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ICICLE v2: Polynomial API for Coding ZK Provers to Run
on Specialized Hardware

Karthik Inbasekar, Yuval Shekel, Michael Asa

Abstract—Polynomials play a central role in cryptography. In the context of Zero Knowledge Proofs (ZKPs), protocols
can be exclusively expressed using polynomials, making them a powerful abstraction tool, as demonstrated in most ZK
research papers. Our first contribution is a high-level framework that enables practitioners to implement ZKPs in a more
natural way, based solely on polynomial primitives.

ZK provers are considered computationally intensive algorithms with a high degree of parallelization. These algo-
rithms benefit significantly from hardware acceleration, and deployed ZK systems typically include specialized hardware
to optimize the performance of the prover code. Our second contribution is leveraging our polynomial API to abstract away
low-level hardware primitives and automate their memory management. This device-agnostic design allows ZK engineers
to prototype and build solutions while taking advantage of the performance gains offered by specialized hardware, such
as GPUs and FPGAs, without needing to understand the hardware implementation details.

Finally, our polynomial API is integrated into version 2 of the ICICLE library [1] and is running in production. This
paper also serves as a comprehensive documentation for the ICICLE v2 polynomial API.

1 INTRODUCTION

Zero Knowledge Proofs (ZKP) are cryptographic
protocols that enable one party (prover) to prove
to another party (verifier) that a given computation
was executed correctly without revealing any infor-
mation other than the statement to be proven. For
resource intensive computations, verification by re-
execution is simply not feasible. ZKPs possess the
succinctness property as a consequence of which
verification algorithms for ZKPs are exponentially
faster than re-executing the original program. The
succinctness and zero Knowledge properties of a
ZKP have truly ground breaking consequences for
applications such as anonymous authorization and
payments, trust-less compute in the cloud, privacy
and scaling in blockchains, verifiable machine learn-
ing/inference, etc.

In order to generate a ZKP, a program is first
compiled into an intermediate representation of the
form C(x,w) = y where x, y are public, and w is a
private witness. In general, there are two different
front-end paradigms for converting a program into
the intermediate representation. These are known
as the ASIC and CPU approaches 1. In the ASIC
approach, a program is compiled into an equivalent
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1. See §A table 3 for a comparison

hard coded arithmetic circuit consisting of gate and
wire constraints. This is suited for structured com-
putations with repetitive and deterministic program
structure. Examples of these are often in blockchain
applications 2. In the CPU paradigm, the front end
uses compilers to convert programs written in high
level languages such as Rust/Go/C++ into assem-
bly code for a given ISA (Instruction Set Archi-
tecture) such as RISC-V [2] or WebAssembly [3].
Thus proving a program execution is equivalent
to proving the execution of the ISA corresponding
to the program. This approach is more suited for
programs where the logic is designed by the user.
Examples of these are verifiable computation in
Virtual Machine frameworks3. In either case, based
on a prover supplied private input, the front end
generates an execution trace with all intermediate
values in a read only format.

The backend of a ZKP compiles the algebraic
constraint relations of the circuit or ISA and mem-
ory access in VM into polynomial identities and
checks that witness values in the execution trace
obey these identities. It then uses a combination of
either

2. See §A table 4 for a list of commonly used frameworks
in the ASIC approach with frontends and their supported
backends

3. See §A table 5 for a list of popular zkVM frameworks in the
CPU approach with frontends and their supported backends
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• Polynomial IOP (Interactive Oracle Proofs)+
PCS (Polynomial commitment schemes)4

• Linear PCP (Probabilistically Checkable
Proofs) + pairing based cryptography

to generate a cryptographic proof (ZKP) for circuit
satisfiability (CSAT) or valid state transitions of
the computation. The completeness and soundness
property of a ZKP ensures that a proof generated by
an honest prover will always pass the verification,
whereas the probability of success for a malicious
prover is negligible. Some of the backends used in
production are [4], [5], [6], [7], [8], [9], [10] 5. The
main focus of this paper is to introduce new device-
agnostic tools for efficient backend computation,
tailored to the developers.

The backend computation that generates a ZKP
is orders of magnitude more compute and mem-
ory intensive than simply re-executing the original
computation. Hardware acceleration that utilizes
inherent symmetries and structures in the crypto-
graphic primitives is crucial for scalable applica-
tions. In general, the bulk of the computational
burden in a PIOP comes from PCS and polynomial
constraint evaluations. Fortunately, most of the pro-
tocols and sub-protocols that underlie PIOPs/PCPs
are decomposable into algorithms that have a SIMD
(Single Instruction Multiple Data) structure, suited
for SIMD-compatible HW such as GPU. Here we
refer to algorithms with parallelizable structures as
hardware primitives. In table 1, we have summa-
rized commonly used cryptographic commitment
schemes and their underlying hardware primitives
supported by the ICICLE library from Ingonyama
[1]. ICICLE is a fully featured ZK hardware ac-
celeration library, consists of CUDA kernels, with
c++, rust, and go wrappers for all the non-lattice
hardware primitives listed in table 1. ICICLE is
fully open source, and is available with MIT license.
ICICLE has been integrated into several ZK based
products, such as [11], [12].

In this paper we introduce a new key feature
of the ICICLE library, namely the Polynomial API.
Cryptographic protocols in academic papers ex-
press PIOPs and PCPs naturally using polynomials.
However, implementing them in hardware often
forces researchers and developers to delve deep into
implementations of hardware primitives that un-
derly cryptographic protocols, both for prototyping
and efficiency.

4. AHP (Algebraic Holographic Proofs) are special cases of
PIOP are also included in this class.

5. See table 4 and 5 for a quick summary.

Fig. 1. ICICLE Polynomial API device agnostic developer inter-
face. ZPU stands for the Zero Knowledge Processing Unit [21]

The ICICLE Polynomial API provides high
level functionality for polynomial arithmetic, and
abstracts away hardware complexities under the
hood. The main motivations for the polynomial API
are:

• To enable researchers to prototype crypto-
graphic protocols in the polynomial lan-
guage used to express PIOP/PCP, with the
added benefit of prototyping in different
hardware environments.

• To enable developers to efficiently imple-
ment cryptographic protocols and quickly
build high performing applications, by ab-
stracting away hardware complexities in a
device agnostic manner (see fig 1).

• To enable end-to-end device implementation
of ZKP backends, providing a easy way to
overcome host-device data transfer bottle-
necks without requiring the user to explicitly
handling the memory management.

