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Abstract

In this work we first present an explicit forking lemma that distills the information-theoretic
essence of the high-moment technique introduced by Rotem and Segev (CRYPTO ’21), who
analyzed the security of identification protocols and Fiat-Shamir signature schemes. Whereas
the technique of Rotem and Segev was particularly geared towards two specific cryptographic
primitives, we present a stand-alone probabilistic lower bound, which does not involve any un-
derlying primitive or idealized model. The key difference between our lemma and previous ones
is that instead of focusing on the tradeoff between the worst-case or expected running time of the
resulting forking algorithm and its success probability, we focus on the tradeoff between higher
moments of its running time and its success probability.

Equipped with our lemma, we then establish concrete security bounds for the BN and BLS
multi-signature schemes that are significantly tighter than the concrete security bounds estab-
lished by Bellare and Neven (CCS ’06) and Boneh, Drijvers and Neven (ASIACRYPT ’18),
respectively. Our analysis does not limit adversaries to any idealized algebraic model, such as
the algebraic group model in which all algorithms are assumed to provide an algebraic justifica-
tion for each group element they produce. Our bounds are derived in the random-oracle model
based on the standard-model second-moment hardness of the discrete logarithm problem (for
the BN scheme) and the computational co-Diffie-Hellman problem (for the BLS scheme). Such
second-moment assumptions, asking that the success probability of any algorithm in solving the
underlying computational problems is dominated by the second moment of the algorithm’s run-
ning time, are particularly plausible in any group where no better-than-generic algorithms are
currently known.
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1 Introduction

A multi-signature scheme [IN83, BN06] enables any set of signers, within a large and decentralized
system, to jointly produce a compact signature on a given message. Research on the design and
analysis of multi-signature schemes has recently gained significant renewed interest, as such schemes
were found particularly suitable for blockchain applications (e.g., [BDN18, MPS+19]). This high level
of suitability dates back to the work of Bellare and Neven [BN06], who showed that multi-signature
schemes can be constructed in the plain public-key model. In this model, each signer locally produces
their signing and verification keys, without engaging in an interactive key-generation process with
other signers or with a registration authority, and without augmenting verification keys with proofs
of knowledge that need to be individually verified by all other signers.

Bellare and Neven constructed a multi-signature scheme (to which we refer as the BN multi-
signature scheme), and established its security in the random-oracle model based on the hardness of
the discrete logarithm (DL) problem in prime-order groups. A potential drawback, however, in some
scenarios of the BN scheme is that its signing process requires interaction among the set of signers in
the form of a three-round signing protocol. Motivated by blockchain applications, Boneh, Drijvers
and Neven [BDN18] then showed that the BLS signature scheme [BLS01] can be extended to a multi-
signature scheme (to which we refer as the BLS multi-signature scheme), whose signing process is
non-interactive. Boneh, Drijvers and Neven established the security of the BLS multi-signature
scheme in the random-oracle model based on the hardness of the computational co-Diffie-Hellman
(co-CDH) problem in prime-order bilinear groups.

Following up on earlier constructions of multi-signature schemes in various different models (see
[OO91, LHL94, MOR01, Bol03, LOS+06, BGO+07, RY07] and the references therein), the renewed
interest in such schemes has led to a host of new and exciting constructions in the plain public-key
model, offering various trade-offs between their efficiency and security (e.g., [MPS+19, DEF+19,
NRS+20, AB21, BD21, NRS21, BTT22, DOT+22, FSZ22, LK23, PW23, TZ23]).

The concrete security of multi-signatures. The security of a wide variety of cryptographic
schemes is established via the classic “forking lemma”. The lemma, originally introduced in the
seminal work of Pointcheval and Stern [PS00], and then generalized to a stand-alone probabilistic
lower bound by Bellare and Neven [BN06] (see also [AAB+02, BCC+16, KMP16] and the references
therein), has become a fundamental and extremely useful tool.

Specifically, for the BN scheme, the security proof presented by Bellare and Neven (see also
the more refined analysis by Bellare and Dai [BD21]) relies on the forking lemma to transform any
malicious forger that runs in time t, issues qH random-oracle queries and breaks the security of
the scheme with probability ϵ, into a DL algorithm that runs in time roughly t and has success
probability roughly ϵ2/qH (in Section 4 we provide a formal statement of their result). Thus, in
any group of order p in which Shoup’s generic hardness result for computing discrete logarithms is
believed to hold [Sho97]1, this leads to the concrete bound ϵ ≤ (qH · t2/p)1/2 on the security of the
BN scheme.2 However, there are currently no known attacks on the BN scheme that are better than
computing discrete logarithms, for which the best-known algorithms offer a success probability of
only t2/p. This substantial “square-root” gap, especially for 256-bit groups, arises in the analysis
of a variety of cryptographic schemes that rely on the forking lemma (see [BD20, JT20, RS21]
for in-depth discussions). Moreover, more recent multi-signature schemes in the DL-setting (e.g.,

1That is, that any algorithm running in time T solves the DL problem with probability at most T 2/p.
2Other formulations of the forking lemma (e.g., [PS00, AAB+02, BCC+16, KMP16]) lead to various similar trade-

offs between the success probability and the running time of the resulting discrete-logarithm algorithm. However, as
discussed by Bellare and Dai [BD20] and by Jaeger and Tessaro [JT20], they all face the same square-root loss.
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[MPS+19, BD21]), whose known security proofs rely on nested applications of the forking lemma,
exhibit larger gaps.

For the BLS scheme, the security proof presented by Boneh, Drijvers and Neven [BDN18] exhibits
an even more significant gap. Specifically, Boneh, Drijvers and Neven relied on the forking lemma
to transform any malicious forger that runs in time t, issues qH random-oracle queries, and breaks
the security of the scheme with probability ϵ, into a co-CDH algorithm that runs in time roughly
q2H · t/ϵ and has success probability roughly ϵ/qH (in Section 5 we provide a formal statement of their
result). Thus, in bilinear groups of prime order p in which one assumes that the co-CDH problem is
as hard as in the generic bilinear-group model3, this leads to the concrete bound ϵ ≤ (q5H · t2/p)1/3 on
the security of the BLS multi-signature scheme. For various realistic ranges of the malicious forger’s
running time t and number of queries qH, this bound may fall somewhat short of providing sufficient
guarantees (once again, especially for 256-bit groups).

Tighter concrete security within the algebraic group model. The above-described signif-
icant gaps in the concrete security of multi-signature schemes have so far been addressed mainly
by proving security with respect to restricted classes of attackers. Specifically, tighter concrete
security bounds were established for multi-signature schemes [AB21, BD21, NRS21, LK23] with
respect to algebraic attackers within the idealized algebraic group model [FKL18]. In this ide-
alized model, all algorithms are assumed to provide an algebraic justification for each group el-
ement that they produce. Such an algebraic justification typically enables to prove the secu-
rity of schemes without relying on the forking lemma and thus avoids the resulting security loss
[AHK20, BFL20, FPS20, MTT19, RS20].4

This approach is significantly refined by the work of Bellare and Dai [BD20, BD21], who intro-
duced the following two-step modular analysis: (1) Given a (single-signer or multi-signer) signature
scheme, identify a (possibly interactive) computational problem whose concrete hardness is tightly
equivalent to the concrete security of the scheme, but which can be described in a more direct and
elegant manner, and then (2) derive concrete security bounds by reducing this problem to the DL
problem. However, using the forking lemma for these reductions then leads to the above-discussed
concrete security gaps. Therefore, to avoid these gaps, the algebraic group model is nevertheless
utilized.

Tighter concrete security without the algebraic group model? Rotem and Segev [RS21]
provided tighter concrete security bounds for Σ-protocols and their associated Fiat-Shamir signature
schemes [FS86, AAB+02]. Instead of analyzing security in an idealized algebraic model, they intro-
duced a different forking technique, relying on the assumption that the underlying computational
problem is “d-th moment hard”: The success probability of any algorithm in solving it is dominated
by the d-th moment of the algorithm’s running time. Equipped with such an underlying assumption,
their forking technique transforms a malicious attacker into an algorithm solving the underlying
computational problem by optimizing the trade-off between the algorithm’s success probability and
the d-th moment of their running time.

In the concrete context of the DL problem, the assumption that the problem is d-moment hard
states that any algorithm running in time T solves the DL problem with probability at most E[T d]/p,
where E[T d] denotes the d-th moment of the distribution corresponding to the algorithm’s running

3That is, that any algorithm running in time T solves the co-CDH problem with probability at most T 2/p [Sho97,
Mau05, BB08].

4For security proofs that consist of nested applications of the forking lemma, the algebraic justification assumed
to be provided by algorithms in the idealized algebraic group model enables to reduce the nesting depth, and thus to
reduce the resulting security loss.
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time (see Section 2.1 for the formal definition of d-moment hardness). Shoup’s original proof shows
that the DL problem is 2-moment hard in the generic-group model [Sho97], and thus the second-
moment DL assumption can be viewed as a highly plausible strengthening of the DL assumption in
any group where no better-than-generic algorithms are currently known. More generally, the recent
work of Segev, Sharabi and Yogev [SSY23] provided a generic framework for analyzing the d-moment
hardness of a wide range of computational problems (refining and extending the work of Jeager and
Tessaro [JT20] on expected-time hardness).

The forking technique introduced by Rotem and Segev, however, was particularly geared to-
wards analyzing the security of Σ-protocols and their associated Fiat-Shamir (single-signer) signa-
ture schemes. In contrast to the work of Bellare and Neven [BN06], they did not explicitly provide
a stand-along probabilistic tool, or any other indication of the extent to which their approach may
be applicable for other cryptographic purposes – such as obtaining tighter concrete security bounds
for multi-signature schemes.

