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ABSTRACT
Collaborative graph learning represents a learning paradigm where

multiple parties jointly train a graph neural network (GNN) using

their own proprietary graph data. To honor the data privacy of all

parties, existing solutions for collaborative graph learning are either

based on federated learning (FL) or secure machine learning (SML).

Although promising in terms of efficiency and scalability due to

their distributed training scheme, FL-based approaches fall short in

providing provable security guarantees and achieving good model

performance. Conversely, SML-based solutions, while offering prov-

able privacy guarantees, are hindered by their high computational

and communication overhead, as well as poor scalability as more

parties participate.

To address the above problem, we propose CoGNN, a novel

framework that simultaneously reaps the benefits of both FL-based

and SML-based approaches. At a high level, CoGNN is enabled

by (i) a novel message passing mechanism that can obliviously

and efficiently express the vertex data propagation/aggregation re-

quired in GNN training and inference and (ii) a two-stage Dispatch-
Collect execution scheme to securely decompose and distribute

the GNN computation workload for concurrent and scalable exe-

cutions. We further instantiate the CoGNN framework, together

with customized optimizations, to train Graph Convolutional Net-

work (GCN) models. Extensive evaluations on three graph datasets

demonstrate that compared with the state-of-the-art (SOTA) SML-

based approach, CoGNN reduces up to 123x running time and

up to 522x communication cost per party. Meanwhile, the GCN

models trained using CoGNN have nearly identical accuracies as

the plaintext global-graph training, yielding up to 11.06% accuracy

improvement over the GCN models trained via federated learning.
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1 INTRODUCTION
Recent years have witnessed the success of deploying Graph Neu-

ral Network (GNN) [19, 25, 48] in areas like financial fraud detec-

tion [51, 53] and drug discovery [22, 58]. As a special category of

neural network, GNN takes as input a graph, composed of vertices

and the edges connecting vertices. Commonly, the goal of a GNN

is to classify vertices, which is called vertex-level (or node-level)

prediction. Other tasks include classifying edges or the whole graph.

In vertex-level prediction, each vertex is a sample with its features,

while each edge connects two vertices and is assigned a weight.

The edge weight implicates how the two vertices are related to

each other. The key feature distinguishing GNN from the other ma-

chine learning models is that it considers the edges (i.e., relations)

between different samples during forward and backward computa-

tion, while the other models predict on each sample independently.

Specifically, the computation of GNN consists of two stages. First,

it propagates the features or hidden-layer representation of each

sample to influence its neighbors, via the graph edges. This process

is called message passing [15, 49, 56]. Second, it performs NN com-

putation on the result from the previous stage, as in a traditional

NN model.

In this paper, we study the collaborative learning and inference

of GNN, where multiple graph data owners jointly train a global

GNN model by contributing their private graph data. These graph

owners have exclusively different sample sets (i.e., vertices), but

there could be inter-edges connecting the vertices (or graphs) held

by different owners. For example, different banks have different

sets of accounts, but their transaction graphs are interleaved into a

global transaction graph across banks by inter-bank transactions.

Interleaved communication graphs of multiple mobile carriers are

similar. Jointly analyzing the collection of inter-related graphs is

critical to a number of use cases. For instance, to detect fraud ac-

counts across multiple inter-related financial systems [47] or mobile

carriers [21], collaboratively training GNNs using data from multi-

ple organizations results in supreme model performances.

However, as data privacy becomes increasingly important (either

due to commercial interests or legal compliance (e.g., GDPR [1]),

honoring data privacy in collaborative GNN is challenging. The

community has proposed significant research in this regard. The
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first category is based on Federated Learning (FL) [29]. In partic-

ular, these FL-based approaches [43, 52, 54, 57] have the partici-

pants locally execute graph message passing and NN computation,

and coordinate them by performing gradient/model weight ag-

gregation. The FL-based approaches are efficient because all the

parties compute their local graph concurrently. They do not sup-

port message passing across the inter-edges because passing vertex

embeddings/hidden-layer representations on inter-edges in plain-

text raises privacy concerns. However, ignoring inter-edge messag-

ing passing results in non-trivial performance degradation of the

GNNmodel, as shown in [52]. In addition, the intermediate data dis-

closed during federated training (such as the global gradient) raises

further privacy concerns, which has been exploited by existing

work [36, 41]. Some recent FL-based approaches [13, 32] enhance
their privacy (security) guarantee by incorporating cryptographic
techniques like secure multi-party computation (MPC) [11, 37]
and homomorphic encryption (HE) [23], where they focus on pro-
tecting the model/gradient aggregation process. However, they fail
to provide an end-to-end provable privacy guarantee, because the
aggregated intermediate results (like the global gradient) are either
still revealed in plaintext to the clients [32] (introducing privacy
vulnerabilities as stated above) or hidden via TEE hardware [13]
(vulnerable to various attacks [24, 40] ).

On the other hand, another branch of prior approaches lever-
ages secure machine learning (SML) to provide end-to-end secu-
rity guarantees. These approaches [26, 50] work in an outsourced
setting, where all graph owners outsource their data, in the secret-
shared form, to several third-party computing servers. The servers
jointly train the GNN model and only send back the trained model,
without disclosing any intermediate results. The data privacy is
provably guaranteed via the underlying MPC protocols [11, 27, 37].
However, these approaches are limited by two drawbacks: (i) poor
efficiency: the computation/communication cost in the outsourced

setting is high, mainly caused by expensive cryptographic oper-

ations like oblivious sort [5, 26] or secure array accesses [8]. For

instance, experimental results of [5] show that oblivious sort takes

up more than 70% of the overall running time of graph algorithms;

(ii) poor scalability: unlike the distributed computation in FL where

each party processes its local graph only, each party in SML-based

solutions has to process the entire global graph, resulting in poor

scalability as the number of graph owners increases (i.e., as the

scale of the global graph increases). Therefore, scaling SML-based

approaches to compute large global graphs is challenging.

In summary, in supporting collaborative GNN training and in-

ference, existing solutions face critical limitations. FL-based ap-

proaches, while offering distributed computation, lack provable

privacy guarantees and suffer from limited model performance.

Conversely, SML-based have desirable security properties, but at

the cost of significant overhead and limited scalability. In this paper,

we seek to answer the following research question: can we com-
bine the benefits of both categories of approaches: achieving provable
privacy guarantees and high model performance (in line with the
SML-based approaches), while adopting a fully distributed computa-
tion scheme (in line with the FL-based approaches) to enable supreme
efficiency and scalability.

Towards this end, we propose CoGNN, a novel framework to

enable secure and efficient collaborative GNN learning. CoGNN

is empowered by two fundamental designs: (i) a novel oblivious
message passing paradigm to support the vertex data propaga-

tion/aggregation in GNN training and inference, which reduces the

communication cost by half compared with the state-of-the-art
(SOTA) (see § 5.1); (ii) a two-stageDispatch-Collect execution scheme

built upon the message passing paradigm to securely and efficiently

decompose and distribute the workload of GNN computation across

all parties for scalable computation (see § 5.2). In particular, our

oblivious message passing paradigm stores vertices and edges as

separated lists and uses efficient and oblivious interaction between

the two lists to express vertex data propagation/aggregation. At

the same time, the two-stage Dispatch-Collect decomposes GNN

computation (including message passing) into Dispatch tasks and

Collect tasks and distributes these tasks to different parties for con-

current and scalable execution. Each task is a secure computation

workload executed by a pair of parties. The task distribution or

assignment leverages the secret topology information held by each

party to avoid computationally expensive cryptographic operations

(e.g., oblivious sort or secure array access).

We instantiate the CoGNN framework to train Graph Convolu-

tional Network (GCN) models and provide detailed construction of

all the Dispatch and Collect tasks to enable GCN computations (see

§ 6). The instantiation includes further optimizations to improve

the concrete efficiency of computing GCN (see § 6.6).

Our implementation of CoGNN includes ∼ 6800 lines of C++

code. We evaluate it extensively on commonly used graph datasets

(see § 8). Compared to the state-of-the-art SML-based approach in

training GCN, CoGNN reduces the running duration and per-party

communication significantly. The advantages are enlarged as the

number of graph owners increases, indicating better scalability of

CoGNN. In particular, when there are 5 graph owners, CoGNN
reduces the running duration by 123x, and reduces per-party com-

munication by 522x. Moreover, CoGNN has a model performance

comparable to plaintext global-graph training and surpasses the FL-

based approach significantly. Compared to the FL-based approach,

CoGNN has an accuracy elevation up to 3.87% in the two-party

setting, and up to 11.06% in the five-party setting.

Contributions. The primary contributions of this paper are the
design, implementation and evaluation of CoGNN, a novel frame-
work to enable collaborative GNN learning in a provably secure,
efficient and scalable manner. Concretely, our contributions are
summarized as follows:
• We propose CoGNN, a secure, efficient and scalable framework
for collaborative GNN learning amongmultiple graph owners. In-
side CoGNN, we design a novel oblivious message-passing mech-
anism that halves the communication of the SOTA approach.
Based on this, we introduce a two-stage Dispatch-Collect scheme
to securely and efficently execute the workload of GNN training
and inference.
• We instantiate the CoGNN framework with concrete protocols
to train Graph Convolutional Networks (GCNs). Meanwhile, we
propose customized optimizations tailored for GCNs to further
improve its learning efficiency.
• We implement the CoGNN framework and evaluate it exten-
sively on multiple datasets used in GCN learning. Experimental
results show that, compared to the SOTA SML-based approach,
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Figure 1: GCN forward pass as vertex-centric computation.

CoGNN reduces up to 123x running time and up to 522x com-
munication cost per party. The improvement is enlarged as the
number of parties increases, demonstrating the superior scal-
ability of CoGNN. Meanwhile, the GCN models trained using
CoGNN have nearly identical accuracies as the plaintext global-
graph training, yielding up to 11.06% accuracy improvement over
the GCN models trained via federated learning.

2 BACKGROUND & PREVIOUS WORKS
2.1 Graph
We study a directed graph 𝐺 = (𝑉 , 𝐸), where 𝑉 (𝐸) is the vertex

(edge) list. Each vertex 𝑣 ∈ 𝑉 is a tuple (𝑣 .id, 𝑣 .data), where 𝑣 .id is

a unique vertex identifier and 𝑣 .data is the vertex data. Each edge

𝑒 ∈ 𝐸 is (𝑒.src, 𝑒 .dst, 𝑒 .data), where 𝑒.src (𝑒.dst) is the identifier of
the source (destination) vertex. We call edge 𝑒 the outgoing edge

of 𝑒.src and the incoming edge of 𝑒.dst. The number of outgoing

(incoming) edges of a vertex is called its outgoing (incoming) degree.

An undirected graph can be converted to an equivalent directed

graph by decomposing each undirected edge into two directed

edges in opposite directions. For simplicity, we use 𝑣𝑖 to denote 𝑣

that 𝑣 .id = 𝑖 , and use 𝑒𝑖 𝑗 to denote 𝑒 that 𝑒.src = 𝑖 , 𝑒.dst = 𝑗 .

2.2 Graph Neural Network
The input of GNN is a directed graph𝐺 = (𝑉 , 𝐸), where𝑉 is the sam-

ple list and 𝐸 connects the samples. Specifically, 𝑣 .data contains the
vertex features, while 𝑒.data stores the edge weight. We introduce

the computation of GNN from a general perspective, leveraging

the vertex-centric (or think-like-a-vertex) abstraction [33, 34]. In

particular, a forward/backward GNN layer can be abstracted as the

following three consecutive operations (i.e., the GAS model):

Scatter. For ∀𝑣 ∈ 𝑉 , propagate the vertex data to each of its outgoing
edges 𝑒 and outputs an update 𝑢:

𝑢 ← Scatter(𝑣 .data, 𝑒 .data), 𝑒 .src = 𝑣 .id
Gather. For ∀𝑣 ∈ 𝑉 , aggregate the update data 𝑢 originating from

all of its incoming edges 𝑒 with 𝑣 .data:

𝑣 .data⊞ {𝑢} ← Gather(𝑣 .data, {𝑢 | 𝑢.dst = 𝑣 .id})
Apply. Perform NN computation (like weight multiplication, non-

linear activation) on 𝑣 .data⊞ {𝑢} to obtain the updated 𝑣 .data′:

𝑣 .data′ ← Apply(𝑣 .data⊞ {𝑢})
The Scatter-Gather operations are called message passing. Differ-

ent GNN models vary in their constructions of the three operations.

2.3 Gragh Convolutional Network
We elaborate on the most used GNN model, i.e., Graph Convolu-

tional Network (GCN), and how it corresponds to the GAS model.

Forward Pass. The computation of GCN centers around the adja-

cency matrix 𝐴 ∈ {0, 1} |𝑉 |× |𝑉 | , which expresses 𝐸 (𝑎𝑖 𝑗 = 1 if and

only if 𝑒𝑖 𝑗 ∈ 𝐸). The features in 𝑉 are expressed as a feature matrix

𝑋 . The computation of the 𝑙-th forward layer of GCN is:

𝐻𝑙+1 = 𝜎 (𝐴𝐻𝑙𝑊𝑙 ). (1)

𝐻𝑙 is the 𝑙-th layer hidden representation of all the vertices, where

𝐻0 = 𝑋 .𝑊𝑙 is the trainable weight matrix of the 𝑙-th layer. 𝐴 is

the normalized version of 𝐴, where 𝐴 = 𝐷̃−
1

2 𝐴̃𝐷̃−
1

2 , 𝐴̃ = 𝐴 + 𝐼 .
𝐷̃ is a diagonal matrix such that

˜𝑑𝑖𝑖 = Σ 𝑗𝑎𝑖 𝑗 (i.e., each diagonal

cell storing the degree of a vertex). 𝐴𝐻𝑙 actually corresponds to

the message passing process. 𝜎 (.) denotes a non-linear activation
function, e.g., 𝑅𝑒𝐿𝑈 and 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 . 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 is typically used at the

last layer to produce the probabilities of each class for all vertices.

Forward Pass as GAS. In the GAS model, the execution of 𝐴𝐻𝑙
is decomposed into two steps, which correspond to the Scatter

and Gather phases respectively. Figure 1 is an example showing

the related GAS computations for 𝑣3 at the forward layer 𝑙 . At the

beginning of this GAS iteration, for each vertex 𝑣𝑖 , 𝑣𝑖 .data stores
its hidden representation ℎ𝑙

𝑖
, which corresponds to a row in 𝐻𝑙 . The

𝑒𝑖 𝑗 .data for edge 𝑒𝑖 𝑗 is its weight 𝑎𝑖 𝑗 , which is an element in 𝐴.

During Scatter, we multiply the hidden representation ℎ𝑙
𝑖
of each

vertex 𝑣𝑖 with the weight 𝑎𝑖 𝑗 on its corresponding outgoing edge to

create the update 𝑢𝑖 𝑗 = 𝑎𝑖 𝑗ℎ
𝑙
𝑖
for its destination vertex 𝑣 𝑗 . During

𝐺𝑎𝑡ℎ𝑒𝑟 , we add up the hidden representation ℎ𝑙
𝑗
of the destination

vertex 𝑣 𝑗 with all of its incoming updates. The merge (aggregate) op-

eration, i.e., ⊞, of GCN is a weighted sum. For example, in Figure 1,

ℎ𝑙
3
⊞ 𝑢03 ⊞ 𝑢13 ⊞ 𝑢23 = 𝑎33ℎ

𝑙
3
+ 𝑢03 + 𝑢13 + 𝑢23.

During Apply, the result of each vertex from Gather is first mul-

tiplied with the weight matrix𝑊𝑙 , and then passed to the activation

function 𝜎 . The final output of Apply for 𝑣 𝑗 is ℎ
𝑙+1
𝑗

, i.e., the hidden

representation of the next layer. By combining all ℎ𝑙+1
𝑗

from each

𝑣𝑖 , we obtain 𝐻𝑙+1 in Equation (1).

Backward Pass. The backward pass of a GCN produces gradients

for all the trainable weights following the chain rule. The backward

computation of GCN at the (𝑙 − 1)-th layer is defined as:

𝐷𝑙−1 = (𝐴𝐻𝑙−1)𝑇 (𝜎′ (𝑍𝑙−1) ⊙ 𝐴𝑇𝐺𝑙 ), (2)

𝐺𝑙−1 = (𝜎′ (𝑍𝑙−1) ⊙ 𝐴𝑇𝐺𝑙 )𝑊𝑇
𝑙−1 . (3)

𝐷𝑙 denotes the gradient w.r.t.𝑊𝑙 , while 𝐺𝑙 denotes the gradient

w.r.t. 𝐴𝐻𝑙 . 𝜎
′
is the derivation of 𝜎 . ⊙ represents elementwise mul-

tiplication, while (·)𝑇 represents the transposition of a matrix. 𝑍𝑙 =

𝐴𝐻𝑙𝑊𝑙 is computed during the forward pass. When using cross-

entropy loss, for a 𝐾-layer GCN, 𝐷𝐾−1 = (𝐴𝐻𝐾−1)𝑇 (𝑌 −𝑌 ), where
𝑌 is the ground-truth prediction results. 𝐺𝐾−1 = (𝑌 − 𝑌 )𝑊𝑇

𝐾−1.
Backward Pass as GAS. From Equation (3) we can see that the

computation of 𝐺𝑙 is symmetric to 𝐻𝑙 . Specifically, to derive 𝐺𝑙−1
from 𝐺𝑙 , we first multiply it with 𝐴𝑇 , and then perform element-

wise multiplication with 𝜎′ (𝑍𝑙−1) before multiplying𝑊𝑇
𝑙−1. As a

result, when expressing GCN backward layer 𝑙−1 in the GASmodel,

the input data of each vertex 𝑣 𝑗 is its corresponding row in 𝐺𝑙 , i.e.,

𝑔𝑙
𝑗
. The Scatter and Gather phases execute 𝐴𝑇 , while the Apply

phase performs the multiplication with 𝜎′ (𝑍𝑙−1) and𝑊𝑇
𝑙−1. The

output of Apply for 𝑣 𝑗 is its corresponding row in 𝐺𝑙−1, i.e., 𝑔
𝑙−1
𝑖

.
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Figure 2: Prior approaches of oblivious message passing.