The general idea of expressing code using Poly-
nomials as an API language has been pursued in
ZKP in many frameworks such as Arkworks [22],
Gnark [11], Polynomial Identity Language (PIL)
[23], Plonky2/3 [7], [8] to name just a few. All of
these frameworks are specific to CPUs. ICICLE, on
the other hand, provides a complete framework
for ZKP backends using the polynomial abstrac-
tions, with device agnostic hardware support for
multiple devices. In Fully Homomorphic Encryp-
tion (FHE) the ecosystem already uses polynomial
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TABLE 1
Hardware primitives for commonly used PCS (Polynomial Commitment Schemes). In the current version of ICICLE, vector ops

include common linear algebra operations such as matrix multiplication and more generally tensor operations in future. FRI is an
IOP that is also used as a commitment scheme

Cryptography Scheme Hardware primitives

Pairing based
univariate KZG [13] MSM, NTT
Zeropmorph (MLE) vector ops, MSM

KZG (MLE) [14] vector ops, MSM

Discrete log

Pedersen commitment MSM
IPA [15] MSM

Brakedown [16] Vector ops, MSM
Hyrax [17] Vector Ops, MSM

Collision resistant hashes Merkle commitment [18] hash functions, Merkle tree
FRI [19] hash functions, Merkle tree, NTT

Lattice based (Ring) SIS hash [20] Ring arithmetic, vector ops, Ring NTT

APIs in different forms including hardware sup-
port. The Hardware Abstraction Layer (HAL) of
OpenFHE [24] supports multiple backends such as
GPU/FPGA. The tfhe-rs library [25] uses polyno-
mial API’s with GPU support. In more recent works,
Polynomial Instruction Based Compiler [26] and
Homomorphic Encryption Intermediate Represen-
tation (HEIR) [27] also use polynomial API based
framework. While FHE, and more broadly, lattice
based cryptosystems [28], [29], [30] and their poly-
nomial APIs, provide a good reference and inspi-
ration, ZKPs programs, arithmetic, and hardware
resources have different requirements. we keep the
design of a unified framework, as well as the feasi-
bility question, as a future work.

In fig 2 we illustrate the ease of use of the poly-
nomial API for the quotient argument of Groth16
[4] (more details in §4). The quotient argument
computation involves 3 INTTs and 3 NTTs on a
coset, followed by Hadamard product, polynomial
arithmetic and division by the vanishing polyno-
mial (35). On the RHS of fig 2 we see an imple-
mentation in Gnark [11] using the low level API’s
for NTT/INTT and division algorithms. The code is
about 50 lines which involves also explicit memory
allocation and memory management on the device
(GPU). On the LHS, below the quotient polynomial
dataflow, the polynomial API essentially achieves
the same in just a single line of code! Note that the
API language literally follows the quotient argu-
ment verbatim, while efficiently managing the en-
tire data flow, NTTs/INTTs and memory allocation
under the hood!

While much of the compute algorithms are par-
allel, the dataflow between host and device can still
downgrade performance significantly. The Polyno-
mial API achieves efficient data handling through
the use of memory views (an integrity pointer to

data, stored on device memory) that provide direct
read-only access to the polynomial’s internal state
without the need to explicitly copy data. Using
memory views, a user can read data from memory
and perform operations such as cosetNTT, com-
mitments (MSM), Merkle trees, hashes etc, with-
out moving/copying the data between device and
host. This feature is key to realizing end-to-end
PIOP/PCP in specialized hardware. Last but not the
least, the API is device agnostic - it allows efficient
integration of different backends without changing
the code base.

The paper is organized as follows. In §2 we
begin with a quick overview of the ICICLE library
(Version 2.x). We discuss the supported curves and
operations. In §3 we introduce the features of the
polynomial API. We cover some relevant back-
ground on polynomials in finite field in §C. For the
purposes of this paper, we discuss an explicit end-
to-end prover example using groth16 [4] §4 in C++.
We summarize in §??.

2 ICICLE LIBRARY OVERVIEW

ICICLE [1] is a fully featured accelerated cryptogra-
phy library for ZKP. In the current iteration, ICICLE
supports GPU acceleration by implementing in na-
tive CUDA code all the hardware primitives from
table 1 and their underlying base/scalar field op-
erations. The "stacked tile" structure of the ICICLE
library is summarized in fig 3. At the core level are
the CUDA kernels for all hardware primitives from
table 1.

• All yellow tiles represent computations in-
volving modular arithmetic in the scalar field
Fr, where r is the characteristic of the scalar
field.
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Fig. 2. LHS: Polynomial API expresses quotient argument and division by vanishing polynomial (23) in a single line of code, verbatim
from the paper [4], while managing all the NTT’s/INTT’s, vector operations and memory management under the hood. RHS: The
same computation using low level NTT/iNTT APIs is a longer code, and requires explicit memory management.

Fig. 3. ICICLE structure: ICICLE backend for hardware primitives are at the core of ICICLE library. Developers can directly access
the GPU accelerated functionality via the APIs in C++/Rust/Go without having to deal with CUDA code.

• All dark green tiles represent computations
in group operations in G1,G2 and base field
arithmetic Fq, where q is the characteristic of
the base field.

• The teal green tile "curves" is an umbrella

definition for all finite field operations i.e in
both Fr and Fq. ICICLE is a static compiled
library compiled per curve, or field. The
supported curves and primitives are summa-
rized in table 2.
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• Built on top of it is the Linear algebra tile (for
classification purposes) , which consists of
the MSM, ECNTT kernels in Fq and Vec-Ops
kernels in Fr. The ECNTT (Elliptic Curve
Number Theoretic Transform) does NTT on a
vector of group elements and can be used for
instance to transform a Structured Reference
String (SRS) from monomial to Lagrange ba-
sis.

• The hashes and Merkle tree tiles involve both
linear and non-linear operations but only
in Fr. Currently ICICLE v2.x supports the
Keccak and finite field friendly Poseidon and
Poseidon2 hash. The supported modes are
sponge mode, Merkle tree based hashing and
commitments.

• The polynomial API tile is an over arching
layer which can access any of the CUDA ker-
nels related to MSM, NTT, Vec-ops, hashes
and Merkle tree. Moreover, the API is open
to extension and is not limited to a prede-
fined set of operations. The API is available
in C++ with shallow wrappers to Rust and
Go.

ICICLE is a statically compiled library, clone the
ICICLE library [1] and compile for a specific curve
or field (see appendix §B for a quick starter).

3 POLYNOMIAL API
The Polynomial API is a framework for polynomial
operations of a given datatype.6 For the purpose of
presentation we limit the discussion of the API in
C++. The API is accessible via wrapper functional-
ities in rust and go 7. In C++ API, the Polynomial
class8 defines a polynomial with the following tem-
plate

template <typename Coeff, typename
Domain = Coeff, typename Image =
Coeff>

↪→

↪→

class Polynomial {
// Polynomial class definition

}

where

• Coeff: Coefficients

6. See §C for a quick review of Polynomials in Finite Fields.
7. https://dev.ingonyama.com/icicle/rust-bindings,https:

//dev.ingonyama.com/icicle/golang-bindings, Note that only
scalar_t : Fr is exposed in rust and go wrappers

8. See https://github.com/ingonyama-zk/icicle/blob/
main/icicle/include/polynomials/polynomials.h

• Domain: Specifies the type for the input val-
ues over which the polynomial is evaluated.

• Image: Defines the type of the output values
of the polynomial. By default, the image is of
the same type as that of the coefficients

The allowed data type names are summarized be-
low. These cover the scalars and points described in
the ICICLE overview (see fig 3)

• scalar_t : Fr (default)
• point_field_t : Fq

• affine_t : curve points (x, y) ∈ G1, where
x, y ∈ Fq.

• g2_affine_t : Affine curve points (x, y) ∈
G2, where x, y ∈ Fq

• projective_t : Projective curve points
(X,Y, Z) ∈ G1, where X,Y, Z ∈ Fq

• g2_projective_t : Projective curve points
(X,Y, Z) ∈ G2, where X,Y, Z ∈ Fq

Each data type supports operator overriding arith-
metic relevant to its data type. i.e modular arith-
metic in Fr, modular arithmetic in Fq, EC group
additions and scalar multiplications in all the curve
types. Creation of random field elements, unity, zero
etc can be done using

//create random field element in Fr

auto scalar = scalar_t::rand_host();
//create field element from specific

data↪→

auto scalar = scalar_t::from(u32);
// Projective generators of G1

auto point = projective_t::generator();

and conversions for projective_t to affine_t

and vice versa, are all accessible within the polyno-
mial API. The templated structure is very powerful
and can accommodate different data types for coef-
ficients, the domain, and images.