1.1 Our Contributions

In this work we first present an explicit high-moment forking lemma that distills the information-
theoretic essence of the technique introduced by Rotem and Segev [RS21]. Similarly to the general
forking lemma of Bellare and Neven [BN06], our high-moment generalization consists of a stand-alone
probabilistic lower bound, which does not involve any underlying cryptographic primitive (such as a
signature scheme) or any idealized model (such as the random-oracle model). At a very high level,
the key difference between our approach and that of Bellare and Neven is that whereas their forking
lemma may be viewed as optimizing the tradeoff between the worst-case running time of the resulting
forking algorithm and its success probability, our lemma focuses on optimizing the tradeoff between
the d-th moment of its running time and its success probability.

Then, equipped with our lemma, we establish concrete security bounds for the BN and BLS
multi-signature schemes that are tighter than the concrete security bounds established by Bellare
and Neven [BN06] and Boneh, Drijvers and Neven [BDN18], respectively. Our tighter bounds are
derived in the random-oracle model based on the standard-model second-moment hardness of the
discrete logarithm problem (for the BN scheme) and the computational co-Diffie-Hellman problem
(for the BLS scheme). We prove the following theorems (which, for simplicity, are stated here rather
informally5):

Theorem 1.1 (informal). Let G be a cyclic group of prime order p. Assuming that the DL problem
is second-moment hard in G, then for any adversary that runs in time t, issues qH random oracle
queries, and breaks the security of the BN multi-signature scheme with probability ϵ, it holds that

ϵ ≤
(
qH ·

t2

p

)2/3

.

Theorem 1.2 (informal). Let G = (G1,G2,Gt) be a triplet of cyclic groups of prime order p equipped
with a bilinear map e : G1×G2 → Gt. Assuming that co-CDH problem is second-moment hard in G,
then for any adversary that runs in time t, issues qH random oracle queries, and breaks the security
of the BLS multi-signature scheme with probability ϵ, it holds that

ϵ ≤
(
q
5/2
H · t

2

p

)2/3

.

5Most notably, these two statements do not include the number of signing queries issued by the adversary and
various other lower-order terms.
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Recall, as discussed above, that the analysis of Bellare and Neven provided the bound ϵ ≤
(qH · t2/p)1/2, and the analysis of Boneh, Drijvers and Neven provided the bound ϵ ≤ (q5H · t2/p)1/3.
Thus, compared to their bounds, our bounds are significantly tighter as we increase the exponent
from 1/2 to 2/3 for the BN scheme, and from 1/3 to 2/3 for the BLS scheme. For example, from the
practical perspective of a 256-bit group, the security bounds established by Bellare and Neven and
by Boneh, Drijvers and Neven show that any attacker that runs in time at most t = 264 and issues at
most q = 230 random oracle queries breaks the BN multi-signature scheme with probability at most
2−49 and the BLS multi-signature scheme with probability at most 1. Our tighter bounds improve
these to 2−65 and 2−35, respectively. Although these bounds still do not match the best-possible
“generic group” bound, we believe they provide a significant step towards better understanding these
schemes without relying on idealized algebraic models. Tables 1 and 2 below provide additional such
concrete examples.

Attacker’s Security Oracle Previous Our
running time parameter Queries bound bound

t p q
(
q · t2

p

) 1
2

(
q · t2

p

) 2
3

264 2256 225 2−51.5 2−68.67

264 2256 230 2−49 2−65.33

280 2256 230 2−33 2−44

280 2512 230 2−161 2−214.67

2100 2512 240 2−136 2−181.33

Table 1: A comparison of the concrete security guarantees for the Bellare–Neven multi-signature scheme in the
standard model.

Attacker’s Security Oracle Previous Our
running time parameter Queries bound bound

t p qH

(
q5
H · t2

p

) 1
3

(
q

5
2

H · t2

p

) 2
3

264 2256 225 2−1 2−43.67

264 2256 230 > 1 2−35.33

270 2512 225 2−82.33 2−206.33

280 2512 230 2−67.33 2−184.67

2100 2512 240 2−37.33 2−141.33

Table 2: A comparison of the concrete security guarantees for the BLS multi-signature scheme in the standard model.

1.2 Paper Organization

The remainder of this paper is organized as follows. First, in Section 2 we present the basic notions of
d-th moment hardness and multi-signature schemes. In Section 3 we formalize and prove an explicit
high-moment forking lemma. In Sections 4 and 5 we then rely on our lemma for establishing tighter
concrete security bounds for the BN and BLS multi-signature schemes, respectively.
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2 Preliminaries

For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution X we denote by x← X
the process of sampling a value x from the distribution X. Similarly, for a set X we denote by
x← X the process of sampling a value x from the uniform distribution over X . In the remainder of
this section, we present the notion of d-th moment hardness and the standard notion of security for
multi-signature schemes.

2.1 d-th Moment Hardness

We consider relations R = {Rλ}λ∈N, where Rλ ⊆ Xλ × Wλ for any λ ∈ N, and distributions
D = {Dλ}λ∈N where each Dλ produces pairs (x,w) ∈ Rλ. For any probabilistic algorithm A and for
any input x ∈ {0, 1}∗ we denote by Time(A(x)) the random variable corresponding to the running
time of the computation A(x) over the internal randomness of A.

Definition 2.1 ([RS21]). Let d = d(λ), ∆ = ∆(λ) and δ = δ(λ) be functions of the security
parameter λ ∈ N, and let R = {Rλ}λ∈N be a relation, where Rλ ⊆ Xλ ×Wλ for any λ ∈ N. We say
that R is d-moment (∆, δ)-hard with respect to a distribution D = {Dλ}λ∈N if for every algorithm A
it holds that

Pr
(x,w)←Dλ

[(x,A(x)) ∈ Rλ] ≤
∆ · E(x,w)←Dλ

[
(Time(A(x)))d

]
|Wλ|δ

,

for all sufficiently large λ ∈ N, where the probability is additionally taken over the internal random-
ness of A.

For the computational problems considered in this work (as discussed in the remainder of this
section), the known generic-group hardness results show that it suffices to consider the above defini-
tion when setting ∆(λ) = 1 and δ(λ) = 1 for all λ ∈ N. For this setting of the parameters, we will
simply say that a relation R is d-moment hard instead of d-moment (1, 1)-hard. When stating our
results, we thus consider the setting of ∆(λ) = 1 and δ(λ) = 1, and note that all of our results in
fact hold for any setting of ∆ and δ.

The DL and co-CDH relations. In Section 4, for proving a tighter concrete security bound
for the BN scheme [BN06], we consider the above definition in the case of the discrete logarithm
problem. In this case, the underlying distribution D and relation R are defined as follows:

• The distribution Dλ first invokes a group-generation algorithm GroupGen(1λ) for producing
the description (G, p, g) of a cyclic group of order q that is generated by g, where p is a λ-bit
prime. Then, it uniformly samples h← G and lets x = (G, p, g, h).

• The relation R consists of all such pairs ((G, p, g, h), w) where h = gw for w ∈ Zp.

As discussed by Rotem and Segev [RS21], given that the discrete logarithm problem is second-
moment hard in the generic-group model [Sho97, JT20, SSY23], the assumption that the discrete
logarithm (DL) problem is second-moment hard in the standard model can be viewed as capturing
the problem’s generic hardness in the form of a standard-model assumption.

Similarly, for proving a tighter concrete security bound for the BLS multi-signature scheme due to
Boneh, Drijvers and Neven [BDN18], we consider the above definition in the case of the computational
co-Diffie-Hellman problem (co-CDH). In this case, the underlying distribution D and relation R are
defined as follows:
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• The distribution D first invokes a group-generation algorithm GroupGen(1λ) for producing the
description (G1,G2,Gt, p, g1, g2, e) of three cyclic groups of order p, where G1 is generated by
g1, G2 is generated by g2, p is a λ-bit prime, and e : G1×G2 → Gt is an efficiently-computable
non-degenerated bilinear map (in fact, the group Gt and the bilinear map e are not essential in
order to define the distribution D and the relation R). Then, it uniformly samples α, β ← Zp

and lets x =
(
G1,G2, q, g1, g2, g

α
1 , g

α
2 , g

β
2

)
.

• The relation R consists of all pairs
((
G1,G2, p, g1, g2, g

α
1 , g

α
2 , g

β
2

)
, w
)

where w = gαβ1 ∈ G1 for
α, β ∈ Zp.

The recent work of Segev, Sharabi and Yogev [SSY23] provided a generic framework for analyzing
the d-moment hardness of a wide range of computational problems (refining and extending the work
of Jeager and Tessaro [JT20] on expected-time hardness). Their framework, together with the classic
generic hardness results for the computational Diffie-Hellman problem [Sho97], establish the second-
moment hardness of the computational co-Diffie-Hellman problem in the generic-group model.

2.2 Multi-Signature Schemes

A multi-signature scheme [IN83, BN06] is a six-tuple Π = (Setup,KG,KeyAgg,Sign,SigAgg,Verify) of
polynomial-time algorithms. The setup algorithm Setup receives as input the unary representation
of the security parameter λ ∈ N and outputs public parameters pp. The key-generation algorithm
KG receives as input the public parameters pp, and outputs a signing key sk and a verification key vk.
The key-aggregation algorithm KeyAgg is a deterministic algorithm that takes as input the public
parameters pp and a vector of verification keys v⃗k, and outputs an aggregated verification key aggvk.6

It should be noted that not all multi-signature schemes offer a non-trivial key-aggregation algorithm.
In such cases (e.g., the BN scheme [BN06]), we can view its key-aggregation algorithm as the identity
function that takes as input a vector v⃗k of verification keys and outputs it as the aggregated key
aggvk.

