Diffuse Some Noise: Diffusion Models for
Measurement Noise Removal in Side-channel
Analysis

Sengim Karayalcin®, Stjepan Picek? and Guilherme Perin®

! Leiden University, Leiden, The Netherlands,
s.karayalcin,@liacs.leidenuniv.nl,guilhermeperin7@gmail.com
2 Radboud University, Nijmegen, The Netherlands, stjepan.picek@ru.nl

Abstract. Resilience against side-channel attacks is an important consideration
for cryptographic implementations deployed in devices with physical access to the
device. However, noise in side-channel measurements has a significant impact on the
complexity of these attacks, especially when an implementation is protected with
masking. Therefore, it is important to assess the ability of an attacker to deal with
noise. While some previous works have considered approaches to remove (some)
noise from measurements, these approaches generally require considerable expertise
to be effectively employed or necessitate the ability of the attacker to capture a
‘clean’ set of traces without the noise. In this paper, we introduce a method for
utilizing diffusion models to remove measurement noise from side-channel traces in
a fully non-profiled setting. Denoising traces using our method considerably lowers
the complexity of mounting attacks in both profiled and non-profiled settings. For
instance, for a collision attack against the ASCADv2 dataset, we reduced the number
of traces required to retrieve the key by 40%, and we showed similar improvements for
ESHARD using a state-of-the-art MORE attack. Furthermore, we provide analyses
into the scenarios where our method is useful and generate insights into how the
diffusion networks denoise traces.

Keywords: Side-Channel Analysis - Deep Learning - Diffusion Models

1 Introduction

While standard cryptographic algorithms are generally considered (or, at least, believed
after sufficient public analysis and scrutiny) theoretically secure, as retrieving the secret key
from only inputs and outputs in a reasonable time is impossible, their real-world deployment
poses additional attack surfaces. Deployments of these algorithms will unintentionally leak
some information about their computation to the outside world through power consumption,
timing, or electromagnetic emanation. These information leakages, or side channels, can
allow an attacker to recover secret information from a device efficiently. Since being
introduced by Kocher [Koc96], significant research has been done into side-channel attacks
(SCA) and their countermeasures. We can broadly categorize SCA into two categories: 1)
non-profiled attacks, where an attacker collects side-channel leakages and uses statistical
distinguishers to extract the secret key [KJJ99, BCO04] and 2) profiled attacks, where the
attacker builds a model for the leakage using a copy (clone) device they have full control
over [CRR02]. From the machine learning perspective, we can divide the algorithms into
generative and discriminative ones.!

1A common division in machine learning-based SCA is into supervised and unsupervised machine
learning, but that relates to the task and whether there are labels available and not how the algorithm

mailto:s.karayalcin, @liacs.leidenuniv.nl
mailto:guilhermeperin7@gmail.com
mailto:stjepan.picek@ru.nl

2 Diffuse Some Noise

While countermeasures for side-channel attacks exist, over recent years, a significant
rise in deep learning-based SCA (DLSCA) has shown that these countermeasures can,
in some cases, be circumvented, see, e.g., [LZCT21, PWP22, PCP20]. In the profiled
setting, straightforward applications of discriminative models allow progressively more
efficient attacks [MPP16, KPHT19, ZBHV19, WPP22b]. Similar approaches based on
discriminative models have also been applied in the non-profiled setting [Tim19, DLH"22].
To a lesser degree, there are approaches based on generative models that allow for pre-
processing of side-channel traces to simplify /improve attacks [WP20, WPP22a, ZBC*23].

While generative models can be a “natural” setting for SCA (for instance, the template
attack [CRR02] is generative), we see fewer developments with generative models-based
SCA in the last years compared to the discriminative ones. A part of the reason for this
is that discriminative models excel at distinguishing among classes, which is a common
setup for SCA (since we commonly consider the classification task). On the other hand,
generative models generate new data, which is a natural option for data augmentation, a
direction already explored in SCA.

In this work, we propose a novel approach to denoise traces based on Denoising
Diffusion Probabilistic Models (DDPM). Using these models, we can effectively remove
environmental (Gaussian) noise from side-channel traces without requiring a reference set
of ’clean’ traces. We experimentally validate our approach against several datasets and
show improved attack performance for non-profiled collision attacks, non-profiled attacks
using deep learning, higher order correlation power analysis (HO-CPA), and horizontal
attacks. Additionally, when we consider profiling attacks, our technique can be used to
improve the profiling complexity and ease the difficulty of finding good model architectures
using hyperparameter search. Our main contributions are:

o We showcase the first use cases for DDPM models to pre-process traces in SCA.

e We provide an analysis of the trained DDPM models that explains how traces are

denoised and gives insights into situations where denoising is possible.

¢ We showcase improvements in attack performance for state-of-the-art non-profiled

attacks after denoising using the proposed model. For collision attacks against AS-
CADvV2, the required number of traces to retrieve the key is reduced by approximately
40%, and for MORE attacks against ESHARD, we show similar gains in performance.
e We show significantly decreased difficulty in finding model architectures and hyperpa-
rameter configurations for profiling attacks, especially in settings with low numbers
of profiling traces.
The source code to reproduce the experiments is publicly available.?

2 Background

2.1 Side-channel Analysis

Side-channel attacks [Koc96, KJJ99] are a class of attacks aiming at the implementation
of cryptographic algorithms. The idea is that (physical) side-effects, e.g., timing [Koc96],
power [Koc96], or the electromagnetic emanation [AARRO02] of the execution of the
algorithm can leak information about secret internal values. An attacker then captures
a (large) number of traces of the algorithm’s execution by measuring one of these side
channels and utilizes these to mount the attack.

We can broadly categorize side-channel attacks into two threat models. First, non-
profiled attacks where an attacker utilizes statistical distinguishers to differentiate the
correct (sub)key candidate from the wrong ones. Techniques here generally compute the

works.
2https://anonymous.4open.science/r/diff_release-57F1

https://anonymous.4open.science/r/diff_release-57F1

Sengim Karayalcin, Stjepan Picek and Guilherme Perin 3

hypothetical intermediate value for all possible (sub)key candidates and attempt to find a
connection between these labels and the side-channel traces [KJJ99, BCO04].

The second category includes profiled attacks. In this case, an attacker has access to
(and full control of) an open copy of the device to be attacked. This allows the attacker to
characterize the (physical) leakage using traces captured from the copy device, significantly
improving the efficiency of attacks against the target [CRR02, SLP05].

Both of these categories of attacks rely on the fact that values that are operated
on during the algorithm’s execution are related to the measured traces. This relation
is modeled by using a leakage model. A leakage model f : Y — R mapping from an
intermediate value y € Y to the leakage is generally composed of a part that relates
to the hypothetical leakage of the value and a noise part. Common ways to model the
leakage of this value are the Hamming Weight (HW) (the number of ones in the binary
representation of y) or the Hamming Distance (HD) (the Hamming weight of the bitwise
difference between y and the value it overwrites in a register).

To leverage this leakage model for key retrieval, the intermediate value an attacker
targets needs to be related to the key and some known values. For AES implementations,
the Sbox output in the first round is commonly used (for the Hamming weight and Identity
leakage models). In this case, y = Sbox(p; @ k;) where p; and k; are the i-th byte of the
known plaintext and secret key. As these values are bytes, it is computationally feasible to
calculate the hypothetical values for all 256 possible values of k; and “match” those to
the measured leakage. In this way, each key byte can be attacked separately, eventually
leading to the recovery of the full key.

2.1.1 Signal-to-Noise Ratio (SNR)

SNR is a leakage assessment metric that quantifies the amount of leakage that is present
in a random value. For a set of traces X with intermediate values Y at sample i, it is
defined as:

Varyey (E(Xily)

Eyey(Var((Xily))

Here, F is the mean, Var is the variance of a random variable, and) is the set of possible
values in Y. We generally compute SNR for secret shares that leak directly (e.g., masks or
masked sensitive values). In this work, we always compute SNR with 20000 traces and
the Identity leakage model.

SNR(X',Y) =

2.2 Algorithmic Noise vs. Measurement Noise

We consider algorithmic noise to be the parts of the computation that are happening
in parallel with the intermediate values we target. For example, an optimized hardware
implementation of AES might execute several Sboxes in parallel, resulting in the Hamming
weight of all output bits leaking together. If we want to target only one byte, the
contribution to the leakage of the other bytes is considered noise. Measurement noise is
then the part of the trace that is part of taking the physical measurements. This could be
due to imperfections in the measurement setup or environmental factors. We generally
assume this noise follows or is similar to, a Gaussian distribution [MP18].

