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1 Introduction

This paper studies unconditionally secure communication (and by extension multiparty compu-
tation) when parties communicate over an incomplete and dynamic network. More specifically,
we assume synchronous communication with secure point-to-point channels; however, only some
of the point-to-point connections actually exist, so the network is incomplete. Moreover, the set
of active connections can change from one round to the next, and the graph describing the
active connections is adversarially chosen in each round. This is called a dynamic incomplete
network, in contrast to a static incomplete network, where the active connections stay the same
throughout the protocol.

Static incomplete networks were first studied by Dolev [Dol82]. Here, it was shown that
when t of the n parties are malicious, one can do secure broadcast if and only if the network is
at least 2t+ 1-connected, and 3t < n 4. Later, Dolev et al. [DDWY93] showed that, in a static
incomplete network, one can communicate privately and reliably if and only if the network is
2t + 1-connected. Using the protocols from that work, one can emulate a complete network
with secure point-to-point channels. This can be combined with any MPC protocol that is
based on a complete network, and one can then conclude that, in a static incomplete network,
2t+ 1-connectivity is necessary and sufficient for unconditionally secure MPC to be possible.

The case of dynamic incomplete networks was first considered in Maurer et al. [MTD15],
who studied reliable (non-private) communication. They defined a notion called dynamic min-
cut which is a number that can be derived from the entire sequence of networks graphs. They
then showed that reliable communication is possible between any pair of parties if and only if the
dynamic min-cut is larger than 2t. Although this is the weakest possible condition that allows
for reliable communication, it makes a rather complicated statement on the entire sequence of
network graphs, and in a given practical setting it would be hard to assess whether it is going to

4 A graph is k-connected if any pair of distinct nodes are connected by at least k disjoint paths, or equivalently,
if it remains connected when one removes any set of less than k vertices.



be satisfied or not. Also, from a theoretical standpoint, it is natural to ask if there is a condition
on each individual network graph that would enable both reliable and private communication.

These questions were considered in [DRTY23]. They initiated the study of (unconditionally)
private communication in dynamic networks, and introduced a model that is a natural extension
of the static case, where it is required that in each round, the network graph for that round
is at least k-connected (and this is the only condition assumed). The model further assumes
that that honest parties do not know the network topology. This is reasonable, as connections
may be down because mobile devices move, or equipment crashes, and such events cannot be
predicted locally. Finally, it is assumed that at most t parties are corrupted by an adversary,
either passively (semi-honest) or actively (malicious).

The main results from [DRTY23] are as follows: reliable communication is possible in a
dynamic network if and only if k > 0 in the passive case and k > 2t in the active case. Private
communication can be done for a passive adversary, if and only if k > t. For an active adversary,
k > 3t is sufficient for perfectly secure private communication, whereas k > 2t is necessary
(which follows from known results in the static case). It was conjectured that in fact k > 3t
is necessary for perfect security (whereas they showed that k > 2t is sufficient for statistical
security).

The protocols from [DRTY23] (and [MTD15]) introduce quite a large performance penalty
compared to the static case. They work by trying many different paths from sender to receiver
in the hope that the message will eventually arrive along enough disjoint paths. For private
communication, key material is sent along many different paths in the hope that some of it will
make it to the sender via paths consisting of only honest players, which allows extraction of a
key that is completely unknown to the adversary. Unfortunately, the upper bounds shown for
both round and communication complexity of these approaches were exponential in n in the
worst case.

1.1 Our Contributions

In this paper, we disprove the conjecture from [DRTY23] and show that in fact k > 2t is sufficient
for perfect private communication. Since this condition was already known to be necessary, this
completes the characterisation of dynamic incomplete networks allowing for private and reliable
communication. We also give new protocols for private communication in the passive case,
and for reliable and private communication in the active case. The protocols are based on
several new techniques, allowing us to remove the exponential dependency on n in the protocols
from [DRTY23]. Indeed, all our protocols have complexity polynomial in n for all values of n, k
and t for which secure communication is possible.

We stick to the network model from [DRTY23] for most of the paper, as it allows for simple
descriptions of protocols and clean statements about their properties. But we emphasize that
our protocols do not need to assume that the network graph is k-connected in every round,
and in fact they work under much weaker assumptions on connectivity. We discuss this in more
detail in Section 6.

The complexities of our constructions are summarized in Tables 1 and 2.

1.2 Technical Overview

Reliable Communication Reliable communication with a passive adversary can be done
as long as k > 0. A simple flooding approach will work in n rounds, as was already noted
in [DRTY23]. For reliable communication in the active adversary case we introduce a new
protocol and proof. In a nutshell, we also use a flooding approach here, but each copy of the
message carries metadata, namely a graph describing the paths the message travelled along
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Table 1: Reliable Communication Protocols for a message m, over k-connected networks. The
communication complexity is the total communication of honest parties in the protocol. M
denotes the total bits of all messages sent by corrupt parties (which assuming PPT adversaries
remains polynomial).

Corruption Graph Complexity

Scheme Type Threshold k Rounds Communication

[DRTY23], Protocol 1 passive t < n k ≥ 1 n O
(
n3|m|

)
[DRTY23], Protocol 2 active t < n

2 k > 2t O(n2n) O
(
n422n|m|

)
This work, Protocol 3 active t < n

2 k > 2t ≤ n O
(
n3|m|+ (M + 1)n6 log2(n)

)

Table 2: Private Communication Protocols for a message m, over k-connected networks with
corruption threshold t. The complexity of Protocol 4 is in terms of the complexities of its
building blocks, namely reliable communication and secure message transmission; where ρRel,
ρSMT denote the round complexities and cRel(x), cSMT(x) denote the communication complexities
for transmitting x bits. There exist instantiations of these building blocks that maintain these
complexities to be polynomial (elaborated in the relevant technical section). Note that the
protocols in this paper are the first to offer round and communication complexity which is sub-
exponential in the number of parties.

Corruption Graph Complexity

Scheme Security Type t k directed Rounds Communication

[DRTY23],
Protocol 3

perfect passive t < n k > t X O(n2n) O
(
22nn3(n+ |m|)

)
[DRTY23],
Protocol 5

perfect active t < n
3 k > 3t X O(n2n) O

(
2n

2+nn3(n+ |m|)
)

[DRTY23],
Protocol 6

perfect active t < n
4 k > 4t X O(n2n) O

(
23nn5(n+ |m|)

)
This work,
Protocol 1,
Corollary 3

perfect passive t < n k > t X 2bnk c+ 3 O
(
n4

k (n log(n) + |m|)
)

This work,
Protocol 2,
Corollary 6

perfect passive t < n k > t 7 bnk c+ 2 O
(
n4|m|
k

)

This work,
Protocol 4

perfect active t < n
3 k > 2t X 1 +2ρRel

+ρSMTρRel

O
(
ncRel(n

2) +
ncSMT(|m|)cRel(n log(n))

)
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to reach the current party. The party assembles new metadata based on what it received, and
passes it along in the next round. After some number of rounds, the final receiver R has received
possibly several different messages and metadata (as the adversary is free to fabricate incorrect
messages and metadata). We show that after O(n) rounds, R has enough data to decide with
probability 1 what the correct message is.

An overview of how we arrive at this result: Earlier work for dynamic networks tracked all
paths on which a message has travelled, and the receiver would believe a message if it arrives
on more than t disjoint paths, as this implies it must have travelled on a path with only honest
players. Unfortunately, the number of potential paths can be exponential, leading to inefficient
protocols. An obvious idea for improvement is to collect the paths on which the message travelled
into a graph that can hopefully be described more compactly than the set of paths. In case of
a static network, it is quite straightforward to see that this will work: the receiver can decide
whether to believe a certain message m based on the max-flow or equivalently min-cut of the
graph that is sent along with m (considering cuts separating sender from receiver). If this
number is larger that t, the sender believes the message.