We summarize the main features of the polyno-
mial API below. We have included relevant theory
sections in the appendix §C for quick reference.

• Construction: §3.2 Create polynomials in co-
efficients (25) or evaluations form (26).

• Arithmetic Operations: §3.3 Perform addi-
tion, subtraction, multiplication, and divi-
sion as discussed in §C.2.

• Evaluation: §3.4 Directly evaluate polynomi-
als at specific points or across a domain (24).

• Manipulation: §3.5 Polynomial degree, §3.6
Slicing polynomials, adding or subtracting
monomials inplace.

https://dev.ingonyama.com/icicle/rust-bindings
https://dev.ingonyama.com/icicle/golang-bindings
https://dev.ingonyama.com/icicle/golang-bindings
https://github.com/ingonyama-zk/icicle/blob/main/icicle/include/polynomials/polynomials.h
https://github.com/ingonyama-zk/icicle/blob/main/icicle/include/polynomials/polynomials.h
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TABLE 2
Curve/field specific hardware primitives currently supported by ICICLE

Curves/ BN254 BLS12-377 BLS12-381 BW6-761 Grumpkin Baby bear Stark252
Primitives
MSM G1 ✓ ✓ ✓ ✓ ✓ − −
MSM G2 ✓ ✓ ✓ ✓ × − −

NTT ✓ ✓ ✓ ✓ × ✓ ✓
ECNTT ✓ ✓ ✓ ✓ × − −
VecOps ✓ ✓ ✓ ✓ ✓ ✓ ✓

Merkle Tree
(Poseidon hash) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Extension Field − − − − − ✓ −

• Memory Access: §3.7 Access internal states
of the polynomial and copy data from device
to host.

• Memory views: §3.8 Device-memory views
of polynomials that access polynomial in-
teral state directly, without making copies
or moving data. Read device memory and
perform external operations such as MSM,
Merkle tree, hashes, using the respective
API. Manage memory views through in-
tegrity pointers to safeguard against stale or
non-existent data.

In polynomial construction, arithmetic, evaluation
and manipulations, the relevant computation using
NTT/INTT and storage (on device/off device) is
abstracted away. This enables adaptability to var-
ious backends in general. Currently the API sup-
ports a CUDA backend, but the design allows to
load/switch backends at runtime as per the user’s
choice. This capability allows users to perform poly-
nomial operations without the need to tailor their
code to specific hardware and generically work with
the Polynomial API.

3.1 Instantiation and usage
Instantiation is straightforward, and we provide a
starter template to quickly get started. As always
the ICICLE library should be statically compiled
first and the relevant files linked (see appendix §B
in the Cmake file. Initialization with an appropriate
factory per linked curve/field is required to con-
figure the computational context and backend. For
the rest of the paper we will assume that the linked
curve is bn254 .

//include relevant header files and
cuda header files↪→

#include "polynomials/polynomials.h"
#include "polynomials/cuda_backend/pol ⌋

ynomial_cuda_backend.cuh"↪→

#include "ntt/ntt.cuh"
#include "api/bn254.h"

//access data_types using namespace
using namespace bn254;
using namespace polynomials;

//define polynomial data type:
defines a polynomial with data
type Fr

↪→

↪→

typedef Polynomial<scalar_t>
Polynomial_t;↪→

It is important to define the domain of the compu-
tation (24) before instantiating the polynomials. The
domain is handled by the NTT config 9, and the
roots of unity are stored on device automatically.

//config domain
const int MAX_NTT_LOG_SIZE = 24;
auto ntt_config = ntt::default_ntt_con ⌋

fig<scalar_t>();↪→

const scalar_t basic_root =
scalar_t::omega(MAX_NTT_LOG_SIZE);↪→

ntt::init_domain(basic_root,
ntt_config.ctx);↪→

// Initialize with a CUDA backend
Polynomial_t::initialize(std::make_sha ⌋

red<CUDAPolynomialFactory<>>());↪→

It is generally recommended to initialize the final
domain if possible, since at the time of initialization
the roots of unity for the domain are stored in the
device automatically. This enables faster computa-
tion and efficient memory management. The ab-
stract factory is a template for creating polynomial

9. https://github.com/ingonyama-zk/icicle/blob/main/
icicle/include/ntt/ntt.cuh. The config has an option to modify
coset generators, to do coset NTT, we will see an example later.

https://github.com/ingonyama-zk/icicle/blob/main/icicle/include/ntt/ntt.cuh
https://github.com/ingonyama-zk/icicle/blob/main/icicle/include/ntt/ntt.cuh
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contexts and backends. 10 In this paper, we will use
the templater only with scalar_t type as it is the
most common use case.

3.2 Construction
Polynomials can be constructed from coefficients in
Fr or from evaluations on roots-of-unity domains
Hn ⊂ F×

r . This method, constructs an array of
coefficients/evaluations on roots of unity domain,
of a given size on the device, and returns a pointer
to the newly created polynomial instance.

from_coefficients(const Coeff*
coefficients, uint64_t
nof_coefficients);

↪→

↪→

from_rou_evaluations(const Image*
evaluations, uint64_t
nof_evaluations);

↪→

↪→

Note that the domain and polynomial factory are
instantiated as discussed in §3.1. Below is a simple
example for creating a random polynomial of arbi-
trary size

// Defines a polynomial instance based
on the scalar type from the field
configuration

↪→

↪→

typedef Polynomial<scalar_t>
Polynomial_t;↪→

// Construction of a random polynomial
static Polynomial_t

randomize_polynomial(uint32_t size)↪→

{
auto coeff = std::make_unique<scalar ⌋

_t[]>(size);↪→

for (int i = 0; i < size; i++)
elements[i] =

scalar_t::rand_host();↪→

//for coefficients form use
return Polynomial_t::from_coefficien ⌋

ts(elements.get(),
size);

↪→

↪→

//for evaluations form use
return Polynomial_t::from_rou_evalua ⌋

tions(elements.get(),
size)

↪→

↪→

}

Another way to create polynomials is to clone exist-
ing instances. The clone function takes the pointer to
the given instance, creates a copy of the polynomial,
and returns a pointer to the copy. Note that, the

10. https://github.com/ingonyama-zk/icicle/blob/main/
icicle/include/polynomials/polynomial_abstract_factory.h

clone and the original do not share memory. This is
not recommended unless there are branches in the
computation, i.e a given polynomial has two dif-
ferent evolution routes. We provide more efficient
methods in §3.7 and §3.8

auto f1 =
randomize_polynomial(uint32_t
size);

↪→

↪→

auto f1_cloned = p.clone(); //
f1_cloned and f do not share memory↪→

removing polynomial instances from memory if
needed can be achieved using the .delete()
method.

3.3 Arithmetic

All the usual polynomial arithmetic operations (see
§C.2) are possible within any instantiated data type.
In the regular arithmetic mode, the functions take a
pointer to the two polynomials to add and outputs
a pointer to the result of the addition. The inplace
addition method for addition/subtraction can be
used as usual with the += operator. In this case.
the first pointer, points to the result.