The main difference between these types of noise for the purposes of unsupervised pre-
processing of side-channel traces is that the algorithmic noise is part of the signal and is,
therefore, not removed. An illustrative example is that if we take several measurements
during the computation of a larger state, the algorithmic noise will stay the same for each
of these samples, while the measurement noise will vary.

4 Diffuse Some Noise

2.3 Datasets

ESHARD. The ESHARD dataset® contains EM measurements of an AES implementation
protected with first-order Boolean masking. The dataset contains 1400 sample points
corresponding to the loading of the mask values and 100000 traces with a fixed key. We
target the Sbox output in the first round for all attacks. Note that we use the non-shuffled
variant for all our analyses, as the shuffling was implemented by manipulating plaintexts a
posteriori.

ASCADf. The ASCAD fixed key dataset (ASCADf)* contains EM measurements
from an AES implementation protected with first-order Boolean masking. The dataset
contains 60000 traces with 100 000 samples each. We focus on a pre-selected window of
700 samples containing leakages for the masked Sbox computation in the first round for
the 3rd key byte (which is the first masked byte). The dataset has a fixed key for all traces.

ASCADv2. The ASCADv2 dataset® contains power measurements of an AES imple-
mentation protected with an affine masking scheme and shuffling. The dataset contains
800 000 traces with 1 million sample points each. We take smaller part of the 15000
sample extracted dataset used in [MS23], which contain 2000 samples corresponding to a
concatenation of indices 0-1000 (loading masks), 6 040-6 540 (processing masked Sbox for
third byte), and 11250-11 750 (removing additive mask). Note that for this analysis, we
disable shuffling by manipulating plaintexts a posteriori.

AES_HD. The AES HD dataset® is an unprotected AES implementation on an
FPGA board. The dataset contains 500 000 power traces using a fixed key. Each trace
consists of 1250 sample points. We target the Hamming Distance of register writing in
the last round (Sbox '[C; @ k] @ C}).

AES_HD MM. The AES HD MM dataset” is an AES implementation on an
FPGA board protected with first-order Boolean masking. The dataset contains 5600 000
traces using a fixed key. The measurements contain 3 125 samples per trace. We target
the same intermediate value as for AES HD.

ASCON. The ASCON dataset® is an unprotected software implementation of the
ASCON cipher in authenticated encryption mode [DEMS21]. The dataset consists of
200000 traces where 100000 traces use random keys for profiling and 100 000 traces use a
fixed key. Each trace consists of 772 sample points corresponding to the first round of the
initialization phase of the authenticated encryption protocol.

2.4 Discriminative vs. Generative Models

Machine learning algorithms can be divided into two categories: generative and discrimi-
native. Discriminative algorithms are primarily concerned with simulating the conditional
probability distribution of the output labels given the input features. The goal is to
understand the decision boundary. On the other hand, generative algorithms are designed
to simulate the joint probability distribution of the input features (possibly conditioned
on labels). To create new samples, their goal is to learn the underlying data distribution.

2.5 Denoising Diffusion Probabilistic Models (DDPMs)

Denoising Diffusion Probabilistic Models were first introduced by Ho et al. [HJA20]. Over
the next few years, models based on the DDPM paradigm have outperformed state-of-the-
art generative models on image generation and other tasks [YZST24]. DDPM training is

3https://gitlab.com/eshard/nucleo_sw_aes_masked_shuffled
4https://github.com/ANSSI—FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_vl_fixed_key
5https://github.com/ANSSI—FR/ASCAD/tree/master/STMSZ_AES_vQ
Shttps://github.com/AISyLab/AES_HD_Ext
7https://chest.coe.neu.edu/?current_page=PUWER_TRACE_LINK&Software=ptmasked
8https://zenodo.org/records/10229484

https://gitlab.com/eshard/nucleo_sw_aes_masked_shuffled
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
https://github.com/ANSSI-FR/ASCAD/tree/master/STM32_AES_v2
https://github.com/AISyLab/AES_HD_Ext
https://chest.coe.neu.edu/?current_page=POWER_TRACE_LINK&software=ptmasked
https://zenodo.org/records/10229484

Sengim Karayalcin, Stjepan Picek and Guilherme Perin 5

plBr|Br_1) plBr_1lBr_z) plB2161) p(B118a)
olap, T folzr 1, T =2) w(wz, 1) foly,0)

Figure 1: Diagram depicting the forward and backward process for training DDPMs.

based on a relatively straightforward paradigm: during training, we iteratively add some
noise to an image (or some other type of data) for T steps; this is referred to as the forward
process (left direction in Figure 1). Then, for an image z; where noise has been added ¢
times, we train the model to predict x;_; and thereby remove noise. This is called the
backward process (right direction in Figure 1). The central idea here is that when we start
from fully random noise and iteratively remove noise, we can generate realistic-looking
images as the diffusion models try to amplify patterns in the noise.

More formally, the forward process is defined using a Markov chain from zg (the
original images) to zp (Gaussian noise) and transitions q(x¢|z;—1). We then have a noise
schedule fy, A1, ..., Br and corresponding values ag, a1 ..., ar (with ag = 0 increasing
to ar = 1). These «; allow us to generate pairs x, x;—1 for arbitrary 1 < ¢ < T using

=(1—a)ro+arZ and 71 = (1 — a4_1)T0 + ay_1Z where Z = N'(0,1). These pairs
can then be used to minimize the squared error of our diffusion model parameterized with
weights 0, i.e., arg ming(fg(ws,t — 1) — 24_1)? using uniformly sampled ¢ from [0, T for
each mini-batch. For a more detailed description of diffusion models, see [HJA20].

3 Related Work

The profiling side-channel analysis started with the template attack [CRR02]. A few years
later, the stochastic attack was also introduced [SLP05]. Interestingly, both of those attacks
build generative models. With the introduction of “classical” machine learning in SCA,
the community moved the attention to discriminative models. Still, deep learning-based
generative models have been used in the last few years, with the primary goals to either
pre-process the side-channel traces or generate synthetic traces.

3.1 Pre-processing using Neural Networks

While classical techniques for pre-processing side-channel traces have been explored, such
techniques often require a significant domain expertise and error-prone manual intervention
to achieve optimal results [LCSL0O7, OP12, PS15, MP18]. As such, the focus of the
SCA community has recently moved to automated techniques utilizing deep learning.
A first approach to using denoising autoencoders for removing noise from side-channel
traces was proposed by Yang et al. [YLMZ19]. There, the authors used trace averaging
to imitate a ’clean’ set of traces, which can then be used to train an autoencoder to
remove noise from the original traces. Subsequently, Wu and Picek [WP20] extended
the approach to cover more hiding countermeasures like desynchronization and random
delays. Berg et al. [vdBSB™23] further investigated hyperparameter configurations for these
networks. Finally, Hu et al. [HSV24] included additional training objectives to improve
the performance of autoencoders for removing noise from traces. Beyond autoencoders,

6 Diffuse Some Noise

Wu et al. [WPP22a] utilized triplet networks to extract representations from traces that
can be used to mount template attacks.

More recently, several studies have explored generative approaches for pre-processing.

Genevey-Metat et al. [GHG21] utilized a GAN to translate traces between side-channel
domains. Cao et al. [CZGT22] used a GAN approach to tackle portability challenges by
transforming measurements from the attack device to the profiling device. Karayalcin et
al. [KKW™23] investigated a Conditional Generative Adversarial Networks (CGANs)-based
framework to emulate feature selection for masked implementations without access to
mask values. Finally, Zaid et al. [ZBC*23] used variational autoencoders to model the
physical leakage and subsequently leverage these models for attacks.
The main limitation of these approaches for pre-processing is that they only work in settings
with additional assumptions over the standard non-profiled setting. The approaches using
autoencoders in [YLMZ19, WP20, vdBSB'23] require a set of 'clean’ traces that serve
as a target for the networks. When considering Gaussian noise, this clean set can be
emulated by averaging, but for masked implementations, this requires access to mask
values [YLMZ19]. For the methods in [WPP22a, CZGT22, KKW 23, ZBC"23, HSV24],
a labeled profiling set (or access to masks values for [ZBC'23]) is necessary for training
the models. The trace translation in [GHG21] requires paired measurements in different
side-channel domains, and it necessitates that the target side-channel domain is easier to
attack, essentially mimicking the ’clean’ set of traces in [WP20]. None of these approaches
can effectively pre-process traces in a fully non-profiled setting.

