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Abstract
If a web service is so secure that it does not even know—

and does not want to know—the identity and contact info of
its users, can it still offer account recovery if a user forgets
their password? This paper is the culmination of the authors’
work to design a cryptographic protocol for account recovery
for use by a prominent secure matching system: a web-based
service that allows survivors of sexual misconduct to become
aware of other survivors harmed by the same perpetrator. In
such a system, the list of account-holders must be safeguarded,
even against the service provider itself.

In this work, we design an account recovery system that,
on the surface, appears to follow the typical workflow: the
user types in their email address, receives an email containing
a one-time link, and answers some security questions. Behind
the scenes, the defining feature of our recovery system is
that the service provider can perform email-based account
validation without knowing, or being able to learn, a list of
users’ email addresses. Our construction uses standardized
cryptography for most components, and it has been deployed
in production at the secure matching system.

As a building block toward our main construction, we de-
sign a new cryptographic primitive that may be of independent
interest: an oblivious pseudorandom function that can either
have a fully-private input or a partially-public input, and that
reaches the same output either way. This primitive allows us
to perform online rate limiting for account recovery attempts,
without imposing a bound on the creation of new accounts.
We provide an open-source implementation of this primitive
and provide evaluation results showing that the end-to-end
interaction time takes 8.4-60.4 ms in fully-private input mode
and 3.1-41.2 ms in partially-public input mode.

Content Warning: This paper discusses, at a high level, the
issue of sexual assault on college campuses, particularly in
Section 1. From Section 3 onward, the paper is more focused
on the technical design of the account recovery protocol.

∗Email addresses: {ryanlit,varia}@bu.edu
†Email address: lucy.qin@georgetown.edu

1 Introduction

Account recovery—the ability for users to regain access
to their accounts after losing their password—is a near-
ubiquitous feature of account-based web services. However,
the typical account recovery system is not private, and relies
on the web service to retain some information about the exis-
tence of an account under some identity (e.g., a username or
email address). In this work, we designed an account recov-
ery process to be compatible with a secure matching system
operated by a nonprofit organization, Callisto, that uses con-
ventional account recovery workflows but does not retain any
plaintext information about a user’s email address, username,
security questions, or security answers. As of October 2023,
this protocol has been deployed by Callisto for their match-
ing system, which is currently available on college campuses
across the United States.

We discuss the application space of secure matching sys-
tems to provide context for this work, and then elaborate on
the challenge of account recovery in this setting and provide
details about our protocol. While this protocol was designed to
support Callisto’s secure matching system, our cryptographic
techniques are generic and may also be used independently
by other web services that want to enable account recovery
without collecting personal information about users.

Overview of secure matching systems. Secure matching
systems are cryptographic tools that intend to support sur-
vivors of sexual assault by connecting them with one another.
Although statistics may be difficult to capture, there is evi-
dence that sexual assault is highly prevalent on college cam-
puses, in particular. A 2019 study across 33 universities found
that 13% of students experienced sexual assault while en-
rolled [30]. Due to mandatory reporting policies that limit
survivors’ control over their own narratives, victim-blaming,
fear of retaliation, and other barriers, survivors rarely formally
report incidents of sexual assault [41, 48, 68]. For those who
do, survivors may experience retraumatization through inter-
actions with the police and/or the legal system and may ulti-
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mately feel failed by formal avenues of pursuing justice [67].
Inspired by the #MeToo movement, secure matching sys-
tems [8, 50, 60, 62, 75] allow survivors of sexual assault to
document their experiences and securely connect with other
survivors who have been harmed by the same perpetrator to
seek mutual support and explore different pathways either
collectively or individually, since healing and seeking justice
may look different for each survivor.

Callisto is a nonprofit organization that currently deploys a
free secure matching system across college campuses in the
United States [18]. Callisto allows survivors of sexual assault
to document details of their assault in an encrypted record
(for potential future use) and participate in matching with
other survivors. If two or more survivors match by providing
identifying information about the same perpetrator, contact
information for each survivor is revealed to a legal options
counselor (a lawyer) so that rather than being cryptograph-
ically protected, the same information is then protected by
attorney-client privilege [19]. Prior to a match, information
about both a survivor and perpetrator is not accessible to Cal-
listo. Once connected to a legal options counselor, survivors
are then offered the opportunity to connect with one another.
Upon connecting, they may choose to collectively pursue legal
justice, restorative justice, or nothing at all. Matching enables
survivors to seek support from a legal options counselor and
one another to explore options (individually or collectively)
for action, ideally providing each survivor more support when
decision-making about their options for pursuing further ac-
tion, should they want to.

The challenge of account recovery. In standard account
recovery processes, the service provider typically stores an
email address that it uses for validation and to share a link that
allows a user to regain access to their account. Since contact
information about a survivor may reveal sensitive information
(in our setting, whether an individual is a survivor of sex-
ual assault), privacy-respecting service providers like Callisto
cannot store any contact information about its users. Maintain-
ing a list of account-holders creates a sensitive and valuable
asset that may be targeted by bad actors. It may also create
vulnerability toward legal threats, through subpoenas for in-
formation about account holders. Hence, a secure matching
system must protect both data and metadata—even against
the service provider itself, or anyone who might attempt to
compromise it. In more detail:

1. All data submitted by survivors must be encrypted with
a key derived from the user’s password, so that the
service cannot access user-submitted information (e.g.
identifying information about a user, details of their as-
sault) until they have reached the matching threshold.
This cryptographic problem has been addressed in prior
works [8, 50, 60, 62, 75] with general-purpose secure
multi-party computation (MPC) and specific primitives
like oblivious pseudorandom functions, group signatures,

and verifiable secret sharing.
2. Additionally, the service provider must not have (or even

have a simple way to recover) a list of all account-
holders, since even the fact of a survivor using the system
is extremely sensitive. On its own, this problem can be
addressed using cryptographically oblivious login mech-
anisms (e.g., [57]), along with network and systems secu-
rity precautions supporting anonymous communications
and not keeping long-term logs that could later be exfil-
trated by a hacker or compelled by an authority.

When addressing these two requirements together, one runs
into a practical challenge: what happens if an account-holder
forgets their password? This issue is inevitable in a system
where strong, unique passwords are encouraged but logins
are infrequent, and by default it would make all of the user’s
encrypted data irrecoverable.

In a typical website, account recovery involves the ser-
vice provider sending an email to the email address on file;
however, this is incompatible with our no-metadata require-
ment. Even federating the email address list and the delivery
of emails among multiple servers using secure multi-party
computation [3, 49, 78] is insufficient for our needs because
it is slow, difficult to implement, and (most importantly) is
still vulnerable to the risk of all servers being compelled to
disclose their secret shares of the email list.

1.1 This work

In this work, we describe the design of an account recovery
system such that a web service provider (like Callisto) does
not store email addresses, and cannot easily provide a list of
all email addresses even if compelled to do so (e.g., through
a subpoena).

Protocol design. At a high level, our cryptographic proto-
col involves a client who (if honest) wishes to regain access
to their account, along with a collection of recovery servers.
The protocol uses email validation and a set of security ques-
tions/answers to determine whether the client should be given
access to the account. Only the client recovers the crypto-
graphic key that protects their account data; the recovery
servers never see the security answers or key material.

In more detail, our protocol has two phases: some work
is performed during account creation when the client knows
their password and cryptographic key material, and subse-
quently the client can run an account recovery procedure if
they forget the password and associated key. The recovery
procedure itself contains three parts: request, verification, and
restoration. First, the client requests recovery by (obliviously)
providing their email address and responses to any generic
questions (e.g., a phone number). Second, the servers verify
that the client has control of this email address. Third, the
servers fetch the client-specific security questions; the client’s
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answers to these questions can be used to restore access to
their account.

Design requirements. Our protocol is grounded in the
framework of trauma-informed design that acknowledges the
impact trauma may have on the user experience and seeks
to avoid retraumatization [19, 34, 77]. When designing an
account recovery process that is trauma-informed in this set-
ting, the user’s interactions with the process must be familiar
and easy to use: in particular, it must adhere to an expected
account recovery workflow (e.g., “click on a link”), run seam-
lessly in a web browser, and not impose any restrictions or
rate-limiting of legitimate uses.

On the back-end, our protocol had to accommodate the
resource constraints of Callisto. For ease of deployment and
maintenance on the web, the recovery servers must run on
commodity hardware and the protocol must only use standard
public and symmetric key cryptography in widely used and
available software libraries.

Our protocol has been implemented and tested, and as
of October 2023 is running live in production within Cal-
listo’s secure matching system. It uses only the cryptographic
primitives that were already in place for Callisto’s existing
matching process, for ease of development and maintenance.
However, we emphasize that our account recovery protocol
is independent of Callisto’s services; it is generic and can be
used by any privacy-respecting website that desires not to
keep personally-identifiable logs about their users.

Security guarantees. Our protocol provides security
against three types of attackers. As with account recovery
in other web services, email validation is our main security
protection against external attackers. If an attacker has addi-
tionally compromised some of our recovery servers, they must
still perform an online dictionary attack to obtain any email
address, which we rate-limit through honest recovery servers.
Finally, even if all of the recovery servers are compromised
then an offline dictionary attack is still needed—which is not
impossible, but onerous enough to allow Callisto to defend
itself against legal compulsion of the email list.

The challenge of rate-limiting. Beyond standard symmet-
ric key crypto primitives and a slow hash function, the only
crypto primitive that we require is an oblivious pseudoran-
dom function (OPRF). The client independently interacts with
each server to compute an OPRF for two distinct reasons: (a)
to hide the client’s email address, contact information, and
security answers from the recovery servers, and (b) as part
of our rate-limiting mechanism, whereby an honest recovery
server can detect and stop a brute-force dictionary attack of
contact information or security answers.

The idea of using an OPRF for rate-limiting is not new.
Several prior works have designed partially oblivious pseudo-

random functions (pOPRFs) where the server publicly sees
some information about which account is being accessed.
This approach can aid in rate-limiting (e.g., [42, 81]).

However, rate-limiting in our context is challenging. This
is because we need to hide the contact info and security an-
swers during both account creation and recovery, but we want
rate-limiting only in account recovery. Account creation is a
delicate moment for a survivor, and we do not want to risk
re-traumatizing them by denying signups due to rate-limiting.

K-pop: a new type of OPRF. As a result, in this work we
design a new kind of primitive that can operate either as a
pOPRF or as an OPRF. Identical outputs are produced in
either mode. During account creation, we desire a pOPRF
that uses a fresh public nonce as input, so that the servers are
assured that this PRF query is for a new account and therefore
do not need to impose rate-limiting. During account recovery,
we desire a standard OPRF to hide which account is being
accessed; hence, only here is rate-limiting needed.

We call this new primitive a kaleidoscopic partially obliv-
ious PRF, or K-pop. In this work, we provide a formal defi-
nition of a K-pop along with a construction from any group
where the Discrete Diffie-Hellman assumption is hard (e.g.,
elliptic curve groups), in the random oracle model.

1.2 Our contributions
In summary, this work provides three contributions.

First, we contribute a new primitive called a kaleidoscoping
partially oblivious PRF, or K-pop. This function can be calcu-
lated either as an OPRF or pOPRF, and reaches the same result
either way. We construct a K-pop without bilinear maps and
provide an open-source implementation of this construction.

Second, we use the K-pop in order to construct an inter-
active protocol for account recovery where even the service
provider does not require, and does not learn, the email ad-
dresses of its account-holders. This construction uses only
standard public and symmetric key primitives that are avail-
able in many crypto libraries. This construction has been
developed, tested, integrated, and deployed within Callisto’s
matching system.

Third, we provide two proofs of security of our account re-
covery protocol: a game-based security analysis against static
adversaries, and a universally composable (UC) security [22]
analysis against adaptive adversaries. In both analyses, a key
challenge is to ensure security up to abort against malicious
adversaries, but while avoiding the use of zero knowledge
proofs (and therefore, also avoiding verifiable OPRFs).

1.3 Ethics and limitations
The question of whether a new technology is even needed and
appropriate must be determined in consultation with subject-
matter experts and in partnership with relevant communities.
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Since these systems are intended to support survivors of sex-
ual assault, designing any cryptosystem (new or otherwise)
should only be done if deemed necessary and useful to sur-
vivors. Development of this account recovery protocol was
specifically requested by Callisto, based on their users’ needs.

We wish to stress the importance of developing technology
through a trauma-informed lens that minimizes the risk of
retraumatization. Lack of account recovery may exacerbate
existing trauma as it prevents survivors from accessing prior
information they had submitted. This may produce feelings
of loss of control as personal details about sexual violence
they had experienced are rendered inaccessible. Reactions to
trauma, such as heightened anxiety and hypervigilance, can
also impact survivors’ interactions with technology [34]. It is
therefore critical that an account recovery process is familiar
and easy to use so as to not increase survivors’ cognitive
burden. When creating this account recovery process, we
worked extensively with Callisto to make sure that the design
would meet their technical constraints and also enable them
to use a common and familiar user interface on the front end.
As part of our ongoing work together, we have been in regular
communication with Callisto about the publication of this
work, which they are supportive of.

Both our problem formulation and our proposed solution
have important limitations. First, our threat models are tai-
lored to the specific needs of Callisto. Assumptions made in
some of our threat models, such as honest server behavior dur-
ing account creation and a non-colluding set of servers, may
not be reasonable for other web services. Second, implement-
ing our protocol necessarily increases the attack surface of
the web service. A security bug in implementation could ex-
pose user information and put vulnerable users at risk. Third,
providing stronger anonymity on the Internet may not always
be a desirable goal, and we stress the importance of working
with domain experts to determine the appropriate balance
between any privacy technology and other social principles,
policy objectives, or legal requirements in the context of a
particular web service.

Lastly, our work does not address the structural barriers
that make it difficult for survivors of sexual assault to find
support and seek their own pathways toward accountability
and healing. We note the significant barriers survivors face in
addressing harms due to victim-blaming and institutional fail-
ures. Our protocol, and secure matching systems in general,
are not solutions to this root problem, but nevertheless may
be helpful to some survivors when navigating their options.

2 Technical Overview

In this section, we provide an informal summary of the tech-
nical contributions in this work. We begin by detailing the
system setup, threats considered, and rationale for our design
choices. Then, we describe our K-pop and account recovery
constructions and explain how they build upon prior work.

2.1 Design principles and threat model
In this section, we take a deeper dive into the security threats
and design considerations that influence our protocol design.

System setup. The account recovery system contains two
types of actors: one or more clients who possess user accounts
in the system, and a collection of N servers who participate in
account recovery. The design follows the ‘anytrust’ paradigm
in which only one server needs to be honest to provide the
strongest security, and it also provides some meaningful secu-
rity guarantees even if all N servers are compromised. Here,
an honest server has two responsibilities: not sharing its OPRF
secret key with the other servers, and properly enforcing rate
limits on requests from clients and the other servers. All
network communications are protected using TLS, and the
adversary is presumed to have some amount of network con-
trol but not a fully global view—for instance, we presume
that the adversary does not have full visibility or control of
the client’s email service provider.

Design principles. In this section, we expand upon the
design requirements discussed in §1.1. Then, we describe
some design accommodations that were deemed acceptable in
our setting by our team and Callisto. While admittedly some
of these principles are specific to our specific tech transition,
nevertheless we believe that many of our design principles—
and the motivations behind them—may generalize to other
web services that want private account recovery.

As discussed in §1.3, our account recovery system is de-
signed for survivors of sexual assault who may be using the
system while having just experienced trauma. It is essential
that any technology that is built is trauma-informed and is
designed to account for these experiences to avoid retrauma-
tization. Since user accounts for Callisto’s matching system
contain personal information that may include details about
sexual assault, it is imperative that survivors are able to access
their accounts quickly and seamlessly. Therefore, an account
recovery process must be easy and familiar for survivors to
use. As such, we designed a protocol to be compatible with a
front-end user experience that is common to account recov-
ery: a user enters their email along with additional contact
information and receives security answers they must respond
to. Survivors should not be burdened with learning new mech-
anisms that are complicated or unfamiliar. Trauma-informed
design principles such as safety and trust [77] are pursued
by creating an account recovery process that operates in a
predictable manner while respecting the privacy of the user’s
personal information.

We impose three server-side requirements. First, the recov-
ery servers must run on commodity machines without mak-
ing any specific assumptions about the hardware. These con-
straints are common in many web applications on the cloud,
and in particular we rejected the use of trusted hardware due

4



to concerns about cost, challenges with upgrades and mainte-
nance, and security vulnerabilities (e.g., [17,32,43,64,65,82]).
Second, to simplify software development and maintenance,
the recovery servers must only use common crypto primi-
tives with widely-used software libraries. In particular, we
avoided the use of pairing-based cryptography since these
libraries are less widely available in deployment settings and
less understood by the general software engineering commu-
nity. Third, for ease of deployment, the recovery servers must
be able to communicate independently with the client (e.g., to
execute separate instances of the OPRF protocol) rather than
with each other; that said, they can maintain joint state like a
counter acting as a nonce.

On the flip side, a non-collusion assumption in the anytrust
setting was deemed acceptable if it provides defense-in-depth
such that no collection of all-but-one recovery servers (or
the engineers who administer them) can recover email ad-
dresses. Moreover, we deemed it to be acceptable if the recov-
ery servers learn the client’s email address at the moment of
account creation for two reasons: (a) the website’s onboarding
process already involves sending an email at the moment of
account creation, and (b) the main threat was deemed to be
bulk, retrospective extraction of already-registered accounts
rather than the smaller set of accounts created or recovered
during the interval of server compromise.

We remark that it is possible to protect addresses even
during the act of email delivery by using MPC for TLS [3,78],
but even that would not prevent against a different threat: one
of compulsion. Due to our focus on trauma-centered design
and ensuring that the secure matching system itself could not
be used to harm survivors, it was important to consider the
possibility that all servers become under control of a single
adversary through technical or legal means, and even then to
avoid a large-scale breach of users’ identity and data.

Threats and security guarantees. We require that the ac-
count recovery system provide correctness (up to abort) and
privacy against three types of malicious adversaries. We em-
phasize upfront that this work focuses on threats and mitiga-
tions at the cryptographic level. As stated in §1.3, this work
does not impose any new barriers to an adversary’s ability to
exploit a web service; instead, we seek to mitigate the damage
of an adversary who controls some or all recovery servers.

1. An external adversary who interacts with the recov-
ery system protocols (but lacks control of any recov-
ery server) should be unable even to determine whether
any email address they do not control corresponds to an
account in the system. Looking ahead, our account re-
covery protocol achieves this goal by not providing any
information to the client to determine whether an email
address matches an account in the system—at least, not
until the moment that an honest client receives an email
in her inbox.

2. An internal adversary who has compromised some of
the recovery servers must be restricted from performing
a brute-force attack of email addresses. The threat here
is that an internal adversary might conduct a probing at-
tack in which it pretends to be a client, submits a variety
of different email addresses, and uses its insider access
to determine whether an account exists by observing
whether an email is sent out to the victim. We address
this threat in two ways: first to require some additional
information beyond the email address even at the first
step of recovery request, and second to have the honest
server(s) perform online rate limiting of the attacker. In
particular, we intentionally avoid providing any deter-
ministic function of the client’s data to an individual
server, because that could be used to perform an offline
dictionary attack.

3. A legal adversary that subpoenas all recovery servers
must still need to execute a (now inevitable) offline brute-
force attack to learn any account information, and fur-
thermore they must be required to perform a brute-force
attack after the last server has been compromised. Look-
ing ahead, our recovery request and account restoration
protocols provide this guarantee through their use of a
slow, password-based hash function to make offline dic-
tionary attacks slower and more costly. Moreover, the
slow hash function requires the outputs of the K-pop,
which prevents so-called “pre-computation attacks” [57]
and ensures that the expensive offline attack must occur
after the servers are corrupted.

Finally, all of these security properties must hold even against
honest clients who have performed account recovery or
changed their security questions, potentially several times.
Looking ahead, our account recovery protocol uses client and
server nonces to ensure domain separation of the space that
must be brute-forced before vs. after an account reset.

2.2 Our model of account recovery

Our account recovery protocol has 4 procedures: account
creation and the 3 parts of account recovery (plus a simple ini-
tialization step for the servers to generate their cryptographic
keys). We presume the client (who we call Alice) already has
a web account with a key ku (e.g., derived from her password)
that is used for encryption of her account data at rest.

Account creation. The client Alice begins this procedure
with her user account key ku, and the goal is for her to prepare
and upload some cryptographic material that facilitates later
recovery of ku. Specifically, she (obliviously) provides her
account’s email address E, responses to additional generic
questions like her phone number x, a set of personalized se-
curity questions Q together with their corresponding answers
A and a recovery email address e where she would like to be
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contacted if recovery is needed (this can, but does not have
to, be the same as the account email address E). Anyone who
later proves ownership of the recovery email account e and
knows the answers x and A to the generic and personalized
security questions will be able to recover the account key ku.