For schemes with non-interactive signing, the signing algorithm Sign receives as input the public
parameters pp, a signing key sk, a vector v⃗k of verification keys, and a message m that is taken
from a message space M, and outputs a signature σ. For schemes with interactive signing, the
signing algorithm defines an interactive protocol by additionally receiving as input at each round the
relevant party’s internal state and the communication produced by all other parties. The signature-
aggregation algorithm SigAgg is a deterministic algorithm that takes as input the public parameters
pp, a vector of verification keys v⃗k, and a vector of signatures σ⃗, and outputs an aggregated signature
σ. Finally, the verification algorithm Verify receives as input the public parameters pp, an aggregated
verification key aggvk, a message m and an aggregated signature σ, and outputs either 0 or 1.

In terms of correctness, we consider the following requirement, which we formalize for simplicity
for schemes with non-interactive signing and without random oracles. We then discuss its standard
extensions to consider interactive signing and random oracles.

Definition 2.2. A multi-signature scheme Π = (Setup,KG,KeyAgg,Sign,SigAgg,Verify) with non-
interactive signing over a message spaceM = {Mλ}λ∈N is correct if there exists a negligible function
ν = ν(·) such that for any polynomial number n = n(·) of signers, security parameter λ ∈ N, and
message m ∈Mλ it holds that

Pr
[
Verify

(
pp,KeyAgg

(
pp, v⃗k

)
,m,SigAgg

(
pp, v⃗k, σ⃗

))
= 1
]
≥ 1− ν(λ)

6For concreteness, we view collections of verification keys as vectors and not sets, noting that any set can be
uniquely transformed into a vector by determining an ordering among its elements (e.g., lexicographic order).
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for v⃗k = (vk1, . . . , vkn) and σ⃗ = (σ1, . . . , σn), where the probability is taken over the choice of
pp ← Setup(1λ), and over the choices of (ski, vki) ← KG(pp) and σi ← Sign

(
pp, ski, v⃗k,m

)
for every

i ∈ [n].

As noted above, Definition 2.2 may be extended in various manners. These include, in particular,
the following two standard extensions:

• Interactive signing: Definition 2.2 extends to schemes with interactive signing by letting
(σ1, . . . , σn) denote the local output of each party in the interactive signing protocol, where
each party i ∈ [n] is provided with

(
pp, ski, v⃗k,m

)
as input. We refer the reader to the work

of Bellare and Dai [BD21] for a formal treatment of the correctness requirement for schemes
with interactive signing.

• Random-oracle model: Definition 2.2 extends to schemes whose security is analyzed in the
random-oracle model [BR93] by augmenting all algorithms with access to the random oracle,
and considering all probabilities also over the randomness of the oracle.

In terms of security, the standard notion of security for multi-signature schemes [BN06] considers
adversaries that obtain a single honestly-generated verification key vk, and can then adaptively
issue any polynomial number of signing queries. Each such query consists of a message m and a
set of signers in the form of a vector v⃗k of verification keys that contains the honestly-generated
verification key vk. The goal of such an adversary is to output a triplet

(
v⃗k∗,m∗, aggσ∗

)
, where:

(1) v⃗k∗ contains the honestly-generated verification key vk, (2) the adversary did not issue a signing
query for

(
v⃗k∗,m∗

)
, and (3) aggσ∗ is a valid aggregated signature on the message m∗ with respect to

v⃗k∗. This is captured by the following definition, which we again formalize for simplicity for schemes
with non-interactive signing and without random oracles, and then discuss its standard extensions
to consider interactive signing and random oracles.

Definition 2.3. Let t = t(λ), qsign = qsign(λ), and ϵ = ϵ(λ) be functions of the security parameter
λ ∈ N. A multi-signature scheme Π = (Setup,KG,KeyAgg,Sign,SigAgg,Verify) with non-interactive
signing is (t, qsign, ϵ)-unforgeable if for any algorithm A that runs in time at most t and issues at most
qsign signing queries, it holds that

AdvMultiSig
Π (A, λ)

def
= Pr

[
ExpMultiSig

Π (A, λ) = 1
]
≤ ϵ(λ)

for all sufficiently large λ ∈ N, where the experiment ExpMultiSig
Π (A, λ) is defined as follows:

1. pp← Setup(1λ).
2. (sk, vk)← KG(pp).
3.
(
v⃗k∗,m∗, aggσ∗

)
← ASign(pp,sk,·,·)(1λ, pp, vk).

4. If the following conditions are satisfied then output 1 and otherwise output 0:
(a) vk ∈ v⃗k∗.
(b) A did not query the oracle Sign(pp, sk, ·, ·) with

(
v⃗k∗,m∗

)
.

(c) Verify
(
pp,KeyAgg

(
v⃗k∗
)
,m∗, aggσ∗

)
= 1.

As discussed above, Definition 2.3 naturally extends to consider interactive signing and random
oracles:
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• Interactive signing: Definition 2.3 extends to schemes with an interactive signing protocol by
providing adversaries with access to a stateful signing oracle [BN06, BD21]. This stateful
oracle enables the initiation of new signing sessions and the execution of previously initiated
ones in an adversarial manner. For our work, for the case of the BN scheme (whose signing is
interactive), we do not directly analyze the security of the scheme and, therefore, do not require
a formal extension of Definition 2.3 to schemes with interactive signing. Instead, we analyze
the hardness of an interactive computational problem, which Bellare and Dai [BD21] proved to
imply the security of their scheme. For the case of the BLS multi-signature scheme [BDN18],
which we do analyze directly, Definition 2.3 suffices as the scheme has non-interactive signing.

• Random-oracle model: Definition 2.3 extends to schemes whose security is analyzed in the
random-oracle model [BR93] by augmenting all algorithms (including the adversary) with ac-
cess to the random oracle, introducing an additional parameter qH that upper bounds the
number of direct random-oracle queries issued by the adversary, and considering all probabili-
ties also over the randomness of the oracle.

A relaxed notion of unforgeability. The goal of the adversary in the experiment ExpMultiSig
Π

described in Definition 2.3 is to output a valid forgery
(
v⃗k∗,m∗, aggσ∗

)
where: (1) v⃗k∗ contains

the honestly-generated verification key vk, and (2) the adversary did not issue a signing query for(
v⃗k∗,m∗

)
. However, Boneh and Drijvers and Neven [BDN18] proved the security of the BLS multi-

signature scheme with respect to a more relaxed notion, in which the adversary is not allowed to
issue any signing query involving the message m∗. Formally, we denote by ExprMultiSig

Π the experiment
corresponding to this relaxed notion, which is obtained from the experiment ExpMultiSig

Π by replacing
Item 4b with the requirement that A did not query the oracle Sign(pp, sk, ·, ·) with

(
v⃗k,m∗

)
for any

vector v⃗k of verification keys.
On the one hand, it should be noted that the BLS scheme is, in fact, insecure with respect to the

more standard notion. However, on the other hand, it can be easily modified into one that satisfies
the more standard notion: Instead of signing a message m with respect to v⃗k, sign the message
(v⃗k,m) with respect to v⃗k. This simple modification does not introduce a significant overhead since
the signed message is anyway first hashed via a random oracle, and essentially the exact same proof
of Boneh and Drijvers and Neven goes through. However, to enable a direct-as-possible comparison
to the concrete security bound proved by Boneh and Drijvers and Neven [BDN18], we analyze the
concrete security of the BLS scheme with respect to this relaxed notion.

Asymptotic vs. fixed-group analysis. The above discussion of the security of multi-signature
schemes, as well as the discussion of the DL and co-CDH problems in Section 2.1, are of an asymptotic
flavor. Specifically, they consider an explicit security parameter λ ∈ N which is given as input to a
setup algorithm Setup(1λ) or group-generation algorithm GroupGen(1λ) (and thus indirectly also to
all other algorithms), and provide guarantees for all sufficiently large λ ∈ N.

When analyzing the security of the BN and BLS multi-signature schemes in Sections 4 and 5,
respectively, we follow a more concrete approach, in which a description of an underlying group
is fixed in advance (its prime order p can essentially be viewed as a concrete analogous security
parameter). It is important to note that we do not rely on any assumed properties related to the
structure of the group (beyond its prime order) or to the representation of its elements. This standard
approach enables to provide concrete security guarantees for any fixed-size candidate group in which
the underlying cryptographic problems (e.g., DL or co-CDH) are assumed to be computationally
hard (in our case, d-moment hard).
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3 An Explicit High-Moment Forking Lemma

In this section we present an explicit high-moment forking lemma that distills the information-
theoretic essence of the technique introduced by Rotem and Segev [RS21] in the form of a stand-alone
probabilistic lower bound. As in the stand-alone forking lemma of Bellare and Neven [BN06], our
lemma considers a randomized algorithm A that is provided with q + 1 inputs, where q ≥ 1 may be
any integer. Its first input is a value x ∈ X , and its additional q inputs are values h1, . . . , hq ∈ C, for
finite sets X and C. Given such input, the algorithm then outputs a pair (I, σ) ∈ {0, . . . , q}×{0, 1}∗.
We are interested in the distribution of the output pair (I, σ), where the value x is sampled from
a given distribution X over the set X , and the values h1, . . . , hq are sampled independently and
uniformly from the set C. We let X × Cq denote the corresponding product distribution.