3.2 Other Approaches using Generative Models in SCA

Several works have looked at applications of generative models for SCA. To generate addi-
tional traces, Wang et al. [WCL™'20] considered CGANs to expand the size of the profiling
set. Subsequently, Mukhtar et al. [MBPK22] improved upon the network architecture used
in [WCL™20]. Finally, Yap and Jap [YJ24] proposed the use of diffusion models to generate
additional traces. In all of these works, the authors relied on having access to a profiling
device to label traces for training the networks. The resulting networks are then utilized to
generate traces while providing label information to the network to control the trace genera-
tion. Note that while Transformers are often used in generative contexts in natural language
processing, the Transformer architectures in [HSAM22, BIK+23, KVPB23, HCM24] are
used as classification models (i.e., in a discriminative setting).

4 Denoising Diffusion Probabilistic Models for SCA

While utilizing DDPMs for data augmentation to improve side-channel attacks is a
straightforward direction, the results from Yap and Jap [YJ24] suggest that there do not
seem to be any significant advantages to using DDPMs over previously used (C)GAN
methods [WCL*T20, MBPK22]. Additionally, using DDPMs for trace generation requires
profiling labels (or even mask knowledge) to allow for useful trace generation, which limits
the applicability to profiled settings.

On the other hand, we utilize DDPMs to denoise traces. The key idea here is to take a
diffusion model fy : X™ x T +— X™, where X™ is a side-channel trace with m samples
and T = Z,, that we train using standard diffusion model training (see Section 2.5) on
our measured traces. We then input actual traces (or zp) and try to remove noise (or
predict x_1) from these traces. The reasoning here is that we can view side-channel
traces as a combination of signal S and environmental/measurement noise Z. If we write
x; = ¢qixx; + (1 — q) * Z, where ¢; is some schedule for the forward process (note that
¢ < ¢i_1), the optimization objective becomes ming(fg(w;, i) — x;_1)?. As the trained
model has been trained to remove Gaussian noise, the model should then be able to

Sengim Karayalcin, Stjepan Picek and Guilherme Perin 7

= 2 ~ 5
o o4 (=5

= | |8 = & = o o 5 E
= - @ (2L = @ 2 @ =z w @ =]
8 —§F—> 2 —&FF >z & >E EHE >z > o
- s & s |3 8 s |8 .
(5] (5] = a

Figure 2: General model architecture for the input of size X.

remove some of the noise Z present in the original trace. Notably, this assumes that the
distribution of the environmental /measurement noise Z is Gaussian, but this is a common
assumption in the SCA domain [CRR02, MP18, WP20].

The main advantage of this approach is that the models are trained to be agnostic of
implementation specifics. The only requirement is that the noise we are trying to remove
follows a Gaussian distribution. As the diffusion model tries to reconstruct the trace, its
output will also still follow the original trace’s structure in terms of intermediate values.
While this also holds for the denoising autoencoders in [YLMZ19, WP20], the training
procedure of the autoencoders necessitates access to a reference set of 'clean’ traces, which
requires the ability to disable countermeasures on a profiling device. Note that while
in [WP20], the authors also emulate this reference set by averaging traces, this still requires
a large number of additional measurements, complicating the process and making it only
possible for unmasked implementations. Indeed, in masked implementations, an attacker
cannot know in which traces the same intermediate values are processed (i.e., which traces
to average) without mask knowledge [YLMZ19]. If an attacker tries to average traces with
the same label but different mask values, then the attacker will average traces that leak
different intermediate values.

4.1 Network Architecture

To keep the focus of this work on the viability of DDPMs for denoising traces in an
unsupervised context, we only use synchronized traces. This allows us to restrict our
architecture to shallow MLPs as these have been shown to be effective for processing
synchronized side-channel traces [PWP22]. As such, the design choices for our architecture
are relatively simple: we follow the general structure of a U-Net [RFB15] where we
first downsample for several layers, then keep the same dimensions for some layers to
induce a compressed latent representation, and finally upsample again to the original trace
dimensions. We utilize batch-normalization layers in the downsampling section of our
network to stabilize training. The network architecture can be seen in Figure 2.

4.2 Hyperparameter Setup

To train the DDPM models across all experiments, we use the Adam optimizer [KB15].
The learning rate is scheduled according to an exponential decay” schedule with an initial
learning rate of 0.001, the decay rate of 0.96, and 10 000 decay steps. We train all models for
200 epochs using batch size 200. We use the tanh activation function for every intermediate

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/schedules/
ExponentialDecay

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/schedules/ExponentialDecay
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/schedules/ExponentialDecay

8 Diffuse Some Noise

layer and the linear activation for the output. We use T' = 16 for all of the experiments.
These hyperparameters perform well and allow for reasonably effective denoising against
the considered targets. We arrived at these values after some preliminary testing. Note
that these are not optimal, but we refrain from further optimization as this setup can
already show the merits of our approach. We provide further experiments to show the
effects of some hyperparameter variations in Appendix A.

For the denoising of the traces after training, we observe in the initial set of experiments
that predicting traces with ¢ = 15 (fo(zo, 15)) works significantly better than using ¢ =0
(fo(x0,0)). The intuition behind this is that for higher ¢, the model gets noisier inputs
during training, which forces it to find patterns in its input data more aggressively. As
such, we use t = 15 for all experiments unless otherwise specified.

4.3 Proof of Concept

To provide a proof of concept for our method, we first look at testing against (relatively)
noisy trace sets from software targets. First, we consider the ASCADv2 target as this is
currently the most difficult public software target. There, the leakage of the masked output
is noisy (SNR around 0.08), which potentially allows for significant benefits. Second, the
ESHARD target provides measurements of a software implementation where both the
mask and masked Sbox output leak with relatively low SNRs (see Figure 4a). Note that
in this section, we only consider software targets where the measurements contain at least
a moderate amount of measurement noise.

We train the models using all available traces and subsequently use the trained model
to obtain denoised traces. We use the SNR of the secret shares in the traces (using the
Identity leakage model) as a measure of how successful the noise removal was. In Figure 3,
we see the SNR results for a trimmed version of the ASCADv2 dataset. The results clearly
show that the SNR peaks for all three shares are significantly improved. In fact, we see
that for share 2, the improvement is almost 10x. In Figure 4, we again see significant
improvements in SNR. These results show that our networks are effective at amplifying
the side-channel signal. However, there are significant differences in the magnitude of the
improvements. The SNR, of the first share of ASCADv2 is improved by a factor of 9, while
the improvement for the third share has a factor of 2.5 only. While these differences are
not problematic, they raise questions about how the models create these improvements.
In Section 4.4, we aim to explain these differences using simulated traces.

2.00 4 —— Share 1 —— Share 1
Share 2 17.5 4 Share 2
1754 —— Share 3 —— Share 3

SN
[
=3
=]

SNR

0.25 4 ‘ 25 l
[N L 0 l L i

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Samples Samples

(a) Original (b) Diffused

Figure 3: SNR values for secret shares for ASCADv2.

In Figure 5, we showcase histograms of the values in the highest SNR point for the
secret shares. We can observe that, especially for share 1 of ASCADv2 and for ESHARD,

Sengim Karayalcin, Stjepan Picek and Guilherme Perin 9

| — share1 — share1
——— Share 2 Byte 0 104 —— Share 2 Byte 0
1 — sharezByte 1 —— share 2 Byte 1

0.30 1 0.8

0.6 1

SNR
o
¥
=1

SNR

0.15 4 0.4 1

0.2 q

i B e o e s il U s e S]

0.00 4 0.0

o 200 400 600 800 1000 1200 1400 o 200 400 600 800 1000 1200 1400
Samples Samples

(a) Original (b) Diffused

Figure 4: SNR values for secret shares for Eshard.

the distributions are much smoother, and the separation between classes is clearer for the
diffused traces. Additionally, the separation between classes is increased. These results
indicate that the diffusion networks can effectively smooth out the noise from side-channel
traces while maintaining the leakages.

4.4 Simulations

Next, we explore in what situations we can improve the SNR of side-channel measurements
using our DDPMs. To accomplish this, we utilize simulations with varying noise levels
and a varying number of informative points. We follow the procedure:

1. we generate traces of 100 points noise following a normal distribution, and then,
2. for 0 < n < 40 of these points (to allow different settings), we include the Hamming
weight of an 8-bit intermediate value y uniformly sampled from the range [0, 255].

The main purpose of varying the number of leaky points is to determine how the
DDPMs are amplifying the side-channel signal. While the results in Section 4.3 show clear
improvements in terms of SNR for individual features, the networks cannot provide more
information than what is present in the original trace. As such, the increased SNR in
individual features must come from other trace points. Intuitively, combining information
from several points leaking the same value is straightforward to amplify the signal in each
of these points. As can be seen in Figure 6, there is a clear link between the number of
leaky features and the level of SNR achieved. Notably, for both the high and low noise
scenarios, the model does not increase the SNR if only one leaky feature is present. In the
low-noise scenario, the model already shows significant improvement over baseline SNR
when two leaky features are included, improving further with more leaky features. In the
high-noise scenario, more leaky features are required before the SNR levels are improved
over the baseline.