Recovery request. After Alice forgets her password, she
(obliviously) submits her email address E and her responses
x to any additional questions asked of everyone. Importantly,
Alice herself receives no output from this protocol; she does
not yet know whether E and x matched any previously-created
accounts. If a match exists, then the servers receive (secret
shares of) Alice’s recovery email address e and security ques-
tions Q. This stage has two purposes: involving the servers for
online rate-limiting of any dictionary attack, and providing the
servers with the information they need to perform verification
and ask personalized security questions to the client.

Account verification. The servers send an email to Alice’s
recovery address e containing a one-time link. In this work,
we model the email delivery as an instance of secure message
transmission FSMT. This functionality can be instantiated by
the servers in the clear (in which case they temporarily learn
Alice’s email address and must then delete it afterward) or
using secure multi-party computation (so that they can jointly
send the email while individually not learning e) [3, 49, 78].

Account restoration. This stage begins when the client
clicks on the link from the email, which (among other things)
contains her security questions Q. The client obliviously
provides her corresponding security answers A, which—if
correct—can be used to recover her key ku. The servers re-
ceive no output from restoration. Upon restoration, Alice
should immediately re-run account creation to choose a new
password for her account and select (possibly new, or possibly
the same) security questions and answers to protect her keys.

2.3 Related work

In this section, we describe some prior work that informs our
choice of a protocol design.

Secure matching systems. Secure matching systems1 are
cryptographic protocols that aim to augment informal “whis-
per networks” that exist in many communities such as college
campuses. They permit a collection of survivors of sexual
assault to determine whether they have been harmed by the
same individual—even though the survivors have never met
each other, never communicate directly with each other, and
may never be online at the same time as each other. To accom-
plish this goal, secure matching systems use special-purpose
secure computation among a non-colluding set of servers.

The work of Rajan et al. [75] was the first to construct a
cryptographically secure matching system; their work relies
on non-collusion of two servers, and it provides confidential
matching when two survivors provide identifying informa-
tion about the same individual. Subsequent works achieved
stronger functionality and integrity guarantees, at the expense
of requiring a public key infrastructure and an honest major-
ity among 3 or more servers. WhoToo [62] allows for each
survivor to choose their own matching threshold (potentially
greater than two), and adds traceability for false accusations.
Arun et al. [8] contribute a constant-time matching protocol
to determine, after each submission, whether any collection
of reports has exceeded the threshold. WhoToo+ [50] fixes
some ambiguities in WhoToo and extends it also to support
matching with a constant number of online operations. Finally,
Shield [60] improves upon the work of Arun et al. in two ways:
hiding the threshold chosen by each survivor, adding integrity
checks against fake and duplicative submissions.

MPC and TEEs. Secure multi-party computation (MPC)
is a cryptographic technique for a collection of servers to
perform a joint computation while not learning any of the
underlying data. While the fundamental concepts of MPC
have been known for four decades [13, 15, 33, 46, 84], MPC
on its own is typically incapable of withstanding the threat of
legal adversaries, as we describe in more detail in §2.5.

Trusted execution environments (TEEs) offer an alterna-
tive method to protect sensitive data using hardware isolation
(rather than cryptography). They have been proposed in com-
mercial processors (e.g., [6,7,35,58,80]), academic prototypes
(e.g., [36, 52, 76, 83]), and cloud-based services [5, 47, 70].
However, nearly all of these systems are subject to both phys-
ical and remote attacks (e.g., [17, 32, 43, 64, 65, 82]), and it re-
mains an open question as to what extent the vision of trusted
hardware can be realized. For these reasons and due to our
design requirement to operate on general-purpose hardware,
we avoid use of TEEs in this work.

Oblivious PRFs. A pseudorandom function (PRF) is a de-
terministic but “random-looking” function y = fk(x) in which
the mapping between the input x and output y is unpredictable
without knowledge of the secret key k. An oblivious PRF is
an interactive protocol to evaluate fk(x) that hides the server

1While some other works in this area refer to these systems as “secure
allegation escrows,” we have selected an alternative name based on Callisto’s
terminology for their service [20], which they describe as a “matching system.”
The use of the term “allegation” may unintentionally imply a lack of belief
in survivors’ experiences. As advocates have noted in a guide on language
use for sexual assault [59], “Many people say they use the word ‘alleged’ to
refer to sexual assault cases, because they have not reached a final resolution
within the criminal justice system . . . However, it is important to keep in
mind that only a miniscule percentage of sexual assaults ever make their way
through the entire criminal justice process. . . . [A]lmost all sexual assaults
remain “unresolved” by the legal system, and it would be inappropriate to
refer to all such reports (or even disclosures) of sexual assault as ‘alleged.’ ”
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key k and the client input x from each other; it also allows the
server to perform service-wide rate-limiting by refusing to
participate after some number of queries within a time period.
A partially oblivious pseudorandom function (pOPRF) has
two inputs fk(xkal,xpriv), where the server provides k and xkal,
and the client provides xpriv. This additional ‘nonce’ or ‘salt’
input xkal can be used to perform per-account rate-limiting
while still hiding the client’s input xpriv.

There are a wide variety of OPRF works in the literature,
starting with the work of Naor and Reingold [71]. Modern
constructions tend to be based on a Hashed-Diffie-Hellman
PRF fk(x) = H(x)k that is secure in the random oracle model,
or the Dodis-Yampolskiy PRF fk(x) = g1/(k+x) [40]; we will
use some ideas from both of these constructions in this work.
Both styles of OPRFs also have verifiable counterparts that
add integrity checks [42,54], often via zero-knowledge proofs
(which we purposely avoid in this work as discussed in §2.1).
We refer readers to the SoK by Casacuberta et al. [31] for
additional OPRF and pOPRF constructions.

Among their many uses, OPRFs and pOPRFs have found
value in several applications involving oblivious interactions
on the web with passwords or other low-entropy secrets, such
as (threshold) password-protected secret sharing [11, 54, 56],
password hardening services [42, 63], compromised pass-
word checkers [73,79], password-authenticated key exchange
[54, 57, 81], and single sign-on [12]. Many of these works
also provide universally composable (UC) security models
of OPRFs, optionally with a threshold or verifiability require-
ment. Looking ahead, we use the UC modeling of Jarecki et
al. [56] in this work, which is intentionally designed to avoid
the verifiability requirement. We also desire security against
pre-computation attacks, as defined within OPAQUE [57].

2.4 Overview of our K-pop protocol

In this section, we provide an informal overview of our con-
struction of a kaleidoscoping partially oblivious PRF, or K-
pop. As a reminder, this is a function that can be calculated as
an OPRF or pOPRF, and reaches the same result either way.
In other words, the input xkal is kaleidoscopic in that it can be
rapidly changed between being client- or server-provided.

We observe that if bilinear maps are permissible, then
it is straightforward to build a K-pop. Concretely, the
Pythia pOPRF of Everspaugh et al. [42] is computed as
fk(xkal,xpriv) = e(H1(xkal),H2(xpriv))

k, where H1 and H2 are
random oracles. Using standard techniques for oblivious ex-
ponentiation (shown in §3), this function f can be easily com-
puted either as an ordinary OPRF (where the client computes
the bilinear map and the server obliviously exponentiates by
k) or as a pOPRF (where the client blinds the left input before
the server computes the bilinear map).

However, introducing a bilinear map violates our design
principle only to use widely available crypto libraries. As a
result, we have designed a K-pop that can be built purely from

group and finite field operations, in the random oracle model.
Constructing this is non-trivial, as there are no OPRFs and
pOPRFs in the literature [31] that already compute the same
outputs as each other.

Our starting point for this work is the recent pOPRF of
Tyagi et al. [81]. It uses the pseudorandom function fam-
ily fk(xpriv,xkal) = H2(xkal,xpriv,H1(xpriv)

1/(k+H3(xkal))), which
combines characteristics of the Hashed-DH and Dodis-
Yampolskiy OPRFs described in §2.3. We extend this con-
struction to a K-pop by providing an OPRF protocol as well,
which uses additively homomorphic encryption between the
server (who holds k) and the client (who holds xkal) to com-
pute the exponent 1

k+H3(xkal)
that is used in oblivious exponen-

tiation. While the OPRF mode requires a larger number of
public-key operations, this mode of our K-pop only needs to
be executed in the (less frequent) account recovery phase.

2.5 Overview of our account recovery protocol
This section provides a high-level description of our account
recovery protocol. To provide some intuition about the chal-
lenges involved in this construction, we iteratively build it up
by describing several ideas that look promising but ultimately
fall short of meeting our objectives. We then propose changes
until arriving at our final construction.

MPC-based approaches. A natural approach here is to
use MPC, either generally (e.g., run account recovery as a
large circuit) or using private information retrieval, encrypted
database search, or other special-purpose primitives. Within
our 3-step recovery request, verification, and restoration pro-
cedure, it might seem at first glance that the hardest approach
to satisfy with MPC is the email verification step. But actually
this part is mostly a solved problem: Abram et al. [3] showed
how a coalition of MPC servers can collectively emulate TLS
1.3 communications, and MPCAuth [78] applied this tech-
nique to email delivery in such a way that the servers never
learn the client’s email address or contents of the email.

Instead, the primary challenge is to withstand the threats
of an internal and legal adversary during the recovery request
and restoration steps, since MPC-based approaches typically
do not (a) provide any form of rate-limiting of queries or (b)
stop a colluding coalition of all servers from instantly recon-
structing all data. Here the recent TLS-OPAQUE construction
of Hesse et al. [49] is more promising: it uses secure com-
putation of TLS for email delivery along with an OPRF that
could be adapted to ensure that the client’s data (e.g., email
address and security questions/answers) is protected by online
rate limiting if even a single server is honest and requires an
offline dictionary attack even after all servers are corrupted.
In this work, we purposely choose not to use any form of
MPC-for-TLS since (a) it is slow and non-standard to imple-
ment, (b) it is not necessary to satisfy our design principles
(§2.1), and (c) even with MPC-for-TLS, it remains unclear
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how to protect the client’s data using an OPRF. We focus on
this latter question next.

OPRF-based approaches. When using an OPRF in ac-
count recovery, an initial thought might be for recovery re-
quest to involve a standard OPRF on the email address E:
that is, to have the client and servers calculate y = fk(E) and
to protect the client’s user account key using y. However,
this approach would allow an external adversary to conduct
a brute-force search of others’ email addresses. A better ap-
proach is to reveal y only after verifying that the client controls
the email address. Even so, an internal adversary (who ma-
liciously also acts as a client) could perform a brute-force
search of email addresses and recover user data; ultimately,
email addresses do not have enough entropy on their own.

Hence, we wish to add additional questions, but here we
face a chicken-and-egg issue. Ideally, we want each client
to be able to choose their own custom security questions,
and then construct some method where the OPRF output y is
used by the servers to retrieve each client’s custom questions.
But since a retrieving client has forgotten all passwords and
crypto keys, any brute-force attacker would also be able to
read the same security questions. Hence, an internal adversary
could use the mere fact that security questions have been suc-
cessfully retrieved to conclude that an email address E must
be registered in the system.2 We resolve this issue by allow-
ing for generic questions for additional information x (e.g.,
a phone number) and computing the OPRF as y = fk(E,x)
where y is used as a key to unlock a second layer of custom
security questions. In this way: the generic questions provide
increased resistance against brute-force attack by an internal
adversary, and the custom questions provide stronger (and
industry standard) protection against external adversaries.

The next challenge is that if the same OPRF y = fk(E,x) is
used during account creation and recovery, then both need to
be rate-limited or else an internal adversary could use account
creation requests to brute-force y. We resolve this issue by
using a K-pop togther with a server-chosen nonce n that is
guaranteed to be unique for all account creation requests.
Then, we can run a pOPRF y = fk(n,(E,x)) during account
creation and the corresponding OPRF during recovery. With
a K-pop, we can enforce rate-limiting of account recovery
requests in such a way that we do not know which account is
being recovered and need not rate-limit account creation.

Finally, any OPRF-based approach (on its own) does noth-
ing against a legal adversary in control of all servers, since
a PRF provides no security against the key-holder. We re-
solve this issue by feeding y into a slow cryptographic hash

2We remark that this leakage is not inherent from a cryptographic perspec-
tive; indeed, it is possible to calculate the security questions pseudorandomly
from the email address E so that it can be retrieved whether or not E was
ever registered in the system. But we rejected this approach because it went
against our goal of trauma-informed care: if a survivor accidentally mistyped
their email address, we did not want to subject them to try in vain to respond
to an incorrect set of security questions.

Symbol Description

C Client
Si Recovery server i
N Number of recovery servers (default is N = 2)
λ Cryptographic security parameter, e.g., 256 bits
ku Client’s user account key (which decrypts account data)
H Cryptographic hash function, modeled as a random oracle
E Client’s email address associated with the account
x Client’s answers to any generic questions (e.g., contact info)
e Client’s recovery email address (can be the same as E)
Q Security questions chosen by the client
A Answers to the client-chosen security questions
n Nonce chosen publicly by the recovery servers
m Nonce chosen privately by the client
r Recovery string, set as r = e ∥ Q ∥ m ∥ padding
ℓ fixed length of the recovery string after padding is applied
D Database held by both recovery servers (this stores all data

provided by all clients during account creation)
Êi Result of the K-pop run in recovery request with server i
Âi Result of the K-pop run in recovery restoration with server i
id Client’s identifier for her record in the database D
ctr,ctu Ciphertexts produced by the client to store in the server

database; they are a one-time pad of r and ku, respectively
kE ,kA One-time pad keys for the ciphertexts above
k Server’s secret key for an OPRF
xpriv Client’s private input to an OPRF or pOPRF
xkal Input provided by the server in a pOPRF, or by the client in

an OPRF

Table 1: Notation used in this paper.

function H that can slow down the rate of offline brute-force
attempts. Importantly, the OPRFs of all servers are performed
first and only the results are fed into H, so that this offline
brute-force attack must occur after the moment that all server
keys are compromised. In this way, our construction is secure
against pre-computation attacks [57]. This finally yields a
secure construction, which we describe in detail in §4.

3 Kaleidoscopic Partially Oblivious PRF

In this section, we define and construct a new primitive that
we call a kaleidoscopic partially oblivious PRF, or K-pop
for short. This primitive is named for the fact that it can be
quickly changed between an OPRF and a pOPRF at will.

3.1 Preliminaries

In this section, we briefly introduce the notation and OPRFs
that we use in this work. We describe other cryptographic
primitives (hash functions, Diffie-Hellman groups, and addi-
tively homomorphic encryption) in Appendix A.

Notation. In this work, we often use upper-case letters like
S to denote finite sets, and calligraphic letters D to denote
distributions. The notation x← D means to sample x from
the distribution D, and the notation x← S means to select
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Functionality FSMT

• Upon invocation, with input (send,sessionid,R,m) from a sender party S that is intended for a receiver party R, send a message
(sent,sessionid,S,R, |m|) to the adversary A∗.

• Upon receiving message (delivered,sessionid) from A∗: If not yet generated output, then output (sent,sessionid,S,R,m) to R.
• Upon receiving message (corrupt,sessionid,m′,R′) from the environment Env: record being corrupted. Additionally, if no output

has been generated yet, then output (sent,sessionid,S,R′,m′) to R′.

Figure 1: Secure message transmission functionality FSMT, adapted from [22]. In this work, we model both network communi-
cation via TLS and the act of sending an email from the servers to the client’s email provider as instantiations of FSMT.

Functionality FOPRF

An instance of this functionality is uniquely defined by a session id sessionid= (OPRF,sid) containing the party ID of the server (sid).
The functionality interacts with both the server Ssid and anyone who acts in the role of a client C, including possibly the adversary A∗.

• Upon receiving (Init,sessionid) from the server Ssid, uniformly sample kid←$ {0,1}λ, and initialize an empty table T (kid,x).
• Upon receiving (Eval,sessionid,qid,x) from a client C (which can be adversary A∗) where qid is a unique identifier for this Eval

query: end this invocation if called before Init. Otherwise, record ⟨qid,C,x⟩ and send (EvalContinue,sessionid,qid) to A∗.
• Upon receiving (EvalContinue,sessionid,qid,kid∗) from A∗: end this invocation if there is no record with qid. Otherwise, find

and delete record ⟨qid,C,x⟩. If Ssid is honest, set kid∗← kid (i.e., use the correct key). Next, fetch ρ← T (kid∗,x) as follows:
– If T (kid∗,x) is defined, then look up ρ← T (kid∗,x) and send (EvalComplete,sessionid,qid,ρ) to C.
– Otherwise pick ρ at random from {0,1}ℓ, assign T (kid∗,x) := ρ, and send (EvalComplete,sessionid,qid,ρ) to C.

• Upon receiving (OfflineQuery,sessionid,x,kid∗) from C: fetch ρ← T (kid∗,x) as above. Send (OfflineQuery,sessionid,ρ) to C.
• Upon receiving (corrupt,pid) from the environment Env: mark the party corresponding to pid as corrupted. Additionally:

– For corruption of the server, send kid to the adversary.
– For corruption of a client C, send all corresponding records ⟨qid,C,x⟩ to the adversary.

Figure 2: Functionality FOPRF, based on Jarecki et al. [55] modified to use a unique query identifier qid like Das et al. [37] to
track commands sent to FOPRF about the same evaluation query. FOPRF does not guarantee honest behavior by the server; the
key identifier kid corresponds to the server’s choice of key to use when responding to each query. OfflineQuery allows anyone to
evaluate the OPRF on input x and key id kid∗ of their choice—which is unlikely to match the honest kid unless S is corrupted.

x uniformly at random from the set S. We also use [n] =
{1, . . . ,n} to denote the set of integers from 1 to n, inclusive.

We denote the protocol participants using bold letters. A
client is denoted as C, and a server is denoted as S. For pro-
tocols that contain multiple servers, we use subscripts to dis-
tinguish them: server 1 is denoted as S1, server 2 is S2, and
so on. We also use Adv to denote a real-world adversary who
attempts to attack our protocol—either maliciously or semi-
honestly, as stated in the respective theorem statements—and
Sim to denote the corresponding ideal-world simulator. See
Table 1 for a detailed list of all variables used in this work.

Oblivious pseudorandom function. As described in §2.3,
an OPRF is an interactive two-party protocol in which a client
C has input x, a server S has input k, and they jointly com-
pute y = fk(x) in such a way that neither party learns any-
thing about the other input. However, the server can deviate
from the protocol, and correctness is not guaranteed in this
case. Formally, we model an OPRF as an instantiation of the
UC functionality FOPRF shown in Figure 2, which we adapt
from Jarecki et al. [55] with a small tweak to add support for
server-side rate-limiting. If a client submits an input x and the
server is honest, then the client receives the correct output—

potentially after some adversarially-chosen delay since this is
an interactive protocol. If the server is malicious, then it could
act as though it used a different key or produce a random
output, which the functionality also accounts for.

3.2 Defining K-pop

Like an OPRF or pOPRF, a K-pop is an interactive protocol
between two participants who we call the client C and the
server S. Concretely, a K-pop is a keyed family of pseudo-
random functions with two inputs f K-pop

k (xkal,xpriv). Looking
ahead to our account recovery protocol: the client will execute
independent instances of K-pop with each recovery server.

The K-pop can be computed either as a pOPRF or OPRF.
Concretely, the input xkal is kaleidoscopic in that it can be
rapidly changed between being public to the server (in pOPRF
mode) or private to the client (in OPRF mode). Importantly,
the K-pop returns the same answer in either mode.

We formalize these requirements through the UC func-
tionality FK-pop provided in Figure 3, which codifies both the
functionality and security requirements of K-pop. It calls the
OPRF functionality FOPRF (Fig. 2) as a subroutine. We stress
that FK-pop makes the same call to FOPRF whether the input
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Functionality FK-pop

An instance of this functionality is identified by a session id sessionid= (K-pop,sid) containing the party ID sid of its server. It interacts
with the server S and any client C (possibly the adversary A∗), it has a subroutine FOPRF and a query limit L, and it operates as follows.

• Upon receiving (Init,kid) from server Ssid: set ctr← 0 and send (Init,kid) to FOPRF. (Other methods abort if called before Init.)
• Upon receiving (Reset) from the server Ssid: set ctr← 0 and send the message (ResetComplete) to A∗.
• Upon receiving (Eval,sessionid,OPRF-mode,qid,xkal,xpriv) or (Eval,sessionid,pOPRF-mode,qid,xkal,xpriv) from a client C:

– Send an error (Eval,sessionid,qid,⊥) to A∗ if there was a prior message with qid, or if S is honest and ctr > L.
– If in pOPRF mode: send (Eval,sessionid,qid,xkal) to A∗, and wait for a response (EvalContinue,sessionid,qid).
– Increment query counter ctr← ctr+1, and send (Eval,sessionid,qid,(xkal,xpriv)) to FOPRF on behalf of C.

• Upon receiving (EvalComplete,sessionid,qid,ρ) from FOPRF: output (EvalComplete,sessionid,qid,(xkal,xpriv),ρ) to client C.
• Upon receiving (OfflineQuery,sessionid,xkal,xpriv,kid

∗) from C: send this message to FOPRF, and send its response to client C.
• Upon receiving (corrupt,pid) from the environment Env: mark the party with pid as corrupted, and send (corrupt,pid) to FOPRF.

