss for SanLinGen
in Fig. 16. It has blackbox access to Extkzgss . On input a (2n + 1,m,m + 2)-
tree of SanLinGen accepting transcripts, ExtSanLinGenss calls TElingen (from Fig. 15)
that computes accepting KZG transcripts tras

, trbs for s ∈ [1,m]. As stated
in Lemma 8, each trasi (respectively trbsi) contains a transcript for the com-
mitment [as]1 with a distinct evaluation point zi. We feed them separately nto
KZG’s (n+1)-special-soundness extractor Extkzgss to compute all the polynomials
a∗s(X) and b∗s(X).

Next, we show that AdvssPgen,SanLinGen,ExtSanLinGenss ,(2n+1,m,m+2),A(λ) is negligible

for any PPT adversary A. That is, given A’s output, ExtSanLinGenss fails to extract

40 Helger Lipmaa , Roberto Parisella , and Janno Siim

(a∗s(X), b∗s(X))ms=1, such that

(([as, bs]1, ās, b̄s)
m
s=1, (a

∗
s(X), b∗s(X))ms=1) ∈ RLinGen

ck .

We consider the following two failure events for ExtSanLinGenss :

1. The event badext happens when ([as]1, a
∗
s(X)) ̸∈ Rck,tras

or ([bs]1, a
∗
s(X)) ̸∈

Rck,trbs for some s ∈ [1,m].
2. The event badevb happens when badext did not happen, but one of the fol-

lowing conditions hold:
(a) For any s ∈ [1,m], either a∗s(zi) ̸= āis or b∗s(zi) ̸= b̄′is for some i ∈

[n+ 2, 2n+ 1].
(b)

∑m
s=1 āisb̄

′
is ̸= 0 for any i ∈ [1, 2n+ 1].

Consider the scenario where neither badext nor badevb occurs. Then, we have
extracted polynomials a∗s(X) and b∗s(X) for s ∈ [1,m] of degree at most n which
are consistent with the commitments. Denote g(X) :=

∑m
s=1 a

∗
s(X)b∗s(X). For

any i ∈ [1, 2n+ 1],

g(zi) =

m∑
s=1

a∗s(zi)b
∗
s(zi) =

m∑
s=1

āisb̄
′
is = 0 .

Since g(X) is at most degree 2n, it follows that g(X) = 0 and consequently∑m
s=1 a

∗
s(X)b∗s(X) = 0. Therefore, ExtSanLinGenss extracts a valid witness.

Next, we bound the probabilities Pr[badext] and Pr[badevb]. To bound
Pr[badext], we construct a PPT adversary Bkzgss (see Fig. 16) that breaks the
special-soundness of KZG when the event badext happens. Bkzgss runs A(ck)
to recover the tree T . Then, it obtains transcript vectors (tras

, trbs)
m
s=1 ←

TElingen(ck, T). For each transcript vector trf , where f ∈ {as, bs}ms=1, Bkzgss runs

the deterministic extractor Extkzgss (ck, trf) to some polynomial f∗(X). Bkzgss re-
turns the first transcript vector trf , which satisfies ([f]1, f

∗(X)) ̸∈ Rck,trf . When

the event badext happens, ([f]1, f
∗(X)) ̸∈ Rck,trf for some f , and hence Bkzgss

breaks the special soundness of KZG,

Pr[badext] = Advss
Pgen,KZG,Extkzgss ,n+1,Bkzg

ss
(λ) .

Second, we bind the probability Pr[badevb]. We construct a PPT evaluation-
binding adversary Cevb, depicted in Fig. 16. Cevb runs A, TElingen, Ext

SanLinGen
ss

to obtain T and corresponding (a∗s(X), b∗s(X))ms=1. If the event badevb happens,
then for all s, ([as]1, a

∗
s(X)) ∈ Rck,tras

and ([bs]1, a
∗
s(X)) ∈ Rck,trbs and thus,

a∗s(x) = as and b∗s(x) = bs. Note that

huo(X) := (a∗s(X)− a∗s(zi))/(X − zi)

is always a polynomial. Hence, Cevb can compute [has
(x)]1 that satisfies

[has(x)]1 • [x− zi]2 = [a∗s(x)− a∗s(zi)]T = [as − a∗s(zi)]T .

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 41

Thus,
([as]1, zi, a

∗
s(zi), [has(x)]1)

is an accepting transcript. However, k.tr∗ijs = ([as]1, zi, āis, [h
∗
i1s]1) is also an ac-

cepting transcript. If a∗s(zi) ̸= āis, Cevb has broken evaluation-binding by finding
a collision. Analogously, one can show that b∗s(zi) ̸= b̄′is implies that Cevb broke
evaluation-binding.