Overall, these results strongly suggest that diffusion models learn to differentiate the
side-channel signal from noise by looking for correlated features in the trace. By finding
and combining information from those related points, the model can decrease the error
in its output. This is relevant for real-world side-channel traces when we take several
measurements during an operation that leaks some sensitive value, e.g., our oscilloscope
has a high sampling rate or if some sensitive value is manipulated in several trace points.

10 Diffuse Some Noise

(a) Original ASCADvV2 share 1 (b) Diffused ASCADv?2 share 1
g200
(c) Original ASCADv2 share 3 (d) Diffused ASCADv2 share 3
g400
(e) Original ESHARD (f) Diffused ESHARD

Figure 5: Histogram for the HW values in the highest SNR samples.

4.5 Gradient Visualization

To show that the DDPMs learn to combine information across correlated features in
real-world settings, we visualize what features contribute to one of the output features.
We use gradient visualization techniques that have been previously used in SCA [MDP20].
In Figure 7, we provide the gradient visualizations of the highest SNR features. We clearly
see that sample points correlated with the most informative sample influence the model’s
output. Notably, these results explain the significant differences in the magnitude of the
SNR increases for different secret shares of ASCADv2 we saw in Figure 3. As can be seen
in Figure 7c, the diffusion model can only utilize a small number of samples to combine
information for share 3, while in the case of share 1, there are significantly more samples
to learn from. These differences follow the demonstrated trends in Figure 6.

Sengim Karayalcin, Stjepan Picek and Guilherme Perin 11

—— Diffused SNR
original SNR

—— Diffused SNR
Original SNR

2x1072

Max SNR peak

102 4

6x1073

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Number of informative features Number of informative features

(a) Low-noise scenario (b) High-noise scenario

Figure 6: Maximum SNR value for diffused traces simulations for varying numbers of
informative points.

SNR 000030 200 SNR 0000200 o SNR
04 mmm Gradients 175 W Gradients | o000 mmm Gradients 00004
150 0.000150
03 0.00020 125 0000125 00002
. s s
« H = H & 005 2
H 000015 5 £ 100 0000100 H H
& 004 0.0002 5
ocoo10
0.50 0.000050 003
o1 0.25 0.000025 002 1
L SR ! 1 ' anllipigisadpnrgdon it ebadnl g
o s - " 000000 000 METPIRKTTHINEN RTINS TTRREE | 0,000000 o011 ¥ . 0.0000
T @ o wo wo ww mw T 70 %o 7o w0 mo w0 uso 200 T #e %o o 1o wo mo w0 200
samples
(a) ESHARD (b) ASCADv2 share 1 (c) ASCADv2 share 3

Figure 7: Gradients vs. SNR values.

5 Experimental Results

In this section, we present results for state-of-the-art attacks to explore the practical
usefulness of our DDPMs.

5.1 Non-profiled Attacks
5.1.1 Correlation Attacks

First, we investigate improvements to second-order CPA-based attacks. As these attacks
utilize one sample for each secret share, the expectation is that we will see significant
improvements as the diffusion models allow for the implicit utilization of information leaked
across several correlated features. We showcase scenarios for ASCADf and ESHARD to
show the effects of a diffusion model on the attack performance when SNR is improved
(ESHARD) and when it is not (ASCADf). For ASCADf{, we also present results where
Gaussian noise'® was added to the traces before training the diffusion model, as the original
traces are relatively low noise. Note that as peak SNR is not improved for other targets,
diffusing traces has no impact on the performance of CPA-based attacks [Man04]. We
select the highest SNR samples for each share in the original traces for these attacks and
combine them using absolute difference as a shortcut to avoid testing all possible feature
combinations.

The results in Figure 8 indicate that clear improvements in attack performance are

10After standardization, with mean 0 and standard deviation 1. We use the same setup in Section 6.

12 Diffuse Some Noise

achieved. Note that for these attacks, the CPA results are not entirely representative of
real-world attacks. In fact, we require more traces than are available in the attacks to train
the diffusion models. Thus, to simulate representative attacks, we should train diffusion
models for every subset of traces we attack in each of the attack simulations, which is
impractical, especially when training diffusion models using low trace counts. However, for
noisier targets where (very) large numbers of traces are necessary for key retrieval, this
limitation is not an objection, as the diffusion model can be trained using the larger set.
As such, the results in Figure 8 indicate that trained diffusion models provide significant
benefits for improving CPA attacks (or other attacks that represent the leakage of a secret
share using a single sample point).

160 —— Diffused Full 160 —— Diffused Full 100 ' —— Diffused Full
10 —— Diffused 10k 140 —— Diffused 5k 140 —— Diffused 5k
120 —— Original 20 —— Original 20 —— Original

0 250 500 750 1000 1250 1500 1750 2000
Number of Traces

0 250 500 750 1000 1250 1500 1750 2000
s

0 250 500 750 1000 1250 1500 1750 2000
Number of Trac er of Traces.

(a) ESHARD (b) ASCADf (c) ASCADf{ with noise

Figure 8: CPA results.

5.1.2 Multi Output Regression Enhanced (MORE)

This section provides results for state-of-the-art non-profiled attacks using DL [SKPT24].
The basic idea of this attack is to train one model labeled for every possible key and
conduct the regression task. As the labels generated using the correct key are the only
ones that are related to the trace, the model should then most accurately predict labels
of the correct key. A ranking for key candidates can then be created by measuring the
network error for each candidate. We only show results against ESHARD as breaking
the ASCADvV2 target is still infeasible using the MORE methodology, while for ASCADf
and the hardware targets, diffusing traces does not make a difference in terms of attack
performance. We generate a distribution of key ranks using 40 separate random models
following the hyperparameter ranges used in [SKP*24]. We choose this method as it allows
us to assess the impact of diffusing traces on the difficulty of defining an appropriate
model configuration, and it reflects directly on the effectiveness of the ensemble-based
attacks that use these random models. The diffusion model in this case is the same as in
Section 5.1.1 using 10000 traces. We use the HW leakage model and target the third key
byte. The results in Figure 9 showcase that diffusing the traces helps significantly. Attacks
using diffused traces perform similarly at 20000 traces to the attacks using 50000 original
traces. This indicates that diffusion models significantly help the consistency of training
discriminative models, especially in more restricted settings.

5.1.3 Collision Attack against ASCADv2

To demonstrate the practical relevance of our approach, we first showcase attacking
results in a non-profiled context. We focus on the collision attacks as described by Wu et
al. [WPP24], which aim to recover the bitwise difference between sub-keys (key-deltas).
These key-deltas can then be used to brute-force one key byte, leading to full key recovery
(given correct key-deltas). We include this attack as it is the only attack that can break

Sengim Karayalcin, Stjepan Picek and Guilherme Perin 13

200

Key Rank

I Original
mm Diffused
— === T T T
10000 20000 30000 40000 50000
Number of Traces

Figure 9: MORE results for ESHARD.

— ko®ki —— ks®ks —— kg®ko k12 ® k13
N — ki®k, —— ks®ks —— ko®kio k13 ® K14
§ — ky®ks — kg ®ky —— k10®kK11 k14 ® k15
P ——— ks®ks — kj@ks k11 ® k12
— —

. . —
1f)OOOO 20000 30000 40000 50000 60000 70000 80000 90000 100000
Number of attack traces

(a) Original

102 — ko®ki —— ka®ks —— kg®ko k1> ® k13
o — k1®k; — ks ® kg —— ko9 ®kjo k13 ® k1a
S — ky®ks —— ke®k; —— Kio®ki1 kia ® K15
o 10t —— ks®ks —— k;@®ks k11 @ k12

0 \’;:*; — —
1POOOO 20000 30000 40000 50000 60000 70000 80000 90000 100000
Number of attack traces

(b) Diffused

Figure 10: ASCADv2 collision attacks.

the ASCADv2 dataset in a non-profiled setting!!. Note that Cristiani et al. [CLHM?22]
also showcased successful attacks against the same implementation, but they require a
different acquisition campaign with significantly more traces.

For training the DDPM, we use the intervals given in [WPP24]. Note that for these
attacks, the shuffling countermeasure is disabled, and we simulate a fixed attack key for
the profiling set (see [WPP24] for details). To simplify the analysis, we concatenated the
used 100 sample intervals into one 1600 sample trace and trained the diffusion model on
20000 such traces to limit computational overhead. We then executed 50 runs on randomly
sampled traces from the 500000 profiling traces and averaged key-delta ranks to achieve
a GE estimate. The results in Figure 10 clearly favor the diffused traces. In fact, using
diffused traces can successfully reduce GE for all key-delta candidates below 1 using 60 000
traces, while three of the deltas are not fully recovered using 100 000 traces for the original
traces.

