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Abstract

Multi-party computation (MPC) is a major research interest in modern cryptography, and Priva-

cy Set Intersection (PSI) is an important research topic within MPC. Its main function is to allow

two parties to compute the intersection of their private sets without revealing any other information.

Therefore, PSI can be applied to various real-world scenarios, such as the Industrial Internet of Things

(IIOT). Chase and Miao presented a paper on “Light-weight PSI” at CRYPTO 2020, highlighting its

convenient structure and optimal communication cost. However, the drawback is that this protocol

is deterministically encrypted and it was discovered through simulation that it is not resistant to

probabilistic attacks. Building upon the ideas from CM20, this paper introduces the concept of a

perturbed pseudorandom generator, constructs and proves its security, and replaces one of the hash

functions (originally there were two) from CM20. In order to demonstrate the security of the PSI

protocol proposed in this paper, a dedicated definition of Chosen Plaintext Attack (CPA) security

model for this PSI protocol is provided. The paper then proceeds to prove that the PSI protocol sat-

isfies this defined security model. Efficiency analysis shows that the PSI in this paper is comparable

to CM20’s PSI, whether on PC, pad, or phone.

Keywords: MPC; PSI; Pseudorandom generator.

1 Introduction

With the continuous development of communication and manufacturing technology, the industry is

changing from traditional to intelligent production mode. The Industrial Internet of Things (IIoT) was

introduced to improve industrial equipment monitoring, safety production management, and production

process optimization [BATB20]. The proposal of “Industry4.0” in Germany and the “made in China

2025” plan indicate the beginning of the fourth industrial revolution [SSH+18]. As the core part of

Industry 4.0, the smart factory is critical to industrial intelligence, using the IIoT to realize on-site IoT

interconnection and data sharing. Hence, privacy protection and security sharing of data on the IIoT

platform are important issues [ARKA+20, WLI+19].

Privacy set intersection (PSI) is a privacy protection technique [HFH99, CM20] that allows perform-

ing intersection operations between two or more data sets without exposing individual data. For the IIoT,

PSI can bring several benefits:
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• IIoT often involves the collection and processing of sensitive information, such as personal health

data, location information, etc. Using PSI enables data analysis and sharing while protecting user

privacy. Since intersection operations can be performed without exposing the data itself, only

verifying the presence of data in the set.

• IIoT often involves the collection and processing of sensitive information, such as personal health

data, location information, etc. Using PSI enables data analysis and sharing while protecting user

privacy. Since intersection operations can be performed without exposing the data itself, only

verifying the presence of data in the set.

• PSI enhances system security by allowing data matching and validation without exposing individual

data to unauthorized third parties. This reduces the risks of data leakage and misuse during

transmission and processing.

• PSI helps IIoT systems identify common interests or characteristics among different devices or users,

enabling the provision of personalized services and intelligent decision-making. For example, in

health monitoring, cross-analyzing health data from multiple users can provide personalized health

recommendations and preventive measures.

In summary, PSI provides an effective mechanism for privacy protection and data sharing in the IIoT,

promoting the development of data-driven intelligent applications and services while safeguarding user

privacy rights.

In 2020, Chase and Miao presented a lightweight Private Set Intersection (PSI) protocol at CRYPTO

2020. The construction of this protocol (referred to as protocol CM20 hereafter) includes oblivious transfer

(OT)[Rab05], pseudorandom function (PRF)[GGM86], hashing, symmetric-key, and bitwise operations.

According to the Performance Evaluation in [CM20], the protocol indeed achieves a balance between

computation cost and communication cost. However, protocol CM20’s use of PRF and hashing renders

the protocol weakly secure [HDWD23], i.e., deterministic encryption. Assuming the existence of an

adversary capable of intercepting ciphertext, probabilistic knowledge, and the ability to estimate the

probability distribution of discarded plaintext, in addition to assuming that the probability distribution

of discarded plaintext is almost consistent with the present, the adversary can leverage probabilistic

attacks to break protocol CM20 with a significant advantage that cannot be ignored.

The idea of this paper is inspired by CM20. To prevent probabilistic attacks from hypothetical

adversaries, we introduce the definition of a perturbed pseudorandom generator and replace one of the

hash functions (originally there were two) in the original CM20 scheme with a perturbed pseudoran-

dom generator. This modification makes the revised CM20 protocol strongly secure, i.e., randomized

encryption.

1.1 Related Work

While the majority of existing research has focused on two-party PSI settings, there has been rela-

tively little attention given to multiparty PSI in the literature. This could be attributed to the perceived

necessity for interaction between parties, which imposes significant communication costs and renders the

protocol practically unfeasible. However, more recent studies, including [GN19, HV17, IOP18, KMP+17],

have proposed asymptotically efficient constructions for multiparty PSI in various security models. To

put it another way, regardless of the specific cryptographic tools and primitives used in PSI protocols, the

common approach is to designate a party that interacts individually with all other parties involved in ex-

ecuting the protocol. This approach resembles a star topology network and helps minimize intermediate

exchanges between parties, which can help reduce communication overhead. However, a disadvantage of

this approach is that it can place a heavy workload on the designated parties, making it challenging to
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implement in practical scenarios. Finding ways to distribute the workload among parties while maintain-

ing efficiency is an active area of research in the field of PSI protocols. Recent approaches, such as those

presented in [IOP18, KMP+17], have provided concrete and valid constructions, further extended in the

malicious security model by [BENOPC22].