The byproduct of Apply in each vertex 𝑣 𝑗 is a gradient matrix

𝐷
𝑗

𝑙−1 for𝑊𝑙−1. It is derived by multiplying 𝑣 𝑗 ’s corresponding col-

umn of (𝐴𝐻𝑙−1)𝑇 with its row in 𝜎′ (𝑍𝑙−1) ⊙𝐴𝑇𝐺𝑙 . Note that, 𝐷𝑙−1
is actually the sum of the gradient matrices 𝐷

𝑗

𝑙−1 generated in all

vertices 𝑣 𝑗 . To obtain 𝐷𝑙−1, at the end of the corresponding back-

ward GAS iteration, we add an aggregation step to average the

gradients produced in each vertex. 𝐷𝑙−1 can then be applied to

update the weight matrix𝑊𝑙−1.

2.4 Previous Works
The main technical challenge in achieving provably secure GNN

learning in SML-based approaches is to efficiently perform obliv-

ious message passing. In this section, we overview and compare

prior approaches of oblivious message passing. Without loss of

generality, we discuss a simplified case of message passing, i.e.,

the Scatter operation copies 𝑣 .data to all {𝑢 | 𝑢.src = 𝑣 .id} and
the Gather operation adds up 𝑣 .data and all {𝑢 | 𝑢.dst = 𝑣 .id}.
In the form of adjacency matrix, it equals computing 𝐴𝐻 , where

𝐴 ∈ {0, 1} |𝑉 |× |𝑉 | . Suppose that𝐴 is held by 𝑃0, while𝐻 is additively

secret-shared between 𝑃0 and 𝑃1. The size of each element of 𝐻 is

𝑚 bits. For fair comparison, we assume that all costly operations,

e.g., multiplication, array access and sort, have been preprocessed

offline and focus on comparing the optimal online efficiency.

AdjacencyMatrix-Based. The naive approach is to execute𝐴𝐻 di-

rectly as secure matrix multiplication, as shown in (a) of Figure 2.𝐻

corresponds to the vertex list 𝑉 . Utilizing the matrix multiplication

triple [39] prepared offline, the online communication overhead

(send + receive) of each party is 2𝑚 |𝑉 |2 + 2𝑚 |𝑉 |. However, [39]
shows that the offline duration is over 10 times the online duration.

Adjacency List-Based. For a sparse adjacencymatrix𝐴, SecGNN [50]

stores 𝐴 as an adjacency list 𝐿 and avoids the huge effort of pre-

processing matrix multiplication triples by retrieving vertex data

from the vertex list using secure array access [8]. As shown in (b)

of Figure 2, each row of 𝐿 records a vertex and the indices of all the

vertices connected to it. SecGNN appends dummy indices to each

row to make the degree of each vertex match the highest degree

in the original graph. The message passing process specified by

𝐴𝐻 is then decomposed into two steps: (1) for each neighbor of

each vertex, run an oblivious array access operation [8] to 𝑉 to

extract the corresponding vertex data; (2) for each vertex, sum up

its neighbors’ data obtained from the previous step. Since the online

communication of each array access is𝑚 |𝑉 |, the method of [50]

has a total online communication of at least𝑚 |𝐸 | |𝑉 |, i.e., when no

dummy indices are added.

GraphSC-Based. Recently, Entrada [26] introduced GraphSC [42],

a vertex-centric secure graph processing paradigm, to secure GNN

computation. As shown in (c) of Figure 2, the GraphSC paradigm

works by storing vertices and edges in the same list 𝑉 | |𝐸, where 𝐸
expresses the graph topology defined in𝐴. Executing𝐴𝐻 takes four

steps: (1) sort𝑉 | |𝐸 to place the edges right after their source vertices;
(2) obliviously propagate the data of each vertex to its outgoing

edges to generate updates; (3) sort 𝑉 | |𝐸 again to place the edges

right before their destination vertices; (4) obliviously aggregate

the updates of each edge to their destination vertices. The sort

operations in steps (1) and (3) can be specified by a permutation 𝜋

and executed using permutation correlations online [12]. Each sort

takes𝑚( |𝐸 | + |𝑉 |) online communication. The original propagate

and aggregate schemes provided in [42] are both𝑂 (𝑛 log(𝑛)), where
𝑛 = |𝐸 | + |𝑉 |. Recent work [7] shows that they can be replaced

by prefix adder network-based oblivious computation to achieve

linear complexity. In our case, each of propagate and aggregate

takes 2( |𝐸 | + |𝑉 |) OTs and requires at least 4𝑚( |𝐸 | + |𝑉 |) online
communication. Taken together, the overall communication cost of

executing𝐴𝐻 using the GraphSC paradigm is at least 10𝑚( |𝐸 |+ |𝑉 |).
In § A.4, we show GraphSC surpasses the two prior approaches

significantly and is the state-of-the-art approach for secure GNN

computation, mainly due to its linear complexity w.r.t. |𝐸 | + |𝑉 |.

3 PRELIMINARIES
3.1 Cryptographic Primitives
Fixed-Point Encoding and Secret Share. In CoGNN, we encode
all the graph data as a Fixed-Point representation over the ring,

Z𝐿 , where 𝐿 := 2
𝑙
. The 2-out-of-2 additive secret share of a fixed-

point number 𝑥 over Z𝐿 is straightforward. We denote the 𝑖-th

share as ⟨𝑥⟩𝑖 , 𝑖 ∈ {0, 1}. By randomly sampling ⟨𝑥⟩0 ∈ Z𝐿 , we get
⟨𝑥⟩1 = 𝑥 − ⟨𝑥⟩0 (mod 𝐿). We use ⟨𝑥⟩ to denote that 𝑥 is in secret-

shared form. For simplicity, we omit the ⟨·⟩ symbol in most of our

texts, while including it in the formal specifications of protocols,

ideal functionality, and theorems/lemmas.

Secure Computation on Secret-Shared Data. We consider a

general-purpose semi-honest two-party secure computation (2PC)

protocol over 2-out-of-2 additively secret-shared data, e.g., [14,

44]. Apart from arithmetic operations, e.g., addition, subtraction,
multiplication and division, we require logic operations, including
comparison and two-way multiplexer (MUX2) [44].
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FCoGNN: ({𝐸𝑖 }, {𝐸𝑖, 𝑗 }, {𝑉𝑖 }, {𝑊𝑙 }, alg)→ ({𝑉 ′
𝑖
}, {𝑊 ′

𝑙
})

FCoGNN interacts with 𝑁 parties, (𝑃0, 𝑃1, ..., 𝑃𝑁 −1).

Input:

(1) For 𝑖 ∈ [𝑁 ], 𝑃𝑖 sends (𝐸𝑖 , 𝐸𝑖,𝑗 ,𝑉𝑖 ) to FCoGNN;
(2) All 𝑃𝑖 agree on a GNN specification, alg, which defines the com-

putation details, e.g., GNN model, training epoch, loss function,

and learning rate. They send alg to FCoGNN.
(3) All 𝑃𝑖 agree on the initial model weight of each layers, i.e.,

{𝑊𝑙 }, 𝑙 ∈ [𝐾 ]. They send {𝑊𝑙 } to FCoGNN.
Compute:

(1) FCoGNN concatenates the received subgraph data as a global

graph𝐺 , where𝐺 = (𝑉 , 𝐸 ) ,𝑉 := ∪𝑉𝑖 and 𝐸 := (∪𝐸𝑖 ) ∪ (∪𝐸𝑖,𝑗 ) ;;
(2) FCoGNN runs GNN training/inference on𝐺 according to the spec-

ification of alg. It stores the obtained vertex embedding in the

updated vertex lists {𝑉 ′
𝑖
}, 𝑖 ∈ [𝑁 ] and stores the trained model

weights in {𝑊 ′
𝑙
}, 𝑙 ∈ [𝐾 ].

Output:
(1) For 𝑖 ∈ [𝑁 ], FCoGNN sends𝑉 ′

𝑖
and {𝑊 ′

𝑙
}, 𝑙 ∈ [𝐾 ] to 𝑃𝑖 ;

(2) Additionally, FCoGNN sends the subgraph sizes to 𝑃𝑖 , i.e., L :=

{ |𝐸 𝑗 |, |𝑉𝑗 | }, ∀ 𝑗 ∈ [𝑁 ]\{𝑖 } representing the numbers of intra-

edges and vertices of each subgraph.

Functionality 1: FCoGNN

3.2 Oblivious Vector Operations
In this segment, we introduce the two cryptographic primitives for

oblivious vector operations used in our oblivious message passing

discussed in § 5.1: oblivious extended permutation (OEP) [38] and
oblivious group aggregation (OGA) [7].
FOEP performs an extended permutation 𝜋 to 𝑇in:

⟨𝑇out⟩ = ⟨𝜋 (𝑇in)⟩ ← FOEP (⟨𝑇in⟩, 𝐼𝑑in, 𝐼𝑑out) (4)

𝜋 is defined by a pair of identifier lists (𝐼𝑑in, 𝐼𝑑out), correspond-
ing to 𝑇in and 𝑇out respectively. Elements in 𝐼𝑑in are unique, while

each element of 𝐼𝑑out equals one element of 𝐼𝑑in. 𝜋 permutes 𝐼𝑑in to

𝐼𝑑out. Each vector element in𝑇out (i.e.,𝑇out [𝑥]) is a random reshare

of a specific vector element in𝑇in (i.e.,𝑇in [𝜋 (𝑥)]). We extend the def-

inition of FOEP to support that some identifiers in 𝐼𝑑out might not

have an equal identifier in 𝐼𝑑 .in, and FOEP sets the corresponding

elements in ⟨𝑇 out⟩ to 0.

FOGA aggregates the elements in 𝑇in using the operation ⊞:

⟨𝑇out⟩ ← FOGA (⟨𝑇in⟩,G,⊞) (5)

Specifically, G is a group identifier vector of the same length as

𝑇in, and can be split into segments, each containing elements of the

same value. FOGA aggregates 𝑇in elements with the same group

identifier (i.e., in the same segment) and stores the result in the first

element of the corresponding segment, producing𝑇out. For the rest

of elements in each segment of 𝑇out, their values are undefined.

4 THE IDEAL FUNCTIONALITY OF COGNN
In this section, we introduce the ideal functionality of CoGNN (i.e.,

FCoGNN, shown in Functionality 1) to formally capture its input

setting, computation goal, threat model, and privacy guarantee.

There are 𝑁 participating parties, i.e., (𝑃0, 𝑃1, ..., 𝑃𝑁−1). 𝑃𝑖 locally
holds the subgraph 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ). The sets of vertex identifiers held
by different parties are exclusively different. Each edge 𝑒 ∈ 𝐸𝑖 is
called an intra-edge since both 𝑒.src and 𝑒.dst are in 𝑉𝑖 .

There could be inter-edges between two subgraphs 𝐺𝑖 and 𝐺 𝑗 ,

𝑖 ≠ 𝑗 . We use 𝐸𝑖, 𝑗 to denote the edge list directed from𝐺𝑖 to𝐺 𝑗 . For

𝑒 ∈ 𝐸𝑖, 𝑗 , both 𝑃𝑖 and 𝑃 𝑗 learn (𝑒.src, 𝑒 .dst, 𝑒 .data). Nevertheless, we
suppose that only 𝑃𝑖 , the source party of all the edges in 𝐸𝑖, 𝑗 , needs

to maintain it. CoGNN requires that the edge lists (𝐸𝑖 , 𝐸𝑖, 𝑗 , 𝑗 ∈
[𝑁 ]\{𝑖}) held by each party 𝑃𝑖 , 𝑖 ∈ [𝑁 ] are ordered by placing the

edges with the same destination vertex as a contiguous segment in
𝐸𝑖 (𝐸𝑖, 𝑗 ) (i.e., these edges are located at adjacent positions).

At the input stage, for 𝑖 ∈ [𝑁 ], 𝑃𝑖 sends (𝐸𝑖 , 𝐸𝑖, 𝑗 ,𝑉𝑖 ) to FCoGNN.
Additionally, they agree on a GNN specification alg and the initial

model weights {𝑊0,𝑊1, ...,𝑊𝐾−1}, and send them to FCoGNN. In
particular, alg specifies GNN computation details such as the GNN

model, training epochs, loss function, and learning rate.

During computation, FCoGNN first concatenates the received

separate subgraphs into a global graph 𝐺 . The concatenation is

based on inter-edges: i.e.,𝐺 = (𝑉 , 𝐸),𝑉 := ∪𝑉𝑖 , 𝐸 := (∪𝐸𝑖 )∪ (∪𝐸𝑖, 𝑗 ).
Then, FCoGNN performs GNN training/inference according to the

specification of alg. The computation result consists of two parts: (i)
the updated vertex set lists, i.e., {𝑉 ′

0
,𝑉 ′

1
, ...,𝑉 ′

𝑁−1}, which store the

embedding (prediction values) of each vertex; (ii) the updated model

weights, i.e., {𝑊 ′
0
,𝑊 ′

1
, ...,𝑊 ′

𝐾−1} , trained on the global graph.

At the output stage, for all 𝑖 ∈ [𝑁 ], FCoGNN sends the vertex

embedding 𝑉 ′
𝑖
and trained model weights {𝑊 ′

0
,𝑊 ′

1
, ...,𝑊 ′

𝐾−1} to
𝑃𝑖 . Additionally, FCoGNN sends the subgraph size, i.e., numbers of

vertices and edges, of each party to 𝑃𝑖 .

Threat Model. In CoGNN, we assume that each party is semi-

honest, i.e., these parties are protocol compliant, while being cu-

rious of deriving other parties’ private data. In addition, we as-

sume that these parties do not collude with each other. The ratio-
nale behind this threat model is that CoGNN primarily considers
the non-outsourced computation setting, where the graph owners
themselves act as the computing parties while keeping their raw
data local. Therefore, colluding would cause privacy risks to their
own data, while behaving maliciously may eventually degrade the
overall collaboration gain. In contrast, prior SML-based approaches
require the data owners to outsource their raw data to third-party
servers. Thus, it is essential for these approaches to ensure security
when these third parties collude with each other or even act arbi-
trarily. In § 9, we discuss how to extend CoGNN to other security
models.
Private Data. The private data of party 𝑃𝑖 ,∀𝑖 ∈ [𝑁 ] includes:
(i) intra-edge-related information, i.e., (𝑒.src, 𝑒 .dst, 𝑒 .data) of each
edge 𝑒 ∈ 𝐸𝑖 ; (ii) (𝑣 .id, 𝑣 .data) for 𝑣 ∈ 𝑉𝑖 . In addition, all the interme-

diate data computed using the aforementioned private data from

the other subgraphs must be kept secret throughout the process.

Public Data. The public data between each pair of parties (𝑃𝑖 and
𝑃 𝑗 , 𝑖, 𝑗 ∈ [𝑁 ], 𝑖 ≠ 𝑗 ) includes: (i) inter-edge-related information,

i.e., (𝑒.src, 𝑒 .dst, 𝑒 .data) of each edge 𝑒 ∈ 𝐸𝑖, 𝑗 ∪ 𝐸 𝑗,𝑖 ; (ii) the sizes of
subgraphs (i.e., |𝑉𝑖 |, |𝑉𝑗 |, |𝐸𝑖 |, |𝐸 𝑗 |).

5 THE COGNN FRAMEWORK
In this section, we present the CoGNN framework to securely re-

alizing FCoGNN with a fully distributed and secure computation

scheme. Specifically, we begin with a novel oblivious message pass-

ing mechanism that securely and efficiently expresses the Scatter-

Gather of GNN. Based on that, we present how CoGNN securely
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Figure 3: Our oblivious message passing.

decomposes and distributes the vertex-centric computation of GNN

models across all parties by executing each GNN forward/backward

layer in the two stages of Dispatch-Collect.