We also need that g(zi) =
∑m

s=1 a
∗
s(zi)b

∗
s(zi) = 0. From the above,

([vj]1, zi, b̄
′
ij , [h

′
ij]1)

and ([
m∑
s=1

āisbs

]
1

, zi, 0,
[
h∗
ij,m+1

]
1

)
are accepting transcripts for all i ∈ [1, 2n+ 1].

Since KZG is triply homomorphic,

([
∑m

s=1 āisbs]1, zi,
∑m

s=1 āisb̄
′
is, [
∑m

s=1 āish
′
is]1)

is an accepting transcript. If
∑m

s=1 āisb̄
′
is ̸= 0, Cevb has found a collision and thus

broken evaluation-binding. Therefore,

Pr[badevb] = AdvevbPgen,KZG,n,Cevb
(λ)

and we can conclude that

AdvssPgen,SanLinGen,ExtSanLinGenss ,κ,A(λ) =Advss
Pgen,KZG,Extkzgss ,n+1,Bkzg

ss
(λ)

+AdvevbPgen,KZG,n,Cevb
(λ) .

⊓⊔

B Postponed Material from Section 4

B.1 Plonk’s Polynomials That Define A Specific Circuit

The following polynomials, along with the integer n, uniquely define our circuit:

– qM(X), qL(X), qR(X), qO(X), qC(X) are selector polynomials that define the
circuit’s arithmetization. We refer to [GWC19] for the explanation how they
are defined based on an arithmetic circuit.

– SID1(X) = X, SID2(X) = k1X, SID3(X) = k2X encode an identity permu-
tation respectively on groups k0 · H, k1 · H, and k2 · H. Here, k0 := 1 and
k1, k2 ∈ F are chosen such that H, k1 ·H, k2 ·H are distinct cosets of H in F∗,
and thus consist of 3n distinct elements. For example, one can take ω to be
a quadratic residue in F, k1 to be any quadratic non-residue, and k2 to be a
quadratic non-residue not contained in k1 ·H.

42 Helger Lipmaa , Roberto Parisella , and Janno Siim

– Let us denote H′ := H ∪ (k1 · H) ∪ (k2 · H). Let σ : [1, 3n] → [1, 3n] be a
permutation. We encode an element i ∈ [1, 3n] in H′ such that if we express
i = ϑn+j for the unique ϑ ∈ [0, 2] and 0 ≤ j < n, then H′[i] = kϑω

j . Finally,
define σ∗(i) := H′[σ(i)], which is an injective map on H′. We encode σ∗ by
the three permutation polynomials Sσ1(X) :=

∑n
i=1 σ

∗(i)Li(X), Sσ2(X) :=∑n
i=1 σ

∗(n+ i)Li(X), and Sσ3(X) :=
∑n

i=1 σ
∗(2n+ i)Li(X).

B.2 SanPlonk’s Case from Theorem 5

Proof (Finishing the proof of Theorem 5).

Case of SanPlonk. The case of SanPlonk is similar to Plonk but differs in quite
many details. For the sake of clarity, we highlight additional text, but we also
removed some text that is not relevant for SanPlonk. (Intuitively, the removed
text corresponds to the part in Plonk’s proof where one handles the reduction
to TriRSDH.)

In Fig. 7, we depict an extractor Extsubss . Extsubss invokes Extkzgss (ck, k.trω) and
Extkzgss (ck, k.trk) for k ∈ [2, 4]∪[7, 9], extracting polynomials z(X), a(X), b(X),
c(X), tlo(X), tmid(X), and thi(X) of at most degree κkzg = n+5. After executing

Extsubss , we use the following procedure to possibly set one of the “bad” flags:

(i’) badext ← false; badevb ← false;
(ii’) if ([z]1, z(X)) /∈ Rck,k.tr1 ∨ ([a]1, a(X)) /∈ Rck,k.tr2 ∨ ([b]1, b(X)) /∈

Rck,k.tr3 ∨ ([c]1, c(X)) /∈ Rck,k.tr4 ∨([tlo]1, tlo(X)) /∈ Rck,k.tr7∨
([tmid]1, tmid(X)) /∈ Rck,k.tr8∨ ([tlo]1, thi(X)) /∈ Rck,k.tr9 (see Eq. (1))
then badext ← true; abort;

