
Distributed Point Function with Constraints, Revisited∗

Keyu Ji† Bingsheng Zhang† Hong-Sheng Zhou‡ Kui Ren†

†Zhejiang University. Email: {jikeyu, bingsheng, kuiren}@zju.edu.cn.
‡Virginia Commonwealth University. Email: hszhou@vcu.edu.

Abstract

Distributed Point Function (DPF) provides a way for a dealer to split a point function fα,β into
multiple succinctly described function-shares, where the function fα,β for a special input α, returns a
special output value β, and returns a fixed value 0 otherwise. As the security requirement, any strict
subset of the function-shares reveals nothing about the function fα,β . However, each function-share
can be individually evaluated on the common input x, and these evaluation results can then be merged
together to reconstruct the value fα,β(x).

Recently, Servan-Schreiber et al. (S&P 2023) investigate the access control problem for DPF; namely,
the DPF evaluators can ensure that the DPF dealer is authorized to share the given function with privacy
assurance. In this work, we revisit this problem, introducing a new notion called DPF with constraints;
meanwhile, we identify that there exists a subtle flaw in their privacy definition as well as a soundness
issue in one of their proposed schemes due to the lack of validation of the special output value β. Next, we
show how to reduce both the storage size of the constraint representation and the server’s computational
overhead from O(N) to O(logN), where N is the number of authorized function sets. In addition, we
show how to achieve fine-grained private access control, that is, the wildcard-style constraint for the
choice of the special output β. Our benchmarks show that the amortized running time of our logarithmic
storage scheme is 2× - 3× faster than the state-of-the-art when N = 215. Furthermore, we provide the
first impossibility and feasibility results of the DPF with constraints where the evaluators do not need
to communicate with each other.

∗This is an updated version of our work “Fine-grained Policy Constraints for Distributed Point Function”, which can be
found on IACR ePrint Report 2023/1672; please see [18]. Compared with [18], this version has been significantly improved.
We revised and improved the definition of DPF with constraints; we added new impossibility and feasibility results of the DPF
with constraints where the evaluators do not need to communicate with each other; finally, to improve the presentation and
make the results more readable, we removed the part of the DPF with attribute-based constraints.

1

Contents

1 Introduction 0

2 Preliminaries 3

3 DPF with Constraints 4

4 Revisiting VDPF-PACL in [27] 6

5 CDPF with Logarithmic Storage 8
5.1 Incremental VDPF . 9
5.2 Our construction using incremental VDPF . 11

6 CDPF with Wildcard-style Constraint 13
6.1 Efficiency . 14

7 Implementation and Benchmark 14
7.1 Proof time . 14
7.2 Communication overhead . 15
7.3 Verification cost . 15

8 CDPF with Non-interactive Evaluators: Impossibility and Feasibility 16

A Definition of VDPF 20

B Definition of PACL 20

C Properties of Definiton 1 for the Special Case 22

D CDPF with Non-Interactive Evaluators in the Preprocessing Model 23

E Security Proofs 25
E.1 Proof of Theorem 1 . 25
E.2 Proof of Theorem 2 . 26
E.3 Proof of Theorem 3 . 28

2

1 Introduction

Function Secret Sharing (FSS) is initially introduced by Boyle et al. [6]. In FSS, a dealer is allowed to split
a secret function f into multiple succinctly described function-shares {f (i)}i∈Zn , and any strict subset of
the function-shares reveals nothing about the function f . Here, each function-share f (i) can be individually
evaluated on the common input x, and these evaluation results {f (i)(x)}i∈Zn can then be merged together
so that the value f(x) is reconstructed.

Distributed point function. Distributed Point Function (DPF) [13] is arguably the most widely used
special case of FSS, where the secret function f is a point function. Concretely, a point function f can be
defined as follows:

f(x) =

{
β if x = α
0 otherwise

We refer to α and β as the special input and special output of the function f , respectively. For convenience,
we often write the point function f as fα,β .

Utilizing efficient DPF constructions as building blocks, a variety of important applications for private
database access have been developed, such as distributed ORAM [8,11,17], anonymous communication [9,12,
23,28], private telemetry [3], and privacy-preserving machine learning [5,22,24]. Note that, most DPF-based
applications above utilize the fact that a DPF can be viewed as a compressed additive secret-sharing of a
weight-1 vector, which enables private reading/writing in a distributed database.

Distributed point function with constraints. In real-world DPF-based applications, one might want
to enforce certain constraints on the set of functions that the dealer is allowed to share. For instance, in
the aforementioned private database access scenarios, different data entries may belong to different owners;
private database access control is necessary to prevent malicious users from accessing or altering unauthorized
data items. The deployment of a DPF with certain constraints enforces the private access control in a
distributed database system. Analogously, in an anonymous communication system [12,23,28], a DPF with
constraints can be used to enforce certain policy so that only the authorized users are allowed to deposit
messages into the corresponding mailbox.

In Fig. 1 below, we illustrate the system overview of private databases with access control based on DPF
with constraints. The system involves the following entities: (1) the data owner who outsources (encrypted)
data to servers and determines the constraint policy, (2) the user (i.e., the DPF dealer) who secretly shares
a function to access the database and proves it satisfies the constraint, and (3) the servers (i.e., the DPF
evaluators) locally evaluate the function share and obliviously verify the user’s access. Note that, the user
needs a valid secret key as authorization to pass the verification. There are various techniques for key
distribution, e.g., anonymous communication channels. We note that the key distribution mechanism is
orthogonal to the constrained DPF. For simplicity, in this paper, we assume there exists a trusted authority
to issue the secret keys.

Initial results by Servan-Schreiber et al.’s, and security concerns. Very recently, Servan-Schreiber et al. [27]1

initiate the study on DPF with constraints, which they call “Private Access Control Lists (PACLs) for DPF.”
In particular, the most efficient scheme (cf. the VDPF-PACL) in [27] is based on verifiable DPF [3,10]. Note
that, the verifiable DPF is a special type of DPF that additionally allows evaluators to check whether the
function shares are well-formed. However, we find that there is a soundness issue in their VDPF-PACL
scheme; see more explanation below.

Consider G := Z∗p as a group with generator g, and a function family F of point functions f : D → Zp.
For each x ∈ D, there is a constraint configuration assigned for the set of point functions {fx,v}v∈Zp . More
specifically, for each x ∈ D, a pair of keys (vkx, skx) is generated, where gskx = vkx. The verification key
vkx is called the constraint configuration and is public to all participants. The secret key skx is held by the

authorized dealer. Now, for any point function fα,β ∈ F , upon receiving function-shares {f (i)
α,β}i∈Zn from a

dealer, each evaluator, say Pi, computes vk(i) :=
∑
x∈D f

(i)
α,β(x) · vkx over Zp. Note that here

∑
i∈Zn vk

(i) =
vkα · β over Zp. In [27], the authors assume β = 1, and the evaluators can jointly verify if the dealer knows
the discrete logarithm of vkα · β to the base g. Although they claim that any user without knowledge of skα

1 Note, the updated version of [27] can be found on IACR ePrint; please see [26].

1

data d0 d1 … d𝑁𝑁−1
Λ Λ0 Λ1 … Λ𝑁𝑁−1
ℱ 𝑓𝑓0,𝛽𝛽 𝑓𝑓1,𝛽𝛽 … 𝑓𝑓𝑁𝑁−1,𝛽𝛽

𝑠𝑠𝑠𝑠

①

②

Data owner

Servers
User

Check Λ,𝑓𝑓1,𝛽𝛽, 𝑠𝑠𝑠𝑠
𝑓𝑓1,𝛽𝛽(𝑖𝑖)

③

④
𝑓𝑓1,𝛽𝛽

0 ,𝜋𝜋(0)

𝑓𝑓1,𝛽𝛽
1 ,𝜋𝜋(1)

data, Λ

Figure 1: System overview of private databases with access control based on constrained DPF: 1○ the data
owner outsources (encrypted) data with constraint configurations to servers; 2○ distribute secret keys; 3○
the user holds the secret key for f1,β accesses d1 by distributing secret shares of f1,β and proof shares to
servers; 4○ the servers jointly check whether this access satisfies the constraint and evaluate f1,β(i) on any
common input i.

cannot pass the verification. Unfortunately, the VDPF-PACL scheme fails to validate β = 1; any malicious
adversary is able to bypass the verification by setting β := vkα/g

r for any forged secret key sk∗α = r.

Achieving fine-grained access control. On the other hand, the data owner might require more fine-grained
database access control than those supported in [26,27]. In some application scenarios, the data owner may
want to also constrain the choice of the special output β. For instance, a landlord provides a template lease;
the tenant is only permitted to modify the lease term, and all other terms are fixed. Unfortunately, none of
the schemes in [26,27] supports DPF constraints w.r.t. β.

Achieving better performance. In addition to enabling fine-grained private database access control, all pre-
vious approaches require that each evaluator stores at least N verification keys {vkxi}i∈ZN for N constraint
configurations assigned for distinct input values {xi ∈ D}i∈ZN . Typically, the evaluators jointly compute
{fα,β(xi)}i∈ZN in the shared form, which is then used to perform the 1-out-of-N configuration selection to
obtain vkα. This results in O(N) storage and O(N) selection computation complexity. We observe that
such selection step becomes a performance bottleneck of CDPF when N is large. We are wondering whether
there exists a more efficient solution for the key selection.

In this work, we focus on 2-party DPF with constraints, or constrained DPF (CDPF). To the best of
our knowledge, the existing multi-party DPF systems are less efficient [6, 9, 23]. Our constructions can be
generalized to multi-party cases as in [27].

Our contributions. In this paper, we systematically investigate the problem of DPF with constraints. Our
contributions can be summarized as follows.

New security definition. First, we propose a formal definition for DPF with constraints (CDPF), which can
be viewed as an extension of verifiable DPF [10]. For a verifiable DPF, the evaluators can only ensure
the shared function is a valid point function; whereas, in CDPF, the evaluators can also obliviously verify
whether the dealer is authorized to share this point function. Notice that previous works [12, 23, 27, 28]
adopt a stand-alone security definition for constraint mechanism, as their schemes use DPF in a blackbox
fashion. Arguably, our definition could enable more efficient CDPF schemes by integrating the DPF with
its constraint mechanism in the syntax and security definition.

We note that the privacy definition in [27] is problematic in several aspects. Firstly, their definition did
not capture the rushing adversary model; namely, the simulator is given the adversary’s message as input.
Furthermore, in a real-world application scenario, the PACL in [27] shall be used in conjunction with the
underlying DPF schemes; in particular, some algorithm of the PACL takes the function shares generated
by DPF as its input. However, in the privacy definition in [27], the view of evaluator does not include the
function share. It results in a trivial simulator (cf., the proof of Theorem 3 in [27]) who simulates the audit

2

token independent of function share. In Appendix B, we provide a simple counterexample to illustrate this
subtle problem.

Breaking and fixing the scheme in [27]. As mentioned before, the VDPF-PACL scheme in [27] is insecure
against a malicious user. We provide a formal description of our attack in Sec. 4. To fix this issue, a
straightforward way is to fix β to some public value, say 1, and validate β = 1 during the verification phase.
Yet, sometimes the dealer needs to set β to a specific private value that is unknown to the evaluators. In
this work, we propose an alternative solution using verifiable DPF with auxiliary output. The auxiliary
output is independent of the original (secret) point function, thus it can be pre-fixed regardless the value of
β. Concretely, given a point function fα,β : D → Zp, we transform it to a new point function fα,(β,1) : D →
Zp × Zp as follows:

fα,(β,1)(x) =

{
(β, 1) if x = α
(0, 0) otherwise

For each input x ∈ D, the first coordinate of the new function output is equal to the output of the original
fα,β , and the second coordinate is either 0 or 1 which can be used to defend against our attack on the
VDPF-PACL scheme in [27]. In addition, adding an auxiliary output only results in the communication
overhead of transmitting a correction word and the computation overhead of a few addition operations. In
another word, our fix introduces little overhead.

Improving the performance of the schemes in [26, 27]. We show how to improve the performance of the CDPF
schemes in [26, 27] (named DPF-PACL and VDPF-PACL), achieving O(logN) constraint storage size and
O(logN) selection computation complexity by packing constraint configurations, where N is the num-
ber of constraint configurations. Recall that, in [26, 27], for a family of point functions with input do-
main ZN , each input i ∈ ZN is mapped to a random key pair (vki, ski), which yields O(N) storage.
Let i1, i2, . . . , ilogN be the binary representation of i. Our main idea is to generate 2 logN random keys

((k1,0, k1,1), (k2,0, k2,1), . . . , (klogN,0, klogN,1)) and then map index i to vki :=
∏logN
j=1 kj,ij . Then, the 1-out-of

N configuration selection is transformed into logN number of 1-out-of-2 selections.
Note that, there are two challenges to this intuition. First, our new selection method utilizes the binary

representation of the special input α ∈ ZN of a point function fα,β , but the evaluators cannot obliviously
bit-decompose the special input α using the (verifiable) DPF technique. To overcome this problem, we
present a new primitive of incremental verifiable DPF (IVDPF). For an IVDPF, if the evaluation input set
contains α, the layer outputs of the evaluation result form the (scaled) bit decomposition of α (cf. Sec. 5.1,
below). The second challenge is that if the secret key is exactly the discrete logarithm of the corresponding
verification key, then a malicious user with access to multiple indices may be able to compute the valid secret
keys of other unauthorized indices. We introduce bilinear map to address this problem, which blinds the
discrete logarithm (cf. Sec. 5.2, below).

New CDPF scheme. We propose a new CDPF scheme that supports wildcard-style constraints for the
special output β. It is handy in the applications of constraint writing, e.g., signature templates. In our
wildcard-style CDPF scheme, each constraint configuration divides the output of the associated functions
into wildcard bits and restricted bits. We say a function satisfies the constraint iff all restricted bits of its
output are 0; while the wildcard bits can be chosen arbitrarily. Our construction is based on the fact that
the AND operation is distributive over the XOR operation; therefore, the evaluators can locally computes
the XOR secret shares of the AND result between the XOR-shared function output and the restraint string
(cf. Sec. 6).

Better performance. Our schemes improve upon the state-of-the-art in terms of both functionality and per-
formance. In Sec. 7, we show that our wildcard-style CDPF scheme is much more efficient than PACL
schemes in [26, 27]. In addition, when the number of constraint configurations is large, our IVDPF-CDPF
significantly improves the performance compared to the VDPF-PACL scheme in [26,27]. For instance, with
215 constraint configurations, the verification speed of our IVDPF-CDPF is 2.5× faster than the DPF-PACL
in [26,27] and 2× faster than the VDPF-PACL in [26,27].

Removing the interaction between CDPF evaluators: Impossibility and feasibility. Notice that all our con-
structions (as well as all existing constructions) require the evaluators to have (at least) one round of
interaction between each other, before the decision is made. A natural question is whether there exists a

3

CDPF scheme where the evaluators could make a decision without any interaction between each other. In
Sec. 8, we demonstrate two results: (1) we show in the plain model2, it is impossible to have such CDPF
schemes; (2) using certain setups, it is feasible to construct such schemes.

For the impossibility result, intuitively, suppose there exists a secure CDPF scheme that supports verifica-
tion via non-interactive evaluators. That is, the verification result only depends on a single piece of function
share. The malicious dealer can invoke the simulator to produce a valid function share for an unauthorized
function, which violates the soundness.