HWith shuffling disabled.

14 Diffuse Some Noise

Table 1: Average/Max single trace accuracy for cswap_ arith using the one neuron percep-
tron form [BA23] and CNN setups from [PCBP21].

H One neuron ‘ CNN ‘ CNN +Dropout ‘ Random CNN ‘ Random CNN + Dropout
Original 70.9%/79.2% | 63.6%/73.7% 55.2%/75.7% 71.7%/80.0% 98.6%/99.6
Diffused || 96.3%/99.2% | 70.8%/87.1% 50.1%/83.5% 62.6%/81.1% 99.6%,/100%

Table 2: Hyperparameter search ranges for MLP architecture as a profiling attack model.

Hyperparameter Options

Dense layers 1,2,3,4

Neurons 10, 20, 50, 100, 200, 300, 400, 500

Activation Function selu, relu,

Learning Rate 0.005, 0.001, 0.0005, 0.0001

Optimizer Adam, RMSprop

Batch Size 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000
Weight Initialization | random uniform, he uniform, glorot uniform

5.1.4 Horizontal Attacks against Public Key Implementation

To illustrate that our method is generally useful for analyzing side-channel traces, we
showcase improvements to the horizontal attack from [PCBP21]. In this attack, initial
labeling that is only slightly better than random guessing (around 52%) is iteratively
improved upon using CNNs. In this work, results are presented using both an optimized
fixed CNN architecture and a new random CNN at each iteration (for more details,
see [PCBP21]). Note that in subsequent work, it was shown that similar attack performance
could be achieved in some cases using only one neuron instead of larger CNNs [BA23]. We
only show results on the cswap_arith dataset as the cswap_ pointer is significantly easier
to attack, and almost every network setup achieves 100% accuracy on both the original
and diffused traces. The diffusion model is trained in the standard way using the 63 750
traces. For this dataset, we use batch size 1000 and obtain denoised traces with ¢ = 0
instead of ¢ = 15 as this achieved better results.

The results in Table 1 again show significant improvements to accuracies by using
diffused traces. In all cases, the maximum accuracy using diffused traces is higher than
using original traces. Especially in the case where only the simplest perceptron from [BA23]
is used, we obtain 99.2% maximum accuracy using diffused traces while only 80% using
the original traces. For the CNNs, we see that the fixed CNN improves between 10% and
15%, and using random CNNs, we find the only attack achieving 100% maximum accuracy
uses diffused traces.

5.2 Profiling Attacks

In this section, we explore the impact of using diffusion models to denoise traces in a profiled
setting. We report the distribution of the attack performance of random models to assess
the impact of using diffused traces on the difficulty of finding good model configurations.

5.2.1 Experimental Setup

To investigate the impact of using denoised traces for profiling attacks, we will examine the
profiling complexity of attacks against several datasets. To do this, we randomly search
small MLP models using the ranges in Table 2. This search is run using a varying number
of profiling traces for original and diffused traces. We use two diffusion models, one trained
with the maximum considered number of profiling traces and one with the minimum
considered number of traces (5000 and 25000, and 10000 and 70000 for ASCADf and
ESHARD, respectively).

Sengim Karayalcin, Stjepan Picek and Guilherme Perin 15

GE 200

GE 150
GE 100

GE 50

[

e LYY

EEm Diffusion 10k
mmm Diffusion Full

NT 500

NTO

10000 20000 30000 40000 50000 60000 70000
Number of Profiling Samples

(a) ESHARD HW leakage model

GE 200 GE 200
GE 150 GE 150
GE 100 GE 100
GE 50 GE 50
GEO ! GE 0
NT 2000 NT 2000 J_
NT 1500 NT 1500
NT 1000] O.rlgln‘al NT 1000 | O.rlgln‘al
mmm Diffusion 5k mmm Diffusion 5k
NT500) mmm Diffusion Full NT500\ mmm Diffusion Full
NT 0 NT 0
5000 10000 15000 20000 25000 5000 10000 15000 20000 25000
Number of Profiling Samples Number of Profiling Samples
(b) ASCADfS ID leakage model (c) ASCADf with added noise ID leakage model

Figure 11: Distribution of GE/number of traces to reach GE = 1 for 100 random MLPs in
various scenarios.

5.2.2 Results

Figure 11a shows the distribution of attacking results for the 100 random MLPs against
ESHARD. The attack performance is significantly improved by utilizing diffused traces.
For all the tested settings, we see that more of the models trained on diffused traces result
in successful attacks. In fact, the distribution of attack performances at 30 000 diffused
profiling traces is already better than the distribution using 70 000 original profiling traces.
Additionally, in settings with lower numbers of profiling traces, only attacks using diffused
traces can successfully recover the key in 2000 traces.

In Figure 11b, the results for ASCADf are less impressive. In fact, in this case, there
does not seem to be any difference between using diffused and original traces. When we
simulate a noisier measurement setup by adding Gaussian noise to the traces, we see that
the benefits of using DDPMs are restored. In Figure 11c, none of the models using original
traces can successfully recover the key byte in 2000 attack traces, while for diffused traces,
a number of the networks is successful starting at 15000 profiling traces. These results
indicate that for datasets where the diffusion models successfully improve SNR, it becomes
significantly easier to define and train profiling models that can retrieve the key, while for
cases where the models do not improve SNR, the difficulty remains the same.

6 Datasets with Algorithmic Noise

In previous sections, we have shown significantly improved attack performance against
targets that have (almost) no algorithmic noise. In these cases, it is clear from the results
in Section 4.3 that the measurement noise is mitigated by using diffusion models. However,
when we consider targets that process larger states, the denoising is less relevant.

In Figure 12, we see that the DDPMs cannot improve the peak SNR for any of the

16 Diffuse Some Noise

Table 3: Max SNR peaks for denoising autoencoder approach.
| Original | DDPM | DAE CNN from [WP20] | Our MLP trained as AE

ASCADf 1.30 1.24 0.76 1.17

Eshard 0.39 1.06 0.20 0.03
ASCADvV2 share 1 2.00 8.90 1.35 1.93
ASCADv2 share3 0.08 0.19 0.06 0.03

targets without added noise. Only for AES_ HD_MM in Figure 12¢, we see that the SNR
of the other samples is increased by a marginal amount. Note that this does not seem
to affect attack performance; for profiling attacks using 100 random MLP models using
the ranges from Table 2, GE is 60.78 + 23.95 and 59.85 + 21.00 for original and diffused
traces, respectively. Looking at traces with added Gaussian noise, we see improved SNR
for ASCON and AES_HD_ MM. For AES_HD, SNR does not improve, presumably, as
the noise level is relatively high and the intermediate value is only leaked in a very small
number of samples following the results on simulations in Section 4.4.

These results indicate that the diffusion models are not as useful for measurements
with mostly algorithmic noise. However, even for hardware targets, we can see some
improvements to SNR in specific samples, indicating that removing (some) measurement
noise is still achievable in these cases. Additionally, when we add Gaussian noise, we
see clear improvements in SNR for both the ASCON and the AES__HD_MM targets,
reinforcing the usefulness of our diffusion models in scenarios with noisier measurements.
Since noisier settings are more relevant from a practical perspective, and even the current
results with deep learning perform well in scenarios with little noise, we consider our
approach highly relevant and applicable in real-world settings.

7 Comparison with Denoising Autoencoders

While several works have looked at utilizing techniques from the deep learning domain for
pre-processing side-channel traces, almost none of these techniques are directly applicable in
a non-profiled setting. As mentioned before, most either require profiling labels [WPP22a,
KKW23, HSV24] or the ability to capture some ’clean’ target traces [YLMZ19, WP20,
GHG21]. However, as mentioned in Section 4.1 of [WP20], denoising autoencoders can
be used for the same purpose. In this case, the idea is that when the autoencoder is
forced to compress the relevant information in the trace in a smaller representation and
then reconstruct the original input. In principle, the model is forced to discard irrelevant
information (noise) and maintain the side-channel signal. We compare the performance
of these models in terms of the maximum SNR peaks as a simple representation of the
denoising performance.

From the results in Table 3, we can clearly see that autoencoders trained without a target
set of clean traces are not effective at removing measurement noise. Both the convolutional
architecture from [WP20] and our DDPM architecture trained as autoencoders fail to
increase SNR over the original traces. While tuning the architectures for each specific
dataset could lead to improvements, we note that this is not necessary for our DDPMs. In
addition, the autoencoders trained to reconstruct traces can easily overfit and memorize
their training traces, increasing the difficulty of finding an appropriate architecture,
especially in non-profiled contexts. Overall, it seems clear that in a scenario without a set
of clean target traces (or label/mask knowledge), autoencoders are not appropriate for
removing noise.

