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Abstract
We present unconditionally perfectly secure protocols in the semi-honest setting for several

functionalities: (1) private elementwise equality; (2) private bitwise integer comparison; and
(3) bit-decomposition. These protocols are built upon a new concept called Shared Oblivious
Transfer (Shared OT). Shared OT extends the one-out-of-N String OT by replacing strings
with integers modulo M and allowing additive secret-sharing of all inputs and outputs. These
extensions can be implemented by simple local computations without incurring additional OT
invocations. We believe our Shared OT may be of independent interest.

Our protocols demonstrate the best round, communication, and computational complexities
compared to all other protocols secure in a similar setting. Moreover, all of our protocols involve
either 2 or 3 rounds.

1 Introduction

Secure two-party computation enables two parties, typically denoted as Alice and Bob, to compute
a function f using their individual private inputs xA and xB, while ensuring that only the function
output f(xA, xB) is revealed, without disclosing any further information. Garbled circuits offer
a generic method for implementing secure two-party computation, allowing the evaluation of any
Boolean circuit securely with a constant number of communication rounds, without revealing any
intermediate information beyond the output. Initially introduced by Yao [Yao86] and extended
to the multi-party scenario by Beaver, Micali, and Rogaway [BMR90], garbled circuits have since
seen improvements in efficiency through various garbling schemes, with several implementations
available in the literature.

General solutions for secure two-party (and multiparty) computation can often be inefficient.
Thus, the research community has focused on finding efficient methods to evaluate specific func-
tions. In this work, we propose customized protocols for three popular functions: integer equality
test, integer comparison and bit-decomposition. We consider the unconditionally perfectly secure
setting, which has received less attention recently [GLS19, YNKM24] compared to the computa-
tionally/probabilistic one [Yao82, DSZ15, RR21, DILO22, DDG+23, HKN24]. However, with the
rise of quantum computing, we believe that the security model emphasized in this work is crucial.
It does not make any assumptions about the computational power of an adversary to prove that
a protocol is secure. This means we do not have to worry about future attacks or technological
advancements.
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1.1 Contribution

This paper introduces novel approaches for evaluating functions for integer equality tests, integer
comparisons, and bit-decomposition. The context involves two parties, Alice and Bob, along with an
adversary possessing unconditional computational power but behaving in a semi-honest manner.
All the proposed protocols require only a small constant number of rounds (either 2 or 3) to
execute, are perfectly correct, and offer perfect security against any computationally unbounded
semi-honest adversaries. Compared to existing protocols in the same setting, our proposed protocols
demonstrate better efficiency, as shown in Table 1. For example, we reduce the complexity of the
secure integer equality from O(ℓ2) in existing protocols [LT13, Yu11, NO07] to O(ℓ log(ℓ)).

To construct these protocols, we introduce a new variation of the widely known OT protocol,
termed Shared OT (SOT). We show that SOT can be easily implemented utilizing a single instance
of 1-out-of-N OT over elements modulo M . Our SOT takes one round to execute, is perfectly
correct, and is perfectly secure against any computationally unbounded malicious adversaries.

1. Secure Integer Equality: The functionality takes two additively shared ℓ-bit elements as
input and outputs a shared bit indicating if the two elements are the same. To implement
this functionality, we propose two protocols: ΠEEQ and ΠP

EEQ. Both require 2 online rounds
for execution. However, ΠEEQ has online computation and communication complexity of
O(ℓ log(ℓ)), whereas ΠP

EEQ has complexity of O(ℓ), making it more efficient. Nevertheless,
ΠP

EEQ requires a pre-processing round with computation and communication complexity of
O(ℓ log(ℓ)), while ΠEEQ does not require pre-processing.

2. Secure Integer Comparison. the functionality takes the binary representation of two
ℓ-bit elements, a and b, additively shared modulo 2 as input, and outputs a shared bit
indicating whether a < b. We propose two protocols: ΠBLT and ΠP

BLT. Both protocols require
3 online rounds to be executed. However, ΠBLT has online computational and communication
complexity of O(ℓ log(ℓ) log(log(ℓ))), whereas ΠP

BLT has complexity of O(ℓ log(ℓ)), making it
more efficient. Nonetheless, ΠP

BLT necessitates a pre-processing round with computational
and communication complexity of O(ℓ log(ℓ) log(log(ℓ))), whereas ΠBLT does not require pre-
processing.

3. Secure bit-Decomposition. The functionality takes a single additively shared ℓ-bit element
β as input and outputs the binary representation of β additively shared modulo 2. We propose
two protocols for this purpose: ΠBD and Π′

BD. Protocol ΠBD requires 2 overall rounds and has
computational and communication complexity of O(ℓ3). Protocol Π′

BD necessitates 3 overall
rounds and has computational and communication complexity of O(ℓ2 log(ℓ)).

1.2 Related Work

Private integer equality, comparison, and bit-decomposition protocols have garnered significant
interest due to their wide applications such as privacy preserving machine learning [BIK+17,
NWKT24] and secure advertising [vBP24, MMT+24]. These protocols can be categorized based on
two criteria: whether the computational power is available to the adversary considered in the secu-
rity proofs and whether the protocol ensures perfect correctness. Perfect correctness denotes that
a protocol returns the correct result with a probability equal to one. Regarding the computational
power of the adversary, it means whether the adversary has unbounded computational power or is
limited to a polynomial-time algorithm.

Several works, such as [Yao82, BK04, Veu12, DSZ15, DDG+23, HKN24], present constructions
that assume the adversary has polynomial computational power, resulting in computationally secure
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solutions. Additionally, constructions with non-perfect correctness (also known as probabilistic
correctness) have been proposed in [SCJ13, YY12, LT13].

In this paper, for the sake of comparison, we solely consider related works that fulfill specific
criteria: they must be secure against unconditional adversaries, provide perfect correctness, require
only O(1) communication rounds between the parties, and work in the two-party setting. Protocols
ensuring unconditional security typically assume the existence of an ideal functionality or primi-
tive that enables the computation of non-trivial functions. For instance, [DFK+06, Rei09, NO07]
assume the existence of an unconditional secret shared multiplication protocol. Alternatively,
[LT13, RT10, Yu11] relies on the existence of an arithmetic black-box (ABB) [DN03] or OT. The
complexity of such protocols is typically assessed in terms of the number of invocations to the cryp-
tographic primitive. For example, the count may include invocations to a secret shared multiplica-
tion functionality, and the round complexity is measured by the number of sequential invocations.
Additionally, some protocols are divided into two phases, termed offline and online.

Unconditional Secure Equality. The first relevant work to our paper is [DFK+06]. Subse-
quently, a protocol presented in [NO07] improved the previous result to achieve O(ℓ) multiplications
and reduced the number of communication rounds to 8. The state-of-the-art protocols of uncon-
ditional secure equality are [LT13] and [Yu11]. Both execute O(ℓ) shared multiplications overall,
perform O(1) shared multiplications during their online phase, and require 2 rounds for their online
phase. The difference lies in the number of rounds needed for the offline phase: while the protocol
proposed in [Yu11] requires 9 offline rounds, the one in [LT13] requires only O(1) rounds.

Unconditional Secure Comparison. The first solution to the private comparison problem that
aligns with our scenario is described in [DFK+06]. It requires a linear number of invocations of the
shared multiplication protocol. Nishide and Ohta improved the communication round complexity
to 2 offline and 6 online rounds in [NO07], while still requiring a linear number of shared multipli-
cations. Reistad [Rei09] proposes a solution with comparable efficiency to that in [NO07]. Later,
[Yu11] utilizes a sublinear amount of shared multiplication, resulting in a secure comparison pro-
tocol that requires O(ℓ log(ℓ)) shared multiplications and 7 rounds overall, with 3 of these rounds
being offline and 4 online.

Unconditional Secure Bit-decomposition. The initial solution to the bit-decomposition prob-
lem satisfying our previously stated requirements was also introduced in [DFK+06]. Subsequently, a
protocol outlined in [NO07] enhanced the expected number of rounds needed for bit-decomposition
while maintaining the same asymptotic number of shared multiplication executions as in [DFK+06].

Toft later introduced a new protocol in [Tof09], which improved upon every efficiency aspect of
prior results. This protocol requires an almost-linear amount of shared multiplications and 23 + c
expected communication rounds, where c > 1 can be adjusted to achieve a trade-off between com-
munication and round efficiency (increasing c results in fewer data being transferred but requires
more rounds). Additionally, Toft and Reistat proposed an even more efficient bit-decomposition
protocol in [RT10], requiring a linear number of shared multiplications and 12 rounds to be per-
formed. However, unlike previous results, this protocol does not offer perfect security.
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2 Preliminaries

2.1 Notation

In all proposed protocols, the input and output are “subtractively” shared elements modulo M ,
where M ∈ Z≥2. Let M ∈ Z≥2 and a ∈ ZM . We use JaKM to denote the subtractive sharing
modulo M of a. Alice’s and Bob’s respective shares of JaKM are denoted as JaKA

M ∈ ZM and
JaKB

M ∈ ZM , and we have JaKB
M − JaKA

M = a (mod M). However, we use the term additive secret
sharing interchangeably with ”subtractively” shared elements, as the two schemes are essentially
the same.

Since we only study two-party protocols in this work and consistently refer to the parties as
Alice and Bob, we only require notation to represent these two parties’ shares.

The first convention we introduce is to only explicitly display an expression’s modulo if it is
not explicit from the context. For example, if a, b ∈ ZM , then a + b, a − b, a · b are meant to be
interpreted as a + b (mod M), a− b (mod M), and a · b (mod M), respectively.

Another convention is how we index vectors and binary expansions. Let a ∈ ZM and a⃗ ∈
Z⌈log2(N)⌉

2 , where a⃗ is the binary expansion of a. We index the vectors in this paper starting from
0, and the least significant bit (LSB) of a binary expansion a⃗ is a⃗0. Also, when a⃗ ∈ Z⌈log2(N)⌉

2 is the
binary expansion of a ∈ ZM and b⃗ ∈ Z⌈log2(N)⌉

2 is the binary expansion of b ∈ ZM , we use a⃗ < b⃗ to
denote a < b.