(iii’) for i ∈ [κkzg + 2, κz]: if z(ziω) ̸= z̄ωi ∨ a(zi) ̸= āi ∨ b(zi) ̸= b̄i ∨ c(zi) ̸=
c̄i∨tlo(zi) ̸= t̄zlo,i ∨tmid(zi) ̸= t̄zmid,i ∨ thi(zi) ̸= t̄zhi,i then badevb ← true;
abort;

(iv’) for i ∈ [1, κz]:
– if Sσ1(zi) ̸= s̄σ1i ∨ Sσ2(zi) ̸= s̄σ2i then badevb ← true; abort;
– ri(X)← Λ0i(X) + αΛ1i(X) + α2Λ2i(X)− ZH(zi) · (tlo(X) + zni tmid(X) + z2ni thi(X));
– if ri(zi) ̸= 0 then badevb ← true;

Importantly, only one of the “bad” flags is set at a time. Thus, for example,
badevb = true implies that badext = false. Let E be the event Extsubss succeeds
and bad be the event none of the bad flags was set. Thus, E is the event that
a(X), b(X), c(X), z(X), tlo(X), tmid(X), and thi(X) are consistent with the
commitments and all openings, and t(X) = (F0(X)+αF1(X)+α2F2(X))/ZH(X)
is a polynomial. We analyze the success probability of Extsubss . For this, we make
the following claims.

1. Claim 1. Pr[E|bad] = 1.
Really, assume that bad holds. Since badext = badevb = false, we get that
a(X), b(X), c(X), z(X), tlo(X), tmid(X), thi(X) are consistent with the com-
mitments and all openings.
Recall that in the case of Plonk, we deduced here that since
badtrirsdh = false, t(X) = (F0(X) + αF1(X) + α2F2(X))/ZH(X) is a

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 43

polynomial. In the case of SanPlonk, we handle this differently. Since
badevb = false, ri(X) = 0 for all i ∈ [1, κz]. Let g(X) := F(X)− ZH(X)t∗(X),
where t∗(X) := tlo(X) +Xntmid(X) +X2nthi(X). Since for i ∈ [1, κz],
Fs(zi) = Λsi(zi), we have g(zi) = 0. Since this holds for κz = 4κkzg + 1 eval-
uation points and deg g(X) ≤ 4κkzg, g(X) = 0. Thus, t(X) is a polynomial.

2. Claim 2. There exists a KZG’s (κkzg + 1)-special-soundness adversary Bkzgss

(see Fig. 8), such that Pr[Bkzgss succeeds | badext] = 1.
Recall from Item ii that badext is set if one of the seven bad events happens.
Bkzgss just tests which of the cases is true and returns the corresponding
transcript. Clearly, Pr[Bkzgss succeeds | badext] = 1.

3. Claim 3. There exists an evaluation-binding adversary Cevb (see Fig. 9) for
KZG, such that Pr[Cevb succeeds | badevb] = 1.
Assume that badevb = true. (Note that badevb = true means that badext =
false, that is, Extsubss managed to extract all polynomials.) Then, one of the bad
cases in Item iii or Item iv happens. Cevb just finds out which of these events
happens, and depending on the case, returns a collision. By the correctness
of the extraction, and the completeness property of KZG, any of the returned
values in Fig. 9 is a collision. Thus, Pr[Cevb succeeds | badevb] = 1.

Thus,

Pr[E] = Pr[E|bad] Pr[bad] + Pr[E|badext] Pr[badext] + Pr[E|badevb] Pr[badevb]
≤ 0 + Pr[badext] + Pr[badevb]

Since Cevb succeeds whenever badevb is set and KZG is evaluation-binding,
Pr[badevb] = negl(λ). Similarly, Pr[badext] = negl(λ). Thus, Pr[E] ≤ negl(λ).
This proves the claim. ⊓⊔

B.3 Proof of Lemma 4

Proof. Consider the polynomials

f(Y,Z) :=

n∏
s=1

(as + ωsY + Z)

and

g(Y,Z) :=

n∏
s=1

(bs + ωσ(s)Y + Z) ;

the degree of Y or Z in both f and g is at most n. Denote B := {βs}n+1
s=1 and

Γ := {γs}t+1
s=1.

Define the Lagrange polynomials LB
s (Y) :=

∏
i ̸=s

Y−βi

βs−βi
and LΓ

s (Z) :=∏
k ̸=s

Z−γk

γs−γk
for s = 1, . . . , n + 1. Clearly, {LB

i (Y) · LΓ
j (Z)}ij is a basis of bi-

variate polynomials where each variable has at most degree n. Thus, we can
express f and g uniquely as

f(Y,Z) :=

n+1∑
i=1

n+1∑
j=1

fijL
B
i (Y)LΓ

j (Z) ,

44 Helger Lipmaa , Roberto Parisella , and Janno Siim

g(Y,Z) :=

n+1∑
i=1

n+1∑
j=1

gijL
B
i (Y)LΓ

j (Z) ,

for some fij , gij ∈ F. Since by the hypothesis of the lemma, f(βi, γj) = fij =
g(βi, γj) = gij for all i, j ∈ [1, n+ 1], it follows that f(X,Y) = g(X,Y).