5.1 Our Oblivious Message Passing
We introduce the principle of our obliviousmessage passing (Scatter-

Gather) method using the same setting as in § 2.4, i.e., when the

Scatter operation copies 𝑣 .data to all {𝑢 | 𝑢.src = 𝑣 .id} and the

Gather operation adds up 𝑣 .data and all {𝑢 | 𝑢.dst = 𝑣 .id}.
Instead of storing all the vertices and edges in one list like in

GraphSC, we place them in 𝑉 and 𝐸 respectively, as shown in

Figure 3. Based on that, our oblivious message passing scheme runs

in five steps: (1) using OEP (our protocol that realizes the primitive

FOEP) to duplicate each vertex to all of its outgoing edges to create

a source vertex list 𝑉 src
; (2) copy 𝑉 src

to obtain the updates 𝑈 ; (3)

aggregate updates that share the same destination vertices using

OGA (our protocol that realizes the primitive FOGA); (4) Use OEP
to place each update at the same vector position as its destination

vertex, creating𝑈 dst
; (5) locally add updates to vertices.

Steps (1) to (4) correspond to Scatter, while step (5) expresses

Gather. Among them, steps (2) and (5) are local. For steps (1) and

(4), our OEP protocol works in an offline-online paradigm, where

we prepare permutation correlations in batch offline (for multiple

online calls), and consume these correlations online. The online

communication of each invocation of our OEP protocol is the same

as the size of its input vector. As a result, steps (1) and (4) take online

𝑚( |𝐸 | + |𝑉 |) communication in total. Our OGA protocol takes the

prefix adder network paradigm, resulting in 4𝑚 |𝐸 | communication.

Taken together, our message passing approach has𝑚(5|𝐸 | + |𝑉 |)
online communication, which is less than half of that of the state-

of-the-art approach based on GraphSC. More importantly, it en-

ables the following distributed and secure computation scheme in

CoGNN. Due to page limit, the detailed protocol constructions of

OEP and OGA are deferred to § A.1 and § A.2, respectively.

5.2 Iteration as Two-Stage Dispatch-Collect
CoGNN executes each forward/backward layer (i.e., a GAS itera-

tion) of a GNN model using two stages of Dispatch-Collect. The
high-level principle of the Dispatch-Collect-based CoGNN design

can be summarized as: (i) using the Dispatch phase to securely

distribute the heavy part of vertex-centric GNN computation work-

load across all the parties; (ii) using the Collect phase to perform
lightweight aggregation across different parties when necessary. In

P0
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&
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Figure 4: The first-stageDispatch-Collect in CoGNN: for Scat-
ter and Gather
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Share Delegation
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Figure 5: The second-stage Dispatch-Collect in CoGNN: for
Apply and Gradient Aggregation

particular, each Dispatch task involves two worker parties and the

computed data is secret-shared between the two parties. During

Collect, the output shares produced by each Dispatch task are dele-

gated to specific aggregator parties, which securely aggregate the

data and feed the result shares back to the Dispatch worker parties.

We use a four-party example presented in Figure 4 and Figure 5

as the illustrative example when describing our protocol below.

5.2.1 The First-Stage Dispatch-Collect. In the first-stage Dispatch-
Collect, the Dispatch phase processes the Scatter workload in a

fully distributed manner, while the Collect phase performs Gather.

CoGNN distributes the Scatter workload based on the data par-

tition inherent to its input setting. Specifically, the Scatter from

𝑉𝑗 to 𝐸 𝑗,𝑖 , 𝑗 ∈ [𝑁 ]\{𝑖} is encapsulated as a Dispatch task and is

handled by (𝑃 𝑗 , 𝑃𝑖 ) using 2PC. Accordingly, 𝑉𝑗 , 𝐸 𝑗,𝑖 and the update
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𝑈 𝑗,𝑖 produced by Scatter have to be secret-shared between (𝑃 𝑗 , 𝑃𝑖 ).
As for the Scatter from 𝑉𝑖 to 𝐸𝑖 , we have (𝑃𝑖 , 𝑃𝑖+1) secret-share
(𝑉𝑖 , 𝐸𝑖 ,𝑈𝑖,𝑖 ) and execute the corresponding Scatter computation as

a Dispatch task. When 𝑖 = 𝑁 − 1, 𝑖 + 1 wraps around to 0.

The example of Figure 4 illustrates the Scatter-Gather computa-

tions related to the update of 𝑉0. In Figure 4, the updates targeting

𝑉0 come from four sources, i.e., 𝑉1, 𝑉2, 𝑉3, 𝑉0. To compute these

updates, the Scatter workload is decomposed into four Dispatch
tasks, handled by (𝑃0, 𝑃1), (𝑃1, 𝑃2), (𝑃2, 𝑃3), (𝑃0, 𝑃1) respectively.

The Collect phase, conducting Gather, aims to merge the secret-

shared updates 𝑈 𝑗,𝑖 ,∀𝑗 ∈ [𝑁 ] produced by different Dispatch
tasks with 𝑉𝑖 . Since different 𝑈 𝑗,𝑖 is secret-shared between a differ-

ent pair of parties (𝑃 𝑗 , 𝑃𝑖 ), at the beginning of the Collect phase,
we have 𝑃 𝑗 , 𝑗 ∈ [𝑁 ]\{𝑖, 𝑖 + 1} delegate its share of 𝑈 𝑗,𝑖 to 𝑃𝑖+1.
As a result, (𝑃𝑖 , 𝑃𝑖+1) serve as the delegator parties handling the

Collect task, i.e., performing the Gather computation for 𝑉𝑖 on

behalf of the rest of the parties. Nevertheless, all the delegated

data is still secret-shared between (𝑃𝑖 , 𝑃𝑖+1) and neither of them

obtains the plaintext data. The output produced by the Collect
task, i.e., 𝑉𝑖 ⊞ 𝑈∗,𝑖 representing 𝑉𝑖 merged with all the updates

from all 𝑃 𝑗 , is also secret-shared between (𝑃𝑖 , 𝑃𝑖+1). In the exam-

ple of Figure 4, ⟨𝑈1,0⟩, ⟨𝑈2,0⟩, ⟨𝑈3,0⟩, ⟨𝑈0,0⟩ are secret-shared among

𝑃0 and different parties. To apply them to update ⟨𝑉0⟩, we have
𝑃2, 𝑃3 delegate their shares to 𝑃1. After that, 𝑃0 and 𝑃1 merge

⟨𝑈1,0⟩, ⟨𝑈2,0⟩, ⟨𝑈3,0⟩, ⟨𝑈0,0⟩ with ⟨𝑉0⟩ consecutively, and obtain the

merged ⟨𝑉0 ⊞𝑈∗,0⟩.

5.2.2 The Second-Stage Dispatch-Collect. In the second-stageDispatch-
Collect, theDispatch phase distributedly processes the Apply work-

load to perform NN computation on the vertex data of each sub-

graph and (optionally) produces gradients, while the Collect phase
aggregates gradients generated by different subgraphs.

The secret-shared results produced by the Collect phase of the
first-stage Dispatch-Collect are directly supplied to the Dispatch
task of the second-stage Dispatch-Collect. Specifically, the Apply
workload for 𝑉𝑖 is encapsulated as a Dispatch task and assigned

to (𝑃𝑖 , 𝑃𝑖+1). The input of the Apply computation, i.e., 𝑉𝑖 ⊞𝑈∗,𝑖 , is
inherently secret-shared between (𝑃𝑖 , 𝑃𝑖+1) due to the Collect of
the previous stage of Dispatch-Collect. While the Apply compu-

tation aims to perform NN computation on the vertex data, the

computation details depend on specific GNN models and the for-

ward or backward layer that is executed. The main output of each

Dispatch task is the updated vertex data 𝑉 ′
𝑖
secret-shared between

(𝑃𝑖 , 𝑃𝑖+1). In the example of Figure 5, there are four Dispatch tasks,

corresponding to the Apply computation of 𝑉0 ⊞ 𝑈∗,0, 𝑉1 ⊞ 𝑈∗,1,
𝑉2 ⊞𝑈∗,2, and 𝑉3 ⊞𝑈∗,3 respectively.

When a backward GNN layer (suppose it is layer 𝑙) is executed,

the by-product of each Dispatch task is a gradient 𝐷𝑖
𝑙
generated

from 𝑉𝑖 , also secret-shared between (𝑃𝑖 , 𝑃𝑖+1). The goal of the Col-
lect phase is to aggregate all𝐷𝑖

𝑙
,∀𝑖 ∈ [𝑁 ] and produce a global gradi-

ent 𝐷𝑙 for𝑊𝑙 . Still, since different 𝐷
𝑖
𝑙
is secret-shared between a dif-

ferent pair of parties (𝑃𝑖 , 𝑃𝑖+1), we have all parties 𝑃𝑖 , 𝑖 ∈ [𝑁 ]\{0, 1}
delegate their shares of 𝐷𝑖

𝑙
to 𝑃0 and 𝑃1. In particular, ⟨𝐷𝑖

𝑙
⟩1 is del-

egated to 𝑃0, while ⟨𝐷𝑖𝑙 ⟩0 is delegated to 𝑃1. (𝑃0, 𝑃1) then handle

the Collect task to aggregate these gradients and apply 𝐷𝑙 to opti-

mize𝑊𝑙 . All the data involved in the Collect task is secret-shared

between (𝑃0, 𝑃1).

Note that, here we select (𝑃0, 𝑃1) as the delegator parties of the
Collect task of thisDispatch-Collect stage. In practice, we can select
a different pair of parties as the delegator parties of different Collect
tasks to better balance the overhead among all the parties.

5.3 Cascade Iterations by Share Redistribution
The last problem for us is how to cascade iterations, i.e., how to

organize the output from the current iteration to serve later iter-

ations. From the above construction, the Dispatch phase of the

second-stage Dispatch-Collect secretly shares the updated 𝑉 ′
𝑖
be-

tween (𝑃𝑖 , 𝑃𝑖+1). However, in the next GAS iteration,𝑉 ′
𝑖
is assigned

to 𝑉𝑖 and is treated as the input of the Dispatch tasks (in the first-

stage Dispatch-Collect) executed by (𝑃𝑖 , 𝑃 𝑗 ), 𝑗 ∈ [𝑁 ]\{𝑖}. In other

words, 𝑉 ′
𝑖
has to be secret-shared between (𝑃𝑖 , 𝑃 𝑗 ), 𝑗 ∈ [𝑁 ]\{𝑖}

again. Thus, we have (𝑃𝑖 , 𝑃𝑖+1) randomize their shares of 𝑉 ′
𝑖
and

have 𝑃𝑖+1 send its share ⟨𝑉 ′
𝑖
⟩1 + 𝑅 𝑗 to 𝑃 𝑗 , 𝑗 ∈ [𝑁 ]\{𝑖, 𝑖 + 1}, while

having 𝑃𝑖 keep ⟨𝑉 ′𝑖 ⟩0 − 𝑅 𝑗 . We call this process share redistribution.
In a backward layer, the optimized𝑊 ′

𝑙
is secret-shared between

(𝑃0, 𝑃1) after theCollect phase of the second-stageDispatch-Collect.
To utilize𝑊 ′

𝑙
in a later forward layer’sDispatch tasks (in the second-

stage Dispatch-Collect), we have to perform share redistribution

again to make𝑊 ′
𝑙
secret-shared between all pairs of (𝑃𝑖 , 𝑃𝑖+1), 𝑖 ∈

[𝑁 ]. Specifically, we have (𝑃0, 𝑃1) randomize their shares of𝑊 ′
𝑙

and have 𝑃1 send its share ⟨𝑊 ′
𝑙
⟩0 + 𝑅𝑖 to 𝑃𝑖 , 𝑖 ∈ [𝑁 ]\{0, 1}, while

having 𝑃0 send its share ⟨𝑊 ′
𝑙
⟩1 − 𝑅𝑖−1 to 𝑃𝑖 , 𝑖 ∈ [𝑁 ]\{0, 1}.

6 INSTANTIATE GCN UNDER COGNN
In this section, we provide the details of howwe instantiateCoGNN
to support the training and inference of Graph Convolutional Net-

work (GCN) models. Specifically, we elaborate on the design of each

Dispatch task and Collect task, and how we feed the outcomes of

previous tasks to later tasks. The specification of each Dispatch
task and Collect task is shown in Protocol 1. The thorough protocol

description, i.e., CoGNN-GCN, is provided in Protocol 2.

Notations.We introduce some key notations in protocol descrip-

tion. We use 𝑉 .id to represent the vertex identifier list of a vertex

list, and use 𝐸.src/𝐸.dst to represent the source/destination vertex

identifier list of an edge list. In addition, we use𝑉 .deg to denote the
degree list of a vertex list. Accordingly, we use 𝐸.srcDeg/𝐸.dstDeg
to denote the list of degrees corresponding to the source/destination

vertices of an edge list. 𝑋 −
1

2 means taking the reciprocal of each

element in the list 𝑋 , and then taking the square root of it.

6.1 Graph Data Secret Share
Each 𝑃𝑖 breaks its 𝑉𝑖 into 2-out-of-2 additive secret shares, keeps

one share as secret, and distributes the other share to all the other

parties. At the same time, 𝐸𝑖 and 𝐸𝑖, 𝑗 ,∀𝑗 ∈ [𝑁 ]\{𝑖} are also broken
into secret shares. However, unlike 𝑉𝑖 , 𝐸𝑖 is only shared with its

neighboring (next) party 𝑃𝑖+1. 𝐸𝑖, 𝑗 is only shared with party 𝑃 𝑗 .

Initially, 𝑉𝑖 stores 𝐻
𝑖
0
= 𝑋𝑖 , i.e., the features of vertices. For

simplicity, the input preparation process is omitted in Protocol 2.

6.2 The First-Stage Dispatch-Collect
6.2.1 Dispatch Task. A Dispatch task in the first-stage Dispatch-
Collect (denoted asDispatch-1) is executed by two parties (𝑃𝑖 , 𝑃 𝑗 ), 𝑖, 𝑗 ∈

7



1 Dispatch-1(𝑖, 𝑗, ⟨𝑉 ⟩, ⟨𝐸⟩,𝑉 dst .id) → ⟨𝑈 dst⟩ # for Scatter
2 ⟨𝑉 src⟩ ← OEP(⟨𝑉 ⟩,𝑉 .id, 𝐸.src)
3 ⟨𝑈 ⟩ ← 𝐸.srcDeg−

1

2 ⊙ ⟨𝑉 src⟩ ⊙ 𝐸.dstDeg−
1

2

4 ⟨𝑈 ′⟩ ← OGA(⟨𝑈 ⟩, 𝐸.dst, +)
5 ⟨𝑈 dst⟩ ← OEP(⟨𝑈 ′⟩, 𝐸.dst,𝑉 dst .id)
6 return ⟨𝑈 dst⟩

7 Collect-1(𝑖, 𝑗, ⟨𝑉 ⟩, {⟨𝑈 dst
𝑘
⟩}) → ⟨𝑉 ⊞𝑈 dst

∗ ⟩ # for Gather
8 ⟨𝑉 ′⟩ ← ⟨𝑉 ⟩ ⊙ 𝑉 .deg−1
9 ⟨𝑉 ⊞𝑈 dst

∗ ⟩ ← ⟨𝑉 ′⟩ +
∑𝑁−1
𝑘=0
⟨𝑈 dst
𝑘
⟩

10 return ⟨𝑉 ⊞𝑈 dst
∗ ⟩

11 Dispatch-2(𝑖, 𝑗, 𝑙, isForward, ⟨𝑉 ⟩, ⟨𝑊𝑙 ⟩, ..., ⟨𝑍 ⟩, ⟨𝐴𝐻 ⟩)
→ (⟨𝑉 ′⟩, ..., ⟨𝑍 ⟩, ⟨𝑌 ⟩, ⟨𝐷𝑙 ⟩) # for Apply

12 if isForward:
13 ⟨𝑍 ⟩ ← ⟨𝑉 ⟩ · ⟨𝑊𝑙 ⟩
14 if 𝑙 ≠ 𝐾 − 1: ⟨𝑉 ′⟩ ← 𝑅𝑒𝐿𝑈 (⟨𝑍 ⟩)
15 else: ⟨𝑌 ⟩ ← 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (⟨𝑍 ⟩); ⟨𝑉 ′⟩ ← ⟨𝑌 ⟩ −𝑉 .y
16 else:
17 if 𝑙 = 𝑘 − 1: ⟨𝑀⟩ ← ⟨𝑉 ⟩
18 else: ⟨𝑀⟩ ← 𝑅𝑒𝐿𝑈 ′ (⟨𝑍 ⟩) ⊙ ⟨𝑉 ⟩
19 ⟨𝐷𝑙 ⟩ ← ⟨𝐴𝐻 ⟩ · ⟨𝑀⟩
20 if 𝑙 ≠ 0: ⟨𝑉 ′⟩ ← ⟨𝑀⟩ · ⟨𝑊𝑙 ⟩
21 return ⟨𝑉 ′⟩, ..., ⟨𝑍 ⟩, ⟨𝑌 ⟩, ⟨𝐷𝑙 ⟩

22 Collect-2(𝑖, 𝑗, ⟨𝑊𝑙 ⟩, {⟨𝐷𝑘𝑙 ⟩}, {|𝑉𝑘 |}) → ⟨𝑊
′
𝑙
⟩ # for Gradient

23 ⟨𝐷𝑙 ⟩ ←
∑𝑁 −1

𝑘=0
( |𝑉𝑘 | · ⟨𝐷𝑘

𝑙
⟩)∑𝑁 −1

𝑘=0
|𝑉𝑘 |

# Aggregation

24 ⟨𝑊 ′
𝑙
⟩ ← 𝑂𝑝𝑡 (⟨𝑊𝑙 ⟩, ⟨𝐷𝑙 ⟩) # Application

25 return ⟨𝑊 ′
𝑙
⟩

Protocol 1: Dispatch tasks and Collect tasks in the first-stage
and the second-stage Dispatch-Collect.