Additionally, when adding a scalar modulo M to a vector of elements modulo M , let a ∈ ZM

and v⃗ ∈ ZN
M , where N ∈ Z≥1. In this paper, when we write v⃗′ = v⃗ + u, we mean that v⃗′

i = v⃗i + u
(mod M), for i ∈ 0, 1, . . . , N − 1.

We define Onen(i, a), where 0 ≤ i ≤ n − 1 and 0 ≤ a ≤ n − i, which function outputs a
vector v⃗ ∈ Zn

2 containing a number of one, starting from position i, and containing zero in all the
remaining positions. For example, One5(2, 3) = (0, 0, 1, 1, 1) and One4(0, 1) = (1, 0, 0, 0). Formally,
if v⃗ = Onen(i, a), then

v⃗j =
{

1, if i ≤ j < i + a

0, otherwise
, for j ∈ {0, 1, . . . , N − 1}

We define cshiftN (v⃗, x), where v⃗ ∈ ZN and x ∈ ZN , which function cshift outputs a vector v⃗′,
where v⃗′ is the vector v⃗ with its values shifted x positions, from position 0 towards position N − 1.
For example, if v⃗ = (1, 2, 3, 4), then cshift4(v⃗, 2) = (3, 4, 1, 2). More precisely, if v⃗′ = cshift(v⃗, x),
then v⃗′

i = v⃗i−x (mod N), for i ∈ {0, 1, . . . , N − 1}.

2.2 Unconditional Security

Unconditional security refers to a level of security that remains secure regardless of the computa-
tional power of an adversary. Unlike computational security, which relies on assumptions about
computational limitations, unconditional security ensures defense against all possible attacks, in-
cluding those involving unlimited computational resources. This becomes particularly relevant in
the context of quantum computing.

2.3 Commodity-Based Cryptography

First introduced by Beaver in [Bea97], Commodity-Based Cryptography is a paradigm used to de-
sign efficient secure multi-party computation protocols. In this paradigm, there are both servers and
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clients, with servers assisting clients in executing cryptographic primitives. The level of corruption
tolerated within a subset of servers may differ between protocols, as can the set of clients.

The Commodity-Based paradigm not only defines the set of players but also restricts what
information these players have about each other and how they interact. This is what sets this
paradigm apart from other client-server models. First, a server should not have any information
about any other server, including whether other servers exist or not. Second, any server-client pair
must interact in a request-response manner where the client sends the request. Third, any response
sent to the client must be independent of the client’s input and of any previous communication
between the client and the server.

By imposing these restrictions, the paradigm offers several advantageous properties. Clients
are not required to provide sensitive data to servers, minimizing the trust that clients need to
have in servers. Additionally, the paradigm is scalable since multiple servers can be employed
simultaneously. Utilizing many servers also enhances confidence that at least a portion of the
material provided by the servers is secure and correct.

In this work, these servers simulate the existence of a trusted party that generates a random
Beaver triple or oblivious transfer locally and then distributes this correlated randomness to the
parties that will execute the desired protocol. For simplicity, we refer to a trusted initializer that
generates the desired correlated randomness instead of explicitly mentioning a group of servers.

2.4 Oblivious Transfer (OT)

OT is a widely used cryptographic primitive essential for secure computation, first introduced by
Rabin [Rab03]. In OT, a sender having two input strings (x0, x1) interacts with a receiver who has
an input choice bit b. The receiver securely learns xb without gaining any information about x1−b,
ensuring privacy. Simultaneously, the sender remains oblivious to the value of b.

In this paper, we work with a slightly different variant of OT, called 1-out-of-N OT (OT) over
elements modulo M In 1-out-of-N OT over elements modulo M , we have a party named Bob
providing a choice index c modulo N as input, while a party named Alice provides an options
vector m⃗ ∈ ZN

M . Bob receives m⃗c as output, while Alice receives nothing. In this work, the vector
m⃗ consists of elements modulo M . While an OT variant [KK13, KKRT16], where the sender
transmits messages as bit-strings, is popular in the literature, we found it more convenient to work
with messages modulo M when constructing our new proposed protocols. We formally present the
functionality for 1-out-of-N OT over elements modulo M as below.

Functionality FOTN
M

• Upon receiving a message (choose, c) from Bob: Ignore any subsequent (choose, c) mes-
sages. If c ̸∈ ZN , then send (invalid input) to both parties and halt. Otherwise, store
c internally and send the public delayed message (chosen) to Alice.

• Upon receiving a message (propose, m⃗) from Alice: Ignore any subsequent (propose, m⃗)
messages. If it isn’t the case that m⃗ ∈ ZN

M and c is currently internally stored, send
(invalid input) to both parties and halt. Otherwise, send additive shares modulo M of
m⃗c to Alice and Bob.
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Figure 1: Difference between input and output structure of 1-out-of-N binary OT and 1-out-of-N
SOT over elements modulo M .

By generalizing the OT protocol proposed by Rivest, in [Riv99], in a straightforward manner,
it is possible to implement a protocol that fulfills the description for FOTN

M
while providing perfect

security in the malicious setting, when assuming the existence of a trusted initializer. Thus, our
protocol can be performed in one single round and the amount of bits transferred between the
two parties and the computation required to be performed by the two parties are both equal to
O(log2(N) + N · log2(M)). Consequently, this yields an equivalent amount of transferred bits and
computation to that performed by the Trusted Initializer.

3 Shared OT

3.1 Functionality

We now present a new variant of OT, termed Shared OT. This primitive extends the 1-out-of-N
OT [KK13, KKRT16] to operate over elements modulo M . Our extension introduces two significant
differences from traditional OT: (1) the selection index input is additively shared between the two
parties, Alice and Bob, and (2) the output is also additively secret shared between them.

Figure 1 illustrates the differences in input and output structures between 1-out-of-N Bit OT
and 1-out-of-N Shared OT (SOT) over elements modulo M . In Shared OT, Alice inputs an options
vector m⃗, which contains N elements modulo M . Alice and Bob also input their respective shares
of an index c modulo N . The output of SOT is the additive shares modulo M of m⃗c to both Alice
and Bob, ensuring that neither party learns additional information. Note that the options vector m⃗
is not shared between the parties; only Alice knows its value. We formally present the functionality
of SOT as follows.

Functionality FSOTN
M

• Upon receiving a message (choose, JcKB
N ) from Bob: Ignore any subsequent (choose, JcKB

N )
messages. If JcKB

N ̸∈ ZN , then send (invalid input) to both parties and halt. Store JcKB
N

and send the public delayed message (chosen) to Alice.

• Upon receiving a message (sample share) from Alice: Ignore any subsequent messages
(sample share). Sample Jm⃗cKA

M ∈R ZM , store it internally and send it to Alice.
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• Upon receiving a message (propose, JcKA
N , m⃗) from Alice: Ignore any subsequent

(propose, JcKA
N , m⃗) messages. If it is not the case that m⃗ ∈ ZN

M , JcKA
N ∈ ZN and Jm⃗cKA

M

is currently stored, send (invalid input) to both parties and halt. If it is the case, send
Jm⃗cKB

M = m⃗c + Jm⃗cKA
M (mod M) to Bob.

3.2 Protocol

We implement the ΠSOT protocol for Shared Oblivious Transfer (SOT) using a single instance of
FOTN

M
and performing only basic local operations (such as cyclic shifts of the vector m⃗, sampling,

and addition modulo an integer) on the protocol’s inputs. More detaily, the protocol proceeds as
follows:

• Alice and Bob execute an instance of FOTN
M

. Bob provides JcKB
N as the choice index, while

Alice provides the input vector m⃗′, defined as m⃗′ = cshiftN (m⃗, JcKS
N ) + u, where u ∈R ZM is

randomly sampled by Alice.

• As a result of executing FOTN
M

, Bob receives m⃗′JcKB
N and Alice retains u, since she sampled it.

• These two values, m⃗′JcKB
N and u, serve as the respective outputs for Alice and Bob in the

ΠSOT protocol.

From this brief description, we can explain the main arguments behind the correctness and
security of ΠSOT.

Correctness. Given the inputs provided to FOT, during the execution of ΠSOT, Bob receive m⃗′
JcKR

N
.

Based on the definition of cshiftN and the construction of m⃗′, this implies that Bob receives

m⃗′
JcKR

N
= m⃗JcKR

N −JcKS
N (mod N) + u = m⃗c + u (mod M)

Since Bob receives m⃗c + u (mod M) as the output of FOT and Alice sampled u in Step 1 of the
protocol, both Bob and Alice end up with an additive share modulo M of m⃗c when they finish
executing ΠSOT.

Security. Assuming the existence of a protocol that successfully implements FOT in the malicious
security setting, we now explain why the protocol ΠSOT implements the functionality FSOT in the
malicious setting. The security of FSOT comes from the ability of the simulator to read the inputs
provided by the adversary to FOT and its other ability to map these inputs into FSOT inputs that
make FSOT behave as an FOT that received the inputs chosen by the adversary. A description of
how the mapping between the two types of inputs can be performed is found in the security proof
for ΠSOT in Section 3.3, along with the corresponding security theorem.

Now, we present the complete and formal description for the protocol ΠSOT.

Protocol ΠSOTN
M

Parameters:
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• The ideal functionality FOTN
M

described in Section 2.4

• The function cshift in Section 2.1

Inputs:

• Bob inputs JcKB
N .

• Alice inputs m⃗ ∈ ZN
M and JcKA

N .

Protocol Steps:

1. Alice locally samples u ∈R ZM .

2. Alice locally computes m⃗′ = cshiftN (m⃗, JcKA
N ) + u, where cshiftN (m⃗, x) denotes a cyclic

shift of x positions of m⃗’s elements.