In [DCW13], the authors propose a two-party PSI protocol that uses a variant of Bloom filters called

garbled Bloom filters, which are based on OT. This protocol has been further extended in [RR16] to achieve

malicious security using the cut-and-select technique. Other works, such as [BKM+20, YCP+22], focus

on variants of PSI that involve performing different sets of computations at the intersection. Threshold

PSI is also an area of interest, as shown by works like [BMRR21, BDP21, GS19, ZC18]. For example, in

[ZC18], the authors introduce a protocol for thresholded PSI-based inadvertent polynomial evaluation.

Notably, [GS19] provides insights into the lower limit of communication complexity for two-party

threshold PSI. Recent research in [BMRR21] extends these findings to multiparty scenarios, further

highlighting the importance of efficient PSI protocols in practical applications. These works demonstrate

the diversity and richness of the field of PSI protocols, where researchers continue to explore ways to

improve efficiency, security, and scalability.

2 Technical Overview

First, we analyzed the potential attacks that protocol CM20 might face, namely probabilistic attacks.

Below is an overview of protocol CM20.

0. P1 and P2 agree on security parameters λ, σ, protocol parameters m,ω, `1, `2, a hash function

H1 : {0, 1}∗ → {0, 1}`1 , and H2 : {0, 1}ω → {0, 1}`2 , a pseudorandom function F : {0, 1}λ ×
{0, 1}`1 → [m]ω.

1. Precomputation Same as [CM20].

2. Oblivious Transfer Same as [CM20].

3. OPRF Evaluation

(a) P2 sends the PRF key k to P1.

(b) ∀x ∈ X , P1 computes v = Fk(H1(x)) and its OPRF value ψ = H2(C1[v[1]]‖ · · · ‖Cω[v[ω]])

and sends ψ to P2.

(c) Let Ψ be the set of OPRF values received from P1. ∀y ∈ Y, P2 computes v = Fk(y) and

its OPRF value ψ = H2(A1[v[1]]‖ · · · ‖Aω[v[ω]]) and outputs y iff ψ ∈ Ψ.

Figure 1: Protocol CM20

Assuming that an adversary can intercept the encrypted private set Ψ sent by P1, and based on

the known probability distribution of plaintext privacy, the adversary attempts to guess each plaintext

corresponding to each ψ in the privacy set Ψ. Although the success rate is not 100%, the probability of

success is certainly not negligible!

Therefore, we hope that the H2 in Protocol CM20 has random perturbation, while ensuring that

this perturbation has a clear upper bound, allowing for the identification of two ciphertexts obtained

from encrypting the same plaintext using H2. As a result, we propose a new cryptographic primitive,

the perturbed pseudorandom generator, denoted as G(·). For x1, x2 ∈ X , there exists γ such that:

• When x1 = x2, the probability that G(x1) = G(x2) is ≤ exp(−Ω(n)),

• When x1 = x2, the distance between G(x1) and G(x2) is less than γ,
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• When x1 6= x2, there exists N such that the distance between G(x1) and G(x2) is ≥ γ ·N , where

it is clear that N = 1 is the optimal case.

In addition, we believe that the presence of perturbation in the pseudorandom generator enhances

the security of the protocol to a higher level, making it no longer a deterministic protocol. Therefore, we

attempt to provide the corresponding Chosen Plaintext Attack (CPA) security model [GSM18], although

this model may only be applicable to the protocol in this paper and may not be suitable for other PSI

protocols. In order to demonstrate the performance of the protocol in this paper and its suitability for

application in IIOT, we simulate protocol CM20 and the protocol in this paper on the PC side, the pad

on the mobile side, and the phone on the mobile side.

3 Preliminary

Definition 1 ([GSM18], page 32, Section 4.1.6). We say that ε(n) is negligible associated with n if ε(n)

can be expressed as

ε(n) =
1

O(en)
,

and the notation O(n) represents a quantity that grows at most as fast as n approaches infinity.

Definition 2 ([Ceg12], Definition 2.1.6). Let H be a Hilbert space, and let T : H → H be an operator. If

T (·) satisfies

‖Tx− Ty‖ < ‖x− y‖, ∀x, y ∈ H,

then T (·) is called a contraction operator.

Lemma 1 ([Ceg12], Proposition 2.1.11). If H is a closed set (every Cauchy sequence in H converges to a

point within H), and T (·) is a contraction operator, and Fix(T ) is a closed convex set, then the algorithm

xn+1 = Txn converges to some x ∈ Fix(T ), where Fix(T ) denotes the set of fixed points of the operator

T (·).

Remark 1. The convergence mentioned in Lemma 1 should be considered as strong convergence. How-

ever, this paper does not discuss the difference between strong and weak convergence, because in finite

dimensions strong and weak convergence are equivalent.