[𝑁 ], 𝑖 ≠ 𝑗 and performs Scatter for GCN. The inputs of Dispatch-
1 include a vertex list ⟨𝑉 ⟩ and an edge list ⟨𝐸⟩. The output is an
update list ⟨𝑈 dst⟩. All these data is secret-shared between (𝑃𝑖 , 𝑃 𝑗 ).

Based on our message passing mechanism introduced in § 5.1,

in this Dispatch-1, the Scatter for GCN is executed in four steps.

(1) Use OEP to construct a source vertex list ⟨𝑉 src⟩ correspond-
ing to 𝐸.src, as line 2 of Protocol 1. Both 𝑉 .id and 𝐸.src are
supplied by 𝑃𝑖 .

(2) ⟨𝑉 src⟩ is then used to perform element-wise computation

with ⟨𝐸⟩, to generate an update list of the same length as ⟨𝐸⟩,
as line 3 of Protocol 1. 𝐸.srcDeg and 𝐸.dstDeg are supplied by
either 𝑃𝑖 or 𝑃 𝑗 , depending on who holds them. ⊙ represents

element-wise multiplication between the two lists.

(3) Merge the updates in ⟨𝑈 ⟩ that share the same destination

vertices. According to CoGNN’s requirement of the input

edge list order (see § 4), all the updates targeting the same

destination vertex are already placed in a contiguous seg-

ment. So we invoke OGA for this, as line 4 of Protocol 1. The

operation to merge two updates is an addition, i.e., +.
(4) Use OEP to extract the merged updates and place them at

the same positions as their destination vertices, as line 5 of

Protocol 1. Note that 𝑉 dst
represents the destination vertex

list of 𝐸. 𝑉 dst .id is supplied by either 𝑃𝑖 or 𝑃 𝑗 , depending

on who owns it. Some identifiers in 𝑉 dst .id might not have

an equal index in 𝐸.dst, and OEP sets their corresponding

elements in ⟨𝑈 dst⟩ to 0.

The Dispatch-1 tasks for a forward layer and a backward layer

of GCN are the same. The only difference is in the data stored in

the vertex list. In a forward layer, the vertex list stores the features

or hidden representation of each vertex. In a backward layer, the

vertex list stores a back-propagated intermediate gradient value.

See Protocol 2 for the detailed inputs fed to each Dispatch-1 task.

6.2.2 Collect Task. In an 𝑁 -party setting, the Collect-1 tasks are
delegated to 𝑁 pairs of parties, i.e., (𝑃0, 𝑃1), (𝑃1, 𝑃2),..,(𝑃𝑁−1, 𝑃0).
Specifically, the Collect-1 task of (𝑃𝑖 , 𝑃𝑖+1) deals with the Gather

of 𝑉𝑖 . For 𝑉𝑖 , suppose that the parties have already delegated their

shares of update lists to 𝑃𝑖+1. Now (𝑃𝑖 , 𝑃𝑖+1) hold 𝑁 secret-shared

update lists, i.e., ⟨𝑈 dst
0,𝑖
⟩, ⟨𝑈 dst

1,𝑖
⟩,...,⟨𝑈 dst

𝑁−1,𝑖 ⟩. The goal of theCollect-1
task is to merge all these update lists with ⟨𝑉𝑖 ⟩.

Thus, the inputs of the Collect-1 task are composed of a set of

update lists {⟨𝑈 dst
𝑘
⟩} and a vertex list ⟨𝑉 ⟩. The output of the vertex

list which has merged all the update lists, i.e., ⟨𝑉 ⊞𝑈 dst
∗ ⟩.

For GCN, the Collect-1 task is executed in two steps:

(1) Scale the vertex list according to the degree of each vertex,

as line 8 of Protocol 1, where 𝑉 .deg is supplied by 𝑃𝑖 .

(2) Add all the update lists to the vertex list, as line 9 of Protocol 1.

The Collect-1 tasks for forward and backward layers are the

same. See Protocol 2 for the inputs fed to each Collect-1 task.

6.3 The Second-Stage Dispatch-Collect
6.3.1 Dispatch Task. In the second-stage Dispatch-Collect, each
Dispatch-2 task performs the Apply computation for a 𝑉𝑖 , 𝑖 ∈ [𝑁 ]
and is handled by a pair of parties (𝑃𝑖 , 𝑃𝑖+1). Since the Apply com-

putations for different forward/backward layers differ, the Dispatch
tasks are also different. Suppose that the GCN has 𝐾 layers of NN

computations. In total, there are five situations for the Dispatch-2
task, i.e., when the Dispatch-2 task is in a forward layer rather than

the last layer (i.e., layer 𝐾 − 1), in the last forward layer, in the first

backward layer (i.e., layer 𝐾 − 1). in the last backward layer (i.e.,

layer 0) and in the rest of the backward layers.

The main inputs of the Dispatch-2 task include a vertex list

merged with updates, denoted as ⟨𝑉 ⟩, and a weight matrix, denoted

as ⟨𝑊𝑙 ⟩. The main output of the Dispatch-2 task is the updated

vertex list ⟨𝑉 ′⟩. We discuss the above situations as follows:

• When the Dispatch-2 task is in a forward layer rather than

the last layer, the Dispatch task executes weight multiplica-

tion and 𝑅𝑒𝐿𝑈 activation, as lines 13 and 14 of Protocol 1.

• When the Dispatch-2 task is in the last forward layer, it exe-

cutes weight multiplication and 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 normalization, as

lines 13, 15 of Protocol 1. Here the additional output produced

by the Dispatch task is the prediction list ⟨𝑌 ⟩ for 𝑉 . 𝑉 .y
denotes the label list for 𝑉 . ⟨𝑌 ⟩ −𝑉 .y is the gradient of the
cross-entropy loss w.r.t. ⟨𝑍 ⟩.
• When the Dispatch-2 task is in a backward layer rather than

the first and the last backward layer, it executes lines 18,

19 and 20 of Protocol 1. Note that both ⟨𝑍 ⟩ and ⟨𝐴𝐻 ⟩ are
intermediate computation results from forward layers and

they serve as additional inputs to the Dispatch-2 task here.
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Protocol CoGNN-GCN
Input. 𝑃𝑖 ,∀𝑖 ∈ [𝑁 ] provides 𝐸𝑖 , 𝐸𝑖, 𝑗 and 𝑉𝑖 = 𝐻 𝑖

0
= 𝑋𝑖 . Negotiated alg = (𝐾,𝑚𝑎𝑥𝐸𝑝), {𝑊𝑙 | 𝑙 ∈ [𝐾]}.

Output. 𝑃𝑖 ,∀𝑖 ∈ [𝑁 ] gets 𝑉 ′𝑖 = 𝑃𝑖 and {𝑊 ′𝑙 | 𝑙 ∈ [𝐾]}.

1 for 𝑒𝑝 ∈ [𝑚𝑎𝑥𝐸𝑝]:
2 for 𝑙 ∈ [𝐾]: # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Forward Pass, iterate from layer 0 to 𝐾 − 1
3 for 𝑖 ∈ [𝑁 ]: ⟨𝑉𝑖 ⟩ ← ⟨𝐻 𝑖𝑙 ⟩ # Set the layer input (vertex data)
4 for 𝑖, 𝑗 ∈ [𝑁 ], 𝑖 ≠ 𝑗 : # Scatter vertex embedding using Dispatch-1
5 ⟨𝑈 dst

𝑖, 𝑗
⟩ ← Dispatch-1(𝑖, 𝑗, ⟨𝑉𝑖 ⟩, ⟨𝐸𝑖, 𝑗 ⟩,𝑉𝑗 .id); if 𝑗 = 𝑖 + 1: ⟨𝑈 dst

𝑖,𝑖
⟩ ← Dispatch-1(𝑖, 𝑖 + 1, ⟨𝑉𝑖 ⟩, ⟨𝐸𝑖 ⟩,𝑉𝑖 .id)

6 for 𝑖 ∈ [𝑁 ]:
7 for 𝑗 ∈ [𝑁 ]\{𝑖, 𝑖 + 1}: 𝑃 𝑗 sends ⟨𝑈 dst

𝑗,𝑖
⟩1 to 𝑃𝑖+1 # Delegate secret shares

8 ⟨𝑉𝑖 ⊞𝑈 dst
∗,𝑖 ⟩ ← Collect-1(𝑖, 𝑖 + 1, ⟨𝑉𝑖 ⟩, {⟨𝑈 dst

𝑘
⟩}) # Gather using Collect-1

9 if 𝑖 ≠ 𝐾 − 1: ⟨𝑉 ′
𝑖
⟩, ⟨𝑍 𝑖

𝑙
⟩ ← Dispatch-2(𝑖, 𝑖 + 1, 𝑙, 𝑡𝑟𝑢𝑒, ⟨𝑉𝑖 ⊞𝑈 dst

∗,𝑖 ⟩, ⟨𝑊𝑙 ⟩) # Forward NN computation using Dispatch-2

10 else: ⟨𝑉 ′
𝑖
⟩, ⟨𝑍 𝑖

𝑙
⟩, ⟨𝑃𝑖 ⟩ ← Dispatch-2(𝑖, 𝑖 + 1, 𝑙, 𝑡𝑟𝑢𝑒, ⟨𝑉𝑖 ⊞𝑈 dst

∗,𝑖 ⟩, ⟨𝑊𝑙 ⟩) # Forward prediction using Dispatch-2
11 for 𝑗 ∈ [𝑁 ]\{𝑖, 𝑖 + 1}: 𝑃𝑖+1 sends ⟨𝑉 ′𝑖 ⟩1 + 𝑅 𝑗 to 𝑃 𝑗 # Redistribute secret shares
12 ⟨𝐻 𝑖

𝑙+1⟩ ← ⟨𝑉
′
𝑖
⟩; ⟨𝐴𝐻 𝑖

𝑙
⟩ ← ⟨𝑉𝑖 ⊞𝑈 dst

∗,𝑖 ⟩ # Set the layer output
13 for 𝑙 ∈ [𝐾] (reverse): # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Backward Pass, iterate from layer 𝐾 − 1 to 0
14 for 𝑖 ∈ [𝑁 ]: # Set the layer input (vertex data)
15 if 𝑙 = 𝐾 − 1: ⟨𝑉𝑖 ⟩ ← ⟨𝐻 𝑖𝐾 ⟩; else: ⟨𝑉𝑖 ⟩ ← ⟨𝐺

𝑖
𝑙
⟩

16 for 𝑖, 𝑗 ∈ [𝑁 ], 𝑖 ≠ 𝑗 : # Scatter intermediate gradients using Dispatch-1
17 ⟨𝑈 dst

𝑖, 𝑗
⟩ ← Dispatch-1 (𝑖, 𝑗, ⟨𝑉𝑖, 𝑗 ⟩, ⟨𝐸𝑖, 𝑗 ⟩,𝑉𝑗 .id); if 𝑗 = 𝑖 + 1: ⟨𝑈 dst

𝑖,𝑖
⟩ ← Dispatch-1 (𝑖, 𝑖 + 1, ⟨𝑉𝑖 ⟩, ⟨𝐸𝑖 ⟩,𝑉𝑖 .id)

18 for 𝑖 ∈ [𝑁 ]:
19 for 𝑗 ∈ [𝑁 ]\{𝑖, 𝑖 + 1}: 𝑃 𝑗 sends ⟨𝑈 dst

𝑗,𝑖
⟩1 to 𝑃𝑖+1 # Delegate secret shares

20 ⟨𝑉𝑖 ⊞𝑈 dst
∗,𝑖 ⟩ ← Collect-1(𝑖, 𝑖 + 1, ⟨𝑉𝑖 ⟩, {⟨𝑈 dst

𝑘
⟩}) # Gather using Collect-1

21 if 𝑙 = 𝐾 − 1: ⟨𝑉𝑖 ⊞𝑈 dst
∗,𝑖 ⟩ ← ⟨𝑉𝑖 ⟩ # For layer 𝐾 − 1, ⟨𝑉𝑖 ⊞𝑈 dst

∗,𝑖 ⟩ is directly set to ⟨𝑉𝑖 ⟩
22 if 𝑖 ≠ 0: ⟨𝑉 ′

𝑖
⟩, ⟨𝐷𝑖

𝑙
⟩ ← Dispatch-2 (𝑖, 𝑖 + 1, 𝑙, 𝑓 𝑎𝑙𝑠𝑒, ⟨𝑉𝑖 ⊞𝑈 dst

∗,𝑖 ⟩, ⟨𝑊𝑙 ⟩, ⟨𝑍
𝑖
𝑙
⟩, ⟨(𝐴𝐻 𝑖

𝑙
)𝑇 ⟩)

23 else: ⟨𝐷𝑖
𝑙
⟩ ← Dispatch-2(𝑖, 𝑖 + 1, 𝑙, 𝑓 𝑎𝑙𝑠𝑒, ⟨𝑉𝑖 ⊞𝑈 dst

∗,𝑖 ⟩, ⟨𝑊𝑙 ⟩, ⟨𝑍
𝑖
𝑙
⟩, ⟨(𝐴𝐻 𝑖

𝑙
)𝑇 ⟩) # Gradient computation using Dispatch-2

24 for 𝑖 ∈ [𝑁 ]\{0, 1}: 𝑃𝑖 sends ⟨𝐷𝑖𝑙 ⟩0 to 𝑃1 and sends ⟨𝐷 𝑗−1
𝑙
⟩1 to 𝑃0 # Delegate secret shares of gradients

25 ⟨𝑊 ′
𝑙
⟩ ← Collect-2(0, 1, ⟨𝑊𝑙 ⟩, {⟨𝐷𝑘𝑙 ⟩}, {|𝑉𝑘 |}), 𝑘 ∈ [𝑁 ] # Gradient aggregation and application using Collect-2

26 for 𝑖 ∈ [𝑁 ]\{0, 1}: 𝑃1 sends ⟨𝑊 ′𝑙 ⟩0 + 𝑅𝑖 to 𝑃𝑖 ; 𝑃0 sends ⟨𝑊
′
𝑙
⟩1 − 𝑅𝑖−1 to 𝑃𝑖 # Redistribute secret shares of the new weight

27 for 𝑖 ∈ [𝑁 ]\{0, 1}: ⟨𝐺𝑖
𝑙−1⟩ ← ⟨𝑉

′
𝑖
⟩; ⟨𝑊𝑙 ⟩ ← ⟨𝑊 ′𝑙 ⟩ # Set the layer output

Protocol 2: The construction of CoGNN-GCN.

• When the Dispatch-2 task is in the first backward layer, it

executes lines 17, 19 and 20 of Protocol 1.

• When the Dispatch-2 task is in the last backward layer, it

executes lines 18, 19 of Protocol 1.

In Protocol 1, we use ... to separate the required inputs/outputs

and the optional inputs/outputs of Dispatch-2. The data stored in

⟨𝑉 ⟩ and ⟨𝑉 ′⟩ has differentmeanings in different GCN forward/backward

layers. See Protocol 2 for the details of how CoGNN prepares inputs

for Dispatch-2 tasks of different layers.

6.3.2 Collect Task. In a backward layer, the second-stageDispatch-
Collect has a Collect phase (corresponding to the Collect-2 task).
The goal of the Collect-2 task is to aggregate the gradient ⟨𝐷𝑖

𝑙
⟩

produced on different𝑉𝑖 , 𝑖 ∈ [𝑁 ], and to optimize the weight matrix

⟨𝑊𝑙 ⟩ using the aggregated gradient. Suppose that all the secret

shares of different ⟨𝐷𝑖
𝑙
⟩ have been delegated to (𝑃0, 𝑃1) according

to the specification in § 5.2.2. The inputs of theCollect-2 task include
a set of secret-shared gradients {⟨𝐷𝑘

𝑙
⟩}, 𝑘 ∈ [𝑁 ] and the weight

matrix ⟨𝑊𝑙 ⟩. The output is the optimized weight matrix ⟨𝑊 ′
𝑙
⟩.

The Collect-2 task consists of two steps:

(1) Obtain the global gradient by performing a weighted sum

for all {⟨𝐷𝑘
𝑙
⟩}, as line 23 of Protocol 1.

(2) Optimize ⟨𝑊𝑙 ⟩ using ⟨𝐷𝑙 ⟩ as line 24 of Protocol 1. Here 𝑂𝑝𝑡

abbreviates the weight optimizing process.