// Addition
Polynomial operator+(const Polynomial&

rhs) const;↪→

// inplace addition
Polynomial& operator+=(const

Polynomial& rhs);↪→

// Subtraction
Polynomial operator-(const Polynomial&

rhs) const;↪→

// Multiplication
Polynomial operator*(const Polynomial&

rhs) const;↪→

// scalar multiplication
Polynomial operator*(const Domain&

scalar) const;↪→

// Division A(x) = B(x)Q(x) + R(x)
std::pair<Polynomial, Polynomial>

divide(const Polynomial& rhs)
const; // returns (Q(x), R(x))

↪→

↪→

// returns quotient Q(x) only
Polynomial operator/(const Polynomial&

rhs) const;↪→

https://github.com/ingonyama-zk/icicle/blob/main/icicle/include/polynomials/polynomial_abstract_factory.h
https://github.com/ingonyama-zk/icicle/blob/main/icicle/include/polynomials/polynomial_abstract_factory.h
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// returns remainder R(x) only
Polynomial operator%(const Polynomial&

rhs) const;↪→

In the example below, we create a random polyno-
mials f1(x), f2(x) of degree N − 1 and verify the
identity

(f1(x)+f2(x))
2+(f1(x)−f2(x))2 = 2·(f1(x)2+f2(x)

2)
(1)

//define random poly in coeff form or
eval form↪→

auto f1 = randomize_polynomial(N);
auto f2 = randomize_polynomial(N);

//deg 2N constraints (f1+f2)^2 +
(f1-f2)^2 = 2 (f1^2+ f_2^2)↪→

auto L1 = (f1+f2)*(f1+f2) +
(f1-f2)*(f1-f2);↪→

auto R1 = scalar_t::from(2) * (f1*f1 +
f2*f2);↪→

//some assertion method
assert_eq(L1==R1);

Note that the code is verbatim (1). Note also that the
initial domain in this example §3.1 has to be atleast
MAX_NTT_LOG_SIZE = 2 * N .

In ZKPs polynomial identity checking is imple-
mented in PIOP/PCP with the quotient argument
(see §C.3). This involves evaluating the constraints
followed by division with the vanishing polynomial
(23) in an appropriate domain

// division by the vanishing
Polynomial divide_by_vanishing_polynom ⌋

ial(uint64_t degree)
const;

↪→

↪→

Below the quotient argument of Groth16 [4] dis-
cussed in (34) is a single line code.

auto H = (A*B-C).divide_by_vanishing_p ⌋

olynomial(N);↪→

Usually this computation is done in a coset domain.
An explicit coset generator can be specified as fol-
lows and coset domain can be configured

//config base domain
const int MAX_NTT_LOG_SIZE = 24;

auto ntt_config = ntt::default_ntt_con ⌋

fig<scalar_t>();↪→

const scalar_t basic_root =
scalar_t::omega(MAX_NTT_LOG_SIZE);↪→

//Instantiate A,B,C polynomials such
that A(x) ·B(x) ≡ C(x) in base domain↪→

//modify coset generator
ntt_config.coset_gen = ntt::get_root_o ⌋

f_unity<scalar_t>(size *
2);

↪→

↪→

//config coset domain
ntt::init_domain(basic_root,

ntt_config.ctx);↪→

//divide by vanishing poly in coset
domain↪→

auto H = (A*B-C).divide_by_vanishing_p ⌋

olynomial(N);↪→

Note that the all the cosetNTTs/cosetINTT (35) and
memory allocation are automatically taken care of.
The data in the results of the arithmetic remains in
the device memory and can be accessed using views
§3.8 or sent to the host §3.7.

3.4 Evaluation

Polynomials can be evaluated at arbitrary c ∈ Fr,
or in a roots of unity domain Hn or a coset domain
Hn,η,

//evaluate on random point
Image operator()(const Domain& x)

const; //↪→

void evaluate(const Domain* x, Image*
evals /*OUT*/) const;↪→

//evaluate on a given set of scalars
(not necessarily Roots of
unity/coset). Note that memory is
allocated on call.

↪→

↪→

↪→

void evaluate_on_domain(Domain*
domain, uint64_t size, Image*
evals /*OUT*/) const;

↪→

↪→

//evaluate on a given set of domains
(equivalent to NTT)↪→

//Roots of unity/coset domain already
on device (faster)↪→

void evaluate_on_rou_domain(uint64_t
domain_log_size, Image* evals
/*OUT*/) const;

↪→

↪→
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Some examples of the above are

//define random poly in coeff form
auto f = randomize_polynomial(N);

//evaluate on random point
scalar_t x = scalar_t::rand_host();
auto f_x = f(x);

// evaluate f on a arbitrary set of
points↪→

auto domain =
std::make_unique<scalar_t[]>(size);↪→

for (int i = 0; i < N; ++i) {
domain[i] = scalar_t::rand_host();

}
auto evaluations =

std::make_unique<scalar_t[]>(N);↪→

f.evaluate_on_domain(domain, N,
evaluations.get());↪→

// evaluate f(x) on roots of unity
domain (equivalent to NTT)↪→

uint64_t domain_log_size = N;
auto evaluations_rou_domain =

std::make_unique<scalar_t[]>(1 <<
domain_log_size);

↪→

↪→

f.evaluate_on_rou_domain(domain_log_si ⌋

ze,
evaluations_rou_domain);

↪→

↪→

3.5 Manipulations

Given a polynomial, the monomial operations
allow to access specific terms in the coeffi-
cient form and perform additions/subtractions,
the monomial_coeff represents the value, and
monomial represents the location in the array (de-

gree of the term in the polynomial).

// Monomial operations
Polynomial& add_monomial_inplace(Coeff

monomial_coeff, uint64_t monomial);↪→

Polynomial& sub_monomial_inplace(Coeff
monomial_coeff, uint64_t monomial);↪→

For example

auto f = randomize_polynomial(N);
//add a coefficient to degree zero term
f.add_monomial_in_place(scalar_t::fro ⌋

m(5)); //
f(x)+ = 5

↪→

↪→

//add a coefficient to degree 8 term
f.sub_monomial_in_place(scalar_t::fro ⌋

m(3), 8); //
f(x)− = 3x8

↪→

↪→

The degree of a polynomial in coefficients form
is the highest power of the variable with a non
zero coefficient (see §C.1). The degree() function
in the API returns the degree of the polynomial
in coefficient form, corresponding to the highest
exponent with a non-zero coefficient.

auto f = randomize_polynomial(N);
//outputs a poly of degree N-1
auto degree_of_f = f.degree();

Note that the constant polynomial has degree zero
by definition and the zero polynomial has degree
−1 in our convention.

3.6 Slicing - create copies on device

In polynomial operations, it is common to extract
the odd and even indexed/degree terms. Or in
general to access arbitrary slices starting from a
given offset (starting index),a given stride length
(interval between elements in a slice) and number
of elements in a slice

// Slicing arbitary coefficients.
Polynomial slice(uint64_t offset,

uint64_t stride, uint64_t size);↪→

//slicing to even or odd components
Polynomial even();
Polynomial odd();

Below is a simple example of the folding with ran-
domness, which appears in several PIOP arguments
such as FRI. [9]

// folding odd and even components
(powers) of a poly with random
value

↪→

↪→

// fold(F (x)) = Fe(x
2) + xFo(x

2)
auto x = rand_host();
auto even = f.even();
auto odd = f.odd();
auto fold_poly = even + odd * x;

An example using the strides and size arguments to
extract arbitrary slices of polynomials (in device).
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const scalar_t coeffs[4] = {one, two,
three, four};↪→

//f(x) = 1 + 2x+ 3x2 + 4x3

auto f = Polynomial_t::from_coefficien ⌋

ts(coeffs,
4);

↪→

↪→

// extract slice 1 + 4x3

auto f_slice = f.slice(0 /*=offset*/,
3 /*= stride*/, 2 /*/= size*/);↪→

3.7 Memory access - move data between
host/device
Since the polynomial is instantiated on the device,
the data resides on the device memory. In several
situations, such as memory bottlenecks, and con-
current CPU operations such as preprocessing, or
to perform any device unsupported computations,
access to the polynomial’s internal state can be vital.
The data copy function copies the polynomial coef-
ficients to either host or device allocated memory.