Sengim Karayalcin, Stjepan Picek and Guilherme Perin

SNR

SNR

SNR

0.07 1

0.06

I
—— Diffused

Original

I|l {

0.00 4

200 400 600 800 1000

Sample

(a) Original AES_HD

1200

0201

T
—— Diffused

Original

0.00 q

1500 2000 2500

sample

500 1000

3000

(c) Original AES_ HD_ MM

0.200

0.175

0.150

—— Diffused
Original

0.125

0.100

0.075

0.050

0.025

v-~-«r--wlﬂ~~l"---h M

WMMM

100 200 300 400 500 600

sample

(e) Original ASCON

700

0.175

0.150

0.125

0.100

SNR

0.075

0.050

0.025

0.000

I
| —— Diffused

Original

0 200 400 600 800

Sample

1000 1200

(b) Noise added AES__HD

T
—— Diffused

Original

0 500

1500 2000

sample

1000

2500 3000

(d) Noise added AES_HD_ MM

I I |
—— Diffused
Original
| ¥
et b Wl st e,

0 100 200 300 400 500

sample

600 700 800

(f) Noise added ASCON

Figure 12: SNR values for intermediate values for various datasets.

18 Diffuse Some Noise

8 Discussion

Our results showcase that DDPM models can learn useful representations of side-channel
traces in unsupervised contexts. Additionally, the analysis in Section 4.4 shows how the
networks learn these representations and the intuition for why the denoising can work.
The mechanism is quite straightforward. To remove noise from a leaky sample point, the
network needs more information about the leaking value. To accomplish this, it can find
features that leak the same value and combine the information from these features to
arrive at a less noisy version of the feature. In effect, we compress the information from
several leaky samples into a singular sample.

The benefits of this for non-profiled attacks are clear. For these attacks, we often
utilize only a single feature to represent each secret share [CLHM22]. In these contexts,
our models allow for the implicit utilization of several leaky samples without having access
to mask values. Additionally, for collision attacks, the stronger separation between classes
can clearly reduce the number of traces necessary to detect key differences.

For profiled attacks, the benefits are less obvious. In principle, using LDA to reduce the
dimension from a sufficiently large number of informative samples effectively compresses
the information from all of those samples and thus eliminates the benefits of diffusing
traces. Similarly, a well-trained neural network should implicitly combine the information
available across a trace. However, in practice, we see significant benefits to denoising traces
before training profiling models. Our results in Section 5.2(and in Section 5.1.2) clearly
indicate that the difficulty of finding appropriate hyperparameters for neural networks and
the required number of profiling traces is significantly reduced. We believe this happens
because diffusion models are significantly more powerful than LDA or commonly used
neural networks in SCA. While our results show significant gains for the showcased attacks
against some targets (specifically ESHARD and ASCADv2), it is clear that these benefits
are not universal. Our method does not improve the SNR for datasets that contain mostly
algorithmic noise. However, the SNR also does not seem to be harmed by pre-processing
the traces using diffusion models, limiting the downside of using our method to the (limited)
computational overhead required for training the diffusion model. The artificial addition
of Gaussian noise in Section 6 also showcases that the method is still effective in more
difficult scenarios when the measurements are more noisy.

The main takeaway from these results is that including diffusion models for pre-
processing traces within the evaluation can significantly reduce the overhead caused by
environmental noise while not requiring the same level of expertise to tune as other
methods from the DL domain. The tuning of diffusion models in the SCA context
seems relatively straightforward, and the pre-processing can be used to simplify any
subsequent analysis. Especially in contexts where individual samples are used to represent
the leakage from sensitive values, like (higher-order) CPA, our method allows for the
combination of information from several samples without any additional access assumptions
or alterations to the attack methodology. While the practical results presented in Section 5
showcase strong benefits in terms of attack performance, these are clearly influenced by
our choice of datasets. Overall, the attack improvements are only present when the SNR
of secret shares is similarly improved. For targets aside from ESHARD, ASCADv2, and
cswap__arithmetic, utilizing our DDPMs does not seem to make a significant difference
for practical attacks in our experiments unless we artificially inject Gaussian noise to
simulate noisier measurement setups. Note that there may be some benefits (minor SNR
improvements we see for AES_ HD_ MM and ASCON), but this did not make a difference
for the considered attacks. Another consideration for interpreting our results is that
the network and hyperparameter settings leave significant room for improvement. We
aimed to present the denoising method using DDPMs, not to optimize the denoising
performance for each specific scenario. In fact, even the results in Appendix A show that
larger improvements than those presented in Section 5 are relatively straightforward to

Sengim Karayalcin, Stjepan Picek and Guilherme Perin 19

achieve by changing only one or two hyperparameters. Consequently, this suggests that
future research looking into more complex network architectures and hyperparameter
optimizations would still be beneficial in evaluating the full potential of our approach.

9 Conclusions and Future Works

We have presented an approach for utilizing DDPMs to remove noise from side-channel
traces. As shown in Section 4.4, our approach is effective at increasing SNR levels of traces
when several samples in the side-channel trace leak the same information. In these cases,
DDPMs can combine information from several samples to remove noise from each of the
individual samples. Notably, this is, to the best of our knowledge, the first approach that
can effectively denoise traces in a fully non-profiled setting without a “clean” set of target
traces. Furthermore, we showed significant improvements in attack performance for several
state-of-the-art non-profiled attacks and similar improvements in the profiling complexity
of deep learning models for profiled attacks. One of the main limitations of our work is that
we focus on aligned traces. While directly training our models on misaligned traces does
not pose any technical difficulties, achieving satisfactory performance in such a context is
more difficult. In future work, we plan to investigate mechanisms for effectively applying
our method to misaligned traces, and to investigate more complex network architectures.
Besides this, there are a number of use cases within the SCA domain for our models,
which could potentially be interesting. Some initial ideas include pre-training (parts of)
classification models since diffusion models could aid in the training of profiling models
and exploring whether the implicit compression of leakage from several features can be
used to limit the computational overhead of subsequent attacks.

A Hyperparameter Evaluation

As we only utilize one architecture and hyperparameter configuration to achieve the results,
we provide insights into the effects of varying this architecture/hyperparameter setup.
First, we look at variations in the depth of our architecture and the type of activation
function. Second, we look at training time parameters like the number of steps T" in our
diffusion process, the initial learning rate, and batch size. Finally, we consider the number
of epochs and the number of traces required to train the models.

All of these results are evaluated on the maximum SNR, peaks of the first secret share
of ESHARD (the mask) and the third share of ASCADv2 (the masked Sbox output). We
chose these two secret shares as our standard architecture works well on these targets, and
they are rather different in terms of the number of features that leak the secret shares
(which can be seen in Section 4.3). Note that in every table, we make the value we use in
our standard configuration bold to improve readability.

A.1 Architecture

The effects of varying the number of downsampling (and corresponding upsampling)
layers are quite different for different targets. When only one downsampling layer is
used, Table 4 shows that the difference from the original SNR is limited for both targets.
When the number is increased, we see that for ESHARD, the SNR increases over our
standard configuration, while for ASCADv2, the SNR decreases. In Table 5, varying the
activation function results in somewhat decreased performance for ASCADv2, while for
ESHARD, there does not seem to be much of an effect. Overall, defining an appropriate
architecture is mainly the question of defining an appropriate depth. Using two blocks
seems like a reasonable middle-ground for the network, not ignoring certain leakages that

20 Diffuse Some Noise

only contribute to a small number of features while still providing enough expressive power
in the network to remove noise effectively.

Table 4: SNR peaks for varying numbers of downsampling blocks in the network.

| 1 | 2 | 3 | 4
ASCADvZ [0.08 | 0.18 | 0.08 | 0.02
ESHARD | 0.63 | 1.13 | 1.61 | 1.48

A.2 Training Time Hyperparameters

As can be seen in Table 6, the initial learning rate is quite an important factor. Only the
standard 0.001 can effectively denoise ASCADv2. For ESHARD, it matters significantly
less, and while the performance is best for our standard case, varying it still results in
significant improvements over the original traces. The effect of varying batch size in Table 8
is fairly limited, and while 200 seems like a good default value, increasing it to speed up
training is seemingly not that harmful to the performance. Finally, varying the number
of steps T in Table 7 shows significant room for improvement over our baseline model.
Especially for ASCADv2, we achieve another 50% improvement in peak SNR by optimizing
T. Overall, this indicates that the specifying batch size and T' are not too sensitive, and
values in a broad range are effective. On the contrary, defining learning rates that are
inappropriate can quickly result in models that do not learn anything for some targets.