3. The parties execute m⃗c + u,⊥ ← FOTN
M

(m⃗′, JcKB
N )

4. Output Jm⃗cKA
M = u to Alice and Jm⃗cKB

M = m⃗c + u to Bob.

By analyzing the description of this protocol and assuming the correctness of its security proof
in Section 3.3, we can conclude that, despite being a more flexible primitive, Shared OT is as
efficient as OT while also being secure in the malicious setting. The protocol ΠSOT requires the
same number of rounds and transfers the same amount of bits between the two parties as the
protocol implementing FOTN

M
, with negligible computational overhead. Additionally, note that our

primitive can be pre-computed in the trusted initializer model as proposed by Rivest [Riv99].

3.3 Security Proof

We formally present the security of our SOT protocol in Theorem 1. We prove it by showing that
in a hybrid world, where the parties have access to FOT, the execution of ΠSOT perfectly simulates
the ideal functionality FSOT, even in the presence of a malicious adversary A. Mathematically,

∀A ∃S ∀E : HYBRIDFOT
ΠSOT,A,E ≡ IDEALFSOT,S,E

where S is the simulator and E is the environment. From now on, the variables in the simulated
scenario will be written with a prime symbol (′).

Theorem 1. Protocol ΠSOTN
M

is correct and securely implements the functionality FSOTN
M

against
malicious adversaries in the FOT-hybrid model.

3.3.1 Simulation: Alice Corrupted and Bob Honest.

In this scenario, Alice is corrupted, meaning the simulator S can read her inputs (JcKA
N and m⃗ ∈ ZN

M )
and her internal state. The simulator S runs an internal copy A′ of the hybrid-world adversary A,
where all interactions between S and A′ replicate those that Alice has with other parties (e.g., FOT
and the environment E). The behavior of the simulator is described as follows:

Simulation Description
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1. The environment E delivers the inputs JcKA
N and m⃗ to the simulator S, this action activates

S. Upon its activation, S performs two actions. First, S delivers JcKA
N and m⃗ to A′. Second,

S sends a message (sample share) to FSOT, awaits for the response Jm⃗cKA
M and stores it

internally.

2. Upon receiving a message (chosen) or (invalid input) from FSOT, relay the message to A′

as if FOT had sent it.

3. Upon receiving a message (propose, v⃗) from A′, where v⃗ ̸∈ ZN
M , send (propose, 0, v⃗) to FSOT,

causing FSOT to send (invalid input) messages to both parties and halt.

4. Upon receiving a message (propose, v⃗) from A′, where v⃗ ∈ ZN
M , S computes v⃗′ = v⃗ − Jm⃗cKA

M

(mod M) and sends (propose, 0, v⃗′) to FSOT. Note that this causes Bob to receive v⃗JcKB
N

as
output from FSOT, which is the behaviour of FOT.

5. Upon receiving Alice’s output from FSOT, S doesn’t deliver it.

Indistinguishability

We now prove that no environment is able to distinguish between hybrid and ideal executions.
We divide this proof in two parts. First, we show that the simulator succeeds in simulating the
protocol, and second, we show that the messages exchanged during the hybrid and ideal executions
are indistinguishable.

Part I: On the Simulation

• The adversary A′ can misbehave in three ways. The first one is to send a message (propose, v⃗)
before receiving a message (chosen), which causes poth parties to receive (invalid input)
messages in both worlds (hybrid and ideal). The second one is to send a message (propose, v⃗)
after receiving a message (chosen), but where v⃗ ̸∈ ZN

M , which again causes poth parties to
receive (invalid input) messages in both worlds. The third is to send a message that does
not follows the template (propose, v⃗), which simply does not cause any effect in both worlds.

• The adversary can also interact with the FOT as expected that is, by sending a message
(propose, v⃗) after receiving a message (chosen), where v⃗ ∈ ZN

M . In the hybrid world, this
will cause Alice and Bob to execute an FOT where the selection index is JcKB

N and the options
vector is v⃗. But in the ideal world, S maps v⃗ to v⃗′ and executes FSOT over the inputs JcKB

N ,
JcKA

N := 0 and v⃗′. This input mapping is made in order to make the FSOT behave as the FOT
does in the hybrid world.

Part II: On the Probability Distributions

• First, we demostrate that the (chosen) message is delivered to Alice if and only if Bob has
sent the message (choose, u), where u ∈ ZN . This obviously happens, because S relays the
message (chosen) if and only if it received (chosen) from FSOT.

• Second, we demostrate that Bob’s output follows the same distribution regardless of the
world in question (hybrid or ideal). Let it be the case that Bob and Alice sent the messages
(choose, u) and (propose, v⃗), respectively, where u ∈ ZN and v⃗ ∈ ZN

M . This means that in
the hybrid world, Bob will receive the output v⃗u of FOT(u, v⃗). This also means that in the
ideal world, Bob receives the output Jv⃗′

cKB
M of FSOT(JcKN , v⃗′), where JcKA

N = 0, JcKB
N = u and

v⃗′ = v⃗−Jv⃗′
cKA

M (mod M). But based on how the shares of c and the vector v⃗′ are constructed,
we know that c = u and Jv⃗′

cKB
M = v⃗c, which implies that Bob also receives v⃗u in the ideal

world.
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3.3.2 Simulation: Alice Honest and Bob Corrupted.

In this scenario, Bob is corrupted, which means that the simulator S can read his input JcKB
N

and his internal state. Like in the last simulation case, S runs an internal copy A′ of the hybrid-
world adversary A, where all the interations between S and A′ are those that Bob has with other
parties(FOT and E). The behaviour of S is described next.

Simulation Description

1. The environment E delivers the input JcKB
N to the simulator S, this action activates S. Upon

its activation, S delivers JcKB
N to A′.

2. Upon receiving a message (invalid input) from FSOT, relay the message to A′ as if FOT had
sent it.

3. Upon receiving a message (choose, u) from A′, relay the message to FSOT.

4. Upoen receiving the output Jm⃗cKB
M from FSOT, relay the message to A′ as if FOT had sent it.

Indistinguishability

We now prove that no environment is able to distinguish between hybrid and ideal executions in
this simulation case. We structure the proof for this simulation case like we did for the last one.

Part I: On the Simulation

• The adversary A′ can misbehave in two ways. The first one is by sending messages that do
not match the pattern (choose, u), which in both worlds (hybrid and ideal) does not cause
any effect. The second one is by sending a message (choose, u) where u ̸∈ ZN , which in both
worlds causes both parties to receive (invalid input) messages.

• The adversary can also interact with FOT as expected, by sending a message (choose, u) where
u ∈ ZN . By simply relaying (choose, u) to FSOT, the simulator S makes the ideal execution
behave exactly the same as the hybrid one.

Part II: On the Probability Distributions

• In the case where the adversary A′ sends a message (choose, u), where u ∈ ZN , the behaviour
of the protocol will be the same as if A′ had acted honestly and the environment E had given
A′ the input u. By simply relaying the message (choose, u) to FSOT, the simulator S is
simulating the behavior of E delivering u to A′ and A′ acting honestly. Based on this, we can
see that S simulates all the probability distributions perfectly.

3.3.3 Simulation: Both Alice and Bob are Honest.

In this simulation case, the simulator S doesn’t have access to the parties inputs or internal in-
formation. In order to simulate the message transcript, S needs only to run an internal copy of
the protocol using arbitrary inputs. Regarding the outputs, S just lets the ideal functionality FSOT
deliver the prescribed outputs to Alice and Bob. By acting in this way, S makes hybrid and ideal
executions perfectly indistinguishable from each other, when the adversary acts passively.
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3.3.4 Simulation: Both Alice and Bob are Corrupted.

In this scenario both parties are corrupted, which means that the simulator S has access to the
internal state of both parties, including their input and randomness. This implies that S can com-
pletely and perfectly simulate the protocol. Therefore, no envionment E will be able to distinguish
between the hybrid and ideal executions.

4 Applications

In this section, we start by introducing a relaxed variant of the equality test, called Element
Equality* and denoted as EEQ∗. Utilizing this concept as the building block, we construct secure
protocols for integer equality, comparison, and bit-decomposition in the semi-honest setting.

4.1 Element Equality*

Let a, b ∈ ZN represent Alice’s and Bob’s (shared) inputs, respectively. In this section, we define
two slightly different functions for determining equality:

EEQ(a, b) =
{

1 if a = b

0 if a ̸= b
and EEQ∗(a, b) =

{
0 if a = b

i ̸= 0 if a ̸= b

Here, i is some integer, where 0 < i < M , and M is a protocol parameter. We first introduce
a protocol for evaluating EEQ⋆. In the subsequent section, we demonstrate how EEQ can be derived
straightforwardly from EEQ⋆. Below, we present the functionality corresponding to computing the
function EEQ∗. Note that the modulus of the shared inputs and the shared output are different.

Functionality: c = FEEQ∗
N,M

(a, b) with a, b ∈ ZN , c ∈ ZM

Let N ≥ 2 and M > ⌈log2(N)⌉ be integers. The functionality FEEQ∗
ℓ

runs with the parties Alice
(A) and Bob (B), and is parameterized by N and M .

• Input: Upon receiving a message from a party containing its shares of JaKN and JbKN ,
check if both shares belong to ZN . If one of them does not belong, abort. Otherwise,
record the shares, ignore any subsequent message from that party and inform the other
parties about the receival.

• Output: Upon receiving the shares of both parties, compute JdKN , where JdKN = JaKN −
JbKN . After computing JdKN , set c as the Hamming distance between JdKA

N and JdKB
N .

Then, return to Alice and Bob their respective shares of JcKM . Note that c = 0 if a = b
and 1 ≤ c ≤ ⌈log2(N)⌉, otherwise.