6.4 End-to-End Training and Inference
Training. As shown in line 3 Protocol 2, at the beginning of each

forward layer 𝑙 , the vertex data ⟨𝑉𝑖 ⟩ of 𝑃𝑖 is set to the hidden repre-

sentation ⟨𝐻 𝑖
𝑙
⟩. For layer 0, 𝐻 𝑖

0
= 𝑋𝑖 . ⟨𝑉𝑖 ⟩ are fed to the Dispatch-1

tasks to compute update vectors ⟨𝑈 dst
𝑖, 𝑗
⟩, 𝑗 ∈ [𝑁 ]. After that, the

Collect-1 task aggregates all ⟨𝑈 dst
𝑗,𝑖
⟩, 𝑗 ∈ [𝑁 ] to ⟨𝑉𝑖 ⟩, and obtain

⟨𝑉𝑖 ⊞𝑈 dst
∗,𝑖 ⟩. Then, the Dispatch-2 task performs NN-related com-

putations on ⟨𝑉𝑖 ⊞𝑈 dst
∗,𝑖 ⟩ to obtain ⟨𝑉 ′

𝑖
⟩. If it is the last layer 𝐾 − 1,

⟨𝐻 𝑖
𝐾
⟩ = ⟨𝑉 ′

𝑖
⟩ stores ⟨𝑌𝑖 ⟩ −𝑉𝑖 .y. Note that ⟨𝑉𝑖 ⊞𝑈 dst

∗,𝑖 ⟩ is recorded as
⟨𝐴𝐻 𝑖

𝑙
⟩. Both ⟨𝐴𝐻 𝑖

𝑙
⟩ and ⟨𝑍 𝑖

𝑙
⟩ are stored as forward layer 𝑙 ’s results

and used in the corresponding backward layer’s computation.

The backward computation iterates from layer 𝐾 − 1 to layer

0. At the beginning of computing each backward layer, the data

assigned to ⟨𝑉𝑖 ⟩ depends on the layer index 𝑙 . If it is layer 𝐾 − 1, i.e.,
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the first backward layer, ⟨𝑉𝑖 ⟩ gets ⟨𝐻 𝑖𝐾 ⟩, i.e., ⟨𝑌𝑖 ⟩ −𝑉𝑖 .y. Otherwise,
⟨𝑉𝑖 ⟩ gets ⟨𝐺𝑖𝑙 ⟩. Note that, when 𝑙 = 𝐾−1, there is no need to execute
Dispatch-1 tasks and the Collect-1 task on ⟨𝑉𝑖 ⟩. We directly assign

⟨𝑉𝑖 ⟩ to ⟨𝑉𝑖 ⊞ 𝑈 dst
∗,𝑖 ⟩, as line 21 of Protocol 2. For Dispatch-2 tasks

in backward layers, if 𝑙 ≠ 0, each Dispatch-2 task produces ⟨𝑉 ′
𝑖
⟩

and a gradient ⟨𝐷𝑖
𝑙
⟩. If 𝑙 = 0, each Dispatch-2 task only produces a

gradient ⟨𝐷𝑖
𝑙
⟩. Lines 24 to 26 in Protocol 2 show how the shares of all

⟨𝐷𝑖
𝑙
⟩ are delegated to (𝑃0, 𝑃1) for gradient aggregation and weight

optimization in the Collect-2 task, and how the aggregated result

is redistributed back to all 𝑃𝑖 , 𝑖 ∈ [𝑁 ]\{0, 1}. Line 27 of Protocol 2

assigns ⟨𝑉 ′
𝑖
⟩ to ⟨𝐺𝑖

𝑙−1⟩ and assigns ⟨𝑊 ′
𝑙
⟩ to ⟨𝑊𝑙 ⟩. ⟨𝐺𝑖𝑙−1⟩ is used

for computing the next backward layer, while ⟨𝑊𝑙 ⟩ is used in the

next-epoch computation.

Inference. In CoGNN, performing a GCN inference process re-

quires only a single run of the Forward part in Protocol 2. The

weight matrices {𝑊𝑙 }, 𝑙 ∈ [𝐾] can be either held by all parties in

plaintext, or secretly shared as generated by the CoGNN training

process, i.e., each pair of parties (𝑃𝑖 , 𝑃𝑖+1) hold a different two-party
secret share of {𝑊𝑙 }.
Analysis. In total, running each forward layer requires 𝑁 2 Dis-
patch-1 tasks, 𝑁 Collect-1 tasks and 𝑁 Dispatch-2 tasks. Running
the first backward layer (𝑙 = 𝐾 −1) requires 𝑁 Dispatch-2 tasks and
one Collect-2 task, while running each of the rest of the backward

layers needs 𝑁 2 Dispatch-1 tasks, 𝑁 Collect-1 tasks, 𝑁 Dispatch-2
tasks and one Collect-2 task. In computing one forward or back-

ward layer, tasks of the same type are executed distributedly (across

all parties) and concurrently in CoGNN, making it scalable as more

parties are involved. In § 8.2.2, we show that CoGNN is highly scal-

able: when the number of graph owners increases, the per-party

running duration and communication grows modestly.

6.5 Result Reconstruction
Once the GCN training or inference process finishes, the parties

jointly reconstruct the secret-shared computation outputs. For all

forward layers, the final output is the updated vertex data ⟨𝑉 ′
𝑖
⟩ stor-

ing the prediction values ⟨𝑌𝑖 ⟩. For each backward layer 𝑙 , the output
is the updated model weight ⟨𝑊 ′

𝑙
⟩. Both ⟨𝑉 ′

𝑖
⟩ and ⟨𝑊 ′

𝑙
⟩ are secret-

shared between (𝑃𝑖 , 𝑃𝑖+1), 𝑖 ∈ [𝑁 ]. As a result, 𝑃𝑖+1 sends ⟨𝑉 ′
𝑖
⟩1

and {⟨𝑊 ′
𝑙
⟩1}, 𝑙 ∈ [𝐾] to 𝑃𝑖 for reconstructing𝑉 ′𝑖 and {𝑊 ′

𝑙
}, 𝑙 ∈ [𝐾]

respectively. This part is omitted in Protocol 2.

6.6 Further Optimizations
Optimization w.r.t. the Input Dimension. The first optimization

factor we consider here is the complexity of CoGNNw.r.t. the input

dimension (or element dimension) of each layer. Our consideration

is out of the fact that the input and output dimensions of different

GCN layers are quite uneven. For example, for a typical two-layer

GCN, the feature dimension could be as high as hundreds or even

thousands, while the hidden representation dimensions are typically

less than one hundred, and the number of classes is typically less

than ten. Since the overall computation/communication overhead

of a GCN layer is linear to its input dimension, the overhead of

GCN layers with a high input dimension is also high.

However, we find that much overhead caused by the high input

dimensions can be well circumvented by slightly changing Proto-

col 2. Concretely, in our current specification of CoGNN-GCN, the
execution of each forward layer (as specified by Equation (1)) begins

with performing message passing (i.e., 𝐴𝐻𝑙 ) using Scatter-Gather,

and then handles NN-related computation, i.e., applying𝑊𝑙 and 𝜎 .

The problem is that the dimensions of the elements participating

in messaging passing are extremely high. For example, at layer

0, we perform message passing for each sample’s high-dimension

features. This problem can be alleviated by the following transfor-

mation to Equation (1):

𝐻𝑙+1 = 𝜎 (𝐴(𝐻𝑙𝑊𝑙 )) . (6)

In other words, we can advance part of the computation conducted

during the Apply phase, i.e., weight matrix multiplication, to the

front of the Scatter phase (denoted as PreScatter), when the output

dimension is lower than the input dimension. Such transformation

largely slashes the overhead of Scatter-Gather for forward layers.

We do not apply the transformation to backward layers since the

output dimensions are typically higher than that of the input.

The problem here is that in backward layers, to derive the gra-

dient w.r.t. the weight matrix (see Equation (2)), we need 𝐴𝐻𝑙−1,
which is not computed due to our aforementioned transformation.

Our workaround is the following transformation to Equation (2):

𝐷𝑙−1 = 𝐻
𝑇
𝑙−1 (𝐴

𝑇 (𝜎′ (𝑍𝑙−1) ⊙ 𝐴𝑇𝐺𝑙 )). (7)

In CoGNN, this transformation corresponds to two executions of

Scatter-Gather (i.e., Dispatch-1 and Collect-1) for each backward

layer. As long as the corresponding forward layer’s input dimension

is higher than two times its output dimension, the transformation

still brings optimization.

Optimization w.r.t. |𝐸 |. In CoGNN, the overhead of the Scatter

phase is linear to |𝐸 |. Though this complexity is inherent to GNN

computation (since we have to do message passing on each edge),

we can advance some costly computations to the front of Scatter or

delay them to the back of Gather, in order to make their overhead

linear to |𝑉 |. The exact benefit is that the concrete overhead of the

overall message passing process is largely reduced. Specifically, in

GCN, we make the following further transformation to Equation

(6).

𝐻𝑙+1 = 𝜎 (𝐷̃−
1

2 (𝐴̃(𝐷̃−
1

2 (𝐻𝑙𝑊𝑙 )))). (8)

Previously, in Equation (6), 𝐴 is a weighted matrix. These weights

are represented as edge weights under the CoGNN computation

model. As a result, the vectorized Scatter computation includes the

multiplication with the edge weights at each vector slot, which is

costly due to linear complexity w.r.t. |𝐸 |. After the above transfor-
mation, since 𝐷̃−

1

2 is a diagonal matrix, multiplying 𝐷̃−
1

2 to 𝐻𝑙𝑊𝑙
means multiplying each row of 𝐻𝑙𝑊𝑙 with a scaler, which only has

a linear cost w.r.t. the length 𝐻𝑙 , i.e., |𝑉 |. On the other hand, since

𝐴̃ is an unweighted adjacency matrix containing elements valued

at {0, 1}, the whole Scatter-Gather phase now contains no multi-

plications. To achieve this tranformation in CoGNN, we advance
the inner multiplication with 𝐷̃−

1

2 to the front of the Scatter phase

(i.e., right after executing 𝐻𝑙𝑊𝑙 in PreScatter), and delay the outer

multiplication with 𝐷̃−
1

2 to the back of the Gather phase (denoted

as PostGather).
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Experimental results in § 8.2.2 show that these two optimizations

bring 13 ∼ 21x improvement to the per-epoch duration of CoGNN,
for various numbers of graph owners.

7 SECURITY THEOREM
Theorem 1. Our CoGNN-GCN protocol (as specified in Protocol 2)

securely realizes the functionality FCoGNN in the (FDsp-1, FDsp-2,
FClc-1, FClc-2)-hybrid model against a semi-honest, non-uniform ad-
versary A corrupting one party at a time. Formally, for every PPT,
semi-honest and non-uniform adversary A that corrupts one party
𝑃𝑖 (𝑖 ∈ [𝑁 ]), there exists a PPT, non-uniform simulator S corrupting
the same party in the ideal world of FCoGNN, which satisfies:

REAL
FDsp-1,FDsp-2,FClc-1,FClc-2
CoGNN-GCN,A (𝜅, {𝐸𝑖 }, {𝐸𝑖, 𝑗 }, {𝑉𝑖 }, {𝑊𝑙 }, alg)
𝑐≡ IDEALFCoGNN,S (𝜅, {𝐸𝑖 }, {𝐸𝑖, 𝑗 }, {𝑉𝑖 }, {𝑊𝑙 }, alg),

where REAL
FDsp-1,FDsp-2,FClc-1,FClc-2
CoGNN-GCN,A represents a joint distribution

over the view of the adversary (the corrupted party’s input, ran-

domness, protocol transcript) and the protocol output, when 𝑃𝑖 and

𝑃 𝑗 ,∀𝑗 ∈ [𝑁 ] interact in the (FDsp-1, FDsp-2, FClc-1, FClc-2)-hybrid
CoGNN on inputs ({𝐸𝑖 }, {𝐸𝑖, 𝑗 }, {𝑉𝑖 }, {𝑊𝑙 }, alg) and computational

security parameter 𝜅. (FDsp-1, FDsp-2, FClc-1, FClc-2) are the func-
tionalties for (Dispatch-1, Dispatch-2, Collect-1, Collect-2) respec-
tively. IDEALFFedGraph,S (𝜅, {𝐸𝑖 }, {𝐸𝑖, 𝑗 }, {𝑉𝑖 }, {𝑊𝑙 }, alg) represents a
joint distribution over the simulated view of the corrupted party

and the functionality output, when 𝑃𝑖 and 𝑃 𝑗 ,∀𝑗 ∈ [𝑁 ] interact
with FCoGNN on inputs ({𝐸𝑖 }, {𝐸𝑖, 𝑗 }, {𝑉𝑖 }, {𝑊𝑙 }, alg) and computa-

tional security parameter 𝜅; and
𝑐≡ means the two distributions are

computationally indistinguishable (in 𝜅).

We provide the detailed proof of Theorem 1 in § A.7. Intuitively,
Theorem 1 (i.e., the security of Protocol 2) holds in two intuitions:
(i) the pairwise computations are all constructed using provably
secure gadgets, including generic 2PC, OEP and OGA; (ii) the multi-
party coordination is based on share delegation/redistribution,
where all the messages received by each party are independent
and uniformly random. More specifically, the security of CoGNN-
GCN stems from the security of (FDsp-1, FDsp-2, FClc-1, FClc-2).
Among them, the security of (FDsp-2, FClc-1, FClc-2) is straightfor-
ward since their realizations include only simple 2PC operations,
e.g., addition, multiplication, ReLU and Softmax, as shown in Pro-
tocol 1. On the other hand, the security of FDsp-1 relies on the
secure realizations of FOEP and FOGA. Thus, in § A.7, we first prove
two lemmas regarding the security of OEP and OGA, respectively.
Afterwards, we construct a simulator S for FCoGNN. Finally, we
prove Theorem 1 by showing that the real-world and ideal-world
distributions are computationally indistinguishable via a hybrid
distribution construction.

8 IMPLEMENTATION & EVALUATION
8.1 Implementation
The core component of our CoGNN prototype

1
is a GNN execu-

tion engine (4044 LoC C++) fulfilling the CoGNN framework. We

further realize the OEP and OGA protocols (843 LoC C++) and

1
https://github.com/InspiringGroup-Lab/CoGNN

integrate them into the engine for efficient Scatter-Gather compu-

tation. Based on that, we implement and optimize GCN (1922 LoC

C++) to evaluate the concrete efficiency of CoGNN. Specifically,
we use the RLWE-based HE and polynomial vector encoding pro-

vided by troy [4, 31] (A GPU-accelerated HE library) to support

the batch HE operation of OEP
2
and the matrix multiplication be-

tween secret-shared matrices. The OT-related operations required

by OEP and OGA are supported by the libOTe [2] library’s im-

plementation of Silent OT [10]. The rest of the computations on

secret-shared data, e.g., vector-scaler multiplication, 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 and

𝑅𝑒𝐿𝑈 , are implemented based on the SCI library [3]. We replace

SCI’s OT implementation with libOTe’s for better efficiency.

8.2 Evaluation
Our evaluations center around the following:

• Efficiency and Scalability. In § 8.2.2, we conduct an exten-

sive comparison between CoGNN and the SOTA SML-based

approach [26] to demonstrate CoGNN’s efficiency improvement,

as well as its scalability for an increasing number of graph owners.

The comparison includes end-to-end duration/communication

measurements on various datasets;

• Accuracy. In § 8.2.3, we show thatCoGNN yields model accuracy

comparable to plaintext GNN,while significantly surpassing prior

FL-based GNN. This part of the experimental results reveals the

importance of considering inter-edges during GNN collaboration.

Additionally, in § 8.2.4, we present the breakdowns of the opti-

mized CoGNN’s running durations to quantify the effectiveness

of our message passing mechanism. Due to page limit, we defer

several supporting evaluation results to appendix, including the

comparison between our message passing approach and prior art

(§ A.4), and CoGNN’s duration breakdowns before optimizations

and communication statistics for training/inference (§ A.5).

8.2.1 Setup. Testbed. Our testbed is a Linux server with two Intel

(R) Xeon (R) Gold 6348 CPUs at 2.60GHz. The network environment

is simulated using Linux network namespace and the tc command.

We place different parties in different network namespaces con-

nected via a virtual bridge, and use the tc command to set up specific

bandwidth and latency. In particular, all our efficiency tests run

in a simulated LAN environment with 4𝐺𝑏𝑝𝑠 bandwidth and 1𝑚𝑠

latency. A computation task assigned to each pair of parties (i.e., 𝑃𝑖
and 𝑃 𝑗 , 𝑖 ≠ 𝑗 ) runs in a single thread.

Dataset. We evaluate CoGNN on three graph datasets commonly

used for vertex-level prediction tasks, i.e., Cora [35], CiteSeer [16],

PubMed [46]. The detailed information on the three datasets is

provided in Table 3. During GNN training, we consider the semi-

supervised setting, where only a relatively small proportion of

vertices have labels but all vertices have features and participate

in the training process. We perform batch gradient descent using

the full graph dataset for every training iteration (epoch). The

vertices with labels are treated as the training set, while the rest

of the vertices are split into validation and test sets. Considering

the number of vertices varies a lot for the three datasets, we use

different train/valid/test splits for them, as shown in the rightmost

column of Table 3. To distribute the whole graph dataset evenly to

2We use HE for the offline phase of OEP. See § A.1 for the details.
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all the graph owners, we use random graph partition, i.e., uniform-

randomly assigning each vertex to one of all the graph owners.