However, things get more complicated in the dynamic case. Min-cut is not defined for a
dynamic network, so we construct a different type of graph that captures the history of a
message travelling through the network. There is a node for each pair (Pi, j), where Pi is one of
the parties and j indicates a round in the protocol. We put an edge from (Pi, j − 1) to (Pi′ , j)
if Pi sent the message to Pi′ in round j (and by default a party is connected to itself from each
round to the next) 5. We then introduce a notion called relaxed labelled min-cut in this type of
graph, where we allow fractions as values, in contrast to the standard notion of min-cut which
is always an integer. This allows us to formulate an efficiently computable predicate which we
show is satisfied after n rounds by the graph traveling with the correct message, and cannot be
satisfied for any incorrect message.

Private Communication For private communication, our main idea is as follows: instead of
trying to send the message via a large number of paths, as in [DRTY23], we ask each party
to choose a secret key for each other party and try to send, in a single round, each key to the
party it was chosen for. Then we determine via public discussion which connections worked,
using the fact that we already know how to do reliable (non-private) communication efficiently.
Intuitively, this “freezes” the network graph G that existed in the round where the keys were
sent.

Skipping a few details, the keys exchanged can be used to send data privately along a path
in G, such that the adversary will have no information on what is sent if the path contains only
honest players. This means that in the passive case, the sender can secret-share its message
additively and send shares privately to the receiver along a set of disjoint paths in G. This will
work because G is sufficiently connected so that at least one share will remain unknown to the
adversary.

In the active case, we assume the G is at least 2t + 1-connected. We can think of the (at
least) 2t + 1 disjoint paths from sender to receiver as channels connecting sender to receiver,
of which at most t can be corrupted. We can then use known efficient protocols for maliciously
secure perfect message transmission to send a private message.

5 For technical reasons, we even need to have several nodes for one party in each round. As we explain later, this
has to do with the fact that a corrupt party can claim they heard a fake message from an honest party Ph, but
at the same time Ph might report the same fake message because he heard from another corrupt party. These
two “stories” must be treated separately and we do this by having two different nodes for Ph in the relevant
round.
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This disproves the conjecture from [DRTY23], that connectivity must be at least 3t + 1.
In [DRTY23] evidence was given for the conjecture by arguing that any protocol in the class
of solutions they considered would fail for connectivity less than 2t + 1. As also noted there,
this is of course not a proof, and indeed our protocol falls outside the class because it crucially
uses public discussion to decide on the paths to use later. This option was not considered
in [DRTY23].

2 Preliminaries

In this work we consider the setting as defined in [DRTY23]. Let F be a finite field. Let P =
{P1, . . . ,Pn} denote the set of n parties. The sender S ∈ P wants to send a message m ∈ F to
receiver R ∈ P.

2.1 Adversary Model

A computationally-unbounded, central adversary corrupts at most t parties. The party corrup-
tion is static, i.e., the adversary is required to select the set of corrupted parties before the
protocol execution. We distinguish between passive corruption where the adversary can access
the internal state of corrupted parties and active corruption where the adversary additionally
has full control over the behavior of corrupted parties.

2.2 Communication Network

Parties communicate over a dynamic incomplete network of secure (private and authentic)
synchronous channels in the presence of a rushing adaptive network adversary. In more details,
the protocol proceeds in rounds, also known as time steps. Let G be a publicly-known family
of graphs over P. Intuitively, the graph family G models the network guarantees for honest
parties. For example, G could be the family of connected graphs. In each round a party may
attempt to use any channel in their neighborhood of Ḡ =

⋃
G∈G G

6. The adversary decides on
the actual communication graph Gr ∈ G for round r after having observed the communication
attempts. Any message input on a channel within Gr will then be delivered by the end of the
round. We note that honest parties are oblivious of the actual communication graph Gr. In
particular, honest parties do not learn which of their outgoing transmissions were successful. If
not specified otherwise, the graphs in G may be directed graphs.

2.3 Security

In this work we consider protocols that achieve a communication channel with perfect security
between sender and receiver.

Reliable Communication. A reliable communication channel allows a sender S to send a message
to a receiver R in a tamper-resilient manner.

Definition 1 (Reliable Communication). A protocol achieves a reliable communication
channel with perfect security between S and R in the presence of an adversary A if the following
holds:

Correctness The output message mR of R is the input message m of S, i.e. Pr[mR 6= m] = 0
where the randomness is over the coins of all honest parties and A.

6 Ḡ is often the fully-connected graph, so every party’s neighborhood is then all of P.
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Private Communication. A private communication channel allows a sender S to send a message
to a receiver R in a reliable and private manner, i.e. the adversary will not learn any information
on the message.

Definition 2 (Private Communication). A protocol achieves a private communication
channel with perfect security in the presence of an adversary A if it achieves a reliable commu-
nication channel, and additionally the following holds:

Privacy The view of adversary A can be simulated from the inputs and outputs of corrupted
parties. In particular, for honest S, R the adversarial view is independent of the sender’s
input message m.

2.4 Graphs

In this section we define the graph properties we consider for the communication network in
our protocols.

Definition 3. A (directed) graph is (u, v)-k-connected if for nodes u, v there exist k disjoint
(directed) paths from u to v.

Definition 4. A (directed) graph is k-connected if it is (u, v)-k-connected for any pair (u, v)
of nodes.

A 1-connected graph is simply called connected. We say graph family G has property X if
every graph in G has property X.

3 Private Communication with Passive Corruption

Damg̊ard et al. [DRTY23] presented a private communication protocol that tolerates t < n
passive corruptions in a dynamic network with connectivity k > t. Both the round and com-
munication complexity of this protocol scales linearly with the cardinality of a given set of
paths Paths between sender and receiver. If Paths happens to be the set of all possible paths,
its cardinality is exponentially large in n. Motivated by the goal of improving the efficiency of
this protocol, we propose a private communication protocol in this setting where the round and
communication complexity is polynomial in n.

Reliable multicast as building block. Before describing our protocol, we note that in the passive
setting reliable multi-cast is easy to achieve using a flooding approach if G is connected. All
parties that have seen the sender’s message will repeatedly attempt to send it to all their
neighbors. We will use this multi-cast primitive in our protocol for secure communication.

Lemma 1 (From [DRTY23]). For any connected G there exists a protocol MultiCast(P,m)
that allows party P to safely distribute m in the presence of a passive adversary. The protocol
runs for n rounds and has a total communication complexity of O

(
n3|m|

)
bits, where |m| denotes

the number of message bits.

Remark 1. The flooding protocol in [DRTY23] is used to construct a reliable communication
channel from the sender to a specific receiver. However, we note that the flooding approach
guarantees that at the end of the protocol every party will have the sender’s message. So
by modifying the protocol slightly, such that every party outputs the received message, the
construction directly achieves multi-cast.
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3.1 Private Communication on Directed Graphs

Assume that directed G has connectivity k > t, i.e. every graph in G has connectivity k > t. The
main idea of Protocol 1 is as follows: In the first round, parties attempt to send a random field
element to each of their potential neighbors. Then they each use MultiCast to announce the
set of nodes from whom they actually received randomness. This publicly defines a (undirected)
‘meta graph’, say G, whose edges correspond to pairs of nodes who now have shared randomness.
Essentially, this serves as a means to freeze7 the first graph chosen by the dynamic adversary.
Now, the problem of private communication becomes much simpler as we can focus on this
meta graph G which is guaranteed to have connectivity k > t. The sender S splits their message
into t + 1 sum shares which are now passed along t + 1 disjoint paths in G between S and R.
Communication along the edges in G is emulated using MultiCast and the shared randomness
is used to encrypt messages.