For the feasibility result, we show how to construct such a CDPF scheme in the NIZK and PKI hybrid
model, assuming all parties are connected by a broadcast channel. We let the dealer broadcast the encrypted
function shares and the audit tokens (needed for the evaluator to make a decision). In addition, the dealer
provides an NIZK proof to prove the validity of these audit tokens. Finally, each evaluator can locally
check the audit tokens and the NIZK proof to make a verification decision. Furthermore, we propose a more
efficient construction in the preprocessing model. Although this scheme has a drawback that it cannot ensure
the consensus between evaluators, it is secure enough for private information retrieval applications [16, 29].
Intuitively, the drawback can be addressed by re-randomizing the responses.

Related work. Recent anonymous communication systems [9,12,23,28] utilize DPF to enable users privately
write messages. To prevent private data against malicious users, some of them design ad-hoc methods of
access control for DPF. The “mailbox” system Express [12] assigns a λ-bit virtual address to each mailbox,
which is regardless of the actual number of mailboxes. Only users who know the secret virtual address
can deposit message into the corresponding mailbox. Its long virtual address causes costly overhead for
DPF evaluation, and its verification requires interaction between servers and client. Sabre [28] improves
Express by a secret-shared non-interactive proof. It achieves less communication and computation costs,
but requires an extra aided-server for auditing the well-formedness of DPF. Spectrum [23] constructs an
anonymous broadcasting system. It proposes a new access control mechanism via secret-shared Carter-
Wegman MAC [30]. That is, servers hold a secret-shared MAC tag for each broadcast channel, and only
allow the client who knows the valid MAC tag to write messages to the corresponding channel via DPF.

Servan-Schreiber et al. [26, 27] abstract the notion of PACLs for FSS from concrete applications. They
improve Spectrum’s technique to more efficient PACLs for DPF, and propose a general PACL for P/poly FSS.
However, their general PACL relies on costly secret-shared non-interactive proofs and is not quit efficient in
practice.

Organization. Preliminaries including notations, background concepts, and assumptions can be found in
Sec. 2. The formal definition of CDPF can be found in Sec. 3. The VDPF-PACL scheme in [27] is revisited in
Sec. 4. A fast CDPF with logarithmic storage is presented in Sec. 5. Our wildcard-style CDPF is presented
in Sec. 6. Our implementation and benchmark are shown in Sec. 7. Our impossibility and feasibility results
of CDPF with non-interactive evaluators are presented in Sec. 8.

In addition, we recap the definition of VDPF [10] in Appendix A. We recap the definition of PACL [27]
and discuss its several problems in Appendix B. We define the security properties of CDPF for a special case
in Appendix C. We present a CDPF scheme with non-interactive evaluators in the preprocessing model in
Appendix D. Finally, we give some proofs omitted from the main paper in Appendix E.

2 Preliminaries

Notations. Let λ denote the security parameter. Let p be a prime number. For x ∈ Zp, let JxK denote the
additively secret sharing of the value x. Here, JxK← AddShareZp,n(x) stands for generating n additive shares

of x, where JxK := {x(0), . . . , x(n−1)}, x(i) ∈ Zp for all i ∈ Zn, and x =
∑
i∈Zn x

(i) over Zp. (JxK, JyK, JzK)←
BeaverZp,n stands for generating a beaver triple, i.e., generating n additive shares of x, y, z ← Zp, such that
x ·y = z. Let G be a circle group. For x ∈ G, let 〈x〉 denote the multiplicatively secret sharing of the value x.
Here, 〈x〉 ← MulShareG,n(x) stands for generating nmultiplicative shares of x, where 〈x〉 := {x(0), . . . , x(n−1)}
and x =

∏
i∈Zn x

(i) over G.

2The plain model refers to a setting where schemes do not rely on any form of setup, and their security is based on
computational hardness assumptions.

4

Access Structure [2]. Let P := {P1,P2, . . . ,Pn} be a set of parties. A collection A ⊆ 2P is monotone if
∀B,C: if B ∈ A and B ⊆ C, then C ∈ A. An access structure A (respectively, monotone access structure)
is a collection (respectively, monotone collection) of non-empty subsets of P, i.e., A ⊆ 2P \ {∅}. We call the
sets in A, the authorized sets, and the ones not in A, the unauthorized sets.

Function Secret Sharing. Function Secret Sharing, introduced by Boyle et al. [6], provides a way for
a dealer to additively secret-share a function among evaluators. An FSS scheme consists of (at least) two
algorithms Gen,Eval. The dealer generates secret shares of a function f : D → G by Gen. Using the function
shares, evaluators can locally execute Eval to produce additive shares of f(x) for any x ∈ D, without learning
information of f . DPF [13] is a useful FSS instance for the point function family.

Recently, a new notion, called verifiable DPF (VDPF), has been proposed to ensure the integrity of DPF
against malicious dealer [3, 10]. On top of the conventional DPF security guarantees, a VDPF enables the
evaluators to check whether the dealer’s inputs are well-formed point function. Informally, a VDPF consists
of three PPT algorithms (Gen,Eval,Verify). The share generation algorithm Gen produces the secret shares
of the point function fα,β . The verifiable evaluation algorithm Eval evaluates the function share over a set
of inputs X, and produces the additive shares of the function outputs and a token. The verification function
Verify takes input as tokens, and outputs 1 iff the function outputs have at most one non-zero item, which
means that the reconstructed function is a well-formed point function. The formal VDPF definition can be
found in Appendix A.

Bilinear maps and the BDH assumption. Let G,Gt be two multiplicative cyclic groups of prime order
p, and g be a generator of G. We say e is a bilinear map e : G×G→ Gt, if it has two properties:

• Bilinearity: e(ua, vb) = e(u, v)ab, ∀u, v ∈ G, a, b ∈ Zp.
• Non-degeneracy: e(g, g) 6= 1.

The decisional Bilinear Diffie-Hellman (BDH) assumption [4,15] is that, given a bilinear map e : G×G→
Gt, for a, b, c, z ← Zp, no PPT adversary can distinguish the tuple (ga, gb, gc, e(g, g)abc) and (ga, gb, gc, e(g, g)z)
with more than a negligible advantage.

XOR-collision resistant hash functions. Following the definition in [10], we say a function family H is
XOR-collision resistant if no ppt adversary given a randomly sampled h← H finds four values x0, x1, x2, x3

such that (x0, x1) 6= (x2, x3), (x0, x1) 6= (x3, x2) and h(x0) ⊕ h(x1) = h(x2) ⊕ h(x3) 6= 0 with more than a
negligible probability.

3 DPF with Constraints

In this section, we present a formal definition of DPF with constraints (CDPF), which can be viewed as
a generalization of the Private Access Control Lists (PACL) for DPF proposed in [26, 27]. A bit more
concretely, we take two steps to enforce constraints for DPF.

• Defining the constraints. Let F be a function family of point functions. Let {Qi}i∈ZN be N number
of disjoint subsets of authorized functions, that is, for any i 6= j, it holds that Qi ∩ Qj = ∅. Now, for
each distinct authorized subset Qi ⊆ F , a constraint configuration Λi can be defined. Then for function
family F , a constraint configuration list Λ := {Λi} is defined.

• Enabling the verification of the constraints. Next, an efficiently computable predicate Check is introduced
to verify if a constraint configuration is valid. Concretely, given a function f and a secret key sk, we have
Check(Λ, f, sk) = 1 iff f belongs to an authorized subset, say Qi, and (Λi, sk) belongs to an efficiently
decidable binary relation R. In particular, each constraint configuration Λi may be a set of multiple
entries and the secret key sk corresponding to any of entries satisfies R(Λi, sk) = 1. Throughout, we
denote the number of entries as `.

In this paper, we focus on 2-party CDPF (i.e., DPF with constraints), where several roles, including (i)
two evaluators (also called servers) along with (ii) a data owner, and (iii) a dealer (also called user), are
involved; please also see Fig. 1. Very briefly, the two evaluators P0,P1 can securely attest Check = 1 over
the secret-shared function from the dealer D. Furthermore, similar to the verifiable DPF [10], we consider
the malicious security for a single corrupted party. That is, the deader and evaluators are non-colluding.
Formally, we define the 2-party CDPF as follows:

5

Definition 1 (2-party DPF with constraints). Let F be a family of point functions f : D → G where G
is an Abelian group3, and N be an integer in poly(λ) such that N ≤ |D|. A 2-party constrained distributed
point function for function family F , consists of five ppt algorithms (Constraint,SKGen,FGen,VEval,Verify)
as follows:

• (Λ,msk) or ⊥ ← Constraint(1λ, {(Qi,Ai)}i∈ZN) is the constraint generation algorithm that takes input as
the security parameter 1λ and the set of function sets Qi ⊆ F with the access structure Ai. It outputs
a tuple of a constraint configuration list Λ := {Λi}i∈ZN and a master secret key msk, or a symbol ⊥ for
error.

• sk← SKGen(1λ, id,msk) is the secret key generation algorithm4 that takes input as the security parameter
1λ, an identity description id and a master secret key msk. It outputs a secret key sk.

• ((f (0), π(0)), (f (1), π(1)))← FGen(Λ, f, sk) is the share generation algorithm that takes input as a constraint
configuration list Λ, function f ∈ F and a secret key sk. It outputs a pair of function shares with proof
shares.

• ({y(b)
x }x∈X , τ (b)) ← VEval(b,Λ, f (b), π(b), X) is the verifiable evaluation algorithm that takes input as an

index b ∈ {0, 1}, a constraint configuration list Λ, a function share f (b), a proof share π(b), and a set of

function inputs X ⊆ D. It outputs a tuple of values. The first set of values {y(b)
x } are DPF outputs, and

the second item is an audit token τ (b).

• 1 or 0← Verify(τ (0), τ (1)) is the verification algorithm that takes input as two tokens. It outputs 1 or 0.

The above algorithms implicitly take group descriptions as their input. For readability, we omit them in
the syntax when they are clear in the context. We say a constrained distributed point function CDPF =
(Constraint,SKGen,FGen,VEval,Verify) for function family F is secure if it satisfies three properties as follows:

• Completeness. For any {(Qi,Ai)}i∈ZN , L← Constraint(1λ, {(Qi,Ai)}i∈ZN) such that L 6= ⊥ and parse
L := (Λ,msk), any i ∈ ZN , any f ∈ Qi, any sk ← SKGen(1λ, id,msk) where id belongs to Ai, and any
X ⊆ D, we have

Pr


((f (0), π(0)), (f (1), π(1)))← FGen(Λ, f, sk);

({y(0)
x }x∈X , τ (0))← VEval(0,Λ, f (0), π(0), X);

({y(1)
x }x∈X , τ (1))← VEval(1,Λ, f (1), π(1), X) :

(∀x ∈ X, y(0)
x + y

(1)
x = f(x)) ∧

(Verify(τ (0), τ (1)) = 1)

 = 1

• Privacy. For a constraint configuration list Λ, a function f ∈ F , a secret key sk and a set of function
inputs X ⊆ D, define the distribution of the view of Pb as

ViewCDPF(b,Λ, f, sk, X) := {(f (b), π(b), τ (1−b))}λ

where ((f (0), π(0)), (f (1), π(1)))← FGen(Λ, f, sk) and (Y, τ (1−b))← VEval(1− b,Λ, f (1−b), π(1−b), X).
There exists a ppt simulator Sim such that for any Λ,msk generated from Constraint(1λ, {(Qi,Ai)}i∈ZN)
for any {(Qi,Ai)}i∈ZN , any function f from any Qi, any secret key sk ← SKGen(1λ, id,msk) where id
belongs to Ai, any X ⊆ D, and any b ∈ {0, 1}, the following two distributions are computationally
indistinguishable:

ViewCDPF(b,Λ, f, sk, X) ≈c Sim(1λ, b,Λ, X)

• Soundness. For any ppt adversary A, it holds that

Pr[Gsound
CDPF,A(λ) = 1] ≤ negl(λ)

where the game Gsound
CDPF,A(λ) is depicted in Fig. 2.

Remark 1. In this section, we define the security properties of CDPF for the normal case where the verifi-
cation result of Pb depends on both τ (0) and τ (1). For completeness, we define different security properties for
the special case where the verification result of Pb only depends on τ (b), which can be found in Appendix C.

3Note that the order of G is not important in DPF and can even be 2.
4The representation of id depends on the concrete system. For example, in PACL [26,27] exact identities are considered.

6

• Game Gsound
CDPF,A(λ):

1 {(Qi,Ai)}i∈ZN ← A(1λ);

2 w ← Constraint(1λ, {(Qi,Ai)}i∈ZN);

3 if w = ⊥: return 0; else: parse w as (Λ,msk);

4 T := ∅;
5 ((f (0), π(0)), (f (1), π(1)), X)← AGetKey(·)(Λ);

6 for b ∈ {0, 1}: ({y(b)x }x∈X , τ (b))← VEval(b,Λ, f (b), π(b), X);

7 if Predicate(f,X) = 1: return 0;

8 return (Verify(τ (0), τ (1)) = 1) ∧ (f /∈ T).

• GetKey(id):

1 sk← SKGen(1λ, id,msk);

2 for i ∈ ZN : if {id} ∈ Ai, T := T ∪Qi;
3 return sk.

• Predicate(f,X):

1 if f /∈ F : return 0;

2 ((f (0), π(0)), (f (1), π(1)))← FGen(Λ, f,⊥);

3 for b ∈ {0, 1} : ({y(b)x }x∈X , τ (b))← VEval(b,Λ, f (b), π(b), X);

4 return (Verify(τ (0), τ (1)) = 1).

Soundness game

Figure 2: Soundness game for constrained distributed point function CDPF = (Constraint,SKGen,
FGen,VEval,Verify) for function family F .

Remark 2. We note that the privacy definition of [27] is problematic and does not capture the concept of
rushing adversaries. Concretely, in the privacy definition in [27], the view of evaluator does not include
the function share. It results in a trivial simulator (cf. the proof of Theorem 3 in [27]) who simulates the
token independent of function share. In Appendix B, we provide more details; in particular, we provide a
counterexample to illustrate this subtle problem.

4 Revisiting VDPF-PACL in [27]

The recent work [27] presents PACL schemes for the class of (verifiable) DPFs. In this section, we show
their VDPF-PACL is not sound for the adversarially chosen β.

The VDPF-PACL scheme. Consider G := Z∗p as a group with order p− 1 and generator g in which the
discrete logarithm problem is assumed to be computationally intractable.5 Without loss of generality, let
` = 1 and focus on 2-party VDPF. For a family F := {f : {0, 1}n → Zp} of point functions and N := 2n,
the VDPF-PACL initiates constants Λ := {vki}i∈ZN by KeyGen algorithm:

• KeyGen(1λ, fi,β ∈ F):

1 ski ← Zp−1, vki := gski ;

2 return (vki, ski).

In [27], the VDPF-PACL uses Schnorr Proof over Secret Shares (SPoSS) as a building block. SPoSS
is a discrete-logarithm zero-knowledge proof-of-knowledge over an additively secret-shared element. More
specifically, it consists three PPT algorithms: (1) SPoSS.Prove(x)→ (π(0), π(1)) takes the discrete logarithm
x of w base g as input, and outputs the secret sharing of a non-interactive zero-knowledge proof; (2)
SPoSS.Audit(b, w(b), π(b)) → τ (b) takes the additive share of w and the SPoSS proof share as input, and
outputs a verification token; (3) SPoSS.Verify(τ (0), τ (1)) takes the tokens of two evaluators as input, and
outputs 1 if and only if w(0) + w(1) = gx over the field Zp.

5Refer to Chapter 10 of [19] for how to pick a suitable p. For example, the largest prime dividing p− 1 is sufficiently large.