Fact 1. Suppose that P{0,1} := {Pr(0),Pr(1)}, P(1)
{0,1} = { 12 ,

1
2}, P

(2)
{0,1} = { 1ω ,

ω−1
ω }, then

P(1)
{0,1} � P(2)

{0,1} := P(3)
{0,1} :=

{
1

2
· 1

ω
+

1

2
· 1

ω
+

1

2
· ω − 1

ω
,

1

2
· ω − 1

ω

}
=

{
1

2
+

1

2ω
,

1

2
− 1

2ω

}
.

Fact 2. Suppose that P(3)
{0,1} = { 12 + 1

2ω ,
1
2 −

1
2ω} = {Pr(0),Pr(1)}, then

P{0,1,2} := {
′

Pr(0),
′

Pr(1),
′

Pr(2)} := P(3)
{0,1} ] P(3)

{0,1}. Here,

′
Pr(0) = Pr(0) Pr(0) =

(
1

2
+

1

2ω

)2

=
1

3
+

1

2ω
+

1

4ω2
− 1

12
,

′
Pr(1) = Pr(0) Pr(1) + Pr(1) Pr(0) = 2

(
1

2
+

1

2ω

)(
1

2
− 1

2ω

)
=

1

3
+

1

6
− 1

2ω2
,

′
Pr(2) = Pr(1) Pr(1) =

(
1

2
− 1

2ω

)2

=
1

3
− 1

2ω
+

1

4ω2
− 1

12
.
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Furthermore, there is also

P′{0,1,2} := {
′′

Pr(0),
′′

Pr(1),
′′

Pr(2)} := P{0,1,2} ] P{0,1,2} mod 3. Here,

′′
Pr(0) =

′
Pr(0)

′
Pr(0) +

′
Pr(1)

′
Pr(2) +

′
Pr(2)

′
Pr(1),

′′
Pr(1) =

′
Pr(0)

′
Pr(1) +

′
Pr(1)

′
Pr(0) +

′
Pr(2)

′
Pr(2),

′′
Pr(2) =

′
Pr(0)

′
Pr(2) +

′
Pr(1)

′
Pr(1) +

′
Pr(2)

′
Pr(0).

(3.1)

The equation (3.1) can be rewritten as

P′{0,1,2} =

 Pr′(0) Pr′(2) Pr′(1)

Pr′(1) Pr′(0) Pr′(2)

Pr′(2) Pr′(1) Pr′(0)


 Pr′(0)

Pr′(1)

Pr′(2)

 = MP{0,1,2}P{0,1,2}.

Fact 3. For the sequence P(n)
{0,1,2} = MP(n−1)

{0,1,2}
P(n−1)
{0,1,2}, define

P(n)
{0,1,2} = (a(0)n , a(1)n , a(2)n ) =

(
1

3
+ ∆(0)

n ,
1

3
+ ∆(1)

n ,
1

3
+ ∆(2)

n

)
.

Claim 1. The sequence P(n)
{0,1,2} = MP(n−1)

{0,1,2}
P(n−1)
{0,1,2} is a Cauchy sequence.

Proof. To prove that P(n)
{0,1,2} = MP(n−1)

{0,1,2}
P(n−1)
{0,1,2} forms a Cauchy sequence, it suffices to show that for any

δ > 0, there exists anN > 0 such that for any n > N ,∥∥∥P(n)
{0,1,2} − P(n−1)

{0,1,2}

∥∥∥ ≤ δ.
Because

P(n)
{0,1,2} − P(n−1)

{0,1,2} =

 (∆
(n−1)
0 )2 + 2∆

(n−1)
1 ∆

(n−1)
2

(∆
(n−1)
2 )2 + 2∆

(n−1)
0 ∆

(n−1)
1

(∆
(n−1)
0 )2 + 2∆

(n−1)
0 ∆

(n−1)
2

 =

 ∆
(n−1)
0 ∆

(n−1)
2 ∆

(n−1)
1

∆
(n−1)
1 ∆

(n−1)
0 ∆

(n−1)
2

∆
(n−1)
2 ∆

(n−1)
1 ∆

(n−1)
0


 ∆

(n−1)
0

∆
(n−1)
1

∆
(n−1)
2

 .

And ∥∥∥∥∥∥∥
 ∆

(n−1)
0 ∆

(n−1)
2 ∆

(n−1)
1

∆
(n−1)
1 ∆

(n−1)
0 ∆

(n−1)
2

∆
(n−1)
2 ∆

(n−1)
1 ∆

(n−1)
0


∥∥∥∥∥∥∥ ≤

∥∥∥∥∥∥∥


1
6 −

1
2ω2

1
6 −

1
2ω2

1
6 −

1
2ω2

1
6 −

1
2ω2

1
6 −

1
2ω2

1
6 −

1
2ω2

1
6 −

1
2ω2

1
6 −

1
2ω2

1
6 −

1
2ω2


∥∥∥∥∥∥∥ =

1

2
− 3

2ω2
.

So, it is obtained that∥∥∥P(n)
{0,1,2} − P(n−1)

{0,1,2}

∥∥∥ ≤ (1

2
− 3

2ω2

)n−1 ∥∥∥P(1)
{0,1,2} − P(0)

{0,1,2}

∥∥∥ ≤ 1√
3

(
1

2
− 3

2ω2

)n
.