// copy single coefficient device -->
host↪→

Coeff get_coeff(uint64_t idx) const;
// copy a range of coefficients device

--> host↪→

uint64_t copy_coeffs(Coeff* coeffs,
uint64_t start_idx, uint64_t
end_idx) const;

↪→

↪→

As a simple example copy of to host, we can copy
the data from a specific slice to host

const scalar_t coeffs[4] = {one, two,
three, four};↪→

//f= 1+2x+3x^2+4x^3
auto f = Polynomial_t::from_coefficien ⌋

ts(coeffs,
4);

↪→

↪→

auto even = f.even();
//copy 1+3x^2 to host
const auto slice_nof_coeffs =

f_slice.copy_coeffs(even, 0, 1);↪→

In general we recommend using memory views as
much as possible §3.8 to avoid dreaded memory
and data-transfer bottlenecks.

3.8 Memory Views - operate from data in device
memory without copying
A powerful feature of the Polynomial API is ef-
ficient data handling through the use of memory

views. These views provide direct read only access
to the polynomial’s internal state without the need
to copy data. This feature is particularly useful
for operations that require direct access to device
memory, enhancing both performance and memory
efficiency.

A memory view is a pointer to data stored in
device memory. By providing a direct access path-
way to the data, it eliminates the need for data
duplication, thus conserving both time and sys-
tem resources. This is especially beneficial in high-
performance computing environments where data
size and operation speed are critical factors. This
is key to design efficient end-end ZKP provers on
specialized hardware devices, to have high device
occupancy, and to avoid the dreaded data flow
bottlenecks between host-device and vice-versa.

A view of the polynomial data can be obtained
by using the get_coefficients_view() func-
tionality

// Obtain a view of the polynomial's
coefficients↪→

std::tuple<IntegrityPointer<Coeff>,
uint64_t /*size*/, uint64_t
/*device_id*/>

↪→

↪→

get_coefficients_view();

The pointer can be used by other data compatible
ICICLE API to read only access data and perform
operations. As an example, let us generate a random
polynomial, read the data using views and do a
cosetNTT on it

auto f = randomize_polynomial(size);
auto [d_coeff, size, device_id] =

f.get_coefficients_view();↪→

//compute coset evaluations
auto coset_evals =

std::make_unique<scalar_t[]>(size);↪→

auto ntt_config = ntt::default_ntt_con ⌋

fig<scalar_t>();↪→

// using the device data directly as a
view↪→

ntt_config.are_inputs_on_device = true;
ntt_config.coset_gen = ntt::get_root_o ⌋

f_unity<scalar_t>(size *
2);

↪→

↪→

//use data from coeff_view using get
method↪→
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ntt::ntt(d_coeff.get(), size,
ntt::NTTDir::kForward, ntt_config,
coset_evals.get());

↪→

↪→

ntt_config.are_inputs_on_device = true en-
sures that the NTT API knows to follow the
pointer to the data accessed by the coefficients view
method. This accesses the polynomial state directly
and the NTT call ntt::ntt(d_coeff.get(),...)

gets to read the data pointed to by the pointer for
its use.

Below we provide a simple example for commit-
ments using memory view 11. In this example we
check the simple identity (1) using commitments.

[(f1(x) + f2(x))
2 + (f1(x)− f2(x))

2]1

= [2 · (f1(x)2 + f2(x)
2)]1 (2)

First we use polynomial views to give the MSM API
the location of the data and the API uses the get()

to read the data and compute the commitment.

//choose size
int N = 1025;
//generate random group elements

string of length 2N↪→

auto SRS = generate_SRS(2*N);

//Allocate memory on device (points)
affine_t* points_d;
cudaMalloc(&points_d,

sizeof(affine_t)* 2 * N);↪→

// copy SRS to device
cudaMemcpy(points_d, SRS.get(),

sizeof(affine_t)* 2 * N,
cudaMemcpyHostToDevice);

↪→

↪→

//test commitment equality
//[(f1(x) + f2(x))

2 + (f1(x)− f2(x))
2]1 =

[2(f1(x)
2 + f2(x)

2)]1↪→

//using polynomial views and commit

auto f1 = randomize_polynomial(N);
auto f2 = randomize_polynomial(N);
auto L1 = (f1+f2)*(f1+f2) +

(f1-f2)*(f1-f2);↪→

auto R1 = scalar_t::from(2) * (f1*f1 +
f2*f2);↪→

// extract coeff using coeff view
auto [viewL1, sizeL1, device_idL1] =

L1.get_coefficients_view();↪→

auto [viewR1, sizeR1, device_idR1] =
R1.get_coefficients_view();↪→

11. See examples section in C++ in [1]

msm::MSMConfig config =
msm::default_msm_config();↪→

config.are_points_on_device = true;
config.are_scalars_on_device = true;

//host vars (for result)
projective_t hL1{}, hR1{};

//straightforward msm bn254 api:
bn254_msm_cuda(viewL1.get(),points_d,N ⌋

,config,&hL1);↪→

bn254_msm_cuda(viewR1.get(),points_d,N ⌋

,config,&hR1);↪→

The config.are_points_on_device=true and
config.are_points_on_device=true ensure

that the msm API can access the data from the
polynomial view.

Some times the data accessed by a certain view,
can become modified due to in-place operations,
and this invalidates the original view. Memory
views are managed through an integrity pointer
that monitors the validity of the memory it points
to. It can detect if the memory has been modified or
released, thereby preventing unsafe access to stale
or non-existent data. This is done in practice using
some simple validity check methods

// Checks if current pointer is still
valid↪→

bool isValid() const;

// Retrieves the raw pointer or
nullptr if pointer is invalid↪→

const T* get() const;

// Dereferences the pointer. Throws
exception if the pointer is
invalid.

↪→

↪→

const T& operator*() const;

//Provides access to the member of the
pointed-to object.↪→

Throws exception if the pointer is
invalid.↪→

const T* operator->() const;

Although in general one does not need to use this,
in situations where there are combinations of in
place operations and memory views, this feature
can be useful to prevent errors.
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3.9 Multiple-GPU Support

The Polynomial API also supports multiple GPU
environments. Current active device is set by

cudaSetDevice(int deviceID);

All subsequent operations that allocate or deal with
polynomial data will be performed on this device.
Polynomial data are located on the current CUDA
device at the time of genesis. Device context must
be correctly set before initiating any operation that
involves memory allocation, else an exception is
thrown.

// Set the device before creating
polynomials↪→

cudaSetDevice(0);
Polynomial p1 = Polynomial::from_coeff ⌋

icients(coeffs,
size);

↪→

↪→

cudaSetDevice(1);
Polynomial p2 = Polynomial::from_coeff ⌋

icients(coeffs,
size);

↪→

↪→

// Throws an exception if p1 and p2
are not on the same device↪→

auto p3 = p1 + p2;

Note that access to degree of a polynomial or
performing in-place modifications, can be executed
regardless of the current device setting, since they
do not involve creation of new polynomials.