Comparison with previous work. We point out that the idea of additively secret sharing the
secret among a set of t + 1 disjoint paths is similar to the protocol of Damg̊ard et al. The
crucial difference is that we depend on a fixed set of disjoint paths in the meta graph while their
protocol considered all possible sets of disjoint paths over dynamic graphs. This allows us to
achieve complexity that is polynomial in n.

Theorem 1. Protocol 1 is a private communication protocol that achieves perfect security
against t < n passive corruptions for network G with connectivity k > t. The protocol com-
municates at most n2|m| bits over network G, and sends at most O

(
n2 log(n) + n|m|

)
bits over

multi-cast channels.

Proof. We start with an observation on G. Multi-casting the sets In ensures that parties agree
on the meta-graph G. The connectivity k > t of the first round graph ensures that there are at
least t+ 1 disjoint paths from S to R in G. We also note that due to Lemma 1 multi-casting is
possible as G is connected.

Correctness. There are t + 1 disjoint paths from S to R in G, thus GoodPaths exists. The
agreement on G implies agreement on GoodPaths. This ensures that parties agree on all necessary
invocations of multi-cast in the second phase. For each path p it holds that

s′p =

 ∑
pi∈Np\{R}

mp,pi

− op`−1,p` = sp + op1,p2 +

 ∑
pi∈Np\{R,S}

opi,pi+1 − opi−1,pi

− op`−1,p` = sp.

This means the receiver will compute the right shares from the multi-cast messages and will
output the sender’s message m.

Privacy. The view of the adversary can be simulated from the output of an ideal secure
channel between S and R. If sender or receiver are corrupted, the simulator knows the message
m, and the selected graphs. This allows simulation of the adversarial view by executing the real
protocol in the head. If neither the sender nor receiver are corrupted the view of the adversary
can be simulated by executing the protocol in the head with m = 0 (or any other default value).
The values in the first phase will be distributed exactly as in the real world. In the second phase
there exists a path p in GoodPaths that consists of honest parties. The multi-cast messages for
this path are, without knowledge of the involved shared randomness, distributed independent
of the actual message. So the simulated view is indistinguishable from the real protocol. In
particular, the adversary does not learn sp. On the other paths the adversary may learn the
shares. However, these shares are uniform random and independent of the message (if one does

7 Technically, G is an undirected graph with the same node set as the first graph. The edge (u, v) is in G iff
(u, v) or (v, u) are in the first graph.
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Protocol 1: Πprv
perf,sh(S,R,m)

The sender S and receiver R are public input. The sender S has message m as private input.
Let Ḡ =

⋃
G∈G G.

Establishing meta graph and shared randomness. Party Pi does the following:
– For each neighbor Pj in Ḡ, sample uniform random ri,j (of size |m|).
– In round 1, attempt to send ri,j to Pj using the communication network.
– Let Ini denote the set of parties Pj from whom Pi actually received randomness rj,i in

round 1.
– Parties jointly invoke MultiCast(Pi, Ini) where Ini is encoded as an n-bit vector.
– Build the meta graph G as follows: there is an edge from Pu to Pv if Pu ∈ Inv or Pv ∈ Inu.
– For each neighbor Pj in G set oi,j := rj,i + ri,j . (Missing values r·,· are set to 0; that is,

if Pj 6∈ Ini, oi,j = rj,i, and if Pi 6∈ Inj , oi,j = ri,j .)
Secure message transfer in G. All the parties can now locally determine the same set of
t+1 disjoint paths, say GoodPaths, in G between S and R (using Ford-Fulkerson algorithm)
a. Then message transfer is done as follows:
– The sender S selects t + 1 uniform random shares {sp}p∈GoodPaths, such that m =∑

p∈GoodPaths sp.
– The parties Np = {Pp1 , . . . ,Pp`} on each path p do the following:
• The sender S = Pp1 computes mp,p1 = sp + op1,p2 and all parties jointly invoke
MultiCast(S, (p,mp,p1)) where p is encoded in n log(n) bits.
• Each party Ppi ∈ Np \ {S,R} computes mp,pi = opi,pi+1 − opi−1,pi and all parties

jointly invoke MultiCast(Ppi , (p,mp,pi)) where p is encoded in n log(n) bits.

– For each path p the receiver R computes share s′p =
(∑

pi∈Np\{R}mp,pi

)
− op`−1,p` .

– The receiver outputs m′ =
∑

p∈GoodPaths s
′
p.

a In case of multiple disjoint sets, we can assume a lexicographic ordering among them and choose the
smallest one.

Fig. 1: An efficient perfectly-secure private communication protocol against t < n passive cor-
ruptions in a network with connectivity k > t.
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not know sp), so the simulated view for those paths is again indistinguishable from the real
protocol. Complexity. In the first round each party sends at most n|m| bits. The first phase
additionally sends n2 bits over multi-cast channels. The second phase communicates at most
n(n log(n) + |m|) over multi-cast channels. ut

Corollary 1. If the multi-cast channels in Protocol 1 are instantiated with MultiCast from
Lemma 1, the protocol runs for 2n + 1 rounds and has a total communication complexity of
O
(
n5 log(n) + n4|m|

)
bits per party.

Proof. This follows from the numbers in Theorem 1 and Lemma 1. ut

Observe that Protocol 1 only requires connectivity k in the first round; after that, connec-
tivity 1 suffices.

Corollary 2. Protocol 1 is a private communication protocol that achieves perfect security
against t < n passive corruptions for connected network G if the first round graph is guaranteed
to be (S,R)-k-connected for k > t.

We can improve on the round complexity of Protocol 1 by optimizing the multicast protocol.

Lemma 2. If G has connectivity k, then the flooding protocol from Lemma 1 requires at most
bnk c+1 rounds and total communication at most (bnk c+1)n|m| to distribute a message m among
all parties.

Proof. We show this by induction. In each round at least k parties learn the message, until the
final round where all remaining parties learn the message. Consider any round r and a party
P that did not receive the message before r. There must be at least k disjoint paths from the
sender to P in the round r graph. Along each such path, there must be a party who knows
the message (possibly the sender) and a party who does not (possibly P). This means that P
learns the message, or at least k other parties learn the message. Thus, in round r at least k
parties will learn the message or all parties will know the message after the round. As there
are n parties, there can be at most bnk c rounds where at least k parties learn the message. This
means after bnk c+ 1 rounds, every party knows the message.

Corollary 3. If G has connectivity k, and the multi-cast channels in Protocol 1 are instan-
tiated with MultiCast as in Lemma 2, the protocol runs for 2bnk c + 3 rounds, and has total

communication complexity of O
(
n4

k (n log(n) + |m|)
)

.

In particular, if the connectivity k is a constant fraction of n, the protocol achieves a constant
round complexity.

3.2 Private Communication on Undirected Graphs

In this section we consider undirected G with connectivity t+ 1. The undirectedness allows us
to save (almost) half the round complexity compared to Protocol 1 using the following idea.

Each party starts with a local value. For the sender, this is the message m. Every other
party starts with 0. As in Protocol 1, parties attempt to send a random field element to each
potential neighbor. This defines an (undirected) meta-graph G of parties that have successfully
exchanged random values. Since the graph is undirected, parties know their own neighborhood.8

8 This is because if a party received randomness from another party, it can infer that the other party received
the randomness sent by it as well.
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In contrast to the above protocol, parties do not need to learn the full G; it is enough to know
one’s own neighborhood. Parties use successfully sent random values to define a sharing of their
local value in their closed neighborhood; i.e., their own share is their local value minus the sum
of sent out random values. Next, parties add up all the shares they hold (including their own
share of their local value). This establishes an additive sharing of the sender’s message. Everyone
but the receiver multi-casts their shares, allowing the receiver to reconstruct the message.

Remark 2. This protocol can be extended to undirected graphs. All that is needed is for parties
to learn if their sent random values were received. To achieves this, parties could multi-cast the
set from whom they received a random value in the first round. However, this brings the round
complexity back to the one of Protocol 1.