7

Here, we briefly describe the access process of VDPF-PACL based on SPoSS. First of all, the user chooses
an point function fα,β ∈ F , and secret-shares it to two servers using the VDPF technique. Meanwhile, the
user plays the role of the prover to provide a SPoSS proof of the secret key sk ∈ Zp−1 for the secret-shared
JgskK as follows:

• Prove(fα,β , sk):

1 (π(0), π(1))← SPoSS.Prove(sk);

2 return (π(0), π(1)).

Upon receiving the proof shares from the user, each server Pb ∈ {P0, P1} as a verifier obliviously selects the

target verification key by the function share f
(b)
α,β and audits the SPoSS proof using Audit algorithm:

• Audit(b,Λ, f
(b)
α,β , π

(b)):

1 Parse Λ := {vki}i∈ZN ;

2 ({y(b)
i }i∈ZN , τ

(b)
0)← VDPF.Eval(b, f

(b)
α,β ,ZN);

3 w(b) :=
∑N−1
i=0 vki · y(b)

i (mod p);

4 τ
(b)
1 ← SPoSS.Audit(b, w(b), π(b));

5 return τ (b) := (τ
(b)
0 , τ

(b)
1).

Finally, two evaluators exchange their audit tokens τ (0), τ (1), and verify the well-formedness of VDPF and
the SPoSS proof using Verify algorithm:

• Verify(τ (0), τ (1)):

1 Parse τ (0) := (τ
(0)
0 , τ

(0)
1), and τ (1) := (τ

(1)
0 , τ

(1)
1);

2 return VDPF.Verify(τ
(0)
0 , τ

(1)
0)

∧ SPoSS.Verify(τ
(0)
1 , τ

(1)
1).

It is easy to see, Verify outputs 1 if and only if both the VDPF and the SPoSS verification pass.

The description of our attack. In light of the VDPF-PACL, the SPoSS just guarantees that the additively
secret-shared JwK := gskα · JβK is equal to gJskK over the field Zp. This ignorance of β is vulnerable, and we
show how to exploit it. We construct an adversary A who breaks the soundness of VDPF-PACL:

• A(1λ,Λ):

1 Parse Λ := {vki}i∈ZN ;

2 α← {0, 1}n, r ← Zp−1, β := gr · vk−1
α (mod p);

3 (f
(0)
α,β , f

(1)
α,β)← VDPF.Gen(1λ, fα,β);

4 (π(0), π(1))← Prove(Λ, fα,β , r);

5 return ((f
(0)
α,β , f

(1)
α,β), (π(0), π(1))).

Using the VDPF keys (f
(0)
α,β , f

(1)
α,β), two evaluators obliviously obtain a scaled verification key JwK := Λα·JβK :=

JgrK, and thus the proof π for x over w is verified by SPoSS. In addition, since (f
(0)
α,β , f

(1)
α,β) encodes a point

function, the VDPF verification passes. Therefore, the algorithm Verify outputs 1 with the probability 1. In
a word, A successfully forges a proof by choosing an appropriate β ∈ Zp.

Our fix. This soundness issue is based on the fact that the private value β of the point function is
adversarially chosen from Zp, and it scales the verification key vkα. Naively, if the evaluators additionally
check β = 1, our attack is fixed. However, in many applications (e.g. the mailbox system [12]), one may
need to use the customized β, such as anonymous communication. To overcome this problem, we introduce

8

an auxiliary output. In particular, for any point function fα,β : {0, 1}n → Zp, we can construct a new point
function fα,(β,1) : {0, 1}n → Z2

p, where the tuple (β, 1) denotes the new special output in the range Z2
p, and

its second item 1 is named the special auxiliary output. We let the dealer secret-share a new point function
fα,(β,1) via VDPF to be evaluated. After that, the evaluators use the auxiliary outputs to select the target
verification key, and then jointly check if the special auxiliary output is equal to 1. Concretely, we adapted
the Audit and Verify of the VDPF-PACL as follows:

• Audit(b,Λ, f
(b)
α,(β,1), π

(b)):

1 ({y(b)
i }i∈ZN , τ

(b)
0)← VDPF.Eval(b, f

(b)
α,(β,1),ZN);

2 for i ∈ ZN : Parse y
(b)
i := (y

(b)
i,0 , y

(b)
i,1) ∈ Z2

p;

3 w(b) :=
∑N−1
i=0 Λi · y(b)

i,1 ;

4 τ
(b)
1 ← SPoSS.Audit(b, w(b), π(b));

5 τ
(b)
2 := H(b+ (−1)b ·

∑
y

(b)
i,1);

6 return τ (b) := (τ
(b)
0 , τ

(b)
1 , τ

(b)
2).

• Verify(τ (0), τ (1)):

1 Parse τ (0) := (τ
(0)
0 , τ

(0)
1 , τ

(0)
2);

2 Parse τ (1) := (τ
(1)
0 , τ

(1)
1 , τ

(1)
2);

3 return VDPF.Verify(τ
(0)
0 , τ

(1)
0)

∧ SPoSS.Verify(τ
(0)
1 , τ

(1)
1) ∧ τ

(0)
2 = τ

(1)
2 .

where H : {0, 1}∗ → {0, 1}λ is a collision-resistant hash function. We note that, the equality of τ
(0)
2 = τ

(1)
2

restricts the non-zero element in {y(0)
i,1 +y

(1)
i,1 } is equal to 1, which ensures JwK is always a valid (i.e., non-scaled)

verification key in Λ. Therefore, the adversary cannot forge a proof π by scaling verification key.

5 CDPF with Logarithmic Storage

We observe that, the existing CDPF schemes (e.g. PACLs in [26, 27]) require that evaluators store at least
N verification keys for N constraint configurations. This is because that their underlying DPF expands to a
vector of length N to indicate the 1-out-of-N configuration selection. Furthermore, the selection step is the
performance bottleneck when N is large. In this section, we show how to construct a CDPF scheme with
logarithmic constraint storage size and logarithmic selection computation complexity.

For simplicity, we focus on the case where each constraint configuration has only one entry, i.e., ` = 1,
and our scheme generalizes to arbitrary `. Intuitively, we use 2 logN public keys to represent N verification
keys as constraint configurations. Let G be a group with the generator g and α1, . . . , αlogN be the bits
of α. We set the public keys to (ki,0 := gri,0 , ki,1 := gri,1)i∈[logN], and select the α-th verification key by
vkα :=

∏
i∈[logN] ki,αi . Only one who has the discrete-logarithm knowledge of vkα can produce a valid proof

for α-th verification key.
As we already discussed in the Sec. 1, there are two challenges to this intuition: (1) the evaluators are

required to obliviously bit-decompose the special input α for configuration selection; (2) the secret key should
not be the discrete logarithm of the corresponding verification key. To overcome these problems, we present
a verifiable DPF scheme with layer outputs, called incremental VDPF, and introduce bilinear map to blind
the discrete logarithm, respectively.

9

5.1 Incremental VDPF

For a point function fα,β with input domain {0, 1}n, consider a batch evaluation of fα,β on any set of inputs
X ⊆ {0, 1}n. In a standard (verifiable) DPF scheme, given the function shares of fα,β , the evaluators obtain
secret-shared function outputs (i.e., a vector of dimension |X| that is non-zero at most a single point) after
the batch evaluation. In an incremental VDPF scheme, the evaluators additionally obtain secret-shared layer
outputs {zi,0, zi,1}i∈[n] such that for any i ∈ [n], b ∈ {0, 1},

zi,b =

{
β′i if αi = b ∧ α[1,i] ∈ X[1,i]

0 otherwise

where αi denotes the i-th bit of α, α[1,i] denotes the i-bit prefix of α, and X[1,i] denotes the set of i-bit
prefixes of all element in X. We refer to {β′1, . . . , β′n} as the special layer outputs. We define the incremental
VDPF as follows:

Definition 2 (Incremental VDPF). Let F be a function family of point functions f : {0, 1}n → G where G
is an Abelian group, and {G′i}i∈[n] be Abelian groups. A 2-party incremental VDPF scheme, parameterized
by F and {G′i}i∈[n], consists of three PPT algorithms (Gen,Eval,Verify):

• (f
(0)
α,β , f

(1)
α,β) ← Gen(1λ, fα,β , {β′i}i∈[n]) is the share generation algorithm that takes input as a security

parameter 1λ, a point function fα,β ∈ F and the special layer outputs {β′i ∈ G′i}i∈[n]. It outputs a pair
of IVDPF keys.

• ({y(b)
x }x∈X , {zi,0, zi,1}i∈[n], τ

(b))← Eval(b, f
(b)
α,β , X) is the verifiable evaluation algorithm that takes input

as an index b ∈ {0, 1}, an IVDPF key f
(b)
α,β and a set of inputs X ⊆ {0, 1}n. It outputs a tuple of values.

The first set of values are additive shares of fα,β(x), x ∈ X. The second set of values are additive shares
of layer outputs. The last item is a token.

• 1 or 0← Verify(τ (0), τ (1)) is the verification algorithm that takes input as two tokens. It outputs 1 or 0.

A secure IVDPF must satisfy three properties as follows:

Completeness. For any function fα,β ∈ F , any special layer outputs {β′i ∈ Gi}i∈[n], any (f
(0)
α,β , f

(1)
α,β) ←

Gen(1λ, fα,β , {β′i}i∈[n]) and any X ⊆ {0, 1}n, it holds that

Pr



(Y (0), Z(0), τ (0))← Eval(0, f
(0)
α,β , X);

(Y (1), Z(1), τ (1))← Eval(1, f
(1)
α,β , X) :

∀x ∈ X, y(0)
x + y

(1)
x = f(x) ∧

∀i ∈ [n], z
(0)
i,ᾱi

+ z
(1)
i,ᾱi

= 0 ∧
z

(0)
i,αi

+ z
(1)
i,αi

= (α[1,i] ∈ X[1,i]) · β′i ∧
Verify(τ (0), τ (1)) = 1


= 1

where Y (b) := {y(b)
x }x∈X , Z(b) := {z(b)

i,0 , z
(b)
i,1 }i∈[n] for b ∈ {0, 1}, αi is the i-th bit of α, α[1,i] is the i-bit prefix

of α, and X[1,i] is the set of i-bit prefixes of all element in X.

Privacy. For a point function f ∈ F , the special layer outputs B := {β′i ∈ G′i}i∈[n], and a set of inputs
X ⊆ {0, 1}n, define the view of evaluator Pb ViewVDPF(b, f,B,X) as a probability distribution ensemble
{(f (b), τ (1−b))}λ, where the function shares (f (0), f (1)) are generated from Gen(1λ, f, B), and the audit token
τ (1−b) is computed by Eval(1− b, f (1−b), X). There exists a PPT simulator Sim such that for all f ∈ F , B :=
{β′i ∈ G′i}i∈[n], X ⊆ {0, 1}n, the two distributions are computationally indistinguishable:

ViewVDPF(b, f,B,X) ≈c Sim(1λ, b, n,G, {G′i}i∈[n], X)

Soundness. Let f (b) be the (possibly maliciously generated) function-share received by the evaluator Pb.

There exists a negligible function negl such that for any X ⊆ {0, 1}n and ({y(b)
x }x∈X , {z(b)

i,0 , z
(b)
i,1 }i∈[n], τ

(b))←

10

z0,1
(0)

z1,1
(0)

z2,1
(0)

z1,0
(0)

z2,0
(0)

z0,1
(1)

z0,1
(1)

z1,1
(1)

z2,1
(1)

z1,0
(1)

z2,0
(1)

z0,0
(0)

Figure 3: DPF with layer outputs

Eval(b, f (b), X) for b ∈ {0, 1}, it holds that

Pr


Verify(τ (0), τ (1)) = 1 :∣∣∣{x ∈ X|y(0)

x + y
(1)
x 6= 0}

∣∣∣ ≤ 1 ∧
∀i ∈ [n], |Ci| ≥ 1 ∧(
∀x ∈ X, y(0)

x + y
(1)
x = 0 ∨

∀i ∈ [n], xi ∈ Ci

)
 ≥ 1− negl(λ)

where Ci := {0, 1}/{1− j|z(0)
j,0 + z

(1)
j,0 6= 0, j ∈ {0, 1}} and xi stands for the i-th bit of x.

Our IVDPF construction is inspired by two techniques: the first is called “constant PRG optimization
for distributed DPF generation” in [11], and the second is “incremental DPF” in [3]. We below will provide a
high-level explanation of our construction ideas. Recap the DPF representation in [7]. For the point function
fα,β , each of the two DPF keys defines a GGM-style binary tree [14] with 2n leaves, and every node in the
tree is labeled by a pseudo-random value. The DPF construction guarantees that, if a node is in the path
from root to the α-th leaf, its labels in two trees are independent; otherwise, its labels are identical. Let αi
be the i-th bit of α and ᾱi := 1− αi. As shown in Fig. 3, for the sums z

(b)
i,0 , z

(b)
i,1 of all left and right children

at level i, we have z
(0)
i,αi
6= z

(1)
i,αi

and z
(0)
i,ᾱi

= z
(1)
i,ᾱi

. Therefore, we can instruct the i-th layer output by making

z
(0)
i,αi

, z
(1)
i,αi

reconstruct β′i and correcting z
(0)
i,ᾱi

, z
(1)
i,ᾱi

to 0.
More specifically, our IVDPF construction is depicted in Fig. 4. In particular, the label of each node

includes a pseudo-random seed s̃(b) and a control bit t(b). They generate the labels of children with the help
of the corresponding correction word cw. As observed in [3], using the seed s̃(b) directly in the generation
of both children and layer output would compromise its pseudo-randomness, which is required for security.
Therefore, an extra PRG evaluation is employed to expand s̃(b) to a new pseudo-random seed s(b) for children
and an element w(b) for the layer output.

Defending against a malicious dealer. The VDPF technique in [10] can ensure the dealer shares a
well-formed point function. However, a malicious dealer may also attempt to cause a mismatch between
the layer outputs and the point function outputs. For instance, the dealer secret-shares a point function
fα,β to two evaluators, while the layer outputs embedded in the function shares correspond to the binary
representation of a different integer α′ 6= α. To defend against this attack, we enable evaluators to verify
that two trees defined by a pair of IVDPF keys only differ at one node per level. It forces that the nodes
with different labels exactly form the special path. More specifically, we follow the verification method of the
standard VDPF scheme in [10] to check each level. During the key generation, for each level i, we introduce
a verification correction seed csi to correct the hash values of the different labels (i.e., the seeds and control
bits) to be identical. In the verifiable evaluation, we let the evaluators check that all the corrected hash
values are equal. If a correction seed can only correct at most one difference, this equality check guarantees
that all other nodes at level i have the same labels on two trees.

Security. We show the security of our IVDPF in Fig. 4 with the following theorem, and its proof can be
found in Appendix E.1.