Figure 3: Functionality FK-pop with subroutine FOPRF. Differences between OPRF and pOPRF modes are shown in a box .
FK-pop maintains a counter ctr of the number of Eval queries, and it enforces a limit of L evaluations between Reset commands.

K-pop in pOPRF mode

Client (knows xkal,xpriv) Server (knows k,xkal)

r←$ {1, . . . , p}

α = H1(xpriv)
r

pOPRF

xkal, α

stop if query
limit exceeded

v = k+H3(xkal)

γ = β
1/r β β = α

1/v

Output H2(xkal,xpriv,γ)

Figure 4: K-pop in pOPRF mode, where both the client and
server know xkal. The server need not be honest; it can use
incorrect k∗ or x∗kal in its oblivious exponentiation. All com-
munications use secure message transmission FSMT (Fig. 1).

xkal is provided by the server (in pOPRF mode) or by the client
(in OPRF mode). Since FOPRF does not know whether it was
called in OPRF or pOPRF mode, its response must be the
same in both cases; in other words, FK-pop ensures identical
outputs in the OPRF and pOPRF modes by design. Also, note
that if the parties are honest, then FK-pop is guaranteed to be
deterministic and repeatable because FOPRF is.

However, if the server S is malicious, then in pOPRF mode
it can ignore the agreed-upon xkal and choose a different x∗kal.
While one could incorporate a verifiability guarantee into a
K-pop, we choose not to do so because it is not needed in
our account recovery protocol in §4 and this way we do not
need to use zero knowledge proofs. Instead, we leave it up
to any protocol that uses K-pop to detect and abort in case of
malicious server behavior.

K-pop, in OPRF mode

Client (knows xkal,xpriv) Server (knows k)

(sk,pk)←$ HomKeyGen()

pk,JkK JkK = HomEncpk(k)

r,s←$ {1, . . . , p}
t←$ {1, . . . ,N/p}

α = H1(xpriv)
r

JzK = HomEvalpk(t p

+ s(JkK+H3(xkal)))
OPRF

α,JzK
stop if query limit exceeded

z = HomDecsk(JzK)
z = z mod p

γ = β
s/r β β = α

1/z

Output H2(xpriv,xkal,γ)

Figure 5: K-pop in OPRF mode, where xkal and xpriv are both
private inputs supplied by the client. All communications use
secure message transmission FSMT (Fig. 1). The first message
can be sent in a preprocessing step or using a PKI.

3.3 Constructing K-pop

In this section, we construct a K-pop by combining and ex-
tending techniques from Tyagi et al. [81] and Miao et al. [69].
Specifically, our K-pop construction computes the same func-
tion as the pOPRF of Tyagi et al. [81]:

f K-pop
k (xkal,xpriv) = H2

(
xkal,xpriv,H1(xpriv)

1/(k+H3(xkal))
)
.

Here, H1 is a cryptographic hash function whose output is a
point on an elliptic curve group, and H2 and H3 are random
oracles that return finite field elements. We use xpriv and xkal to
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denote the inputs, where xpriv is always a secret input supplied
by the client, and xkal is the kaleidoscopic input. In the OPRF
mode, xkal is chosen by the client and kept secret from the
server; by contrast, in the pOPRF mode, xkal is known and
agreed upon by the client and server.

This construction by Tyagi et al. [81] combines ideas from
two prior PRF families: the Dodis-Yampolskiy [40] PRF
fk(x) = g1/(k+x) and the Hashed-DH PRF fk(x) = H(x)k. The
outer-most hash function H2 is useful to provide extraction
for UC security, in the random oracle model [54]. Below, we
reproduce the pOPRF design of Tyagi et al. [81], and then
we construct an OPRF that computes the same result. In both
cases, we model all network communications with a secure
message transmission functionality FSMT in Fig. 1; that said,
it is sufficient to use an authenticated communication channel
as defined in several prior works (e.g., [10, 22, 23, 29]).

pOPRF Mode. We begin by describing the K-pop in
pOPRF mode. Because the server knows xkal, it can com-
pute (k+H3(xkal))

−1 and use this as the exponent in a two-
message oblivious exponentiation protocol with the client, as
illustrated in Figure 4. Finally, the client computes the outer
hash function H2. This mode exactly follows the work of
Tyagi et al. [81] (but without a zero knowledge proof), and
it is the more efficient of the two modes: it requires 3 group
exponentiations along with some hash function evaluations.

OPRF Mode. It remains to compute the same function in
OPRF mode, in which xkal (like xpriv) is a secret known only
to the client that the server is not supposed to learn. Rather
than having the server compute v = k+H3(xkal) directly, in
this mode we have the client and server compute v together,
using additively homomorphic encryption so that neither party
learns any intermediate state along the way. Let p denote
the order of the elliptic curve group, and let the notation JxK
denote a homomorphic encryption of the plaintext value x.

First, we describe the main technique under the simplify-
ing assumption that the plaintext space of the homomorphic
encryption algorithm is also a group of order p. With this sim-
plifying assumption, we can perform a secure computation of
the required addition and multiplicative inversion as follows.

1. The server chooses an ephemeral key pair for homomor-
phic encryption, computes JkK= HomEnc(k), and sends
this ciphertext to the client.

2. The client chooses two blinding factors r,s←{1, . . . , p}.
The client computes the group element α = H1(xpriv)

r

in the same way as in the pOPRF mode, and also uses
homomorphic addition and scalar multiplication to com-
pute the ciphertext JzK corresponding to the plaintext
z = s(k +H3(xkal)). The client sends α and JzK to the
server.

3. The server decrypts z, inverts it, and sends β = α1/z =

H1(xpriv)
r

s(k+H3(xkal)) to the client.

4. The client computes γ = βs/r = H1(xpriv)
1/(k+H3(xkal)).

Correctness is clear by inspection, and privacy against the
server follows from the fact that z is blinded using s so that
the server cannot learn the client’s xkal.

The remaining challenge is to address the fact that the
exponents and HomEnc plaintexts are not from the same
group, which we handle using a technique from Miao et
al. [69]. Concretely, let N≫ p denote the order of the plain-
text space within an additively homomorphic encryption
scheme, like Paillier [72] or Camenisch-Shoup [21] encryp-
tion (for the latter, we omit the integrity check). The issue here
is that we wanted the homomorphic evaluation to produce
z = s(k+H3(xkal)) mod p because the server plans to use z
as an exponent, but the homomorphic evaluation performs
the calculation mod N instead. If N ≫ p2 then the calcula-
tion z = s(k+H3(xkal)) mod N does not perform any modular
wrapping at all, so the blinding is ineffective and revealing
z to the server would allow it to learn information about the
size of the client’s secrets s and H3(xkal). Fortunately, there is
a simple solution to this problem shown by Miao et al. [69]:
add a random multiple of p, so that the resulting plaintext is
z = s(k+H3(xkal))+ t p mod N, where t ← {1, . . . ,N/p} is
another blinding factor chosen by the client. In this way, z still
reduces to the correct exponent mod p with overwhelming
probability, and its size does not reveal information about the
client’s secret inputs.

This protocol requires 3 group exponentiations (just like
pOPRF mode) along with one homomorphic encryption, eval-
uation, and decryption. We illustrate the protocol in Figure 5
and prove the following theorem in Appendix E.

Theorem 1. Assume that group G satisfies the one-more gap
strong Diffie-Hellman inversion assumption and that HomEnc
satisfies indistinguishability under a chosen plaintext attack
(IND-CPA). Then, the K-pop protocol ΠK-pop (in Figures 4-5)
UC-realizes the ideal functionality FK-pop in the presence of a
programmable random oracle Fpro.

4 Account Recovery

In this section, we describe our cryptographic protocol for
private account recovery. Our protocol consists of the four
stages described in §2.2: account creation, recovery request,
account verification, and account restoration. Below we de-
scribe constructions for each protocol, with full details pro-
vided in Figures 6-8. For simplicity, our constructions are
written here for the setting of N = 2 servers, but the protocols
immediately generalize to allow for more servers. We provide
a security analysis of this protocol in §4.6 and the appendices.

4.1 Initialization
Each server independently and secretly chooses a K-pop key.
We denote server i’s K-pop key as ki. Additionally, a com-
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Client Server 1 Server 2

m $←− {0,1}256 Agree on unique nonce n

n
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

E
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

E
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

pOPRF mode

K-pop
E,x E,k1

Ê1

pOPRF mode

K-pop
E,x E,k2

Ê2

pOPRF mode

K-pop
n,(A ∥ m) n,k1

Â1

pOPRF mode

K-pop
n,(A ∥ m) n,k2

Â2

id,kE = H(E ∥ Ê1 ∥ Ê2)

kA = H(A ∥ m ∥ Â1 ∥ Â2)

r = E ∥ Q ∥ m ∥ padding

ctr = kE ⊕ r

ctu = kA⊕ ku

id,ctr,ctu
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

id,ctr,ctu
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Store (id,ctr,ctu,n) in a database shared between both servers

Figure 6: Account Creation

mon database DB is initialized, and each server is granted
read/write access.

4.2 Account creation

Account creation allows a client to register a new account in
the system. We depict the complete procedure in Figure 6.
The client begins by choosing the following information:

• E, the client’s official email address for this account,
• e, a personal email address to use in account recovery,
• x, additional personal information provided in response

to any generic questions, such as a telephone number,
• ku, a cryptographic key used to encrypt all account data,
• Q, a set of client-chosen security questions,

• A, the client’s answers to the security questions Q,
• m, a randomly generated nonce of length λ, where λ

denotes the security parameter (e.g., 256 bits), and
• r = e ∥Q ∥m, a recovery string padded to fixed length ℓ.

First, the servers jointly agree on a unique nonce n for
the client. This nonce is immediately sent to the client, who
sends back their email string E to both servers. The servers
should verify the client’s email at this point by emailing them
a link. Also, providing E to the servers serves a cryptographic
purpose in our protocol: the client makes a K-pop query to
each server in pOPRF mode, using email E as the public input
and personal info x as the private input. Let Ê1 and Ê2 denote
the respective K-pop outputs to the client.

Next, the client computes H(E ∥ Ê1 ∥ Ê2), where H is a

12



Client Server 1 Server 2

OPRF mode

K-pop
E,x k1

Ê1

OPRF mode

K-pop
E,x k2

Ê2

id,kE = H(E ∥ Ê1 ∥ Ê2)

id,kE
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

id,kE
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Each server aborts if id is not in the database. Else:

r = kE ⊕ ctr
Contact client via contact information stored in r using FSMT,
send the message (Q,m,ctu,n)

Figure 7: Recovery Request

slow password-based key derivation function of variable out-
put length (modeled as a random oracle). The slowness of this
function is the reason why our construction provides offline
rate limiting against a legal adversary, and the fact that it uses
the outputs of the K-pop means that an offline attack can only
be performed after the adversary compromises all servers. We
parse the output of H into two strings: id is the first λ bits of
this output, and kE is the next ℓ bits. This ensures that kE is
the same length as r. The client then computes a one-time-pad
ciphertext ctr of r encrypted under key kE .

Then, the client makes another K-pop query to each server
in pOPRF mode, this time using n as the public input and A ∥
m as the private input, receiving back the respective outputs
Â1 and Â2. Using the same password-based key derivation
function H, they compute kA = H(A ∥ Â1 ∥ Â2), where kA is
of length λ. The client then XOR-s kA with their user key
to produce a one-time-pad ciphertext ctu. Finally, the client
sends id,ctr, and ctu to each server. The servers store these
values together with the nonce n in a single row of the shared
database DB.

4.3 Recovery request
In this stage, the client initiates a request to recover their ac-
count after losing their user key. We assume that the client
still remembers the same email string E and personal infor-
mation string x used during account creation. We depict the
full protocol in Figure 7.

Recovery requests begin with the client making a K-pop
query to each server in OPRF mode, using inputs E and x,
and receiving back outputs Ê1, Ê2. Note that the inputs are
the same ones the client provided to the K-pop during account

creation, but this time E is a private input instead of a public
input. Since both K-pop modes of operation compute the same
function, the outputs are the same as in account creation.

The client computes id,kE = H(E ∥ Ê1 ∥ Ê2), and sends
id and kE to each server. The servers can then look up id
in their shared database and retrieve the corresponding ctr
ciphertext. Both servers can decrypt this with kE to reveal
the client’s r string, which consists of their recovery email
address e, security questions Q, and nonce m.

To impose rate limiting on recovery requests, each server
can restrict the number of K-pop queries they respond to in
OPRF mode. This limit will not restrict the server’s ability
to process account creations, since all K-pop operations in
account creation are run in pOPRF mode.

4.4 Account verification
In this stage, the recovery servers send an email to the re-
covery address e. This email contains a customized link that
encodes the message (Q,m,ctu,n). The servers only agree to
participate in account restoration if the client clicks on this
link within a short time interval.

Our protocol supports two options for account verification.
First, the verification step can be done non-cryptographically
by having the recovery data r revealed to the servers at the
end of the recovery phase, in which case they can send an
email in the clear to the recovery address e. This approach has
the advantage of being easier to implement, since all other
aspects of our account recovery protocol use standard public
and symmetric key primitives, but it has the disadvantage
that the servers temporarily learn the contact info of clients
during account recovery and must be trusted to delete this
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Client Server 1 Server 2

Q,m,ctu,n
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Q,m,ctu,n
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Abort if messages differ

A = Answers to Q

OPRF mode

K-pop
n,(A ∥ m) k1

Â1

OPRF mode

K-pop
n,(A ∥ m) k2

Â2

kA = H(A ∥ m ∥ Â1 ∥ Â2)

Output ku = kA⊕ ctu

Figure 8: Account Restoration

information promptly. (Still, we stress the importance here of
learning at most the email addresses of clients who perform
account recovery, rather than a full list of account-holders.)
Second, the servers can jointly perform account verification
under secure multi-party computation, in order to prevent any
server from learning the client’s email address. In this case,
either the Oblivious TLS protocol of Abram et al. [3] or the
MPCAuth protocol [78] would suffice.

In our modeling, we consider both of these options as in-
stantiations of the UC functionality for secure message trans-
mission FSMT, as shown in Figure 1.

4.5 Account restoration

This final stage of the protocol is shown in Figure 8. Concep-
tually, this stage is most similar to recovery request, in that it
starts with the client submitting K-pop queries to each of the
servers in OPRF mode, this time with inputs xpriv = (A ∥ m)
and xkal = n. Additionally, the client computes a slow hash
function on the OPRF inputs and outputs. One difference
between the stages is that account restoration is intended to
provide an output to the client, not the servers. Ergo, recov-
ering the one-time pad key kA from the OPRF outputs is
nearly the end of the protocol; all that remains is to use this
ephemeral key to recover the user account key ku.

After the client’s account has been restored, it is crucial that
they immediately reset their account information (e.g., the
password that they have forgotten) so they maintain access in
the future. While most of the reset process involves properties
of the service outside of our modeling, one step that is crucial
is to perform another instance of account creation in order to
choose a new nonce to protect the account going forward (and

optionally new security questions and answers, if desired).

4.6 Security analysis
In this work, we provide game-based and simulation-secure
security analyses of our account recovery construction.

First, we provide an indistinguishability game-based se-
curity analysis in Appendices B-C. Our game defines an ad-
versarial model in which the attacker can statically corrupt
one of two recovery servers, and adaptively corrupt any num-
ber of clients. The adversary can additionally control when
honest clients create accounts and run account recovery. The
adversary wins if they are able to distinguish between an un-
corrupted client’s real user key and a randomly sampled key.
We prove that our account recovery scheme has the following
security.

Theorem 2. An adversary that sends at most q messages to
honest parties has advantage at most q

|A| + ε in the random
oracle model, where ε is negligible in the security parameter,
and A is a set of possible security question answers from
which real clients’ answers are uniformly sampled.

This result demonstrates the effectiveness of rate-limiting
against internal adversaries. Rate-limiting allows honest re-
covery servers to effectively impose a q value limiting the
number of queries that other servers can make. The honest par-
ties can therefore restrict the advantage of internal adversaries
via the choice of q.

Our game-based analysis additionally shows that our ac-
count recovery construction detects adversarial deviations
from the protocol during account recovery and restoration
and therefore provides security up to abort, even though our
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Figure 9: Performance of K-pop implementation over different choices of elliptic curve group and cryptographic hash function.
Each bar represents the average of 1000 measurements.

K-pop on its own does not provide verifiability. This proof
is conceptually the simpler one to understand, but it restricts
the adversary to a single server corruption and only protects
accounts created prior to the corruption.

Second, in Appendix F, we provide a simulation-based
analysis with universally composable (UC) security in the
model of Canetti [22]. We write a protocol description Πacc

in the UC style, contribute an idealized version of our protocol
as the functionality Facc, and prove the following.

Theorem 3. Protocol Πacc UC-realizes functionality Facc in
the random oracle model.

This analysis provides a stronger guarantee because it does
not restrict the power of the adversary: it can act maliciously
from the beginning and in all phases of account creation, re-
covery, verification, and restoration. To prove Theorem 2, we
construct a simulator Sim and argue the environment Env’s
view is identically distributed whether it interacts with (a)
Πacc and real-world adversary Adv in the FK-pop-hybrid world
or (b) Facc and Sim in the ideal world. Our formal theorem
statements and proofs are provided in Appendices B-F.

5 Implementation

We provide an open-source implementation of the K-pop con-
struction (from §3.3) in Sage.3 We emphasize that this code-
base is distinct from Callisto’s own implementation in Type-
Script for use on the web.

Our code is based on an implementation [53] of RFC
9497 [39], which standardizes the pOPRF construction of
Tyagi et al. [81]. Our implementation of the K-pop in pOPRF
mode uses their code directly, with the only modification be-
ing the removal of zero-knowledge proofs (since our construc-
tion does not require verifiability). For the OPRF mode, we

3Our K-pop implementation code is available at
https://github.com/ryanjlittle/kpop-oprf.

instantiate the additively homomorphic encryption scheme us-
ing an open-source implementation [38] of Paillier encryption
with a key length of 2048 bits.

5.1 Single-threaded experimental results

We evaluated our implementation on a 1.6GHz Intel Core
i5-10210U CPU with 16GB RAM. Figure 9 shows the client-
side and server-side performance of the K-pop in both modes
of operation for five different choices of Diffie-Hellman group
and hash function. Excluding network time, the end-to-end
time of a K-pop interaction takes 3.1-41.2 ms in pOPRF mode
and 8.4-60.3 ms in OPRF mode, depending on the choice of
group and hash function.

Our proof-of-concept implementation is not optimized for
speed, and we expect that the computation time can be re-
duced further. Even so, already these benchmarks lend cre-
dence to the efficiency of the account recovery protocol,
which requires two separate instances of the K-pop together
with a small number of hash function operations, XORs, and
database operations. Since all of these server-side costs are
negligible compared to the K-pop, our benchmarks show that
in a 2-server account recovery system, account creation and
the entire recovery procedure each run in 12.4-164.8 ms, ig-
noring network latency. The client-side runtime would be
dominated by the (tunable) cost of the slow, memory-hard
hash function like argon2 [16] or scrypt [4].

5.2 Multiprocessing experimental results

In a real-world deployment of our account recovery system,
the server side work can scale to a larger number of clients
by running many K-pop instances in parallel. We attempted
to measure the performance in this setting by evaluating our
K-pop implementation locally running on multiple cores. We
simulated 512 (single-process) clients simultaneously inter-
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Ciphersuite Mode Number of cores

1 2 4

ristretto255-SHA512
pOPRF 6.866 3.942 2.534

OPRF 8.829 5.364 3.671

decaf448-SHAKE256
pOPRF 13.259 8.165 5.566

OPRF 16.357 10.209 6.779

P256-SHA256 pOPRF 1.027 0.544 0.366

OPRF 3.823 2.289 1.416

P384-SHA384 pOPRF 1.584 0.889 0.616

OPRF 4.478 2.648 1.639

P521-SHA512 pOPRF 2.824 1.653 1.018

OPRF 5.547 3.368 2.326

Figure 10: Amortized evaluation time in milliseconds of K-
pop server running on P ∈ {1,2,4} parallel cores. Each data
point is the average of 512 measurements.

acting with one server that delegates the server response for
each client to one of P processes run on separate parallel
cores, for P ∈ {1,2,4}. The work is evenly split such that
each core handles 512/P clients.

The performance results for this experiment are given in
Figure 10. Experiments were run on an 4-core 1.6 GHz Intel
Core i5-10210U CPU with 16GB RAM. On P = 4 cores,
the server performance is 2-3 times faster than a single-core
implementation, depending on the mode of operation and
ciphersuite. The run times for P = 1 core are slightly higher
than the results of the experiment of §5.1 due to overhead
from multiprocessing.