For any such algorithm A, and for any integer B ≥ 1, we define the following “forking” algorithm
FA,B that is given as input a value x ∈ X (note that the case B = 1 corresponds to the forking
algorithm of Bellare and Neven [BN06]):

The Algorithm FA,B(x)

1. Sample h1, . . . , hq ← C and ρ← {0, 1}∗ independently and uniformly.

2. Compute (I0, σ) = A(x, h1, . . . , hq; ρ).

3. If I0 /∈ {1, . . . , q} then output ⊥ and terminate.

4. For any j ∈ [B] sample h
(j)
I0

, . . . , h
(j)
q ← C independently and uniformly, and compute

(Ij , σj) = A
(
x, h1, . . . , hI0−1, h

(j)
I0

, . . . , h(j)
q ; ρ

)
.

5. If there exists an index j ∈ [B] for which Ij = I0 and h
(j)
Ij
̸= hI0 , then output(

I0, σ, σj , h1, . . . , hq, h
(j)
I0

, . . . , h(j)
q

)
for the minimal such j, and otherwise output ⊥.

Recall that, as defined in Section 2.1, for any x ∈ X we denote by Time(FA,B(x)) the random
variable corresponding to the running time of the computation FA,B(x;h1, . . . , hq, ρ) over the uniform
choice of the randomness (h1, . . . , hq, ρ)← Cq × {0, 1}∗. Equipped with our forking algorithm FA,B,
we prove the following lemma:

Lemma 3.1. Let q ≥ 1 and let A be a randomized algorithm that obtains q+1 inputs with associated
finite sets X and C as described above. In addition, let t be an upper bound on the worst-case running
time of A, let X be a distribution over X , and let

ϵ = Pr
(x,h1,...,hq)←X×Cq

[A(x, h1, . . . , hq) = (I, σ) s.t. I ∈ {1, . . . , q}] .

If ϵ > 2 · q2/|C| then for any d ≥ 1 it holds that

Pr
x←X

[FA,B(x) ̸= ⊥] ≥
B

8q
· ϵ2,

and
Ex←X

[
(Time(FA,B(x)))

d
]
≤ 2 · (1 +B)d · td · ϵ,

where B =
⌈
(1/ϵ)1/d − 1

⌉
.
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Proof of Lemma 3.1. We first prove the above lower bound on the success probability of FA,B(x)
as a function of ϵ, B and q. For every i ∈ {1, . . . , q} and h1, . . . , hq ∈ C we let h⃗i = (h1, . . . , hi), and
we let h⃗0 = ⊥. Based on the description of the algorithm FA,B, it holds that FA,B(x) ̸= ⊥ if and
only if I0 ∈ {1, . . . , q} and there exists an index j ∈ [B] for which Ij = I0 and h

(j)
Ij
̸= hI0 . Thus,

Pr [FA,B(x) ̸= ⊥]

= Pr

(I0 ∈ {1, . . . , q}) ∧
 B∨

j=1

(Ij = I0) ∧
(
h
(j)
Ij
̸= hI0

)
=

q∑
i=1

Pr

(I0 = i) ∧

 B∨
j=1

(
Ij = i ∧ h

(j)
i ̸= hi

)

=

q∑
i=1

∑
(x,ρ)∈X×{0,1}∗

h⃗i−1∈Ci−1

Pr
[
x ∧ ρ ∧ h⃗i−1

]

×Pr

I0 = i ∧

 B∨
j=1

(
Ij = i ∧ h

(j)
i ̸= hi

)


≥
q∑

i=1

∑
(x,ρ)∈X×{0,1}∗

h⃗i−1∈Ci−1

Pr
[
x ∧ ρ ∧ ⃗hi−1

]

×Pr

I0 = i ∧

 B∨
j=1

(
Ij = i ∧ h

(j)
ℓ ̸= hℓ∀ℓ ∈ {i, . . . , q}

)
.

For every i ∈ {1, . . . , q}, x ∈ X , ρ ∈ {0, 1}∗ and h⃗i−1 ∈ Ci−1 we let h∗i (i, x, ρ, h⃗i−1), . . . ,

h∗q(i, x, ρ, h⃗i−1) denote the lexicographically first q − i + 1 elements of C such that the output of
A on input

(
x, h⃗i−1, h

∗
i (i, x, ρ, h⃗i−1), . . . , h

∗
q(i, x, ρ, h⃗i−1); ρ

)
is a pair (I, σ) for which I > 0. At this

point, since each value h
(j)
ℓ for ℓ ∈ {i, . . . , q} is uniformly sampled conditioned on x, ρ and h⃗i−1,

then instead of comparing it to the actual value hℓ we can compare it to the lexicographically first
such h∗ℓ that produces I > 0. Then,

Pr [FA,B(x) ̸= ⊥]

≥
q∑

i=1

∑
(x,ρ)∈X×{0,1}∗

h⃗i−1∈Ci−1

Pr
[
x ∧ ρ ∧ h⃗i−1

]

×Pr

I0 = i ∧

 B∨
j=1

(
Ij = i ∧ h

(j)
ℓ ̸= h∗ℓ (i, x, ρ, h⃗i−1)∀ℓ ∈ {i, . . . , q}

)
10



=

q∑
i=1

∑
(x,ρ)∈X×{0,1}∗

h⃗i−1∈Ci−1

Pr
[
x ∧ ρ ∧ h⃗i−1

]
· Pr [I0 = i]

×Pr

 B∨
j=1

(
Ij = i ∧ h

(j)
ℓ ̸= h∗ℓ (i, x, ρ, h⃗i−1)∀ℓ ∈ {i, . . . , q}

) (3.1)

=

q∑
i=1

∑
(x,ρ)∈X×{0,1}∗

h⃗i−1∈Ci−1

Pr
[
x ∧ ρ ∧ h⃗i−1

]
· Pr [I0 = i])

×

1− Pr

 B∧
j=1

(Ij ̸= i) ∨
(
∃ℓ ∈ {i, . . . , q} s.t. h

(j)
ℓ = h∗ℓ (i, x, ρ, h⃗i−1

)
=

q∑
i=1

∑
(x,ρ)∈X×{0,1}∗

h⃗i−1∈Ci−1

Pr
[
x ∧ ρ ∧ h⃗i−1

]
· Pr [I0 = i]

×

1−
B∏
j=1

Pr
[
Ij ̸= i ∨ ∃ℓ ∈ {i, . . . , q} s.t. h

(j)
ℓ = h∗ℓ (i, x, ρ, h⃗i−1)

] (3.2)

where Eq. (3.1) follows from the fact that the events I0 = i and

B∨
j=1

(Ij = i) ∧ h
(j)
ℓ ̸= h∗ℓ (i, x, ρ, h⃗i−1)∀ℓ ∈ {i, .., q}

are independent conditioned on x, ρ and h⃗i−1, and Eq. (3.2) follows from the fact that for any
1 ≤ j1 ̸= j2 ≤ B the corresponding executions of A are independent. Now, via a union bound we
obtain

Pr
[
Ij ̸= i ∨ ∃ℓ ∈ {i, . . . , q} s.t. h

(j)
ℓ = h∗ℓ (i, x, ρ, h⃗i−1)

]
≤ min

{
1,Pr [Ij ̸= i] + Pr

[
∃ℓ ∈ {i, . . . , q} s.t. h

(j)
ℓ = h∗ℓ (i, x, ρ, h⃗i−1)

]}
≤ min

{
1, 1− Pr [Ij = i] +

q

|C|

}
.

For every i, x, ρ, and h1, . . . , hi−1 we let

ϵ̃i(x, ρ, h⃗i−1) = max

{
0,Pr [I0 = i]− q

|C|

}
,

then Pr [I0 = i] ≥ ϵ̃i(x, ρ, h⃗i−1) and Pr [I0 = i] = Pr [Ij = i] for every j ∈ [B]. Thus,

1−
B∏
j=1

Pr
[
Ij ̸= i ∨ ∃ℓ ∈ {i, . . . , q} s.t. h

(j)
ℓ = h∗ℓ (i, x, ρ, h⃗i−1)

]
≥ 1−

(
1− ϵ̃i(x, ρ, h⃗i−1)

)B

11



and therefore

Pr [FA,B(x) ̸= ⊥] ≥
q∑

i=1

∑
(x,ρ)∈X×{0,1}∗

h⃗i−1∈Ci−1

Pr
[
x ∧ ρ ∧ ⃗hi−1

]

×ϵ̃i(x, ρ, h⃗i−1) ·
(
1−

(
1− ϵ̃i(x, ρ, h⃗i−1)

)B)
=

q∑
i=1

E
[
ϵ̃i(x, ρ, h⃗i−1) ·

(
1−

(
1− ϵ̃i(x, ρ, h⃗i−1)

)B)]

≥ 1

2
·B ·

q∑
i=1

ϵ̃i
2, (3.3)

where we let ϵ̃i = E
[
ϵ̃i(x, ρ, h⃗i−1)

]
for every i ∈ [q], and Eq. (3.3) follows from the following claim

which is proved in Appendix A.1:

Claim 3.2. For each i ∈ [q] it holds that

E
[
ϵ̃i(x, ρ, h⃗i−1) ·

(
1−

(
1− ϵ̃i(x, ρ, h⃗i−1)

)B)]
≥ 1

2
·B · ϵ̃i2

Letting ϵi = Pr [I0 = i] for every i ∈ [q], and using Jensen’s inequality, we obtain:

Pr [FA,B(x) ̸= ⊥] ≥
1

2
·B ·

q∑
i=1

ϵ̃i
2

≥ 1

2q
·B ·

(
q∑

i=1

ϵ̃i

)2

≥ 1

2q
·B ·

(
q∑

i=1

(
ϵi −

q

|C|

))2

(3.4)

=
1

2q
·B ·

(
Pr [I0 ∈ {1, . . . , q}]−

q2

|C|

)2

where Eq. (3.4) follows from the following claim which is proved in Appendix A.2:

Claim 3.3. For every i ∈ [q] it holds that ϵ̃i ≥ ϵi − q
|C| .