Protocol 2: Π(S,R,m)

The identities of the sender S and receiver R are public input. The sender S additionally
has message m as private input.
Let Ḡ =

⋃
G∈G G.

Establishing sharing of message. Party Pi does the following:
– If Pi = S, set mi = m. Otherwise, set mi = 0.
– For each neighbour Pj in Ḡ, sample uniform random ri,j ∈ F.
– Attempt to send ri,j to Pj using the normal channels. Denote by Ini the set of all parties

Pj from whom Pi actually received randomness rj,i in this round.
– Compute ri,i = mi −

∑
j∈Ini ri,j .

– Compute ri = ri,i +
∑

j∈Ini rj,i.
Send message shares to receiver. Parties jointly invoke MultiCast(Pi, ri) for Pi 6= R.
Reconstruction of message. The receiver Pi = R computes m =

∑
Pi∈P ri.

Fig. 2: An efficient perfectly-secure private communication protocol against t < n passive cor-
ruptions in an undirected network with connectivity k > t.

Theorem 2. Protocol 2 is a private communication protocol that achieves perfect security
against t < n passive corruptions for an undirected, connected network G with connectivity
k > t. The protocol communicates at most n2|m| over G and sends at most n|m| bits over
multi-cast channels.

Proof. Correctness. The symmetry of G ensures that if Pj ∈ Ini, then Pj has received a random
value from Pi and will use it to compute rj . This implies

m =
∑
Pi∈P

ri =
∑
Pi∈P

ri,i +
∑
j∈Ini

rj,i

 =
∑
Pi∈P

mi −
∑
j∈Ini

ri,j +
∑
j∈Ini

rj,i


=
∑
Pi∈P

mi +
∑
Pi∈P

∑
j∈Ini

rj,i −
∑
Pi∈P

∑
j∈Ini

ri,j︸ ︷︷ ︸
=0

= m

11



The last two double sums cancel out as one sums up all the received random values and the
other all the sent random values which is the same set. The multi-cast (G is connected) ensures
that the receiver gets all ri. The receiver will therefore output m.

Privacy. If the sender or the receiver are corrupted, the adversarial view can be simulated
by running the actual protocol in the head.

Otherwise, observe that the only message that depends on m is ri for Pi = S (which is
multi-cast). There must exist an all-honest path from S to R, as G has connectivity of at least
t+ 1. Let S = Pi1 , . . . ,Pil = R be the parties on that path. If all other parties are corrupt, what
the adversary learns is

x1 = m− ri1,i2 + ri2,i1 ,

x2 = 0− ri2,i1 − ri2,i3 + ri1i2 + ri3,i2 ,

. . .

xl−2 = 0− ril−2,il−3
− ril−2,il−1

+ ril−3,il−2
+ ril−1,il−2

,

xl−1 = 0− ril−1,il−2
− ril−1,il + ril−2,il−1

+ ril,il−1
.

Note that the values ril,il−1
and ril−1,il only appear as summands in xl−1; these are both ran-

domly chosen, and thus ril,il−1
−ril−1,il perfectly masks ril−2,il−1

−ril−1,il−2
. That in turn perfectly

masks ril−3,il−2
− ril−2,il−3

in xl−2, and so on; finally, we get that ri1,i2 − ri2,i1 perfectly masks
m in x1. We can conclude that ri for i ∈ {i1, . . . , il} (where ri contains xi as a summand) are
independent and uniform. Thus, the adversarial view can be simulated by running the actual
protocol in the head with m = 0.

Complexity. In the first round each party sends at most n|m| bits. Additionally, there is
communication of n|m| bits over multi-cast channels. ut

Corollary 4. If the multi-cast channels in Protocol 2 are instantiated with MultiCast from
Lemma 1, the protocol runs for n + 1 rounds and has a total communication complexity of
O
(
n4|m|

)
.

Proof. This follows from the numbers in Theorem 2 and Lemma 1. ut

Observe that Protocol 2 only requires connectivity k in the first round; after that, connec-
tivity 1 suffices.

Corollary 5. Protocol 2 is a private communication protocol that achieves perfect security
against t < n passive corruptions for undirected connected network G if the first round graph is
guaranteed to have connectivity t+ 1.

We can improve on the round complexity of Protocol 2 by optimizing the multicast protocol.

Corollary 6. If G has connectivity k, and the multi-cast channels in Protocol 1 are instan-
tiated with MultiCast as in Lemma 2, the protocol runs for bnk c + 2 rounds, and has total

communication complexity of O
(
n4|m|
k

)
.

4 Reliable Communication with Active Corruption

In this section, we construct a network flooding protocol for reliable communication with security
against active adversaries. In this kind of protocol, the best attack is essentially to select t parties
to corrupt, and have these parties ignore the honest messages and transmit lies. This attack is
limited in two ways: every lie must originate from one of only t parties, while if the graph is at
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least k-connected then there must be at least k− t disjoint paths from the original sender along
which the honest message can pass. Since the sender did not send the lie, every path the lie was
purported to have been sent along must go through some corrupt party. [DRTY23] therefore
proposed flooding the network until a message is heard from more than t disjoint paths, which
will happen eventually if k − t > t (i.e., k > 2t). Unfortunately, there can be exponentially
many paths from the sender in the graph, so their protocol does not work in polynomial time
or polynomial communication.9

We present a more efficient flooding protocol, based on tracking the (polynomial-size) com-
munication graph along which a message has been sent, instead of all paths. As motivation,
we start with a protocol for the case of static graphs. Recall that every path along which a
lie was purported to have been transmitted from S to a R must go through a corrupted party.
Rephrased in terms of graphs, this means that the corrupted parties must form a (S,R)-cut10

of this graph, with size t. This suggests an protocol along these lines:

1. Flood the network with the sender’s message m. Alongside the messages, transmit graphs
that somehow representing where the message has come from.

2. If a receiver R notices that a particular message m is associated with a minimum (S,R)-cut
greater than t, then output m.

There are three challenges with this approach:

1. Min-cut is only defined for a static graph, and we want a protocol that works for dynamic
communication graphs.

2. Corrupt parties must be restricted in how they can influence the graph showing where a
message came form. Otherwise, as we explain below, they might introduce a fake path from
S to R that only goes through honest parties.

3. For efficiency, the graphs must have polynomial size.

Challenge 1 we overcome by introducing multiple vertices for each party — one for each round
— with each vertex labeled by the party it represents, and by introducing the notion of a labeled
cut. In a labeled cut, all vertices with the same label P can be cut at once, for a cost of 1. For
Challenge 2, we additionally introduce multiple vertices for the same party even within the
same round, representing different claims about how that party heard about the message. To
see why this is needed, imagine that during round r an honest Ph hears l from a corrupt party
Pj (who claims to have heard it from S), then in round r + 1, Ph sends l to another honest
party Ph′ (who reports it to R in round r + 2), while simultaneously Pj claims to R that in
round r it heard l from Ph (who heard it from S). Even though l has only been claimed to have
traveled down the two paths S → Pj → Ph → Ph′ → R and S → Ph → Pj → R, which both
go through the corrupt party, if you treat all instances Ph in round r as a single node then you
would add the path S → Ph → Ph′ → R to the graph, which does not go through a corrupted
party. Therefore, we treat the Ph who heard l from Pj as a separate node from the Ph who was
claimed to have heard l from S. This means that if R hears l from Ph and Pi, it won’t think that
there was a path directly from S through Ph to R. Finally, for Challenge 3 we perform a kind of
deduplication on the graphs to keep them polynomially sized, while still keeping separate the
nodes representing different claims of message provenance.