11

• Gen(1λ, fα,β ∈ F , {β′i ∈ G′i}i∈[n])
1 Let α1, . . . , αn be the bits of α;

2 Sample random s
(0)
0 , s

(1)
0 ← {0, 1}λ;

3 t
(0)
0 := 0; t

(1)
0 := 1;

4 for i := 1 to n:

5 s
(b)
L ||s

(b)
R ||t

(b)
L ||t

(b)
R ← G(s

(b)
i−1) for b ∈ {0, 1};

6 if αi = 0: keep := L; lose := R;

7 else: keep := R; lose := L;

8 tcwL := t
(0)
L ⊕ t

(1)
L ⊕ αi ⊕ 1;

9 tcwR := t
(0)
R ⊕ t

(1)
R ⊕ αi;

10 scw := s
(0)
lose ⊕ s

(1)
lose; cwi := (scw, tcwL , t

cw
R);

11 s̃
(b)
i := s

(b)
keep ⊕ t

(b)
i−1 · s

cw for b ∈ {0, 1};

12 t
(b)
i := t

(b)
keep ⊕ t

(b)
i−1 · t

cw
keep for b ∈ {0, 1};

13 α[1,i] := α1|| . . . ||αi;
14 csi := H(s̃

(0)
i ||t

(0)
i ||α[1,i])⊕H(s̃

(1)
i ||t

(1)
i ||α[1,i]);

15 s
(b)
i ||w

(b)
i ← G′i(s̃

(b)
i);

16 lcwi := (−1)t
(1)
i · [β′i − w

(0)
i + w

(1)
i];

17 ocw := (−1)t
(1)
n · (β −G′0(s

(0)
n) +G′0(s

(1)
n));

18 f
(0)
α,β := (s

(0)
0 , (cwi, csi, lcwi)i∈[n], ocw);

19 f
(1)
α,β := (s

(1)
0 , (cwi, csi, lcwi)i∈[n], ocw);

20 return (f
(0)
α,β , f

(1)
α,β).

• Eval(b, f
(b)
α,β , X ⊆ {0, 1}

n):

1 Parse f
(b)
α,β := (s0, t0, (cwi, lcwi)i∈[n], ocw);

2 t0 := b; τi := csi; τ (b) := 0;

3 for i ∈ [n]: z
(b)
i,0 := 0; z

(b)
i,1 := 0.

4 for x ∈ X:

5 Let x1, . . . , xn be the bits of x;

6 for i := 1 to n:

7 sL||sR||tL||tR ← G(si−1);

8 Parse cwj := (scw, tcwL , t
cw
R);

9 if xi = 0: keep := L;

10 else: keep := R;

11 s̃i||ti := (skeep||tkeep)⊕ ti−1 · (scw||tcwkeep);

12 x[1,i] := x1|| . . . ||xi;
13 τi := τi ⊕H′(τi ⊕H(s̃i||ti||x[1,i])⊕ ti · csi);
14 si||wi ← G′i(s̃i);

15 z
(b)
i,xi

:= z
(b)
i,xi

+ (−1)b · (wi + ti · lcwi);

16 y
(b)
x := (−1)b · (G′0(sn) + tn · ocw);

17 for i ∈ [n]: τ (b) := τ (b) ⊕H′(τ (b) ⊕ τi);
18 return ({y(b)x }x∈X , {z

(b)
i,0 , z

(b)
i,1 }i∈[n], τ

(b)).

• Verify(τ (0), τ (1))

1 return τ (0) = τ (1).

• Parameters: Let G,G′1, . . . ,G′n be Abelian groups. Let F := {f : {0, 1}n → G} be a function family of point

functions. Let G : {0, 1}λ → {0, 1}2λ+2, G′0 : {0, 1}λ → G, and G′i : {0, 1}λ → {0, 1}λ × G′i for i ∈ [n] be

pseudorandom generators. Let H : {0, 1}λ+1+n → {0, 1}4λ be a hash function sampled from a family H that

is collision-resistant and XOR-collision-resistant, and H′ : {0, 1}4λ → {0, 1}2λ be a hash function sampled

from a family H′ that is collision-resistant.

Construction IVDPF

Figure 4: The construction of incremental VDPF.

Theorem 1. Let G : {0, 1}λ → {0, 1}2λ+2, G′0 : {0, 1}λ → G, and G′i : {0, 1}λ → {0, 1}λ × G′i for i ∈ [n]
be pseudorandom generators. Let H : {0, 1}λ+1+n → {0, 1}4λ be a collision resistant and XOR-collision
resistant hash function, and H ′ : {0, 1}4λ → {0, 1}2λ be a collision-resistant hash function. The IVDPF
scheme in Fig. 4 is a secure IVDPF as described in Definition 2.

5.2 Our construction using incremental VDPF

We describe our CDPF scheme from incremental VDPF (IVDPF-CDPF) in Fig. 5. It is aimed to constraint
a function family F := {f : {0, 1}n → G̃} of point functions, where G̃ is an Abelian group. Let N :=
2n. Our IVDPF-CDPF supports N constraint configurations while evaluators store only 2n public keys
{ki,0, ki,1}i∈[n]. The intuition is that, for a function fα,β shared in the IVDPF scheme, the evaluators jointly
select the verification key vkα :=

∏
i∈[n](ki,0)zi,0 · (ki,1)zi,1 using the layer outputs, and check if the dealer

holds a secret key encoding the discrete logarithm of vkα.
To defend against the attack on the linear composition of discrete logarithms, we utilize a bilinear

map e : G × G → Gt. Let g be the generator of G. We let Constraint generate random public keys
(ki,0 := e(g, g)ri,0 , ki,1 := e(g, g)ri,1)i∈[n] to represent configurations. Next, SKGen can product randomized
secret keys using the master secret key msk := {ri,0, ri,1}i∈[n]. For each verification key vkα, we have

d :=
∑
i∈[n] ri,αi such that e(g, g)d = vkα. A secret key for vkα is computed by skα := (gc, d/c) where

c← Z∗p. Note that, e(gc, gd/c) = e(g, g)d.
To secretly share a point function fα,β , the dealer uses algorithm FGen to generate function shares

and proof shares. Concretely, the dealer first computes function shares by IVDPF. Next, it re-randomizes

12

• Constraint(1λ, {(Qi,Ai)}i∈ZN):

1 assert Qi = {fi,v}v∈G̃ and ∀a ∈ Ai, |a| = 1 for

i ∈ ZN ;

2 for j ∈ [n]:

3 rj,0, rj,1 ← Zp;

4 kj,0 := e(g, g)rj,0 , kj,1 := e(g, g)rj,1 ;

5 msk := ({rj,0, rj,1}j∈[n], {Ai}i∈ZN);

6 return (Λ := {(kj,0, kj,1)}j∈[n],msk).

• SKGen(1λ, id,msk):

1 Parse msk := ({rj,0, rj,1}j∈[n], {Ai}i∈ZN);

2 sk := ∅;
3 for i ∈ ZN :

4 Let i1, . . . , in be the bits of i;

5 if {id} ∈ Ai:
6 d :=

∑
j∈[n] rj,ij ;

7 c← Z∗p; ski,0 := gc; ski,1 := d/c;

8 ski := (ski,0, ski,1); sk := sk ∪ {ski};
9 return sk.

• FGen(Λ, fα,β ∈ F , sk):

1 (f
(0)
α,β , f

(1)
α,β)← IVDPF.Gen(1λ, fα,β , {1 ∈ Zp}n);

2 Choose skα from sk;

3 Parse skα := (sk0, sk1);

4 s← Z∗p; u := (sk0)s; v := sk1 · s−1;

5 (v(0), v(1))← AddShareZp,2(v);

6 π(0) := (u, v(0));π(1) := (u, v(1));

7 return ((f
(0)
α,β , π

(0)), (f
(1)
α,β , π

(1))).

• VEval(b,Λ, f
(b)
α,β , π

(b), X ⊆ ZN):

1 Parse π(b) := (u, v(b)), Λ := {(ki,0, ki,1)}i∈[n];
2 ({y(b)i }i∈ZN , Z, τ

(b)
0)← IVDPF.Eval(b, f

(b)
α,β ,ZN);

3 Parse Z := {z(b)i,0 , z
(b)
i,1 }i∈[n]; Set τ

(b)
1 := 0;

4 for i ∈ [n]: δi := b+ (−1)b · (z(b)i,0 + z
(b)
i,1);

5 τ
(b)
1 := H(δ1|| . . . ||δn);

6 vk(b) :=
∏
i∈[n](ki,0)

z
(b)
i,0 · (ki,1)

z
(b)
i,1 ;

7 v := v(b);

8 if b = 0: τ
(b)
2 := H(e(u, gv)/vk(b));

9 else: τ
(b)
2 := H(vk(b)/e(u, gv));

10 return ({y(b)x }x∈X , τ (b) := (τ
(b)
0 , τ

(b)
1 , τ

(b)
2)).

• Verify(τ (0), τ (1)):

1 return IVDPF.Verify(τ
(0)
0 , τ

(1)
0)

∧∀i ∈ [2], τ
(0)
i = τ

(1)
i .

• Parameters: Let G̃ be an Abelian group, F := {f : {0, 1}n → G̃} be a point function family, s.t. N := 2n is

an integer in poly(λ). Let e : G× G→ Gt be a bilinear map, where G,Gt are multiplicative cyclic groups with

the prime order p, and the generator g of G. Let H : Gt → {0, 1}2λ and H′ : {0, 1}n·dlog pe → {0, 1}2λ be hash

functions sampled from H,H′ that are collision-resistant.

Construction IVDPF-CDPF

Figure 5: The construction of faster CDPF from IVDPF.

skα := (gc, d/c) to (u, v), such that e(gc, gd/c) = e(u, gv), and produces the proof shares consisting of u and
the additive shares of v.

Upon receiving the function shares with proof shares, in addition to evaluating function shares, the

evaluators run VEval to compute 〈e(u, gv)/vkα〉 and interpret these secret shares as tokens τ
(0)
2 , τ

(1)
2 . They

exchange tokens to check if e(u, gv)/vkα = 1 in Verify to make a decision. To ensure the dealer knows a valid
secret key if Verify outputs 1, the evaluators additionally check if they obtain a verification key vkα ∈ Λ.

They first verify the well-formedness of function shares using IVDPF tokens τ
(0)
0 , τ

(1)
0 , which restricts that

at most one non-zero value in each {zi,0, zi,1}. Next, they check if the non-zero value is equal to 1. More
specifically, for each layer i ∈ [n], each evaluator Pb computes the subtractive share of the difference between

the value 1 and the sum of layer outputs as δi := b+ (−1)b · (z(b)
i,0 + z

(b)
i,1). Then Pb hashes these subtractive

shares to obtain the audit token τ
(b)
1 . Clearly, τ

(0)
1 = τ

(1)
1 holds iff ∀i ∈ [n], z

(0)
i,αi

+ z
(1)
i,αi

= 1.

Security. We show the security of our IVDPF-CDPF in Fig. 5 with the following theorem, and its proof
can be found in Appendix E.2.

Theorem 2. Assume the decisional BDH assumption holds in the bilinear map e : G × G → Gt. Let
H : {0, 1}∗ → {0, 1}2λ and H ′ : {0, 1}n·dlog pe → {0, 1}2λ be two collision-resistant hash functions. Let IVDPF
be a secure incremental VDPF. The IVDPF-CDPF in Fig. 5 is a secure constrained DPF as described in
Definition 1.

13

• The SKGen algorithm always outputs a valid secret

key ⊥.

• Constraint(1λ, {Qi,Ai}i∈ZN):

1 assert Qi is represented by {rsi,j ∈ F2t}j∈Z`
2 Λi := {rsi,j}j∈Z` ,∀i ∈ ZN ;

3 return (Λ := {Λi}i∈ZN ,msk := ∅).

• FGen(Λ, fα,β ∈ F ,⊥):

1 (f
(0)
α,β , f

(1)
α,β)← VDPF.Gen(1λ, fα,β ∈ F);

2 Select rsα,ρ from Λ, s.t., β ∧ rsα,ρ = 0;

3 η := α · `+ ρ;

4 (f
(0)
η,β , f

(1)
η,β)← VDPF.Gen(1λ, fη,β ∈ F ′);

5 π(0) := f
(0)
η,β ; π(1) := f

(1)
η,β ;

6 return ((f
(0)
α,β , π

(0)), (f
(1)
α,β , π

(1))).

• VEval(b,Λ, f
(b)
α,β , π

(b), X ⊆ ZN):

1 ({y(b)i }, τ
(b)
0)← VDPF.Eval(b, f

(b)
α,β ,ZN);

2 ({ỹ(b)i }, τ
(b)
1)← VDPF.Eval(b, π(b),ZN`);

3 τ
(b)
2 := 0;

4 for i ∈ ZN : δi := y
(b)
i ⊕ (

⊕
j∈Z` ỹ

(b)
i·`+j);

5 τ
(b)
2 := H(δ0|| . . . ||δN−1);

6 τ
(b)
3 := H(

⊕
i∈ZN ,j∈Z` rsi,j ∧ ỹ

(b)
i·`+j);

7 return ({y(b)x }x∈X , τ (b) := {τ (b)i }i∈[0,3]).

• Verify(τ (0), τ (1)):

1 Parse τ (b) := {τ (b)i }i∈[0,3] for b ∈ {0, 1};
2 return ∀i ∈ {0, 1}, VDPF.Verify(τ

(0)
i , τ

(1)
i)

∧ ∀i ∈ {2, 3}, τ (0)i = τ
(1)
i .

• Parameters: Let `, t be integers in poly(λ). Let F := {f : {0, 1}n → F2t}, F ′ := {f : {0, 1}n+log ` → F2t} be

point function families, s.t. N := 2n is an integer in poly(λ). Let H : {0, 1}Nt → {0, 1}2λ be a hash function

sampled from a family H that is collision-resistant.

Construction ?-CDPF

Figure 6: The construction of ?-CDPF.

6 CDPF with Wildcard-style Constraint

In this section, we propose a DPF scheme with wildcard-style constraints (?-CDPF) to restrict the function
output. We note that, the purpose of previous CDPF schemes is to check whether the dealer is authorized
to share a point function with the special input; while ?-CDPF is concerned with whether the secret-shared
function is authorized w.r.t its special output. We adopt the verifiable DPF with auxiliary output as we
mentioned in Sec. 1. Similar to [26, 27], our CDPF scheme are able to generalize to complex FSS classes
derived from DPFs. For general, we consider that each constraint configuration Λi includes ` entries.

In our ?-CDPF, each authorized set Qi is represented by ` restraint strings {rsi,j}j∈Z` , such that Qi :=
{fi,v ∈ F|∃j ∈ Z`, v∧rsi,j = 0}. A point function with special input i matches rsi,j if and only if all restricted
bits of its special output are equal to 0. For clarity, we let ⊥ be a “valid secret key” for any authorized set
Qi in our ?-CDPF scheme. Note that, our ?-CDPF scheme can be extended to fine-grained constraints by
setting each restraint string according to a verification key for a non-trivial secret key.

Fig. 6 presents our ?-CDPF construction for the function family F := {f : {0, 1}n → F2t}. The method
Constraint sets each constraint configurations to the corresponding restraint string rsi,j . In FGen, the dealer
generates VDPF keys for fα,β ∈ F as function shares. Then, the dealer selects the restraint string rsα,ρ by

the condition β∧ rsα,ρ = 0, and generates a pair of VDPF keys (f
(0)
η,β , f

(1)
η,β) as proof shares, where η := α`+ρ.

During the evaluation process, the evaluators first execute the algorithm VEval to evaluate function shares
and proof shares in VDPF scheme. Then the evaluators generate audit tokens. Concretely, they jointly
compute Jrsα,ρ ∧ βK by calculating the inner product between the restraint strings {rsi,j}i∈ZN ,j∈Z` and the

evaluation results of fη,β . Later, each evaluator Pb computes token τ
(b)
3 by hashing the share (rsα,ρ ∧ β)(b).

In Verify, the equality check of τ
(0)
3 = τ

(1)
3 guarantees rsα,ρ ∧ β = 0.