4 C++ GROTH EXAMPLE

In this section, we give a quick walkthrough of the
Groth16 prover computation. The full example can
be found in the link in the footnote 12. We will focus
purely on the back end part of the computation
although parts of the setup, R1CS to QAP can still
be done in ICICLE, it is not yet possible to write
circuits directly in ICICLE. These features may be
supported in future.

The main goal of the Groth16 prover is to con-
vince the verifier of the knowledge of coefficients
a ∈ Fr that satisfy the R1CS system

(u.a) ◦ (v.a) = (w.a) (3)

12. https://github.com/ingonyama-zk/icicle/blob/main/
icicle/tests/polynomial_test.cu

the a are input wire vectors consisting of public and
witness elements ∈ Fr. We will use the following
notation to label the wire vectors (with a0 = 1)

{a0| a1, a2, . . . al︸ ︷︷ ︸
Public ∈ Fl

| al+1, . . . am︸ ︷︷ ︸
Witness ∈ Fm−l

} (4)

which is written in the QAP language
m∑
i=0

aiui(X) ·
m∑
i=0

aivi(X) ≡
m∑
i=0

aiwi(X) + h(X) · t(X)

(5)

where the deg(t(X)) = n and

deg(Ai(X)) = deg(Bi(X)) = deg(Ci(X)) = n−1 (6)

At the end of the setup process the prover gets
access to the following data

QAP = {ui(x), vi(x), wi(x), t(x)} ∀i = 0, 1 . . . ,m

CRS =

{
([ui(τ)]1, [vi(τ)]1, [vi(τ)]2, [wi(τ)]1,

, [α]1, [β]1, [δ]1,

{[
τ it(τ)

δ

]
1

}n−2

i=0

,

{[vk′i]1}mi=0, {[pk′i]1}mi=0

, [β]2, [γ]2, [δ]2, {[τ i]2}n−1
i=0

}
[pk′i]1 =

{[
β · ui(τ) + α · vi(τ) + wi(τ)

δ

]
1

}m

i=l+1

[vk′i]1 =

{[
β · ui(τ) + α · vi(τ) + wi(τ)

γ

]
1

}l

i=0

(7)

where the evaluations at τ (the secret scalar/toxic
waste) are encoded in group elements in G1,G2 and
are protected by the discrete log property. The setup
is generated for computing the quotient argument
in Lagrange basis of polynomials. The prover algo-
rithm is simply

1) Choose random r, s ∈ Fr

2) Compute quotient (see (35))

h(x) =
U(X) ∗ V (x)−W (x)

t(X)
(8)

3) compute proof element [A]1

[A]1 =

m∑
i=0

ai · [ui(τ)]1 + [α]1 ++r · [δ]1 (9)

4) compute proof element [B]2, [B]1

[B]2 =

m∑
i=0

ai · [vi(τ)]2 + [β]2 + s · [δ]2 (10)

[B]1 =

m∑
i=0

ai · [vi(τ)]1 + [β]1 + s · [δ]1 (11)

https://github.com/ingonyama-zk/icicle/blob/main/icicle/tests/polynomial_test.cu
https://github.com/ingonyama-zk/icicle/blob/main/icicle/tests/polynomial_test.cu
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5) compute proof element [C]1

[C]1 =

m∑
i=l+1

ai · [pk′i]1 +
n−2∑
i=0

hi ·
[
τ it(τ)

δ

]
1

+ s · [A]1 + r[B]1 − r · s[δ]1 (12)

6) Send proof π = ([A]1, [C]1, [B]2)

The prover part of the code is end-to-end on de-
vice and is verbatim the above using the polynomial
API. The high level idea is simple, if you have a
polynomial and an operation such as an MSM, feed
the pointer to the polynomial data using memory
views into the relevant ICICLE API for the curve
of interest and perform computations on the data
without duplication.

//Compute U,V,W from witness, QAP
Polynomial_t U = L_QAP[0].clone();
Polynomial_t V = R_QAP[0].clone();
Polynomial_t W = O_QAP[0].clone();
for (int col = 1; col <= m; ++col) {

U += witness[col] * L_QAP[col];
V += witness[col] * R_QAP[col];
W += witness[col] * O_QAP[col];

}

// ------- PROOF part ----------//
// --- Step 1 --- generate r, s← Fr

const auto r = S::rand_host();
const auto s = S::rand_host();

// --- Step 2 ---
//compute h(x) = (U(x) ∗ V (x)−W (x))/t(x)
const int vanishing_poly_deg = n;
Polynomial_t h = (U * V -

W).divide_by_vanishing_polynomial( ⌋

vanishing_poly_deg);
↪→

↪→

// config MSM: default: setup data on
device.↪→

auto msm_config =
msm::default_msm_config();↪→

msm_config.are_scalars_on_device =
true;↪→

// --- Step 3 ---
G1P U_commited;
auto [U_coeff, N, device_id] =

U.get_coefficients_view();↪→

//Compute commitment
∑

i ai[ui(τ)]1
msm::_msm(U_coeff.get(),

pk.g1.powers_of_tau.data(), n,
msm_config, &U_commited);

↪→

↪→

//compute [A]1 =
∑m

i=0 ai · [ui(τ)]1 + [α]1 + r · [δ]1
proof.A = G1P::to_affine(U_commited +

G1P::from_affine(pk.g1.alpha) +
r*G1P::from_affine(pk.g1.delta));

↪→

↪→

// --- Step 4 --- compute [B]2 and [B]1
G1P B1;
G2P V_commited_g2;
auto [V_coeff, N, device_id] =

V.get_coefficients_view();↪→

//Compute commitment
∑

i ai[vi(τ)]2
msm::_g2_msm(V_coeff.get(),

pk.g2.powers_of_tau.data(), n,
msm_config, &V_commited_g2);

↪→

↪→

//Compute [B]2 =
∑m

i=0 ai · [vi(τ)]2 + [β]2 + s · [δ]2
proof.B = G2P::to_affine(V_commited_g2

+ pk.g2.beta + s *
G2P::from_affine(pk.g2.delta));

↪→

↪→

G1P V_commited_g1;
//Compute commitment

∑
i ai[vi(τ)]1

msm::_msm(V_coeff.get(),
pk.g1.powers_of_tau.data(), n,
msm_config, &V_commited_g1);

↪→

↪→

//Compute [B]1 =
∑m

i=0 ai · [vi(τ)]1 + [β]1 + s · [δ]1
B1 = V_commited_g1 + pk.g1.beta +

G1P::from_affine(pk.g1.delta) * s;↪→

// --- step 5 --- compute [C]1
// access quotient from step 1 using

polynomial view↪→

auto [H_coeff, N, device_id] =
h.get_coefficients_view();↪→

G1P HT_commited;

//Compute commitment
∑

i hi[τ
i t(τ)

δ ]1
msm::_msm(H_coeff.get(), pk.g1.vanishi ⌋

ng_poly_points.data(), n - 1,
msm_config, &HT_commited);

↪→

↪→

G1P private_inputs_commited;
msm_config.are_scalars_on_device =

false;↪→

msm::_msm(witness.data() + l + 1, pk.g ⌋

1.private_witness_points.data(), m
- l, msm_config,
&private_inputs_commited));

↪→

↪→

↪→

//Compute [C]1 =
∑m

i=l+1 ai · [pk′i]1 +
∑n−2

i=0 hi ·[
τ it(τ)

δ

]
1
+ s · [πA]1 + r[B]1 − r · s[δ]1↪→

proof.C = G1P::to_affine(
private_inputs_commited + HT_commited

+ G1P::from_affine(proof.A) * s +
B1 * r -r * s *
G1P::from_affine(pk.g1.delta));

↪→

↪→

↪→

// --- step --- 6
return proof;
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APPENDIX A
ZKP FRONTEND

Please refer to tables 3, 4, 5

APPENDIX B
ICICLE COMPILATION

ICICLE is a statically compiled library, clone the
ICILE library [1] locally and compile for a specific
curve or field

git clone https://github.com/ingonyama ⌋

-zk/icicle.git --branch main --
single-branch

↪→

↪→

mkdir -p build
cmake -OPTIONS=ON/OFF -DCURVE=<CURVE>

-S . -B build;↪→

cmake --build build -j

Where <CURVE> can be one of
bn254/bls12_377/bls12_381/bw6_761/grumpkin .