4.1 Labeled min-cut

An (s, d)-(vertex)-cut of a directed graph G is a partition {S,C,D} of the vertices of G where
s ∈ S and d ∈ D, such that there are no edges from S to D. The minimum (s, d)-cut problem is

9 Even polynomial round complexity has not been proven.
10 In this paper we only consider vertex cuts, not edge cuts.
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to find an (s, d)-cut that minimizes |C|. Now let G be a labeled directed graph, where we have a
function l mapping from vertices of G to labels in some set L. One may think of L as the set of
parties in our protocol. Recall that in the previous section we argued that we need graphs with
several vertices labelled as one party. Similarly, we can now define an integral labeled (s, d)-cut
as follows.

Definition 5. Let G be a directed graph with labels L and labeling function l. A integral labeled
(s, d)-(vertex)-cut of G is a partition {S,C ′, D} of the vertices of G such that there are no edges
from S to D and C ′ is the preimage l−1(C) for some set C ⊆ L.

That is, we only want to consider cuts that correspond to an actual set of parties (i.e., labels).
The integral labeled minimum (s, d)-cut problem is then to minimize |C| over all such cuts.
This is the vertex-labeled cut analog of the edge-labeled cuts introduced by [DHKM16].

In the protocol sketched above, the adversary will corrupt a subset C of the parties (i.e.,
labels), and any lie will have to traverse this subset. Letting S be the connected component of s
after removing C ′ = l−1(C) and D be the remainder of the graph then gives an integral labeled
(s, d)-cut. Indeed, our final protocol would still be secure if it used integral labeled cuts. However,
unlike for unlabeled cuts, we do not know how to efficiently compute minimal integral labeled
(s, d)-cuts. In fact the problem is NP-hard: there is an easy reduction to weighted monotone
satisfiability, which is NP-hard (see, e.g., [DF98]).

min
∑
v∈G

Cv

subject to

Sv +Dw ≤ 1 ∀(v, w) ∈ G

Sv +Dv + Cv = 1 ∀v ∈ G
Sv, Dv ∈ [0, 1] ∀v ∈ G

Cv ∈ [0, 1] ∀v ∈ G
Ss = Dd = 1

(a) Linear program for (s, d)-min-cut.

min
∑
`∈L

C`

subject to

Sv +Dw ≤ 1 ∀(v, w) ∈ G
Sv ≤ Sw ∀(v, w) ∈ G, l(v) = l(w)

Sv +Dv + Cl(v) = 1 ∀v ∈ G
Sv, Dv ∈ [0, 1] ∀v ∈ G

C` ∈ [0, 1] ∀` ∈ L
Ss = Dd = 1

(b) Linear program for labeled (s, d)-min-cut.

Fig. 3: Linear programs for min-cut.

To see why, view these problems as integer linear programs. In Figure 3a we have written a
linear program for unlabelled min-cut, which exactly matches the definition above if the variables
{Sv, Cv, Dv} are restricted to being integers. For each vertex v, exactly one of (Sv, Cv, Dv) will
be 1 and the others will be zero, so these variables will define a partition of the vertices of G.
The constraint that no edges connect S to D is enforced by Sv+Dw ≤ 1 for all edges (v, w), i.e.,
we cannot have both v ∈ S and w ∈ D. We have s ∈ S and d ∈ D because of the constraints
Ss = 1 and Dd = 1.

While in general integer linear programs can be hard to solve, this particular one is easy.
That is, the constraint matrix is totally unimodular (after eliminating the Dv variables using
the equality constraint Dv = 1 − Sv − Cv), and constants in the constraints are integers, so
every vertex of the polytope defined by the constraints has integer coordinates. Therefore, if you
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(a) An integral labeled min-cut.

s

1

1

2
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(b) A relaxed labeled min-cut.

Fig. 4: Example graph where the integral labeled (s, d) min-cut has size 2, but the relaxed labeled
min-cut has size 3

2 . The cut is black, the source component orange, and the sink component
blue. Any subset of two of three labels {1, 2, 3} gives an integral labeled min-cut, while the
relaxed labeled min-cut is half of all three labels.

solve the linear programming relaxation of the problem (i.e., solve the same linear programming
problem, but without requiring that the variables take integer values) then the minimal

∑
v∈GCv

will be exactly the same as in the integer problem. This shows that min-cut can be solved in
polynomial time [Kha79].

We present a similar linear program for labeled min-cut in Figure 3b. The only significant
change is that cut variables Cv are now defined on labels instead of vertices, to match the set C ′

of cut vertices being defined as C ′ = l−1(C) in this problem.11 Unfortunately, this new system
is not totally unimodular, because the same cut variable C` gets used with many different
vertices. In fact, the linear programing relaxation can now have a min-cut with a fractional
min

∑
`∈LC` (see Figure 4). Because we desire a computationally efficient protocol, we will use

only the relaxed labeled (s, d)-cuts, rather than integral labeled (s, d)-cuts. Our analysis will
show that the protocol will still be secure, even though these relaxed labeled cuts are only an
approximation to the integral labeled cuts that describe the possible attacks.

11 There is another change, which is the added constraint Sv ≤ Sw for all edges (v, w) ∈ G where v and w have
the same label `. This does not affect the integer linear program, as either C` = 0, in which case it’s implied by
Sv +Dw ≤ 1 and Dw = 1− Sw −C`, or C` = 1, in which case Sv = Sw = 1. The constraint should be viewed
as tightening the approximation of the linear program relaxation, as the constraint becomes non-trivial if C`

is not an integer.
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4.2 Multicast Protocol

Protocol 3: MultiCast(S,m)

The sender S is public input. S has message m ∈ {0, 1}∗. Denote by Ḡ =
⋃

G∈G G.

Initialization. Every party Pi has an associative array Di mapping from possible messages
(i.e, from {0, 1}∗) to DAGs with nodes labeled by party identifiers.
– For all i, set Di to be empty, so that Di[m

′] is the empty graph for all m′ ∈ {0, 1}∗.
– For Pi = S, set Di[m] := ({s}, {s 7→ S}), i.e., the graph containing a single node labeled

as S.

Network flooding. For ρ rounds, every party Pi does the following:

– For each neighbor Pj in Ḡ, attempt to send Di to Pj .
– For each message Dj,i that received from Pj , and for each m′ such that Dj,i[m

′] is
non-empty:
• Check that Dj,i[m

′] has exactly one sink, which must be labeled Pj .
• If so, update Di[m

′] := Di[m
′] + Dj,i[m

′]. (I.e., take the disjoint union.)
– For any m′ where Di[m

′] is not empty,
• Connect every sink in Di[m

′] to a new node d, labeled as Pi. Now d is a unique sink.
• Compress the DAG with Di[m

′] := Dedup(Di[m
′]).

Output condition. Each party Pi locally decides when it knows the message sent by S.
If there exists a m′ ∈ {0, 1}∗ such that Di[m

′] is non-empty, output m′ if
– Di[m

′] has a source s labeled as S;a and
– The relaxed labeled (s, d) min-cut of Di[m

′] is greater than t, where d is the unique sink
(labeled as Pi) in Di[m

′].

a s is unique if it exists, because of Dedup.

Function Dedup(D)

Repeat the following merger operation until a fixed point is reached.

– Find two nodes x, y of D such that x and y have the same label and the same direct
predecessors.

– Merge x and y into a node z that has the same label and direct predecessors, and the
union of the x’s and y’s direct successors.

Output D.

Fig. 5: Our actively secure multicast protocol.

We present our actively secure multicast Protocol 3. In each round, every party sends to
its neighbors an associative array (i.e. a key-value store) containing all of the messages they’ve
heard so far (i.e. the keys), together with the labeled directed acyclic graphs representing the
paths along which the message is purported to come from the sender S (i.e. the values). Each
party then takes a kind of union of all the graphs it has heard (together with the graph from
the previous round), where nodes representing the same message provenance are identified. This
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is done by taking the disjoint union of the graphs, then running Dedup to merge nodes when
they are labeled with the same party and have the same predecessor nodes. Finally, each party
computes the relaxed labeled min-cut of the each message’s graph, which lower bounds the
number of lies needed to cause this graph to appear for a message that was not sent by S.12

The party determines that the message is correct and outputs it if this min-cut is greater than
t.