Moreover, we introduce τ
(b)
0 , τ

(b)
1 , τ

(b)
2 for each Pb to prevent the malicious dealer from sharing a mis-

matched point function fη′,β′ . The first two tokens τ
(b)
0 , τ

(b)
1 are VDPF tokens of f

(b)
α,β , f

(b)
η,β , respectively.

They attest the well-formedness of shared point functions. The token τ
(b)
2 is computed by hashing the con-

catenation of the XOR shares of fα,β(i)⊕ (
⊕

j∈Z` fη,β(i · `+ j)) for all i ∈ ZN . Due to the collision-resistant

H, the equality τ
(0)
2 = τ

(1)
2 in Verify holds only if η ∈ [α`, α`+ `) and the spacial output of the shared point

functions are equal.

14

Security. We show the security of our ?-CDPF in Fig. 6 with the following theorem, and its proof can be
found in Appendix E.3.

Theorem 3. Let H : {0, 1}Nt → {0, 1}2λ be a collision-resistant hash function. Let VDPF be a secure
verifiable DPF scheme. The ?-CDPF in Fig. 6 is a secure DPF with constraints as described in Definition 1.

6.1 Efficiency

In this section, we offer an optimization for CDPF, and discuss the composition of CDPFs for different
policies.

DPF tensoring. To support the general ` ≥ 1, we introduce a separate VDPF fη,(β,1) to select the target
item in Λ. It results in O(λ · (n + log `)) communication overhead from the dealer to the evaluators. As
observed in prior work [26, 27], the selecting VDPF fη,(β,1) can reuse the “backbone” of the VDPF fα,β ,
which is the DPF tensoring described by Boyle et al. [7]. Loosely speaking, the VDPF evaluation result
of fα,β can be considered as the n-th level results of fη,(β,1). Therefore, the selecting VDPF only needs
to represent a point function with domain size `, and then the communication overhead can be reduce to
O(λ · log `).

Multi-policy constraint. We observe that, for the same function family F , different CDPF schemes
share a common “backbone” of selecting VDPFs. The difference between their selecting VDPFs is the
special auxiliary outputs with respect to the different constraints. Due to the privacy of VDPF, all items in
the VDPF evaluation result are pseudo-random and independent to each other. Therefore, multiple CDPF
schemes for the same F can form a composite construction for multi-policy constraints using a single selecting
VDPF. Here, the selecting point function is converted to a new function with sufficient auxiliary outputs for
all CDPFs. The security of the composite construction depends on the security of VDPF and the original
CDPF schemes.

7 Implementation and Benchmark

Our CDPF schemes are implemented in Go and C. We implement the underlying DPF followed by [7, 10]
and employ the optimization of the FSS tensor technique in [7]. AES-128 is chosen for PRG in DPF, and we
implement it by Intel’s AES-NI. We instantiate the bilinear map e in the elliptic curve BLS12-381 [1], and
adopt the efficient BLS12-381 implementation in [21]. In addition, we use SHA-256 as the hash function in
our constructions.

Our benchmarks are executed on a server with Intel Xeon Silver 4214 CPU at 2.20GHz running Ubuntu
20.04.5 LTS; with 48 vCPUs and 128 GB Memory. Each experiment result is an average from 500 - 1000
evaluations. For the purpose of comparison, we also perform the same benchmarks for the DPF-PACL and
VDPF-PACL from [26,27]. We rerun the source code [25] provided by the original authors, where the DPF-
PACL uses the group G as the P-256 elliptic curve group, and the VDPF-PACL uses the group G := Z∗p with
a 3072-bit prime p as specified in RFC3526 [20]. In addition, we evaluate a CDPF schemes for multi-policy
constraints: the SK-?-CDPF composed of the VDPF-PACL and our ?-CDPF.

Parameters. Set λ = 128 and n = 32. In practical, such as mailbox system [12], constraints are applied to
a registered set X, and the evaluators evaluate DPF on X rather than the full domain. Denote N = |X| as
the number of constraint configurations, and ` as the number of entries per configuration.

Optimizations. We reduce the communication cost between the evaluators by XOR-accumulating some
audit tokens, which are just verified by an equality check in Verify.

7.1 Proof time

Table 1 compares the proof time of schemes. That is, the running time of Prove in the DPF-PACL and
VDPF-PACL; and the running time of FGen except the function share generation in our schemes. We
note that, using the FSS tensor optimization, the computational complexity of proof time is log-linear in `.
The DPF-PACL and our ?-CDPF schemes achieve an overwhelming performance advantage, because their

15

operations are minimal except for (V)DPF key generation. Our IVDPF-CDPF scheme requires O(n) group
operations for layer outputs in the IVDPF key generation, resulting in additional running time. For the SK-
?-CDPF scheme, multiple constraints share a common selecting point function to save a VDPF generation.
Due to the succinct of the underlying DPF representation, this optimization appears insignificant in the
proof generation.

Table 1: Performance of proof generation.

of entries per Λi 1 25 210 215

DPF-PACL [26,27] 0.3 µs 1.37 µs 2.74 µs 3.13 µs

VDPF-PACL [26,27] 30.1 ms 29.3 ms 29.9 ms 29.3 ms

IVDPF-CDPF (Ours) 31.7 µs 41.6 µs 50.2 µs 63.8 µs

?-CDPF (Ours) 0.6 µs 1.49 µs 2.65 µs 3.05 µs

SK-?-CDPF 29.1 ms 30.2 ms 29.4 ms 29.3 ms

7.2 Communication overhead

There are two communication rounds in our CDPF schemes and PACLs: one is that the dealer distributes
the function shares and proof shares to the evaluators; the other is that two evaluators exchange their audit
tokens. Table 2 reports the concrete communication overhead of the two rounds. Let s` be the standard
DPF key size for the point functions with domain size `. The VDPF key size of [10] is s` + 64 bytes, and
our IVDPF key size is s` + 96 log ` bytes due to log ` correction seeds and layer correction words.

Table 2: Proof size and audit token size in bytes, where s` is the standard DPF key size for the domain size
`.

Proof Size Token Size

DPF-PACL [26,27] 32 + s` 64

VDPF-PACL [26,27] 1952 + s` + 64 816

Fixed VDPF-PACL 1952 + s` + 64 880

IVDPF-CDPF (Ours) 128 + s` + 96 log ` 64

?-CDPF (Ours) s` + 64 64

SK-?-CDPF 1952 + s` + 64 880

The proof size and token size of our ?-CDPF and IVDPF-CDPF schemes are smaller than those of VDPF-
PACL. Compared to the sum of multiple CDPFs, the SK-?-CDPF scheme saves one VDPF key in proof and
save one hash value in audit token. In particular, we compare our fixed VDPF-PACL with the VDPF-PACL
in [26,27]. As shown in Table 2, our security improvement is almost free, in fact it only increases the token
size by 64 bytes.

7.3 Verification cost

The evaluators execute VEval (or Audit in PACLs) and Verify sequentially for verification. Thus, we take the
total run-time of the two algorithm as the verification cost. To demonstrate the advantage of our IVDPF-
CDPF scheme, we plot the run-time of verification by steps in Fig. 7, where ` = 1. It shows that, for both
DPF-PACL and VDPF-PACL, the most costly step is selecting the target verification key. Because they use
N verification keys to represent N constraint configurations, and require O(N) exponentiation/multiplication
operations in the key selection step. Our IVDPF-CDPF reduces the constraint representation to 2 logN
public keys, so that only O(logN) exponentiation operations are required. Thus, our IVDPF-CDPF scheme
is significantly more efficient than PACLs when N is large. For instance, our IVDPF-CDPF improves the
performance of DPF-PACL by a factor of 2.5× for 215 constraint configurations, and it is 2× faster than
VDPF-PACL.

16

212 constraint configurations

DPF-PACL

VDPF-PACL

IVDPF-CDPF

DPF-PACL
DPF-Eval
Key-Sel
SK-Check

0ms 25ms 50ms 75ms 100ms 125ms 150ms 175ms 200ms 225ms 250ms 275ms
Total CPU time

215 constraint configurations
DPF-PACL

VDPF-PACL

IVDPF-CDPF

VDPF-PACL
VDPF-Eval
Key-Sel
SK-Check

0ms 25ms 50ms 75ms 100ms 125ms 150ms 175ms 200ms 225ms 250ms 275ms 300ms 325ms 350ms 375ms 400ms 425ms 450ms 475ms

216 constraint configurations

IVDPF-CDPF (Ours)
IVDPF-Eval
Key-Sel
SK-Check

Figure 7: Verification performance of PACLs [26,27] and our IVDPF-CDPF scheme.

In addition, we compare our ?-CDPF and the VDPF-PACL in Fig. 8, while the VDPF evaluation of
fα,β is the baseline. As the number of constraint configurations N increases, the amortized overhead of
VDPF-PACL decreases. This is because the overhead of the SPoSS and the equality check are amortized
over N . On the contrary, the amortized overhead of our ?-CDPF plateaus at the beginning due to its minimal
operations. For the SK-?-CDPF, its verification time is less than the sum of corresponding original schemes
because it halves VDPF evaluations. This advantage would be significant when the input domain is large.

22 24 26 28 210 212 214

Number of constraint configurations

100

101

102

103

104

Am
or

tiz
ed

 C
PU

 ti
m

e
(

s)

= 1

22 24 26 28 210 212 214

Number of constraint configurations

100

101

102

103

104

Am
or

tiz
ed

 C
PU

 ti
m

e
(

s)

= 10

VDPF-Eval (baseline, no constraint) VDPF-PACL ★-CDPF (Ours) SK-★-CDPF

22 24 26 28 210 212 214

Number of constraint configurations

100

101

102

103

104

Am
or

tiz
ed

 C
PU

 ti
m

e
(

s)

= 20

Figure 8: Comparison of the amortized verification cost, where VDPF-PACL refers to [26,27]. The run-time
is amortized by the number of constraint configurations N .

8 CDPF with Non-interactive Evaluators: Impossibility and Fea-
sibility

To the best of our knowledge, all known CDPF constructions require the evaluators to have at least one
round of communication with each other before the decision could be made. A natural question is whether
there exists a CDPF scheme in which the evaluators do not need to communicate with each other. We
call such type of CDPF schemes as “non-interactive CDPF” and denote it as ni-CDPF. In this section, we
provide the impossibility and feasibility results of ni-CDPF.

Impossibility. We show that it is impossible to construct a secure ni-CDPF in the plain model. Formally,

Theorem 4. There exists no ni-CDPF construction in the plain model that is a secure CDPF as described
in Definition 1.

Proof. We now prove the theorem by contradiction. Assume there exists a secure CDPF with non-interactive
evaluators in the plain model, denoted as (Constraint,SKGen,FGen,VEval,Verify), for a function family F :=

17

{f : D → G}. That is, the verification result of Pb only depends on a single token τ (b) ← Audit(b, f (b), π(b)).
Due to the privacy definition of CDPF, there is a ppt simulator Sim such that

ViewCDPF(b,Λ, f, sk, X) ≈c Sim(1λ, b,Λ, X).

Now, we construct an efficient adversary A using Sim. On input (1λ,Λ), the adversary A proceeds as follows:

1 Pick a random subset X of D;

2 (f (0), π(0))← Sim(1λ, 0,Λ, X);

3 (f (1), π(1))← Sim(1λ, 1,Λ, X);

4 Output ((f (0), f (1)), (π(0), π(1)), X).

According to the privacy definition, for any b ∈ {0, 1}, the output (f (b), π(b)) of Sim passes the verification
of Pb. Hence, A can win the soundness game with noticeable probability, which contradicts the security of
the scheme.

Feasibility. Our impossibility result above is based on the fact that if the evaluators do not communicate
with each other, then they cannot coordinate with each other in the plain model. If the necessary “coor-
dination” between the evaluators can be enabled, say through certain trusted setups, then we may be able
to securely remove the “online” communication between the evaluators. If this is true, then we essentially
obtain the first non-interactive CDPF!

Based on the above idea, we now describe a generic compiler for ni-CDPF using non-interactive zero-
knowlege proofs (NIZKs)6, PKI, and a broadcast channel. Let (KGen,Enc,Dec) denote the public-key en-
cryption scheme. Each Pb generates a public-private key pair (pkb, skb)← KGen(1λ), and then registers the
public key pkb to the PKI. The dealer obtains valid public keys pk0, pk1 from the PKI.

Given any secure CDPF scheme with one-round interactive evaluators, denoted as CDPF := (Constraint,SKGen,
FGen,VEval,Verify), we can eliminate the interaction by letting the dealer broadcast the encrypted function
shares, the corresponding tokens and an NIZK proof. More specifically, the dealer D first generates function
shares with proof shares ((f (0), π(0)), (f (1), π(1))) by FGen following the CDPF. Next, for each b ∈ {0, 1}, D
encrypts the function share f (b) with a randomness r(b) as C(b) := Enc(pkb, (f

(b), π(b)), r(b)), then broadcasts
the ciphertext C(b). For non-interactive verification, we let D compute and broadcast the token τ (b) from
(Y (b), τ (b)) := VEval(b,Λ, f (b), π(b), X) for each b ∈ {0, 1}, where Λ is the public constraint configuration list
and X is the evaluation input set in the CDPF. If the dealer D provides correct tokens, each evaluator Pb
can locally check if Verify(τ (0), τ (1)) = 1 to make a decision.

To prevent a malicious dealer D from forging τ (0), τ (1), we require the dealer D to provide an NIZK proof
π̃ to prove the validity of tokens. Concretely, the statement consists of the ciphertexts and tokens being broad-
cast, the public keys, the configurations, and the input set, denoted as st := (C(0), τ (0), C(1), τ (1), pk0, pk1,Λ, X).
The witness includes the function shares, the proof shares, and the randomness D uses in the encryption,
denoted as w := (f (0), π(0), r(0), f (1), π(1), r(1)). The NIZK proof π̃ is for the efficiently decidable binary
relation

R :=

(st, w)

∣∣∣∣∣∣∣∣
C(0) = Enc(pk0, (f

(0), π(0)), r(0)) ∧
C(1) = Enc(pk1, (f

(1), π(1)), r(1)) ∧
((Y (0), t(0)) := VEval(0,Λ, f (0), π(0), X), τ (0) = t(0)) ∧
((Y (1), t(1)) := VEval(1,Λ, f (1), π(1), X), τ (1) = t(1))


Each Pb can locally verify the NIZK proof π̃ to check the validity of the tokens.

If the verification of π̃ passes and Verify(τ (0), τ (1)) = 1, Pb decrypts and accepts the function share
(f (b), π(0)) := Dec(skb, C

(b)), then evaluate the function share by executing VEval(b,Λ, f (b), π(b), X); other-
wise, Pb rejects the function share.

We remark that, our purpose here is to illustrate the main ideas for constructing a non-interactive CDPF
ni-CDPF scheme. When practical alternatives for NIZK are available, we indeed are able to obtain practical
ni-CDPF schemes. In the Appendix D, we will propose a practical construction in the preprocessing model. Its
verification is based on the Vector Oblivious Linear Evaluation (VOLE) correlations. As a subtle drawback
of this scheme, it cannot ensure the honest evaluators reach consensus. In particular, a malicious dealer

6Note that, NIZK is usually realized in the random oracle and/or common reference string (CRS) models.

18

without valid secret key can successfully cheat one of the evaluators. Nevertheless, our practical ni-CDPF
scheme can be securely used for private information retrieval applications [16, 29]. In these applications,
the drawback of our scheme can be easily addressed by re-randomizing servers’ (i.e., the CDPF evaluators)
responses. Denote the original response of Pb as res(b). Suppose servers agree on a random seed s in the
initialization phase. If the server Pb accepts the function share, Pb responds to the user (i.e., the CDPF
dealer) with re-randomized res(b) + (−1)b ·G(s) where G is a PRG, rather than the original value; otherwise,
the server responds with ⊥. Clearly, the user cannot learn any information of data from a single valid
response.