Lemma 2. For any initial vector a0 = (a
(0)
0 , a

(1)
0 , a

(2)
0 ), where a

(0)
0 , a

(1)
0 , a

(2)
0 ∈ [( 1

2 −
1
2ω )2, ( 1

2 + 1
2ω )2] and∑2

i=0 a
(i)
0 = 1, and ω > 2, the matrix Ma0 is generated as follows:

Ma0 =

 a
(0)
0 a

(2)
0 a

(1)
0

a
(1)
0 a

(0)
0 a

(2)
0

a
(2)
0 a

(1)
0 a

(0)
0

 .

Then, let an+1 := Manan := Tan, then {an}∞n=0 is a Cauchy sequence and converges to ( 1
3 ,

1
3 ,

1
3 ).
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Proof. According to Claim 1, we know that

 ∆
(n−1)
0 ∆

(n−1)
2 ∆

(n−1)
1

∆
(n−1)
1 ∆

(n−1)
0 ∆

(n−1)
2

∆
(n−1)
2 ∆

(n−1)
1 ∆

(n−1)
0

 is a contraction operator,

and ∥∥∥∥∥∥∥
 ∆

(n−1)
0 ∆

(n−1)
2 ∆

(n−1)
1

∆
(n−1)
1 ∆

(n−1)
0 ∆

(n−1)
2

∆
(n−1)
2 ∆

(n−1)
1 ∆

(n−1)
0


∥∥∥∥∥∥∥ ≤

1

2
− 3

2ω2
.

Therefore, the matrix

 ∆
(n−1)
0 ∆

(n−1)
2 ∆

(n−1)
1

∆
(n−1)
1 ∆

(n−1)
0 ∆

(n−1)
2

∆
(n−1)
2 ∆

(n−1)
1 ∆

(n−1)
0

 is contractive, with (0, 0, 0) being both a conver-

gent point and a fixed point of this matrix sequence. Moreover, since an+1 := Manan has been proven to

be a Cauchy sequence, the sequence {an}∞n=0 converges, and it converges to the fixed point of T (·).

Theorem 1. Given {aj}2j=0 and {sj}2j=1 such that aj ∈R Z{0,1}, s ∈ Z{0,1}, and the probability that the

components of s equal 0 is 1
ω , while the probability that they equal 1 is ω−1

ω , where ω > 2. Then for any

i = 0, 1, 2, we have

max
i=0,1,2

∣∣∣∣∣∣Pr

 2∑
j=0

(ajsj) = i

− Pr(u = i)

∣∣∣∣∣∣ ≤ 1√
3

(
1

2
− 3

2ω2

)n
.

Corollary 1. For any A ∈ Zm×n{0,1}, s ∈ Zn{0,1} where the probability that the components of s equal 0 is
1
ω and the probability that they equal 1 is ω−1

ω , with ω > 2, and u ∈ Zm{0,1,2}, then the indistinguishability

probability between As mod 3 and u is bounded by 1√
3

(
1
2 −

3
2ω2

)n
.

Corollary 2. For any A ∈ Zm×n{0,1}, s ∈ Zn{0,1} where the probability that the components of s equal 0

is 1
ω and the probability that they equal 1 is ω−1

ω , e ∈R Zn{0,1}, ω > 2, and u ∈ Zm{0,1,2,3}, then the

indistinguishability probability between (As) mod 3 + e and u is bounded by 1√
3

(
1
2 −

3
2ω2

)n
.

4 Analysis of PSI

4.1 The theoretical analysis of PSI

Fact 4. The PSI scheme has been proven to be secure under inadvertent transmission, but the inadvertent

transmission technique does not affect the determinism of matrix D. Therefore, in our simulation, we

do not take into account the inadvertent transmission technique, and instead directly consider matrices

A and C as matrix D.

Fact 5. Assuming X is the privacy set, for any x ∈ X , with a sufficiently large sample size, we have

Pr(x) ≈ Pr(ψ) ≈ Pr (H2(C1[v[1]]‖ · · · ‖Cω[v[ω]])) .

4.2 Instantiate CM12 on Python

def H1(A,x,q):

c = np.dot(A,x)%q

return c

Figure 2: Instantiate hash function H1
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def generate_or_load_matrix(filename , shape):

if os.path.exists(filename):

with open(filename , ’rb’) as f:

matrix = pickle.load(f)

else:

matrix = np.random.randint(0, q, size=shape)

with open(filename , ’wb’) as f:

pickle.dump(matrix , f)

return matrix

Figure 3: Fixed storage pseudo-random function parameters

def xcel():

r = np.random.randint (0 ,100)

if (r < 30) or (r == 30):

x = np.array ([2, 1])

elif (r>30) and (r<55):

x = np.array ([2, 2])

elif (r>54) and (r<80):

x = np.array ([2, 3])

else:

x = np.array ([2, 4])

return x

Figure 4: Assign a probability to each privacy element in X .

def calculate_proportions(lst):

counts = {}

proportions = {}

total = len(lst)

for item in lst:

if tuple(item) in counts:

counts[tuple(item)] += 1

else:

counts[tuple(item)] = 1

for item , count in counts.items():

proportion = (count / total) * 100

proportions[item] = proportion

return proportions

Figure 5: Analyzing the proportion of encrypted ciphertexts

The code for this article has been presented on [Sha24].
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4.3 Simulate and analyze CM20

The tools used in the subsection are Python 3.8, the programs are performed on Vostro Dell PC

Desktop 11th Gen Intel(R)Core(TM) i5-11400@2.60GHz 2.59GHz, RAM 8.00GB.