6 Conclusion

In summary, this work designs an account recovery protocol
that works under stringent functionality and privacy require-
ments. First, the service provider cannot know or learn the
email addresses of all clients. Second, the clients must be
able to follow a ‘normal’ account recovery workflow and
have the ability to choose their own security questions—but
again, without creating a visible mapping between identities
and their choice of security questions. Third, a non-collusion
assumption might be broken, and even in this setting the pro-
tocol must resist the adversary’s ability to recover client data.
Finally, our design uses the cryptographic building blocks
that our partner organization, Callisto, already understood and
knew how to implement and maintain, such as an oblivious
pseudorandom function.

Our design is inspired by the application to a secure match-
ing system, and it has been deployed for use in this setting.

That said, at least the first three requirements from above
are generic and can apply to other account-based privacy-
preserving services as well. This work shows that strong
security and privacy can be compatible with usability and
quality-of-life features like account recovery.
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A Additional Cryptographic Background

In this section, we expand upon §3.1 and provide definitions
for more cryptographic primitives that we use in this work.

Hash functions. We rely on a cryptographic hash function
H : X → Y in the random oracle model, which asserts that H
can only be computed via an oracle query, and furthermore
that this function is chosen uniformly at random from the
space of all such functions from its finite domain X to its finite
codomain Y . In this work, we consider random oracles where
the input and output spaces can be either group elements or
finite field elements. Our security reductions apply in the
programmable random oracle model, which we define via the
UC functionality Fpro in Figure 16 (which itself is reproduced
from Canetti et al. [27] with minor changes for our setting).

Because we will use multiple random oracles in this work,
for notational convenience we choose to write the oracles as
functions H1,H2,H3 and indicate a query to the first oracle
as “h = H1(m),” rather than the more cumbersome phrase
“send (HashQuery,m) to the instance of Fpro with session id
sessionid1 and denote its response as h.” Additionally, some of
our random oracles are assumed to be instantiated with slow,
memory-hard hash functions (e.g., argon2 [16] or scrypt
[4]) to hinder offline brute-force attacks.

Elliptic curve Diffie-Hellman group. An elliptic curve
group is a specific finite, cyclic group G generated by a gen-
erator element g in which discrete logarithms are hard. We
denote the (known) order of this finite group as p = |G|, and
hence Fp is the field of exponents for this group. We assume
that G satisfies a strong variant of the Diffie-Hellman as-
sumption introduced by Tyagi et al. [81]—namely, the (m,n)
one-more gap strong Diffie-Hellman inversion (SDHI) as-
sumption, which we define formally in §E.1.

Additively homomorphic encryption. An additively ho-
momorphic encryption scheme is a tuple of four al-
gorithms (HomKeyGen,HomEnc,HomEval,HomDec). We
use double-bracket notation to denote ciphertexts, in order
to remember the plaintext contained within it; for instance,
JxK = HomEncpk(x). The scheme must satisfy the usual en-
cryption guarantees of correctness (decryption always returns
the previously-encrypted plaintext) and semantic security (en-
cryptions of two chosen messages. Additionally, the eval-
uation algorithm HomEval can compute a new ciphertext
that corresponds to addition and/or scalar multiplication of
known ciphertexts or plaintexts. We assume that the evaluated
ciphertext looks indistinguishable from a freshly-encrypted
ciphertext of the same message, even to the holder of the
secret decryption key sk.

B Game-Based Security against a Semi-Honest
Adversary

This section contains our first security analysis of the account
recovery construction. This analysis is perhaps the easiest to
understand, albeit with the weakest security model. Specifi-
cally, in this section we consider an adversary that is restricted
to semi-honest actions, and that can only statically corrupt one
of the two servers. Additionally, the adversary is permitted to
corrupt as many clients as it wants, and to do so adaptively.

We prove security in this setting via a game-based indis-
tinguishability definition. In this section, we first define our
game and then show our proof of security.

B.1 Game definition
Our game-based definition models an internal attacker who
has access to one of the two recovery servers and can poten-
tially compromise arbitrary clients. In the game, the adversary
can statically corrupt one of the two recovery servers and
adaptively corrupt any number of clients. They may prompt
uncorrupted clients to honestly perform the various protocols
of account recovery: account creation, recovery request, and
account restoration. We do not model account verification
since it is a non-cryptographic procedure, and instead simply
assume that verification always succeeds. The adversary can
also instruct a corrupted client to perform the protocols semi-
honestly, but with adversary-specified inputs. This captures
the idea of an attacker who may lie about user-specified infor-
mation (e.g. email string and security questions/answers), but
cannot modify the code used in the account recovery system.
We model a fully malicious adversary who can modify the
code in Appendix C.

Our game-based definition is inspired by the game-based
definitions of PAKE schemes described in [1, 2, 14]. Our
game operates in the real-or-random paradigm, and the ad-
versary is tasked with distinguishing between real user keys
and randomly sampled keys. At the onset of the game, the
challenger generates servers S1 and S2, each initialized with a
random K-pop key, and instantiates an empty database shared
between the two servers. The challenger also generates a set
of N clients. Each client is initialized with an email string
e, a personal contact information string x, a set of security
questions q, and their respective answers a. These values are
sampled from sets E,X ,Q, and A respectively. Additionally,
each client is instantiated with a randomly sampled user key
ku. The initialization procedures for servers and clients are
described in Figure 11.

Finally, the game master samples a random bit b, which
determines if the game will be played in the real world or the
random world. The adversary wins if they output a bit that
matches b.

The adversary is allowed to interact with the game through
four oracles. The first is a programmable random oracle H,
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InitServer()

k $←−K K-pop

state=⊥

InitClient()

e $←− E

x $←− X

q $←− Q

a $←− A

ku
$←−K

state=⊥
corrupted= False
tested = False

Figure 11: Server and Client initialization procedures

which we use to model the slow, password-based key deriva-
tion function in our protocol. We also allow the adversary to
make queries to the oracles Execute(), Corrupt(), and Test().
All oracle queries are routed through the game master, who
takes the adversary’s query and returns the oracle response.
The oracles are described in detail in Figure 12. At a high
level, the Execute() oracle allows the adversary to specify a
client and protocol and have that client run the protocol. If
the client is corrupted, the adversary may supply inputs for
the client to use in the protocol. The Corrupt() oracle allows
the adversary to reveal a specified client’s entire internal state.
The Test() oracle allows the adversary to specify a client and
reveal either their user key or a random key, depending on the
bit b. The adversary is not allowed to use the Corrupt() and
Test() oracles on the same client–once a client is corrupted it
cannot be tested, and vice-versa.

Let WIN be the event that an adversary A wins the account
recovery game (by outputting a bit that equals b). We define
the advantage of A in the semi-honest account recovery game
as AdvSH−acc−rec(A) = 2 ·P [WIN]− 1, and say an account
recovery protocol is secure against semi-honest adversaries if
the advantage is negligible for all possible adversaries.

B.2 Security analysis

Theorem 4. For all semi-honest polynomial time adversaries
A attacking the account recovery protocol in section 4 that
make at most qex calls to the Execute() oracle and qro calls
to the random oracle, there exist the following adversaries:

• B1 attacking the pseudorandomness of the K-pop scheme
• B2 attacking the obliviousness of inputs in the K-pop

scheme

Execute(Ci,Π,x)

Models an honest client executing part of the protocol. Π is
the subprotocol to run: either recovery part one or part two.
The input x is an optional argument specifying the client’s
state and internal variables. If Ci is corrupted, they run the
protocol with the specified state and variables in x. If Ci
is uncorrupted, the input is ignored and the protocol is run
with their internal state and variables. The oracle returns the
transcripts of the interactions and the view of the corrupted
server. If Ci is corrupted, the oracle additionally outputs
their updated view after executing the protocol.

Corrupt(Ci)

If Ci has previously been tested, return Fail. Otherwise, set
Ci.corrupted= True and return all of Ci’s private attributes
and state.

Test(Ci)

If Ci has previously been corrupted, return Fail.
Otherwise, set Ci.tested= True and do the following:
If b = 0:

Return Ci’s user key and any past user keys
Else:

Let n be the number of user keys Ci has ever used.
Return n randomly sampled keys.

Figure 12: Oracles available to semi-honest adversary

such that

AdvSH−acc−rec(A)≤ qex

|A|
+

N2 +qro

2λ

+AdvPRF(B1)

+AdvK-pop(B2),

where A is the dictionary of security question answers, N is
the number of clients, and λ is the security parameter.

Proof. The proof is a series of hybrid experiments. For each
experiment i we define the event WINi representing the event
that the adversary succeeds in the game of experiment i.

Experiment 0: The real protocol. By definition, we have

AdvSH−acc−rec(A) = 2 ·P [WIN0]−1.

Experiment 1: In the Execute oracle, replace all outputs
of the honest server’s K-pop (in both public and private input
modes) with outputs from a random function. Distinguishing
between this experiment and the previous one is at least as
hard as breaking the pseudorandomness of the underlying
PRF.

Lemma 1. There exists an adversary B1 such that
|P [WIN0]−P [WIN1]| ≤ AdvPRF(B1).
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Proof. Suppose an adversary A1 can distinguish between
experiments 0 and 1 with non-negligible advantage. Then
let B1 be an adversary attacking the pseudorandomness of
the honest server’s K-pop function. B1 acts as the challenger
in the account recovery game, but replaces all honest server
K-pop calls with calls to the real-or-random PRF oracle. If we
are in the real world of the PRF game, the account recovery
game matches experiment 0, while if we are in the ideal world,
the game matches experiment 1. B1 runs A1 on this game and
outputs its result. Then B1 has non-negligible advantage in
breaking the pseudorandomness of the underlying PRF of the
K-pop.

Experiment 2: In the execute oracle, replace all K-pop
protocol interactions between an honest client and the cor-
rupted server with a simulation of the interactions. Further,
any time an honest client is corrupted with the Corrupt query,
re-program the random oracle such that the client’s output in
all K-pop interactions is consistent with the simulated tran-
script.

Lemma 2. There exists an adversary B2 such that
|P [WIN1]−P [WIN2]| ≤ AdvK-pop(B2).

Proof. Suppose the adversary A2 can distinguish between
experiments 1 and 2 with non-negligible advantage. Then let
B2 be an adversary against the obliviousness of the corrupted
server K-pop. Have B2 act as the challenger in the account
recovery game of experiment 1, but replace all K-pop commu-
nications between an honest client and the corrupted server
with messages from either the real or ideal distribution of
the K-pop. These respective worlds determine if the account
recovery game matches experiment 1 or experiment 2. B2
runs A2 on this game and returns the output. Then B2 has
non-negligible advantage in breaking the obliviousness of the
K-pop function.

Experiment 3: During client creation, ensure all nonce
values m are unique by sampling without replacement.

Lemma 3. |P [WIN2]−P [WIN3]| ≤ N2

2λ
.

Proof. Experiments 2 and 3 can only be distinguished if a
collision occurs among the nonces in experiment 2. The prob-
ability of this occurring is bounded by the birthday bound,
which gives an upper bound of N2

2λ
.

Experiment 4: Let B be the event that the adversary uses
the Execute oracle on a corrupted client to run account cre-
ation or restoration with specified inputs A and m that match
the security answer and nonce string of some uncorrupted
client. Suppose that B has NOT occurred, and the adversary
make a random oracle query with input (A,m, Â1, Â2), where
A and m match the security answer and nonce string of an
uncorrupted client, and Â1 and Â2 match the respective K-
pop outputs of (A,m). If this occurs, have the game output
“SUCCESS" and abort.

Lemma 4. |P [WIN3]−P [WIN4]| ≤ qro · 1
2λ

.

Proof. The honest server’s K-pop was replaced with a random
function in experiment 1, so the only way an adversary can
learn the honest server’s PRF output on input (A,m) is by ei-
ther evaluating it via the Execute oracle or randomly guessing
the output. The event B corresponds to the case in which the
adversary uses the Execute oracle to evaluate the K-pop. So
assuming B has not occurred, the adversary’s success proba-
bility at guessing Â1 or Â2 is no better than randomly guessing.
Moreover, the adversary can only check a random guess for
a single client at a time, since the random oracle is only re-
programmed if the adversary provides the correct nonce m
as well, which is a unique value by experiment 3. The K-pop
output length is λ, so by the union bound the probability of
randomly guessing correctly is ≤ qro · 1

2λ
.

Experiment 5: In all honest client account creations, re-
place the ciphertext ctu with a random string of the same
length, ct′u. Suppose B, as defined in experiment 3, has not oc-
curred. Then upon corruption of a client i, reprogram H such
that H(Ai,mi, Âi

1, Â
i
2) returns a key k′A such that k′A decrypts

ct′u to ku. In other words, set k′A = ct′u⊕ ku.

Lemma 5. P[WIN4] = P[WIN5]

Proof. Note that the value of k′A is uniformly distributed
(due to the randomness of ku), so the reprogrammed random
oracle maintains a uniformly random distribution. Further,
experiment 4 forbids the adversary from using the random
oracle to find H(Ai,mi, Âi

1, Â
i
2). And since B has not occurred,

the adversary cannot have used the Execute oracle to learn
H(Ai,mi, Âi

1, Â
i
2). Therefore reprogramming the random ora-

cle incurs no security loss.
Furthermore, due to the perfect secrecy of one-time-pad

encryption, replacing ctu with a random ciphertext incurs no
security loss.

Lemma 6. P [WIN5]≤ qex
|A|

Proof. Suppose B, as defined in experiment 4, never occurs.
The only oracle queries that are affected by an honest client’s
ku value is the generation of z during account creation. But
this is replaced with a random ciphertext in experiment 4.
Therefore all honest client’s user keys are completely indpen-
dent from all oracle outputs, so the adversary’s advantage of
distinguishing between the real key and a random key is zero.

Finally, we bound the probability that B occurs. This event
corresponds to the event that the adversary initiates a malicous
execute request that correctly guesses an honest client’s A and
m values together. Since the adversary can learn an honest
client’s m value by having them honestly run account recovery,
we only consider the difficulty of guessing A. Note that the
adversary can only make a guess of this for for a single client
at a time, since their guess must contain m, which is unique
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to each client by experiment 3. Since each client’s A value
is uniformly sampled from the set A, the union bound gives
us that the probability of the adversary guessing an honest
client’s key is ≤ qex

|A | .

Finally, Lemmas 1-6 together prove Theorem 4.

C Game-Based Security against a Malicious
Adversary

This section extends the analysis from Appendix B to consider
a malicious adversary.

C.1 Game definition
The malicious security game is a modification of the semi-
honest security game defined in §B.1. The threat model that
the game captures is a malicious adversary who corrupts
one of the two recovery servers, and is attempting to learn
information about clients who created their account prior to
the corruption.

The beginning of the game is identical to the semi-honest
game: the game master initializes all honest clients and
servers, the adversary chooses a server to corrupt, and can
then make as many Corrupt(), Test(), and Execute() queries
as it wants. At some point though, the adversary may tell the
game it wishes to switch to malicious security. At this point,
the adversary loses access to the Execute oracle but gains
access to a new oracle: Send. The Send oracle, described in
Figure 13, allows the adversary to send arbitrary messages
within protocols from a corrupted client or corrupted server.
The Send oracle can only send messages in the recovery re-
quest and account restoration protocols, not account creation.
Thus once the adversary switches to malicious security, they
lose the ability to create new accounts.

The adversary’s win condition is the same as the
semi-honest game: they win if they output a bit that
matches b. We define the advantage of an adversary A as
Advmal−acc−rec(A) = 2 ·P [WIN]−1, and say an account re-
covery protocol is secure against malicious adversaries if the
advantage is negligible for all possible adversaries.

To prove that our protocol has malicious security, we treat
the K-pop as a white box. In particular, we use the K-pop
construction of §3.3, and model the outer hash function H2 as
a random oracle.

C.2 Security analysis
Theorem 5. For all polynomial time adversaries A attacking
the account recovery protocol of section 4 that make at most
qs calls to the Send oracle, qex queries to the Execute oracle,
qro1 calls to the random oracle H (used for key derivation),
and qro2 calls to the random oracle H2 (used in the K-pop),
there exist the following adversaries:

Send(Sender,Recipient,m)

If Sender is an uncorrupted party or Recipient is a cor-
rupted party, return Fail.
Otherwise, have Recipient and all other honest parties pro-
cess the message m honestly, update their state, and return
their response messages (if any).

Figure 13: The Send oracle

• B1 against the pseudorandomness of the PRF underling
the K-pop

• B2 against the obliviousness of the K-pop scheme

such that

Advmal−acc−rec(A)≤ qex +qs

|A|
+

N2 +q2
ro2

+qro1

2λ

+AdvPRF(B1)

+AdvK-pop(B2),

Proof. The security analysis proceeds through a series of
hybrid experiments. For each experiment i, we define an event
WINi representing the event that the adversary succeeds in
the game of experiment i.

Experiment 0: The real protocol. By definition, we have

Advmal−acc−rec(A) = 2 ·P [WIN0]−1.

Experiment 1: Disallow collisions in H2, the outer random
oracle used in the K-pop. If the adversary makes a random
oracle query that collides with a previous different random
oracle input, output Success and end the game.

Lemma 7. P [|WIN0−WIN1|]≤
q2

ro2
2λ

Proof. Distinguishing between experiment 0 and 1 requires
finding a collision in the random oracle. By the birthday
bound, the probability of finding a collision in qro2 queries is

≤
q2

ro2
2λ

.

Experiment 2: If the adversary uses the Send oracle during
a K-pop procedure to send a server message inconsistent with
their K-pop key, have the honest server abort on this execution.
This event is detectable to the game master, since the game
master knows the corrupted server’s K-pop key.

Lemma 8. P [WIN1] = P [WIN2]

Proof. Suppose (for contradiction) the adversary A1 can dis-
tinguish between experiments 0 and 1 with nonzero advan-
tage. Then A1 must have sent an incorrect K-pop output that
causes the client to construct the correct output. Since we
have banned collisions in the H2 oracle, this means a collision
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occurred in the inner PRF: i.e., the adversary used some K-pop
key k′ ̸= k such that for the corresponding inputs (xkal,xpriv),
we have H1(xpriv)

1/(k+H3(xkal)) = H1(xpriv)
1/(k′+H3(xkal)). But

this is impossible, since we are working over a cyclic
group.

Experiment 3: If the adversary uses the Send oracle to
send value id,kE from a malicious client to the honest server,
where id,kE do not match the values of any corrupted client,
have the honest server abort.

Lemma 9. |P [WIN2]−P [WIN3]| ≤ qex
2λ

Proof. We demonstrate this claim through a security reduc-
tion: given any adversary A against Experiment 2, we con-
struct a new adversary B against Experiment 3 that is almost
as likely to succeed. In more detail, B acts as the game mas-
ter in an emulation of Experiment 2 that it plays with A . It
forwards along every query from A to its own Experiment 3
game, except for the queries that cause aborts (which its own
game will not respond to, by definition) so B needs to find a
different way to respond to these queries.

Note that if the malicious client provides an id that does
not match the identifier for any client (honest or corrupted),
then aborting is the correct behavior by the honest server. The
new wrinkle introduced by Experiment 3 is that the honest
server aborts even if id happens to correspond to an honest
client.

If the adversary A submits a maliciously-chosen id,kE
whose id happens to match an honest client, then B can take
on the role of the honest server in Experiment 2 by fetching
the corresponding ciphertext ctr and calculating r = ctr⊕ kE .
In particular, we focus on the client nonce m inside of the
recovery string r. Due to the properties of the one-time pad,
there is a bijection between the adversary’s choice of kE and
the subsequent nonce m that results. This nonce can fall into
one of two options:

• The adversary B has already observed the nonce m,
because it corresponds to an honest client that has al-
ready run account recovery and provided m to the mali-
cious server. In this case, B has already seen this honest
client’s contact info, so it can submit a new account
recovery to Experiment 3 acting as the honest client. Ex-
periment 3 will not abort on this query, and will allow B
to proceed to account restoration. At this point, B will
forward along any message that A sent in restoration for
the (non-aborting) Experiment 2.

• The adversary B has not previously observed this nonce
m. In this case, B pretends to be the honest server and,
when adversary A submits an K-pop query during ac-
count restoration, B returns a random value in response.

Because B’s emulation is perfect in the first case, it remains
to analyze the probability that A detects B’s forgery in the
second case. This is precisely the probability that the nonce

m is subsequently used by an honest client for account recov-
ery and restoration, in which case both Experiments 2 and 3
will return the PRF output of A ∥ m with the honest server’s
actual key rather than the forgery that B has made. But be-
cause clients choose m uniformly at random from the space
{0,1}λ and keep them secret until recovery, the probability of
adversary A guessing the not-yet-revealed nonce of an honest
client is at most qex

2λ
.

Experiment 4: Replace the Send oracle with the following
oracle.

ExecuteWithAbort(Sender,Receiver,m)

If the adversary has previously queried the Corrupt() oracle,
return Fail.
Otherwise, Have Ci run protocol Π honestly. Return the
state of the malicious server and a transcript of all messages
sent to and from the malicious server.
If Sender is an uncorrupted party or Recipient is a cor-
rupted party, return Fail.
If m does not match an expected, honest message that would
be sent by the Sender party, return Abort.
Otherwise, send the message and return the responses of
all honest parties.