To evaluate the efficiency and scalability of CoGNN, we split each
dataset into 5 partitions, each partition corresponding to a graph

owner. As the number of graph owners increases, more partitions

are involved in collaborative training, and the scale of the global

graph also increases. To evaluate the accuracy of CoGNN, we split
all three datasets into different numbers of partitions, and involve all

partitions in training. In other words, the scale of the global graph is

fixed, while the number of graph owners changes. In this setting, as

the number of graph owners increases, the number of inter-edges

also increases. We record the detailed numbers of inter-edges for

different numbers of graph owners in Table 5.

Parameter. For the cryptographic part, we set the ring length

𝐿 of fixed-point encoding to 2
64

and the scaler for encoding a

floating point number to 2
13
. The parameters set for the RLWE-

based HE scheme are {𝑁 = 8192, 𝑝 = 2
44, 𝑞 ≈ 2

180}. It means

each encrypted number is encoded over the ring of Z
2
44 (i.e., the

plaintext space is Z
2
44 ). We use the extend and truncate operations

provided by the SCI library to switch between the rings of Z
2
64

and Z
2
44 . For the model structure, we use a 2-layer GCN and set

the hidden layer dimension to 16. The first layer is activated by

𝑅𝑒𝐿𝑈 , while the second layer is normalized by 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 . We use

cross-entropy loss and full-batch gradient descent. For the model

training part, we set the number of epochs to 90. The learning

rates for Cora/CiteSeer/PubMed are set to 0.5/0.4/8.0 to guarantee

that CoGNN and all the baseline methods have converged (but not

overfitted) after the 90 epochs. The model weights are randomly

initialized using the Glorot’s method [17]. For FedGNN andCoGNN,
we take the average of their accuracy over the test set of each party

as their final test accuracy.

8.2.2 Scalability & Efficiency. Since the source code and evaluation
details of the SOTA SML-based approach [26] (denoted as GraphSC
here since it is based on the GraphSC paradigm) are unavailable,

for fair comparison, we re-produce it using the same MPC, OT

and HE libraries as used in our CoGNN prototype. We use our

OEP protocol for the shuffle operations in GraphSC, and use prefix

network construction to realize the propagate operation for Scatter

and aggregate operation for Gather. All these realization details try

to achieve the best efficiency for GraphSC.

End-to-end Efficiency and Scalability.We compare CoGNN and

GraphSC under different numbers of graph owners. According to

our evaluation setup, as the number of graph owners increases, the

scale (i.e., numbers of edges and vertices) of the global graph in-

creases linearly. The number of computing parties in CoGNN is the

same as the number of graph owners, while the number of comput-

ing parties in GraphSC remains unchanged and is always 2. We set

the same number of threads between each pair of parties forCoGNN
and GraphSC. Figure 6 shows the running duration and communi-

cation (send + receive) of each computing party in one epoch of full-

batch training. The three lines in each subfigure represent GraphSC,

CoGNN, and CoGNN with optimizations (i.e., CoGNN-Opt) re-
spectively. CoGNN shows significant elevation over GraphSC in

both efficiency and scalability. Specifically, compared to GraphSC

when there are 2 graph owners, CoGNN (CoGNN-Opt) reduces
the running duration by 1.9 ∼ 2.0x (29 ∼ 39x), and reduces the
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Figure 6: Duration and communication per epoch of each
computing party for different numbers of graph owners.

per-party communication of by 2.2 ∼ 2.4x (88 ∼ 164x). The dura-

tion/communication improvements are enlarged as the number of

graph owners increases. In particular, when the number of graph

owners increases from 2 to 5, the per-party duration (communi-

cation) of GraphSC is 4.3 ∼ 4.9 (4.5 ∼ 5.0) times higher. In con-

trast, the per-party duration (communication) grows to 1.1 ∼ 1.2x

(1.8 ∼ 1.9x) in CoGNN, and grows to 1.4 ∼ 1.5x (1.2 ∼ 1.5x) in

CoGNN-Opt. The per-party duration/communication of CoGNN
grows much slower than GraphSC, indicating CoGNN’s better scal-
ability as more graph owners are involved. Compared to GraphSC

when there are 5 graph owners, CoGNN (CoGNN-Opt) reduces
the running duration by 6.7 ∼ 8.5x (97 ∼ 123x), and reduces the

per-party communication by 5.8 ∼ 5.9x (323 ∼ 522x).

8.2.3 Model Accuracy. We compare the accuracy of CoGNN and

the FL-based approach (abbreviated as FedGNN) to concretely show

the benefits of global GCN trainingwith inter-edge message passing.

The accuracy baseline for us is plaintext GCN training on the global

graph, denoted as PlainGNN. For FedGNN, we use the common

scheme named FedAvg [52], which is equivalent to the gradient

aggregation in CoGNN. Both the PlainGNN and FedGNN schemes

we compare use the same training hyperparameters as CoGNN.
FedGNN uses the same graph partitions as CoGNN.

We compare the accuracy of PlainGNN, CoGNN and FedGNN

for different numbers of parties. According to our dataset setup,

the number of inter-edges increases as the number of parties in-

creases (detailed in Table 5), meaning that more edges are ignored

by FedGNN. We are also interested in vertices connected by inter-

edges. We call them border vertices and call their accuracy as border
accuracy. Figure 7 shows that, (i) the accuracy and border accuracy

of CoGNN remain stable and close to the PlainGNN accuracy as

the number of parties/inter-edges increases for all datasets. In con-

trast, the overall accuracy of FedGNN fluctuates and is consistently
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Dataset OEP Pre PreScatter Scatter OEP (1) Scatter Comp Scatter OGA Scatter OEP (2) Gather PostGather Apply Total
Cora 0.33 9.82 0.13 - 1.10 0.01 0.01 4.20 17.29 32.88

CiteSeer 0.35 25.64 0.13 - 1.06 0.01 0.01 4.52 34.18 65.89

PubMed 2.69 29.11 0.26 - 2.61 0.05 0.01 14.51 44.84 94.08

Table 1: Execution duration [𝑠] breakdown for each full-batch training epoch of CoGNN with optimization.

Dataset OEP Pre PreScatter Scatter OEP (1) Scatter Comp Scatter OGA Scatter OEP (2) Gather PostGather Apply Total
Cora 0.09 6.97 0.08 - 0.61 0.01 0.01 2.80 7.12 17.68

CiteSeer 0.08 22.62 0.08 - 0.61 0.01 0.01 3.37 7.50 34.27

PubMed 0.55 17.04 0.17 - 1.37 0.03 0.01 12.71 20.93 52.79

Table 2: Execution duration [𝑠] breakdown for each full-batch inference of CoGNN with optimization.
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Figure 7: Accuracy for different numbers of parties. (+) repre-
sents the accuracy difference between CoGNN and FedGNN.

lower than CoGNN and PlainGNN. Specifically, from 2-party to

5-party, the accuracy (border accuracy) gap between CoGNN and

FedGNN on Cora increases from 3.87% to 11.06% (5.36% to 11.52%);

(ii) the accuracy gap between CoGNN and FedGNN is more sig-

nificant in border vertices for all three datasets. The results reveal

that in a GNN collaborative setting where the inter-edges are more

intense, training on the global graph using CoGNN brings more

accuracy elevation over FedGNN. Overall, collaboratively train-

ing GNN using CoGNN achieves better model performance. The

computing/communication overhead in FedGNN is certainly small

since it trains models in plaintext. Yet it lacks a provable privacy

guarantee and promising model performance. In § A.6, we provide

the detailed accuracy statistics under the two-party setting and

five-party setting in Table 11 and 12, respectively.

8.2.4 Training/Inference Duration Breakdown. Besides accuracy,
we provide the duration breakdowns of CoGNN-Opt in the two-

party setting in Table 1 and 2 to show the exact overhead in GCN

training/inference. TheOEP Pre column is the offline OEP duration

amortized for each training epoch/inference. The PreScatter and
PostGather columns correspond to the optimizations of CoGNN in

§ 6.6. The Scatter Comp is not applicable here since CoGNN-Opt

distributes the vector-scaler multiplication operations to PreScat-
ter and PostGather. The Total column sums up all offline and

online durations. The message passing (summing upOEP Pre, Scat-
ter OEP, Scatter OGA, Gather) consumes only 2 ∼ 6% (2 ∼ 5%) of

the total training (inference) duration, indicating that our message

passing paradigm and OEP/OGA protocols are highly efficient. The

heavyweight parts of CoGNN are in PreScatter, PostGather and
Apply, because they perform expensive vector-scaler multiplica-

tion and NN computations (linear and non-linear). See § A.5 for the

detailed communication overhead breakdown.

9 FUTUREWORK
Other Types of GNN Models. As a generic framework for collab-

orative GNN learning, CoGNN provides a high-level abstraction for

secure, efficient and scalable GNN training/inference. Nevertheless,

instantiating specific GNN models under CoGNN requires dedi-

cated construction of all Dispatch tasks and Collect tasks to express
specialized forward/backward computation. Further optimizations

like our optimizations for GCN might also be needed to bring out

concrete efficiency for computing specific GNN models. We leave

the support of other types of GNNmodels, such as GraphSAGE [19]

and graph attention network (GAT) [48], to future work.

Mini-Batch Training. CoGNN is currently designed for full-batch

training across the whole global graph. In the real world, there is a

need for mini-batch training to support GNN learning on a large

graph dataset. Supporting mini-batch training in CoGNN requires

an additional design of collaborative mini-batch sampling without

violating the privacy of each graph data owner. The sampling pro-

cess selects out the mini-batch-related graph data, which can be

then fed to the CoGNN training/inference process. This is also a

promising future direction for extending CoGNN.
Other Scenarios of Graph Collaboration. The graph collabo-

ration setting that CoGNN deals with, i.e., exclusively different

vertex sets with inter-edges, is one of the most popular settings

of graph data collaboration. However, there are still other scenar-

ios. For example, one party holds vertex features and labels, while

another party has the graph topology [20, 55]. They want to put

the features/labels and graph topology together to jointly train a

GNN model. Such GNN collaboration can be handled by CoGNN
by having the two parties secretly share the features and perform

GNN training thereafter. A more complex scenario might be that

multiple graph owners have overlapped vertex sets and different

graph topologies. The vertex features that they hold are also differ-

ent from each other. AdaptingCoGNN to these scenarios to support

efficient GNN collaboration is also included in our future work.
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Other Types of Gradient Aggregation Schemes. The way how

CoGNN-GCN aggregates the gradients of different subgraphs (in

Collect-2) is equivalent to the FedAvg [9] scheme. Thus, in accu-

racy evaluation, we compare CoGNN with the FedAvg-based FL

approach. Supporting other aggregation schemes, like FedOpt [6]

and FedProx [30], is part of the future extension of CoGNN.
Other SecurityModels.CoGNN currently deals with semi-honest
and non-colluding adversaries. We have introduced the rationale
for this security model in § 4. We further discuss the possibility of
extending CoGNN to other stronger securitymodels (e.g., malicious
or colluding) and the extra overhead thatmight be introduced there-
after. In the 𝑛-party setting (i.e., an arbitrary number of parties), to
extend CoGNN to malicious security, the main difficulty is in pro-
tecting the delegated Collect phase. This goal is similar to verifiable
secure aggregation in FL, and can borrow techniques from recent
works (like [18, 45]). This increases computation/communication
costs but does not necessarily sacrifice scalability. For colluding
security, we need to combine CoGNN with an MPC scheme over
𝑡-out-of-𝑛 secret sharing. This would sacrifice scalability since the
same task has to be processed by more parties.

In the setting of a fixed number of parties, like prior SML-based
approaches, extending CoGNN to a stronger security model is
relatively lightweight. For example, for the 2-party setting (like
in [50]), CoGNN requires no share delegation/redistribution, and
realizing malicious security mainly needs to protect OEP and OGA.
For the 3-party or 4-party setting, we can incorporate the CoGNN
message-passing mechanism into a maliciously secure 3PC or 4PC
scheme (similar to [5, 26]), but the scalability is degraded.

10 CONCLUSION
This paper presents CoGNN, a secure, efficient and scalable frame-

work for collaborative GNN learning among multiple graph owners.

CoGNN introduces a new oblivious message passing paradigm that

halves the communication required by the SOTA approach. Based

on it, we build a two-stage Dispatch-Collect execution scheme to

securely and efficiently express GNN training and inference as dis-

tributed vertex-centric computation. By instantiating GCN under

the CoGNN framework and performing comprehensive compar-

isons with prior approaches, we show that CoGNN reduces up to

123x running time and up to 522x communication cost per party

when compared to the SML-based SOTA approach, while achieving

good scalability as the number of graph owners increases. Mean-

while, the GCN models trained under CoGNN have performance

comparable with plaintext global-graph training, and yield up to

11.06% accuracy improvement over GCN models trained via feder-

ated learning.
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A APPENDIX
A.1 FOEP Instantiation
When the input size is smaller than the output size, [38] discusses

a construction of OEP by combining two oblivious permutation

networks and one vector scan. In total, the OEP protocol of [38] re-

quires𝑂 (( |𝑇in | + |𝑇out |) log( |𝑇in | + |𝑇out |)) invocations of 1-out-of-2
OT, resulting in high communication overhead. As we will describe

below, our OEP protocol achieves 𝑂 ( |𝑇in |) online complexity and

𝑂 ( |𝑇in | + |𝑇out |) total complexity.

By carefully looking into the scenario of GNN computation, we

find two important patterns of invoking FOEP: (i) the dimension of

vector elements to be permuted is typically high, especially when

the GAS iteration corresponds to the first forward layer and the

element dimension equals the number of features; (ii) since the

graph is undirected, all of the forward layers and backward layers

share exactly the same graph topology, resulting in the same set

of permutations. In other words, we need a dedicated realization

of FOEP in GNN computation, to efficiently deal with large-size

elements and repeated execution of the same permutations on

different inputs.
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Protocol Two-party OEP

Input. 𝑃𝑖 provides 𝜋 ← (𝐼𝑑in, 𝐼𝑑out), {⟨𝑇𝑘in⟩0} and 𝑃 𝑗 provides {⟨𝑇
𝑘
in⟩1}, where |⟨𝑇

𝑘
in⟩| = 𝑎, |{⟨𝑇

𝑘
in⟩}| =𝑚, and |⟨𝑇𝑘in⟩[𝑥] | = 𝑙𝑘 .

Output. 𝑃𝑖 gets {⟨𝑇𝑘out⟩0} and 𝑃 𝑗 gets {⟨𝑇𝑘out⟩1}, such that 𝑇𝑘out = 𝜋 (𝑇𝑘in), |⟨𝑇
𝑘
out⟩| = 𝑏, and |⟨𝑇𝑘out⟩[𝑥] | = 𝑙𝑘 .

1 Offline.
2 for 𝑘 ∈ [𝑚]: 𝑃 𝑗 (𝑃𝑖 ) randomly samples 𝑅𝑘 ←$ Z𝑎

2
𝑙𝑘

(𝑆𝑘 ←$ Z𝑏
2
𝑙𝑘
) to obtain a batch of random vectors {𝑅𝑘 } ({𝑆𝑘 }), 𝑘 ∈ [𝑚];

3 𝑃 𝑗 (𝑃𝑖 ) concatenates {𝑅𝑘 } ({𝑆𝑘 }) as 𝑅 (𝑆), where 𝑅 [𝑥] = | |𝑅𝑘 [𝑥],∀𝑘 ∈ [𝑚],∀𝑥 ∈ Z |𝑅𝑘 | (𝑆 [𝑥] = | |𝑆𝑘 [𝑥],∀𝑘 ∈ [𝑚],∀𝑥 ∈ Z |𝑆𝑘 | );
4 𝑃 𝑗 performs per-element HE encryption to 𝑅 to obtain [𝑅] 𝑗 and sends it to 𝑃𝑖 ;

5 𝑃𝑖 performs the extended permutation 𝜋 on [𝑅] 𝑗 , and gets 𝜋 ( [𝑅] 𝑗 ) = [𝜋 (𝑅)] 𝑗 ;
6 𝑃𝑖 performs HE cipher-plaintext subtraction to obtain [𝜋 (𝑅) − 𝑆] 𝑗 . Then, 𝑃𝑖 sends [𝜋 (𝑅) − 𝑆] 𝑗 to 𝑃 𝑗 ;
7 𝑃 𝑗 decrypts [𝜋 (𝑅) − 𝑆] 𝑗 and breaks 𝜋 (𝑅) − 𝑆 as {𝜋 (𝑅𝑘 ) − 𝑆𝑘 }. Then, 𝑃𝑖 stores {𝑆𝑘 } while 𝑃 𝑗 stores {𝑅𝑘 } and {𝜋 (𝑅𝑘 ) − 𝑆𝑘 }.
8 Online.
9 for 𝑘 ∈ [𝑚]:

10 𝑃 𝑗 performs ⟨𝑇𝑘in⟩1 − 𝑅𝑘 and sends the result to 𝑃𝑖 ;

11 𝑃𝑖 performs ⟨𝑇𝑘in⟩0 + ⟨𝑇
𝑘
in⟩1 − 𝑅𝑘 to obtain 𝑇𝑘in − 𝑅𝑘 . Then, 𝑃𝑖 performs 𝜋 on 𝑇𝑘in − 𝑅𝑘 to get 𝜋 (𝑇𝑘in − 𝑅𝑘 );

12 𝑃𝑖 performs 𝜋 (𝑇𝑘in − 𝑅𝑘 ) + 𝑆𝑘 and sets ⟨𝑇𝑘out⟩0 to the result. 𝑃 𝑗 sets ⟨𝑇𝑘out⟩1 to 𝜋 (𝑅𝑘 ) − 𝑆𝑘 .
Protocol 3: Two-party OEP

Our OEP protocol works in an offline-online fashion. In the

offline phase, we generate permutation correlations for multiple on-

line OEP invocations in a batch, aided by homomorphic encryption

(HE) techniques supporting batch operations. In the online phase,

we consume the permutation correlations to efficiently permute dif-

ferent inputs. The core idea behind this design is to pack elements

and fully utilize the rich batch slots provided by HE techniques to

amortize the communication/computation cost of permuting each

element in the batch.