4.3.1 Simulated Attack Results Based on Actual Ratio: 30:24:25:21

Table 1: Actual Ratio: 30:24:25:21, Collecting 10 Samples

First Group Second Group Third Group

Collected Ciphertext Ratio (6,6) 40.00% (3, 6) 50.00% (5, 6) 40.00%

(3,6) 30.00% (5, 6) 30.00% (3, 6) 10.00%

(2,6) 30.00% (6, 6) 20.00% (2, 6) 20.00%

(6, 6) 30.00%

Success or Failure [2 1] Failure [2 1] Success [2 1] Failure

[2 2] Failure [2 2] Ambiguous [2 2] Failure

[2 3] Ambiguous [2 3] Failure [2 3] Failure

[2 4] Failure [2 4] Failure [2 4] Failure

Table 2: Actual Ratio: 30:24:25:21, Collecting 100 Samples

First Group Second Group Third Group

Collected Ciphertext Ratio (2,6) 26.00% (3,6) 31.00% (6,6) 22.00%

(5,6) 13.00% (2,6) 27.00% (2,6) 28.00%

(3,6) 34.00% (5,6) 27.00% (3,6) 37.00%

(6,6) 27.00% (6,6) 15.00% (5,6) 13.00%

Success or Failure [2 1] Success [2 1] Success [2 1] Success

[2 2] Success [2 2] Failure [2 2] Success

[2 3] Success [2 3] Ambiguous [2 3] Success

[2 4] Success [2 4] Failure [2 4] Success

Table 3: Actual Ratio: 30:24:25:21, Collecting 1000 Samples

First Group Second Group Third Group

Collected Ciphertext Ratio (2,6) 25.00% (2, 6) 23.30% (3, 6) 27.80%

(5,6) 18.80% (3, 6) 34.90% (6, 6) 22.90%

(6,6) 26.50% (6, 6) 22.80% (2, 6) 25.00%

(3,6) 29.70% (5, 6) 19.00% (5, 6) 24.30%

Success or Failure [2 1] Success [2 1] Success [2 1] Success

[2 2] Success [2 2] Success [2 2] Failure

[2 3] Success [2 3] Success [2 3] Failure

[2 4] Success [2 4] Success [2 4] Failure
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4.3.2 Simulated Attack Results Based on Actual Ratio: 32:28:22:18

Table 4: Actual Ratio: 32:28:22:18, Collecting 10 Samples

First Group Second Group Third Group

Collected Ciphertext Ratio (3,6) 60.00% (6, 6) 30.00% (3, 6) 50.00%

(2,6) 20.00% (5, 6) 10.00% (2, 6) 20.00%

(5,6) 20.00% (3, 6) 20.00% (5, 6) 20.00%

(2, 6) 40.00% (6, 6) 10.00%

Success or Failure [2 1] Success [2 1] Failure [2 1] Success

[2 2] Failure [2 2] Failure [2 2] Failure

[2 3] Failure [2 3] Failure [2 3] Ambiguous

[2 4] Failure [2 4] Failure [2 4] Ambiguous

Table 5: Actual Ratio: 32:28:22:18, Collecting 100 Samples

First Group Second Group Third Group

Collected Ciphertext Ratio (2,6) 26.00% (3, 6) 37.00% (2, 6) 30.00%

(3,6) 29.00 % (6, 6) 31.00% (5, 6) 16.00%

(6,6) 27.00 % (5, 6) 11.00% (3, 6) 29.00%

(5,6) 18.00 % (2, 6) 21.00% (6, 6) 25.00%

Success or Failure [2 1] Success [2 1] Success [2 1] Failure

[2 2] Failure [2 2] Success [2 2] Failure

[2 3] Failure [2 3] Success [2 3] Failure

[2 4] Success [2 4] Success [2 4] Success

Table 6: Actual Ratio: 32:28:22:18, Collecting 1000 Samples

First Group Second Group Third Group

Collected Ciphertext Ratio (2,6) 21.20% (3, 6) 32.90% (5, 6) 16.00%

(3,6) 34.90% (6, 6) 28.40% (6, 6) 31.10%

(6,6) 27.20% (2, 6) 20.00% (3, 6) 32.50%

(5,6) 16.70% (5, 6) 18.70% (2, 6) 20.40%

Success or Failure [2 1] Success [2 1] Success [2 1] Success

[2 2] Success [2 2] Success [2 2] Failure

[2 3] Success [2 3] Success [2 3] Ambiguous

[2 4] Success [2 4] Success [2 4] Failure

Conclusion 1. Assuming the existence of such an adversary who can intercept ciphertext and possess

probabilistic knowledge, including the ability to analyze the probability distribution of discarded plaintext

privacy, if the probability distribution of discarded plaintext privacy is nearly consistent with the current

one, then this adversary can exploit probabilistic attacks to decrypt the CM20 protocol with a significant

advantage that cannot be ignored.
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5 Modification of the PSI Protocol

5.1 Construction and Security Proof of PRG with Perturbation

Definition 3 (PRG with perturbation). A pseudorandom generator with perturbation, denoted as Gγ(·),
is defined such that for x1, x2 ∈ X , there exists γ satisfying the following conditions:

1. When x1 = x2, Pr(Gγ(x1) = Gγ(x2)) ≤ exp(−Ω(n)),

2. When x1 = x2, such that ‖Gγ(x1)−Gγ(x2)‖ < γ, there exists N such that ‖Gγ(x1)−Gγ(x2)‖ ≥ γ·N ,

where clearly N = 1 is optimal.