Now, we obtain

Pr [FA,B(x) ̸= ⊥] ≥
1

2q
·B ·

(
Pr [I0 ∈ {1, . . . , q}]−

q2

|C|

)2

≥ 1

2q
·B ·

(
ϵ− q2

|C|

)2

≥ 1

2q
·B ·

( ϵ
2

)2
(3.5)

=
1

8q
·B · ϵ2,

12



as required, where Eq. (3.5) follows from the assumption ϵ > 2 · q2/|C|.
We now turn to upper bounding the d-th moment of the running time of the algorithm FA,B.

Note that, when x← X, then with probability 1− ϵ the algorithm FA,B runs in time at most t, and
with probability ϵ it runs in time at most (1 +B) · t. Therefore,

Ex←X

[
(Time(FA,B(x)))

d
]
≤ (1− ϵ) · td + ϵ · ((1 +B) · t)d

≤ td · ϵ · (1 +B)d + ϵ · (1 +B)d · td

= 2 · (1 +B)d · td · ϵ, (3.6)

where Eq. (3.6) following from our choice of B ≥ (1/ϵ)
1
d − 1, which implies that 1 ≤ ϵ · (1 + B)d.

This concludes the proof of Lemma 3.1.

4 Tighter Concrete Security for BN Multi-Signatures

In this section we show that our high-moment forking lemma can be used for establishing a concrete
security bound for the Bellare-Neven (BN) multi-signature scheme [BN06]. Our starting point is the
recent work of Bellare and Dai [BD21], who showed that the security of the Bellare-Neven multi-
signature scheme is equivalent to the hardness of the identification discrete-logarithm (IDL) problem,
introduced by Kiltz, Masny, and Pan [KMP16]. Bellare and Dai showed that in the algebraic-group
model [FKL18] the hardness of the IDL problem is equivalent to that of the DL problem. As
previously discussed, the algebraic group model, however, is an idealized model which considers a
rather restricted class of attackers (attackers which are assumed to provide an algebraic justification
of each group element that they produce). In fact, in this model, the hardness of an extremely wide
class of strong computational and decisional problems is known to be equivalent to that of the DL
problem [FKL18, AHK20, BFL20, FPS20, MTT19, RS20]).

In the standard model, Kiltz, Masny, and Pan [KMP16] showed that the hardness of the IDL
problem can be based on that of the DL problem using the forking lemma, once again leading to the
square-root loss for the BN multi-signature scheme. By applying our high-moment forking lemma,
assuming the second-moment hardness of the DL problem, we prove a tighter concrete hardness
bound for the IDL problem in the standard model and, therefore, also for the Bellare-Neven multi-
signature scheme.

For stating our theorem, recall that the BN scheme relies on a cyclic group G of prime order p
that is generated by a given element g ∈ G, as well as on an integer ℓ. We let G = (G, p, g) denote
the description of the group, and we let ΠBN[G,ℓ] denote the BN scheme. The scheme relies on two
hash functions, H0 and H1, that are modeled as random oracles for the scheme’s security analysis.
These two hash functions are used to map arbitrary strings to the sets {0, 1}ℓ and Zp. That is,
H0 : {0, 1}∗ → {0, 1}ℓ and H1 : {0, 1}∗ → Zp. We prove the following theorem:

Theorem 4.1. Let G = (G, p, g), where G be a cyclic group of prime order p that is generated by
an element g ∈ G, and let ℓ be an integer. Assuming that the DL problem is second-moment hard in
the group G, then for any adversary A it holds that

AdvMultiSig
ΠBN[G,ℓ]

(A) ≤
(
32 · q1 · t

2

p

)2/3

+
qS · (4q0 + 2q1 + qS)

p
+

q0 · (q0 + n)

2ℓ
,

where:

• t is an upper bound on the running time of the experiment ExpMultiSig
ΠBN[G,ℓ]

(A).
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• q0, q1 and qS are upper bounds on the number of H0-queries, H1-queries and signing queries
issued during the experiment ExpMultiSig

ΠBN[G,ℓ]
(A), respectively.

• n is an upper bound on the largest signer set involved in a single multi-signature during the
experiment ExpMultiSig

ΠBN[G,ℓ]
(A).

Compared to the bound proved by Bellare and Dai [BD21], our bound is tighter by replacing
their exponent 1/2 with our exponent 2/3. All other terms in our bound are exactly the same as in
their bound (up to the multiplicative constant 32), as we explain in Section 4.2. In addition, note
that as with the bound of Bellare and Dai, our bound is stated in terms of the parameters t, q0, q1
and qS of the entire experiment ExpMultiSig

ΠBN[G,ℓ]
(A) and not those of the adversary only (e.g., the number

of H0 and H1 queries issued during the experiment consists of the number of such queries issued
directly by the adversary and the number of such queries issued by the signing oracle).

In what follows we first describe the BN scheme ΠBN[G,ℓ]. Then, in Section 4.1 we prove a tighter
concrete hardness bound for the IDL problem in the standard model, which we use in Section 4.2 for
deriving Theorem 4.1. For simplicity, in the following description of the scheme ΠBN[G,ℓ], we assume
that all algorithms receive G = (G, p, g) and ℓ ∈ N as inputs, and we explicitly include them only for
the key-generation algorithm. In what follows we describe the BN Scheme:

The BN Multi-Signature Scheme ΠBN[G,ℓ]

KG(G, ℓ). On input G = (G, p, g) and ℓ ∈ N, the key-generation algorithm samples x← Zp, and outputs

(sk, vk) = (x, gx) ∈ Zp ×G.

Sign
(
sk, vk, v⃗k,m

)
. On input sk and vk as above, v⃗k = (vk1, . . . , vkn) for some n ∈ N, and m ∈ {0, 1}∗,

the signing process is defined as the following 3-round protocol:

1. If there is no index i ∈ [n] for which vk = vki or if there is more than one such index, then
abort. Otherwise, denote by i∗ ∈ [n] the unique such index.

2. Sample ri∗ ← Zp, let Ri∗ = gri∗ , and send ti∗ = H0 (i
∗, Ri∗) ∈ {0, 1}ℓ to all other parties.

3. Upon receiving {ti}i∈[n]\{i∗} from all other parties, send Ri∗ to all other parties.
4. Upon receiving {Ri}i∈[n]\{i∗} from all other parties, if for some i ∈ [n] \ {i∗} it holds that

ti ̸= H0 (i, ti) then abort. Otherwise, compute

R =
∏
i∈[n]

Ri ∈ G

ci∗ = H1

(
vk, v⃗k, R,m

)
∈ Zp

si∗ = ri∗ + sk · ci∗ mod p,

and locally output (R, si∗).

SigAgg ((R1, s1), . . . , (Rn, sn)). On input (R1, s1), . . . , (Rn, sn) ∈ G × Zp for some n ∈ N, if R1 =
· · · = Rn then compute s =

∑
i∈[n] si mod p and output σ = (R, s). Otherwise output ⊥.

Verify
(
v⃗k,m,σ

)
. On input v⃗k = (vk1, . . . , vkn) for some n ∈ N, m ∈ {0, 1}∗ and σ = (R, s) ∈ G× Zp,

for every i ∈ [n] compute
ci = H1

(
vki, v⃗k, R,m

)
∈ Zp,

and output 1 if and only if gs = R ·
∏

i∈[n] (vki)
ci .
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4.1 IDL Hardness Based on Second-Moment DL Hardness

The identification discrete logarithm (IDL) problem, introduced by Kiltz, Masny, and Pan [KMP16]
and further studied by Bellare and Dai [BD21], is parameterized by an integer q and a description
(G, p, g) of a cyclic group as above. It considers an algorithm A that is provided with a uniformly
distributed group element X ∈ G as input and may issue up to q queries to the following oracle OIDL:
On input as query a group element R ∈ G, it samples and returns a challenge c, which is distributed
uniformly and independently of all previous queries. Denoting by R1, . . . , Rq the queries issued by
A, and by c1, . . . , cq the corresponding challenges returned by the oracle, the goal of the algorithm
A is to output a pair (I, z) for which I ∈ [q] and gz = RI ·XcI . The advantage of such an algorithm
A is formally captured by the following definition:

Definition 4.2. Let G = (G, p, g), where G be a cyclic group of prime order p that is generated by
an element g ∈ G, and let q be an integer. For any algorithm A that issues at most q oracle queries,
we define

AdvIDL
G,q (A)

def
= Pr

[
ExpIDL

G,q (A) = 1
]
,

where the experiment ExpIDL
G,q (A) is defined as follows:

1. X ← G.
2. (I, z)← AOIDL(·)(X).
3. Denote by R1, . . . , Rq ∈ G the oracle queries issued by A, and by c1, . . . , cq ∈ Zp the corre-

sponding responses.
4. If I ∈ [q] and gz = RI ·XcI then output 1 and otherwise output 0.

The following lemma shows that our high-moment forking lemma can be applied to derive a
concrete hardness result for the IDL problem which improved upon the above-discussed square-root
loss without relying on idealized models [KMP16, BD21].

Lemma 4.3. Let G = (G, p, g), where G be a cyclic group of prime order p that is generated by an
element g ∈ G, let AIDL be an algorithm that runs in time at most t and issues at most q oracle
queries, and let

ϵ = AdvIDL
G,q (AIDL).

Then, either ϵ < 2·q2
p , or there exists an algorithm ADL such that

Pr
x←Zp

[ADL (G, gx) = x] ≥ B

8q
· ϵ2

and
Ex←Zp

[
(Time(ADL (G, gx)))2

]
≤ 2 · (1 +B)2 · t2 · ϵ,

for B =
⌈
(1/ϵ)1/2 − 1

⌉
.