Lemma 10. P [WIN3] = P [WIN2]

Proof. After the changes made in Experiments 2 and 3, the
protocol is guaranteed to abort if the adversary ever deviates
from the prescribed protocol. Thus, the Send oracle from
Experiment 2 has now become exactly the same as the Exe-
cuteWithAbort oracle.

Experiment 5: Replace the ExecuteWithAbort oracle with
the following oracle:

Execute’(Sender,Receiver,x)

Let Π be the protocol that message m belongs to. run
Execute(Sender,Π), ignoring whether or not Sender is cor-
rupted, and return the output.

Lemma 11. P [WIN3]≤ P [WIN4].

Proof. Suppose A4 is an adversary attacking the game in
experiment 4. We can construct an adversary B that attacks
the game in experiment 3 with the same success probability.
Have B act as the challenger in the game of experiment 4. Run
A4 on this game. Any time A4 makes an ExecuteWithAbort
query, first check that if the query should cause an abort given
the state of the game. If so, return an Abort to A4. Otherwise,
let Π be the protocol associated with the message m specified
by A4, and make an Execute’ query for that protocol. Return
just the responses to message m in that protocol to A . Have
B output the result of A4. Since the game running inside B is
exactly experiment 3, B and A4 have equal win probabilities.
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Lemma 12.

P [WIN4]≤
qex +qs

|A|
+Adv(BPRF)

+Adv(BK-pop)

+
N2

2λ+1

+
qro

2λ
.

Proof. Experiment 4 corresponds to the semi-honest account
recovery game with qex +qs possible queries to the Execute
oracle. Lemma 12 then follows from Theorem 4.

Finally, Theorem 5 follows from Lemmas 7- 12.

D Universally Composable Security Primer

In the remainder of this work, we provide a simulation-based
security analysis of our K-pop and account recovery protocols
in the UC security framework of Canetti [22]. To provide
context for these security analyses, in this section we provide a
short (and thus necessarily incomplete) primer on the concepts
involved in UC security.

Overview of simulation-based security. By way of con-
trast to game-based security analyses such as the ones in
§B-C, simulation-based security analyses compare a real-
world cryptographic protocol to an idealized abstraction of
the functionality that one would want a trusted party to exe-
cute on everyone’s behalf, if such a trusted party were to exist.
Simulation-based proofs show that the real-world protocol
is no “worse” or “leakier” than the ideal functionality, in the
sense that any real-world artifacts of the protocol can be simu-
lated from the relevant ideal-world inputs and outputs. Hence,
simulation-based security analyses involve three parties: the
adversary Adv, simulator Sim, and distinguisher.

One benefit of simulation-based security (beyond game-
based notions) is to facilitate security analyses involving
composition—that is, when combining either multiple in-
stances of a single cryptographic protocol, combining many
cryptographic protocols together, or integrating cryptographic
protocols into a larger system. Simulation-based security has
been shown to facilitate the analysis of sequential composition
in many domains such as zero-knowledge proofs and secure
multi-party computation (see e.g., Goldreich [45, §4.3.4] and
Lindell [66, §6.3] for details).

Overview of UC security. Even simulation-based secu-
rity sometimes struggles when protocols are arbitrarily in-
terleaved, or to consider security when composed against

arbitrary, unspecified other protocols. Several frameworks for
universally composable security have been developed to ad-
dress these concerns (e.g., [9, 22, 25, 51, 61, 74]). In this work,
we follow the formalism of Canetti [22] with several of its
enhancements over time (e.g., [10, 24, 26, 28]).

Canetti’s UC security is a special case of simulation-based
security that embodies the idea that other protocols (whether
other instances of the same protocol, or different protocols
entirely) may be run at the same time and interleaved arbi-
trarily with the protocol under consideration. To allow for
such generality and to enable modular analysis of a single
cryptographic protocol at a time, the UC security model folds
all other protocol executions into a new entity called the envi-
ronment Env. In Canetti’s model, the environment also takes
on the role played by the distinguisher: attempting to tell apart
the real and ideal worlds. (It turns out that the environment
can also take over the role of the real-world adversary, al-
though for the sake of clarity we choose in this work to keep
the roles of Env and Adv separate.)

UC formalism. A UC analysis begins with the specifica-
tion of a real-world protocol Π and an ideal functionality F .
This idealized abstraction should have identical input-output
behavior as the real-world protocol, and it should provide at
least as much “leakage” to the simulator Sim as the real-world
protocol provides to the adversary Adv.

Additionally, the environment Env has a few powers: it
starts each protocol execution by providing the inputs of all
honest parties, it receives the outputs of all honest parties, and
it can interact arbitrarily with the adversary. The environment
can use all of this information when performing its job of
distinguishing the real and ideal worlds.

Concretely, a protocol Π is deemed to be a UC-realization
of the functionality F if there exists an efficient simulator Sim
such that no environment can tell whether it is interacting with
Π together with Adv, or with F together with Sim. Formally,
we write this by saying that execEnv,Π,Adv ≈ execEnv,F ,Sim for
all probabilistic polynomial time (PPT) environments Env.

We emphasize that only the view of the environment must
be indistinguishable between the real and ideal worlds. Other
protocol participants might have internal state that differs in
the two executions; for instance, the simulator has local state
in the ideal world but does not even exist in the real world.

UC execution model. Implicitly, the UC model allows the
environment to run other cryptographic protocols in tandem
with the one under considration. To model this behavior, the
environment is in charge of the scheduling of protocols and
the delivery of network messages.

In more detail, Canetti’s UC framework models concurrent
behavior in a non-standard but generic and flexible manner:
by actually forbidding concurrency in the model itself so that
only one protocol participant can be active to perform com-
putation and/or communication at a time, and then giving
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the environment control over which protocol participant gets
activated next. In fact, in this model, control flow proceeds
together with communication: that is, if party A sends a mes-
sage to party B, then that is the end of party A’s activation and
the start of party B’s activation.

Canetti’s UC model formalizes this approach using inter-
active Turing machines (ITMs). Each machine has tapes for
local computation, and tapes for sending messages to other
machines. Messages can take the form of direct input/output
messages that are transmitted to the entity that invoked the
protocol (typically the environment, unless composition is
involved) or indirect messages that are sent through the adver-
sary (typically for all communication between parties within
the execution of a single protocol).

Since a single protocol can be executed multiple times in
sequence, parallel, or concurrently: by convention the UC
framework assigns a unique identifier sessionid to each ses-
sion of a single protocol. Individual machines are identified by
(a) the session id of the protocol in which they participate and
(b) an identifier of one particular party within the protocol.

Composition and subroutines. A protocol or functionality
in the UC model is allowed to invoke another protocol or func-
tionality as a subroutine (e.g., a zero knowledge proof system
is allowed to invoke a message commitment protocol). Direct
messages are used for communication between a subroutine
and its caller.

When analyzing a protocol that contains one or more sub-
routines, it would suffice to “inline” all instance of the sub-
routine protocol (e.g., pick a single instantiation of message
commitment and analyze the resulting zero knowledge proof
protocol). However, the UC security framework provides a
powerful abstraction through its universal composition theo-
rem. The UC theorem states that if:

• real-world protocol Π UC-realizes ideal functionality F ,
• we form a larger “hybrid” protocol ρ that uses the ideal

functionality F as a subroutine, and
• this hybrid protocol ρ UC-realizes ideal functionality G ,

then the instantiation ρF→Π (which replaces every invocation
of F with its real-world counterpart Π) also UC-realizes G .

In other words, it suffices to analyze building blocks sepa-
rately in the UC framework, after which they can be composed
arbitrarily. Formally, in this situation we say that ρF→Π UC-
emulates ρ.

UC with global subroutines. The original UC framework
by Canetti [22] insisted that F be subroutine respecting, mean-
ing that it only interacts with a single caller. In our zero knowl-
edge example: while many cryptographic protocols could use
message commitment protocols, the model would insist that
the specific message commitments used within the ZK pro-
tocol are only used by the ZK protocol and never invoked by

any other protocol or functionality. Many cryptographic proto-
cols can naturally be decomposed in a subroutine-respecting
manner.

However, this limitation is difficult to impose in scenar-
ios that involve global setup, such as a random oracle or
common reference string that is available to everyone and
that all protocols can use. Subsequent refinements of the UC
framework [10, 24, 26] allow for the existence of such global
subroutines that exist in both the real and ideal worlds. We say
that protocol Π UC-realizes functionality F in the presence
of global subroutine H if there exists an efficient simulator
Sim such that no environment can tell whether it is interacting
with Π, Adv, and H , or if it is interacting with F , Sim, and
H . Looking ahead, in this work we consider UC analyses
with a single global subroutine: the programmable random
oracle functionality Fpro.

E UC Security Analysis of K-pop

In this section, we provide a UC-secure analysis of the account
recovery protocol ΠK-pop (from Figures 4-5) in order to prove
Theorem 1 that it UC-realizes FK-pop.

Theorem 1. Assume that group G satisfies the one-more gap
strong Diffie-Hellman inversion assumption and that HomEnc
satisfies indistinguishability under a chosen plaintext attack
(IND-CPA). Then, the K-pop protocol ΠK-pop (in Figures 4-5)
UC-realizes the ideal functionality FK-pop in the presence of a
programmable random oracle Fpro.

As a reminder of UC terminology, the claim that “A UC-
realizes B in the presence of C” means that the environment
cannot distinguish between the real world A and adversary
Adv or the ideal world B and simulator Sim, where both
worlds have access to a global subroutine C. In this case, the
global subroutine Fpro is used to instantiate all three random
oracles H1, H2, and H3. We refer readers to §D for a broader
overview of UC security.

By contrast, the functionality FOPRF is not mentioned in
the theorem above because it is subroutine-respecting: each
instance of FOPRF only interacts with its own correspond-
ing instance of FK-pop and is not otherwise accessible to the
outside world. (In other words: once an OPRF is used to
construct a K-pop, then clients can only call the pOPRF and
OPRF modes within the K-pop. It is not permitted also to
expose the underlying FOPRF for clients to call it directly.)

Overview of proof strategy. To prove this theorem, we
describe the construction of a simulator Sim that emulates
the execution of the real protocols in both pOPRF and and
OPRF modes. As with any UC security analysis, our simulator
Sim interacts with the ideal functionality FK-pop and also has
oracle access to the real-world adversary Adv.
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The adversary itself is expecting to interact with an instance
of ΠK-pop, so the simulator acts as the environment, the pro-
grammable random oracle Fpro, and all honest parties in this
emulation of the real world. The simulator must take its mes-
sages from FK-pop and construct a view of the honest parties
in its interaction with Adv that is computationally indistin-
guishable from a real-world execution on the same inputs.
Then, it must interpret the resulting actions of the adversary
Adv and use this to inform its subsequent commands to the
ideal functionalities FK-pop and FOPRF.

In this security analysis, we show that any environment
(and associated dummy adversary [22]) that can distinguish
the simulation from reality must also be able to break one
of three security assumptions. The first two are standard in
cryptography: the birthday bound on finding collisions in
a random oracle, and semantic security of the (additively
homomorphic) public key encryption scheme. The last one
is a strong variant of the Diffie-Hellman assumption on the
group G; while non-standard, we remark that it is known to
hold in the algebraic group model [44, 81].) We describe this
assumption in more detail below.

Differences from prior work. Our pOPRF construction
in Figure 4 is nearly identical to the construction of Tyagi
et al. [81], so our security analysis follows the same high-
level approach as theirs. However, there are three important
distinctions between our work and theirs.

First, we generalize their security analysis to allow for
the possibility that the server chooses different OPRF key k
and (in the pOPRF case) public input xkal. By contrast, they
construct a verifiable OPRF by using zero-knowledge proof to
check the honesty of the server’s actions. To accomplish this
goal, our proof uses techniques from non-verifiable OPRFs
like the work of Jarecki et al. [55]. As a consequence, we
carefully design and reason about the simulator Sim’s actions
for all queries when both the client and server are either honest
or corrupted.

Second, we strengthen their security guarantee from a stan-
dalone game-based security analysis to a simulation-style
analysis in the setting of universally composable (UC) secu-
rity. In particular, we provide security against adaptive corrup-
tions of the server and clients. As a consequence, we carefully
design Sim at the moment of client or server corruption to
ensure that any newly-discovered secrets are consistent with
the prior view of the adversary (using the SDHI assumption).

Third, our K-pop adds an OPRF mode of operation on
top of the pOPRF mode from Tyagi et al. [81]. This adds
a few new challenges in our simulator design and security
analysis. Between the pOPRF and OPRF modes, we must
ensure that Sim’s emulation of evaluations and oracle queries
yields consistent answers. Within the OPRF mode, we need
to simulate additional data held by the client and server (e.g.,
the variables s, z, sk, pk) and handle server corruption in a
different way due to the different way that the variable β is

calculated.

E.1 SDHI assumption
In this section, we specify the (m,n) one-more gap strong
Diffie-Hellman inversion (SDHI) assumption introduced by
Tyagi et al. [81]. We provide a formal statement of the as-
sumption itself for completeness, but we note upfront that we
only use it for the purpose of proving Lemma 13, so readers
should feel free to skip ahead to that if desired.

First stage. This assumption proceeds via an interactive
game between a game-coordinator G and a challenger A∗,
and it contains two stages. The first stage is simple: the game-
coordinator sends the description of a Diffie-Hellman group
G, and the challenger A∗ responds with a set of n distinct
exponents C = {c1,c2, . . . ,cn}.

Section stage. The second stage is much more involved.
At the start, the game-coordinator G secretly samples a
uniformly-random generator h, secret exponent k, and m more
secret exponents y1,y2, . . .ym. The game-coordinator then
sends the challenger the group elements h,hk,hy1 ,gy2 , . . . ,hym ;
for notational convenience we write Yi = hyi . We emphasize
that not even the generator h was known to A∗ in the first
stage. Next, the challenger can interact with two oracles: SDH
and SDDH.

SDH(E,ci) : This oracle computes selected instances of the
Dodis-Yampolskiy PRF [40]. It receives as input a group
element E and an exponent ci ∈C contained in the set
from the first stage. The oracle outputs E1/(k+ci).

SDDH(E,F,ci) : This oracle solves selected instances of the
decisional Diffie-Hellman problem. It receives as input
two group elements E,F and an exponent ci ∈ C con-
tained in the set from the first stage. The oracle outputs
a boolean value about whether F ?

= E1/(k+ci).

At the end of the second stage, the challenger wins if it outputs
an exponent c∗ ∈C and a set of d pairs (Zi, ji) such that:

• Zi = Y 1/(k+c∗)
ji for all i ∈ {1,2, . . . ,d}, and

• d is greater than the number of SDH oracle queries
whose second input is c∗. (Hence the name “one more”.)

In our proof, we rely on the SDHI assumption to show the
following lemma about adversaries who interact with ΠK-pop.

Lemma 13. Let Adv be any real-world adversary for proto-
col ΠK-pop. At any point during the execution of the protocol,
suppose that Adv has:

• not (yet) corrupted the server,
• made at most J pOPRF-mode Eval queries via ΠK-pop.
• made at most m queries to its H1 oracle,
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• and chose at most n values of xkal, combined, in its H3
queries and the first messages in its ΠK-pop evaluations.

Then, Adv only has negligible probability to make J+1 oracle
queries H2(xkal,xpriv,Z) such that Z = H1(xpriv)

1/(k+H3(xkal)),
where k denotes the honest server’s key.

Proof. This lemma follows directly from the (m,n) one-more
strong gap Diffie-Hellman inversion assumption, and the
claim is implied by the analysis in Appendix B, Theorem 4,
Claim 4 of Tyagi et al. [81]. We provide a direct proof of the
lemma here so that this work is complete and self-contained.

From any ΠK-pop adversary Adv, we construct an adversary
A∗ for the SDHI game as follows.

• A∗ initially samples n values C = {c1,c2, . . . ,cn} that it
will use as its responses to the H3 queries made by Adv.

• A∗ receives a collection of m group elements
Y1,Y2, . . . ,Ym that it will use as its responses to the H1
queries made by Adv.

• Whenever Adv wants to run the K-pop protocol and
sends a first message (xkal,α), then A∗:

– queries H3(xkal), if it has not already done so, and
– uses its SDH oracle to compute β = α1/(k+H3(xkal)).

(After sending this response, Adv could query H2
to finish the ΠK-pop protocol, if it wants.)

• Whenever Adv makes an H2 query (whether as part of a
ΠK-pop execution or not), then A∗ creates this oracle on
the fly in the honest way: it chooses responses uniformly
at random subject to consistency with previous queries.
Also, A∗ inspects each H2(xkal,xpriv,Z) query as follows.

1. A∗ first checks to see if Adv had previously made
oracle queries Y = H1(xpriv) and c = H3(xkal). If
not, the inspection ends here.

2. Next, A∗ uses its SDDH oracle to determine
whether Z ?

= Y 1/(k+c). If so, A∗ records (Y,Z).

We observe that A∗’s responses to each individual oracle
and evaluation query is distributed like a real-world execu-
tion, with only a few distinctions. Every H1 and H3 query is
distributed identically to the real oracles, except that in our ex-
periment H3 query outputs are always distinct whereas in the
real world they can repeat; this leads to a negligible birthday
bound difference between this experiment and the real world.
Additionally, the SDH oracle ensures perfect emulation of the
honest server in each K-pop execution, and the H2 oracle is
emulated perfectly.

By induction using an identical-until-bad argument across
all oracle and evaluation queries, it follows that Adv’s actions
in this experiment are computationally indistinguishable from
its actions in the real world. Ergo, if Adv has a non-negligible
probability of making J + 1 distinct H2 oracle queries that
result in recording a pair (Y,Z) in case 2 above in the real
world, then the same is true in this experiment as well.

Finally, if there is ever a point where A∗ records at least
J + 1 distinct pairs (Y,Z) but has only executed J or fewer
ΠK-pop instances, then A∗ immediately stops the experiment.
For each xkal, it counts:

• how many recorded pairs (Y,Z) involve the correspond-
ing c = H3(xkal), and

• how many ΠK-pop first messages involve this xkal.

By the pigeonhole principle, there must exist at least one c∗

such that the former is larger than the latter. Then, A∗ outputs
all pairs (Y,Z) corresponding to c∗ as a winning output of the
SDHI game. Since we have assumed that the SDHI game can
only be won with negligible probability, then so too can the
above outcome only happen with negligible probability.

E.2 Initialization and random oracle responses

We describe some initial steps undertaken by Sim, and the
method by which Sim responds to oracle queries.

Initialization. Upon initialization, the simulator Sim sam-
ples the honest server’s OPRF key k uniformly at random (i.e.,
following the honest server procedure) and chooses a group
generator g. It also initializes three empty key-value stores:

• H , which will be used to store data about H1 queries
• Q , which will be used to store data about Eval queries.
• V , which will be used to store data about key ids kid∗.

Oracle queries to H1. For any query H1(xpriv) that Adv or
Sim make to the H1 oracle, the simulator acts as follows.

• If this is a new value that has not previously been queried,
then Sim samples a uniformly-random exponent b, pro-
grams H1(xpriv) := gb, and records H [xpriv] = b in its
key-value store H .

• If H1(xpriv) has been previously queried, then the sim-
ulator searches its key-value store for b = H [xpriv] and
returns gb for consistency. We stress that either Adv or
Sim might be the first entity to query H1 on this partic-
ular input xpriv; if the other entity later makes the same
query, then this procedure ensures a consistent response.

Oracle queries to H3. Whenever Adv or Sim make a query
H3(xkal) to the H3 oracle: if xkal has been queried before then
Sim returns the same answer as before. Otherwise, if this is a
new xkal input value, then Sim programs c := H3(xkal) subject
to the constraint that it is different than all previous H3 oracle
responses. Note that Adv can only distinguish this behavior
from a real-world oracle (in which collisions are permitted)
via a birthday bound in n, the number of queries to H3.
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Oracle queries to H2. This is the most complicated of the
three oracles to simulate. Whenever Adv or Sim makes a
query H2(xkal,xpriv,γ), then Sim must ensure consistency be-
tween K-pop evaluations and H2 queries. Sim does so in one
of four ways. First, if H2(xkal,xpriv,γ) has already been queried
before, then Sim returns the same response as before.

Second, if H1(xpriv) has not already been queried by Adv,
then Sim does not program the H2 oracle. In this case, it is
computationally infeasible for the adversary Adv to find the
discrete logarithm v∗ that makes γv∗ = H1(xpriv), so H2 is not
required to be consistent with any K-pop evaluation.