A.3 Epochs and Number of Traces

Table 10 shows that the models are surprisingly effective when given only a relatively small
number of training traces. In fact, while using more traces obviously does not hurt, the
benefits are only marginal, and for the fairly difficult case of ASCADv2’s third share, we
can already see a doubling of the SNR using only 10000 traces. The number of epochs
is somewhat more sensitive. In Table 9, for ESHARD, the model performance is already
good with only 10 epochs, while for ASCADv2, good performance starts at 100 epochs.

References

[AARRO2] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi.
The EM side-channel(s). In Burton S. Kaliski Jr., Cetin Kaya Kog, and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems -
CHES 2002, jth International Workshop, Redwood Shores, CA, USA, August
13-15, 2002, Revised Papers, volume 2523 of Lecture Notes in Computer
Science, pages 29-45. Springer, 2002.

[BA23] Sana Boussam and Ninon Calleja Albillos. Keep it unsupervised: Horizontal
attacks meet simple classifiers. In Shivam Bhasin and Thomas Roche, edi-
tors, Smart Card Research and Advanced Applications - 22nd International
Conference, CARDIS 2023, Amsterdam, The Netherlands, November 14-106,
2023, Revised Selected Papers, volume 14530 of Lecture Notes in Computer
Science, pages 213-234. Springer, 2023.

Table 5: SNR peaks for varying activation functions.
[tanh [relu [selu [linear

ASCADv2 0.18 0.15 | 0.09 0.08
ESHARD 1.13 143 | 1.21 1.24

Sengim Karayalcin, Stjepan Picek and Guilherme Perin 21

Table 6: SNR peaks for varying initial learning rates.
| 0.01 | 0.001 | 0.0001 | 0.0005 | 1e-05 | 5e-05

ASCADv2 | 0.02 0.18 0.05 0.08 0.02 0.04
ESHARD | 0.02 1.13 0.98 0.99 0.98 0.97

Table 7: SNR peaks for varying number of steps T

| 4 | 8 | 16 | 32 | 128 | 512 | 1024
ASCADv2 [0.10 [0.18 [0.18 | 0.20 | 0.27 [0.09 [0.02
ESHARD | 1.27 | 1.28 | 1.13 | 1.15 | 1.16 | 1.53 | 1.56

Table 8: SNR peaks for varying batch sizes.
| 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000

ASCADv2 | 0.15 | 0.18 | 0.16 | 0.12 | 0.13 | 0.14 | 0.08 | 0.07 | 0.06 0.07
ESHARD | 0.89 | 1.13 | 1.05 | 1.01 | 1.00 | 0.99 | 0.98 | 1.05 | 0.97 0.99
Table 9: SNR peaks for varying numbers of epochs.

| 10 | 25 | 50 | 100 | 200 | 400
ASCADv2 | 0.03 | 0.08 | 0.11 | 0.15 | 0.18 | 0.20
ESHARD 1.09 | 1.08 | 1.18 | 1.20 | 1.13 | 1.13
Table 10: SNR peaks for varying numbers of traces.

| 10000 | 20000 | 30000 | 40000 | 50000 | 60000

ASCADv2 0.16 0.15 0.17 0.18 0.20 0.24

ESHARD 0.89 1.02 1.04 1.20 1.13 1.26

[BCOO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analy-

[BIK 23]

[CLHM?22]

[CRRO2]

[CZGT22]

[DEMS21]

sis with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors,
Cryptographic Hardware and Embedded Systems - CHES 2004: 6th Inter-
national Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings,
volume 3156 of Lecture Notes in Computer Science, pages 16—29. Springer,
2004.

Elie Bursztein, Luca Invernizzi, Karel Kral, Daniel Moghimi, Jean Michel
Picod, and Marina Zhang. Generic attacks against cryptographic hardware
through long-range deep learning. CoRR, abs/2306.07249, 2023.

Valence Cristiani, Maxime Lecomte, Thomas Hiscock, and Philippe Maurine.
Fit the joint moments: How to attack any masking scheme. IEEE Access,
10:127412-127427, 2022.

Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Burton S. Kaliski Jr., Cetin Kaya Kog, and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers,
volume 2523 of Lecture Notes in Computer Science, pages 13—28. Springer,
2002.

Pei Cao, Hongyi Zhang, Dawu Gu, Yan Lu, and Yidong Yuan. AL-PA:
cross-device profiled side-channel attack using adversarial learning. In Rob
Oshana, editor, DAC ’22: 59th ACM/IEEE Design Automation Conference,
San Francisco, California, USA, July 10 - 14, 2022, pages 691-696. ACM,
2022.

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schléffer.
Ascon v1.2: Lightweight authenticated encryption and hashing. J. Cryptol.,
34(3):33, 2021.

22

Diffuse Some Noise

[DLH*22]

[GHG21]

[HOM24]

[HIA20]

[HSAM22]

[HSV24]

[KB15]

[KJJ99]

[KKW+23]

[Koc96]

Ngoc-Tuan Do, Phu-Cuong Le, Van-Phuc Hoang, Van-Sang Doan, Hoai Giang
Nguyen, and Cong-Kha Pham. Mo-dlsca: Deep learning based non-profiled
side channel analysis using multi-output neural networks. In 2022 Inter-
national Conference on Advanced Technologies for Communications (ATC),
pages 245-250, 2022.

Christophe Genevey-Metat, Annelie Heuser, and Benoit Gérard. Trace-to-
trace translation for SCA. In Vincent Grosso and Thomas Péppelmann,
editors, Smart Card Research and Advanced Applications - 20th International
Conference, CARDIS 2021, Liibeck, Germany, November 11-12, 2021, Revised
Selected Papers, volume 13173 of Lecture Notes in Computer Science, pages
24-43. Springer, 2021.

Suvadeep Hajra, Siddhartha Chowdhury, and Debdeep Mukhopadhyay. Es-
tranet: An efficient shift-invariant transformer network for side-channel
analysis. TACR Trans. Cryptogr. Hardw. Embed. Syst., 2024(1):336-374,
2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic
models. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Suvadeep Hajra, Sayandeep Saha, Manaar Alam, and Debdeep Mukhopad-
hyay. Transnet: Shift invariant transformer network for side channel anal-
ysis. In Lejla Batina and Joan Daemen, editors, Progress in Cryptology
- AFRICACRYPT 2022: 13th International Conference on Cryptology in
Africa, AFRICACRYPT 2022, Fes, Morocco, July 18-20, 2022, Proceedings,
volume 13503 of Lecture Notes in Computer Science, pages 371-396. Springer
Nature Switzerland, 2022.

Fanliang Hu, Jian Shen, and Pandi Vijayakumar. Side-channel attacks based
on multi-loss regularized denoising autoencoder. IEEE Trans. Inf. Forensics
Secur., 19:2051-2065, 2024.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic op-
timization. In Yoshua Bengio and Yann LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388-397. Springer, 1999.

Sengim Karayalcin, Marina Krcek, Lichao Wu, Stjepan Picek, and Guilherme
Perin. It’s a kind of magic: A novel conditional gan framework for efficient
profiling side-channel analysis. Cryptology ePrint Archive, Paper 2023/1108,
2023. https://eprint.iacr.org/2023/1108.

Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO °96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of
Lecture Notes in Computer Science, pages 104—113. Springer, 1996.

https://eprint.iacr.org/2023/1108

Sengim Karayalcin, Stjepan Picek and Guilherme Perin 23

[KPHT19]

[KVPB23]

[LCSLO7]

[LZC+21]

[Man04]

[MBPK22]

[MDP20]

[MP18]

[MPP16]

[MS23]

[OP12]

Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Han-
jalic. Make some noise. unleashing the power of convolutional neural networks
for profiled side-channel analysis. JACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pages 148-179, 2019.

Praveen Kulkarni, Vincent Verneuil, Stjepan Picek, and Lejla Batina. Order
vs. chaos: A language model approach for side-channel attacks. TACR Cryptol.
ePrint Arch., page 1615, 2023.

Thanh-Ha Le, Jessy Clédiere, Christine Serviere, and Jean-Louis Lacoume.
Noise reduction in side channel attack using fourth-order cumulant. IEEE
Trans. Inf. Forensics Secur., 2(4):710-720, 2007.

Xiangjun Lu, Chi Zhang, Pei Cao, Dawu Gu, and Haining Lu. Pay attention
to the raw traces: A deep learning architecture for end-to-end profiling attacks.
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021.

Stefan Mangard. Hardware countermeasures against DPA 7 A statistical
analysis of their effectiveness. In Tatsuaki Okamoto, editor, Topics in Cryp-
tology - CT-RSA 2004, The Cryptographers’ Track at the RSA Conference
2004, San Francisco, CA, USA, February 23-27, 2004, Proceedings, volume
2964 of Lecture Notes in Computer Science, pages 222-235. Springer, 2004.