References

[1] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing elliptic curves with prescribed
embedding degrees. In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, editors, SCN 02,
volume 2576 of LNCS, pages 257–267, Amalfi, Italy, September 12–13, 2003. Springer, Heidelberg,
Germany.

[2] Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Israel Institute of
Technology, Technion, Haifa, Israel, 1996.

[3] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Lightweight techniques
for private heavy hitters. In 2021 IEEE Symposium on Security and Privacy, pages 762–776, San
Francisco, CA, USA, May 24–27, 2021. IEEE Computer Society Press.

[4] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229, Santa Barbara, CA, USA, August 19–23,
2001. Springer, Heidelberg, Germany.

[5] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant Kumar, and Mayank
Rathee. Function secret sharing for mixed-mode and fixed-point secure computation. In Anne Canteaut
and François-Xavier Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages
871–900, Zagreb, Croatia, October 17–21, 2021. Springer, Heidelberg, Germany.

[6] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 337–367, Sofia, Bulgaria,
April 26–30, 2015. Springer, Heidelberg, Germany.

[7] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and extensions.
In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 2016, pages 1292–1303, Vienna, Austria, October 24–28, 2016. ACM Press.

[8] Paul Bunn, Jonathan Katz, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient 3-party distributed ORAM.
In Clemente Galdi and Vladimir Kolesnikov, editors, SCN 20, volume 12238 of LNCS, pages 215–232,
Amalfi, Italy, September 14–16, 2020. Springer, Heidelberg, Germany.

[9] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous messaging system
handling millions of users. In 2015 IEEE Symposium on Security and Privacy, pages 321–338, San Jose,
CA, USA, May 17–21, 2015. IEEE Computer Society Press.

[10] Leo de Castro and Antigoni Polychroniadou. Lightweight, maliciously secure verifiable function secret
sharing. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part I, volume 13275
of LNCS, pages 150–179, Trondheim, Norway, May 30 – June 3, 2022. Springer, Heidelberg, Germany.

[11] Jack Doerner and abhi shelat. Scaling ORAM for secure computation. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 523–535, Dallas, TX, USA,
October 31 – November 2, 2017. ACM Press.

19

[12] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan Boneh. Express: Lowering the cost of
metadata-hiding communication with cryptographic privacy. In Michael Bailey and Rachel Greenstadt,
editors, USENIX Security 2021, pages 1775–1792. USENIX Association, August 11–13, 2021.

[13] Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In Phong Q. Nguyen
and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 640–658, Copenhagen,
Denmark, May 11–15, 2014. Springer, Heidelberg, Germany.

[14] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions (extended
abstract). In 25th FOCS, pages 464–479, Singer Island, Florida, October 24–26, 1984. IEEE Computer
Society Press.

[15] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di
Vimercati, editors, ACM CCS 2006, pages 89–98, Alexandria, Virginia, USA, October 30 – November 3,
2006. ACM Press. Available as Cryptology ePrint Archive Report 2006/309.

[16] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath Setty, Lorenzo Alvisi, and Michael Walfish.
Scalable and private media consumption with popcorn. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages 91–107, Santa Clara, CA, March 2016. USENIX
Association.

[17] Keyu Ji, Bingsheng Zhang, Tianpei Lu, and Kui Ren. Multi-party private function evaluation for ram.
IEEE Transactions on Information Forensics and Security, 18:1252–1267, 2023.

[18] Keyu Ji, Bingsheng Zhang, and Kui Ren. Fine-grained policy constraints for distributed point function.
Cryptology ePrint Archive, Paper 2023/1672, 2023. https://eprint.iacr.org/2023/1672.

[19] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman and Hall/CRC,
New York, 3rd edition, 2020. eBook Published on December 21, 2020.

[20] Mika Kojo and Tero Kivinen. More Modular Exponential (MODP) Diffie-Hellman groups for Internet
Key Exchange (IKE). RFC 3526, 2003.

[21] Sam Kumar, Yuncong Hu, Michael P. Andersen, Raluca Ada Popa, and David E. Culler. JEDI: Many-
to-many end-to-end encryption and key delegation for IoT. In Nadia Heninger and Patrick Traynor,
editors, USENIX Security 2019, pages 1519–1536, Santa Clara, CA, USA, August 14–16, 2019. USENIX
Association.

[22] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa.
Delphi: A cryptographic inference service for neural networks. In Srdjan Capkun and Franziska Roesner,
editors, USENIX Security 2020, pages 2505–2522. USENIX Association, August 12–14, 2020.

[23] Zachary Newman, Sacha Servan-Schreiber, and Srinivas Devadas. Spectrum: High-bandwidth anony-
mous broadcast. In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI
22), pages 229–248, Renton, WA, April 2022. USENIX Association.

[24] Théo Ryffel, Pierre Tholoniat, David Pointcheval, and Francis R. Bach. AriaNN: Low-interaction
privacy-preserving deep learning via function secret sharing. PoPETs, 2022(1):291–316, January 2022.

[25] Sacha Servan-Schreiber, Simon Beyzerov, Eli Yablon, and Hyojae Park. PACL source code. github,
2022. https://github.com/sachaservan/pacl.

[26] Sacha Servan-Schreiber, Simon Beyzerov, Eli Yablon, and Hyojae Park. Private access control for
function secret sharing. Cryptology ePrint Archive, Report 2022/1707, 2022. https://eprint.iacr.

org/2022/1707.

[27] Sacha Servan-Schreiber, Simon Beyzerov, Eli Yablon, and Hyojae Park. Private access control for func-
tion secret sharing. In 2023 IEEE Symposium on Security and Privacy, pages 809–828, San Francisco,
CA, USA, May 21–25, 2023. IEEE Computer Society Press.

20

https://eprint.iacr.org/2023/1672
https://github.com/sachaservan/pacl
https://eprint.iacr.org/2022/1707
https://eprint.iacr.org/2022/1707

[28] Adithya Vadapalli, Kyle Storrier, and Ryan Henry. Sabre: Sender-anonymous messaging with fast
audits. In 2022 IEEE Symposium on Security and Privacy, pages 1953–1970, San Francisco, CA, USA,
May 22–26, 2022. IEEE Computer Society Press.

[29] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod Vaikuntanathan, and Matei Zaharia. Splinter:
Practical private queries on public data. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 299–313, Boston, MA, March 2017. USENIX Association.

[30] Mark N. Wegman and Larry Carter. New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22:265–279, 1981.

[31] Zhelei Zhou, Bingsheng Zhang, Hong-Sheng Zhou, and Kui Ren. Single-input functionality against a
dishonest majority: Practical and round-optimal. Cryptology ePrint Archive, Paper 2024/305, 2024.

A Definition of VDPF

In this section, we recap the VDPF definition from [10].

Definition 3 (Verifiable Distributed Point Function [10]). A 2-party VDPF scheme, parameterized by a
function family F of point functions f : {0, 1}n → G, consists of three PPT algorithms (Gen,Eval,Verify)
defined as follows:

• (f
(0)
α,β , f

(1)
α,β)← Gen(1λ, fα,β) is the share generation algorithm that takes input as the security parameter

1λ and a point function fα,β ∈ F . It outputs a pair of VDPF keys, i.e., the additive shares of Jfα,βK.

• ({y(b)
x }x∈X , τ (b)) ← Eval(b, f

(b)
α,β , X) is the verifiable evaluation algorithm that takes input as an index

b ∈ {0, 1}, a VDPF key f
(b)
α,β, and a set of function inputs X ⊆ {0, 1}n. It outputs a tuple of values. The

first set of values are the FSS outputs, which are additive shares of fα,β(x), x ∈ X. The second item is
a token τ (b) that is used to verify the well-formedness of the shared function.

• 1 or 0← Verify(τ (0), τ (1)) is the verification algorithm that takes input as a pair of tokens. It outputs 1
for acceptance or 0 for rejection.

A secure VDPF must satisfy three properties as follows:

• Completeness. For all f ∈ F , X ⊆ {0, 1}n, it holds that

Pr


(f (0), f (1))← Gen(1λ, f);

({y(0)
x }, τ (0))← Eval(0, f (0), X);

({y(1)
x }, τ (1))← Eval(1, f (1), X) :

∀x ∈ X, y
(0)
x + y

(1)
x = f(x) ∧

Verify(τ (0), τ (1)) = 1

 = 1

• Privacy. For a function f ∈ F and a set of inputs X ⊆ {0, 1}n, define the view of evaluator Pb
ViewVDPF(b, f,X) as the probability distribution ensemble {(f (b), τ (1−b))}λ, where (f (0), f (1))← Gen(1λ, f),

({y(1−b)
x }x∈X , τ (1−b)) ← Eval(1 − b, f (1−b), X). There exists a PPT simulator Sim such that for all

f ∈ F , X ⊆ {0, 1}n, we have:

ViewVDPF(b, f,X) ≈c Sim(1λ, b, n,G, X)

• Soundness. Let f (b) be the (possibly maliciously generated) share received by the evaluator Pb. There

exists a negligible function negl such that for any X ⊆ {0, 1}n, ({y(b)
x }x∈X , τ (b)) ← Eval(b, f (b), X) for

b ∈ {0, 1}, it holds that

Pr

[
Verify(τ (0), τ (1)) = 1 :∣∣∣{x ∈ X|y(0)

x + y
(1)
x 6= 0}

∣∣∣ ≤ 1

]
≥ 1− negl(λ)

21

B Definition of PACL

For simplicity, we focus on 2-party FSS scheme, i.e. (2, 2)-FSS, and then recap the PACL definition in [27]:

Definition 4. Let integer N := 2n and F := {fi : {0, 1}n → {0, 1}∗|1 ≤ i ≤ N} be a family of functions.
Let (Gen,Eval) instantiate a 2-party FSS scheme for F . A PACL scheme consists of efficient algorithms
KeyGen,Prove,Audit and Verify defined as follows:

• (vk, sk) ← KeyGen(1λ, f) takes as input a security parameter 1λ and a function f ∈ F , and outputs a
new pair of verification and access keys (vk, sk).

• (π(0), π(1)) ← Prove(f, sk) takes as input a function f ∈ F and access key sk, and outputs a vector of 2
proof secret shares (π(0), π(1)).

• τ (b) ← Audit(b,Λ, f (b), π(b)) takes as input access control list Λ = (vk1, . . . , vkN), function secret share
f (b) of f sampled according to Gen, and proof share π(b), and outputs audit token τ (b).

• 1 or 0 ← Verify(τ (0), τ (1)) takes as input a set of 2 audit tokens, and outputs 1 for acceptance or 0 for
rejection.

The above functionality must satisfy:

• Completeness. A PACL scheme is complete if for all security parameters λ, for all b ∈ {0, 1}, for all
Λ := (vk1, . . . , vkN) where ∀i, vki is sampled according to KeyGen, and for all secret shares (f (0), f (1)) of
f ∈ F sampled according to Gen(1λ, f), it holds that

Pr


(π(0), π(1))← Prove(f, sk);
(f (0), f (1))← Gen(1λ, f);
{τ (b) ← Audit(b,Λ, f (b), π(b))|b ∈ {0, 1}} :
Verify(τ (0), τ (1)) = Check(Λ, f, sk)

 = 1

• Efficiency. The size of each proof share π(b) is most O(λN ε) for any ε < 1 (possibly dependent on n).
The size of each audit token τ (b) is O(λ).

• Privacy. For any b ∈ {0, 1}, define Viewb to be the distribution over {(π(b), τ∗(b))}∪{τ (1−b)} where π(b) is
sampled according to Prove(f, sk), τ∗(b) is sampled arbitrarily and τ (1−b) is generated by Audit(Λ, f (1−b), π(1−b)).
A PACL is private if there exists an efficient simulator Sim such that

Viewb ≈c Sim(1λ, b,Λ, τ∗(b)).

That is, the distribution of proof shares and audit shares reveal nothing about fi or the access key sk to
any one computationally bounded (possibly malicious) verifier.

• Soundness. For any PPT adversary A with oracle access to GetKey, it holds that

Pr[Gsound
PACL,A(λ) = 1] ≤ negl(λ)

where Gsound
PACL,A(λ) is depicted in Fig. 9.

First, notice that the scheme allows simultaneous messaging, i.e., all the parties can send messages to
each other in the same round. Following the simulation paradigm, typically, rushing adversary model is
considered; that is, the adversary’s messages can be generated at the end of the round, after seeing the
honest parties’ messages. However, in the privacy definition of [27], the simulator is given the adversary’s
message as input, which deviates from the reality.

Second, during the real execution, each evaluator receives a function share and a proof share from the
dealer as well as an audit token from the other evaluator. However, in the privacy definition of [27], the
view of evaluator does not include the function share. We show a counterexample to the claim that this
privacy definition is problematic. Given any secure PACL := (KeyGen,Prove,Audit,Verify) of a 2-party
VDPF for a point function family F := {f : {0, 1}n → G} under their definition, we construct a new
audit algorithm Audit′(Λ, f (b), π(b)) that outputs τ ′(b) := (τ (b) ← Audit(Λ, f (b), π(b)), f (b)), and then obtain
a new PACL scheme PACL′ := (KeyGen,Prove,Audit′,Verify). Easy to note that, PACL′ leaks the secret
f . Unfortunately, we show that it is a secure PACL under their definition. Obviously, PACL′ satisfies the
completeness and soundness property due to the security of PACL. For the privacy of this PACL, the view

22

• Game Gsound
PACL,A(λ):

1 for i ∈ {1, . . . , N}:
2 (vki, ski)← KeyGen(1λ, fi);

3 Λ := (vk1, . . . , vkN);

4 T := ∅
5 ((f (0), f (1)), (π(0), π(1)))← AGetKey(1λ,Λ);

6 τ (0) ← Audit(Λ, f (0), π(0));

7 τ (1) ← Audit(Λ, f (1), π(1));

8 return Verify(τ (0), τ (1)) = 1

∧ f ∈ F ∧ f /∈ T .

• GetKey(j):

1 T := T ∪ {fj};
2 return skj .

Soundness game

Figure 9: Soundness game for the PACL scheme PACL = (KeyGen,Prove,Audit,Verify) for the function family
F .

of Pb is {(π(b), τ∗(b))} ∪ {τ ′(1−b)} where τ ′(1−b) ← Audit′(Λ, f (1−b), π(1−b)). Denote the efficient simulator of
PACL as SimPACL, the efficient simulator of VDPF as SimVDPF. We construct an efficient simulator Sim′ for
PACL′ as follows: On input (1λ, b,Λ, τ∗(b)), Sim′ proceeds

1 (π(b), τ∗(b), τ (1−b))← SimPACL(1λ, b,Λ, τ∗(b));

2 (f (1−b),−)← SimVDPF(1λ, 1− b,F ,ZN);

3 Output (π(b), τ∗(b), (τ (1−b), f (1−b))).

Due to the privacy of PACL and VDPF, the output distribution of Sim is computationally indistinguishable
from the distribution of real view of Pb. Therefore, PACL′ indeed leaks the function f but is a secure scheme
under the definition of [27]. In addition, to satisfy the efficiency property that the audit token size is O(λ),

we can make Audit′ replace f (b) in the output with y
(b)
1 ∈ G generated by VDPF.Eval(b, f (b), {1}), which still

leaks some information of the secret f .