Observe that the polynomials ai+ωiY +Z and bs+ωσ(s)Y +Z are irreducible.
Thus, f(X,Y) = g(X,Y) implies that for every s there exists exactly one i such
that

as + ωsY + Z = bi + ωσ(i)Y + Z .

Thus, ωi = ωσ(s), which implies that i = σ(s), which in turn implies that
ai = aσ(s) = bs. The result follows since the above holds for all s ∈ [1, n]. ⊓⊔

B.4 Proof of Lemma 5

Proof. Let f(Y,Z) :=
∏2

ϑ=0 fϑ(Y,Z) and g(Y,Z) :=
∏2

ϑ=0 gϑ(Y, Z). Both f
and g have at most degree 3n in both Y and Z. Using the same reasoning
as in Lemma 4, we conclude that f(Y,Z) = g(Y,Z). The polynomials wϑn+s +
kϑω

sY +Z are irreducible and pairwise distinct for all ϑ ∈ {0, 1, 2} and s ∈ [1, n].
The same holds for the polynomials wϑn+s + Sσ,(ϑ+1)(ω

s)Y + Z.

Recall that σ∗(i) = H′[σ(i)] for all i ∈ [1, 3n] and Sσ,(ϑ+1)(ω
s) = σ∗(ϑn+s) =

H′[σ(ϑn+ s)]. Therefore, we can express

f(Y,Z) =

3n∏
j=1

(wi + YH′[i] + Z), g(Y,Z) =

3n∏
i=1

(wi + YH′[σ(i)] + Z) .

Just as in Lemma 4, each factor wi + YH′[σ(i)] +Z of f is equal to exactly one
factor wi′ + YH′[i′] + Z. Thus, H′[σ(i)] = H′[i′] and wi = wi′ . The first identity
implies that σ(i) = i′ and the second implies that wi = wi′ = wσ(i). Since this
holds for all i ∈ [1, 3n], we have proven the lemma. ⊓⊔

B.5 Fiat-Shamir Transform

Recall the following theorem from [AFK22].

Theorem 7 ([AFK22]). Let Π be a (κ1, . . . , κµ)-out-of-(N1, . . . , Nµ)-special-
sound interactive proof. Then, the Fiat-Shamir transformation FS[Π] of Π is
knowledge-sound with knowledge error

Erfs(Q) = (Q+ 1) · Er,

where Q is the number of random oracle queries the adversary makes and Er =

1−
∏µ

i=1

(
1− κi−1

Ni

)
.

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 45

Importantly, in all our security proofs, ki/Ni is negligible for all i, resulting
in a negligible Erfs(Q). This holds since all verifier challenges (including the
evaluation point z), used as branches in the transcript tree, in SanPlonk and
Plonk are chosen randomly from F (or, a large subset of F); thus, Ni ≈ |F| and
ki/Ni = negl(λ).

While Theorem 7 applies to proof systems, it also extends to argument sys-
tems as explained in [AFKR23, Remark 1]. This is because the interactive ar-
gument system Π can be seen as a proof of knowledge for a slightly different
relation: the knowledge of a witness for the underlying relation OR a solution to
some computationally hard problem (in some cases more than one hard prob-
lem). Note that all of the computational special-soundness proofs in this paper
showed that there exists a DPT extractor Extss and a PPT A such that given an
accepting transcript tree T , either Extss outputs a witness orA outputs a solution
to some hard problem. The proof system’s special soundness extractor for the
OR relation runs internally both Extss and A on T . It returns the witness if Extss
returns the witness and otherwise returns the output of A. Applying now the
Fiat-Shamir transform, we obtain a non-interactive knowledge-sound proof sys-
tem FS[Π] for the OR-relation with the knowledge error Erfs(Q) as described in
Theorem 7. Furthermore, the obtained FS[Π] is also an argument system for the
original relation since we can reduce the security to the underlying assumption
with a factor Erfs(Q) loss.

C Security of TriRSDH in the AGMOS

We prove that n-TriRSDH is secure in the AGMOS (AGM with oblivious sam-
pling, [LPS23]). For this, in Appendix C.1, we first recall the definition of AG-
MOS.