Theorem 3. Protocol 3 is a multicast protocol that achieves perfect security against t parties
for networks G with connectivity k > 2t. It completes in ρ = 1 + bn−t−2k−2t c rounds, uses at most

O
(
nρdavg|m|+ (M + 1)n2ρ2d2avg log2(nρ)

)
bits of total communication, and runs in polynomial

time. Here, |m| is an upper bound on the size of the message, davg is an upper bound on the
average degree of the communication graph of every round, and the M is the total bits of all
messages sent by corrupt parties.

Proof. We must show that the protocol does not output a lie (“security”), that it eventually
outputs the correct message (“correctness”), and that the communication cost is bounded (“ef-
ficiency”).

Security. Security comes down to the following property: for every honest party Pi and for any
m′ 6= m, after every round all paths from source s to sink d in Di[m

′] will go through a corrupted
party. We call this the “corrupt paths property” for d. If this property holds, then cutting the t
labels corresponding to corrupted parties in Di[m

′] will disconnect s from d, so there is a labeled
min-cut of size t, and so Pi won’t output m′.

We prove this property by induction. In the base case, all Di[m
′] is the empty graph, so

the property holds vacuously. In each round, Di[m
′] grows only by receiving Dj,i[m

′] from some
other party Pj .

13 Pj can either be corrupt or honest. If it is corrupt, before adding Dj,i[m
′] to

the graph, Pj checks that it it’s unique sink is labeled Pj . Therefore, every path in Dj,i[m
′] to

this sink must go through a corrupt party, Pj . If Pj is honest, then by the induction hypothesis
every path from s to the sink must go through a corrupt party. Next, a new sink d is added
(labeled Pi), and all existing sinks are attached to it. Since the corrupt paths property was
satisfied by all previous sinks, it will be satisfied by d.

Finally, Pi runs Di[m
′] := Dedup(Di[m

′]) to remove redundant nodes. We must show that this
operation preserves the corrupt paths property. For any path from s′ to d′ in the deduplicated
graph, there exists a corresponding path from s to d in the original graph, sharing exactly the
same labels. To see this, follow the path in reverse, from d′ to s′. Note d must not have been
merged, because it is the unique sink in the original graph and the graph is acyclic, so initially
the correspondence is unambiguous. At each step, if x′ has predecessor y′ in the path, select a
predecessor y of x such that y was merged into y′ during Dedup. Such a node must exist because
x is a node that was merged into x′, and all nodes merged together shared the same set of
direct predecessors. The path will have exactly the same labels because nodes are only merged
if they have the same label. Since the corrupt paths property holds for the original graph, it
therefore holds for the deduplicated graph. We have now proven that the hypothesis holds after
the round is finished.

Correctness. Let the sequence of network graphs be G1, . . . ,Gρ. Remove the corrupt nodes, then
combine them into a single acyclic graph G representing all honest communication paths that
could occur. In more detail, construct G by creating vertices vir for all honest parties Pi and all

12 Our protocol would also work with the integral labeled min-cut instead, which would give the exact minimum
number of lies, except that this is hard to compute.

13 Or if no new graphs are received for m′, it grows only by adding a new sink node d; this is discussed later.
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rounds r ∈ {0, . . . , ρ}. For each edge (Pi, j) in Gr, create an edge (vi(r−1), vjr) in G to represent
that Pi will send a message to Pj in round r. Additionally, add an edge (vi(r−1), vir) for all
parties Pi and rounds r, since Pi preserves its state from rounds. Then we have:

Lemma 3. The relaxed labeled (vS0, vRρ)-min-cut of G is greater than t, for any honest party
R.

Using this lemma, we will show that every honest party Pi in our protocol will output the
correct message m by round ρ. That is, we will show that Di[m] will contain a copy of the
relevant subgraph of G: all nodes that are on some path from vS0 to viρ.

14

At the start, the only non-empty Di[m] is when Pi = S, where it contains a solitary node.
Call this node vS0. In every round, honest parties will send each other their graphs, take the
disjoint union, deduplicate, and add new sinks d to their own graphs. Let vir be the sink added
by Pi at the end of round r. It will have an edge from the previous sink vi(r−1), as well as edges
from vj(r−1) for all honest Pj that Pi heard from in round r. Note that any such node vir will
always get deduplicated, as there the honest parties do not modify the predecessors of nodes in
their graphs before sending them on, so there will be at most one copy of any vir in any of these
graph. Since all paths in G are exactly the paths of honest parties are communicating along, Pi
will have heard about vjr by round ρ if and only if vjr is on some path from vS0 to viρ.

Nodes not on any path vS0 to viρ are irrelevant for determining the minimum cut, so by
Lemma 3 each honest party Pi will output m by round ρ. It remains only to prove this lemma.

Proof (Proof of Lemma 3.). Assume that there exists some relaxed labeled (vS0, vRρ)-cut ({CPi
}i,

{Sv, Dv}v∈G) where
∑

iCPi
≤ t. To avoid using double subscripts, we will write Sir for Svir , and

similarly for C and D. Let Sr =
∑

i Sir represent the “progress” made in the flooding on round
r. It is essentially the total number of nodes that are on the sender’s side of the cut, except that
the variables Sv need not be integers. For all r we have SSr = DRr = 1, as SS0 = DRρ = 1 by
assumption that it is a (vS0, vRρ)-cut, and there are edges from vR(r−1) to vRr for all r. We also
have S0 ≥ SS0 = 1.

Next, for all rounds r there exists (S,R)-cut of the honest subgraph of Gr with size t+Sr −
Sr−1: let S′i = Si(r−1), C

′
i = Ci+Sir−Si(r−1), and D′i = Dir. We can now show that (S′, C ′, D′)

is a cut, assuming that (S,C,D) is a labeled cut:

S′i +D′j = Si(r−1) +Djr ≤ Sir +Djr ≤ 1

S′i +D′i + C ′i = Si(r−1) +Djr + Ci + Sir − Si(r−1) = Sir +Djr + Ci = 1

S′i = Si(r−1) ∈ [0, 1]

D′i = Djr ∈ [0, 1]

C ′i = Ci + Sir − Si(r−1) ≥ Ci ≥ 0

C ′i = 1− S′i −D′i ≤ 1.

The size of C ′ is
∑

iC
′
i =

∑
i(Ci + Sir − Si(r−1)) ≤ t + Sr − Sr−1. While this is a relaxed

cut, the relaxed min-cut coincides with the integral min-cut, so there exists some cut of honest
subgraph of Gr with size at most t + Sr − Sr−1. By assumption, Gr is k-connected, so after
removing the corrupted nodes it is (k − t)-connected. Therefore, Gr’s honest subgraph has no
cuts smaller than k − t. We now have t+ Sr − Sr−1 ≥ k − t, or Sr − Sr−1 ≥ k − 2t.

14 In general it can contain much more, because the corrupted parties can make up whatever graph they choose.
But it will always contain this subgraph of G.
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We have lower bounded S0, and lower bounded its increase in each round, so at the end we
get

Sρ ≥ 1 + ρ(k − 2t) ≥ 1 +

(
1 +

⌊
n− t− 2

k − 2t

⌋)
(k − 2t) > 1 + n− t− 2 = n− t− 1.

However, there are only n− t− 1 honest parties other than R, and SRρ = 0, so Sρ ≤ n− t− 1.
This is a contradiction.