Third, we check whether the adversary’s inputs to a H2
query are consistent with an honest execution of FK-pop. If
the inputs satisfy the equation γ = H1(xpriv)

1/(k+H3(xkal)), then
the simulator reprograms the H2 oracle to produce the K-pop
result with client input (xpriv,xkal) and server key k. One po-
tential concern is that this algorithm seems incompatible with
our query rate-limiting system: if the adversary’s queries to
H2 (which is not rate-limited) potentially require the simulator
to query FK-pop (which is rate-limited) to determine how to
reprogram the H2 oracle, then Adv might exhaust Sim’s bud-
get. Fortunately, Lemma 13 resolves this concern; it shows
that the number of reprogrammings is less than or equal to
the number of executions of ΠK-pop in the real world. Hence,
Sim can make a corresponding number of evaluation queries
to FK-pop in the ideal world, and stay within the query limit.

Otherwise, we assume that the adversary’s inputs are con-
sistent with an execution of FK-pop with an incorrect key k∗,
and Sim responds accordingly. That is, we assume that Adv
has sampled some key k∗ such that γ = H1(xpriv)

1/v∗ , where
v∗ = k∗+H3(xkal). We emphasize that this adversarial behav-
ior can occur even while the server is honest: Adv could make
an H2 query, then corrupt the server, then execute FK-pop with
the key k∗ to see if the result matches the previously-made
oracle query. Sim responds to such queries as follows.

• Sim fetches b = H [xpriv]. Recall that H1(xpriv) = gb.
• Sim calculates w = γ1/b = g1/v∗ .
• Sim fetches the key id kid∗ = V [w]. If no such mapping

exists in the key-value store, then Sim samples a new
kid∗ uniformly at random and stores V [w] := kid∗.

• Finally, Sim runs (OfflineQuery,sessionid,x,kid∗), re-
ceives back (OfflineQuery,sessionid,ρ), and programs
H2(xkal,xpriv,γ) := ρ.

We postpone the explanation and analysis of this last part
of the H2 oracle until we describe more details about the
simulation in the corrupted server setting.

E.3 Simulating Eval queries in pOPRF mode
Next, we describe the behavior of Sim to emulate the K-pop in
pOPRF mode. We explain Sim’s actions during Eval queries
in all four settings when the client and server are each honest
or corrupted. Since error handling (e.g., when a malicious

client or server provides a clearly-malformed input or exceeds
the query rate limit) is trivial to perform, we focus in this text
on the simulator’s response to valid, well-formed messages.
We also explain Sim’s actions at the moment of client or
server corruption to ensure that the adversary Adv’s prior
view remains consistent with its new information about the
client C’s inputs or the server S’s key.

Eval query with honest parties. As long as the environ-
ment Env calls the functionality with an honest server and one
or more honest clients, the simulator Sim emulates the proto-
col execution of the pOPRF protocol in Figure 4 by choosing
xkal correctly and sampling α,β uniformly. Concretely, Sim
uses this 3-step procedure to respond to a pOPRF query:

1. When Sim receives (Eval,sessionid,qid,xkal) from
FK-pop, then Sim creates the first message of the pOPRF
protocol as follows. It samples a uniformly-random ex-
ponent a and records Q [qid] = a in its key-value store Q .
Then, it transmits the message (xkal,α = ga) via FSMT

on behalf of the honest client intended for the server.
2. Once the real-world adversary allows this transmission

to proceed to the honest server, then Sim calculates v =
k+H3(xkal) and β = α1/v, and sends the message β to
FSMT on behalf of the server and destined for the client.

3. Once the real-world adversary allows this network trans-
mission to proceed to the honest client, then Sim al-
lows the ideal-world execution to complete. It sends
(EvalContinue,sessionid,qid,xkal) to FK-pop. After this,
FOPRF immediately sends a message of the form
(EvalContinue,sessionid,qid), and Sim responds back
with the message (EvalContinue,sessionid,qid,⊥).

We stress that this 3-step process is at the core of our simula-
tion. While the exact steps will change once the client and/or
server become corrupted (as described below), we will use
this procedure as a starting point in those cases as well.

Analysis. We now argue that the simulation in this 3-step
procedure is computationally indistinguishable from the real-
world evaluation. Actually this is a simple claim to prove,
since FSMT only reveals to the adversary Adv the lengths
of xkal, α, and β, and those are clearly of the right size. But
looking ahead, let’s consider what happens if the adversary
could see these transmissions in the clear; after all, it will be
able to do so as soon as either party is corrupted. Since xkal is
correct and α,β are uniformly sampled group elements from
the correct group, the adversary Adv’s view in this emulation
is distributed identically to a real-world execution of ΠK-pop.

The only way for the adversary Adv to distinguish the
real world from the emulation is if it somehow queried
H2(xkal,xpriv,γ) before making the corresponding evaluation
query. At the time of the H2 query, Sim does not know the
output of FK-pop and would therefore not program the ora-
cle. Later when the evaluation query is made, the adversary
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and environment would detect the difference. However, Adv
can only make such a query with negligible probability by
the computational Diffie-Hellman assumption (which is im-
plied by SDHI). This is because ⟨α,H1(xpriv),β,γ⟩ forms a
Diffie-Hellman tuple, so even if we assume without loss of
generality that Adv knows the xpriv value corresponding to
this query and has submitted it to the H1 oracle, it is still com-
putationally infeasible for Adv to find the correct choice of
γ that completes the CDH tuple and submit it an H2 oracle
query.

Corruption of a client. Next, let’s consider what happens
if a client C is corrupted while the server remains honest.

At the moment of corruption, the simulator Sim receives
a list of all records R = ⟨qid,C,(xkal,xpriv)⟩ corresponding to
pOPRF evaluations that have been started by the client but
that are not yet complete. In the emulation, Adv also requests
corruption of the client, and Sim responds as follows.

• For each xpriv ∈R that has not already been queried to H1,
the simulator performs the query using its usual proce-
dure: assign H1(xpriv) := gb as a random group element
whose discrete log is known, and record H [xpriv] = b.

• For each record in R, Sim fetches the corresponding
a = Q [qid] and b = H [xkal] from its key-value stores,
and Sim sets r = a/b. As a result, H1(xpriv)

r = (gb)r =α.
• Sim, in its role as the environment in the emulation, re-

sponds to Adv’s corruption request by sending the list of
exponents r; this is the only state that a real client main-
tains between the two messages of the pOPRF protocol.

Analysis. This emulation of the real world is perfect: every
r is sampled uniformly at random since that was also true of
a. Note that we assume secure erasures of client randomness
for any pOPRF executions that have already completed; this
assumption could be removed, but then FK-pop must reveal
the entire history of client inputs to Sim at the time of corrup-
tion. Additionally, the H2 oracle is designed so that if Adv
makes a subsequent query to H2(xkal,xpriv,γ = β1/r) now that
it knows r, then the response of the H2 oracle will agree with
the pOPRF evaluation.

Also, we claim that it makes no difference whether the
server S has already been corrupted before the moment of
client corruption; Sim can follow procedure above either way.
This claim follows from three facts:

• We only emulate evaluations that are still in progress at
the time of client corruption.

• ΠK-pop is a two-round protocol, so the corrupted server
has not had an opportunity to send any messages.

• The client produces its first message in a manner that is
independent of the server’s state (i.e., its key k).

Ergo, even if Adv knows the server key k, then Sim’s emula-
tion still perfectly matches the real world.

Eval query with corrupted client and honest server. For
any new pOPRF invocations by a corrupted client, there are
only three minor differences of note relative to the 3-step
process in the honest-client setting. First, all secure message
transmissions are readable to Sim. Fortunately, we have al-
ready shown that the simulation is perfect even in this case.

Second, the adversary Adv now has the power to choose
the client’s inputs and first message (xkal,α) of any invoca-
tion. As a result, Sim no longer needs to produce this message
itself, so it skips step 1 and goes directly to steps 2-3 of the
3-step procedure from the honest client setting. Concretely,
Sim calculates the server’s response β = α1/v. Once the ad-
versary Adv lets this network communication proceed, then
Sim sends (EvalContinue,sessionid,qid,xkal) to FK-pop and
then (EvalContinue,sessionid,qid,⊥) to FOPRF.

Third, the adversary Adv now has full control to choose the
output of the corrupted client—that is, independent of whether
the adversarial client performs the protocol honestly, Adv can
simply change the output to the environment to be whatever it
wants. In our emulation, Adv’s output message actually goes
to the simulator Sim. Then, Sim passes this output along to
the real environment Env. (We remark that this is a standard
operation in UC security analyses, and it occurs independently
of Sim’s interactions with the functionality FK-pop.)

Corruption of the server. Next, we consider what happens
at the moment that the server S is corrupted. Since there are
multiple clients, we must consider the possibility that some
clients are still honest (at least for now) whereas other clients
have already been corrupted. The simulator strategy described
below ensures consistency with real-world views of all prior
and future interactions with (honest and corrupted) clients.

At the moment of corruption, the simulator Sim performs
two actions: one with FK-pop and one with Adv.

• Sim receives from FK-pop the honest key identifier kid.
In response, it stores a mapping V [k] := kid from the
OPRF key to its corresponding key id in V .

• Sim (acting as though it is the environment within Adv’s
emulation of the real world) provides Adv with the
OPRF key k that it has been using to act as the hon-
est server up to this point; this is the only state that the
real-world server maintains between invocations of the
pOPRF protocol.

Analysis. Because Sim sampled and used the key k hon-
estly in all (completed and in-progress) invocations up to this
point, the emulation of this step is perfect: the environment
has no way (yet) to distinguish it from the real world.

For any subsequent pOPRF mode evaluations involving a
corrupted server, the biggest challenge is that now the adver-
sary Adv can deviate from the protocol and use an incorrect
key k∗—or can even choose β in a way that does not clearly
correspond to any key—and the simulator must determine
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how to choose its key id kid∗ to use in its EvalContinue mes-
sage. The simulator’s response depends on whether the client
is honest or corrupted. We describe these actions next.

Eval query with honest client and corrupted server. In
this case, Sim begins the query by acting as the honest client in
step 1 of our 3-step procedure. That is, it samples a uniformly-
random exponent a, records Q [qid] = a in its key-value store
Q , and transmits the message (xkal,α = ga) via FSMT on
behalf of the honest client intended for the server.

Since the server is corrupted, it is no longer the simulator’s
job to perform step 2 of our 3-step procedure. Instead, Sim
waits for Adv to send a response β from the corrupted server
to the honest client. We emphasize here that the adversary
does not need to use the honest key k.

Finally, the simulator sends (EvalContinue,sessionid,qid)
to FK-pop, and all that remains is for Sim to determine the key
identity kid∗ to send in its (EvalContinue,sessionid,qid,kid∗)
message to FOPRF so that the protocol instance can complete.
We remark that the adversarial server can choose to deviate
from the protocol by using an incorrect key k∗ or kaleido-
scopic input x∗kal, but since these terms are added together,
for the purposes of the simulation it suffices to assume that a
dishonest adversary always mauls the key since subsequent
calls to the H2 oracle must only be consistent with the honest
client’s input xkal.

Unfortunately, Sim cannot directly extract the key k∗ that
Adv used. Nevertheless, we make the following observations:

• There must be some field element v∗ such that β = α1/v∗ .
(If Adv acted honestly then this field element would
be v := k+H3(xkal) with the honest key and input, but
otherwise v∗ could be something else.)

• Our K-pop evaluation only depends on v∗, not on k di-
rectly. For instance, if the adversary deviated from the
protocol by subtracting 1 from k and adding 1 to H3(xkal),
it would not change the output of the K-pop.

• Even though Sim cannot calculate v∗, it can calculate
gv/v∗ = β(k+H3(xkal))/a since it knows the honest key k,
kaleidoscopic input xkal, and exponent a. Also, this group
element uniquely identifies v∗ (modulo the group order,
which is all that matters in the K-pop construction).

Ergo, Sim can calculate the group element w := gv/v∗ and
use it to select a key identifier as follows:

1. If w = g, i.e., if Adv used the honest key k and input xkal,
then Sim fetches the honest key identifier kid← V [k].

2. Otherwise, if w is already in the key-value store, then
Sim fetches the corresponding identifier kid∗← V [w].

3. Otherwise, Sim randomly generates a new, distinct kid∗

and records it in the key-value store V [w] := kid∗.

In the first case, Sim sends (EvalContinue,sessionid,qid,kid)
to FOPRF containing the honest key identifier. In the other two

cases, Sim sends (EvalContinue,sessionid,qid,kid) contain-
ing a dishonest key identifier kid∗ instead.

Analysis. We now analyze why this strategy provides per-
fect emulation of the real world. The first case ensures that
if the adversarial server acted honestly, then the responses
will be consistent with any other queries using the real key
(even ones produced prior to server corruption). The remain-
ing two cases ensure that FK-pop performs the same table
lookup T (kid∗,−) for any two queries such that α and β are
related by the same v∗; in particular, if the client makes the
same query twice and the server exponentiates both α’s by the
same exponent, then the response will be consistent between
them.

The only wrinkle here is that our simulation strategy hap-
pens to produce different kid∗ if a corrupted server uses the
same, incorrect k∗ with two different xkal values; fortunately,
this is allowable and produces the same output distribution.
That is: it is inconsequential whether one builds a new PRF
table T (kid∗,−) in either of the following two scenarios:

• Each key id kid∗ corresponds to a key k∗ chosen by the
adversary in the real world, and the inputs to this table
are tuples of the form (xkal,xpriv).

• Each key id kid∗ corresponds to a (k∗,xkal) tuple, and the
inputs to this table are tuples of the form (xkal,xpriv).

In both cases, all inputs to the ideal functionality result in
uniformly-distributed outputs, with the consistency rule that if
two executions of the protocol have the same server-provided
k∗ and xkal and client-provided xpriv then the results are identi-
cal. Our simulator opts for the latter approach.

Analysis of H2 oracle queries. Returning back to the dis-
cussion of H2 oracle queries from Section E.2, we now reason
about the correctness of our H2 reprogramming strategy in
the fourth and final case where the adversary’s inputs are
consistent with an execution of FK-pop with an incorrect key
k∗. As a reminder: for all H2(xkal,xpriv,γ) queries in which the
inputs are not related by the honest OPRF key, they are treated
as if they are connected via a different key γ = H1(xpriv)

1/v∗

(where v∗ = k∗+H3(xkal)) chosen by the adversary, and Sim
responds accordingly by querying FK-pop with kid∗ = V [w].

By construction, it is clear that this strategy results in the
same output for the H2 oracle and the corresponding K-pop
protocol in which the malicious server uses key k∗: in both
cases, v∗ is uniquely determined from the group element w =
g1/v∗ , and the key identity kid∗ is specified as a function of w.

There is one notable difference between the simulator’s
actions to calculate H2 and the corrupted server evaluation: in
the former case, the simulator runs OfflineQuery to discover
the K-pop result, whereas now there is an interactive evalua-
tion. Fortunately, the code of FK-pop ensures that the result is
the same in both cases. Additionally, the query rate limit only
applies to honest server execution; a malicious server is not
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subject to the query limit so it is now acceptable for Sim to
run as many K-pop evaluations as Env and Adv specify.

Eval query with corrupted client and server. Finally, we
describe the setting in which the adversary Adv controls both
the client and server. In this case, Sim does not have to con-
struct any network transmissions; instead, it is Adv’s job to
produce both messages (xkal,α) and β that are sent via FSMT.
Moreover, the adversary Adv produces the output of the cor-
rupted client, which it sends to the simulator (who is acting as
the environment in this emulation). In response, Sim provides
the same output to the actual environment Env.

Analysis. Correctness of just this one evaluation query
on its own is trivial, as are most UC security analyses when
all parties are corrupted. More importantly: the adversary’s
view here is consistent with all prior invocations of H2, or of
Eval when one or both parties was honest. This concludes the
analysis of the K-pop in pOPRF mode.

E.4 Simulating Eval queries in OPRF mode

Next, we consider uses of the FK-pop functionality in OPRF
mode. While we analyze the two modes separately for clarity,
we emphasize that the same K-pop is being used in both
modes concurrently with the same key and potentially even
the same client inputs. In other words, responses to evaluation
and oracle queries must be consistent between the two modes,
corruption of a client or server is a single event that impacts
both modes at the same time, and the reactions of Sim must be
consistent between the modes. We discuss this further in the
analysis below. As before: we consider what happens in the
honest setting and what happens during and after corruptions.

In this work, we conduct our analysis in the setting that
the first round of the OPRF protocol in Figure 5 (in which
the server homomorphically encrypts its OPRF key) runs in a
pre-processing step so that the online execution requires only
two rounds. We also adopt the simplifying technique from
§3.3 that the plaintext space of HomEnc is a group of the
same order as G so that the secondary blinding factor t is not
needed; we stress that this simplification is not essential for
the security analysis, and the ideas below can be generalized.

Additionally, in the text below we focus on differences
between the simulator Sim’s actions in the OPRF and pOPRF
modes. The OPRF evaluation in Figure 5 introduces sev-
eral features that pOPRF mode lacks, such as a new crypto
primitive (additively homomorphic encryption) and additional
variables that parties hold (s for the client and sk, pk, and z
for the server). Furthermore, the (honest) server’s response
β is produced in a different way: it is now β = α1/z rather
than β = α1/v. Our analysis below must therefore change to
account for these differences.

Initialization. To support OPRF queries with an honest
server, we make only two additions to the initialization proce-
dure from §E.2. First, we initialize one more key-value store
Z (in addition to H , Q , and V described above). Second, in
addition to sampling an OPRF key k, the simulator Sim must
also run the homomorphic encryption scheme’s key genera-
tion routine (sk,pk)←$ HomKeyGen() and then encrypt the
OPRF key homomorphically as JkK = HomEncpk(k). This
action exactly matches the server’s actions in the real world
(cf. Figure 5).

As stated above, we presume that the simulated server then
sends this ciphertext JkK to all parties (including Adv) in a
preprocessing step. We rely on the IND-CPA property of
the encryption scheme to protect the value k; that is, for any
adversary Adv who has not yet corrupted the server, these
ciphertexts look computationally indistinguishable from ci-
phertexts of the message 0, and hence Adv does not learn
any information about k. We also rely upon the fact that the
honest server performs this pre-computation step before it
can be compromised; this assumption can be relaxed, but
then we would need some method for the simulator to extract
the homomorphic encryption scheme’s secret key (e.g., a ZK
proof of knowledge only during pre-processing).

Additionally, we use the same procedures for Sim to re-
spond to random oracle queries as described in §E.2. In fact
this is required, since the random oracle queries are indepen-
dent of evaluation queries, and thus independent of evaluation
type (pOPRF or OPRF). In other words, we must ensure that
our procedures below for the simulator to respond to OPRF
queries is consistent with the same random oracle procedures
and pOPRF evaluation responses described in §E.2 and E.3,
respectively. In the remainder of this section, we describe the
operation of Sim during OPRF evaluation queries and at the
moment that either a client or server is corrupted.

Eval query with honest parties. We begin with the sce-
nario in which both the client and server are honest at the start
of an OPRF Eval query. In response to a query in OPRF mode,
Sim performs a similar 3-step procedure as it did in pOPRF
mode. At a high level, the main changes are that: Sim no
longer knows xkal, it needs to produce a ciphertext JzK in the
first message, and there is a different procedure for generating
β for the second message. Also, as a procedural matter, Sim
can distinguish OPRF and pOPRF evaluations because in the
OPRF case, its first message comes from FOPRF rather than
FK-pop (see Figs. 2-3). In more detail:

1. When Sim receives (EvalContinue,sessionid,qid) from
FOPRF, then Sim creates the first message of the OPRF
protocol as follows. It samples a uniformly-random expo-
nent a and records Q [qid] = a in its key-value store Q . It
also samples a uniformly-random exponent z and records
Z[qid] = z. Then, it transmits the message (α = ga,JzK)
via FSMT on behalf of the honest client to the server.

32



2. Once the real-world adversary allows this transmission
to proceed to the honest server, then Sim sends β = α1/z

to FSMT on behalf of the server intended for the client.
3. Once the real-world adversary allows this network trans-

mission to proceed to the honest client, then Sim sends
(EvalContinue,sessionid,qid,⊥) to FOPRF to allow the
ideal-world execution of the Eval query to complete.

This 3-step process is at the core of our simulation of Eval
queries in OPRF mode; our analysis in other cases will build
from this starting point.

Analysis. As before, this emulation is computationally in-
distinguishable from the real-world protocol, up a negligible
probability that the adversary queries the H2 oracle before-
hand that we discussed in the pOPRF setting. Once again,
even if the adversary could see the contents of all network
transmissions and decrypt the ciphertext: we see that z, α, and
β have the distribution of uniformly-random exponents and
group elements, respectively.

Corruption of the server. The simulator’s actions here are
very similar to our prior description in the pOPRF setting.
First, Sim receives from FK-pop the honest key identifier kid
that it stores in the key-value store V . Then, Sim provides
Adv with the OPRF key k. The only new task is that Sim
must also provide Adv with the encryption scheme’s secret
key sk, since that is now part of the server’s state as well.

Analysis. Because Sim has sampled and used both the
OPRF and encryption keys honestly in all (completed and
in-progress) evaluations up to this point, the emulation of this
step is perfect: the environment has no way (yet) to distinguish
it from the real world.