C Properties of Definiton 1 for the Special Case

If the verification result of Pb only depends on τ (b), the security properties of Definiton 1 are defined as
follows:

• Completeness. For any {(Qi,Ai)}i∈ZN such that Constraint(1λ, {(Qi,Ai)}i∈ZN) → (Λ,msk) 6= ⊥, any
i ∈ ZN , any function f ∈ Qi, any secret key sk ← SKGen(1λ, id,msk) where id belongs to Ai, and any
X ⊆ D, it holds that

Pr


((f (0), π(0)), (f (1), π(1)))← FGen(Λ, f, sk);

({y(0)
x }x∈X , τ (0))← VEval(0,Λ, f (0), π(0), X);

({y(1)
x }x∈X , τ (1))← VEval(1,Λ, f (1), π(1), X) :

∀x ∈ X, y(0)
x + y

(1)
x = f(x) ∧

Verify(τ (0),⊥) = 1 ∧ Verify(τ (1),⊥) = 1

 = 1

• Privacy. For a constraint configuration list Λ, a function f ∈ F , a secret key sk and a set of function
inputs X ⊆ D, define the distribution representing the view of Pb as

ViewCDPF(b,Λ, f, sk, X) := {(f (b), π(b))}

where ((f (0), π(0)), (f (1), π(1)))← FGen(Λ, f, sk).
There exists a ppt simulator Sim such that for any Λ,msk generated from Constraint(1λ, {(Qi,Ai)}i∈ZN)
for any {(Qi,Ai)}i∈ZN , any function f from any Qi, any secret key sk ← SKGen(1λ, id,msk) where id
belongs to Ai, any X ⊆ D, and any b ∈ {0, 1}, the following two distributions are computationally
indistinguishable:

ViewCDPF(b,Λ, f, sk, X) ≈c Sim(1λ, b,Λ, X)

23

• Soundness. For any ppt adversary A, it holds that

Pr[Gsound
CDPF,A(λ) = 1] ≤ negl(λ)

where the game Gsound
CDPF,A(λ) is depicted in Fig. 10.

• Game Gsound
CDPF,A(λ):

1 {(Qi,Ai)}i∈ZN ← A(1λ);

2 w ← Constraint(1λ, {(Qi,Ai)}i∈ZN);

3 if w = ⊥: return 0; else: parse w as (Λ,msk);

4 T := ∅;
5 ((f (0), π(0)), (f (1), π(1)), X)← AGetKey(·)(Λ);

6 for b ∈ {0, 1}: ({y(b)x }x∈X , τ (b))← VEval(b,Λ, f (b), π(b), X);

7 if Predicate(f,X) = 1: return 0;

8 return (Verify(τ (0),⊥) = 1 ∨ Verify(τ (1),⊥) = 1) ∧ (f /∈ T).

• GetKey(id):

1 sk← SKGen(1λ, id,msk);

2 for i ∈ ZN : if {id} ∈ Ai, T := T ∪Qi;
3 return sk.

• Predicate(f,X):

1 if f /∈ F : return 0;

2 ((f (0), f (1)), (π(0), π(1)))← FGen(Λ, f,⊥);

3 for b ∈ {0, 1} : ({y(b)x }x∈X , τ (b))← VEval(b,Λ, f (b), π(b), X);

4 return (Verify(τ (0),⊥) = 1) ∧ (Verify(τ (1),⊥) = 1).

Soundness game

Figure 10: Soundness game for constrained distributed point function CDPF = (Constraint,SKGen,
FGen,VEval,Verify) for function family F .

D CDPF with Non-Interactive Evaluators in the Preprocessing
Model

In this section, we propose a practical ni-CDPF scheme, i.e., CDPF with non-interactive evaluators, in the
preprocessing model. We assume all parties are connected by pairwise secure channels and a broadcast
channel.

For readability, we present our ni-CDPF scheme as a protocol Πni-CDPF in Fig. 11. It is based on the VDPF
technique from [10] and multi-verifier (subfield) VOLE from [31]. Similar to the VDPF-PACL in [26,27], our
constraint configuration list Λ := {Λi} is a series of group elements Λi ∈ G := Z∗p, named verification keys.
Let g be the generator of G. The discrete logarithm of each verification key Λi to the base g is the secret
key of Λi. Therefore, given a shared point function with special input α, the evaluators check if the dealer
knows the correct discrete logarithm of Λα to make a decision.

As mentioned in Sec. 1, we first need to ensure that the dealer D distributes a pair of well-formed
VDPF keys for a point function fα,β with an auxiliary output 1. Then the evaluators can obliviously obtain
the shared valid verification key 〈Λα〉 over Zp. Naively, the verification of VDPF keys requires one-round
interaction between the evaluators [10]. Indeed, we observe that, checks for well-formedness and the auxiliary
output is independent of the real point function fα,β . Thus, the dealer can generate and distribute a pair
of VDPF keys K(0),K(1) for a random special input α′, without the output correction word for the special
output β in the preprocessing phase; while the evaluators jointly check the valid of K(0),K(1). In this online
phase, the dealer can broadcasts δα := α− α′ and the output correction word cw for β to make VDPF keys
complete.

24

Parameters: A prime number p, a group G := Z∗p with a generator g, a family F := {f : {0, 1}n → G̃} of point functions, an

integer N := 2n, a hash function H : Zp → {0, 1}λ sampled from a collision resistant family.

Inputs: The dealer D and evaluators P0,P1 hold constraint configuration list Λ ∈ GN . The dealer D additionally holds the

point function fα,β and secret key sk.

Preprocessing Phase: The point function fα,β and secret key sk are unknown by D.

1. D generates and distributes incomplete VDPF keys, and P0,P1 check if these keys are valid.

(a) D picks random α′ ← ZN , generates a pair of VDPF keys for the point function f
(0)
α′,(β,1), except for the

correction word for the unknown β. Denote these incomplete VDPF keys as K(0),K(1). D distributes K(0),K(1)

to P0,P1.

(b) Each Pb evaluates K(b) on the input set ZN , except for the first output item correction, to obtain the VDPF

audit token τ (b) and the secret share {y(b)i }i∈ZN of the second output item, and computes

δ(b) := H(b+ (−1)b ·
∑
i∈ZN y

(b)
i).

(c) P0 and P1 exchange τ (0), τ (1) and δ(0), δ(1), and check if VDPF.Verify(τ (0), τ (1)) = 1 and δ(0) = δ(1).

2. D picks random v ← Zp−1 and broadcasts t := gv ∈ G. Then, P0 and P1 agree on a random c ∈ Zp−1 and send c to D.

3. D and P0,P1 jointly generates VOLE correlations.

(a) D and P0,P1 send (init, sid) to Fpmv-VOLE. Then Fpmv-VOLE returns ∆(b) to each Pb.

(b) D picks random w0, w1, w2 ← Zp and sets w := (w0, w1, w2);

(c) D sends (extend, sid, 3,w) to the functionality Fpmv-VOLE while P0,P1 sends (extend, sid, 3) to Fpmv-VOLE. Then

Fpmv-VOLE returns (m(0),m(1)) to D and returns k(b) to each Pb, such that ∀i ∈ Z3, k
(b)
i = m

(b)
i + wi ·∆(b).

Online Phase: D knows the point function fα,β and secret key sk

1. D computes and broadcasts δα := α− α′ ∈ ZN and the correction word cw for β corresponding the incomplete keys

K(0),K(1). All parties locally combine δα, cw and the incomplete keys to obtain the VDPF keys f
(0)
α,(β,1)

and/or

f
(1)
α,(β,1)

.

2. D and P0,P1 compute the correlations of the target verification key:

(a) For each b ∈ {0, 1}: D computes ({(βi, yi)}i∈ZN , τ
(b)) := VDPF.Eval(b, f

(b)
α,(β,1)

,ZN), vk(b) :=
∏
i∈ZN (Λi)

yi ,

m
(0)
vk,b := m

(0)
b , m

(1)
vk,b := m

(1)
b , and wvk,b := (vk(b))c. Then D broadcasts δb := wvk,b − wb.

(b) Each Pb locally computes k
(b)
vk,0 := k

(b)
0 + δ0 ·∆(b) and k

(b)
vk,1 := k

(b)
1 + δ1 ·∆(b).

3. P0 and P1 check whether these correlations are valid:

(a) For each b ∈ {0, 1}: D sends m
(b)
vk,b to Pb.

(b) Each Pb evaluates ({(βi, yi)}i∈ZN , τ
(b)) := VDPF.Eval(b, f

(b)
α,(β,1)

,ZN), computes vk(b) :=
∏
i∈ZN (Λi)

yi , and

checks if k
(b)
vk,b = m

(b)
vk,b + (vk(b))c ·∆(b).

4. P0 and P1 verify the secret key of D:

(a) D computes wvk := (Λα)c, m
(0)
vk := m

(0)
2 and m

(1)
vk := m

(1)
2 . D broadcasts δ2 := wvk − w2 and r := v − c · sk while

for each b ∈ {0, 1}: D sends m
(b)
t := gr ·m(b)

vk to Pb.

(b) Each Pb computes k
(b)
vk := k

(b)
2 + δ2 ·∆(b), kt := gr · k(b)vk and checks if k

(b)
t = m

(b)
t + t ·∆(b).

5. P0 and P1 verify the correlation of vk is computed correctly:

(a) For each b ∈ {0, 1}: D sends A
(b)
0 := m

(b)
vk,0 ·m

(b)
vk,1 and A

(b)
1 := m

(b)
vk,0 · wvk,1 +m

(b)
vk,1 · wvk,0 −m

(b)
vk to Pb.

(b) Each Pb locally computes B(b) := k
(b)
vk,0 · k

(b)
vk,1 − k

(b)
vk ·∆

(b) and checks if B(b) = A
(b)
0 +A

(b)
1 ·∆(b).

Protocol Πni-CDPF

Figure 11: Protocol for CDPF with non-interactive evaluators in the Fpmv-VOLE-hybrid model

Next, we utilize Schnorr’s protocol to prove that D knows the discrete logarithm sk of the select vk := Λα.
Obviously, the commitment and challenge steps of Schnorr’s protocol is independent of the statement vk and
the witness sk and, thus they can be performed in the preprocessing phase. That is, D pre-broadcasts t := gv

and then the evaluators P0,P1 sends a random c ∈ Zp−1 to D. The challenge is the contradiction between
the privacy requirement that each Pb should not know the statement vk and the purpose that the evaluators
can locally make a decision without communication to each other. Inspired by [31], we let the dealer commit
to the statement (i.e., the secret shares of vk from the inner product between Λ and the evaluation results
of VDPF keys) to the evaluators, then prove that the rest steps of Schnorr’s protocol over vk and sk are
processed in a proper way. In particular, these commitments are built by multi-verifier VOLE correlations,
which is adopted from [31]. In Fig. 12, we recap the functionality of multi-verifier subfield VOLE of [31]

25

in our setting7, and reduce it to a 2-verifier VOLE functionality Fpmv-VOLE. According to Fig. 12, in the
preprocessing phase, each Pb gets a global key ∆(b) from the multi-verifier VOLE functionality Fpmv-VOLE.
For any vector w ∈ Z3

p, D gets MAC tags m(0),m(1) ∈ Z3
p and the vector w from Fpmv-VOLE; while each Pb

gets the private key m(b) ∈ Z3
p, such that ∀i ∈ Z3, k

(b)
i = m

(b)
i + wi ·∆(b).

In the online phase, the dealer first computes vk(0), vk(1) using the VDPF keys it distributes and commits
to (vk(0))c and (vk(1))c by broadcasting δ0 := (vk(0))c−w0 and δ1 := (vk(1))c−w1 to all evaluators. Then the

dealer commits to vkc := (vk(0))c · (vk(1))c by broadcasting δ2 := vkc − w2. Each evaluator can verify these
commitments after receiving the corresponding MAC tags from D privately. Finally, the dealer broadcasts
r := v − c · sk and the evaluators locally check if gr · vkc = t using commitments to make a decision.

Security. We provide the intuition for the security of our Πni-CDPF in Fig. 11. First, the completeness clearly
holds, except for the verification of vkc (step 5 in the online phase). We note that, for each b ∈ {0, 1},

B(b) := k
(b)
vk,0 · k

(b)
vk,1 − k

(b)
vk ·∆

(b)

= (m
(b)
vk,0 + (wvk,0 ·∆(b)) · (m(b)

vk,1 + wvk,1 ·∆(b))

− (m
(b)
vk + wvk ·∆(b)) ·∆(b)

= A
(b)
0 +A

(b)
1 ·∆(b) + (wvk,0 · wvk,1 − wvk) · (∆(b))2

where wvk,0 := (vk(0))c, wvk,1 := (vk(1))c and wvk := vkc if D is honest. Therefore, we have B(b) = A
(b)
0 +

A
(b)
1 ·∆(b).

For privacy, the preprocessing phase is independent of private input. In the online phase, the dealer
broadcasts (1) δα, cw for VDPF keys, (2) δ0, δ1, δ2 for commitment, and (3) r for Schnorr’s proof. It is easy

to see, these values are uniformly distributed. In addition, the dealer sends (1) m
(b)
vk,b, (2) m

(b)
t and (3) A

(b)
0 ,

A
(b)
1 to Pb privately. The first two items open wvk,b := (vk(b))c and wt := t to Pb, which are already known by

Pb from the VDPF key and Schnorr’s proof. The items in (3) are masked MAC tags and also reveal nothing
of dealer’s private input to Pb.

The soundness of our Πni-CDPF has a subtle drawback. Assume the discrete logarithm assumption holds
in G. A malicious dealer A can cheat one of the evaluators, say P0, by broadcasting δ∗1 := (gsk

∗
/vk(0))c−wb

for a forged secret key sk∗. Then P0 would accept the forged proof from A. Nevertheless, the other evaluator
P1 can distinguish the invalid δ∗1 . We conclude that any malicious dealer cannot cheat two evaluators at the
same time unless it breaks the discrete logarithm assumption.

The functionality interacts with parties D, P0 and P1 as well as an adversary S. It

is parameterized with a finite field Fp.

Initialize: Upon receiving (init, sid) from D, P0 and P1, for each b ∈ {0, 1}, if Pb is

honest, then sample ∆(b) ← Fp; else receive ∆(b) ∈ Fp from S. Store ∆(b) and send

∆(b) to Pb. Ignore all subsequent init commands.

Extend: Upon receiving (extend, sid, `,w) from D, and (extend, sid, `) from P0 and

P1, where w ∈ F`p:

• For b ∈ {0, 1}: sample k(b) ← F`p, and set m(b) := k(b) −w ·∆(b) ∈ F`p.

• If D is corrupted, for each b ∈ {0, 1}: receive m(b) ∈ F`p from S and set

k(b) := m(b) + w ·∆ ∈ F`p.

• For each b ∈ {0, 1}: if Pb is corrupted, receive k(b) ∈ F`p from S and set

m(b) := k(b) −w ·∆ ∈ F`p.

• Output (m(0),m(1)) to D and k(b) to each Pb.

Functionality Fpmv-VOLE

Figure 12: Functionality for multi-verifier VOLE [31]

7Recall that, we consider one dealer and two verifiers, and the malicious security for a single corrupted party.

26

E Security Proofs

E.1 Proof of Theorem 1

Proof. We prove the IVDPF construction in Fig. 4 satisfies the properties in Definition 2.