Equipped with Lemma 4.3, we directly obtain the following corollary based on the second-moment
hardness of the DL problem:

Corollary 4.4. Let G = (G, p, g), where G be a cyclic group of prime order p that is generated by
an element g ∈ G, and let A be an algorithm that runs in time at most t and issues at most q oracle
queries. Then, assuming that the DL problem is second-moment hard in the group G, it holds that

AdvIDL
G,q (A) ≤

(
32 · q · t

2

p

)2/3

.
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In what follows we prove Lemma 4.3 and Corollary 4.4.

Proof of Lemma 4.3. Let G = (G, p, g), where G be a cyclic group of prime order p that is
generated by an element g ∈ G, and let AIDL be an algorithm that runs in time at most t and
issues at most q oracle queries. First, we transform the algorithm AIDL into an algorithm A′IDL which
is compatible with the Lemma 3.1. The algorithm A′IDL receives as input the group description
G = (G, p, g), a group element X ∈ G and values c1, . . . , cq ∈ Zp, as well as randomness r ∈ {0, 1}∗
of the appropriate length for running AIDL, and is defined as follows:

The Algorithm A′
IDL(G,X, c1, ...., cq; r)

1. Invoke AIDL(G, X; r).

2. For every i ∈ [q], when AIDL issues its ith oracle query Ri, respond with ci.

3. If AIDL outputs (I, z) such that I ∈ [q] and gz = RI ·XcI then output (I, (z, cI)), and otherwise
output (0,⊥).

That is, the algorithm A′IDL emulates the experiment ExpIDL
G,q (AIDL) while using the values c1, . . . , cq

as the responses of the oracle. Therefore, the running time of A′IDL is identical to the running time
t of AIDL (for simplicity we ignore an additional minor additive term due to the verification of the
equation gz = RI ·XcI ), and it holds that

Pr
(X,c1,...,cq)←G×(Zp)q

[
A′IDL(G, X, c1, ..., cq) = (I, (z, cI)) s.t. I > 0

]
= AdvIDL

G,q (AIDL) = ϵ.

Now, assuming that ϵ ≥ 2·q2
p , we apply Lemma 3.1 with the algorithm A′IDL, the parameters q and

d = 2, and with the sets X = G and C = Zp. This yields an algorithm F such that

Pr
X←G

[F (G, X) ̸= ⊥] ≥ B

8q
· ϵ2,

and
EX←G

[(
TimeF (G,X)

)2] ≤ 2 · (1 +B)2 · t2 · ϵ,

where B =
⌈
(1/ϵ)1/2 − 1

⌉
. Equipped with the algorithm F , we can now define the following DL

algorithm ADL:

The Algorithm ADL(G,X)

1. Invoke F (G, X) and output ⊥ if F returned ⊥.

2. Otherwise, denote by (I, (z, cI), (z
′, c′I)) the output of F , and output

x = (cI − c′I)
−1 · (z − z′) mod p.

Note that the distribution of ADL’s running time is identical to that of F (for simplicity we are
ignoring an additional minor additive term due to the computation of x). In addition, note that
whenever F returns (I, (z, cI), (z

′, c′I)) then cI ̸= c′I (thus cI − c′I can indeed be inverted modulo p),
and it holds that gz = RI ·XcI and gz

′
= RI ·Xc′I for some RI ∈ G. Therefore, it holds that X = gx

for x = (cI − c′I)
−1 · (z − z′) mod p, and

Pr
x←Zp

[ADL (G, gx) = x] ≥ Pr
X←G

[F (G, X) ̸= ⊥]

≥ B

8q
· ϵ2.
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Proof of Corollary 4.4. Let G = (G, p, g), where G be a cyclic group of prime order p that is
generated by an element g ∈ G, let AIDL be an algorithm that runs in time at most t and issues at
most q oracle queries, and let

ϵ = AdvIDL
G,q (AIDL).

Lemma 4.3 stated that either ϵ < 2·q2
p , or that there exists an algorithm ADL such that

Pr
x←Zp

[ADL (G, gx) = x] ≥ B

8q
· ϵ2

and
Ex←Zp

[
(Time(ADL (G, gx)))2

]
≤ 2 · (1 +B)2 · t2 · ϵ,

for B =
⌈
(1/ϵ)1/2 − 1

⌉
. Assuming that the DL problem is second moment hard in the group G

guarantees that

Pr
x←Zp

[ADL (G, gx) = x] ≤
Ex←Zp

[
(Time(ADL (G, gx)))2

]
p

,

and thus
B

8q
· ϵ2 ≤ 2 · (1 +B)2 · t2 · ϵ

p
.

This implies that

ϵ ≤
(
32 · q · t

2

p

)2/3

.

Taking into account also the case in which ϵ < 2·q2
p , and the fact that q ≤ t, we obtain that

ϵ ≤ max

{(
32 · q · t

2

p

)2/3

,
2 · q2

p

}
=

(
32 · q · t

2

p

)2/3

,

which settles the proof of Corollary 4.4.

4.2 Proof of Theorem 4.1

For deriving Theorem 4.1 we rely on the following theorem due to Bellare and Dai [BD21] (refining
the original analysis of Bellare and Neven [BN06]):

Theorem 4.5 ([BD21]). Let G = (G, p, g), where G be a cyclic group of prime order p that is
generated by an element g ∈ G, and let ℓ be an integer. For any adversary A that exists an adversary
A′ that such

AdvMultiSig
ΠBN[G,ℓ]

(A) ≤ AdvIDL
G,q1(A

′) +
qS · (4q0 + 2q1 + qS)

p
+

q0 · (q0 + n)

2ℓ
,

for all sufficiently large λ ∈ N, where:
• The running time of A′ is that of the experiment ExpMultiSig

ΠBN[G,ℓ]
(A).

• q0, q1 and qS are upper bounds on the number of H0-queries, H1-queries and signing queries
issued during the experiment ExpMultiSig

ΠBN[G,ℓ]
(A), respectively.

• n is an upper bound on the largest signer set involved in a single multi-signature during the
experiment ExpMultiSig

ΠBN[G,ℓ]
(A).

Theorem 4.1 now easily follows by replacing the term AdvIDL
G,q1(A

′) in the statement of Theorem

4.5 with the term
(
32 · q1·t

2

p

)2/3 provided by Corollary 4.4.
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5 Tighter Concrete Security for BLS Multi-Signatures

In this section we show that our high-moment forking lemma can be used for establishing a concrete
security bound for the BLS multi-signature scheme, introduced and analyzed by Boneh and Drijvers
and Neven [BDN18]. For stating our theorem, recall that the BLS multi-signature scheme (which is
described below) relies on an efficiently-computable non-degenerated bilinear map e : G1×G2 → Gt,
where G1, G2 and Gt are cyclic groups of prime order p. We let G = (G1,G2,Gt, p, g1, g2, e) denote
the description of the groups and of the bilinear map, where g1 and g2 are generators of the groups
G1 and G2, respectively, and we let ΠBLS[G] denote the BLS multi-signature scheme. Additionally,
the scheme relies on two hash functions, H0 and H1, that are modeled as random oracles for the
scheme’s security analysis. These two hash functions are used to map arbitrary strings to G1 and
Zp. That is, H0 : {0, 1}∗ → G1 and H1 : {0, 1}∗ → Zp. We prove the following theorem:

Theorem 5.1. Let G = (G1,G2,Gt, p, g1, g2, e) as above. Assuming that the co-CDH problem is
second-moment hard in G, then for any adversary A it holds that

AdvrMultiSig
ΠBLS[G]

(A) ≤

(
16q

3/2
0 · q1 ·

(
t+ q0 · τexp1 + qS · τexp1 + τexpn2

)2
p

)2/3

,

where:

• t is an upper bound on the running time of the adversary A.
• q0, q1 and qS are upper bounds on the number of H0-queries, H1-queries and signing queries

issued by the adversary A, respectively.
• n is an upper bound on the largest signer set involved in a single multi-signature during the

experiment ExprMultiSig
ΠBLS[G]

(A).
• τexp1 is the time required to compute an exponentiation in G1, and τexpn2 is the time required to

compute an n-multi-exponentiation in G2.

Note that in the statement of the above theorem, unlike in the statement of Theorem 4.1 for the
BN scheme, we have explicitly included the exponentiation times in G1 and G2. This is due to the
fact that the exponentiation times in these two groups may be rather different, whereas for the BN
scheme there is only one group.