The specification of OEP is provided in Protocol 3. Its inputs

include the extended permutation 𝜋 defined by a pair of identifier

vectors (𝐼𝑑in, 𝐼𝑑out) and a batch of secret shared vectors {⟨𝑇𝑘
𝑖𝑛
⟩}

to permuted. The batch size is𝑚. 𝐼𝑑in and each vector in {⟨𝑇𝑘
𝑖𝑛
⟩}

are of length 𝑎. |𝐼𝑑out | defines the output length 𝑏. Different input
vectors could have different element sizes, denoted as 𝑙𝑘 . Note that

Czero ∈ {0, 1} |𝐼𝑑out | is an indicator vector indicating whether each

element in 𝐼𝑑out (𝑇out) has an equal element in 𝐼𝑑in (𝑇in).

In the offline phase, 𝑃 𝑗 samples a batch of random vectors, de-

noted as {𝑅𝑘 }, of the same size as the input vectors. At the same

time, 𝑃𝑖 samples a batch of random vectors, {𝑆𝑘 }, of the same size

as the output vectors. They then concatenate/pack {𝑅𝑘 } and {𝑆𝑘 }
to obtain 𝑅 and 𝑆 respectively. See lines 2, 3 in Protocol 3. After that,

𝑃 𝑗 encrypts each element of 𝑅 separately to obtain [𝑅] 𝑗 and sends

it to 𝑃𝑖 . Upon receiving [𝑅] 𝑗 , 𝑃𝑖 performs the extended permuta-

tion 𝜋 to it and gets [𝜋 (𝑅)] 𝑗 , which is of the same length as the

output vectors. Further, 𝑃𝑖 performs cipher-plaintext subtraction to

[𝜋 (𝑅)] 𝑗 and 𝑆 to derive [𝜋 (𝑅) − 𝑆] 𝑗 , which is then sent back to 𝑃 𝑗 .

Finally, 𝑃 𝑗 decrypts [𝜋 (𝑅) −𝑆] 𝑗 and unpack it into {𝜋 (𝑅𝑘 ) −𝑆𝑘 }. 𝑃𝑖
stores {𝑆𝑘 } as a batch of permutation correlations, while 𝑃 𝑗 stores

{𝑅𝑘 } and {𝜋 (𝑅𝑘 ) − 𝑆𝑘 }. See lines 4-7 of Protocol 3.

In the online phase, for each secret-shared input vector ⟨𝑇𝑘
𝑖𝑛
⟩

in the batch, 𝑃 𝑗 calculates ⟨𝑇𝑘𝑖𝑛⟩1 − 𝑅𝑘 and sends it to 𝑃𝑖 . 𝑃𝑖 adds

⟨𝑇𝑘
𝑖𝑛
⟩1 − 𝑅𝑘 to ⟨𝑇𝑘

𝑖𝑛
⟩0 to obtain𝑇𝑘

𝑖𝑛
− 𝑅𝑘 . Permuting𝑇𝑘

𝑖𝑛
− 𝑅𝑘 results

in 𝜋 (𝑇𝑘
𝑖𝑛
− 𝑅𝑘 ), which is of the same length as the output vector.

... ...

for permuting forward layers for permuting
backward layers

...

pack
layers

pack
epochs

all slots of an HE ciphertext

Figure 8: Hierarchical packing in batch OEP preprocessing.

Then, 𝑃𝑖 sets ⟨𝑇𝑘𝑜𝑢𝑡 ⟩0 to 𝜋 (𝑇𝑘𝑖𝑛 − 𝑅𝑘 ) + 𝑆𝑘 , while 𝑃 𝑗 sets ⟨𝑇
𝑘
𝑜𝑢𝑡 ⟩1 to

𝜋 (𝑅𝑘 ) − 𝑆𝑘 . See lines 10-12 of Protocol 3.

Zero Out Unmatched Elements. We have mentioned in § 3.2

that the definition of FOEP extends the definition of OEP in [38]

by allowing the elements in 𝐼𝑑out to be not in 𝐼𝑑in. We call these

elements in 𝐼𝑑out (𝑇out) unmatched elements. To handle them, we

add a dummy element valued 0 to 𝑇in and have 𝑃𝑖 adjust 𝜋 to

permute this dummy element to all the unmatched elements in

𝑇out. The additional overhead introduced to our OEP protocol is

negligible since the input size turns to |𝑇in | + 1, while the output
size stays unchanged.

Hierarchical Packing. The reason why we design Protocol 3 to

support packing vectors of different element sizes in a batch is

that the input dimensions to different forward/backward layers

of GNN are different. Figure 8 shows our design of hierarchical

packing for preprocessing the permutations in GNN computation.

Specifically, we first pack the forward and backward layers of each

epoch. The size of each packed element equals the input dimension

of the corresponding GNN layer. For instance, in Figure 8, the sizes

of 𝑟0, ..., 𝑟𝐾−1 equal the sizes of ℎ0, ..., ℎ𝐾−1 respectively, which

represent the hidden representations fed to layer 0, ..., 𝐾 − 1. The
packing of backward layers is symmetric to the forward layers. As

all the layers of each epoch is packed, we pack consecutive epochs
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Figure 9: An example of OGA based on prefix adder network.

Protocol Two-party OGA

Input. 𝑃𝑖 provides (G, ⟨𝑇in ⟩0 ) and 𝑃 𝑗 provides ⟨𝑇𝑈 ⟩1. | G | = | ⟨𝑇in ⟩ | =
𝑛. G can be divided into segments, each of which contains elements

of the same value. 𝑃𝑖 and 𝑃 𝑗 agree on the merge operation ⊞.

Output. 𝑃𝑖 gets ⟨𝑇out ⟩0 and 𝑃 𝑗 gets ⟨𝑇out ⟩1. The first element of each

segment of 𝑇out stores the aggregation result of the corresponding

segment in𝑇in. The other elements of each segment of𝑇out store 0.

FunctionMerge(𝑐, ⟨𝑥1 ⟩, ⟨𝑥2 ⟩)
returnMUX2 (𝑐, ⟨𝑥1 ⟩, ⟨𝑥1 ⊞ 𝑥2 ⟩)

Function Aggregate(𝒃, ⟨𝒗⟩)
𝑛 ← |⟨𝒗⟩ |;
if 𝑛 = 1 then return ⟨𝒗⟩;
for 𝑘 ∈ {0, ..., ⌊𝑛/2⌋ − 1} :

𝒃′ [𝑘 ] ← 𝒃 [2𝑘 ] ∧ 𝒃 [2𝑘 + 1];
⟨𝒗′ [𝑘 ] ⟩ ← Merge(𝒃 [2𝑘 ], ⟨𝒗 [2𝑘 ] ⟩, ⟨𝒗 [2𝑘 + 1] ⟩) ;

⟨𝒘⟩ ← Aggregate(𝒃′, ⟨𝒗′ ⟩) ;
for 𝑘 ∈ {0, ..., ⌊𝑛/2⌋ − 1} :
⟨𝒗 [2𝑘 ] ⟩ ← ⟨𝒘 [𝑘 ] ⟩;

for 𝑘 ∈ {0, ..., ⌈𝑛/2⌉ − 2} :
⟨𝒗 [2𝑘 + 1] ⟩ ← Merge(𝒃 [2𝑘 + 1], ⟨𝒗 [2𝑘 + 1], ⟨𝒗 [2𝑘 + 2] ⟩) ;

return ⟨𝒗⟩.

1 for 𝑘 ∈ {0, ..., 𝑛 − 2}:

𝑃𝑖 calculates 𝒃 [𝑘 ] ←
{
0, G[𝑘 ] ≠ G[𝑘 + 1],
1, G[𝑘 ] = G[𝑘 + 1];

2 𝑃𝑖 sets 𝒃 [𝑛 − 1] to 0;

3 ⟨𝑇out ⟩ ← Aggregate(𝒃, ⟨𝑇in ⟩) .
Protocol 4: Two-party OGA

until all the slots of an HE ciphertext are consumed. Supposing the

number of packed epochs in a ciphertext is 𝐶 , we have the batch

size𝑚 = 𝐶 · 2𝐾 .
Cost Analysis. The main computation cost of the offline phase

of OEP is from HE-related operations, i.e., 𝑎 encryptions by 𝑃 𝑗 , 𝑏

cipher-plaintext subtractions by 𝑃𝑖 , and 𝑏 decryptions by 𝑃 𝑗 . Cor-

respondingly, the communication cost of the offline phase of OEP

is from transferring 𝑎 + 𝑏 HE ciphertexts. These offline compu-

tation/communication costs are amortized for each online OEP

invocation in the batch. Each online invocation of OEP contains

plaintext computation only and the communication is of the same

size as ⟨𝑇𝑘in⟩, i.e., 𝑎 · 𝑙𝑘 .

A.2 FOGA Instantiation
Our construction of the OGA protocol follows the prefix adder

network paradigm [28], which is a commonly used scheme for

parallel oblivious computation. We illustrate the idea of OGA using

the example in Figure 9, in which we oblivious merge an 8-element

𝑇in. In Figure 9, when two arrows direct to the same element, it

means that the element is the result of the conditional merging of

the two source elements. If the groups of the two source elements

are the same, we merge. Otherwise, we copy the first one of the

two source elements to the destination element. When only one

arrow directs to an element, it means a copy operation. The overall

computation is oblivious since the arrow topology (i.e., how the

arrows are positioned) depends purely on the length of 𝑇in and is

irrelevant to the content in G. From Figure 9 we can see that the

prefix adder network has a recursive structure, where the forward

layers fold like a tree to the root, and the backward layers unfold

back to the leaves. In the following, we explain it in detail, with the

help of our detailed OGA protocol specification in Protocol 4.

As shown in Protocol 4, the OGA protocol is based on two core

functions, i.e.,Merge andAggregate. TheMerge function condition-
ally aggregates two secret-shared elements based on the boolean

flag 𝑐 provided by 𝑃𝑖 . If 𝑐 = 1, the merge result is returned. If 𝑐 = 0, a

random reshare of the first element is returned. Ignoring the merge

operation ⊞,Merge requires one invocation of OT.

The Aggregate function is a recursive function that expresses

the prefix adder network. It aims to obliviously aggregate the el-

ements in ⟨𝒗⟩ according to the boolean indicator vector 𝒃 , which
is provided by 𝑃𝑖 and is of the same length as ⟨𝒗⟩. If 𝒃 [𝑖] is 1, it
indicates that 𝒗 [𝑖] and 𝒗 [𝑖 + 1] are in the same group. If 𝒃 [𝑖] is 0,
they are not in the same group. In detail, the Aggregate function
is composed of three consecutive parts: (1) conditionally merge

the even-indexed elements with the subsequent odd-indexed ele-

ments that are directly following them, and output ⟨𝒗′⟩; (2) invoke
Aggregate recursively on ⟨𝒗′⟩ and write the results back to the even-
indexed elements of ⟨𝒗⟩; (3) conditionally merge the odd-indexed

elements of ⟨𝒗⟩ with the subsequent even-indexed elements that are

directly following them. The correctness of the function Aggregate
can be derived inductively. In particular, supposing that the (2) part

correctly merges ⟨𝒗′⟩, it is not difficult to infer that after executing

parts (1) and (2), all the even-indexed elements in ⟨𝒗⟩ have reached
their merge goal, i.e., merging all the subsequent elements that are

of the same group as them. Therefore, after executing part (3), all

the odd-indexed elements in ⟨𝒗⟩ would also reach their merge goal.

At the entrance of the OGA protocol, 𝑃𝑖 locally calculates the

boolean indicator vector 𝒃 from G. See lines 1-2 of Protocol 4. Then,

𝑃𝑖 and 𝑃 𝑗 jointly execute the function Aggregate on 𝒃 and ⟨𝑇in⟩. The
output of Aggregate is assigned to ⟨𝑇out⟩. See line 3 of Protocol 4.

Cost Analysis. From the property of prefix network, our OGA

protocol requires 2𝑛 (𝑛 = ⟨𝑇in⟩) executions of Merge, which corre-

sponds to 2𝑛 invocations ofMUX2 and⊞. Each invocation ofMUX2
requires one OT, where 𝑃𝑖 is the receiver and 𝑃 𝑗 is the sender.

A.3 Information about Evaluation Datasets
Table 3, 4, and 5 present some statistics about the datasets used for

our evaluations. |𝐸 | is the number of directed edges. The rightmost

column of Table 3 is the train/valid/test split for the three datasets.
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Dataset |𝑉 | |𝐸 | Feature Class Split
Cora 2,708 10,556 1,433 7 0.2,0.2,0.6

CiteSeer 3,327 9,104 3,703 6 0.2,0.2,0.6

PubMed 19,717 88,648 500 3 0.05,0.15,0.8

Table 3: Dataset information.

N=2 N=3 N=4 N=5
|𝑉 | of Cora 1,084 1,626 2,167 2,708

|𝐸 | of Cora 1,728 3,956 7,752 10,556

|𝑉 | of CiteSeer 1,332 1,997 2,662 3,327

|𝐸 | of CiteSeer 1,422 3,298 6,334 9,104

|𝑉 | of PubMed 7,888 11,831 15,774 19,717

|𝐸 | of PubMed 14,580 32,988 57,318 88,648

Table 4: Total number of edges (vertices) for different num-
bers of graph owners (in efficiency and scalability evalua-
tion).

Dataset N=2 N=3 N=4 N=5
Cora 5,404 (51%) 7,184 (68%) 8,028 (76%) 8,552 (81%)

CiteSeer 4,668 (51%) 6,040 (66%) 6,996 (77%) 7,354 (81%)

PubMed 44,278 (50%) 59,248 (67%) 66,424 (75%) 71,202 (80%)

Table 5: Total number of inter-edges for different numbers
of graph owners (in accuracy evaluation). (%) represents the
percentage of inter-edges in all edges.

Dataset Adj
Matrix

Adj
List

Graph-
SC CoGNN CoGNN

-Opt
Cora 160.15 312.02 1.45 0.61 0.03

CiteSeer 610.69 923.14 3.71 1.49 0.02

PubMed 3082.02 10,014.92 5.86 2.62 0.27

Table 6: Online Communication [GB] of oblivious message
passing for each training epoch.

A.4 Message Passing Efficiency
We compare the message passing cost of CoGNN with prior meth-

ods (mentioned in § 2.4 and § 5.1) by measuring the communication

of message passing for the three graph datasets respectively. For

the fairness of comparison, we use the same comparison setting as

in § 2.4, i.e., computing 𝐴𝐻 , where 𝐴 is the {0, 1} adjacency matrix

of the whole dataset and is held by 𝑃0, and 𝐻 is the secret-shared

data vector. We compare online communication only and ignore

offline preprocessing costs. Considering the diversity of implemen-

tation schemes, we provide estimation results here, based on the

communication analysis in § 2.4 and § 5.1. In particular, we es-

timate the communication cost of full-batch training one epoch

by summing up the costs of all invocations of message passing in

this epoch. The estimation results are provided in Table 6. Straight-

forward oblivious message passing solutions based on adjacency

matrix and adjacency list all have quite high communication over-

head, making them impractical for the graph scale of the tested

datasets. GraphSC provides state-of-the-art performance among

existing methods. CoGNN without further optimizations yields

2.2 ∼ 2.5x improvement over GraphSC, while CoGNN with further

optimizations (i.e., CoGNN-Opt) achieves 22 ∼ 155x improvement

over GraphSC. It is worth noting that, since the hidden layer di-

mension of the GCN model is fixed and CoGNN-Opt’s message

passing communication is independent of the feature dimension,

a higher feature dimension results in a higher improvement ratio

of CoGNN-Opt w.r.t. GraphSC. Consequently, among the three

datasets, CiteSeer has the highest feature dimension and also the

highest improvement ratio, while PubMed with the lowest feature

dimension has the lowest improvement ratio.