Completeness. Except for the layer outputs {zi,0, zi,1}i∈[n], our IVDPF is same as the incremental DPF
construction of Boyle et al. [7]. Given the shared function Jfα,βK and the input set X, for each level i, the
layer outputs zi,0, zi,1 are generated by summing the i-bit prefix evaluation results of the point functions.

Since only α[1,i] := α1|| . . . ||αi leads to a non-zero prefix evaluation result, we have z
(0)
i,ᾱi

+ z
(1)
i,ᾱi

= 0 and

z
(0)
i,αi

+ z
(1)
i,αi

= (α[1,i] ∈ X[1,i]) · β′i.

Privacy. We construct an efficient simulator Sim for the view of any evaluator Pb. On input (1λ, b, n,G, {G′i}i∈[n], X),
the simulator Sim proceeds as follows:

1 s
(b)
0 ← {0, 1}λ, ocw← G

2 for i := 1 to n:

3 cwi ← {0, 1}λ+2, csi ← {0, 1}4λ, lcwi ← G′i
4 f∗ := (s

(b)
0 , (cwi, csi, lcwi)i∈[n], ocw)

5 ({y∗x}, {z∗i,0, z∗i,1}, τ∗)← IVDPF.VEval(b, f∗, X)

6 Output (f∗, τ∗)

In the real view of Pb, the IVDPF key f (b) consists of (1) random seed s
(b)
0 which is distributed identically

to the output of Sim, (2) the correction words (cwi, csi)i∈[n], where each one is XOR’d with the output
of the PRG G and (3) the output correction words (lcwi)i∈[n], ocw, where each one is added with the
pseudorandom output of G′i. Since Pb does not known the seeds of G and G′i, (2) and (3) are computationally
indistinguishable from random elements. In addition, the audit token τ (1−b) is equal to τ (b), and the evaluator
holding f (b) can locally compute it. Therefore, we conclude that the output of Sim is computationally
indistinguishable from to the view of verifier Pb.

Soundness. Given the input set X ⊆ {0, 1}n, each evaluator has ({y(b)
x }x∈X , {zi,0, zi,1}i∈[n], τ

(b)) ←
Eval(b, f

(b)
α,β , X). Denote Ci := {0, 1}/{1 − j|z(0)

j,0 + z
(1)
j,0 6= 0, j ∈ {0, 1}}. In addition, at every level i,

each evaluator has a set of seeds and control bits, denoted as {s̃(0)
i,v , t̃

(0)
i,v , }v∈X[1,i]

and {s̃(1)
i,v , t

(1)
i,v }v∈X[1,i]

. The

evaluators have the same correction seed csi. Let τ̃
(b)
i,v := H(s̃

(b)
i,v ||t

(b)
i,v ||v) and τ

(b)
i,v := τ̃i,v ⊕ t

(b)
i,v · csi for

b ∈ {0, 1}. We consider two cases as follows:

Case 1: We prove that no PPT adversary A can construct IVDPF keys such that Verify(τ (0), τ (1)) = 1 when∣∣∣{x ∈ X|y(0)
x + y

(1)
x 6= 0}

∣∣∣ > 1 or ∃i ∈ [n], |Ci| < 1. Suppose for contradiction that A constructs a key that

satisfies the above condition. There exists i ∈ [n], two distinct u, v ∈ X[1,i] such that s̃
(0)
i,u||t̃

(0)
i,u 6= s̃

(1)
i,u||t̃

(1)
i,u and

s̃
(0)
i,v ||t̃

(0)
i,v 6= s̃

(1)
i,v ||t̃

(1)
i,v , and ∀x ∈ X[1,i] we have τ

(0)
i,x = τ

(1)
i,x to make Verify(τ (0), τ (1)) = 1 (due to the collision

resistance of H ′). Because of the collision resistance of H, we have τ̃
(0)
i,u 6= τ̃

(1)
i,u and τ̃

(0)
i,v 6= τ̃

(1)
i,v . Hence, the

adversary A needs to find csi such that csi = τ̃
(0)
i,u ⊕ τ̃

(1)
i,u = τ̃

(0)
i,v ⊕ τ̃

(1)
i,v . It contradicts the XOR-collision

resistance of H.

Case 2: We prove that no PPT adversary A can construct IVDPF keys such that ∃x ∈ X, (∃i ∈ [n], xi /∈
Ci)∧ (y

(0)
x + y

(1)
x 6= 0), it holds that Verify(τ (0), τ (1)) = 1. Suppose for contradiction that there exists a level

i such that for a node u ∈ X[1,i], such that s̃
(0)
i,u||t̃

(0)
i,u = s̃

(1)
i,u||t̃

(1)
i,u, but

G′i(s̃
(0)
i,u) 6= G′i(s̃

(1)
i,u).

Obviously, it contradicts the property of the PRG G′i.
In conclusion, the construction in Fig. 4 satisfies the soundness property of Definition 2.

27

E.2 Proof of Theorem 2

Proof. We prove the IVDPF-CDPF construction in Fig. 5 satisfies the properties in Definition 1.
Completeness. Due to the completeness of IVDPF, for the secret-shared point function fα,β , we have
JyiK = β if i = α and JyiK = 0 otherwise. As such,

vk := vk(0) · vk(1) =
∏
i∈[n]

e(g, g)i,αi = e(g, g)
∑
i∈[n] ri,αi

We show that for the secret key sk← SKGen(1λ, id,msk) where {id} ∈ Aα, the algorithm Verify outputs 1. As

described in Fig. 5, the algorithm Verify outputs 1 iff IVDPF.Verify(τ
(0)
0 , τ

(1)
0) = 1 and ∀i ∈ [0, 1], τ

(0)
i = τ

(1)
i .

The equality of the former follows from the completeness of IVDPF. The equality of τ
(0)
1 = τ

(1)
1 follows from

the special layer outputs equal to 1. To see why it holds that τ
(0)
2 = τ

(1)
2 , observe that skα = {sk0, sk1} ∈ sk

and e(u, gv) = e(sk0, g
sk1) =

∑
i∈[n] ri,αi = vk. Thus, it holds

e(u, gv
(0)

)

vk(0)
=

vk(1)

e(u, gv(0))
, i.e., τ

(0)
2 = τ

(1)
2 , as

required.

Privacy. We construct an efficient simulator Sim for the view of any evaluator Pb. We use the PPT simulator
SimIVDPF to generate the view of the IVDPF output. On input (1λ, b,Λ, X), the simulator Sim proceeds as
follows:

1 u← Gt, (v(0), v(1))← AddShareZp,2(0)

2 π(b) := (u, v(b))

3 (f (b), τ
(1−b)
0)← SimIVDPF(1λ, b,F ,ZN)

4 Compute τ
(b)
1 , τ

(b)
2 using f (b),Λ according to VEval

5 τ
(1−b)
1 := τ

(b)
1 , τ

(1−b)
2 := τ

(b)
2

6 τ (1−b) := (τ
(1−b)
0 , τ

(1−b)
1 , τ

(1−b)
2)

7 Output (f (b), π(b), τ (1−b))

The output distribution of Sim is computationally indistinguishable from the distribution of the real view of

Pb, because: (1) v(b), u are distributed uniform in the real view; (2) function share f (b) and audit token τ
(1−b)
0

are output by the simulator SimVDPF, which guarantees the computational indistinguishability; (3) audit

tokens τ
(1−b)
1 , τ

(1−b)
2 are equal to τ

(b)
1 , τ

(b)
2 in the real view due to the CDPF completeness.

Soundness. Suppose for contradiction that there exists a PPT adversary A and non-negligible function δ
such that:

Pr[Gsound
CDPF,A(A) = 1] ≥ δ(λ)

Extract fα,β from the output by A in Gsound
CDPF,A(A). By the soundness property of IVDPF, we can assume

fα,β are point functions with special input α and valid special layer outputs. Since H is a collision-resistant

hash function, the inspection of τ
(0)
1 = τ

(1)
1 restricts A to outputting IVDPF with special layer outputs equal

to 1, which implies that both evaluators obtain secret shares of vk := e(g, g)
∑
i∈[n] ri,αi .

We construct an efficient adversary B that breaks the decisional BDH assumption. On input (1λ, ga, gb, gc, r),
the adversary B proceeds as follows:

1 {(Qi,Ai)}i∈ZN ← A(1λ,F)

2 (Λ,msk)← KeyGen(1λ, {(Qi,Ai)}i∈ZN)

3 assert Qi = {fi,v}v∈G̃ and ∀a ∈ Ai, |a| = 1

4 α′ ← ZN ;

5 Reset random ki,α′i in Λ, s.t.,
∏
i∈[n] ki,α′i = e(ga, gb)

6 Run AGetKey(1λ,Λ) to get fα,β , π := (u, v)

28

7 if α′ 6= α, repeat step 1 (up to λ times)

8 Compute e(g, g)abc := e(u, gc)v by the requirement e(u, gv) = e(ga, gb) for valid proof

9 Output r = e(g, g)abc

Analyze the behavior of B. The input to B is generated by uniform a, b, c, z ∈ Zp and r ← (e(g, g)abc, e(g, g)z).
The adversary B runs A on the constraint configuration list Λ, which is constructed by the output of
Constraint(1λ,F) and vki,α′i = e(ga, gb). The view of A when run as a subroutine by B is distributed

computationally indistinguishable to A’s view in game Gsound
CDPF,A(λ), because {ki,α′i}i∈[n] and e(ga, gb) are

distributed uniformly where a, b are uniformly random. Since B wins if the output of A is valid fα′,β , π, and
α′ = α, we have that ∣∣∣∣Pr[B(e, ga, gb, gc, r) = (r = e(g, g)abc)]− 1

2

∣∣∣∣
≥ (1− (1− 1

N
)λ) · Pr[Gsound

CDPF,A(λ) = 1]

≥ (1− e− λ
N) · δ(λ)

≥

{
λ

2N · δ(λ) 0 ≤ λ
N ≤ 1.59

(1− e−1.59) · δ(λ) λ
N > 1.59

Since N is polynomial in λ, λ
2N is non-negligible in λ. Thus B succeeds to distinguish the tuples

(ga, gb, gc, e(g, g)abc) and (ga, gb, gc, e(g, g)z) with a non-negligible advantage, contradicting the decisional
BDH assumption.

E.3 Proof of Theorem 3

Proof. We prove the ?-CDPF construction in Fig. 6 satisfies the properties in Definition 1.

Completeness. Due to the completeness of VDPF, for the secret-shared point function fα,β , we have
JyiK = β if i = α and yi = 0 otherwise. For the secret-shared point function fη,β , we have JỹiK = β if j = η
and JỹiK = (0, 0) otherwise. We show that if there exists ρ such that β ∧ rsα,ρ = 0 (i.e., fα,β ∈ Qα,ρ), the

algorithm Verify outputs 1. In Fig. 6, Verify outputs 1 if and only if ∀i ∈ [0, 1],VDPF.Verify(τ
(0)
i , τ

(1)
i) = 1

and ∀i ∈ [2, 3], τ
(0)
i = τ

(1)
i . The equality of the former follows from the completeness of VDPF. The

equality of τ
(0)
2 = τ

(0)
2 follows from η ∈ [α · `, α · ` + `). For the the equality of τ

(0)
3 = τ

(1)
3 , observe that

rsα,ρ ∧
⊕

i∈ZN`JỹiK = rsα,ρ ∧ JβK = J0K. Hence, it holds that τ
(0)
3 = τ

(1)
3 , as required.

Privacy. We construct an efficient simulator Sim for the view of any verifier Pb. We use the efficient
simulator SimVDPF to generate the view of the VDPF output. On input (1λ, b,Λ, X), the simulator Sim
proceeds as follows:

1 (f (b), τ
(1−b)
0)← SimVDPF(1λ, b,F ,ZN)

2 (f̃ (b), τ
(1−b)
1)← SimVDPF(1λ, b,F ′,ZN`)

3 Compute τ
(b)
2 , τ

(b)
3 using Λ, f (b) and f̃ (b) according to VEval described in Fig. 6

4 τ
(1−b)
2 := τ

(b)
2 , τ

(1−b)
3 := τ

(b)
3

5 Output (f (b), π(b) := f̃ (b), τ (1−b) := {τ (1−b)
i }i∈[0,3])

The output distribution of Sim is computationally indistinguishable from the distribution of the real view

of Pb, because: (1) the function share f (b), proof share π(b) and audit tokens τ
(1−b)
0 , τ

(1−b)
1 are output by

the simulator SimVDPF, which guarantees the computational indistinguishability; (2) the audit tokens τ
(1−b)
2 ,

τ
(1−b)
3 are equal to τ

(b)
2 , τ

(b)
3 in the real view due to the CDPF completeness.

Soundness. Suppose for contradiction that there exists a PPT adversary A and a non-negligible function
δ such that

Pr[Gsound
CDPF,A(λ) = 1] ≥ δ(λ)

29

Extract f, f̃ from the output by A in Gsound
CDPF,A(λ). As described in Fig. 6, it holds that R(·, ·) ≡ 1 in ?-CDPF

scheme, which implies T :=
⋃
i∈ZN Qi. Hence, to win the game Gsound

CDPF,A, the adversary A need to make Verify

output 1 and ∀i, f /∈ Qi. In Fig. 6, Verify outputs 1 if and only if (1) ∀i ∈ [0, 1],VDPF.Verify(τ
(0)
i , τ

(1)
i) = 1,

(2) τ
(0)
2 = τ

(1)
2 , and (3) τ

(0)
3 = τ

(1)
3 . For (1), by the soundness property of VDPF, we can assume f, f̃ encodes

point functions fα,β , fη,β′ , respectively. Let {yi}, {ỹi} be evaluation results of VDPF keys of fα,β , fη,β′ . For
(2), if η /∈ [α · `, α · `+ `) or β 6= β′, which means that ∃i ∈ ZN such that

y
(0)
i ⊕ (

⊕
j∈Z`

ỹ
(0)
i·`+j) 6= y

(1)
i ⊕ (

⊕
j∈Z`

ỹ
(1)
i·`+j),

the adversary A should find a string s such that for an adversarially chosen b ∈ {0, 1}, for i ∈ ZN , δi :=

y
(b)
i ⊕ (

⊕
j∈Z` ỹ

(b)
i·`+j), it holds that

H(s) = H(δ0|| . . . ||δN−1)

but s 6= δ0|| . . . ||δN−1. It contradicts the collision resistance of H. Hence, we can assume η ∈ [α · `, α · `+ `)
and β = β′. For (3), let ρ := η − α`. If @i, f ∈ Qi, i.e., β ∧ rsα,ρ 6= 0, the adversary A should find a string s′

such that for an adversarially chosen b ∈ {0, 1}, it holds that

H(s′) = H(
⊕

i∈ZN ,j∈Z`

rsi,j ∧ ỹ(b)
i·`+j)

but s′ 6=
⊕

i∈ZN ,j∈Z` rsi,j ∧ ỹ
(b)
i·`+j . It contradicts the collision resistance of H.

30

	Introduction
	Preliminaries
	DPF with Constraints
	Revisiting VDPF-PACL in SP:SBYP23
	CDPF with Logarithmic Storage
	Incremental VDPF
	Our construction using incremental VDPF

	CDPF with Wildcard-style Constraint
	Efficiency

	Implementation and Benchmark
	Proof time
	Communication overhead
	Verification cost

	CDPF with Non-interactive Evaluators: Impossibility and Feasibility
	Definition of VDPF
	Definition of PACL
	Properties of Definiton ?? for the Special Case
	CDPF with Non-Interactive Evaluators in the Preprocessing Model
	Security Proofs
	Proof of Theorem ??
	Proof of Theorem ??
	Proof of Theorem ??