Corruption of a client. Next, we consider what happens if
a client C is corrupted and the simulator Sim receives a list of
all records R = ⟨qid,C,(xkal,xpriv)⟩ corresponding to OPRF
evaluations that have been started by the client but are not yet
complete. Since α is produced in the same way in pOPRF
and OPRF modes, the simulator Sim uses the same strategy
as before to calculate an exponent r that is consistent with the
existing network communication. (Recall that this involves
fetching H1(xpriv) = gb and α = ga, and then setting r = a/b.)

Additionally, in OPRF mode the simulator must also pro-
duce the exponent s and send that to Adv, since that is now
also part of the client’s state. Recall that in the OPRF proto-
col, s is sampled uniformly at random and then z is derived
from it via the equation z = s(k+H3(xkal)). Our simulation
proceeds in the opposite direction: it fetches z = Z[qid] and
sets s = z · (k+H3(xkal))

−1.

Analysis. Once again, this emulation of the real world is
perfect: every s has the uniform distribution since this is also
true of z, and r is sampled uniformly at random since that was

also true of a. Once again, we assume secure erasures so that
Sim only needs to emulate in-progress OPRF evaluations.

Eval query with corrupted client and honest server. If
the client is corrupted, then Adv has the power to choose
the client’s inputs and first message (α,JzK) of the evalua-
tion. In response, Sim decrypts z = HomDecsk(JzK) and then
performs steps 2-3 of the 3-step procedure. That is, Sim cal-
culates and sends β1/z to the client via FSMT; once the ad-
versary allows this network transmission to reach the server,
Sim sends (EvalContinue,sessionid,qid,⊥) to FOPRF to com-
plete the evaluation. This action perfectly emulates the honest
server’s actions in the real-world protocol, whether or not z
was honestly chosen by the corrupted client. Finally, Adv
chooses the output of the corrupted client in the emulation,
which Sim then forwards along to the environment Env.

Eval query with honest client and corrupted server. This
case proceeds analogously as above. This time, Sim runs step
1 of the 3-step procedure and transmits (α,JzK) via FSMT.
Then, Sim waits for Adv (on behalf of the corrupted server)
to send a response β—which need not depend on the honest
key k, or indeed on any key at all. Once Adv allows this
response message to reach the client, then Sim sends FOPRF

the message (EvalContinue,sessionid,qid,kid∗) to complete
the evaluation. As before, the main challenge is to determine
the key identifier kid∗ to transmit.

First, Sim checks whether Adv has acted honestly. To do
so, Sim fetches z = Z[qid] and tests whether β

?
= α1/z. If

this is the case, then Sim fetches the honest key identifier
kid= V [k] and uses it in its final message to FOPRF.

Otherwise, without loss of generality, we presume that Adv
knows xkal (e.g., because it was told by the environment) and
therefore can calculate s such that z = s(k +H3(xkal)) and
can maul this value to a different z∗ = s(k∗+H3(xkal)). We
remark that (just as with pOPRF mode) a malicious adversary
could maul any of s, k, or xkal, yet it suffices for the simulator
Sim to consider only a tampering of k. This is because it
suffices for the simulation to be consistent with the honest
client’s actions after it unblinds with the honest s and makes
an H2 oracle query with the honest xkal.

The challenge here is that Sim’s actions must be consistent
with this mauling z∗ = s(k∗ + H3(xkal)), even though Sim
does not know the client’s input xkal or the blinding factor s
(these would only be revealed later upon client compromise).
Fortunately, the quotient z

z∗ =
k+H3(xkal)
k∗+H3(xkal)

no longer depends
on the blinding factor s. Moreover, this quotient corresponds
to the same quotient v/v∗ that we calculated in the exponent
in the pOPRF setting.

Ergo, Sim can calculate the group element w := gz/z∗ =
gv/v∗ and then follow exactly the same process as in the
pOPRF setting to select a key identifier.

33



1. If w = g, i.e., if Adv used the honest key k and input xkal,
then Sim fetches the honest key identifier kid← V [k].

2. Otherwise, if w is already in the key-value store, then
Sim fetches the corresponding identifier kid∗← V [w].

3. Otherwise, Sim randomly generates a new, distinct kid∗

and records it in the key-value store V [w] := kid∗.

Analysis. This strategy results in a perfect emulation of the
real world: the first case ensures that if Adv acted honestly
then the evaluation response is consistent with the real key,
and the remaining cases ensure that if Adv makes two queries
with the same mauled key k∗ then Sim queries the ideal PRF
table T (kid∗,−) with the same key identifier. Moreover, this
strategy is consistent with Sim’s actions during pOPRF eval-
uations in terms of how the key identifier kid∗ is selected as a
function of the tuple (k∗,xkal).

Eval query with corrupted client and server. Finally, if
Adv has corrupted both parties, then it produces both mes-
sages (α,JzK) and β that are sent via FSMT. Additionally, Adv
produces the corrupted client’s output, which Sim forwards
along to Env.

F UC Security Analysis of Account Recovery

In this section, we provide a UC-secure analysis of the account
recovery protocol Πacc from Figures 6-8 in the UC security
framework of Canetti [22] (and we refer readers to §D for an
overview of this framework). Note that even this protocol is
a hybrid, as it contains idealized subroutines like FK-pop. For
this reason: even though our security reduction is perfect in
the theorem that follows, we emphasize that an instantiation
of the K-pop itself does require computational assumptions.
We provide the corresponding ideal functionality Facc, and
we claim the following.

Theorem 6. Protocol Πacc (perfectly) UC-realizes the ideal
functionality Facc in the presence of two global functionalities:
the programmable random oracle Fpro, and FSMT as our
modeling of email delivery.

Proof. In order to prove Theorem 6, we construct a simula-
tor Sim and argue that whether the environment Env interacts
with Πacc and in the FK-pop-hybrid world or Facc and Sim in
the ideal world, its view is identically distributed. The detailed
description of Sim is captured in Figures 19- 20.

F.1 Description of Facc

In this section, we provide an overview of the actions of
Facc and its interactions with Sim (See Figure 17 for a more
detailed description).

(init): Facc receives an initialization request from a server
Ssid and passes the message to Sim.

(create_account): Facc receives a new account creation
request from C and assigns a contact identifier to the
creation of an account using (E,x) by using contact_ctr
and incrementing contact_ctr. Facc then sends an initial
message to Sim. If C has been corrupted, Facc shares C’s
account creation data (Q,E,e,x,A,ku) along with its account
tag stored in DX_contact[(E,x)], with Sim in the message
(create_account,Ci,(DX_contact[(E,x)],Q,E,e,x,A,ku)).
Otherwise, Facc only shares the account tag with Sim in the
message (create_account,Ci,DX_contact[(E,x)]). After
the initial message is sent, if Facc receives a response
(create_account,error), it indicates that a prior nonce
was used again. The functionality Facc then notifies the
client Ci by returning error and exiting. Otherwise, Facc

stores the account creation data in its recovery dictionary
DX[(E,x)] := (Q,e,A,ku). The functionality returns ⊥ to Ci.

(recover_account): Facc receives an account recovery re-
quest from C for a potential account associated with (E,x).
Facc begins by checking if it has previously received (E,x)
either through account creation or a prior account recovery at-
tempt. If Facc has not previously received (E,x), Facc assigns
(E,x) a contact identifier by storing DX_contact[(E,x)] :=
contact_ctr and incrementing contact_ctr.

Facc then sends an initial message to Sim. If the client
has been corrupted, Facc sends (E,x) along with the con-
tact identifier, stored as DX_contact[(E,x)], in the mes-
sage (recover_account,Ci,(DX_contact[(E,x)],E,x)) to
Sim. Otherwise, Facc sends the contact identifier in the mes-
sage (recover_account,Ci,DX_contact[(E,x)]).

After the initial message is sent, if Facc receives a response
(recover_account,error), it indicates that at least one of the
servers attempted to cheat by using a different key than it had
previously in a FK-pop evaluation on the same value (E,x). In
this case, Facc returns error to Ci and exits.

Otherwise, Facc checks if an account is associated with
(E,x) by checking if (E,x) is a label within its account
recovery dictionary DX. If so, Facc retrieves the previ-
ously stored account information (Q,e,A,ku) from DX[(E,x)]
and sends the security questions Q and recovery email e
along with the contact identifier to Sim in the message
(recover_account,Ci,(DX_contact[(E,x)]),Q,e). Facc also
sends (Q,e) to each honest server. If (E,x) does not corre-
spond to an existing account, Facc sends ⊥ to each honest
server. Regardless of whether an account exists, Facc returns
⊥ to Ci.

(restore_account): Facc receives an account restoration
request from C for the account associated with (E,x) us-
ing the security answers A and nonce m. Facc sends an
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initial message to Sim. If Ci has been corrupted, Facc

sends the security answers and nonce (A,m) along with
the contact identifier contact_identifier in the message
(restore_account,Ci,(DX_contact[(E,x)],A,m)) to Sim.
Otherwise, Facc sends the message (restore_account,Ci,⊥)
to Sim.

After the initial message is sent, if Facc receives a response
(restore_account,error), it indicates that at least one of the
servers attempted to cheat by using a different key than it had
previously in a FK-pop evaluation on the same value (A,m). In
this case, Facc returns error to Ci and exits.

Otherwise, Facc checks if an account associated with (E,x)
exists by checking if (E,x) is a label within its account recov-
ery dictionary DX. If so, Facc retrieves the previously stored
account information (Q,e,A′,ku) from DX[(E,x)]. Facc then
uses the previously stored security answers from account cre-
ation A′ to check if the security answers A it received from
the client Ci matches. If so, account restoration succeeded.
Facc then shares the user key ku with Sim through message
(restore_account,ku) if the client has been corrupted and di-
rectly with the client Ci if it is honest by returning ku. In
the case that the client is honest, Facc also returns ⊥ to both
servers. In the event that there is no account associated with
(E,x), Facc returns ⊥ to the client Ci and both servers.

(offline_recover): Facc receives an offline recover message
from Sim after the adversary Adv sends an offline_attack
message to Sim. In offline recovery, Sim provides (E,x) to
Facc to check if there is an associated account. Facc checks
is the label (E,x) exists in its dictionary DX. If it does,
Facc sends back (offline_recover,(DX_contact[(E,x)],Q,e))
to Sim.

(offline_restore): Facc receives an offline restoration mes-
sage from Sim as a continuation of Adv’s offline attack. This
only occurs if Adv successfully recovered security questions
Q and a recovery email e in offline recovery. Facc now checks
if the provided security answers A matches previously stored
security answers A′. If s0, Facc returns the user key in the
message (offline_restore,ku) to Sim.

(corrupt): Upon receiving a message from the environment
Env that a party has been corrupted, Facc simply forwards
this message to Sim.

F.2 Description of Sim

For a full description of Sim, see Figures 19 to 21. Sim stores
the dictionaries DXSim,DX∗, and a list of corrupted clients c.

• DXSim maps a contact identifier contact_identifier to
the tuple (id,m,ctr,ctu,n)

• DX∗ maps a contact identifier contact_identifier to the
tuple (id,kE), where (id,kE) are simulated values created
by Sim

When Sim receives an (init,sid)) from Facc, it emulates
both FK-pop and FOPRF (conducting the initialization steps
exactly as described by both functionalities). Therefore Env’s
view is unaffected.

When Sim receives the message (corrupt,cid) from Env, it
tracks this corruption in its list of corruptions c and sends the
message (corrupt,cid) to its own internal emulated instances
of FK-pop. This is consistent with the hybrid world in which
Env sends the message (corrupt,Ci) to both instances of
FK-pop.

Similarly, when Sim receives the message (corrupt,Ssid)
from Env, it forwards the message to its emulated instance
of F sid

K-pop. In the hybrid world, Env sends the message
(corrupt,Ssid) to F sid

K-pop.
We now describe how Sim’s behavior ensures that Env’s

view in the FK-pop-hybrid world is identically distributed with
its view in the ideal world. For any request to interact with
F sid

K-pop where sid is some server id, Sim receives inputs (when
client is corrupted) or chooses inputs (when client is hon-
est). It then simulates the interactions between F sid

K-pop and
corrupted parties as described in Figure 22.

We first discuss the case in which the client C is corrupted
(and either server or both servers may be corrupted). We then
analyze the case in which the client C is honest but either or
both of the servers are corrupted. We end on an analysis of
the case in which both servers are corrupted and conduct an
offline attack to restore an account.

Case 1: corrupted client and corrupted server(s).
Account Creation. When Sim receives a message
(create_account,cid,(Q,E,e,A,ku)), which indicates
that a new account creation request, Sim first checks if a
nonce n needs to be simulated, depending on whether S1 is
corrupted. If S1 is corrupted, Sim receives a nonce from the
corrupted server. In the event that S2 is honest, Sim checks if
the corrupted server, S1 is cheating by repeating a nonce. If
so, it sends an error message to Facc, which then exits and
returns error to C. This is consistent with Env’s view in the
hybrid world. If S1 selects a previously used nonce, S2 sends
back error to the client and the client exits. In both the hybrid
and ideal world, if the S2 is corrupted, it will neglect the step
of catching repeated nonces.

For each server, Sim emulates each instance of
FK-pop as described upon receiving the message
(Eval,sessionid,pOPRF-mode,qid,E,x). If an error (such as
rate-limiting) is encountered in the hybrid world during this
process, FK-pop will send an error to A∗. In the hybrid world,
the same error is sent through Sim’s emulation of FK-pop.
In addition, an error message (FK-pop,error) is sent to Facc,
which returns error to the client Ci and exits. Otherwise, if an
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FK-pop evaluation is successful, Sim returns a value Ê through
its emulation of FK-pop. Since this value is generated through
directly emulation FK-pop as it is described in Figure 3, it is
distributed identically to a value Ê that is returned directly
through an instance of FK-pop. The environment Env’s
view is not affected. The corrupted client Ci then selects
the values id,m,ctr,ctu. If the client chooses to follow the
protocol, id,m are sampled uniformly at random and ctr,ctu
are ciphertexts created as described in Πacc. Otherwise, the
corrupted client may select any value of their choosing. Upon
receiving the message (create_account, id,m,ctr,ctu) from
Ci, Sim repeats the same process described above but for
the emulation of the evaluation of FK-pop in response to
the message (Eval,sessionid,pOPRF-mode,qid,A∥m). Sim
then stores the client chosen values along with the server
chosen nonce DXSim[contact_identifier] := (id,m,ctr,ctu,n)
where contact_identifier is a unique identifier for the client’s
provided (E,x). Sim then forwards the client selected values
(id,ctr,ctu) to each corrupted server Ssid. Env’s view is not
affected since at the conclusion of account creation in the
hybrid world, corrupted servers also receive (id,ctr,ctu)
selected by the client.

Account Recovery. Upon receiving
(recover_account,cid,(contact_identifier,E,x)) from
Facc, Sim begins by emulating each instance of
FK-pop as described. If any errors emerge in this pro-
cess, Sim exits. After C receives Ê1, Ê2 as a result
of the FK-pop emulations, if Sim receives a message
(recover_account,(contact_identifier,Q,e)) from Facc, it
signifies that the client’s provided (E,x) corresponds to an
existing account. Sim then retrieves the previously stored
values (id,m,ctr,ctu,n). If Ci was corrupted during account
creation, these values are the same ones previously selected
by the client Ci. If the Ci was honest during account creation,
these values were selected uniformly at random by Sim.
Otherwise, (id,m,ctr,ctu,n) were selected by the corrupted
client. In the case that the client was previously honest, a
fresh corruption of the client occurred between account
creation and the current account recovery request (Ci ∈ c).
Sim must then program Fpro such that a hash query with the
input (E, Ê1, Ê2) results in an output (id,kE) where key kE
properly decrypts to the recovery string (e∥Q∥m∥padding).
Sim can then remove Ci from the list of corruptions c. Sim
then proceeds to send (Q,m,ctu) to FSMT to forward for
the client’s recovery email e, where Q,e were provided by
Facc and m,ctu were stored by the simulator during account
creation. Env’s view is not affected. In the hybrid world, the
servers construct this same message and send it using FSMT.

In the case that the client’s provided (E,x) values do not
correspond to an account, Sim yet again first checks if the
client was freshly corrupted and previously made the same
failed account recovery attempt using (E,x). If so, Sim re-
trieves the previous (id,kE) values it sampled uniformly at
random during the failed recovery attempt and programs the

random oracle using the Ê1, Ê2 values that Sim just observed
through the FK-pop emulations such that a hash query using
the input (E∥Ê1∥Ê2) would result in the previously sampled
(id,kE).

In all cases, regardless of whether (E,x) corresponds to an
existing account, the client Ci selects (id,kE), which the sim-
ulator Sim forwards to each corrupted server, consistent with
Env’s view in the hybrid world. If Ci follows the protocol,
(id,kE) will be outputs from a hash query to Fpro.

Account Restoration. Upon receiving the message
(restore_account,cid,(contact_identifier,E,A,m,n)) from
Facc, Sim begins y emulating each instance of FK-pop as de-
scribed. In the case that account restoration was successful
(the client provided the correct security answers A), Sim re-
ceives the message (restore_account,ku) from Facc. Sim then
retrieves the previously stored values (id,m,ctr,ctu,n) from
DXSim[contact_identifier]. Sim must then compute kA using
the previously stored ciphertext ctu and the user key ku. Sim
then programs Fpro using the values Â1, Â2 that resulted from
emulation each FK-pop evaluation such that future hash queries
with the input (A∥m}Â1∥Â2) result in the output kA. Env’s
view is unaffected. In the hybrid world, the client receives kA
as the output of a hash query such that kA is used to decrypt ctu
to ku. This is identical to how a corrupted client Ci receives
ku in the ideal world.

Case 2: honest client and corrupted server(s). Upon re-
ceiving (create_account,cid,(contact_identifier,E)) to indi-
cate a new account creation request, Sim first checks if a
nonce n needs to be simulated, depending on whether S1 is
corrupted. If S1 is corrupted, Sim receives a nonce from the
corrupted server. In the event that S2 is honest, Sim checks
if the corrupted server, S1 is cheating by repeating a nonce.
If so, it sends an error message to Facc, which then exits and
returns error to C. This is consistent with Env’s view in the
hybrid world. If S1 selects a previously used nonce, S2 sends
back error to the client and the client exits. In both the hybrid
and ideal world, if the S2 is corrupted, it will neglect the step
of catching repeated nonces.

For each server, Sim emulates each instance of FK-pop

as described through which appropriate messages are gen-
erated for any corrupted servers. Afterwards, Sim ran-
domly samples: id,m,ctr,ctu and stores these values in
DXSim[contact_identifier]. Sim then sends (id,ctr,ctu) to
each corrupted server. These values are identically distributed
to their counterparts in the hybrid world, therefore not affect-
ing Env’s view.

Account Recovery. Upon receiving the messsage
(recover_account,cid,contact_identifier) from Facc,
Sim first begins by emulating each instance of FK-pop

as described. If the account recovery attempt was
successful (the values (E,x) provided to Facc by the
client correspond to an existing account), Sim receives
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(recover_account,(contact_identifier,Q,e)) from Facc. Sim
then retrieves the values it randomly sampled during account
creation and the server selected nonce (id,m,ctr,ctu,n) from
DXSim[contact_identifier]. Sim then randomly samples

kE
$←− {0,1}rlen. kE is thus identically distributed to a kE from

the hybrid world. Since a successful account recovery is
not repeated, kE is generated and never reused. Sim sends
(id,kE) to each corrupted server and does not store kE . At the
end of a successful account recovery request, Sim uses FSMT

to send (Q,m,ctu) to the client’s recovery email e, where
(Q,e) came from Facc.

In the case that account recovery was unsuccessful,
Sim checks if an honest accidentally made this same
unsuccessful account recovery attempt previously using
the same (E,x) values (contact_identifier ∈ DX∗). If so,
Sim retrieves the (id,kE) values it previously generated
from DX∗[contact_identifier]. Otherwise, Sim randomly

samples id
$←− {0,1}k,kE

$←− {0,1}rlen and stores them in
DX∗[contact_identifier]. Sim then sends (id,kE) to each
server. Since they are randomly generated values, they are dis-
tributed identically to their counterparts in the hybrid world,
therefore not affecting Env’s view.

Account Restoration. Upon receiving
(restore_account,cid,⊥) from Facc, Sim’s only role in
account restoration is to emulate each instance of FK-pop

as described. During this emulation, Sim will catch any
potential cheating in which the key a server used in account
creation is inconsistent with the key it is using during
restoration. Sim flags this behavior to Facc who sends an
error message if appropriate. This is consistent with how the
client catches server cheating in the hybrid world. Regardless
of whether account restoration is successful, the servers do
not learn anything in the process. If the recovery attempt is
successful, the honest client will receive ku from Facc.

Case 3: offline attack conducted by two corrupted servers.
Upon receiving (offline_attack,E,x,A) from Adv, Sim first
checks if either server is honest. If so, the offline attack fails
and Simreturns⊥. To begin an offline recovery request, Sim
first emulates both instances of FK-pop as described. At the
end of the emulation, Sim observes the values Ê1, Ê2.