C.1 Preliminaries: AGMOS

Lipmaa et al. [LPS23] recently defined AGMOS (AGM with oblivious sampling).
AGMOS is more realistic than AGM since AGMOS adversaries are given an
additional power of sampling group elements without knowing their discrete
logarithms. As shown in [LPS23], certain uses of KZG are secure in AGM but
not in AGMOS. Since AGMOS is a new model, we will give a longer description
of AGMOS and TOFR (an underlying security assumption); our description
follows closely [LPS23].

Fix a pairing description p← Pgen(1λ). Let EFp,ι be a set of (polynomially
many) functions F → Gι. Let DFp be a family of distributions over F. We
introduce two oracles O1 and O2, one for each group G1 and G2. Let O =
(O1,O2). The ith query (E,D) to Oι consists of a function E ∈ EFp,ι and a
distribution D ∈ DFp. The oracle samples a random field element si←$D and
returns [qιi]ι ← E(si) and si.

We will denote the adversary’s initial input (e.g., input from the challenger)
in Gι by [xι]ι. We assume [xι]ι always includes [1]ι. Let x = ([x1]1, [x2]2). The

46 Helger Lipmaa , Roberto Parisella , and Janno Siim

Oι(E,D)

if E /∈ EFp,ι ∨ D /∈ DFp then return ⊥;fi
s←$D; [q]ι ← E(s); return ([q]ι, s);

Fig. 17. The description of the oblivious sampling oracle Oι, where ι ∈ {1, 2}.

adversary’s view consists of all group elements that the adversary has seen up
to the given moment. This includes the adversary’s initial input, elements sent
by other parties during the interaction, and oracle answers.

Let O be as above. We require that for any PPT oracle adversary AO, there
exists a (non-uniform) PPT extractor ExtOA, such that: if AO(x) outputs a vector
of group elements [y]ι, on input x = ([x1]1, [x2]2), then with an overwhelming
probability, ExtOA outputs field-element matrices γ, δ, and [qι]ι (Oι’s answer
vector), such that

y = γ⊺xι + δ⊺qι . (17)

Definition 3 (AGMOS). Let EF = {EFp,ι} be a collection of functions. Let
DF = {DFp} be a family of distributions. A PPT algorithm A is an (EF ,DF)-
AGMOS adversary for Pgen if there exists a PPT extractor ExtA, such that for
any x = (x1,x2), Adv

agmos
Pgen,EF,DF,A,ExtA

(λ) :=

Pr

 y1 ̸= γ⊺
1x1 + δ⊺1q1 ∨

y2 ̸= γ⊺
2x2 + δ⊺2q2

p← Pgen(1λ); r ← RNDλ(A);
([y1]1, [y2]2)←$AO(p,x; r);

(γι, δι, [qι]ι)
2
ι=1 ← ExtOA(p,x; r) :

 ≈λ 0 .

O is the non-programmable oracle depicted in Fig. 17. Here, [qι]ι is required to
be the tuple of elements output by Oι. We denote by ilι the number of Oι calls.

Many AGMOS proofs rely on the following two assumptions.

Let d1(λ), d2(λ) ∈ poly(λ). Pgen is (d1(λ), d2(λ))-PDL (Power Discrete Log-

arithm, [Lip12]) secure if for any non-uniform PPT A, Advpdld1,d2,Pgen,A(λ) :=

Pr
[
A(p, [(xi)d1

i=0]1, [(x
i)d2

i=0]2) = x | p← Pgen(1λ), x←$F
]
= negl(λ) .

Let EF be some family of function and DF a family of distributions. We say
that Pgen is (EF ,DF)-TOFR (Tensor Oracle FindRep, [LPS23]) secure if for
any PPT A, AdvtofrPgen,A(λ) :=

Pr

[
v ̸= 0 ∧ v⊺ ·

(
1
q1
q2

q1⊗q2

)
= 0 p← Pgen(1λ);v ← AO(p)

]
≈λ 0 .

Here, O, q1, and q2 are as in Definition 3.

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 47

C.2 TriRSDH’s Security Proof

Theorem 8. Let n = poly(λ); then n-TriRSDH holds in the AGMOS under the
PDL and TOFR assumptions.

Proof (Sketch). LetA be a AGMOS adversary against the TriRSDH assumption.
Thus, with non-negligible probability, on input ck = ([1, x, . . . , xκkzg]1, [1, x]2), A
outputs (zi, [χi]1)

κz

i=1, [tlo, tmid, thi]1, and F(X) such that

∀i ̸= i′.zi ̸= zi′ ∈ F ∧ F(X) ∈ F≤κz−1[X] ∧ (ZH(X) ∤ F(X))∧
∀i ∈ [1, κz].