Additionally, as discussed in Section 2, to enable a direct-as-possible comparison to the concrete
security bound proved by Boneh and Drijvers and Neven [BDN18], we analyze the concrete security
of the BLS scheme with respect to the relaxed security experiment ExprMultiSig

Π . This security ex-
periment is obtained from the standard security experiment ExpMultiSig

Π for multi-signature schemes
(see Definition 2.3) by asking that an adversary outputting

(
v⃗k∗,m∗, aggσ∗

)
does not issue a signing

query
(
v⃗k,m∗

)
for any vector v⃗k of verification keys. As discussed in Section 2, the BLS scheme can

be easily transformed into one that satisfies the standard notion.
For comparing our bound to the one proved by Boneh and Drijvers and Neven (see [BDN18,

Thm. 1]), note that Boneh and Drijvers and Neven transformed any malicious forger that runs in
time t, issues qH = q0 + q1 random oracle queries and qS signing queries, and breaks the security of
the scheme with probability ϵ into a co-CDH algorithm that runs in time(

t+ qH · τexp1 + qS · (τexp1 + τexpn2 )
)
·
8q2H
ϵ
· ln
(
8qH
ϵ

)
and has success probability ϵ/(8qH). Thus, in bilinear groups of prime order p in which one assumes
that the co-CDH problem is as hard as in the generic bilinear-group model [Sho97, Mau05, BB08] (i.e.,
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that any algorithm running in time T solves the co-CDH problem with probability at most T 2/p),
we obtain (when ignoring for simplicity the lower-order logarithmic term as well as multiplicative
constants) the bound

ϵ ≤ q
5/3
H ·

((
t+ qH · τexp1 + qS · (τexp1 + τexpn2 )

)2
p

)1/3

on the success probability of any such malicious forger. In contrast, Theorem 5.1 (when replacing
q0 and q1 with qH that upper bounds them, and ignoring the multiplicative constant 22/3), provides
the bound

ϵ ≤ q
5/3
H ·

((
t+ qH · τexp1 + qS · τexp1 + τexpn2

)2
p

)2/3

Thus, our bound is tighter by replacing their exponent 1/2 with our exponent 2/3 (with addi-
tional, although rather minor, improved dependence on the number of signing queries qS and multi-
exponentiation time τexpn2 in G2).

In what follows we first describe the ΠBLS[G] scheme. Then, we show that our forking lemma
enables to transform any forger that attacks the scheme into a co-CDH algorithm designed in order
to optimize the trade-off between second-moment of their running time and their success proba-
bility. Finally, we show that Theorem 5.1 then follows by combining the resulting trade-off with
the assumption that the co-CDH problem is second-moment hard. For simplicity, in the following
description of the scheme ΠBLS[G], we assume that all algorithms receive G = (G1,G2,Gt, p, g1, g2, e)
as input, and we explicitly include it only for the key-generation algorithm.

The BLS Multi-Signature Scheme ΠBLS[G]

KG(G). On input G = (G1,G2,Gt, p, g1, g2, e), the key-generation algorithm samples x ← Zp, and
outputs

(sk, vk) = (x, gx2 ) ∈ Zp ×G2.

KeyAgg
(
v⃗k
)
. On input v⃗k = (vk1, . . . , vkn) ∈ Gn

2 for some n ∈ N, for every i ∈ [n] compute ti =

H1

(
vki, v⃗k

)
∈ Zp, and output

aggvk =
∏
i∈[n]

vktii ∈ G2.

Sign
(
sk, vk, v⃗k,m

)
. On input sk and vk as above, v⃗k = (vk1, . . . , vkn) for some n ∈ N, and m ∈ {0, 1}∗,

compute t = H1

(
vk, v⃗k

)
∈ Zp and output

s = H0 (m)
t·sk ∈ G1.

SigAgg (s1, . . . , sn). On input s1, . . . , sn ∈ G1 for some n ∈ N, output

σ =
∏
i∈[n]

si ∈ G1.

Verify (aggvk,m,σ). On input aggvk ∈ G2, m ∈ {0, 1}∗ and σ ∈ G1, if

e (σ, g2) = e (H0(m), aggvk) ,
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then output 1 and otherwise output 0.

Lemma 5.2. Let G = (G1,G2,Gt, p, g1, g2, e) as above, let A be an adversary, and let

ϵ = AdvrMultiSig
ΠBLS[G]

(A).

Then, either ϵ <
2q0·q21

p , or there exists a co-CDH algorithm Aco-CDH such that

Pr
α,β←Zp

[
Aco-CDH (G, X) = gαβ1

]
≥ B

8q1
·
(

ϵ

q0

)2

and

Eα,β←Zp

[
(Time (Aco-CDH (G, X)))2

]
≤ 2 · (1 +B)2 ·

(
t+ q0 · τexp1 + qS · τexp1 + τexpn2

)2 · ϵ
q0
,

for B =
⌈
(q0/ϵ)

1/2 − 1
⌉
, where:

• X =
(
gα1 , g

α
2 , g

β
2

)
.

• t is an upper bound on the running time of the adversary A.
• q0, q1 and qS are upper bounds on the number of H0-queries, H1-queries and signing queries

issued by the adversary A, respectively.
• n is an upper bound on the largest signer set involved in a single multi-signature during the

experiment ExprMultiSig
ΠBLS[G]

(A).
• τexp1 is the time required to compute an exponentiation in G1, and τexpn2 is the time required to

compute an n-multi-exponentiation in G2.

Proof of Lemma 5.2. Let G = (G1,G2,Gt, p, g1, g2, e) as above, and let A be an adversary that
runs in time at most t and issues at most qS, q0 and q1 oracle queries to the signing oracle, H0 and
H1, respectively. Without loss of generality, we assume that A does not query either of these oracles
more than once with the same input (since all three are deterministic), and that when A outputs
a potential forgery

(
v⃗k∗,m∗, σ∗

)
then it previously issued the H1 query

(
vk∗, v⃗k∗

)
. For simplicity,

we additionally assume that whenever A issues a signing query
(
v⃗k,m

)
, then A previously issued

the queries H0

(
m
)

and H1

(
vk∗, v⃗k

)
(this is not essential, and we discuss below how to avoid this

assumption).
We transform the adversary A into an algorithm Ã that is compatible with Lemma 3.1. The

algorithm Ã receives as input the group description G = (G1,G2,Gt, p, g1, g2, e), a triplet X =(
gα1 , g

β
1 , g

β
2

)
of group elements, values h1, . . . , hq1 ∈ Zp, as well as randomness ρ1, ρ2 ∈ {0, 1}∗, where

ρ1 will be used as Ã’s own internal randomness and ρ2 will be used as the randomness required for
running A. The algorithm Ã is defined as follows:

The Algorithm Ã
(
gα
1 , g

β
1 , g

β
2 , h1, . . . , hq1;ρ1, ρ2

)
1. Sample k ← {1, . . . , q0}, and let vk∗ = gβ2 .

2. Invoke A (vk∗; ρ2) by responding to A’s oracle queries as follows:

(a) For the ith H0-query m:

i. If i = k then return H0 (m) = gα1 .
ii. Else, sample ri ← Zp and return H0 (m) = gri1 .
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(b) For the jth H1-query
(
vk, v⃗k

)
:

i. If vk = vk∗ and vk ∈ v⃗k then return H1

(
vk, v⃗k

)
= hj .

ii. Else, sample H1

(
vk, v⃗k

)
← Zp and return it.

(c) For any signing query
(
v⃗k,m

)
:

i. If H0 (m) = gα1 then output (0,⊥) and terminate.
ii. Else, if vk∗ /∈ v⃗k then return ⊥.
iii. Else, retrieve the value r ∈ Zp previously chosen in Step 2(a)ii when responding to the

query H0(m) for which H0 (m) = gr1, and the value t = H1

(
vk, v⃗k

)
previously chosen

in Step 2(b)ii when responding to the query H1

(
vk, v⃗k

)
, and return

(
gβ1

)t·r
.

3. When A outputs a forgery
(
v⃗k∗,m∗, σ∗), where v⃗k∗ = (vk∗1, . . . , vk

∗
n) for some n ∈ N, proceed as

follows:

(a) Retrieve the value aj = H1

(
vk∗j , v⃗k

∗) for every j ∈ [n], and compute aggvk∗ = KeyAgg
(
v⃗k∗
)

(if some of the aj values have not yet been defined, then sample them independently and
uniformly).

(b) If H0 (m
∗) ̸= gα1 or Verify (aggvk∗,m∗, σ∗) ̸= 1 then output (0,⊥).

(c) Else, let I ∈ [q1] denote the index of the H1-query
(
vk∗, v⃗k∗

)
issued by A, and output (I, σ∗).

We observe that for uniformly and independently distributed α, β, h1, . . . , hq1 ∈ Zp and ρ1, ρ2 ∈
{0, 1}∗, the algorithm Ã perfectly emulates the experiment AdvrMultiSig

ΠBLS[G]
(A) to A, as long as A does

not issue a signing query for the message m∗. Therefore, letting ϵ = AdvrMultiSig
ΠBLS[G]

(A), we obtain

Pr
α,β,h1,...,hq1←Zp

ρ1,ρ2←{0,1}∗

[
Ã (X,h1, . . . , hq1 ; ρ1, ρ2) = (I, ·) s.t. I > 0

]
=

ϵ

q0
,

where X =
(
gα1 , g

β
1 , g

β
2

)
. In addition, in terms of Ã’s running time, note that it invokes A, and

performs the following additional computations (as common, we focus on counting the additional
number of group operations): (1) For each H0-query Ã computes at most one exponentiation in G1,
(2) for each signing query Ã computes at most one exponentiation in G1, and (3) when A provides an
output Ã computes an n-multi-exponentiation in G2 (for simplicity, we ignore an additional minor
additive term due to the single pairing computed by Ã). Thus,

tÃ ≤ t+ q0 · τexp1 + qS · τexp1 + τexpn2

upper bounds the worst-case running time of tÃ. Now, applying Lemma 3.1 for the algorithm Ã,
C = Zp, q = q1 and d = 2, we obtain that either ϵ/q0 ≥ 2 · q21/p, or that the algorithm FÃ,B defined
in Section 3 satisfies

Pr
α,β←Zp

[
FÃ,B (G, X) ̸= ⊥

]
≥ B

8q1
·
(

ϵ

q0

)2

and

Eα,β←Zp

[(
Time

(
FÃ,B (G, X)

))2]
≤ 2 · (1 +B)2 ·

(
t+ q0 · τexp1 + qS · τexp1 + τexpn2

)2 · ϵ
q0
,

where B =
⌈
(q0/ϵ)

1/2−1
⌉
. Equipped with the algorithm F , consider the following co-CDH algorithm

Aco-CDH that receives as input G = (G1,G2,Gt, p, g1, g2, e) and X =
(
gα1 , g

β
1 , g

β
2

)
:

21



The Algorithm Aco-CDH (G,X)

1. Invoke FÃ,B (G, X) and output ⊥ if FÃ,B returns ⊥.

2. Otherwise, denote by
(
I, σ, σ′, h1, . . . , hq1 , h

′
I , . . . , h

′
q1

)
the output produced by FÃ,B , and output

(σ/σ′)
1/(hI−h′

I) ∈ G1.