We implement a protocol for EEQ∗ using Shared OTs and elementary local operation over shared
elements. At the high-level idea, let JdKN = JaKN − JbKN . Since d = 0 iff JdKA

N = JdKB
N , we can just

privately compute h, the Hamming distance between the binary representations of JdKA
N and JdKB

N

to obtain the desired output as specified by the functionality, given that d = 0 iff a = b and that
h = 0 iff JdKA

N = JdKB
N . The value of h can be obtained by computing the weight of the bitwise

11



XOR of JdKA
N and JdKB

N , which implies that the underlying modulus must be changed from 2 to
M > log N to perform this addition. We rely on SOT for the modulus conversion.

Protocol ΠEEQ∗
N,M

Set ℓ = ⌈lg N⌉.

1. Party X ∈ {A, B} locally computes JdKX
N = JaKX

N − JbKX
N (mod N)

2. Alice locally computes the binary expansion u⃗ ∈ Zℓ
2 of JdKA

N .

3. Bob locally computes the binary expansion v⃗ ∈ Zℓ
2 of JdKB

N .

4. Party X ∈ {A, B} locally computes Jx⃗iKX
2 = Ju⃗iKX

2 ⊕ Jv⃗iKX
2 , for 0 ≤ i ≤ ℓ− 1.

5. Execute Jx⃗iKM ← FSOT2
M

((0, 1), Jx⃗iK2), for 0 ≤ i ≤ ℓ− 1. (This converts Jx⃗iK2 to Jx⃗iKM )

6. Party X ∈ {A, B} locally computes JcKX
M = ∑ℓ−1

i=0JxiKX
M (mod M). (Here, c is the Ham-

ming distance between JdKA
N and JdKB

N )

Theorem 2. Protocol ΠEEQ∗
N,M

is correct and securely implements the functionality FEEQ∗
N,M

against
semi-honest adversaries in the commodity-based model.

Proof. Correctness: From the definition of ΠEEQ∗ , we know that u⃗ and v⃗ are the binary expansion
of JdKA

N and JdKA
N , respectively, and that x⃗i = u⃗i⊕ v⃗i for 0 ≤ i ≤ ℓ− 1. Based on this, we have that

the value of c, computed on step 6, is the Hamming distance between JdKA
N and JdKB

N . Thus, ΠEEQ∗

is correct.
Security: The simulation is very simple and proceeds as follows. The simulator S runs inter-

nally a copy of the adversary A and reproduces the real world protocol execution perfectly for A.
In order to do this, S simulates the protocol execution with dummy inputs for the uncorrupted par-
ties. The simulator’s leverage over A and E is the fact that S can perfectly simulate the outputs of
a FSOTN

M
, since its outputs distributions are always known. Considering this, it is clear that we can

simulate the message exchanges that happen during the protocol, for any of the two parties. Now
regarding the protocol’s output, by the end of the protocol’s simulation, S will have the corrupted
party’s shares of JaKN and JbKN , which means S can fix these values in FEEQ∗

N,M
. This will make the

protocol’s output compatible with the inputs chosen by E . Based on this, we can conclude that no
enviroment E can distinguish the real and ideal worlds.

ΠP
EEQ∗

N,M
with Pre-processing Phase. We observe that the only interaction in ΠEEQ∗

N,M
occurs

in Step 5. Therefore, we can replace this interaction with another one that can be performed in
advance during a preprocessing phase by implementing a randomized SOT2

M . However, in doing so,
we must take additional care to use the random values computed during the preprocessing phase to
convert Jx⃗iK2 to Jx⃗iKM . This conversion is carried out in steps 7 through 9 of the following protocol.

Protocol ΠP
EEQ∗

N,M

12



1. Party X ∈ {A, B} locally samples Jr⃗iKX
2 ∈R Z2, for 0 ≤ i ≤ ℓ− 1.

2. Execute Jr⃗iKM ← FSOT2
M

((0, 1), Jr⃗iK2), for 0 ≤ i ≤ ℓ− 1. (Convert Jr⃗iK2 to Jr⃗iKM )

3. Party X ∈ {A, B} locally computes JdKX
N = JaKX

N − JbKX
N (mod N)

4. Alice locally computes the binary expansion u⃗ ∈ Zℓ
2 of JdKA

N .

5. Bob locally computes the binary expansion v⃗ ∈ Zℓ
2 of JdKB

N .

6. Party X ∈ {A, B} locally computes Jx⃗iKX
2 = Ju⃗iKX

2 ⊕ Jv⃗iKX
2 , for 0 ≤ i ≤ ℓ− 1.

7. Party X ∈ {A, B} locally computes and reveals Jg⃗iKX
2 = Jx⃗iKX

2 ⊕ Jr⃗iKX
2 , for 0 ≤ i ≤ ℓ− 1.

(Reveals g⃗i = x⃗i ⊕ r⃗i)

8. Alice locally computes Jx⃗iKA
M = Jr⃗iKA

M − 2 · g⃗i · Jr⃗iKA
M (mod M), for 0 ≤ i ≤ ℓ − 1.

(Jx⃗iKA
M = Ju⃗i ⊕ v⃗iKA

M )

9. Bob locally computes Jx⃗iKB
M = g⃗i + Jr⃗iKB

M − 2 · g⃗i · Jr⃗iKB
M (mod M), for 0 ≤ i ≤ ℓ − 1.

(Jx⃗iKB
M = Ju⃗i ⊕ v⃗iKB

M )

10. Party X ∈ {A, B} locally computes JcKX
M = ∑ℓ−1

i=0Jx⃗iKX
M (mod M). (c is the hamming

distance between JdKA
N and JdKB

N )

Theorem 3. Protocol ΠP
EEQ∗

N,M
is correct and securely implements the functionality FEEQ∗

N,M
against

semi-honest adversaries in the commodity-based model.

Proof. Correctness: From step 3 through 5 of the protocol’s definition, we can see that u⃗ and v⃗
are the binary expasion of JdKA

N and JdKA
N , respectively. From step 6 through 7, we can also see that

Jx⃗iK2 = Ju⃗i ⊕ v⃗iK2 and Jg⃗iK2 = Jx⃗i ⊕ r⃗iK2, for 0 ≤ i ≤ ℓ− 1. Based on this and step 8, we have that
Jx⃗iKM = Jg⃗i + r⃗i − 2 · g⃗i · r⃗iKM = Jg⃗i ⊕ r⃗iKM = Jx⃗iKM for 0 ≤ i ≤ ℓ− 1. Given this and step 10, we
can see that c is the Hamming distance between JdKA

N and JdKB
N . Thus, protocol ΠP

EEQ∗ is correct.
Security: The reasoning behind the security proof for this protocol is very similar to the

previous proof. The only difference is the levarage that the simulator has over A and E . In the
case of ΠEEQ∗

N,M
, the leverage the simulator has over A and E is its capacity to perfectly simulate

the FSOTN
M

’s outputs, because the distribution of the outputs is always the same. In the case of
ΠP

EEQ∗ , the simulator is also capable of perfectly simulating the outputs of the FSOTN
M

s, also for the
same reasoning, but in this case, the simulator can leverage the fact that it will always know the
distribution for the values of d⃗, the vector revealed in the 8th step.

4.2 Element-wise Equality

Below is the ideal functionality FEEQN
of Element-wise Equality. We observe that the output

modulus M always equals 2 and is therefore omitted from the notation.

Functionality FEEQN

13



The functionality FEEQN
runs with the parties Alice and Bob, and is parameterized by an integer

N ≥ 2.

• Input: Upon receiving a message from a party containing its shares of JaKN and JbKN ,
check if both shares belong to ZN . If one of them does not belong, abort. Otherwise,
record the shares, ignore any subsequent message from that party and inform the other
parties about the receival.

• Output: Upon receiving both parties shares, reconstruct a and b. After reconstruction,
set c = 1 if a = b, otherwise set c = 0. Then, return to Alice and Bob their respective
shares of JcK2.

It is easy to see that EEQ can be derived from EEQ∗ by remapping the possible outputs as follows:
0 maps to 1, while any value greater than 0 maps to 0.

This remapping can be implemented by employing a randomized 1-out-of-N OT with the choice
vector m⃗ = (1, 0, . . . , 0) and the choice value c. In our notation, this corresponds to a call to SOTM

2
with inputs OneM (0) and h, where M = ℓ + 1 and h represents the output of EEQ∗(a, b).

We use this strategy to construct two protocols: ΠEEQN
and ΠP

EEQN
. The only difference between

these two constructions is that while ΠEEQN
uses ΠEEQ⋆ as a subprotocol, ΠP

EEQN
uses ΠP

EEQ⋆ as a
subprotocol. The full description of ΠEEQN

together with its correctness and security proofs can be
found below. The description of ΠP

EEQN
with its respective proofs can be found in Appendx A.

Protocol ΠEEQN

Set ℓ = log⌈N⌉.

1. JhKℓ+1 ← ΠEEQ∗
N,ℓ+1

(JaKN , JbKN ). (This means h = 0 ⇐⇒ a = b)

2. Execute JcK2 = FSOTℓ+1
2

(Oneℓ+1(0), JhKℓ+1). (c = 1 if h = 0, o.w., c = 0)

Theorem 4. Protocol ΠEEQN
is correct and securely implements the functionality FEEQN

against
semi-honest adversaries in the commodity-based model.

Proof. Correctness: The correctness of this protocol follows directly from the correctness of
ΠEEQ∗

N,M
and the fact that we will have c = 1 iff h = 0.