[
tlo + zni tmid + z2ni thi − F(zi)

ZH(zi)

]
1
• [1]2 = [χi]1 • [x− zi]2

.

Then, there exists an extractor ExtOA that, on input ck and A’s random coins,
outputs ({t′s, t̂s}s∈{lo,mid,hi}, {χ′

i, χ̂i}i∈[1,κz]) such that, except with negligible
probability, we have

ts = t′s(x) + t̂⊺sq , χi =χ′
i(x) + χ̂⊺

i q .

Here q is a vector of discrete logarithms of the answers returned by the oblivious
sampling oracle O.

Let us define ts(X,Q) = t′s(X) + t̂⊺sQ and χi(X,Q) = χ′
i(X) + χ̂⊺

iQ for
s ∈ {lo,mid, hi} and i ∈ [1, κz]. Here, say, χ′

i(X) ∈ F≤κkzg
[X] are polynomials

and, say, χ̂ij ∈ F are field elements. Let t(X) = F(X)/ZH(X). Let il1 denote the
length of the vector Q. For each i ∈ [1, κz], we define the verification polynomial
as

Vi(X,Q) :=Vi0(X) +

il1∑
j=1

Vij(X)Qj

=(t′lo(X) + t̂⊺loQ) + zni (t
′
mid(X) + t̂⊺midQ) + z2ni (t′hi(X) + t̂⊺hiQ)

− t(zi)− (χ′
i(X) + χ̂⊺

iQ)(X − zi) .

One of the following three cases can happen:

1. For each i ∈ [1, κz], Vi(X,Q) ≡ 0 as a polynomial. We show that this is
impossible.

2. For at least one i, Vi(X,Q) ̸≡ 0. However,
∑il1

j=1 Vij(x)Qj ≡ 0. In this case
we have a successful reduction to the PDL assumption.

3. For at least one i, we have Vi(X,Q) ̸≡ 0 and
∑il1

j=1 Vij(x)Qj ̸≡ 0. In this
case we break the TOFR assumption.

Case 1. In the first case of an AGMOS proof, we get that for any i ∈ [1, κz],

(t′lo(X) + t̂⊺loQ) + zni (t
′
mid(X) + t̂⊺midQ)+

z2ni (t′hi(X) + t̂⊺hiQ)− t(zi) ≡ (χ′
i(X) + χ̂⊺

iQ)(X − zi) ,

where the latter is an equality of polynomials.

48 Helger Lipmaa , Roberto Parisella , and Janno Siim

Let us set X = zi on the left and right hand side. Then, we obtain the
equation,(

t′lo(zi) + zni t
′
mid(zi) + z2ni (t′hizi)− t(zi)

)
+
(̂
tlo + zni t̂

⊺
mid + t̂hi

)
Q = 0 .

This implies t′lo(zi)+zni t
′
mid(zi)+z2ni t′hi(zi) = t(zi) . Observe that the polynomial

F(X) does not depend on Q by definition. Thus, the polynomial

T (X) := t′lo(X) +Xnt′mid(X) +X2nt′hi(X) ∈ F≤κkzg+2n[X]

and the rational function t(X) = F(X)/ZH(X) agree on κz = 4κkzg + 1 points
{zi}i. Hence, the polynomials T (X)ZH(X) ∈ F≤κkzg+3n[X] and

F(X) = t(X)ZH(X) ∈ F≤4κkzg
[X]

agree on κz = 4κkzg + 1 points {zi}i. Since both polynomials have degree ≤
4κkzg, they coincide as polynomials and thus T (X) = t(X) is a polynomial.
Contradiction.

Case 2. Exists î ∈ [1, κz], such that Vî(X,Q) ̸≡ 0, and
∑il1

j=1 Vîj(x)Qj ≡ 0.
In this case we have that either

Vî0(X) = t′lo(X) + zn
î
t′mid(X) + z2n

î
t′hi(X)− t(zî)− χ′

î
(X)(X − zî) ̸≡ 0 ,

or there exists j ∈ [1, il1] such that

Vîj(X) = t̂lo:j + zn
î
t̂mid:j + z2n

î
t̂mid:j − χ̂îj(X − zî) ̸≡ 0 .

Furthermore, both Vî0(x) = 0 and Vîj(x) = 0.
Let Tarî(X) be one of such polynomials. Note that Tarî(X) is univariate

(independent from the oracle calls), and of degree at most κkzg. Then we have
Tarî(X) ̸≡ 0, but Tarî(x) = 0. The PDL adversary can now compute x as one of
the roots of the univariate Tarî(X) and win the game. Thus, the probability of
being in case 2 must be negligible.