Sim sends the message (offline_recover,E,x) to Facc to
first attempt to retrieve the security questions and recovery
email. If the account recovery attempt fails, Sim obtains
(id,kE) by sending (HashQuery,(E∥Ê1∥Ê2)). Since there is
no corresponding account, there will be no records within
each server’s database under id. Sim then exits. This is con-
sistent with the hybrid world in which Adv exits the protocol.

If the provided (E,x) values correspond to
an existing account, Facc returns the message
(offline_recover,(contact_identifier,Q,e)) to indicate a
successful offline recovery request. Sim then retrieves
the values it previously stored in correspondence to cre-

ation of the account associated with (E,x). It retrieves
(id,m,ctr,ctu,n) from DXSim[contact_identifier]. Sim com-
putes the kE = (e∥Q∥m∥padding)⊕ ctr and programs Fpro

through sending the message (Program,(E∥Ê1∥Ê2),(id,kE))
to ensure correctness if a future client attempts account
recovery. Sim then sends (id,kE ,e,Q,m,ctu) to Adv. This is
identical to the outputs Adv receives in the hybrid world and
Env’s view is not affected.

A successful offline recovery attempt is followed by
an attempted account restoration. This begins with an
emulation of both instances FK-pop as described. At
the conclusion of the emulation, Sim observes the val-
ues Â1, Â2. Sim then proceeds to send the message
(offline_restore,(contact_identifier,ku)) to Facc. If Sim re-
ceives the message (offline_restore,(contact_identifier,ku))
indicating a successful account restoration attempt using A,
Sim computes kA := ku⊕ctu and programs Fpro through send-
ing the message (Program,(A∥m∥Â1∥Â2),kA) to ensure cor-
rectness in the event of a future restoration by a client. Sim
then returns ku to Adv. In both worlds, Adv receives ku at the
end of restoration. Therefore, Env’s view is not affected.
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Protocol Πacc

This is an interactive protocol involving two specific servers S1 and S2, along with an arbitrary number of clients C. It involves several
interactive methods, each of which is instantiated when the environment Env gives an input to a particular entity (client or server).
Clients in this protocol are stateless; each server maintains a database and a rate limit counter. On first activation, both servers S1 and S2
follow the (Reset) command to set their rate limit counter to 0. This protocol is initialized with a predetermined rate limit threshold,
thres. Server S2 maintains the set of prior nonces, nonces. In each new message that a query id qid is used, Ci samples a fresh random
string. This protocol makes use of a few UC subroutines: Fpro and two instances of FK-pop (one per server).

• When the environment sends input (Init) to Ssid:

– Ssid samples kid $←− {0,1}k and sends message (Init,kid) to F sid
K-pop

• When the environment sends input (create_account, (Q,E,e,x,A,ku)) to Ci:

– Ci randomly samples a client nonce m $←− {0,1}256.
– Ci requests a server nonce n.

* S1 samples a random string n $←− {0,1}k and sends n to S2 and Ci.
* If n ∈ nonces,S2 returns error to Ci and Ci exits. Else, S2 adds n to nonces and returns n to Ci.

– Client Ci sends the email address E to the two servers.
– In response, each server S j runs two instances of FK-pop in parallel with the client.

* In the first instance, the client sends message (Eval,sessionid,pOPRF-mode,qid,E,x) and receives the message
(EvalComplete,sessionid,qid,(E,x), Ê j).

* In the second instance, the client sends message (Eval,sessionid,pOPRF-mode,qid,n,A∥m) and receives the message
(EvalComplete,sessionid,qid,(n,A∥m), Â j).

– Ci stores the pairs (Ê1, Ê2) and (Â1, Â2).
– The client sends two messages to Fpro.

* Ci sends message (HashQuery,E ∥ Ê1 ∥ Ê2) to Fpro and receives message (HashQuery,(id,kE)) in response.
* Ci sends message (HashQuery,A ∥ m ∥ Â1 ∥ Â2) to Fpro and receives message (HashQuery,(id,kE)) in response.

– Client Ci sends message (id,ctr,ctu) to both servers, where ctr = kE ⊕ (e ∥ Q ∥ m ∥ padding) and ctu = kA⊕ ku. Each server
appends this record to their local database, as long as id is a unique key that is distinct from all prior records.

– Finally, client Ci outputs ⊥.

• When the environment sends (recover_account,E) to Ci:

– The client Ci independently invokes each instance of FK-pop, one with each server S j.

* Ci sends message (Eval,sessionid,OPRF-mode,qid,E,x) and receives (EvalComplete,sessionid,qid,(E,x), Ê j).
– Ci retrieves the pair (Ê ′1, Ê

′
2) stored during account creation. If (Ê1 ̸= Ê ′1) or (Ê2 ̸= Ê ′2), then exit.

– Ci sends message (HashQuery,E ∥ Ê1 ∥ Ê2) to Fpro and receives message (HashQuery,(id,kE)) in response.
– Client Ci sends (id,kE) to both servers.
– In response, each server queries their local database for the record (id,ctr,ctu).

* If a record exists, they compute r = kE ⊕ ctr and contact the client via the client information stored in r = e ∥ Q ∥ m ∥
padding using FSMT with the message (Q,m,ctu,n).

* If no record with identifier id exists, then the servers abort this protocol.

Figure 14: Protocol Πacc for account recovery, part 1 of 2
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Protocol Πacc (continued)

• when the environment sends (restore_account,(E,A,m)) to Ci:

– Ci queries the servers, who send back (Q,m,ctu,n) in response. The client aborts if the messages from the two servers differ.
– The client Ci invokes FK-pop with each server S j.

* Ci sends message (Eval,sessionid,OPRF-mode,qid,n,A∥m) and receives (EvalComplete,sessionid,qid,(E,x), Ê j).
– Ci retrieves the pair (Â′1, Â

′
2) stored during account creation. If (Â1 ̸= Â′1) or (Â2 ̸= Â′2), then exit.

– Client Ci sends message (HashQuery,A ∥ m ∥ Â1 ∥ Â2) to Fpro and receives message (HashQuery,kA) in response.
– The client Ci computes ku = kA⊕ ctu and tests whether this key is correct by attempting to decrypt their account data. (If so,

Ci then invokes account creation so that ku can be recovered again, possibly with new security questions and answers.)

• upon receiving (offline_attack,E,A) from Adv:

– Adv invokes FK-pop with itself, playing the role of both the client and the server. For each server S j:

* Adv sends message (Eval,sessionid,qid,E,x) and receives the message (EvalComplete,sessionid,qid,(E,x), Ê j)

– Adv sends message (HashQuery,E ∥ Ê1 ∥ Ê2) to Fpro and receives message (HashQuery,(id,kE)) in response.
– In response, Adv queries each database for the record (id,ctr,ctu) and the corresponding nonce n

* If no record with identifier id exists, Adv aborts this protocol.
– Compute r = kE ⊕ ctr, where r = e ∥ Q ∥ m ∥ padding
– Adv invokes FK-pop with itself, playing the role of both the client and the server. For each server S j

* Adv sends message (Eval,sessionid,qid,n,A∥m) and receives the message
(EvalComplete,sessionid,qid,(n,A∥m), Â j)

– Adv sends message (HashQuery,A∥m∥Â1∥Â2) to Fpro and receives message (HashQuery,kA) in response
– Adv computes ku = kA⊕ ctu

• upon receiving (corrupt,Ci) from Env:

– Send (corrupt,Ci) to both instances of FK-pop.

• upon receiving (corrupt,S j) from Env:

– Send (corrupt,S j) to instance j of FK-pop.
– Output the server’s local database to Env.

Figure 15: Protocol Πacc for account recovery, part 2 of 2

Functionality Fpro

Upon receiving (HashQuery,m):

1. If there is a record (m,h), then output (HashQuery,h) to the caller.
2. Else if m ∈ X , then choose h′← Y , record (m,h′), and output (HashQuery,h′) to the caller.
3. Else (that is, if m /∈ X), output (HashQuery,⊥) to the caller.

Upon receiving (Program,m,h) from the adversary:

1. If there is no record (m,h′), then record (m,h). (But if m has already been queried, then programming fails silently.)
2. Send (Program) to the adversary.

Figure 16: Programmable random oracle with input domain X and output range Y . Adapted from [27].
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Functionality Facc

The functionality stores and manages an account recovery dictionary DX and dictionary DX_contact. The functionality sets
contact_ctr := 0. Let sid be a server id. It then interacts with a client C, servers S1, S2, and the environment Env as follows:

• upon receiving (init) from Ssid:

– If Ssid is corrupted, send message (init,sid) to Sim

• upon receiving (create_account, (Q,E,e,x,A,ku)) from Ci:

– Set DX_contact[(E,x)] := contact_ctr and increment contact_ctr = contact_ctr+1
– Send an initial message to Sim:

* If Ci is corrupted, send message (create_account,Ci,(DX_contact[(E,x)],Q,E,e,x,A,ku)) to Sim
* Else, send message (create_account,Ci,DX_contact[(E,x)]) to Sim

– If Sim responds with message (create_account,error) or (K-pop,error), return error to Ci and exit
– Store DX[(E,x)] := (Q,e,A,ku)
– Return ⊥ to Ci

• upon receiving (recover_account,E,x) from Ci:

– If (E,x) /∈DX_contact, set DX_contact[(E,x)] := contact_ctr and increment contact_ctr = contact_ctr+1
– Send an initial message to Sim:

* If Ci is corrupted, send message (recover_account,Ci,(DX_contact[E,x],E,x)) to Sim
* Else, send message (recover_account,Ci,DX_contact[E,x]) to Sim

– If Sim responds with message (K-pop,error), return error to Ci and exit
– If (E,x) ∈DX,

* Retrieve (Q,e,A,ku) from DX[(E,x)]
* Send message (recover_account,(DX_contact[(E,x)],Q,e)) to Sim to notify of successful recovery
* Send (Q,e) to each honest server

– Else, send ⊥ to each honest server
– Return ⊥ to Ci

• upon receiving (restore_account,(E,x,A,m)) from Ci:

– Send an initial message to Sim:

* If Ci is corrupted, send message (restore_account,Ci,(DX_contact[E,x],A,m)) to Sim
* Else, send message (restore_account,Ci,⊥) to Sim

– If Sim responds with message (K-pop,error),

* If (E,x ∈DX), retrieve (Q,e,A,ku) from DX[(E,x)] and if (A == A′), return error to Ci and exit
– If (E,x) ∈DX,

* Retrieve (Q,e,A,ku) from DX[(E,x)]
* If A == A′,

· If Ci is corrupted, send message (restore_account,ku) to Sim to notify of successful restoration
· Else, return ku to Ci and ⊥ to S1,S2

– Return ⊥ to Ci,S1,S2

• upon receiving (offline_recover,E,x) from Sim:

– If (E,x) ∈DX,

* Retrieve (Q,e,A,ku) from DX[(E,x)]
* Send message (offline_recover,(DX_contact[(E,x)],Q,e)) to Sim

• upon receiving (offline_restore,(E,x,A)) from Sim:

– If (E,x) ∈DX,

* Retrieve (Q,e,A′,ku) from DX[(E,x)]
* If A == A′,

· Send message (offline_restore,DX_contact[(E,x)],ku)

Figure 17: Functionality Facc for account recovery, part 1 of 2
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Functionality Facc

• upon receiving (corrupt,Ci) from Env:

– Send message (corrupt,Ci) to Sim

• upon receiving (corrupt,Ssid) from Env:

– Send message (corrupt,Ssid) to Sim

Figure 18: Functionality for account recovery, part 2 of 2 (continued from Fig. 17).

Simulator Sim

The simulator Sim stores dictionaries DXSim, DX∗. It also stores a list of corruptions, c. In each new message that a query id qid is used,
Sim samples a fresh random string. Sim works as follows:

• upon receiving (init,sid):

– Emulate FK-pop by internally running a copy of FK-pop and FOPRF as described in Figures 3 and 2.

• upon receiving (create_account,cid,(contact_identifier,Q,E,e,x,A,ku)): //Corrupted client

– If S1 is corrupted,

* Receive message (create_account,n) from S1

* If S2 is honest and n ∈ nonces, send message (create_account,error) to Facc and exit
* Else, add n to nonces

– Else,

* Sample n $←− {0,1}k and add n to nonces

* Send n to Ci and S2

– For each server sid ∈ {1,2}, upon receiving message (Eval,sessionid,pOPRF-mode,qid,E,x) from Ci, emulate F sid
K-pop

according to Figure 22. If an error message was sent to Facc during this emulation, exit. At the conclusion of the emulation,
set Êsid = ρ.

– upon receiving message (create_account, id,m,ctr,ctu) from Ci,

* For each sid ∈ {0,1}, upon receiving message (Eval,sessionid,pOPRF-mode,qid,n,A∥m) from Ci, emulate F sid
K-pop

according to Figure 22. If an error message was sent to Facc during this emulation, exit. At the conclusion of the
emulation, set Âsid = ρ.

* Store DXSim[contact_identifier] := (id,m,ctr,ctu,n)
* For each corrupted server S1, S2, send (id,ctr,ctu) to Ssid

• upon receiving (create_account,cid,(contact_identifier,E)): //Honest client

– If S1 is corrupted,

* Receive message (create_account,n) from S1

* If S2 is honest and n ∈ nonces, send message (create_account,error) to Facc and exit
* Else, add n to nonces

– Else,

* Sample n $←− {0,1}k and add n to nonces

* Send n to Ci and S2

– For each sid ∈ {1,2},

* Emulate F sid
K-pop according to Figure 22 by first creating the message

(Eval,sessionid,pOPRF-mode,qid,E,contact_identifier) to send on behalf of the client C. If an error message
was sent to Facc during this emulation, exit.

* Emulate F sid
K-pop according to Figure 22 by first creating the message (Eval,sessionid,pOPRF-mode,qid,⊥,⊥) on behalf

of the client C. If an error message was sent to Facc during this emulation, exit.

– Sample id
$←− {0,1}k,m $←− {0,1}k,ctr

$←− {0,1}rlen,ctu
$←− {0,1}ulen

– Store DXSim[contact_identifier] := (id,m,ctr,ctu,n)
– For each corrupted server S1, S2, send (id,ctr,ctu) to Ssid

Figure 19: Description of the simulator Sim, part 1 of 3
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Simulator Sim

• upon receiving (recover_account,cid,(contact_identifier,E,x)): //Corrupted client

– For each server sid ∈ {1,2},
* Upon receiving message (Eval,sessionid,OPRF-mode,qid,E,x) from Ci, emulate F sid

K-pop according to Figure 22. If an
error message was sent to Facc during this emulation, exit. At the conclusion of the emulation, set Êsid = ρ.

– If Sim receives message (recover_account,(contact_identifier,Q,e)) from Facc,

* Retrieve (id,m,ctr,ctu,n) from DXSim[contact_identifier]
* If Ci ∈ c,

· Set kE = e∥Q∥m∥padding⊕ ctr
· Send message (Program,(E, Ê1, Ê2),(id,kE)) to Fpro and remove Ci from c

* Send message (send,(sessionid,smt),e,(Q,m,ctu)) to FSMT

– Else,

* If Ci ∈ c and contact_identifier ∈DX∗, //Incorrect (E,x) used by previously honest client

· Retrieve (id,kE) from DX∗[contact_identifier]
· Send message (Program,(E, Ê1, Ê2),(id,kE))
· Delete DX∗[contact_identifier]

– Upon receiving (id,kE) from Ci, send message (id,kE) to each corrupted server

• upon receiving (recover_account,cid,contact_identifier): //Honest client

– For each sid ∈ {1,2},

* Emulate F sid
K-pop according to Figure 22 by first creating the message

(Eval,sessionid,OPRF-mode,qid,E,contact_identifier). If an error message was sent to Facc during this emu-
lation, exit.

– If Sim receives message (recover_account,(contact_identifier,Q,e)) from Facc,

* Retrieve (id,m,ctr,ctu,n) from DXSim[contact_identifier]

* Samples kE
$←− {0,1}rlen

* Send (id,kE) to each server
* Send message (send,(sessionid,smt),e,(Q,m,ctu)) to FSMT

– Else, //Incorrect (E,x) from honest client

* If contact_identifier ∈DX∗,
· Retrieve (id,kE) from DX∗[contact_identifier]

* Else,

· Sample id
$←− {0,1}k,kE

$←− {0,1}rlen
· DX∗[contact_identifier] := (id,kE)

* For each server S1,S2, send (id,kE)

Figure 20: Description of the simulator Sim, part 2 of 3
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Simulator Sim

• upon receiving (restore_account,cid,⊥): //Honest client, restoration failure OR account exists

– For each sid ∈ {1,2}, emulate F sid
K-pop according to Figure 22 by first creating the message

(Eval,sessionid,OPRF-mode,qid,⊥,⊥). If an error message was sent to Facc during this emulation, exit.

• upon receiving (restore_account,cid,(contact_identifier,E,A,m,n)): //Corrupted client

– For each sid ∈ {1,2},
* upon receiving (Eval,sessionid,OPRF-mode,qid,n,A∥m), emulate F sid

K-pop according to Figure 22. If an error message
was sent to Facc during this emulation, exit. At the conclusion of the emulation, set Âsid = ρ.

– If Sim receives message (restore_account,ku) from Facc,

* If Ci ∈ c,

· Retrieve (id,m,ctr,ctu,n) from DXSim[contact_identifier]

· Set kA = ku⊕ ctu

· Send message (Program,A∥m∥Â1∥Â2,kA) to Fpro

• upon receiving (corrupt,Ssid) from Env:

– Send (corrupt,Ssid) to emulated instance of F sid
K-pop.

• upon receiving (corrupt,cid) from Env:

– Append cid to c
– Send (corrupt,Ci) to both internal emulated instances of FK-pop.

• upon receiving (offline_attack,E,x,A) from Adv:

– If either server is honest, return ⊥ and exit
– For each sid ∈ {1,2}, upon receiving (Eval,sessionid,OPRF-mode,qid,E,x), emulate F sid

K-pop according to Figure 22. At the
conclusion of the emulation, set Êsid = ρ.

– Send message (offline_recover,E,x) to Facc

– If Facc responds with message (offline_recover,(contact_identifier,Q,e)),

* Retrieve (id,m,ctr,ctu,n) from DXSim[contact_identifier]
* Upon receiving (Eval,sessionid,OPRF-mode,qid,E,x)
* Set kE = e∥Q∥m∥padding⊕ ctr
* Send message (Program,(E∥Ê1∥Ê2),(id,kE)) to Fpro

* Send message (id,kE ,e,Q,m,ctu) to Adv
– Else,

* Send message (HashQuery,(E∥Ê1∥Ê2)) to Fpro and receive (id,kE)

* Send (id,kE) to each corrupted server and exit
– For each sid ∈ {1,2}, upon receiving (Eval,sessionid,OPRF-mode,qid,n,A∥m), emulate F sid

K-pop according to Figure 22. At
the conclusion of the emulation, set Âsid = ρ.

– Send message (offline_restore,E,A) to Facc

– If Facc responds with message (offline_restore,(contact_identifier,kU )),

* Set kA := kU ⊕ ctu
* Send message (Program,((A∥m∥Â1, Â2),kA)) to Fpro and return ku to Adv

– Return ⊥ to Adv

Figure 21: Description of the simulator Sim, part 3 of 3
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Simulator Sim & FK-pop Emulation

The Simulator Sim stores a dictionary DXkid that maps the tuple (C,x) to a key id kid. Sim emulates FOPRF during the evaluation of
some inputs xkal,xpriv as described:

If the client C is honest and S is corrupted,

• Upon creating message (Eval,sessionid,OPRF-mode,qid,xkal,xpriv) or (Eval,sessionid,pOPRF-mode,qid,xkal,xpriv) on behalf of
client C:

– If in pOPRF mode: send (Eval,sessionid,qid,xkal) to A∗, and wait for a response (EvalContinue,sessionid,qid).
– Emulate FOPRF as follows:

* Send message (EvalContinue,sessionid,qid) to A∗

* Upon receiving (EvalContinue,sessionid,qid∗,kid∗) from A∗, if (C,(x∗kal,xpriv)) /∈ DXkid, store
DXkid[(C,(xkal,xpriv))] := kid∗. Otherwise:

· If DXkid[(C,(xkal
∗,xpriv))] ̸= kid∗, send error message (K-pop,error) to Facc and exit

Else,

• The Simulator Sim internally runs a copy of FK-pop and FOPRF as described in Figures 3 and 2. In this emulation, Sim interacts
with the client C, server S, and adversary A∗ on behalf of FK-pop and FOPRF by keeping track of their internal states and sending
messages to the appropriate parties. This includes outputting a final message to C (when appropriate) containing ρ where ρ is
selected exactly as described in Figure 2. If at any point during this emulation an error message of the form (error,sessionid,qid,⊥)
is sent to A∗, send the error message (K-pop,error) to the functionality Facc.

Figure 22: Description of the simulator Sim & FK-pop Emulation
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