If compiled in field mode the option
-DFIELD=<FIELD> currently supports
babybear/stark252 future versions will

include mersenne/goldilocks . This outputs
two statically compiled files

libingo_curve_<CURVE>.a
libingo_field_<CURVE>.a

into build/lib . The compilation options are sum-
marized in table 6. These statically generated files
must be linked to the executable in Cmake by
providing the appropriate path. See below for an
example for bn254

add_executable(
<executable_name>
src/file_1.cu
src/file_2.cu

)
target_link_libraries(<executable_name>
${CMAKE_SOURCE_DIR}/../icicle/icicle/b ⌋

uild/lib/libingo_curve_bn254.a↪→

${CMAKE_SOURCE_DIR}/../icicle/icicle/b ⌋

uild/lib/libingo_field_bn254.a↪→

)
target_include_directories(<executable ⌋

_name>
PRIVATE

↪→

↪→

"/../icicle/icicle/include"
"${CMAKE_SOURCE_DIR}/include")

APPENDIX C
POLYNOMIALS IN FINITE FIELDS

In this section, we cover some relevant background
on polynomials in finite fields. For the purpose
of this paper, we limit to univariate polynomials,
and exclude polynomials on rings (these will be
supported in future versions of ICICLE).

C.1 Basics
Let Fr be a prime field of characteristic p, a univari-
ate polynomial in Fr is defined as an expression of
the form

P (x) =

n−1∑
i=0

aix
i (13)

where ai ∈ Fr ∀ i = 0, 1, . . . , n − 1 are called
coefficients, and n−1 = deg(P (x)) ≥ 0 is the degree
of the polynomial. Thus a polynomial of degree n−1
is a tuple Fn

r in a basis. This representation above is
known as the "coefficients form" or the monomial
basis. Given a point c ∈ Fr then the evaluation of P
at b is defined as

P (b) =

n−1∑
i=0

aib
i (14)
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TABLE 3
Front end paradigms ASIC vs CPU approach

Feature ASIC approach CPU approach
Program logic deterministic non-deterministic

Circuit encoding hard coded Compile to virtual Machine (VM)
arithmetic circuits Instruction Set Architecture (ISA)

Advantages
Efficiency Flexiblity

community templates for circuits Program in high level languages
Optimizations less cryptography knowledge

Disadvantages Low level languages for circuit difficult to optimize
Large surface area for bugs rely on compilers for ISA

Backend function prove CSAT prove ISA execution

TABLE 4
Frameworks that consist of tools to arithmetize circuits in ASIC approach and also provide different backend support for

generating ZKPs.

Frontend Supported Backends
Arkworks [22] (R1CS) Groth16 [4], Marlin [31], Gemini [32]
Circom [33] (R1CS) Groth16
Gnark [11] (R1CS/Plonk) Groth16, Plonk [5] +KZG [13]
Halo2 (Plonkish) Halo2 IPA , Halo2 KZG [6]
Plonky2/3 [7], [8] (Plonkish) Plonkish + STARK [9]
ZoKrates [34] Groth16, Marlin

TABLE 5
Frameworks that follow the CPU approach: VM’s with code execution reducible to given ISA and their supported backends

zkVM ISA Backend
CAIRO [35] RISC (Custom) STARK [9]
Jolt [36] RISC-V LASSO [37]
Lurk [38] Lurk (Custom) Nova [10]
Miden [39] Assembly (Custom) [40] STARK based [41]
Nexus [42] NVM (Custom) Nova [10], Hypernova [43]
Powdr [44] Assembly (Custom) Halo2KZG [6]
RISC0 [45] RISC-V STARK+Groth16 [46]
SP1 [47] RISC-V Plonky3 [8]
Valida [48] RISC (Custom) Plonky3 [8]

Polynomial arithmetic follows as usual from linear
and distributive laws of algebra

A(x) +B(x) =

n1−1∑
i=0

aix
i +

n2−1∑
i=0

bix
i

=

max(n1−1,n2−1)∑
i=0

(ai + bi)x
i (15)

A(x) ·B(x) =

(
n1−1∑
i=0

aix
i

)
·

n2−1∑
j=0

bjx
j


=

n1+n2−2∑
i=0

i∑
j=0

aibi−jx
i (16)

where · is the usual Cartesian product. It follows
that

deg(A(x)) + deg(B(x)) = deg(A(x)B(x)) (17)
deg(A(x) +B(x)) ≤ max(deg(A(x), B(x)))

(18)

We summarize some basic properties of polynomi-
als in Fr relevant for us below.

• A polynomial has a multiplicative inverse
only if the degree of the polynomial is zero
(constant polynomial). 13

• if A(x) ·B(x) = 0 either A(x) = 0 or B(x) = 0
• if A(x) ̸= 0 and A(x) ·B(x) = A(x) ·C(x) then

B(x) = C(x).

13. If A(x) · B(x) = 1 then deg(A(x)) + deg(B(x) = 0, it
follows that A(x) = c,B(x) = c−1 for c ∈ Fr
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TABLE 6
ICICLE compilation options

Option mode Default
EXT_FIELD Extension field (field mode) OFF

DMSM MSM (curve mode) ON
DBUILD_HASH Hashes (any mode) OFF

DG2 G2 EC arithmetic (curve mode) OFF
DECNTT ECNTT (curve mode) OFF

BUILD_TESTS test binary (any mode) OFF

DBUILD_BENCHMARK bench suite (any mode) OFF

DEVMODE debug mode OFF

• For B(x) ̸= 0, there exists unique quotient
and remainder polynomials Q(x), R(x) with
deg(R(x)) < deg(B(x)) such that

A(x) = B(x) ·Q(x) +R(x)

R(x) ≡ A(x) mod B(x) (19)

and can be computed using the Euclidean
division algorithm.

• For β ∈ Fr, A(x) = (x− β) ·Q(x) +A(β) and
in particular if A(x) has a factor (x−β), then
β is a root of A(x) ∈ Fr.