Efficiency. We start by upper bounding the size of the graphs begin sent when all parties are
honest. Let D[m] = Dedup(

∑
iDi[m]) be the deduplication of the disjoint unions of the graphs

of all honest parties. Every Di[m] is then a subgraph of D[m], so the cost of sending Di[m] is
upper bounded by the cost of sending of D[m]. This graph only grows as the protocol continues,
so need only bound the size of the final value of Di[m]. In every round D[m] will increase by n
nodes and davgn edges, because every party will add a new sink connected to the sinks from the
previous round of all parties it has heard from. Note that all of these honest nodes will always
get deduplicated after the disjoint union operations, because all copies of these honest nodes
will have the same predecessors.

We use a sparse representation of the graph, and compute it’s communication cost as
2E log2 V +V log2 n, where E and V are the number of vertices. That is, each edge specifies its
two endpoints, and each vertex specifies its label. Note that V ≥ n, so this communication cost
is upper bounded by (2E + V ) log2 V . If everybody is honest, this upper bounds the message
size by

|m|+ (2ndavgρ+ nρ+ 1) log2(nρ+ 1) = |m|+ (nρ(2davg + 1) + 1) log2(nρ+ 1),

because the graph starts with one vertex (the sender) and zero edges. The total communication
cost of graphs would then be nρdavg(nρ(2davg + 1) + 1) log2(nρ+ 1), as there are ρ rounds and
at most ndavg messages sent in each round.

Next, we consider how the corrupt parties could increase the communication cost. They can
do some combination of sending lies (i.e., sending m′ 6= m), increasing the number of graphs
for honest parties to send, and sending graphs, increasing the size of each graph the honest
parties send. The total communication increases linearly with the number of lies, as essentially
the same protocol is run for lies as for m. The communication also increases linearly with the
size of each graphs sent by a corrupt party, as the corrupt graph will become part of D[m].
However, sending lies increases the communication faster than sending graphs, as sending lies
causes honest parties to add an additional nρ nodes to the graph themselves, while sending
graphs only increases the size of an existing graph by the amount you sent. Therefore, the best
attack is to spend the corrupt party’s communication entirely on lies, multiplying the total
communication for graphs by M + 1. Adding on the cost of sending every message on every
round, this gives an total communication cost of

nρdavg(M + 1)(nρ(2davg + 1) + 1) log2(nρ+ 1) + nρdavg(|m|+M).

Finally, note that based on these bounds all graphs remain polynomial in size. The relaxed
labeled min-cut can be computed in polynomial time using linear programming, so the entire
protocol then runs in polynomial time.
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5 Private Communication with Active Corruption

5.1 Feasibility of Perfect Security When k > 2t

In this section, we disprove the conjecture by Damg̊ard et al. [DRTY23] by showing feasibility
of perfectly-secure private communication when 3t ≥ k > 2t. First, we describe the building
blocks used by Protocol 4.

Reliable Channel as a Building Block. We note that actively-secure reliable communication
protocols that are secure against t corruptions in a dynamic network exist, as long as k > 2t.
Thus, for simplicity, we use reliable channels as a primitive in Protocol 4. These could be realized
by using our reliable communication Protocol 3 or alternately by using the (more expensive)
protocol of Damg̊ard et al. [DRTY23]. The communication complexity of the former is upper
bounded by O

(
n3|m|+Mn6 log2(n)

)
where |m| denotes the number of message bits and M is

an upper bound on the number of bits communicated by corrupt parties.

Perfect Secure Message Transmission (PSMT). We use a perfect secure message transmission
protocol, which informally speaking, allows a sender to send a private message securely to a
receiver in a network where the sender and receiver are connected by n secure channels, among
which up to t channels could be controlled by the adversary. More formally, PSMT can be
defined as below.

Definition 6. Assume there are k secure channels between a sender S and a receiver R. A
protocol between S (with input message m) and R is a perfect secure message transmission
protocol if it satisfies privacy and correctness as per Definition 2 against any adversary A
corrupting at most t out of the k channels.

Dolev et al. [DDWY93] showed the following:

Lemma 4 ([DDWY93]). PSMT is achievable if and only if k ≥ 2t+ 1.

We observe that any such PSMT protocol should be secure even if there are potentially
fewer than 2t+ 1 channels (say, there are δ < 2t+ 1 channels), as long as there are at least t+ 1
uncorrupted channels. This is because one can always augment this network with 2t + 1 − δ
dummy channels, where the dummy channels can be considered as being controlled by the
adversary (as the adversary corruption budget of t allows for this). This observation allows us
to state the below lemma.

Lemma 5. Assume a party S and another party R are connected by k ≥ t+ 1 secure channels,
among which at least t+1 channels are uncorrupted. Then, there exists a protocol ΠSMT(S,R,m)
that allows S to securely communicate a private message m to R.

Looking ahead, in our Protocol 4, we use the protocol ΠSMT in a non-black box fashion
by replacing the secure channels used by such protocols with reliable channels and suitably
masking the private message using established shared keys. Shared keys are established as in
our protocols in the passive setting. Lastly, we point that ΠSMT can be instantiated using any
existing efficient PSMT construction, such as the two round protocol of [SZ16] which has a
communication complexity of O

(
n2 log n

)
bits to securely communicate a 1-bit secret.

Theorem 4. Protocol 4 is a private communication protocol that achieves perfect security
against t < nactive corruptions for network G with connectivity k > 2t.

The protocol runs for 1 + 2ρRel + ρSMTρRel rounds, where ρSMT is the round complexity of the
SMT protocol and ρRel is the round complexity of the reliable communication protocol.
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Protocol 4: Πprv
perf,mal(S,R,m)

The identities of the sender S and receiver R are public input. The sender S has message
m ∈ F as private input.
Let Ḡ =

⋃
G∈G G. We use the following building blocks:

– Rel(S,R,m), which allows reliable communication of a message m from S to R.
– ΠSMT(S,R,m): A perfect secure message transmission protocol that allows secure com-

munication of a private message m over a network of k ≥ t+ 1 secure channels, among
which at least t+ 1 channels are uncorrupted.

Establishing shared randomness. Party Pi does the following:
– For each neighbor Pj in Ḡ, sample uniform random ri,j (of size |m|).
– In round 1, attempt to send ri,j to Pj using the communication network.
– Let Ini denote the set of parties Pj from whom Pi actually received randomness rj,i in

round 1.
– For each neighbor Pj in G set oi,j := rj,i + ri,j where missing values r·,· are set to 0.

Establishing meta graph of shared keys. This phase comprises of the following steps:
– For each party Pi, parties jointly invoke Rel(Pi, S, Ini), where Ini is encoded as an n-bit

vector.
– The sender S builds the meta graph G as follows: Let P be the set of nodes. There is

an edge between Pu and Pv if Pu ∈ In′v or Pv ∈ In′u, where In′u denotes the output of the
instance Rel(Pu,S, Inu).

– For each party Pi, parties jointly invoke Rel(S,Pi,G), where G is encoded in n2 bits.
Secure message transfer in G. All the parties can now locally determine the same set
of disjoint paths, say GoodPaths in G between S and R (using the Ford-Fulkerson algorithm
to get a maximal set of disjoint paths): If the algorithm returns at most 2t + 1 disjoint
paths, use these as GoodPaths, else use the first 2t+ 1 paths returned. Consider a network
G′ where each disjoint path p in GoodPaths corresponds to a channel Chp. In order to
emulate each step of an instance of ΠSMT(S,R,m) over G′, parties do the following:
– If the step involves computation, it is done exactly as in the protocol ΠSMT.
– If the step involves communicating a (private) message m′ from S to R over a channel

Chp:
• Let (Pi1 , . . . ,Pi`) be the path corresponding to Chp, where Pi1 = S and Pi` = R.
• The sender S = Pi1 computes mi1 = m′ + oi1,i2

a and all parties jointly invoke
Rel(S,R, (p,m′i1)) where p is encoded in n log(n) bits.
• Each party Pij ∈ (Pi2 , . . . ,Pi`−1

) computes m′ij = oij ,ij+1 − oij−1,ij and all parties

jointly invoke Rel(Pij ,R, (p,m
′
ij

)) where p is encoded in n log(n) bits.