Security: By making some small alterations to the security proof of ΠEEQ∗
N,M

, we can also prove
the security of the protocol ΠEEQN

. In the case of ΠEEQ∗
N,M

, the leverage the simulator has over A
and E is its capacity to perfectly simulate the FSOTN

M
’s outputs, because the distribution of the

outputs is always the same. In the case of ΠEEQN
, the simulator has higher leverage over the A and

E , because it cannot only perfectly simulate the outputs of FSOTN
M

s but also perfectly simulate the
output of the protocol used to instantiate FEEQ∗

NM
, since the distribution of the output values is

always known.
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4.3 Bitwise Integer Comparison

The bitwise integer comparison of two secret shared elements (a and b) is defined as follows:

BLT(a, b) =
{

1 if a < b

0 if a ≥ b

Note that a and b b can be shared either as elements modulo an integer N or by sharing the bits of
their binary representation modulo 2. In this context, we consider the latter approach. This leads
to the following formal definition for the private bitwise comparison functionality FBLTℓ

.

Functionality FBLTℓ

FBLTℓ
runs with the parties Alice and Bob, and is parametrized by the length ℓ of the bit arrays

being compared.

• Input: Upon receiving a message from a party with its shares of J⃗aK2 and J⃗bK2, check
if the shares of a⃗ and b⃗ are both in Zℓ

2. If one of them is not, abort. Otherwise, record
the shares, ignore any subsequent message from that party and inform the other parties
about the receipt.

• Output: Upon receiving the shares of both parties, reconstruct a⃗ and b⃗. After recon-
struction, perform the bitwise comparison of a⃗ and b⃗, and set c = 1 if a⃗ < b⃗, otherwise
set c = 0. Then, return shares of JcK2 to Alice and Bob.

Using Shared OTs and the previously described protocols ΠEEQ∗ and ΠP
EEQ∗ , we present two pro-

tocols that implement FBLTℓ
, denoted by ΠBLTℓ

and ΠP
BLTℓ

. First, we provide an intuitive explanation
of the idea behind these protocols, which is to use Shared OTs to compute the following boolean
expression privately:

c = (
ℓ−1⊕
i=0

b⃗i ∧ s⃗i)⊕ (
ℓ−2⊕
i=0

b⃗i ∧ s⃗i+1)

which we arrived at by interpreting the “algorithm being privately evaluated” through the private
comparison protocol proposed in [DFK+06], and further adapted to leverage our SOT primitive.

To intuitively understand why the previously described Boolean expression computes the desired
comparison, we first define s⃗ and understand its behavior when a⃗ = b⃗ and when a⃗ ̸= b⃗. We define
s⃗ as follows:

s⃗i =
ℓ−1∨
j=i

a⃗j ⊕ b⃗j , for i ∈ {0, 1, . . . , ℓ− 1}

When a⃗ = b⃗, the behavior of s⃗ is straightforward to predict because in this case, a⃗i ⊕ b⃗i = 0
for i ∈ {0, 1, . . . , ℓ− 1}. This implies that if a⃗ = b⃗, then s⃗i = 0 for i ∈ {0, 1, . . . , ℓ− 1}. Now, let’s
consider the scenario where a⃗ ̸= b⃗. Since a⃗ ̸= b⃗, there exists exactly one most significant bit position
k where a⃗i ⊕ b⃗i = 1 (where bits a⃗i and b⃗i differ). By using k, we can understand the behavior of s⃗
when a⃗ ̸= b⃗ by dividing the vector into three sections: the section between 0 and k− 1, the section
between k + 1 and ℓ− 1, and the section that only contains s⃗k. Now, we can analyze each section
separately.
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Let’s begin with the section between k + 1 and ℓ − 1, which represents the most significant
section. Since k is the position of the most significant pair of bits where a⃗i ⊕ b⃗i = 1, it follows
that a⃗j ⊕ b⃗j = 0 for j ∈ {k + 1, . . . , ℓ− 1}. Given this observation and the definition of s⃗, we find
that s⃗i = 0 for i ∈ {k + 1, . . . , ℓ − 1}, indicating that all positions of s⃗ between k + 1 and ℓ − 1
contain only 0’s. Now, let’s turn our attention to the section containing only s⃗k. Since a⃗k⊕ b⃗k = 1,
according to the definition of s⃗, we have s⃗k = 1.

Next, let’s examine the behavior of the final section of the vector s⃗, spanning from 0 to k − 1.
To better understand this section, let’s rewrite the definition of s⃗ as follows, for i ∈ {0, 1, . . . , k−1}:

s⃗i =
(

k−1∨
i=0

a⃗i ⊕ b⃗i

)
∨
(
a⃗k ⊕ b⃗k

)
∨

 ℓ−1∨
i=k+1

a⃗i ⊕ b⃗i


Since a⃗k ⊕ b⃗k = 1, we can observe that s⃗i = 1 for i ∈ {0, 1, . . . , k − 1}. Based on the behavior

of these three analyzed sections, we can conclude that the vector s⃗ appears as follows when a⃗ ̸= b⃗:

Figure 2: Three Sections of the Vector s⃗.

Now, still assuming that a⃗ ̸= b⃗, let’s examine how this behavior of s⃗ ensures the correctness
of the Boolean expression defining c. To do this, we first need to define four additional vectors:
s⃗′, y⃗, y⃗′, z⃗ ∈ Zℓ

2. These vectors are formally defined as follows:

s⃗′
ℓ−1 = 0; s⃗′

i = s⃗i+1, for ∈ {0, 1, . . . , ℓ− 2}

y⃗i = s⃗i ∧ b⃗i, for ∈ {0, 1, . . . , ℓ− 1}

y⃗′
i = s⃗′

i ∧ b⃗i, for ∈ {0, 1, . . . , ℓ− 1}

z⃗i = y⃗i ⊕ y⃗′
i, for ∈ {0, 1, . . . , ℓ− 1}

Furthermore, the vector z⃗ contains the value of b⃗k in exactly one of its positions and 0’s in all
others. This can be understood by visualizing the vectors s⃗, s⃗′, y⃗, y⃗′. In the following diagram, we
illustrate these four vectors along with the vector z⃗ to make the reasoning completely clear.
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Figure 3: Relationship between Vectors s⃗,s⃗′,y⃗,y⃗′ and z⃗.

Based on this crucial fact about z, we can also conclude that ⊕ℓ−1
i=0 z⃗i = b⃗k. This implies that if

a⃗ ̸= b⃗, then ⊕ℓ−1
i=0 z⃗ = b⃗k. Since k is the position of the most significant pair of bits where a⃗i⊕ b⃗i = 1

(where a⃗i ̸= b⃗i), we know that if a⃗ ̸= b⃗, then b⃗k = ⊕ℓ−1
i=0 z⃗ = 1 if and only if b > a. Thus, assuming

a⃗ ̸= b⃗, ⊕ℓ−1
i=0 z⃗ = 1 if and only if b > a. It turns out that if we simply expand the equation ⊕ℓ−1

i=0 z⃗i

and rearrange this expanded equation, we have:

ℓ−1⊕
i=0

z⃗i =
ℓ−1⊕
i=0

y⃗i ⊕ y⃗′
i =

ℓ−1⊕
i=0

y⃗i ⊕
ℓ−1⊕
i=0

y⃗′
i (1)

= (
ℓ−1⊕
i=0

s⃗i ∧ b⃗i)⊕ (
ℓ−1⊕
i=0

s⃗′
i ∧ b⃗i) (2)

= (
ℓ−1⊕
i=0

s⃗i ∧ b⃗i)⊕ (
ℓ−2⊕
i=0

s⃗′
i ∧ b⃗i) (3)

= (
ℓ−1⊕
i=0

s⃗i ∧ b⃗i)⊕ (
ℓ−2⊕
i=0

s⃗i+1 ∧ b⃗i) = c (4)

Thus, if a⃗ ̸= b⃗, then c = 1 if and only if b > a. Moreover, since we have s⃗i = 0 if a⃗ = b⃗ for
i ∈ {0, 1, . . . , ℓ − 1}, it is straightforward to analyze the Boolean expression defining c and realize
that c = 0 if a⃗ = b⃗.

The protocols presented in this section leverage SOTs to compute the Boolean expression defin-
ing c. Comments have been incorporated into the protocol descriptions to clarify the relationship
between each step and the target Boolean expression. Two protocols are provided: one without
preprocessing and one with preprocessing. The sole distinction lies in their instantiation of the
functionality FEEQ∗ , with one utilizing ΠEEQ∗ and the other employing ΠP

EEQ∗ .
The full description of ΠBLTℓ

and its correctness and security proofs can be found below, while
the description of ΠP

BLTℓ
and its respective proofs can be found in Appendix B.

Protocol ΠBLTℓ

Let λ = 2(ℓ′ + 1), where ℓ′ is the amount of bits necessary to represent an element of Zℓ+1.