First, note that the distribution of Aco-CDH’s running time is essentially identical to that of FÃ,B,
where we ignore for simplicity the additional minor additive term due to the computation of its
output (σ/σ′)1/(hI−h′I).

Second, note that whenever FÃ,B (G, X) outputs
(
I, σ, σ′, h1, . . . , hq1 , h

′
I , . . . , h

′
q1

)
, then for some

ρ1, ρ2 ∈ {0, 1}∗ it holds that

(I, σ) = Ã
(
gα1 , g

β
1 , g

β
2 , h1, . . . , hq1 ; ρ1, ρ2

)(
I, σ′

)
= Ã

(
gα1 , g

β
1 , g

β
2 , h1, . . . , hI−1, h

′
I , . . . , h

′
q1 ; ρ1, ρ2

)
,

where hI ̸= h′I . These two executions are identical up until Ã responds to the I-th H1-query issued by
A, and therefore in both executions the I-th H1-query issued by A is the same

(
vk∗, v⃗k∗

)
. Moreover,

this also implies that in both executions A produces a forgery with respect to the same vk∗ and v⃗k∗,
where in the first execution it holds that H1

(
vk∗, v⃗k∗

)
= hI and in the second execution it holds

that H1

(
vk∗, v⃗k∗

)
= h′I . Letting v⃗k∗ =

(
vk∗1, . . . , vk

∗
n

)
, and denoting by ℓ ∈ [n] the index for which

vk∗ = vk∗ℓ , we observe that in both execution the values H1

(
vk∗i , v⃗k

∗) are identical for every i ̸= ℓ
since these values are sampled the same internal randomness ρ1.

The fact that A produces valid signatures σ and σ′ in these two executions implies that

e (σ, g2) = e

gα1 , (vk
∗)hI ·

∏
i∈n\{ℓ}

(vk∗i )
H1

(
vk∗i ,

⃗vk∗
)

e
(
σ′, g2

)
= e

gα1 , (vk
∗)h
′
I ·

∏
i∈n\{ℓ}

(vk∗i )
H1

(
vk∗i ,

⃗vk∗
) ,

and therefore

e
(
σ/σ′, g2

)
= e

(
gα1 , (vk

∗)hI−h′I
)
= e

(
gα1 ,
(
gβ2

)hI−h′I
)

= e
(
gαβ1 , g2

)hI−h′I
.

Thus, (σ/σ′)1/(hI−h′I) = gαβ1 , and we obtain

Pr
α,β←Zp

[
Aco-CDH (G, X) = gαβ1

]
≥ Pr

α,β←Zp

[
FÃ,B (G, X) ̸= ⊥

]
≥ B

8q1
·
(

ϵ

q0

)2

as required.

Recall that when proving Lemma 5.2, we have additionally assumed that whenever A issues a
signing query

(
v⃗k,m

)
, then A previously issued the queries H0 (m) and H1

(
vk∗, v⃗k

)
. The simplest

way to avoid this assumption is to transform A into a completely equivalent algorithm that issues
these two queries upon any signing query. This would increase the number of H0-queries and H1-
queries issued by A by an additive qS term, and thus have a minor effect on the resulting concrete
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security bound. However, as for the number of H0 queries, this is not essential. Specifically, for
avoiding a (potential) additional query H0 (m) with each signing query, we can modify Ã as follows:
Upon any signing query

(
v⃗k,m

)
, since it is guaranteed that m ̸= m∗ (recall that we are considering

the relaxed experiment as discussed following the statement of Theorem 5.1), then Ã can first execute
Step 2(a)ii for sampling a value r ← Zp and defining H0 (m) = gr1 before proceeding to Step 2(c)iii.

Equipped with Lemma 5.2, we can now derive the proof of Theorem 5.1.

Proof of Theorem 5.1. Let G = (G1,G2,Gt, p, g1, g2, e) as above, let A be an adversary, and let

ϵ = AdvrMultiSig
ΠBLS[G]

(A).

Lemma 5.2 states that either ϵ < 2q0 · q21/p, or there exists a co-CDH algorithm Aco-CDH such
that

Pr
α,β←Zp

[
Aco-CDH

(
G, gα1 , g

β
1 , g

β
2

)
= gαβ1

]
≥ B

8q1
·
(

ϵ

q0

)2

and

Eα,β←Zp

[(
Time

(
Aco-CDH

(
G, gα1 , g

β
1 , g

β
2

)))2]
≤ 2 · (1 +B)2 ·

(
t+ q0 · τexp1 + qS · τexp1 + τexpn2

)2 · ϵ
q0
,

for B =
⌈
(q0/ϵ)

1/2 − 1
⌉
. Assuming the co-CDH problem is second-moment hard in G guarantees

that

Pr
α,β←Zp

[
Aco-CDH

(
G, gα1 , g

β
1 , g

β
2

)
= gαβ1

]
≤

Eα,β←Zp

[(
Time

(
Aco-CDH

(
G, gα1 , g

β
1 , g

β
2

)))2]
p

,

and thus
B

8q1
·
(

ϵ

q0

)2

≤
2 · (1 +B)2 ·

(
t+ q0 · τexp1 + qS · τexp1 + τexpn2

)2
p

· ϵ
q0
.

This implies that

ϵ ≤

(
16q

3/2
0 · q1 ·

(
t+ q0 · τexp1 + qS · τexp1 + τexpn2

)2
p

)2/3

.

Taking into account also the case in which ϵ < 2q0 · q21/p and using the fact that q1 ≤ t, we obtain

ϵ ≤ max


(
16q

3/2
0 · q1 ·

(
t+ q0 · τexp1 + qS · τexp1 + τexpn2

)2
p

)2/3

,
2q0 · q21

p


=

(
16q

3/2
0 · q1 ·

(
t+ q0 · τexp1 + qS · τexp1 + τexpn2

)2
p

)2/3

,

which settles the proof of Theorem 5.1.
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A Proofs of Claims 3.2 and 3.3

A.1 Proof of Claim 3.2

Consider the functions f, g : [0, 1]→ R defined as follows:

f(z) = z · (1− (1− z)B)

g(z) =

{
1
2 ·B · z

2 if 0 ≤ z < 1
B

z − 1
2·B otherwise
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Then,

E
[
ϵ̃i(x, ρ, h⃗i−1) ·

(
1−

(
1− ϵ̃i(x, ρ, h⃗i−1)

))B]
= E

[
f(ϵ̃i(x, ρ, h⃗i−1))

]
≥ E

[
g(ϵ̃i(x, ρ, h⃗i−1))

]
≥ g

(
E
[
ϵ̃i(x, ρ, h⃗i−1)

])
Recall that we have defined ϵi = Pr [I0 = i] and ϵ̃i = E

[
ϵ̃i(x, ρ, h⃗i−1)

]
, and therefore

ϵ̃i ≥ max

{
0,Pr [I0 = i]− q

|C|

}
= max

{
0, ϵi −

q

|C|

}
Since for every i ∈ [q] it holds that ϵi ≤ ϵ ≤ 1

B , then we obtain ϵ̃i ≤ ϵ ≤ 1
B . Hence, by the definition

of g we obtain

E
[
ϵ̃i(x, ρ, h⃗i−1) ·

(
1−

(
1− ϵ̃i(x, ρ, h⃗i−1)

))B]
≥ g

(
E
[
ϵ̃i(x, ρ, h⃗i−1)

])
=

1

2
·B · ϵ̃i2

A.2 Proof of Claim 3.3

By definition, it holds that

ϵ̃i = E
x,ρ,⃗hi−1

[
ϵi(x, ρ, h⃗i−1)

]
= E

x,ρ,⃗hi−1

[
max

{
0, Pr

hi,...,hq

[
I0 = i

∣∣∣x, ρ, h⃗i−1 ]− q

|C|

}]
.

Therefore,

E
x,ρ,⃗hi−1

[
max

{
0, Pr

hi,...,hq

[
I0 = i

∣∣∣x, ρ, h⃗i−1 ]− q

|C|

}]
(A.1)

≥ E
x,ρ,⃗hi−1

[
Pr

hi,...,hq

[
I0 = i

∣∣∣x, ρ, h⃗i−1 ]− q

|C|

]
(A.2)

= E
x,ρ,⃗hi−1

[
Pr

hi,...,hq

[
I0 = i

∣∣∣x, ρ, h⃗i−1 ]]− q

|C|

=
∑

x,ρ,⃗hi−1

(
Pr
[
x, ρ, h⃗i−1

]
· Pr
hi,...,hq

[I0 = i]

)
− q

|C|

=
∑

x,ρ,⃗hi−1

(
Pr
[
x, ρ, h⃗i−1

]
· Pr
hi,...,hq

[
I0 = i

∣∣∣x, ρ, h⃗i−1 ∣∣∣x, ρ, h⃗i−1 ])− q

|C|

= Pr
x,ρ,⃗hi−1,hi,...,hq

[
Ii = i

∣∣∣x, ρ, h⃗i−1 ]− q

|C|
(A.3)

= ϵi −
q

|C|

where Eq. (A.2) follows from the monotonicity of the expectation, and Eq. (A.3) follows from the
law of total probability.
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