• The receiver R computes m′ =
(∑

ij∈(i1,...,i`−1)
m′ij

)
− oi`−1,i` as the value received

via the channel Chp in this step.
– If the step involves communicating a (private) message m′ from R to S over a channel

Chp: Similar steps as above, with the roles of S and R interchanged.
R returns the output of ΠSMT(S,R,m) over G′.
a We abuse notation here; assume that the shared key oi,j established earlier contains enough randomness

that can be used to mask the private messages sent throughout all steps of ΠSMT and only the relevant
part of the shared key corresponding to this particular private message mp is used here.

Fig. 6: An perfectly-secure private communication protocol in a network with connectivity k >
2t.
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It has a communication complexity of O
(
cRel(n

2) + cSMT(|m|)(ncRel(1 + n log(n)))
)

bits where
cRel(x) denotes the communication complexity of reliably communicating x bits, cSMT(x) denotes
the communication complexity of SMT for x bits, and |m| denotes the number of message bits.

Lemma 6. If none of (Pi1 , . . . ,Pi`) are corrupt, then the steps from Protocol 4 for commu-
nicating a (private) message m′ from S to R over channel Chp achieve private and reliable
communication of m′.

The proof of Lemma 6 is identical to that of Theorem 2, with the graph limited to the single
path in question.

Proof (Proof of Theorem 4). The security of Theorem 4 then follows from the security of the
SMT protocol used: clearly, all connections between honest parties will be present in G and
since the subgraph of honest parties is at least t + 1-connected, G′ must contain at least t + 1
all-honest paths. Moreover, we only care about security if S is honest, and in that case all honest
parties will be in agreement regarding the network G′. We can therefore rely on the security of
the SMT protocol (that assumes a public network).

The round complexity of the protocol follows from the fact that establishing shared random-
ness takes one round; establishing the metagraph involves two phases of (concurrent) reliable
communications; and finally secure transmission involves executing the SMT protocol, where
each message in the SMT protocol involves (multiple parallel) invocations of the reliable com-
munication protocol.

The communication complexity of the protocol follows from the fact that establishing
the metagraph incurs cRel(n

2) complexity (since the reliable communication protocol directly
achieves multicast); and secure message transfer involves n instances of reliable communica-
tion (each involving communication of cRel(1 + n log(n))) corresponding to each bit sent in the
underlying SMT protocol.

Remark 3. If S is not honest, there are no requirements on security, but we can note that
the protocol will still terminate and be efficient. In this case, parties may no longer agree on
which instances of the protocol for reliable communication should be run in the last phase. So,
effectively, the set of honest parties will be partitioned in subsets each trying to run their own
set of instances. However, this will not affect the round complexity as each instance runs for
a fixed number of rounds. As for the communication complexity, we can assume that honest
parties will ignore messages from instances they do not think should be run, so we are effectively
running at most a factor n more protocols in parallel. However, note that the complexity of
the reliable communication protocol already incorporates a polynomial factor that depends on
the behavior of the adversary (as indeed it must). This means that the adversary could make
us work at least as hard by instead allowing parties to agree on G′ but increase the number of
incorrect messages it sends when the reliable communication protocols are run. Therefore, our
expression for the communication complexity captures what can happen, even for a dishonest
S.

Conjecture of Damg̊ard et al. [DRTY23]. Lastly, recall that Damg̊ard et al. conjectured that
perfectly secure private communication in the active setting was impossible to achieve when
3t ≥ k > 2t. They gave evidence for the conjecture by arguing that any protocol in the class
they considered would fail in this case. The assumption on the protocol was that the receiver
would receive values from different sets of t + 1 disjoint paths and would then try to identify
the honest set of t + 1 disjoint paths. However, this was shown to be impossible with 0 error
probability when 3t ≥ k > 2t, since in the dynamic setting, an adversary can always fabricate
paths. While this argument is correct, it does not cover all protocols, as also pointed out in
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[DRTY23]. Indeed, our protocol does not fall in this class, as we crucially rely on fixing the
meta graph using additional public communication, and such additional interaction was not
considered in [DRTY23].The metagraph essentially gives us a means to work with the static
setting instead, where perfect private communication is known to be possible for k > 2t.

6 Communication with Less Connectivity

In the model we have used in the paper so far, the network graph is k-connected in every round.
It is natural to ask if this is required for our protocols to work. As we shall see, the answer is
no, in some cases we can work with the weakest possible network assumption.

Let us first consider the case of reliable communication. We will use the concept of a dynamic
path, which is taken from [MTD15]. Consider some sequence of network graphs as chosen by
the adversary. Now, informally, if there is a path in round 1 from party Pi to party Pj and in
round 2 we have one from party Pj to party Pk, we say there is a dynamic path from Pi to
Pk; and this generalizes in the natural way to any number of rounds. We say the network is
dynamically connected if there is a dynamic path from any party to any other party. If this
is the case, then for a passive adversary, the simple flooding protocol will allow any party to
multicast a message to anyone else. On the other hand, if there is no dynamic path from Pi to
Pj , nothing Pi says can reach Pj .

For an active adversary, we have shown an efficient multicast protocol working in at most n
rounds if we have k-connectivity in every round. A first observation is that since the protocol is
based on flooding, it will clearly also work if we run for m > n rounds and we have k-connectivity
in at least n of the m rounds.

However, we can even work with the weakest possible network model as defined in [MTD15].
For a given set Ω of dynamic paths between nodes Pi and Pj , they define the dynamic min-
cut of Ω as the minimal number of nodes one needs to remove, in order to cut all paths in
Ω. Finally, the dynamic min-cut between Pi and Pj is defined as the min-cut of the set of all
possible dynamic paths from Pi to Pj . It is shown that reliable communication from Pi to Pj
with t active corruptions is possible if and only if the dynamic min-cut between Pi and Pj is
larger than 2t.

We can rephrase this in terms of the notions we define in this paper, namely for a set of
dynamic paths Ω as above, we define a labelled graph GΩ as we did in Section 4, where for
each party Pa and each round there is a node labelled as Pa. If a path in Ω connects Pa to Pb
in some round r, we put an edge between the node for round r − 1 labelled as Pa and the one
for round r labeled as Pb (also, each party is connected to itself in the next round). It is then
straightforward to see that the labeled (integer) min-cut of GΩ as defined in Section 4 equals
the dynamic min-cut of Ω.

Now, since our actively secure multicast protocol works with labelled min-cuts, we can make
a variant that will work making the minimal assumption that the dynamic min-cut between
any pair of players is > 2t. The idea is to change the output condition such that the graph ac-
companying the message m′ (Di[m

′]) must have integer labelled min-cut greater than t – rather
than the relaxed labelled min-cut that allows fractional values. Computing the non-relaxed la-
beled min-cut is not computationally efficient, but we still use only polynomial communication.
This protocol therefore compares favorably to the protocol from [MTD15] for the same setting.
That protocol tracks every individual path a message travels and so is exponential both in
communication and computation.

Finally, we consider private communication. Observe that in both the passive and active
case, we use one round to decide on a sufficiently connected graph according to which keys
are shared pairwise between parties. Clearly, we could also run this phase for several rounds,
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where in each round players attempt to share keys with other players. As long as the union
of the network graphs in all of the rounds is sufficiently connected, this will be enough for the
protocol to work. Once the keys have been established, reliable communication is used, so we
only need that the network supports non-private communication in that last phase. We note
that for passive security this means that we only need k > t for the key sharing phase, and
k > 0 (or a dynamically connected network) for the rest of the protocol.
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