• Lagrange interpolation: Given distinct ai ∈
Fn
r (basis), and bi ←$ Fn

r , there exists a unique
polynomial P (x) with deg(P (x)) ≤ n−1 such
that

P (x) =

n−1∑
i=0

bi · Li(x) ; Li(x) =
∏
k=0
k ̸=i

(
x− ak
ai − ak

)
(20)

where Li(x) are the Lagrange bases that
satisfy Li(aj) = δij . This representation of
a polynomial is known as the "evaluations
form" or the Lagrange basis, since we rep-
resent bi ≡ P (ai). Since Li(aj) = δij the
multiplication operation of two polynomials
(of n evaluations each) in evaluation form is
Hadamard multiplication (elementwise)

P (x) ·Q(x) =

n−1∑
i=0

pi · Li(x)

n−1∑
j=0

qj · Lj(x)

=[p0q0, p1q1, . . . , pn−1qn−1]

≡p⃗n ◦ q⃗n (21)

An auxiliary identity that follows from the
above is that if in evaluations form the iden-

tity P (x) ·Q(x) = R(x) holds then

n−1∑
i=0

pi · Li(x)

n−1∑
j=0

qj · Lj(x) =

n−1∑
k=0

rk · Lk(x)

(22)

it implies qj = rj/hj ∀j ∈ {0, 1, . . . , n − 1},
when there are no zero divisors.

C.2 Polynomials in F×

In any finite field Fr the non zero elements F×
r =

Fr − {0} form a multiplicative group. Since every
multiplicative group/subgroup in a finite field is
cyclic, it follows that for every x ∈ F×

p , we have
xp−1 = 1, or x is a pth root of unity. In practice, if we
have n field elements bi, it is sufficient to represent
this as a polynomial by choosing a multiplicative
subgroup domain Hn ⊂ F×

r . This domain can be
constructed by computing ω = x

p−1
n , such that ωn =

1 i,e ω is a nth root of unity in Fr. If in addition
ωn/2 ̸= 1 it is a primitive root.14 Note that finding
a root of unity is equivalent to finding a solution of
the following equation in Fr

t(x) = xn − 1 = 0 (23)

Thus the n solutions (roots of unity) to this equation
form a domain

Hn ≡ {1, ω, ω2, . . . ωn−1} (24)

The equation (23) is called a vanishing polynomial
in the literature, it is unique and defines the domain
on which other polynomials upto degree n−1 can be
interpolated. We use the notation Hd to mean that
the domain consists of d points and can atmost
represent evaluations of a polynomial of degree

14. The number of primitive roots in Fr is ϕ(p − 1) where Φ
is the Euler Totient Function.
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d − 1. We can represent a polynomial in either the
coefficient or the evaluation form in the domain Hn

P (x) =

n−1∑
i=0

ci · xi (Coefficient form) (25)

P (x) =

n−1∑
i=0

ei · Li(x) (Evaluation form) (26)

with ei = P (ωi) and can be defined explicitly using
Lagrange interpolation (20) defined on Hn. The rela-
tionship between coefficients ci and evaluations ei is
more transparently expressed (and practical) using
the Discrete Fourier Transform defined on Hn ⊂ Fx

r

which is referred to commonly as the NTT (Number
Theoretic Transform). The transformation matrix is
defined as

Fn =


1 1 1 . . . 1
1 ωn ω2

n . . . ωn−1
n

1 ω2
n ω4

n . . . ω
2(n−1)
n

...
...

...
. . .

...
1 ωn−1

n ω
2(n−1)
n . . . ω

(n−1)2

n


n×n

(27)

For notational convenience we define the vector of
coefficients as c⃗n and vector of evaluations as e⃗n, for
polynomial of degree n − 1. In general we define
the NTTn as the operation that takes polynomial
in coefficients representation (n points) to the eval-
uation representation and INTTn as the operation
that takes a polynomial from the evaluation to the
coefficients representation

NTTn : e⃗n = Fn · c⃗n (coeffs to evals) (28)

INTTn : c⃗n = F−1
n · e⃗n (evals to coeffs) (29)

The computation of the NTT/INTT matrix follows
the usual DFT (Discrete Fourier Transform) com-
plexity of O(n log n) and is efficiently evaluated
using well known DFT algorithms. In this lan-
guage, interpolation of a polynomial of degree n
to say degree m − 1 > n, means first to define
Hm ≡ {1, ωm, . . . , ωm−1

m } where ωm = 1 in F×
p and

do an NTTm

NTTm : e⃗m = Fm · [⃗cn||⃗0m−n] (30)

Closely following the interpolation rule is
the convolution rule. Given two polynomials
P1(x) =

∑n1−1
i=0 pix

i, P2(x) =
∑n2−1

i=0 qix
i defined in

Hmax(n1−1,n2−1) ⊂ F×
r . From (17) the result is of

degree d = n − 1 = n1 + n2 − 2, hence we define

the product domain Hn ≡ {1, ωn, . . . , ω
n−1
n } with

ωn
n = 1 and

P1(x) · P2(x) = F−1
n ·

(
(Fn · [p⃗n1 ||⃗0n2−1])

t

◦ (Fn · [p⃗n2 ||⃗0n1−1])

)
= INTTn (NTTn(P1(x)) ◦NTTn(P2(x)))

(31)

Thus at the end of the multiplication, the INTTn

returns the result in coefficients form. However, if
one needs to perform further polynomial manipu-
lations, such as addition, multiplication, or division
it is advisable to retain the polynomial in evaluation
form as long as the degree requirements are met for
the final result.

C.3 Polynomial Identity checking with quotient
argument

Polynomial identity checking is a central instrument

in PIOP/PCP of ZKPs.. To check a statement P (x)
?≡

Q(x) in some domain Hn, it is equivalent to check

the statement R(x)
?≡ 0 in Hn, where R(x) = P (x)−

Q(x), with deg(R(x)) = d. Thus, if R(x)
?≡ 0 in Hn,

it follows from fundamental theorem of algebra that
it must be proportional to the vanishing polynomial
(23) i.e

R(x)
?≡ h(x) · t(x) (32)

where deg(h(x)) = m − 1 = d − n. Therefore, we
can state that R(x) vanishes in Hn iff there exists
a polynomial h(x) of degree d − n such that (32)
holds. In practice, since both t(X) and R(x) vanish
in Hn in (32), we cannot compute the quotient us-
ing high-school multiplication. An efficient method
to compute the quotient is to recognize that the
in order to adequately represent the quotient of
degree m − 1, we need a domian of atleast m
points. This is achieved by defining a coset domain
Hm,η = η · {1, ωm, . . . , ωm−1

m }15 for some η ∈ Fr, and
η /∈ Hn. Note that the vanishing polynomial (23)
evaluates to a constant t(x)

∣∣
Hm,η

= (ηm − 1)[⃗1m]

in Hm,η. Thus h(x) can be efficiently computed in
coefficients form as

h(x) =
ICosetNTTHm,η

(
[⃗1m] ◦ CosetNTTHm,η(R(x))

)
(ηm − 1)

(33)

15. This is known as coset NTT, i.e the NTT matrix (27) is now
defined with the modified roots of unity in the coset domain.
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As a concrete example, in the Groth16 QAP quotient
argument [4] (§4) we have deg(A) = deg(B) =
deg(C) = N − 1 all defined in HN . The quotient
argument is

h(x) =
A(x) ·B(x)− C(x)

xN − 1
(34)

where the numerator R(x) = A(X)·B(x)−C(x) is of
deg(R(x)) = 2N − 2, and the degree of the quotient
is deg(h(x)) = m − 1 = 2N − 2 − N = N − 2. Thus
we need to define a coset Hm of m = N−1 points to
adequately represent the N − 1 evaluations of h(x)

h(x) = ICosetNTTHm,η

(
CosetNTTHm,η(A(x))

◦ CosetNTTHm,η(B(x))

− CosetNTTHm,η(C(x))

)
× 1

ηm − 1
(35)

The quotient argument as defined above is general-
izable for arbitrary polynomial identities on F×

r .
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