Naila Mukhtar, Lejla Batina, Stjepan Picek, and Yinan Kong. Fake it till you
make it: Data augmentation using generative adversarial networks for all the
crypto you need on small devices. In Steven D. Galbraith, editor, Topics in
Cryptology - CT-RSA 2022 - Cryptographers’ Track at the RSA Conference
2022, Virtual Event, March 1-2, 2022, Proceedings, volume 13161 of Lecture
Notes in Computer Science, pages 297-321. Springer, 2022.

Loic Masure, Cécile Dumas, and Emmanuel Prouff. A comprehensive study
of deep learning for side-channel analysis. TACR Trans. Cryptogr. Hardw.
Embed. Syst., 2020(1):348-375, 2020.

Houssem Maghrebi and Emmanuel Prouff. On the use of independent com-
ponent analysis to denoise side-channel measurements. In Junfeng Fan and
Benedikt Gierlichs, editors, Constructive Side-Channel Analysis and Secure
Design - 9th International Workshop, COSADE 2018, Singapore, April 23-24,
2018, Proceedings, volume 10815 of Lecture Notes in Computer Science, pages
61-81. Springer, 2018.

Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. In Interna-
tional Conference on Security, Privacy, and Applied Cryptography Engineer-
ing, pages 3—26. Springer, 2016.

Loic Masure and Rémi Strullu. Side-channel analysis against anssi’s protected
AES implementation on ARM: end-to-end attacks with multi-task learning.
J. Cryptogr. Eng., 13(2):129-147, 2023.

David F. Oswald and Christof Paar. Improving side-channel analysis with
optimal linear transforms. In Stefan Mangard, editor, Smart Card Research
and Advanced Applications - 11th International Conference, CARDIS 2012,
Graz, Austria, November 28-30, 2012, Revised Selected Papers, volume 7771
of Lecture Notes in Computer Science, pages 219-233. Springer, 2012.

24

Diffuse Some Noise

[PCBP21]

[PCP20]

[PS15]

[PWP22

[RFB15]

[SKP+24]

[SLPO5]

[Tim19]

[vdBSB+23]

[WCL*+20]

Guilherme Perin, Lukasz Chmielewski, Lejla Batina, and Stjepan Picek.
Keep it unsupervised: Horizontal attacks meet deep learning. TACR Trans.
Cryptogr. Hardw. Embed. Syst., 2021(1):343-372, 2021.

Guilherme Perin, Lukasz Chmielewski, and Stjepan Picek. Strength in
numbers: Improving generalization with ensembles in machine learning-based
profiled side-channel analysis. TACR Transactions on Cryptographic Hardware
and Embedded Systems, 2020(4):337-364, Aug. 2020.

Santos Merino Del Pozo and Francois-Xavier Standaert. Blind source sepa-
ration from single measurements using singular spectrum analysis. In Tim
Giineysu and Helena Handschuh, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2015 - 17th International Workshop, Saint-Malo,
France, September 13-16, 2015, Proceedings, volume 9293 of Lecture Notes in
Computer Science, pages 42-59. Springer, 2015.

Guilherme Perin, Lichao Wu, and Stjepan Picek. Exploring feature selection
scenarios for deep learning-based side-channel analysis. TACR Transactions
on Cryptographic Hardware and Embedded Systems, 2022(4):828-861, Aug.
2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In Nassir Navab, Joachim
Hornegger, William M. Wells 111, and Alejandro F. Frangi, editors, Medical
Image Computing and Computer-Assisted Intervention - MICCAI 2015 - 18th
International Conference Munich, Germany, October 5 - 9, 2015, Proceedings,
Part III, volume 9351 of Lecture Notes in Computer Science, pages 234—241.
Springer, 2015.

Toana Savu, Marina Krcek, Guilherme Perin, Lichao Wu, and Stjepan Picek.
The need for more: Unsupervised side-channel analysis with single network
training and multi-output regression. In Romain Wacquez and Naofumi
Homma, editors, Constructive Side-Channel Analysis and Secure Design,
pages 113-132, Cham, 2024. Springer Nature Switzerland.

Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for
differential side channel cryptanalysis. In Josyula R. Rao and Berk Sunar,
editors, Cryptographic Hardware and Embedded Systems - CHES 2005, Tth
International Workshop, Edinburgh, UK, August 29 - September 1, 2005,
Proceedings, volume 3659 of Lecture Notes in Computer Science, pages 30—46.
Springer, 2005.

Benjamin Timon. Non-profiled deep learning-based side-channel attacks with
sensitivity analysis. IJACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):107—
131, 2019.

Danny van den Berg, Tom Slooff, Marco Brohet, Kostas Papagiannopoulos,
and Francesco Regazzoni. Data under siege: The quest for the optimal
convolutional autoencoder in side-channel attacks. In International Joint
Conference on Neural Networks, IJCNN 2028, Gold Coast, Australia, June
18-23, 2023, pages 1-9. IEEE, 2023.

Ping Wang, Ping Chen, Zhimin Luo, Gaofeng Dong, Mengce Zheng, Nenghai
Yu, and Honggang Hu. Enhancing the performance of practical profiling
side-channel attacks using conditional generative adversarial networks. CoRR,
abs,/2007.05285, 2020.

Sengim Karayalcin, Stjepan Picek and Guilherme Perin 25

[WP20]

[WPP22a]

[WPP22b)]

[WPP24]

[YJ24]

[YLMZ19)

[YZS+24]

[ZBC+23]

[ZBHV19)

Lichao Wu and Stjepan Picek. Remove some noise: On pre-processing of side-
channel measurements with autoencoders. TACR Trans. Cryptogr. Hardw.
Embed. Syst., 2020(4):389-415, 2020.

Lichao Wu, Guilherme Perin, and Stjepan Picek. The best of two worlds: Deep
learning-assisted template attack. TACR Trans. Cryptogr. Hardw. Embed.
Syst., 2022(3):413-437, 2022.

Lichao Wu, Guilherme Perin, and Stjepan Picek. I choose you: Automated
hyperparameter tuning for deep learning-based side-channel analysis. IEEE
Transactions on Emerging Topics in Computing, pages 1-12, 2022.

Lichao Wu, Guilherme Perin, and Stjepan Picek. Not so difficult in the
end: Breaking the lookup table-based affine masking scheme. In Claude
Carlet, Kalikinkar Mandal, and Vincent Rijmen, editors, Selected Areas
in Cryptography — SAC 2023, pages 82-96, Cham, 2024. Springer Nature
Switzerland.

Trevor Yap and Dirmanto Jap. Creating from noise: Trace generations using
diffusion model for side-channel attack. Cryptology ePrint Archive, Paper
2024/167, 2024. https://eprint.iacr.org/2024/167.

Guang Yang, Huizhong Li, Jingdian Ming, and Yongbin Zhou. CDAE: to-
wards empowering denoising in side-channel analysis. In Jianying Zhou, Xiapu
Luo, Qingni Shen, and Zhen Xu, editors, Information and Communications
Security - 21st International Conference, ICICS 2019, Beijing, China, De-
cember 15-17, 2019, Revised Selected Papers, volume 11999 of Lecture Notes
in Computer Science, pages 269-286. Springer, 2019.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue
Zhao, Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion models: A
comprehensive survey of methods and applications. ACM Comput. Surv.,
56(4):105:1-105:39, 2024.

Gabriel Zaid, Lilian Bossuet, Mathieu Carbone, Amaury Habrard, and
Alexandre Venelli. Conditional variational autoencoder based on stochastic
attacks. JACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(2):310-357, 2023.

Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Methodology for efficient cnn architectures in profiling attacks. TACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2020(1):1-36,
Nov. 2019.

https://eprint.iacr.org/2024/167

	Introduction
	Background
	Side-channel Analysis
	Algorithmic Noise vs. Measurement Noise
	Datasets
	Discriminative vs. Generative Models
	Denoising Diffusion Probabilistic Models (DDPMs)

	Related Work
	Pre-processing using Neural Networks
	Other Approaches using Generative Models in SCA

	Denoising Diffusion Probabilistic Models for SCA
	Network Architecture
	Hyperparameter Setup
	Proof of Concept
	Simulations
	Gradient Visualization

	Experimental Results
	Non-profiled Attacks
	Profiling Attacks

	Datasets with Algorithmic Noise
	Comparison with Denoising Autoencoders
	Discussion
	Conclusions and Future Works
	Hyperparameter Evaluation
	Architecture
	Training Time Hyperparameters
	Epochs and Number of Traces