Setup. Let A ∈ Zm×n{0,1}, x ∈ Zn{0,1}, e ∈ Zm{0,1}.

Enc. Compute

Gγ(x) = (Ax) mod 3 + e.

Figure 6: Pseudorandom generator with perturbation Gγ(·)

Theorem 2. Assume the construction of the PRG Gγ(·) as depicted in Figure 6, then Gγ(·) is indistin-

guishable from u ∈ Zm{0,1,2,3}.

Proof. It is straightforward to prove the correctness of Theorem 2 from Corollary 2.

Theorem 3. Assume the construction of the PRG Gγ(·) as depicted in Figure 6, then Gγ(·) satisfies

Definition 3.

Proof. We prove each statement separately. First, when x1 = x2, we have

Pr(Gγ(x1) = Gγ(x2)) = Pr(e1 = e2) =
1

2n
.

Additionally, set γ =
√
n+ 1, so

‖(Ax1 + e1)− (Ax2 + e2)‖ = ‖e1 − e2‖ < γ.

When x1 6= x2, set v1 = Gγ(x1), v2 = Gγ(x2), and know that

Pr(‖v1 − v2‖ ≤
√
n) =

n∑
k=0

Ckn

(
1

3

)k (
1

2

)n−k
+

n/2∑
k=0

Ckn

(
1

3

)k (
1

6

)k (
1

2

)n−2k
.

Because
n∑
k=0

Ckn

(
1

3

)k (
1

2

)n−k
=

1

2n

(
2

3
+

(
2

3

)2

+ · · ·+
(

2

3

)n)
=

3

2n

(
1−

(
2

3

)n)
,

and
n/2∑
k=0

Ckn

(
1

3

)k (
1

6

)k (
1

2

)n−2k
≤ 3 · 6

17

1

2n−
n
2

(
1−

(
1

3 · 6

)n
2

)
.

Therefore

Pr(‖v1 − v2‖ ≤
√
n <
√
n+ 1) ≤ 1

2n
.

Thus, there is a very high probability that ‖v1 − v2‖ ≥
√
n+ 1, and N = 1.
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5.2 New PSI Protocol with PRG

0. P1 and P2 agree on security parameters λ, σ, protocol parameters m,ω, `1, `2, a hash function

H1 : Z∗3 → {0, 1}`1 and a Gγ : {0, 1}ω → Z`23 , a pseudorandom function F : {0, 1}λ×{0, 1}`1 →
[m]ω.

1. Precomputation Same as [CM20].

2. Oblivious Transfer Same as [CM20].

3. OPRF Evaluation

(a) P2 sends the PRF key k to P1.

(b) ∀x ∈ X , P1 computes v = Fk(H1(x)) and its OPRF value ψ = Gγ(C1[v[1]]‖ · · · ‖Cω[v[ω]])

and sends ψ to P2.

(c) Let Ψ be the set of OPRF values received from P1. ∀y ∈ Y, P2 computes v = Fk(y) and

its OPRF value ‖ψ −Gγ(A1[v[1]]‖ · · · ‖Aω[v[ω]])‖ <
√
ωγ and outputs y iff ψ ∈ Ψ.

Figure 7: Modified PSI OPRF Evaluation

5.3 Security proof

Lemma 3. Assuming f(y) ≈C u1 and g(u1) ≈C u2, then (g ◦ f)(y) ≈C u2.

Lemma 4. Find a suitable pseudorandom function F̃∗ : {0, 1}λ × Z∗3 → [m]ω. Assuming that the

pseudo-random function F : {0, 1}λ × {0, 1}`1 → [m]ω and the hash function H1 : Z∗3 → {0, 1}`1 are

indistinguishable, we have

F̃∗(y) ≈C F (H1(y)).

Proof. On one hand, because the pseudorandom F̃∗ : {0, 1}λ × Z∗3 → [m]ω, for any k, y ∈ Y ⊂ Zk3 , we

have

F̃k(y) ≈C uω ∈ [m]ω.

On the other hand, due to the pseudorandom function F : {0, 1}λ×{0, 1}`1 → [m]ω, for u`1 ∈ {0, 1}`1 ,

we have

Fk(u`1) ≈C uω.

According to the property of the hash function, we have

H1(y) ≈C u`1 .

Combining with Lemma 3, we then have

Fk(H1(y)) ≈C uω.

Consequently,

F̃∗(y) ≈C F (H1(y)).