A.5 Efficiency & Communication Breakdown
In this section, we present the duration/communication breakdown

for one training epoch and one full-graph inference of CoGNN in

the two-party setting to show the efficiency brought by our message

passing paradigm and the OEP/OGA protocols design. Additionally,

we compare the durations of CoGNN with and without further

optimizations to show how vital these optimizations are in pushing

CoGNN into practical performance. Note that, these experiments
run on the same dataset setup as used in our accuracy evaluation
(in § 8.2.3), i.e., evenly partitioning each of the three datasets and
involving the whole dataset in training, which is different from our
dataset setup for our efficiency and scalability evaluation (in § 8.2.2).
See § 8.2.1 for the details.

The duration breakdowns for the original CoGNN design and

the optimized CoGNN design are shown in Table 7 and Table 1

respectively. In both tables, the OEP Pre column represents the of-

fline OEP preprocessing duration amortized for each training epoch,

and the Total column sums up all offline and online durations. Ben-

efiting from our extremely efficient message passing design, for

both CoGNN and CoGNN-Opt, the message passing effort, i.e., sum

of OEP and OGA, takes up only a small proportion of the overall

running duration, i.e., ∼ 1% in CoGNN and 2 ∼ 6% in CoGNN-
Opt. The overhead of CoGNN without further optimizations is

dominated by the phase of vectorized Scatter computation, where

we perform vector-scaler multiplication for each secret-shared ver-

tex hidden representation. This part of overhead for CoGNN is

linear to the number of edges and the feature dimension, result-

ing in high computation complexity. In CoGNN-Opt, our further
optimizations (i) perform weight matrix multiplication before the

Scatter phase (i.e., PreScatter) to make the dimension of vertex

data involved in message passing independent of the feature dimen-

sion; (ii) decompose the vector-scaler multiplication operations in

Scatter computation and distribute them to the PreScatter phase
and the PostGather phase, making the number of vector-scaler

multiplications independent of the number of edges. Finally, the

total number of vector-scaler multiplications is linear to the rela-

tively low number of vertices and the hidden layer dimension. As

shown in Table 7 and Table 1, the total duration of a training epoch

of CoGNN-Opt yields 35 ∼ 41x
3
improvement over the original

CoGNN for the three datasets.

Table 9 shows the offline/online per-epoch communication of

CoGNN and CoGNN-Opt for various datasets, when there are two

parties. For both CoGNN and CoGNN-Opt, the offline communi-

cation is relatively small compared to the online communication,

indicating the low cost of CoGNN’s OEP protocol design. Summing

up the offline and online phases, the per-epoch communication of

CoGNN ranges from 87 to 273 GB among the three datasets, while

the per-epoch communication of CoGNN-Opt ranges from 0.82 to

3
The improvement ratio is different from the results in § 8.2.2 since their dataset setups

are different, which leads to different numbers of edges and vertices of the global

graph.
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Dataset OEP Pre PreScatter Scatter OEP (1) Scatter Comp Scatter OGA Scatter OEP (2) Gather PostGather Apply Total
Cora 5.81 - 0.33 1077.20 5.78 0.14 50.45 - 21.71 1161.42

CiteSeer 14.62 - 0.68 2529.73 13.52 0.34 145.32 - 48.88 2753.10

PubMed 15.58 - 0.81 3499.99 18.15 0.51 158.14 - 57.60 3750.77

Table 7: Execution duration [𝑠] breakdown for each full-batch training epoch of CoGNN without further optimization.

Dataset OEP Pre PreScatter Scatter OEP (1) Scatter Comp Scatter OGA Scatter OEP (2) Gather PostGather Apply Total
Cora 5.85 - 0.29 1079.70 5.61 0.15 51.16 - 11.17 1153.93

CiteSeer 14.46 - 0.64 2492.89 13.41 0.33 148.24 - 27.17 2697.13

PubMed 15.33 - 0.74 3387.87 17.79 0.51 155.51 - 32.01 3609.76

Table 8: Execution duration [𝑠] breakdown for each full-batch inference of CoGNN without further optimization.

Dataset CoGNN
Offline

CoGNN
Online

CoGNN-Opt
Offline

CoGNN-Opt
Online

Cora 1.18 85.81 0.07 0.75

CiteSeer 2.96 199.85 0.07 1.33

PubMed 3.27 269.98 0.55 3.78

Table 9: Offline and online communication [GB] of each full-
batch training epoch.

Dataset CoGNN
Offline

CoGNN
Online

CoGNN-Opt
Offline

CoGNN-Opt
Online

Cora 1.18 84.45 0.02 0.48

CiteSeer 2.96 198.33 0.02 0.89

PubMed 3.27 260.32 0.11 1.91

Table 10: Offline and online communication [GB] of each
full-batch inference.

4.32 GB. Thus, the further optimizations we propose for our GCN

implementations yield 63 ∼ 144x improvement in communication

cost in the two-party setting.

Table 2, 8 and 10 are the corresponding duration/communication

breakdowns for one full-graph (batch) inference of CoGNN. We

run the evaluation by supposing that all graph data (including the

model weights) is secret-shared.

Data-
set

Plain
GNN

Plain
GNN
Border

Co-
GNN

Co-
GNN
Border

Fed-
GNN

Fed-
GNN
Border

Cora 85.79 86.5

85.93

(+3.87)
86.52

(+5.36) 82.06 81.17

Cite-
Seer 74.91 77.01

74.14

(+2.75)
75.76

(+3.71) 71.39 72.05

Pub-
Med 85.25 85.29

84.72

(+0.90)
84.67

(+1.17) 83.82 83.5

Table 11: Accuracy and border-accuracy in the two-party set-
ting. (+) represents the accuracy difference between CoGNN
and FedGNN.

A.6 Accuracy Comparison
Table 11 and 12 present the detailed accuracies of PlainGNN,CoGNN
and FedGNN under the 2-party setting and 5-party setting, respec-

tively.

A.7 Security Proof
In this section, we present a detailed proof for Theorem 1. We first

prove two lemmas on the security of OEP and OGA respectively.

Data-
set

Plain
GNN

Plain
GNN
Border

Co-
GNN

Co-
GNN
Border

Fed-
GNN

Fed-
GNN
Border

Cora 85.79 86.5

86.42

(+11.06)
86.48

(+11.42) 75.37 75.06

Cite-
Seer 74.91 77.01

74.36

(+3.81)
75.53

(+4.13) 70.56 71.40

Pub-
Med 85.25 85.29

84.64

(+1.13)
84.74

(+1.16) 83.51 83.58

Table 12: Accuracy and border-accuracy in the five-party set-
ting. (+) represents the accuracy difference between CoGNN
and FedGNN.

After that, we construct a simulatorS for FCoGNN. Finally, we carry
out the proof of Theorem 1 using hybrid distribution construction.

A.7.1 Security Lemma and Proof Sketch for FOEP and FOGA. We

have the following security lemmas for FOEP and FOGA.

Lemma 2. Denote the 𝜅-security homomorphic encryption func-
tionality as FHE. OEP securely realizes the functionality FOEP in the
FHE-hybrid model against a semi-honest, non-uniform adversary A
corrupting either 𝑃𝑖 or 𝑃 𝑗 . Formally, given any PPT, semi-honest and
non-uniform adversary A that corrupts either 𝑃𝑖 or 𝑃 𝑗 , there exists a
PPT, non-uniform simulator S corrupting the same party in the ideal
world of FOEP, which satisfies:

REALFHEOEP,A (𝜅, ⟨𝑇in⟩, 𝜋)
𝑐≡ IDEALFOEP,S (𝜅, ⟨𝑇in⟩, 𝜋).

Lemma 3. Denote the functionality performing the MUX2 and
merge computation ⊞ as FMUX2 and F⊞. OGA securely realizes the
functionality FOGA in the (FMUX2 , F⊞)-hybrid model against a semi-
honest, non-uniform adversaryA corrupting either 𝑃𝑖 or 𝑃 𝑗 . Formally,
for every PPT, semi-honest and non-uniform adversary A that cor-
rupts either 𝑃𝑖 or 𝑃 𝑗 , there exists a PPT, non-uniform simulator S
corrupting the same party in the ideal world of FOGA, which satisfies:

REAL
FMUX

2
,F⊞

OGA,A (𝜅, ⟨𝑇in⟩,G)
𝑐≡ IDEALFOGA,S (𝜅, ⟨𝑇in⟩,G)

.

The notations used are similar to Theorem 1.

Proof Sketch for OEP. The overall proof idea is to construct two

different simulators, S𝑖 and S𝑗 , when 𝑃𝑖 or 𝑃 𝑗 is corrupted respec-

tively. After that, we prove that the real-world distribution and the

simulated distribution are computationally indistinguishable in the

FHE-hybrid model.

During the preprocessing phase, S𝑖 accesses 𝑃𝑖 ’s random tape to

generate a set of random vectors {𝑆𝑘 } and batch them into 𝑆 . After

that, S𝑖 samples a vector of 𝑎 random numbers, each of which is
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of the same length as the ciphertext of FHE. The random vector is

indistinguishable from the [𝑅] 𝑗 received in the real world from the

property of FHE. Thereafter, S𝑖 applies the extended permutation 𝜋

held by 𝑃𝑖 to the random vector and subtracts it with 𝑆 . The result is

indistinguishable from the [𝜋 (𝑅) − 𝑆] 𝑗 sent to 𝑃 𝑗 in the real world.

Thus, the view of S𝑖 in the offline phase of OEP is indistinguishable

from the real-world view. During the online phase, S𝑖 simulates

the received ⟨𝑇𝑖𝑛⟩1 − 𝑅𝑘 by randomly sampling a vector of equal

length. The indistinguishability preserves since each element in

⟨𝑇𝑖𝑛⟩1 − 𝑅𝑘 is uniformly distributed in the secret share ring.

The construction of S𝑗 is easier. The locally generated plain-

text data of 𝑃 𝑗 can be simulated directly by accessing the random

tape of 𝑃 𝑗 , while the [𝑅] 𝑗 in the preprocessing phase can be simu-

lated by invoking the simulator of FHE. Additionally, the received
[𝜋 (𝑅) − 𝑆] 𝑗 can be simulated by uniformly sampling a vector of

𝑏 slots and of the same slot (ciphertext) size as [𝜋 (𝑅) − 𝑆] 𝑗 . The
indistinguishability is preserved from the security property of FHE.
Thus, the real-world distribution is also indistinguishable from the

ideal world.

Proof Sketch for OGA. The security of the OGA protocol stems

from the obliviousness of the prefix adder network-based execution.

In other words, the order in which the Merge function applies to the

vector elements in ⟨𝑇in⟩ is determined solely by the length of ⟨𝑇in⟩,
independent of the element values or G. This order leaks nothing
about G to 𝑃 𝑗 and nothing about the element values of ⟨𝑇in⟩ to
both 𝑃𝑖 and 𝑃 𝑗 . Thus, the order of Merge function execution can be

easily simulated based on the length of ⟨𝑇in⟩. On the other hand,

the Merge function can be simulated by invoking the simulators of

FMUX2 and F⊞. As a result, the simulated views of both S𝑖 and S𝑗
are indistinguishable from the real world.

A.7.2 Simulator Construction. Since each party in FCoGNN is at

an equal place, they share the same simulator, S. We construct S
from the perspective of 𝑃𝑖 .

Graph Data Secret Share. During setup, S accesses 𝑉𝑖 , 𝐸𝑖 and

𝐸𝑖, 𝑗 to simulate the secret-sharing of graph data. In particular, the

secret shares received from 𝑃 𝑗 , 𝑗 ∈ [𝑁 ]\{𝑖} are simulated based on

the vector length information, i.e., L := {|𝐸 𝑗 |, |𝑉𝑗 |},∀𝑗 ∈ [𝑁 ]\{𝑖},
received from FCoGNN, and the model details specified in alg.
Iteration. As shown in Protocol 2, the iteration of CoGNN is com-

posed of calls of Dispatch-1, Dispatch-2, Collect-1, Collect-2 on
various inputs. The output of one task directly serves as the input

of another task. So the inputs and outputs of calls of the four tasks

finally constitute the view of the adversary, which can be simu-

lated based on the iteration input (shares of 𝑉𝑖 , 𝐸𝑖 , 𝐸𝑖, 𝑗 , 𝐸 𝑗,𝑖 ,𝑊𝑙 )

by invoking the simulators of these tasks’ corresponding function-

alities, according to the computation procedure in Protocol 2. As

for the share delegation and redistribution phase, since the secret

shares sent and received by party 𝑃𝑖 are uniformly randomized, the

corresponding simulation is also straightforward.

Result Reconstruction. The secret shares received from 𝑃 𝑗 , 𝑗 ∈
[𝑁 ]\{𝑖} during the reconstruction phase can be simulated by sub-

tracting the locally held shares from the updated graph data (i.e.,

𝑉 ′
𝑖
) and weights (i.e., {𝑊 ′

𝑙
}) received from FCoGNN.

A.7.3 Security Proof. Based on the construction of S, we prove
that the real-world distribution and the simulated distribution are

computationally indistinguishable using a hybrid distribution con-

struction.

Hyb0. This is the real-world distribution based on calls of FDsp-1,
FDsp-2, FClc-1, FClc-2.
Hyb1. For graph data secret sharing, S simulates the shares gen-

erated by 𝑃𝑖 by accessing the random tape of 𝑃𝑖 and simulates the

received shares by uniformly sampling share vectors based on the

vector length information L and model dimensions specified in alg.
The indistinguishability from Hyb0 is trivial.
Hyb2. In this hybrid, we iteratively simulate the view of 𝑃𝑖 re-

ceived during each execution of Dispatch-1, Collect-1, Dispatch-2,
and Collect-2 tasks. The simulation process calls the simulators

of FDsp-1, FClc-1, FDsp-2, and FClc-2 respectively, to simulate the

intermediate computation data and output data generated/received

during each of Dispatch-1, Collect-1, Dispatch-2, and Collect-2
tasks. Because of the secure realizations of (FDsp-1, FClc-1, FDsp-2,
FClc-2),Hyb2 is indistinguishable fromHyb1. Note that according to
Lemma 2 and Lemma 3, we know that Dispatch-1 securely realizes

FDsp-1.
Hyb3. This hybrid deals with the simulation of the share delegation

process before Collect-1 and Collect-2. Before each execution of

Collect-1, 𝑃𝑖 receives ⟨𝑈 dst
𝑗,𝑖−1⟩1 from all 𝑃 𝑗 , 𝑗 ∈ [𝑁 ]\{𝑖, 𝑖 − 1}. Since

these shares are uniformly random and independent of all the data

held by 𝑃𝑖 , they can be simulated by uniformly random samples.

Similarly, when 𝑖 = 1 or 𝑖 = 0, the ⟨𝐷 𝑗
𝑙
⟩1−𝑖 ,∀𝑗 ∈ [𝑁 ]\{0, 1} re-

ceived by 𝑃𝑖 before each execution of Collect-2 can be simulated by

uniformly random samples. The indistinguishability between Hyb2
and Hyb3 is guaranteed by the randomness of the shares received

by 𝑃𝑖 and irrelevance between the shares and 𝑃𝑖 ’s data.

Hyb4.We handle the simulation of the share redistribution process

after Dispatch-2 and Collect-2 in this hybrid. After each execu-

tion of Dispatch-2 in a forward layer, 𝑃𝑖 receives ⟨𝑉 ′𝑗 ⟩1 + 𝑅𝑖 from
∀𝑃 𝑗+1, 𝑗 ∈ [𝑁 ]\{𝑖, 𝑖 − 1}. Since these shares are uniformly random

and independent of all the data held by 𝑃𝑖 , they can be simulated

by uniformly random samples. On the other hand, when 𝑖 ≠ 0, 1,

the ⟨𝑊 ′
𝑙
⟩1 − 𝑅𝑖−1 received from 𝑃0 and the ⟨𝑊 ′

𝑙
⟩0 + 𝑅𝑖 received

from 𝑃1 after each execution of Collect-2 can be also simulated by

uniformly random samples. The indistinguishability between Hyb3
and Hyb4 is guaranteed by the randomness of the shares received

by 𝑃𝑖 and irrelevance between the shares and 𝑃𝑖 ’s data.

Hyb5. In this hybrid, we replace the result reconstruction phase

with the simulated view. The vertex shares ⟨𝑉 ′
𝑖
⟩1 and the model

weight shares {⟨𝑊 ′
𝑙
⟩1} received from 𝑃𝑖+1 are replaced with the

corresponding shares constructed byS during the result reconstruc-

tion phase. The received shares in the real world and the simulated

shares are in the same distribution. Thus, Hyb4 and Hyb5 are com-

putationally indistinguishable.

Hyb6. This is the simulated view. Since all the three phases (i.e.,

graph data secret share, iteration and result reconstruction) of

CoGNN are simulated in Hyb5, Hyb5 is identically distributed

as Hyb6. The proof completes.
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