Case 3. Exists i ∈ [1, κz], such that Vi(X,Q) ̸≡ 0 and
∑il1

j=1 Vij(x)Qj ̸≡ 0.
Therefore, we have that

(t′lo(x) + t̂⊺loQ) + zni (t
′
mid(x) + t̂⊺midQ) + z2ni (t′hi(x) + t̂⊺hiQ)− t(zi)

− (χ′
i(x) + χ̂⊺

iQ)(x− zi) ̸≡ 0 .

In this case we construct an adversary that breaks the TOFR assumption. The
adversary samples ck by itself, and then, knowing the trapdoor x, it outputs the
vector v defined as

v0 = t′lo(x) + zni t
′
mid(x) + z2ni t′hi(x)− t(zi)− χ′

i(x)(x− zi) ,

∀j ∈ [1, il1].vj = t̂lo:j + zn
î
t̂mid:j + z2n

î
t̂hi:j − χ̂îj(x)(x− zî) .

Such adversary is successful in breaking the TOFR assumption. Thus, the prob-
ability of being in case 3 is negligible. ⊓⊔

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 49

D Zero-Knowledge of SanPlonk

We recall the zero-knowledge property of a non-interactive argument.9 Below
URp,n is a family of binary relations parameterized by the system parameters p
and an integer n. For R ∈ URp,n and srs ∈ range(KGen(p, n)).

A non-interactive argument is (statistical) zero-knowledge if there exists a
PPT simulator Sim, s.t. for all unbound A = (A1,A2), all p ∈ range(Pgen), all
n ∈ poly(λ),

Pr

 A2(st, π) = 1∧
R(x,w) ∧ R ∈ URp,n;

∣∣∣∣∣∣
(srs, tdsrs)← KGen(p, n);
(R,x,w, st)← A1(srs);
π ← P(R, srs,x,w)

 ≈s

Pr

 A2(st, π) = 1∧
R(x,w) ∧ R ∈ URp,n

∣∣∣∣∣∣
(srs, tdsrs)← KGen(p, n);
(R,x,w, st)← A1(srs);
π ← Sim(R, srs, tdsrs,x)

 .

Here, ≈s denotes the statistical distance as a function of λ. Π is perfect zero-
knowledge if the above probabilities are equal.

Recently, Sefranek [Sef24] showed that an earlier version of Plonk did not sat-
isfy statistical zero-knowledge since the polynomials tlo(X), tmid(X), thi(X) were
not randomized. He corrects this mistake and proves statistical zero-knowledge
of the corrected Plonk. The correction is a part of standard Plonk now, [GWC19].
Our paper contains the current (corrected) version of Plonk, so we will not re-
peat the zero-knowledge proof of Plonk and instead refer the reader to [Sef24].
However, we provide a similar proof of zero-knowledge for SanPlonk.

We recall the following well-known lemma; see, e.g., [Sef24].

Lemma 9 ([Sef24]). Let f(X) ∈ F[X] and x1, . . . , xk be distinct values in
F \ H. Assume f̃(X) = f(X) + ϱ(X)ZH(X) for ϱ(X)←$F≤k−1[X]. Then,

(f̃(x1), . . . , f̃(xk)) is distributed uniformly over Fk,

The same claim also holds for f̃(X) = f(X)+ϱ(X); moreover, then it is true even
when x1, . . . , xk ∈ F, not just in F \H (in Lemma 9, we need that ZH(xi) ̸= 0).
We use both results to prove the statistical zero-knowledge of SanPlonk.

Theorem 9. SanPlonk has statistical zero-knowledge.

Proof. Consider the following simulation strategy. Recall that SanPlonk’s
transcript is ([a, b, c]1;β, γ; [z]1;α; [tlo, tmid, thi]1; z; ā, b̄, c̄, s̄σ1, s̄σ2, z̄ω; δ; t̄z; v;
[Wz,Wzω]1). Similarly to Plonk’s simulator in [Sef24], given the verifier’s random
challenges, SanPlonk’s simulator works like an honest prover with four crucial
differences. First, it creates the commitments a, b, c, z and their openings by
sampling them randomly. Second, since t(X), Wz(X), Wzω(X) might not be

9 We proved the special soundness for interactive arguments, and since then, we
could use Theorem 7 (which has a pretty complicated proof) to obtain knowledge-
soundness for non-interactive arguments. For zero-knowledge, it is easy to prove a
direct result for non-interactive arguments, so we do that.