Theorem 4. If F is s PRF, H1 is a collision resistant hash function, then the protocol in Fig.7 securely

realizes FPSI in the semi-honest model when parameters m,ω, `1, `2 are chosen as described in CM20"

Proof. Perspective from P1.

Hyb0 P1’s view and P2’s output in the real protocol.
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Hyb1 Same as Hyb0 except that on P2’s side, for each i ∈ [ω], if s[i] = 0,then sample Ai ← {0, 1}m and

compute Bi = Ai ⊕Di; otherwise sample Bi ← {0, 1}m and compute Ai = Bi ⊕Di. This hybrid is

identical to Hyb0.

Hyb2 Initialize an m × w binary matrix D to all 1’s. Denote its column vectors by D1, . . . , Dω. Then

D1 = . . . = Dω = 1m. For y ∈ Y, randomly select v ← [m]ω, and set Di[v[i]] = 0 for all i ∈ [ω].

Hyb3 Find a suitable pseudorandom function F̃∗ : {0, 1}λ ×Z∗3 → [m]ω. For y ∈ Y, compute v = F̃∗(y),

and set Di[v[i]] = 0 for all i ∈ [ω].

Hyb4 Let there be a pseudorandom function F : {0, 1}λ × {0, 1}`1 → [m]ω and a hash function H1 :

Z∗3 → {0, 1}`1 . For y ∈ Y, compute v = F (H1(y)), and set Di[v[i]] = 0 for all i ∈ [ω].

Given that Hyb0 ≈C Hyb1 ≈C Hyb2 ≈C Hyb3, and according to Lemma 4, we know that Hyb3 ≈C
Hyb4. Therefore, we have Hyb0 ≈C Hyb4.

Perspective from P2.

Hyb0 P2’s view in the real protocol.

Hyb1 ψ ← Z`23 , all other aspects are consistent with the real protocol.

Hyb2 Introduce Gγ , let the initial matrices be C1 = · · · = Cω = 1m, randomly select v ∈ [m]ω, set

Ci[v[i]] = 0 for all i ∈ [ω]. Compute Gγ(C1[v[1]]‖ · · · ‖Cω[v[ω]]).

Hyb3 Let the initial matrices be C1 = · · · = Cω = 1m, find an appropriate pseudorandom function

F̃∗ : {0, 1}λ × Z∗3 → [m]ω. For y ∈ Y, compute v = F̃∗(y), set Ci[v[i]] = 0 for all i ∈ [ω]. Compute

Gγ(C1[v[1]]‖ · · · ‖Cω[v[ω]]).

Hyb4 Let the initial matrices be C1 = · · · = Cω = 1m, set a pseudorandom function F : {0, 1}λ ×
{0, 1}`1 → [m]ω and a hash function H1 : Z∗`2+1 → {0, 1}`1 . For y ∈ Y, compute v = F (H1(y)), set

Ci[v[i]] = 0 for all i ∈ [ω]. Compute Gγ(C1[v[1]]‖ · · · ‖Cω[v[ω]]).

Similarly, it can be proven that Hyb0 ≈C Hyb4.

Definition 4 (CPA security model of the protocol in Fig.7). Assume there exists a perturbed pseudoran-

dom oracle machine PrOMγ (where γ is the upper bound on the norm of the perturbation in PrOMγ), such

that for an input x, it outputs two values: one is a random value y0, and the other is a pseudorandom

value y1 with x as its input.

Setup The simulator B generates the necessary parameters for the algorithms. The adversary A chooses

s and sends it to the simulator S using OT.

Hash Queries, PRF Queries and PRG Queries The adversary A sequentially performs hash func-

tion queries, pseudorandom function queries, and pseudorandom synthesizer queries.

Challenge The adversary A selects a private message m and sends it to the simulator B. The simulator

queries the hash function, pseudorandom function, and oblivious transfer values of the real scheme,

inputs these results into the pseudorandom oracle machine PrOMγ , obtains two ciphertexts c0 and

c1, and sends them to the adversary A.

Guessing After receiving the two ciphertexts c0 and c1, A guesses which ciphertext corresponds to the

encryption of m and sends the guess back to the simulator B.

The advantage of the adversary A is defined as the advantage of the simulator B in distinguishing

the outputs of PrOMγ .
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Note 1. The PrOM mentioned in this paper differs from [JLLW23]. In [JLLW23], PrOM refers to a

pseudorandom oracle machine that outputs random values when the adversary does not know the pseudo-

random function key, and outputs pseudorandom function values based on the key known to the adversary

when the key is known. This is a single-value output. However, the PrOM required in this paper outputs

both of these values simultaneously, making it a multi-value output.

Theorem 5. If F is s PRF, H1 is a collision resistant hash function, then the protocol in Fig.7 securely

realizes FPSI in the definition 4.

Proof. Suppose the adversary AP1
can break the scheme with non-negligible advantage. Now, the simu-

lator S simulates the scheme. Suppose there exists a black-box Gblack−boxγ such that

Gblack−boxγ (x)→ (y0, y1)

y0 = Gγ(x) ∈ Z`23 ,

↗

↘

y1 ∈R Z`23 .

Setup The simulator S generates some necessary parameters for the algorithms and selects an ap-

propriate hash function H1 : Z∗3 → {0, 1}`1 and a Gγ : {0, 1}ω → Z`23 , as well as a PRF F :

{0, 1}λ ×{0, 1}`1 → [m]ω with key k ∈ {0, 1}λ. The adversary AP1
selects s and transmits s to the

simulator S using OT.

H-Query, PRF-Query and PRG-Query The adversary AP1
makes queries about the hash function,

pseudorandom function, oblivious transfer values, and pseudorandom generator. The simulator S
pre-establishes lists for handling H-Query, PRF-Query, and PRG-Query respectively.

H1-Query For the ith query xi ∈ Z∗3 corresponding to the value of H1, the simulator S selects from

the hash value list if available, otherwise selects a random Xi ∈ {0, 1}`1 . Set Xi = H1(xi) and

update the list accordingly.

F -Query For the ith query yi ∈ {0, 1}`1 corresponding to the value of F , the simulator S selects

from the pseudorandom function value list if available, otherwise selects a random Yi ∈ {0, 1}ω.

Set Yi = F (yi, k) and update the list accordingly.

Gγ-Query For the ith query wi ∈ {0, 1}ω corresponding to the value of G′γ , the simulator S selects

from the pseudorandom generator value list if available, otherwise selects a random Wi ∈ Z`23 .

Set Wi = G′γ(wi) and update the list accordingly. Note that G′γ is not Gblack-box
γ .

Challenge AP1
selects m ∈ X/Y and sends it to S. S using the corresponding hash function queries

and pseudorandom function queries, inputs the queried values into the black-box G′γ , obtaining ψ0

and ψ1, and then sends ψ0, ψ1 to AP1 .

Guess Based on the received ψ0 and ψ1, AP1 guesses whether ψ0 or ψ1 is the ciphertext of the encrypted

message m.

According to the assumption, if the adversary AP1
can break the scheme with a non-negligible

advantage, then the simulator S can also break the black-box G′γ with a non-negligible advantage. This

contradicts the assumption that G′γ is secure.

6 Efficiency Analysis for PSI

6.1 Efficiency Analysis on PC

The tools used in the subsection are Python 3.8, the programs are performed on Vostro Dell PC

Desktop 10th Gen Intel(R)Core(TM) i5-11400@2.60GHz 2.59GHz, RAM 8.00GB. The hash function H2
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of CM20 is the built-in hash function in Python.

Figure 8: Parallel comparison of encryption on PC, where n represents the security parameter, unit is

104 microseconds

Figure 9: Parallel comparison of decryption on PC, where n represents the number of elements in P2’s

private set, with time measured in microseconds

Figure 10: Parallel comparison of decryption on PC, where n represents the number of elements in P2’s

private set, with time measured in seconds

6.2 Analysis of Efficiency on Mobile Pads

The tools used in the subsection are Pydriod 3, the programs are performed on Xiaomi Pad 6 Pro File

Explorer 1th Qualcomm(R)AI Engine(TM) Xiaolong 8+ mobile platform@3.2GHz, RAM 8.00+3.00GB.
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Figure 11: Parallel comparison of encryption on mobile pads, where n represents the security parameter,

unit is 104 microseconds
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Figure 12: Parallel comparison of decryption on mobile pads, where n represents the number of elements

in P2’s private set, with time measured in microseconds

15



0 50 100 150 200 250 300
n

0.04

0.02

0.00

0.02

0.04

CP
U 

Ti
m

e

CM20

0 50 100 150 200 250 300
n

0.04

0.02

0.00

0.02

0.04

CP
U 

Ti
m

e

Ours

Figure 13: Parallel comparison of decryption on mobile pads, where n represents the number of elements

in P2’s private set, with time measured in seconds

6.3 Analysis of Efficiency on Mobile Phones

The tools used in the subsection are Pydriod 3, the programs are performed on Redmi K30 File

Explorer 4th Qualcomm(R)AI Engine(TM) Qualcomm Xiaolong 730G 8+ mobile platform@2.2GHz,

RAM 6.00GB.

Figure 14: Parallel comparison of encryption on mobile phones, where n represents the security parameter,

unit is 104 microseconds
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Figure 15: Parallel comparison of decryption on mobile phones, where n represents the number of elements

in P2’s private set, with time measured in microseconds

Figure 16: Parallel comparison of decryption on mobile phones, where n represents the number of elements

in P2’s private set, with time measured in seconds

6.4 Summary of Data Comparison

Enc The encryption algorithm used in this paper shows similar efficiency to CM20, whether on PC or

mobile devices. Among them, the CPU Times frequency of mobile device phone is significantly

faster than that of PC and mobile device pad. The CPU times frequency of PC is slightly faster

than that of mobile device pad. However, whether it is PC, mobile pad, or mobile phone, it seems

that they have an upper limit of 100× 104 milliseconds. Whether this boundary is suitable for the

parameters depends on specific cases, which remains unknown.

Dec The decryption algorithm used in this paper is significantly higher than CM20. The computational
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overhead on PC shows a step-like pattern, while on mobile pad and phone, it roughly follows a

linear trend. In comparison, the CPU times of CM20 can be almost disregarded.
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