1. Execute Jx⃗iKℓ+1 ← FSOT2
ℓ+1

((0, 1), J⃗ai + b⃗iK2), for 0 ≤ i ≤ ℓ− 1. (x⃗i = a⃗i ⊕ b⃗i)
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2. Execute Jβ⃗iKλ ← FSOT2
λ
((0, λ

2 ), J⃗biK2), for 0 ≤ i ≤ ℓ− 1. (β⃗i ∈ {0, λ
2}; β⃗i = b⃗i · λ

2 )

3. Locally compute Js⃗iKℓ+1 = ∑ℓ−1
j=i Jx⃗jKℓ+1, for 0 ≤ i ≤ ℓ − 1. (0 ≤ s⃗i ≤ ℓ; s⃗i > 0 ⇐⇒∨ℓ−1

j=i x⃗j)

4. Execute J⃗hiKλ ← ΠEEQ∗
ℓ+1,λ

(Js⃗iKℓ+1, J0Kℓ+1), for 0 ≤ i ≤ ℓ − 1. (0 ≤ h⃗i ≤ ℓ′; h⃗i > 0 ⇐⇒
s⃗i > 0 ⇐⇒ ∨ℓ−1

j=i x⃗j)

5. Locally compute J⃗tiKλ = J⃗hiKλ + Jβ⃗iKλ, for 0 ≤ i ≤ ℓ − 1. (0 ≤ h⃗i ≤ ℓ′; β⃗i = b⃗i · λ
2 ;

t⃗i = h⃗i + β⃗i > λ
2 ⇐⇒ h⃗i > 0 ∧ β⃗i = λ

2 ⇐⇒ b⃗i ∧
∨ℓ−1

j=i x⃗j)

6. Locally compute Jq⃗iKλ = J⃗hi+1Kλ + Jβ⃗iKλ, for 0 ≤ i ≤ ℓ − 2. (q⃗i = h⃗i+1 + β⃗i > λ
2 ⇐⇒

b⃗i ∧
∨ℓ−1

j=i+1 x⃗j)

7. Execute Jd⃗iK2 ← FSOTλ
2
(Oneλ(λ

2 + 1, λ
2 − 1), J⃗tiKλ), for 0 ≤ i ≤ ℓ − 1. (d⃗i = [⃗ti > λ

2 ] =
b⃗i ∧

∨ℓ−1
j=i x⃗j)

8. Execute Je⃗iK2 ← FSOTλ
2
(Oneλ(λ

2 + 1, λ
2 − 1), Jq⃗iKλ), for 0 ≤ i ≤ ℓ − 2. (e⃗i = [q⃗i > λ

2 ] =
b⃗i ∧

∨ℓ−1
j=i+1 x⃗j)

9. Locally compute JcK2 = ∑ℓ−1
i=0Jd⃗iK2 +∑ℓ−2

i=0Je⃗iK2. (c = ⊕ℓ−1
i=0 d⃗i ⊕

⊕ℓ−2
i=0 e⃗i)

Theorem 5. Protocol ΠBLTℓ
is correct and securely implements the functionality FBLTℓ

against
semi-honest adversaries in the commodity-based model.

Proof. Correctness: First, it is important to note the behavior of variables x⃗, β⃗, d⃗, e⃗ and c. It is
straightforward to see that they respect the following equations:

xi = ai ⊕ bi, for 0 ≤ i ≤ ℓ− 1

βi = bi ·
λ

2 , for 0 ≤ i ≤ ℓ− 1

d⃗i =
{

1 if ti ≥ λ
2 + 1

0 otherwise
, for 0 ≤ i ≤ ℓ− 1

e⃗i =
{

1 if qi ≥ λ
2 + 1

0 otherwise
, for 0 ≤ i ≤ ℓ− 2

c =
ℓ−1⊕
i=0

d⃗i ⊕
ℓ−2⊕
i=0

e⃗i

Now, suppose that a = b. This means si = 0, for 0 ≤ i ≤ ℓ − 1. This implies that ti < λ
2 + 1

and qj < λ
2 + 1, for 0 ≤ i ≤ ℓ− 1 and 0 ≤ j ≤ ℓ− 2. This leads to the fact that di = 0 and ej = 0,

for 0 ≤ i ≤ ℓ− 1 and 0 ≤ j ≤ ℓ− 2. Therefore, c = 0 if a = b.
Next, suppose that a ̸= b. This implies the existence of a pair of most significant bits a⃗k and

b⃗k, where a⃗k ̸= b⃗k. For i > k, we have t⃗i, q⃗i < λ
2 + 1 and d⃗i = e⃗i = 0, since s⃗i = 0. For i < k, we
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have s⃗i, s⃗i+1 ≥ 1, since ak ̸= bk, which implies that ti > λ
2 ⇐⇒ β = λ

2 and qi > λ
2 ⇐⇒ β = λ

2 .
This leads to the fact that d⃗i = e⃗i, for i < k. Based on this, c = d⃗k ⊕ e⃗k if k ≤ ℓ − 2 and c = d⃗k,
otherwise. But, since s⃗k = 1 and a⃗k ̸= b⃗k, if k ≤ ℓ−2, we will have s⃗k+1 = 0, which leads to e⃗k = 0.
Thus, c = d⃗k for 0 ≤ k ≤ ℓ− 1, if a ̸= b.

Suppose that a < b. Since a ̸= b, we have c = d⃗k. Because b > a, we have b⃗k = 1, a⃗k = 0 and
s⃗k = 1, implying that d⃗k = 1. This means that c = 1, if a < b.

Suppose that a > b. Since a ̸= b, we have c = d⃗k. Because b < a, we have b⃗k = 0, a⃗k = 1 and
s⃗k = 1, implying that d⃗k = 0. This means that c = 0, if a > b.

This demonstrates that the described protocol will output 1, if a < b and 0, otherwise.
Security: The same rationale used to prove the security of ΠEEQN

can also be used to prove
the security of ΠBLTℓ

.

4.4 Bit-Decomposition Protocol

In the context of private two-party computations involving a shared element β ∈ ZN , it might be
beneficial to access the binary expansion of the value β. This process, commonly referred to as
Bit-Decomposition, is crucial for various cryptographic tasks.

Here, we formally define a Bit-Decomposition functionality FBDℓ
where the input is an element β

that is additively shared modulo 2ℓ. The output consists of a sequence of shared bits, where ℓ ≥ 2,
and the sequence’s length is ℓ. Note that this functionality can also be utilized in a black-box
manner to conduct the Bit-Decomposition of integer-secret-shared values. This is achievable by
reducing both shares modulo 2ℓ before presenting them as input to FBDℓ

, where ℓ = ⌈(log2(m2κ)⌉,
m denotes the upper bound for the value being secret shared, and κ represents the statistical
security parameter employed by the integer secret sharing scheme.

Functionality FBDℓ

FBDℓ
runs with the parties Alice and Bob, and is parametrized by ℓ ≥ 2.

• Input: Upon receiving a message from a party with its share of Jβ⃗K2ℓ , check if its share
is contained in Z2ℓ . If it’s not, then abort. Otherwise, record the share, ignore any
subsequent message from that party and inform the other parties about the receival.

• Output: Upon receiving both parties shares, reconstruct β. After reconstruction, com-
pute the binary expansion bℓ−1bℓ−2 . . . b0 of β and return to Alice and Bob there respective
shares of Jbℓ−1K2, Jbℓ−2K2 . . . Jb0K2.

We propose two protocols ΠBDℓ
and Π′

BDℓ
that efficiently implement FBDℓ

. These protocols offer a
tradeoff between the number of bits transferred and the number of communication rounds required
for execution.

The underlying concept of both protocols is the same: they take the binary expansions u and
v from Zℓ

2 of JβKB
2ℓ and −JβKA

2ℓ , respectively. Then, they perform binary addition over u⃗ and v⃗,
disregarding the last carry bit generated during the addition. This omission ensures that the result
of the binary addition is equivalent to computing binary addition modulo 2ℓ. Since the output of
the binary addition modulo 2ℓ is a sequence of shared bits, and β = JβKB

2ℓ − JβKA
2ℓ (mod 2ℓ), the

output of the addition serves as the desired output for the Bit-Decomposition protocol.
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To compute the binary addition modulo 2ℓ, we start by calculating the carry bit vector c⃗,
which stores the carry bits generated during the binary addition of u⃗ and v⃗. Then, we compute
b⃗i = u⃗i ⊕ v⃗i ⊕ c⃗i for 0 ≤ i ≤ ℓ − 1, forming the vector that represents the binary expansion of β.
By initially defining the expressions for the least significant bits of c⃗, we can derive the expression
for c⃗ as a whole. The expressions defining the four least significant bits of c⃗ are as follows:

c⃗0 = 0

c⃗1 = u⃗0 ∧ v⃗0

c⃗2 = (u⃗1 ∧ v⃗1)⊕ ((u⃗1 ⊕ v⃗1) ∧ (u⃗0 ∧ v⃗0))

c⃗3 = (u⃗2 ∧ v⃗2)⊕ ((u⃗2 ⊕ v⃗2) ∧ (u⃗1 ∧ v⃗1))⊕ ((u⃗2 ⊕ v⃗2) ∧ (u⃗1 ⊕ v⃗1) ∧ (u⃗0 ∧ v⃗0))

As mentioned earlier, we can analyze these expressions and derive the following set of Boolean
equations that define the carry bit vector c⃗.

c⃗0 = 0 and c⃗i =
i−1⊕
j=0

t⃗i,j , for 1 ≤ i ≤ ℓ− 1

t⃗i,j = g⃗j ∧
i−1∧

k=j+1
x⃗k, for 0 ≤ j < i ≤ ℓ− 1

g⃗i = u⃗i ∧ v⃗i, for 0 ≤ i ≤ ℓ− 1

x⃗i = u⃗i ⊕ v⃗i, for 0 ≤ i ≤ ℓ− 1

Both these protocols privately compute the vector c⃗ by using SOTs to evaluate the previously
described Boolean equations, and then finish by computing the vector b⃗. The only difference
between the two protocols is found in their fourth step. However, the values of t⃗i,j , computed
in the fourth step, will be the same in both protocols, as they differ only in how these values are
computed. Specifically, ΠBD uses SOTs to compute the values of t⃗i,j , while Π′

BD uses the functionality
FEEQℓ

.
The description of ΠBDℓ

can be found below together with its correctness and security proofs,
while the description of Π′

BDℓ
and its respective proofs can be found in Appendix C.

Protocol ΠBDℓ

Let v⃗ ∈ Zℓ
2 and u⃗ ∈ Zℓ

2 be the binary expansions of (−JβKA
2ℓ (mod 2ℓ)) and JβKB

2ℓ , respectively.

1. Execute Jg⃗iKℓ ← FSOT3
ℓ
((0, 0, 1), Ju⃗i + v⃗iK3), for 0 ≤ i ≤ ℓ− 1 (g⃗i = u⃗i ∧ v⃗i).

2. Execute Jx⃗iKℓ ← FSOT2
ℓ
((0, 1), Ju⃗i + v⃗iK2), for 0 ≤ i ≤ ℓ− 1. (x⃗i = u⃗i ⊕ v⃗i)

3. Locally compute J⃗hi,jKℓ ← Jg⃗jKℓ +∑i−1
k=j+1Jx⃗kKℓ, for 0 ≤ j < i ≤ ℓ− 1. (⃗hi,j = i− j ⇐⇒

g⃗j ∧
∧i−1

k=j+1 x⃗k)

4. Perform J⃗ti,jK2 ← FSOTℓ
2
(Oneℓ(i− j), J⃗hi,jKℓ), for 0 ≤ j < i ≤ ℓ− 1. (⃗ti,j = 1 ⇐⇒ h⃗i,j =

i− j ⇐⇒ g⃗j ∧
∧i−1

k=j+1 x⃗k; t⃗i,j = g⃗j ∧
∧i−1

k=j+1 x⃗k)
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5. Let c⃗0 = 0. Locally compute JciK2 = ⊕i−1
j=0J⃗ti,jK2, for 1 ≤ i ≤ ℓ− 1. (c⃗i = ⊕i−1

j=0 t⃗i,j)

6. Locally compute JbiK2 = JuiK2 + JviK2 + JciK2, for 0 ≤ i ≤ ℓ− 1. (⃗bi = u⃗i ⊕ v⃗i ⊕ c⃗i)

Theorem 6. Protocol ΠBDℓ
is correct and securely implements the functionality FBDℓ

against semi-
honest adversaries in the commodity-based model.

Proof. Correctness: Let v⃗ ∈ Zℓ
2 and u⃗ ∈ Zℓ

2 be the binary expansions of (−JβKA
2ℓ (mod 2ℓ))

and JβKB
2ℓ , respectively, and c⃗′ ∈ Zℓ+1

2 be the carry bit vector generated when computing α =
JβKB

2ℓ + (−JβKA
2ℓ (mod 2ℓ)). Based on this, we have α = c⃗ℓ · 2ℓ +∑ℓ−1

i=0(u⃗i⊕ v⃗i⊕ c⃗i) · 2i, where clearly
c⃗ℓ ∈ {0, 1} and 0 ≤∑ℓ−1

i=0(u⃗i ⊕ v⃗i ⊕ c⃗i) · 2i < 2ℓ, which implies that α ≡ β ≡
∑ℓ−1

i=0(u⃗i ⊕ v⃗i ⊕ c⃗i) · 2i

(mod 2ℓ). This means that b⃗i = u⃗i⊕ v⃗i⊕ c⃗i, for 0 ≤ i ≤ ℓ−1, is the binary expansion of β. Thus, if
the vector c⃗ computed by the protocol is equal to c⃗′, from position 0 to position ℓ− 1, then based
on step 6 of ΠBD, we can see that the protocol’s output would in fact be the desired one. Because
of this, we proceed to prove that c⃗i = c⃗′

i for 0 ≤ i ≤ ℓ− 1.
The set of Boolean equations that define the value of c⃗′ are the following:

c⃗′0 = 0 and c⃗′
i =

i−1⊕
j=0

t⃗′
i,j , for 1 ≤ i ≤ ℓ− 1

t⃗′
i,j = g⃗′

j ∧
i−1∧

k=j+1
x⃗′

k, for 0 ≤ j < i ≤ ℓ− 1

g⃗′
i = a⃗i ∧ d⃗i, for 0 ≤ i ≤ ℓ− 1

x⃗′
i = a⃗i ⊕ d⃗i, for 0 ≤ i ≤ ℓ− 1

After quickly analyzing the protocol, we can see that ΠBDℓ
computes the bit vector c⃗ according

to the following equations:

c⃗0 = 0 and c⃗i =
i−1⊕
j=0

t⃗i,j , for 1 ≤ i ≤ ℓ− 1

t⃗i,j =
{

1, h⃗i,j = i− j

0, otherwise
, for 0 ≤ j < i ≤ ℓ− 1

h⃗i,j = g⃗j +
i−1∑

k=j+1
x⃗k, for 0 ≤ j < i ≤ ℓ− 1

x⃗i = a⃗i ⊕ d⃗i, for 0 ≤ i ≤ ℓ− 1
g⃗i = a⃗i ∧ d⃗i, for 0 ≤ i ≤ ℓ− 1

Looking at these equations we can see that x⃗i, g⃗i ∈ {0, 1} for 0 ≤ i ≤ ℓ− 1, which implies that
0 ≤ h⃗i,j ≤ i− j and h⃗i,j = i− j iff g⃗j ∧

∧i−1
k=j+1 x⃗k, for 0 ≤ j < i ≤ ℓ− 1. Based on this, we can see

that t⃗i,j = g⃗j ∧
∧i−1

k=j+1 x⃗k for 0 ≤ j < i ≤ ℓ − 1. Thus, looking at the equation that dictates the
value of c⃗, we can conclude that c⃗i = c⃗′

i for 0 ≤ i ≤ ℓ− 1. Therefore, we have that ΠBDℓ
is correct.

Security: The rationale used in ΠEEQ∗
N,M

’s security proof can be used to prove ΠBDℓ
’s security.
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5 Results and Comparison

To ensure a fair comparison with existing works, we limit our analysis to those with the following
characteristics:

• We consider only two-party protocols.

• We exclusively examine protocols that offer unconditional security.

• The protocols must exhibit perfect correctness, guaranteeing a probability of 1 for returning
the correct output.

• The protocols must have constant round complexity.

Due to these restrictions, works such as [DSZ15] and [EGK+20] will not be included in our
comparisons. Concretely, the secure comparison protocol of [EGK+20] does not have a constant
number of rounds (it is logarithmic in the input size). Similarly, the protocols proposed in [DSZ15]
also have logarithmic round complexities for both comparison and equality protocols. Note that
protocols with a constant number of rounds that are information-theoretically secure are relatively
rare in the literature.

To compare the efficiency of the protocols that match the previously described criteria with our
constructions, we analyze and compare the number of communication rounds required to execute
the protocol, their computational complexity, and communication complexity (complexity class of
the number of bits transferred during the protocol’s execution). All previously published works
considered in our comparisons measure computational complexity and the number of bits trans-
ferred by the number of times a multiplication protocol is invoked. However, since we use our SOT
functionality as a primitive instead of a private multiplication protocol as previous works do, we
cannot use the same comparison methodology.

To deal with this difference in primitives, we measure the communication complexity in the
number of bits transmitted by the two parties, and we measure the computational complexity of
the protocols in the same way the computational complexity of algorithms is measured. To do
this we start by assuming that adding and multiplying to elements modulo N have computational
complexity O(ℓ) and O(ℓ2), respectively, where ℓ = ⌈log2(N)⌉. Next, we analyze the complexities
of the private multiplication protocol and our SOT construction.

For private multiplication, we assume the two parties A and B already hold a Beaver triple
generated by a trusted initializer, and they use this beaver triple in a straightforward manner
to execute private multiplication and receive an additively secret-shared output. Assuming the
two parties are performing a private multiplication modulo M , they need to transmit a constant
amount of elements modulo M and execute a constant amount of local multiplications modulo
M . This gets us computational complexity of O(ℓ2) and communication complexity of O(ℓ), where
ℓ = ⌈log2(M)⌉.

Running ΠSOTN
M

requires sampling a single element modulo M , adding N elements modulo M ,
performing a cyclic shift over a vector length N and running a single instance of FOTN

M
. Assuming

the OT protocol proposed in [Riv99] is used to implement FOTN
M

, sampling is done in constant time
and cshiftN has computational complexity of O(N), we can conclude that ΠSOTN

M
has computational

complexity of O(N · log2(M) + log2(N)) and communication complexity of O(N · log2(M)).
Using the complexity analysis of the two primitives and the assumptions made about the com-

plexity of addition and multiplication mod N , we can then inspect the existing protocols and ours,
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Table 1: Protocol Efficiency Comparison
FEEQ Protocol [LT13] [Yu11] [NO07] ΠEEQ ΠP

EEQ

Preprocessing Phase
Communication O(ℓ2) O(ℓ2) O(ℓ2) ⊥ O(ℓ log(ℓ))
Computation O(ℓ3) O(ℓ3) O(ℓ3) ⊥ O(ℓ log(ℓ))
Rounds O(1) 9 2 ⊥ 1

Online Phase
Communication O(ℓ) O(ℓ) O(ℓ2) O(ℓ log(ℓ)) O(ℓ)
Computation O(ℓ2) O(ℓ2) O(ℓ3) O(ℓ log(ℓ)) O(ℓ)
Rounds 2 2 6 2 2

FBLT Protocol [Rei09] [NO07] [Yu11] ΠBLT ΠP
BLT

Preprocessing Phase
Communication O(ℓ2) O(ℓ2) O(ℓ2/log(ℓ)) ⊥ O(ℓ log(ℓ) log(log(ℓ)))
Computation O(ℓ3) O(ℓ3) O(ℓ3/log(ℓ)) ⊥ O(ℓ log(ℓ) log(log(ℓ)))
Rounds 6 2 3 ⊥ 1

Online Phase
Communication O(ℓ2) O(ℓ2) O(ℓ2/log(ℓ)) O(ℓ log(ℓ) log(log(ℓ))) O(ℓ log(ℓ))
Computation O(ℓ3) O(ℓ3) O(ℓ3/log(ℓ)) O(ℓ log(ℓ) log(log(ℓ))) O(ℓ log(ℓ))
Rounds 3 6 4 3 3

FBD Protocol [NO07] [Tof09] [RT10] ΠBD ΠBD′

Overall
Communication O(ℓ2 · log(ℓ)) O(c · ℓ · log∗(c)(ℓ)) O(ℓ2) O(ℓ3) O(ℓ2 log(ℓ) log(log(ℓ)))
Computation O(ℓ3 · log(ℓ)) O(c · ℓ2 · log∗(c)(ℓ)) O(ℓ3) O(ℓ3) O(ℓ2 log(ℓ) log(log(ℓ)))
Rounds (E) 25 (E) 23 + c (E) 12 2 3

(E) Specifies that a protocol only runs in expected constant rounds.

and arrive in the complexity classes presented in Table 1. We would like to note that when inspect-
ing previously protocols that are secure against malicious adversaries, we considered straightfor-
ward changes that could improve their performance when considering only semi-honest adversaries.
However, we did not find any optimization that improved performance asymptotically.

We believe our asymptotic improvements do not come from the fact we are considering only
semi-honest adversaries but actually from a combination of our setting having exactly two parties
and the ways we use our new SOT functionality to implement the newly proposed protocols,
especially when it comes to using SOTs to convert secret shared values between different modulo.

6 Conclusion and Future Work

In this work, we studied a natural extension of the Oblivious Transfer (OT) functionality, which
we termed Shared Oblivious Transfer (SOT). We utilized this new primitive to develop protocols
for private equality (FEEQ), private comparison (FBLT), and bit-decomposition (FBD) functionalities.
All these protocols satisfy the following properties: unconditional security in the two-party semi-
honest setting, perfect correctness, and constant round complexity. Our constructions demonstrate
superior performance compared to previous protocols that share these same properties.

While developing the work presented in this paper, two interesting questions remained unex-
plored:
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• Can the protocols presented in this work be modified to be secure in the malicious adversary
model while maintaining their efficiency advantages?

• Can the ideas proposed in this paper be adapted to the computational security setting in a
way that leads to improvements compared to other works in that setting?

Malicious Protocols. To achieve security in the malicious setting, a natural starting point is to
replace our additive secret shares with committed additive secret shares. Note that uncondition-
ally secure linear homomorphic commitment schemes have been proposed in the past, such as in
[NMO+03, Riv99]. By using committed additive secret shares, the two parties can prove to each
other that linear operations over the committed shares were performed correctly. This verification
covers virtually all operations in our protocols, except for executing the FSOT primitive.

While our FSOT is secure in the malicious setting, it does not support committed inputs or
output committed secret shares. Therefore, a new committed variant of the primitive would need
to be introduced. A promising solution is to study the already proposed Committed Oblivious
Transfer [CvT95]. However, our protocols work with values of different moduli, a setting not
addressed by previously proposed unconditional commitment schemes, adding a layer of complexity.

Aside from this main challenge, the use of commitment schemes adds performance overhead.
We would need to study how this overhead impacts the efficiency of our protocols compared to
other previously malicious-secure solutions. Due to these complexities, we decided to focus only on
the semi-honest setting in this work and leave the task of securing these protocols against malicious
adversaries for future research.

Protocols in the Computational Security Setting. Given the extensive body of work in this
setting that has been published, we believe that investigating this question might lead to fruitful
results given the promising outcomes presented in Section 5. In addition, our protocols rely on such
an efficient primitive as OT, support this belief. Many works, such as [IKNP03, PRTY19, Roy22,
BCG+22, RRT23] have proposed methods to pre-compute the OT primitive in a batched manner
with very good runtimes and rate-1 communication.
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A Element Equality* with Pre-processing Phase

Protocol ΠP
EEQN

Let ℓ = ⌈log2(N)⌉ be the minimum amount of bits necessary to represent an element of ZN .

1. JhKℓ+1 ← ΠP
EEQ∗

N,ℓ+1
(JaKN , JbKN ). (This means h = 0 ⇐⇒ a = b)

2. Execute JcK2 = FSOTℓ+1
2

(Oneℓ+1(0), JhKℓ+1). (c = 1 if h = 0, o.w., c = 0)

Theorem 7. Protocol ΠP
EEQN

is correct and securely implements the functionality FEEQN
against

semi-honest adversaries in the commodity-based model.

Proof. Correctness and Security: The same ideas used prove ΠEEQ∗
N,M

’s correctness and security
apply to the correctness and security of ΠP

EEQN
.

B Bitwise Comparison with Pre-processing Phase

Protocol ΠP
BLTℓ

Let λ = 2(ℓ′ + 1), where ℓ′ is the amount of bits necessary to represent an element of Zℓ+1.

1. Execute Jx⃗iKℓ+1 ← FSOT2
ℓ+1

((0, 1), J⃗ai + b⃗iK2), for 0 ≤ i ≤ ℓ− 1. (x⃗i = a⃗i ⊕ b⃗i)

2. Execute Jβ⃗iKλ ← FSOT2
λ
((0, λ

2 ), J⃗biK2), for 0 ≤ i ≤ ℓ − 1. (β⃗i = λ
2 if b⃗i = 1 and β = 0,

otherwise)

3. Locally compute Js⃗iKℓ+1 = ∑ℓ−1
j=i Jx⃗jKℓ+1, for 0 ≤ i ≤ ℓ− 1.

4. J⃗hiKλ ← ΠP
EEQ∗

ℓ+1,λ
(Js⃗iKℓ+1, J0Kℓ+1), for 0 ≤ i ≤ ℓ−1. (⃗hi = 0 ⇐⇒ s⃗i = 0 ⇐⇒ ¬

∨ℓ−1
j=i x⃗j)

5. Locally compute J⃗tiKλ = J⃗hiKλ + Jβ⃗iKλ, for 0 ≤ i ≤ ℓ− 1. (⃗ti > λ
2 ⇐⇒ b⃗i ∧

∨ℓ−1
j=i x⃗j)

6. Locally compute Jq⃗iKλ = J⃗hi+1Kλ + Jβ⃗iKλ, for 0 ≤ i ≤ ℓ− 2. (q⃗i > λ
2 ⇐⇒ b⃗i ∧

∨ℓ−1
j=i+1 x⃗j)

7. Execute Jd⃗iK2 ← FSOTλ
2
(Oneλ(λ

2 + 1, λ
2 − 1), J⃗tiKλ), for 0 ≤ i ≤ ℓ − 1. (d⃗i = [⃗ti > λ

2 ] =
b⃗i ∧

∨ℓ−1
j=i x⃗j)

8. Execute Je⃗iK2 ← FSOTλ
2
(Oneλ(λ

2 + 1, λ
2 − 1), Jq⃗iKλ), for 0 ≤ i ≤ ℓ − 2. (e⃗i = [q⃗i > λ

2 ] =
b⃗i ∧

∨ℓ−1
j=i+1 x⃗j)

9. Locally compute JcK2 = ∑ℓ−1
i=0Jd⃗iK2 +∑ℓ−2

i=0Je⃗iK2. (c = ⊕ℓ−1
i=0 d⃗i ⊕

⊕ℓ−2
i=0 e⃗i)
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Theorem 8. Protocool ΠP
BLTℓ

is correct and securely implements the functionality FBLTℓ
against

semi-honest adversaries in the commodity-based model.

Proof. Correctness and Security: The same arguments used to prove the correctness and secu-
rity of ΠBLTℓ

can be used to prove the correctness and security of ΠP
BLTℓ

.

C Bit-Decomposition with Pre-processing Phase

Protocol Π′
BDℓ

Let v⃗ ∈ Zℓ
2 and u⃗ ∈ Zℓ

2 be the binary expansions of (−JβKA
2ℓ (mod 2ℓ)) and JβKB

2ℓ , respectively.

1. Execute Jg⃗iKℓ ← FSOT3
ℓ
((0, 0, 1), Ju⃗i + v⃗iK3), for 0 ≤ i ≤ ℓ− 1. (g⃗i = u⃗i ∧ v⃗i)

2. Execute Jx⃗iKℓ ← FSOT2
ℓ
((0, 1), Ju⃗i + v⃗iK2), for 0 ≤ i ≤ ℓ− 1. (x⃗i = u⃗i ⊕ v⃗i)

3. Locally compute J⃗hi,jKℓ ← Jg⃗jKℓ +∑i−1
k=j+1Jx⃗kKℓ, for 0 ≤ j < i ≤ ℓ− 1. (⃗hi,j = i− j ⇐⇒

g⃗j ∧
∧i−1

k=j+1 x⃗k)

4. Perform J⃗ti,jK2 ← FEEQℓ
(J⃗hi,jKℓ, Ji − jKℓ), for 0 ≤ j < i ≤ ℓ − 1. (⃗ti,j = 1 ⇐⇒ h⃗i,j =

i− j ⇐⇒ g⃗j ∧
∧i−1

k=j+1 x⃗k; t⃗i,j = g⃗j ∧
∧i−1

k=j+1 x⃗k)

5. Let c⃗0 = 0. Locally compute JciK2 = ⊕i−1
j=0J⃗ti,jK2, for 1 ≤ i ≤ ℓ− 1. (c⃗i = ⊕i−1

j=0 t⃗i,j)

6. Locally compute JbiK2 = JuiK2 + JviK2 + JciK2, for 0 ≤ i ≤ ℓ− 1. (⃗bi = u⃗i ⊕ v⃗i ⊕ c⃗i)

Theorem 9. The protocol Π′
BDℓ

is correct and securely implements the functionality FBDℓ
against

semi-honest adversaries in the commodity-based model.

Proof. Correctness: By looking at the descriptions for protocols Π′
BDℓ

and ΠBDℓ
, we can see that

the only difference between the two is 4. So if we prove that the values of t⃗i,j in ΠBDℓ
and Π′

BDℓ

respect the same equation, for 0 ≤ j < i ≤ ℓ− 1, from the correctness proof of ΠBDℓ
, we have that

Π′
BDℓ

is also correct. Again by looking at Π′
BDℓ

’s description and by the formal definition of FEEQ we
can see that the values of t⃗i, j, in the description for Π′

BDℓ
, are defined by the following equation:

t⃗i,j =
{

1, h⃗i,j = i− j

0, otherwise
, for 0 ≤ j < i ≤ ℓ− 1

This equation also defines the values of t⃗i,j in the description for ΠBDℓ
, for 0 ≤ j < i ≤ ℓ − 1.

Thus, we can conclude that Π′
BDℓ

is correct.
Security: The same ideas used to prove the security of ΠEEQ can be applied to prove the security

of Π′
BD.
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