50 Helger Lipmaa , Roberto Parisella , and Janno Siim

1. a, b, c←$F.
2. β ← H(srs,x, [a, b, c]1, 0); γ ← H(srs,x, [a, b, c]1, 1).
3. z←$F.
4. α← H(srs,x, [a, b, c, z]1).
5. Sample z̄xω ←$F (a candidate value for z(xω) used to compute F1(x) in the

next step).
6. For Fi(X) defined as in Eq. (6), set [t(x)]1 ← 1

ZH(x)
[F0(x)+αF1(x)+α2F2(x)]1.

7. thi, tmid ←$F; [tlo]1 ← [t(x)− tmidx
n − thix

2n]1. Abort if ZH(x) = 0.
8. z← H(srs,x, [a, b, c, z, tlo, tmid, thi]1).
9. Abort if z = x or zω = x.

10. ā, b̄, c̄, z̄ω ←$F; s̄σ1 ← Sσ1(z); s̄σ2 ← Sσ2(z).
11. δ ← H(srs,x, [a, b, c, z, tlo, tmid, thi]1, ā, b̄, c̄, s̄σ1, s̄σ2, z̄ω).
12. t̄z ←$F.
13. v ← H(srs,x, [a, b, c, z, tlo, tmid, thi]1, ā, b̄, c̄, s̄σ1, s̄σ2, z̄ω, t̄z).
14. W← r + v(a− ā) + v2(b− b̄) + v3(c− c̄) + v4(sσ1 − s̄σ1) + v5(sσ2 − s̄σ2).
15. [Wz]1 ← 1

x−z
[W+v6(tlo + δtmid + δ2thi − t̄z)]1.

16. [Wzω]1 ← 1
x−zω

[z − z̄ω]1.

17. Return ([a, b, c]1;β, γ; [z]1;α; [tlo, tmid, thi]1; z; ā, b̄, c̄, s̄σ1, s̄σ2, z̄ω; δ; t̄z;v;
[Wz,Wzω]1).

Fig. 18. SanPlonk’s simulator.

polynomials, it computes [t(x),Wz(x),Wzω(x)]1 by using the trapdoor. Third,
it computes [tlo, tmid, thi]1 by sampling two of the values at random and setting
the third one so that [tlo, tmid, thi]1 agrees with the previously computed value
of [t(x)]1. Fourth, the sanitization value t̄z is sampled randomly. In Fig. 18, we
present the full simulator for SanPlonk as a zk-SNARK, including the definition
of the verifier’s challenges as the outputs of the random oracle. (For brevity, we
refer to Eq. (6) for the formulas of Fi(X) and F(X).)

From Lemma 9 it follows that in the honest proof a(x), b(x), c(x), z(x), a(z),
b(z), c(z), z(zω), and z(xω) are distributed uniformly randomly and indepen-
dently. Here, the last element z̄xω = z(xω) is not part of the proof transcript,
but it is necessary for determining a unique [t(x)]1. Furthemore, in the honest
protocol thi(X) := t′hi(X) − b11, tmid(X) := t′mid(X) − b10−b12X + b11X

n, and
tlo(X) := t′lo(X) + b10X

n+b12X
n+1 (as always, we hilight the changes com-

pared to Plonk). Thus, thi(x), tmid(x), and tlo(z) are distributed uniformly at
random and independently since (resp.) b11, b10, and b12 are sampled uniformly
at random. In the case of tlo(z), it holds under the assumption that zn+1 ̸= 0
(otherwise b12z

n+1 = 0). Note that the proof does not reveal tlo(z). However,
tlo(z) being uniformly random and independent of other elements guarantees
that t̄z = tlo(z)+ δtmid(z)+ δ2thi(z) is uniformly random and independent. In the
simulator, we also pick all the mentioned random elements uniformly at random
and independently.

The remaining proof elements have only one possible satisfiable value.
Namely, there is precisely one possible value of tlo(x) such that tlo(x)+xntmid(x)+

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215

On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 51

x2nthi(x) = t(x) and only one possible value for opening proofs [Wz,Wzω]1 such
that the verification equation is satisfied. The simulator computes these elements
accordingly. The public polynomials are evaluated honestly as s̄σ1 ← Sσ1(z) and
s̄σ2 ← Sσ2(z). Also, the challenges β, γ, . . . are computed from the correct dis-
tribution. The simulator fails when either xn+1 = 0, z = x, zω = x, or ZH(x) = 0
(the last three conditions are needed to avoid division by 0 in the simulator);
this happens only with a negligible probability. ⊓⊔

	 On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions

