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Abstract. We consider constructions that combine outputs of a single
permutation 7 : {0,1}" — {0,1}" using a public function. These are
popular constructions for achieving security beyond the birthday bound
when implementing a pseudorandom function using a block cipher (i.e., a
pseudorandom permutation). One of the best-known constructions (de-
noted SXoP[2,n]) XORs the outputs of 2 domain-separated calls to .
Modeling 7 as a uniformly chosen permutation, several previous works
proved a tight information-theoretic indistinguishability bound for SXoP[2, n
of about ¢/2", where ¢ is the number of queries. However, tight bounds
are unknown for the generalized variant (denoted SXoP[r, n]) which XORs
the outputs of » > 2 domain-separated calls to a uniform permutation.
In this paper, we obtain two results. Our first result improves the known
bounds for SXoP[r,n] for all (constant) r > 3 (assuming ¢ < O(2"/r) is
not too large) in both the single-user and multi-user settings. In particu-
lar, for r = 3, our bound is about \/ﬂqmax/22'5" (where w is the number
of users and gmax is the maximal number of queries per user), improving
the best-known previous result by a factor of at least 2".

For odd r, our bounds are tight for ¢ > 2"/2, as they match known
attacks. For even r, we prove that our single-user bounds are tight by
providing matching attacks.

Our second and main result is divided into two parts. First, we devise
a family of constructions that output n bits by efficiently combining
outputs of 2 calls to a permutation on {0,1}", and achieve multi-user se-
curity of about \/ugmax/ 2157 Then, inspired by the CENC construction
of Iwata [FSE’06], we further extend this family to output 2n bits by
efficiently combining outputs of 3 calls to a permutation on {0,1}". The
extended construction has similar multi-user security of \/ugmax/ o1-5m
The new single-user (u = 1) bounds of ¢/2'*" for both families should
be contrasted with the previously best-known bounds of ¢/2", obtained
by the comparable constructions of SXoP[2,n] and CENC.

All of our bounds are proved by Fourier analysis, extending the provable
security toolkit in this domain in multiple ways.

1 Introduction

Many efficient implementations of pseudorandom functions today use block ci-
phers, which are pseudorandom permutations that only achieve security up to



the birthday bound of ¢ = 2"/2 queries (where n is the block length). Since the
security of many cryptosystems (such as encryption modes, MAC algorithms
and authenticated encryption schemes) is based on pseudorandom functions,
beyond-birthday bound security has become a popular research area, initiated
in papers by Bellare, Krovetz, and Rogaway [2], and by Hall, Wagner, Kelsey,
and Schneier [18].

1.1 XORing Permutation Outputs

One of the best-known constructions for achieving security beyond the birthday
bound XORs the outputs of 2 permutations calls. This constructions has two
main variants. The first variant, denoted XoP[2,n] (XOR of Permutations), uses
two permutations my,m : {0,1}™ +— {0,1}" to define XoP[2,n]x, x, : {0,1}" —
{0,1}™ by XoP[2,n]x, r, (1) = m1(¢) @ m2(i). In practice, m; and mo are imple-
mented using a block cipher, instantiated with independent keys. The second
variant, denoted SXoP[2,n], uses 2 domain-separated calls to a single permu-
tation 7 : {0,1}" +— {0,1}" to define SXoP[2,n], : {0,1}"~! ~ {0,1}" by
SXoP[2,n].(i) = w(0|¢) @ m(1]|¢) (where || denotes concatenation). As in the
first variant, 7w is implemented using a block cipher. However, in information-
theoretic security proofs, the block ciphers in both variants are replaced by
idealized random permutations.

The second variant is more efficient in the sense that it only requires a single
key. Yet, the advantage of the first variant is that it achieves better concrete
security in idealized models.

Generalizations. Natural generalizations of the above variants XOR the out-
puts r > 2 permutations calls. The aim of these generalizations is to obtain even
better security bounds.

In this paper, we are mainly interested in a generalization of the second
variant, denoted SXoP[r,n|. It uses r > 2 domain-separated calls to a single
permutation 7 : {0,1}"* ~ {0,1}" to define SXoP[r,n], : {0,1}7 Moerl
{0,1}™ by SXoP[r,n]. (i) = 7(0]]s) ® w(1|i) @ ... ® w(r — 1]|7).

Previous results. Both variants have been analyzed in the idealized model
by numerous papers in both the single-user and multi-user settings. The first
variant (XoP) that uses independent permutations (and its generalized version)
was analyzed in [7,8,9,10,11,13,22.23 25 26]. A tight security bound for XoP and
its generalization was derived in [12] (also see [14] for XoP[2,n]), and further
extended to the multi-user setting.

Works that analyzed the second variant SXoP (and its generalization) include
[1,3,5,9,11,13,19,25,26]. In particular, for SXoP[2,n] a security bound of about
5 was proved in [9,11,13]. This bound is tight as it is matched by a simple
attack that checks whether the element 0 is output. The bound was extended to
give a tight bound in the multi-user setting in [3,19].



For the more general scheme SXoP[r,n] with » > 3, tight bounds are un-
known. The particular case of r = 3 was analyzed by Bhattacharya and Nandi
in [5], deriving a bound of about ¥“2*** in the multi-user setting (where u is

the number of users and ¢pax is the maximal number of queries per user).

Remark 1. In practice, each permutation is instantiated with a keyed block ci-
pher. In such computational settings, one needs to add an additional term (or
terms) to the bounds derived above which take into account the optimal ad-
vantage in distinguishing the underlying block cipher (or block ciphers) from a
uniformly chosen permutation (or permutations).

Remark 2. The restriction that the PRF should not be called with more than
Qqmax queries implies that the key should be rotated every qma.x invocations in
practice. For the schemes we consider, there is a trivial attack on a single user
that achieves constant advantage by querying the PRF on the entire domain.
Thus, such a restriction is necessary if one desires security beyond 2™ queries
(per all users) in the multi-user setting.

1.2 Iwata’s PRF construction

At FSE 2006 [20], Iwata introduced CENC, which is a beyond-birthday bound
secure mode of operation. Since its introduction, CENC has been very influen-
tial and it is currently considered for practical use as part of the DNDK-GCM
mode [17]. CENC is built from a PRF, F[w,n] : {0, 1}~ Mes(w+DT o f0 1}wn
using an underlying permutation 7 : {0,1}"™ — {0,1}™ and defined as

Flw, n]x(i) = ((0[ld) @ 7 (1[|2)) ]| (x (0[[4) @ 7 (2[|)][ - . - [| (7w (O]} ) & 7w (w]|))-

Thus, in order to generate wn bits of output, F only makes w + 1 calls to ,
whereas SXoP[2, n] makes 2w calls.
When modeling 7 as an ideal permutation, [4,9,21] proved that F[w,n] has

. . . . o1 2
an indistinguishability advantage upper bound of about Z7Z.

1.3 Our Results
In this paper, we obtain two results.
Result 1 - analysis of SXoP[r, n]. We improve known bounds for SXoP[r, n]

for all (constant) r > 3 (assuming ¢ < O(2"/r) is not too large).
For odd r, we derive a bound of about &+L55 is the single-user setting and

2‘7{3({“5?;‘) in the multi-user setting. In particular, for ¢ = 3, our bound \/2772?‘;?"

vV U4max
on

least 2™. Our bounds for odd r are tight up to a constant factor (for ¢ > 2"/?),
as they match attacks published by Patarin [27]. This includes the multi-user
setting, where our bounds are matched by the simple generalization of the attacks

improves the best-known previous one of obtained in [5] by a factor of at



of Patarin, which applies the single-user attack independently to each user and
outputs a majority vote over the answers.

For even r, we prove a bound of about T‘i/z in the single-user setting and an
\/Uqmax uqmax>

on(r/2=1/2) ) gnr/2
in the multi-user setting. Furthermore, we prove that our single-user bounds are
tight by providing matching attacks, which improve the ones of [27]. The bound
for even r in multi-user setting is obtained by combining two different bounds,
and we conjecture that it is not tight in all settings. We leave the problem of
improving this bound (or devising a matching attack) to future work.
Interestingly, our results show (for example) that SXoP[3,n]| (with a tight
bound of &%) is provably more secure than SXoP[4,n] (with a tight bound of
5%7). More generally, for odd 7 > 3, SXoP[r,n] (with a bound of &Ls;) is
provably more secure than SXoP[2r —2,n] (with a bound of 5=y ). Intuitively,
the reason for this gap is that for odd r every element in {0,1}" output by
SXoP[r,n] is marginally uniformly distributed, while for even r it is not.

additional (slightly more complicated) bound of about min(

Result 2 - definition and analysis of LXoP[L,n] and LXoP[L, 2, n].

LXoP/L,n]. We propose a family of constructions that output n bits by publicly

combining outputs of 2 calls to a single permutation on {0,1}", and achieve

multi-user security of about ‘/261?5‘,’1?" (as long as gmax < O(2™) is not too large).

Hence, these constructions are provably secure up to u = 0(2™) users for gmax >
£2(2"). Our (single-user) bound of 5% improves upon the best previous bound
of 5% for a construction with similar parameters (obtained for SXoP[2, n]).

Our construction family is parameterized by a public linear orthomorphism
L : {0,1}™ — {0,1}", which is an invertible linear transformation such that
L'(z) = 2@ L(z) is itself a permutation. The construction is denoted LXoP[L, n|
and defined as LXoP[L, n]. (i) = 7(0]|i) & L(m(1])é)), where i € {0,1}"~L.

It is easy to show that our bound ‘/261‘,1;3;’" is tight assuming ¢ > 2"/2 by
similar attacks to the ones of [27]. Note that the bound we obtain is of the same

order as the tight bound for XoP[2, n], obtained in [12,14].

Importantly, there are many linear orthomorphisms L : {0,1}" — {0,1}"
with the desired properties which are very simple and easy to implement in
practice. One example is L(x(l)mc@)) = (x(2),:v(1) &) m(2)), where (1) 2 ¢
{0,1}7/2. Another example that may be more efficient to implement in hardware
is L(z) = (x >> 1) ® (21,0,...,0), i.e., cyclically rotate « by 1 bit to the right
and XOR the first bit of  (denoted z1) to the first bit of the result. Yet another
example is doubling in the field Fon. More details about linear orthomorphisms
over FZ can be found in [10].

Intuitively, the main reason that such constructions have a high security level
is that (unlike SXoP[2, n]), every element generated by LXoP[L, n] is marginally
uniform in {0,1}". Indeed, let = € {0,1}" be such an element and write it as
x =y ® L(z), where y,z € {0,1}" are drawn uniformly without replacement.
Then, fixing any a € {0,1}", the equality = a is equivalent to y ® L(z) = a. If



y,z € {0,1}"™ were drawn uniformly and independently, then since L is invertible,
the equation y ® L(z) = a would have exactly 2™ solutions. However, since y, z
are drawn uniformly without replacement, we subtract the solutions that satisfy
y = z, and as L is an orthomorphism, the equation y @ L(y) = a has exactly
one solution. Consequently, for any a € {0,1}", the equation y & L(z) = a has
exactly 2" — 1 solutions, namely, x = y & L(%) is uniformly distributed.

We remark that the use of linear orthomorphisms in cryptography (partic-
ularly in design of block ciphers) is not new. See [(] and references therein for
examples. Hence, the main novelty of this work with respect to the LXoP[L, n)
family (and its generalization below) is in the security proof, rather than the
actual design.

LXoP/L,2,n]. After analyzing LXoP[L,n], we extend the construction to obtain
better efficiency by outputting 2n bits via 3 calls to the underlying permutation.
Specifically, we define LXoP[L,2,7n] : {0,1}""2 + {0,1}?" as

LXoPI[L, 2, n]x (i) = (w(0[|i) & L(w(1]4))) || (7w (1]|5) & L((2]|4))) -

We prove that LXoP[L,2,n] offers similar security to LXoP|[L,n| in both the
single-user and multi-user settings, given that L is a linear orthomorphism. Com-

pared to Iwata’s PRF [20], F[2,n], the indistinguishability bound is improved
from about - to zi5 (in the single-user setting), while having comparable
parameters.

LXoP[L,w,n]. One can further extend LXoP to output wn bits via w + 1 per-
mutation calls, similarly to Iwata’s PRF. Specifically, define

LXoP[L, w,n] (i) = (x(0[]) © L(w (L) |- . [| (r(w = 1][) ® L(x(wl]|d))),

where i € {0,1}*~Moe(w+11 To achieve high security, we require that the iter-
ated invertible linear function L7 has no short cycles of length up to w, namely
for every x € {0,1}" such that x # 0 and 1 < j < w, v @ L?(x) # 0. Such
efficient functions L are easy to build (e.g., from linear-feedback shift registers).

While it is not difficult (albeit somewhat technical) to extend our security
analysis of LXoP[L,2,n] to LXoP[L,w,n| for very small values of w > 2, the
analysis for general w is more involved and we leave it to future work.

We remark that a different variant of LX0P[L, w, n]. (i) defines the j’th out-
put block (for j =1,...,w) as LI(w(0||4)) ® 7(j||i). However, this variant seems
to be inferior to the one above in terms of both security (for large w) and ef-
ficiency, since the computations of L7 (7 (0||7)) for different values of j are more
difficult to parallelize.

Implications of our results. Since tight bounds are known for SXoP|[r, n] with
r = 2, we focus on r > 3, aiming for a very high security level at the expense of
more permutation calls. Our analysis is therefore mostly of theoretical interest,
although it could be practically meaningful when using a block cipher with a
short block length n for which the security of SXoP|[2, n] is insufficient.



On the other hand, the LX0oP[L,n] and LXoP[L, 2, n] constructions combine
the efficiency of SXoP[2,n] and CENC (respectively) with the very high security
level of XoP[2, n]. In our context, efficiency is mainly measured by (1) the number
of random permutations (block cipher keys), (2) the number of permutation calls
per one PRF call, and 3) the number of bits output in one PRF call. We further
argue above that the PRFs can be implemented in practice with little overhead.
Consequently, we believe that these PRF constructions are of practical interest.

1.4 Technical Overview

Similarly to the previous works [12,14,15], we prove our results by Fourier anal-
ysis. We start by elaborating on the techniques of [12,14] that are relevant to
this paper.

Previous techniques [12,14]. First, the distinguishing advantage of the ad-
versary is bounded by the statistical distance between the distribution generated
by the analyzed construction and the uniform distribution. Consider a sample
from a distribution generated by the analyzed construction, which is over Fg*"
(i.e., composed of ¢ elements in {0,1}"). The statistical distance of this distri-
bution from the uniform distribution can be bounded in the “Fourier domain”
by bounding the bias (i.e., Fourier coefficient) of each of the 29" possible masks
(i.e., linear equations over Fy) applied to the bits of the sample.

In [12,14], the task of bounding the Fourier coeflicients for the distribution
function generated by the XoP construction was reduced to the task of bounding
the Fourier coefficients for the distribution generated by the underlying primi-
tive, namely, a random permutation. This reduction was based on the fact that
XORing together samples generated by independent random permutations cor-
responds to a convolution operation, which is simple multiplication in the Fourier
domain.

Considering k elements (for any 1 < k < ¢) drawn uniformly without re-
placement, the proof of [12] used bounds on two quantities of Fourier coefficients
on masks that involve all of these k elements (called level-k coefficients).

1. The maximal level-k Fourier coefficient in absolute value.
2. The level-k Fourier weight, which is equal to the sum of squares of all level-k
Fourier coefficients.

Our techniques. We would like to use a similar approach to bound the distin-
guishing advantage of the adversary against the SXoP and LXoP constructions.
However, unlike the XoP construction, these do not involve XORing together in-
dependent permutations. Therefore, the step that reduces the analysis to bound-
ing the Fourier coefficients of a random permutation via convolution is no longer
applicable.

Nevertheless, we prove that the Fourier coefficients of the distribution gen-
erated by the SXoP and LXoP constructions are, in fact, structured subsets of
the Fourier coefficients of a random permutation.



For example, denote by = € {0,1}™ a single element of a sample generated
by SXoP[2,n]. Consider a mask involving a single element o € {0,1}" # 0 (i.e.,
a mask of level 1), and assume we wish to analyze the bias of the linear equation
0121 B ... B T, Since x is generated by SXoP[2,n], we can write © = y & z,
where y, z € {0,1}" are generated by a random permutation. The above linear
equation can therefore be written as ay(y1 ® 21) ® ... D @ (Yn ® 2,) = (11 D
@ anyn) B (121 D ... D anzn), whose bias is exactly the Fourier coefficient
of a random permutation on the level-2 symmetric mask («, a) € {0,1}2".

In general, level-k Fourier coefficients of the distribution generated by SXoP|r, n)
correspond to symmetric level-(rk) Fourier coefficients of a random permutation.
One can similarly prove that level-k Fourier coefficients of the distribution gen-
erated by LXoP|[L,n| correspond to level-2k Fourier coefficients of a random
permutation (with a certain structure that depends on L). A similar property
also holds for LXoP[L,2,n]. Therefore, we can use the two bounds above on
the Fourier coefficients of a random permutation to analyze the distributions
generated by the SXoP and LXoP constructions.

Framework for bounding Fourier weight of sampling without replacement on
structured subsets of masks. Unfortunately, using the general level-k bounds
naively is not sufficient to obtain tight indistinguishability bounds for the con-
structions we analyze, particularly for LXoP. Essentially, the general level-k
bound on the weight (i.e., the second bound) is tight for dense subsets of masks
that contain (a large fraction of) all level-k masks. However, the subsets we need
to analyze are structured and very sparse.

As a result, in this paper we develop a framework that allows to bound the
Fourier weight of the sampling without replacement density function (normalized
distribution function) on structured subsets of masks. The framework takes into
account the particular structure of the subset and significantly improves the
naive bounds for the constructions we analyze.

Technically, the framework uses a (known) recursive formula for calculating
the Fourier coefficient on any single mask « as a sum of Fourier coefficients on
lower-level masks, derived from «. We show how to manipulate the formula to
collectively analyze the Fourier weight of a subset of masks that have a common
structure, determined by the construction we analyze. Specifically, each recursive
call bounds the weight of an increasingly denser subset of masks (of a lower
level), and we apply the general bounds only at the leaves of the recursion tree,
where they are closer to being tight. The power and generality of this framework
is demonstrated by applying it to obtain tight indistinguishability bounds for
all constructions we analyze in this paper. A notable exception to the above is
the SXoP|[r,n] construction with even r, whose analysis requires an additional
central technical contribution, summarized below.

Mized L' and L£? bounds. For the SXoP[r,n] construction with even r the above
strategy is not sufficient to obtain tight indistinguishability bounds. Essentially,
this is because of a quadratic loss of the standard Cauchy-Schwarz inequality
that bounds the statistical distance (£! distance) of the analyzed distribution



to the uniform distribution using the £2 distance. In order to overcome this loss,
we bound the statistical distance by a mixture of £! and £2 bounds using the
Fourier decomposition of the distribution (density) function. While such mixed
bounds have been used before in a hybrid argument (e.g., in [11]), we stress that
our mixed bounds are purely analytical in the sense that the “hybrids” that we
use do not necessarily correspond to actual distributions, but rather to a Fourier
decomposition of the density function.

An additional advantage of this technique is that it allows to lower bound the
statistical distance (i.e. analyze the optimal attack) in the Fourier domain using
the reverse triangle inequality. Indeed, the optimal attack on SXoP[r, n] reveals
itself during the analysis of level-1 Fourier coefficients. This attack simply checks
whether there is a 0 element of {0, 1}" in the sample. We note that combinatorial
analysis of the attack for arbitrary even r > 4 is less straightforward.

1.5 Paper Structure

The rest of this paper is organized as follows. Next, in Section 2, we describe
preliminaries. In Section 3 we develop our framework for bounding the Fourier
weight of sampling without replacement on structured subsets of masks. In Sec-
tion 4 we prove our results regarding the SXoP construction, while in Section 5
and Section 6 we analyze the LXoP construction and its variants.

2 Preliminaries

In this section we describe preliminaries. Unless stated otherwise, missing proofs
are found in Appendix A.

For a positive integer m (i.e., m € Z=!), denote [m] = {1,2,...,m}. For
mi,mg € Z such that m; < ma, denote [my,ms] = {my,m; +1,...,mz}. For a
set A, denote its size by |.A|. For any integer k£ > 0 and a real number ¢, define
the falling factorial as (t)y = t(t —1)...(t — (k — 1)). Further define (¢)o = 1.

Let n,m € Z=! such that n > m. Then, (Z)™ < (') < (£2)™,

Let  be an element (from an arbitrary domain) and let m € Z=!. De-
fine °™ = (x,...,x) to be the sequence of m repetitions of z. For a sequence

(S —

m times
(21, ...,2k), define (z1,...,zx)°™ = ((21)°™, ..., (zx)°™).
Let m € ZZ'. We denote the sequence of elements (x1,...,2,) by Z1. m.
Similarly, the sequence of elements (z"), ... z("™)) is denoted by z'-". Further-

more, for my, my € ZZ1, denote the sequence of m;ms elements
1) 2{m2) (1) (mz)) by zlma

(;vg ey @] Tany s e s Tany Lo

Let F be a field and v € FF>*2 a matrix of elements in F. We index the
elements of v in a natural way, namely, for i € [k;], v; € F¥2 is the i'th row of v
and for j € [ko], v; ; € F is its j’th entry.

For two (row) vectors v,u € F¥, we denote by (u,v)p = u-vT = Diep) Wivi
their inner product (where vT is the transpose of v and addition and multi-



plication are over F). Similarly, for matrices v,u € FF**2  define (u,v)p =
Zie[kl] u; - (v)" = Z(i,j)e[kl]x[kg] Ui, jVi,5-

In this paper, we typically deal with matrices x € F’;X", where n is considered
a parameter and k may vary. We denote N = 2".

Let L € F3*™. Denote by L the transpose of L. Further, let = € F5*". We
define L(z) € F§*™ by L(z); = x; - L for i € [k] (where we view z; as a row
vector in F%, multiplied with L).

Define 1 as the 0\1 indicator function that takes as input a predicate.

Asymptotic notation. While all of our results are fully explicit, we some-
times use standard asymptotic notation to give intuition about the bounds we
obtain. In particular, we use the notation O,.(-) and §2,.(-) that suppress arbitrary
functions of r (for SXoP[r, n] we think of it as a small constant).

2.1 Probability

Definition 1 (Density function). A (probability) density function on F3*"

is a nonnegative function ¢ : F4*" — R20 satisfying E:peﬂ?gx” [p(x)] = 1, where

x € FI™ is uniformly chosen.

We write x ~ ¢ to denote that x is a sample drawn from the associated

probability distribution, defined by Pry.,lz = y] = *;Sfj) for every y € F3*".
Specifically, the uniform probability density function over F4*" is the constant
function 1, denoted by 14p.

Let A C F*". We write 2 ~ A to denote that z is selected uniformly at

random from A.

Proposition 1 ([24], Fact 1.21). If ¢ : F4*" s R2% is a density function
and f:FI" = R, then Epuy[f(z)] = E, pgn [o(z)f(z)].

Definition 2 (Statistical distance). The statistical distance between two den-
sity functions @, : F&*" s R29 s SD(yp, 1) = %EINFan lo(x) — ().

2.2 Fourier Analysis

We define the Fourier-Walsh expansion of functions on the Boolean cube, adapted
to our setting, and state the basic results that we will use. These results are
mostly taken from [24].

Definition 3 (Fourier expansion). Given o € F3*", define xo : F&*"
{_171} by
on(x) _ (71)(0&,1%{«‘2 _ H (71)(047;,11')@ _ H (71)%,]‘.@1‘,]"
iclq] i€lgl,j€(n]



The set {Xa},epsx is an orthonormal basis for the set of functions {f | f F&*™ s

R}, with respect to the normalized inner product —=(f, g)r = E, pgen [f(z)g(x)].

|F3*"|

Hence, each {f | f: F4*" + R} can be decomposed to f = Zangm Fla)Xa,

where f(a) = E[xqf], and in particular f(0) = E[f].

Each element in {Xa}angm is called a character. We refer to « as a mask, and

to f(«) as the Fourier coefficient of f on . To distinguish the domain of charac-
ters from the input domain, we write it as F§*", hence f(x) = Y- gaxn f(a)xa ().
2

For a mask a € F4*", define

NZ,={i: a; # 0} and #a = |NZ,|.

We call #a the level of «, and f(«) is a Fourier coefficient of level #a.
For integer parameters n > 1 and 0 < kg < Ky, we deﬁne the sets of masks
My = {a € FS " dha = Ko}, and M2, = {a € F5": #a > ko).

Definition 4 (Fourier weight and maximal magnitude). For a function
f:F&" — R, we define the Fourier weight of f at level k to be

W= Y fle= Y fle)
aefg‘gX" aGMzk’q
#a=k

The mazimal magnitude of a level-k Fourier coefficient of f is

o~ o~

M=*(f] = f%%iin{\f(a)l} = Jnax {|f(a)[}.
a;azzk e

Proposition 2 ([24], Proposition 1.13 — variance). The variance of f :
F§" s R is Var[f] = E[f?] = B[f]? = 3, cpoen [(@)? = X, WF[f].

a0
Proposition 3 (Bidirectional bounds on statistical distance from uni-
form by £ and £? distances). Let ¢ : F2*" s R29 be a density function.
Let S C ﬁ;’x" be any set of masks, which does not contain the zero mask. Let

S =F*™\{SU{0}} be the complementary set of masks (not including the zero
mask). Then

— [ 3(e)? <28D(p, 14n) — I]F*qun D Bl@)xa@)] <[> A
acS e aes acs

In particular, for S =0, we obtain SD(p, 14,) < %\/Var[ga]
We state an additional basic result regarding variance.

Proposition 4 ([12], Proposition 6 — Variance of independent sam-
ples). Let ¢ : FI*" s R29 be a density function. Let uw > 1 be an integer
and let ** : Féqu)xn = R20 be the density function obtained by concatenating

u independent samples drawn from ¢. Then,

Var[p™"] < 2u Var[y], assuming u Var[p] < &

10



2.3 Cryptographic Preliminaries

Standard definitions of adversary’s advantage and the optimal advantage against
a PRF (in the single-user and multi-user settings) are given in Appendix A.

Bounding the optimal advantage using Fourier analysis. In this paper
we will consider keyed families of functions of the form H : Kx{0,1}™ — {0,1}"
with the property that the output distribution is independent of the queries of the
adversary over {0,1}™. Thus, we ignore these queries and focus on analyzing the
output distribution (density function) generated by H. Given that the adversary
makes ¢ queries to H, we may denote the density function generated by H as
ot FIPT — R20,

By well-known properties of the statistical distance, the advantage of the
optimal distinguisher against H is equal to the statistical distance of ¢y from
uniform, namely,

Opth;'(q) = SD(¢", 1gn)- (1)

In the multi-user setting, an adversary against H obtains a sample of (¢ )*"

ng‘“‘“u)xn — R29, where (p77)*" is the density function obtained by con-
catenating v independent samples drawn from ¢};%**. Here, gmax is the (max-
imal) number of queries per user. Similarly to the single-user setting, in the
multi-user setting we have

mu-prf 7,qmax ) XU
OptH,up (@maz) = SD((WHq )" s Ligmasn)- (2)

In this paper, we mostly bound the optimal advantage by bounding Var[p};?]
using the following basic result.

Proposition 5 (Bounds on advantage using variance). Assume that the
output distribution generated by H : K x {0,1}™ — {0,1}" is independent of
the queries of the adversary. Denote by o'l : F4*™ — R2Y the density function
generated by H. Then,

7 ;dmax

1
Opt?f(g) < Var|p?], and Optf;zprf(qmaz) < 7 u Var[py "],

N —

assuming u Var[py™>] < 1. or equivalently, %\/u\/ar[ap?fq"‘“] <i

Symmetric properties. In addition to the output distribution being indepen-
dent of the queries of the adversary, all the functions H : K x {0,1}™ — {0,1}"
we analyze in this paper are symmetric in the following sense: if « ~ ¢};?, then
for every set of k distinct indices {i1,4a,...,ix} C [q], (iy,..., 2, ) are k el-

ements that are marginally sampled from 5", namely, (z;,,...,2;) ~ @5".

11



Therefore, for 1 < k < ¢, we have M=*["7] = M=*[x*] and

W= Y By’ = > Yo P62

aeM, {i1,...,ix } Clq] distinct ﬁeﬁ’;X”
NZg={i1,...,ir}
N —k[ .k
= > W = (D)W 3"

{i1,...,i } C[q] distinct

These symmetric properties are repeatedly used throughout the paper (often
without explicitly referring to them). Another result on symmetric functions
(which we do not explicitly use) is given in Appendix B.

Sampling without replacement. We define the density function of sampling
without replacement.

Definition 5 (Density function of sampling without replacement). For
positive integers n,q such that 1 < q < 2", let fi, 4 : F3*" > R20 be the density
function associated with the process of uniformly sampling q elements from F3
without replacement. Specifically, for x € F4*",

() = {&) if wi # x for all i j € [a] (i # ),
n,q -

0 otherwise.

Furthermore, define i, to be the constant 1.

The SXoP[r,n] construction. Let Perm(n) be the set of all permutations
on {0,1}™ (i.e., the set of all = : {0,1}"™ — {0,1}"). For positive integers
r,m such that r > 2, define the family of functions SXoP[r,n] : (Perm(n)) x
{0, 1}»=MoerT s 10,1} by SXoP[r,n).(i) = 7(0]|i) ® w(1]|3) © ... ® n(r — 1||4),
where in 7(j||i), 7 € {0,1}M"°8"1 is encoded in binary for 5 = 0,...,r — 1, and
|| denotes concatenation. We will be interested in bounding Optggop[hn] (q) as
a function of the parameters r,n,q (and deriving similar bounds in the multi-
user setting). By symmetry of the randomly chosen permutation 7, an adversary
against SXoP[r, n] obtains the XOR of r samples, each containing g elements of
{0,1}", where all rq elements are chosen uniformly without replacement (re-
gardless of the actual queries).

Let V,(;) : F2™ s R0 denote the density function of a sample generated by
the SXoP[r,n] construction.

The LXoP[L,n] and LXoP[L,2,n] constructions. Let L € F3*" be an
invertible matrix. Define the family of functions LXoP[L,n] : (Perm(n)) x
{0,1}"1 — {0,1}™ by LXoP[L,n], (i) = 7(0]|i) & L(m(1]7)).

Moreover, define the family of functions LXoP[L,2,n] : (Perm(n))x{0,1}"~2
{0,112 by LX0P[L, 2, 1] (i) = (m(0]l)) & L(x(1]}i)) | (x(1l}i) & L(x(2])))

12



We will be interested in bounding OptEioP[L () and Optiggop[L o.n) () a8

a function of the parameters n, ¢ (and deriving similar bounds in the multi-user
setting). As in the case of SXoP[r,n], the distributions generated by LXoP[L, n|

and LXoP[L,2,n] are independent of the queries of the adversary. Let §£fq) :

F&*" — R=0 and {7%2)& : F2*" s R20 denote the density functions of samples

generated by the LXoP[L,n] and LXoP[L, 2, n| constructions, respectively.

2.4 Fourier Properties of p,, x

We list several results about Fourier properties of i, i, mostly taken from [12,14].

Proposition 6 ([12], Proposition 12 — Permuting elements preserves
Fourier coefficients). Let a € F5*". Let m : [k] — [k] be a permutation and
define o™ € FY*™ by (a™); = azqay for i € [k]. Then, i k(a™) = fin k().

Proposition 6 is repeatedly (and implicitly) used throughout the paper.
Proposition 7. For any o € @2”" such that ©;era; # 0 we have fin (o) = 0.
The following is a recursive formula for fi, («) (proved in Appendix A).

Proposition 8 ([14], Section 4 — recursive formula for [, x(«)). For
parameters k1 > kg > 2, let o € ]Fé“x" have #a = (N Z,| = ko. Then for any
jENZa = {ie [k‘l]l o; 750},

A 1 R Ny
g (@) = — S flug (@®69),
' N —k 1 ’
0 ienza i

0 if £ =7,
where a®0) € FA " (for i # j) is defined as (a®09)), = { a; @ a; ifl =1,

ay if ¢ A{i,j}-
Note that #a®0%) = kg — 1 if a; @ a; # 0 and #a®P0D) = kg — 2 if a; © a; = 0.
Proposition 9 (Recursive bound for [i,, x(«)?). For parameters ky > ko >
2, let a € FE*™ have #a = [NZ,| = ko. Then for any j € NZ, = {i €
[k1]: o # 0},

~ ko—1 N o
P (@ < =L S G G0
(N ko + 1) N ZAL)

Proof. By Proposition 8 and the Cauchy—Schwarz inequality,

i (@) = (— =7 >, Bk @V < Rl N i, (a®00)2,
iENZa\{5} ieEN Za\ {4}

13



Lemma 1 ([14], Lemma 4.1 — Bound on magnitude of level-t Fourier
coefficients). Let ky > ko and 0 < kg < N/2. Then, M= [u,, 1] < —~

TV
A slightly stronger bound than above was also proved in Lemma 1 of [12], but
we give the simpler proof of [14] in Appendix A.

Lemma 2 ([12], Lemma 2 — Bound on level-k Fourier weight). For 1 <
_ k/2

k < N/27 Wik[:un,k] < (ﬁ) .

Proposition 10. Let k1 > ko and 2 < kg < N/2 for ko even. Let o € @glxn

have #o = ko. Assume that o; = o for all i,j € [ki] such that o, a5 # 0
(i.e., i,j € NZy). Then, fink, (a) = (—1)ko/2ko=1ke=3 L. Moreover,

N—1N-3" """ N—(ko—1)
s < (0)] < —=.
Vio(ig) =7 V)

3 Framework for Bounding the Weight of u, ; on
Structured Subsets

In this section we describe our framework. Unless stated otherwise, missing
proofs are found in Appendix C. We begin with a motivating example.
Let » > 2 and k > 1 be parameters where rk < O(N). Suppose we want

to upper bound the expression Zaeﬁgxn Fn i (@®T)2 = ZaeMzk . Tk (@©7)2,

#a=k
where a®” = (", ..., a3"). As #a®" = r#a = rk, apply Lemma 1 and obtain
> Bnon@®) < N a])? £ N 3)
aEMZ, Tk

Another option to bound the expression is to use Lemma 2 and deduce

S B0V < YT B8 =W ] < (R
aEML, BEMZ .y i

The above bounds are generally far from tight, as they make little use of the
structure of masks we sum over. To improve the bounds, for every o € MZ, ,
apply Proposition 9 to a®” (with k; = kg = rk and j = rk), obtaining

rk—1
> Fnrk(a®)? < ==y S0 Anak((@®7)FE2
VEMLy i aeM™, , i=1
rk—1 (5)

:(Niiiﬁwz Z T e ((®T)2kD)2,

=1 aeMZ, |

Fix i € [rk — 1]. We analyze the term Eae/\/lﬁk . Tk (@O BTEDN2 - assuming

r > 3. As (a®7)®("%:0) changes only entries rk and i of «®”, then given i € [rk—1],
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(@®M)®0kD) fully determines o (and a®7). Indeed, for every £ € [k], ay still
appears in at least one entry of (a®")®("%4)  This property does not hold for
r =2, since for i = 2k — 1, (a®?)®(2k:2k=1) i5 independent of ay.

In other words, given i € [rk — 1] the i’th operation in Proposition 9 applied
to a®” (whose outcome is (a®")®("%%)) is invertible for r > 3. Partition all
a € MZ, , into two sets according to the non-zero index set of (a©)®rkd) Ty
defining S;o = {a € ML} ;s NZ(qomeern = [PE]\{rk,i}} and Si1 = {a €
M2y N2 qoryaina = [PE\{rk}}. As #(a®")®0h0) € {rk — 1,7k — 2},

S B (@) B0RD)?

A€My
= 3 Bnr((@)FCEN)2 4 S (O7)EE)?
OLGSi,o 01651',1

S Z //Zn,rk:72(6)2 + Z ﬁn,rkfl(B)Q

BEM™ o s BEMEZ k1 k1
- W:Tk_2 [,U/n,rk72] + W:Tk_l [Mnﬂ“k*ﬂ .

The above inequality crucially uses two properties: (1) for each ¢ € [rk—1], in the
(multi) set {(a®)®k). o ¢ M2, .} each mask appears only once due to the
invertibility of (a®")®("*9) and (2) all masks in each of {(a®")®*): o € S; o}
and {(a®")®(k): o € S; 1} have the same set of zero indices (which is trimmed).
Thus, the right-hand side sums over the squared Fourier coefficients of a superset
of the trimmed left-hand side masks. Combining with (5),

rk—1
Z ﬁ"’rk(Oé@T)Q = (Ni’f"i;}rl)2 Z (WZTk_Q[Mn,ka?] +W=rk_1[/‘n,rkrfl])
aeM?, 4 i=1

= ()2 (W ™2 [y o] + W g 1))

< (w2 () ™7+ () ) < At T

where the penultimate inequality is by Lemma 2. Comparing this bound to (4),
we get a significant improvement by a factor of about 2( Nikrk). More generally,
when the masks initially have level kg, then the improvement over the straight-

forward application of Lemma 2 is by a factor of about 2( N’?ko ).

Recursion. We can obtain improved bounds by applying Proposition 9 recur-
sively to each of the 2(rk — 1) sets {(a®")®%9: o € S; ;}ici—1],je{0,1}- The
outcome is a recursion tree and we apply Lemma 2 only at the leaves. Next, we
generalize the above analysis.

General Framework

We consider the following initial setting.
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Setting 1 Let k' > 0 be an integer parameter. Let S be a set of strings. Let
T:5— ]Iw;/x” be a mapping such that the following two restrictions hold:

(al) T is injective, i.e., for any «, 8 € S such that a # B, T(«) # T(B), and
(a2) there is a common non-zero index subset N' C [k'] such that for every
a €S, NZpy =N, ie., for any £ € [K'], T(a)¢ # 0 if and only if L € N.

The restrictions correspond to the two crucial properties that allow to apply
Lemma 2. Specifically, restriction (a2) implies that all & € S have #T' (o) = |N].

Our goal is to bound Y° . g fink (T(x))?.! We start from the initial mask set
{T(c): @ € S}, and invoke recursive calls of Proposition 9, where Lemma 2 is
applied at the leaves of the recursion tree.

Let B € @;X" be a mask. Consider the operation 3209 for j € N'Z5 and
i € NZg\{j}. The formula of Proposition 9 applied to 8 includes [N Zg| — 1
such operations, where j is fixed and i ranges over all N'Z3\{j}. Thus, we call
index j the primary index, while we call each i € NZ3\{j} a secondary indez.

Each recursive node v at depth d > 0 is labeled by a recursion stack which
consists of the sequence of d secondary indices i1, ...,iq € [k] for the recursive
calls up to this node, and a sequence of bits by,...,bq € {0,1}. For d’ € [d], bit
bar specifies whether the outcome of the XOR operation at index iy was zero or
not. These bits keep track of the set A/ that evolves during the recursion.

We will assume that there is a primary index selector, or PIS, which is an
application-dependent procedure that selects the next primary index (denoted
Ja+1) for the invocation of Proposition 9. The input to the PIS includes the
recursion stack v = (i1,...,44,b1,...,bq). Initially, the recursion stack is empty,
and thus the first primary index is fixed by the PIS implementation.? We remark
that the PIS also depends on the initial parameters of Setting 1, (S, T). However,
(8,T) are assumed to be fixed and hardcoded inside the PIS.

Fixing a PIS implementation pis, we define a recursive procedure up to depth
dmax (called caleW ;s 4,....) for upper bounding the weight > fin ke (T())?.

max

Definition of calcW. The procedure calcW,;s 4,... obtains 5 parameters:

(1) (current) recursion depth d,

(2) stack trace v = (i1,...,%d,b1,-..,b4),

(3) set Sy,

(4) mapping T}, : S, — ﬁ’;’xn, and

(5) set N, C [K'] such that for all o« € S, N2 7, () =Ny (Ty(a); # 0 & i € Ny).
Initially, S, T are defined by Setting 1, and thus d = 0, v = NULL, S, = S,

T, =T and N, = N. In most (but not all) of our applications, NV, = [k'], as the

level of all masks T'(«) for a € S will be k.

max

! Note that Zae/\/t"k . fin,rk(a®7)? analyzed in the motivating example is a special

case with k' = rk, S = M2, , and T(a) = T, k() = a®” (here N' = [rk]). Since
(al), (a2) hold we could apply Lemma 2 to derive (4).
2 For example, for T(a) = a®" analyzed above we initially set j; = rk.
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caleWois dp (dyv = (i1, ..« 4as b1, - .o, ba), Sy, Ty Noy)
1.k, < [Ny
2. If d = dpax, return (Nk_;k; Veu/2,
3. j < pis(v).
4. W+ 0.
5. For all i € M,\{j}:
(a) Vi,0 < (i1,...,id,i,bl,...,bd,O), Vi1 (il,...7id7i,b1,...,bd71).
(b) Define T,, (o) = T,,(a)®W) for every a € S,
(C) TUi,O — TU'H Tﬂi,l — T'Uz"
(d) Sv, o < {a€8y: Ty ()i =0}, Sy, + {a € Syt Ty, (@); # 0}
() No,o = No\{i, g}, Moy, = No\ {3}
() W =W + calcW pis d (d 4 1,030, S0, o, Tos s Nus o)
W W + caleWyis 4, (d + 1,051, 80, 1 T, s Noy 1 )-
6. Return (N]_C‘,C,+1)2 Ww.

Thus, calcW implements the recursive invocation of Proposition 9, where Lemma 2
is applied at the leaves in the second step. As in the motivating example, for
each i € N,\{j} we need two recursive calls, since the non-zero index set of each
mask T, (a)®?) can be either M, \{j} or N,\{i,;} (and this index set must be
consistent in each call to calcW).

Remark 3. Assume that S,T and pis are fixed. Since the output of pis only de-
pends on the recursion stack (but not on specific masks), the primary indices are
uniquely defined by the recursion stack v, even though v does not include them
explicitly. More generally, the 4 parameters d, S,, T, N, of calcW are uniquely
determined by v. The only reason we explicitly include them as parameters of
calcW is to simplify its description.

Applicability of calcW. The correctness of calcW will rely on the assumption
that the two restrictions of Setting 1 hold at all internal nodes, as they will be
crucial for applying Lemma 2 at the leaves. Since for b € {0,1} each set S,, ,
is defined in correspondence with the non-zero index set N,, ,, restriction (a2)
indeed holds at all internal nodes. However, restriction (al) may not hold recur-
sively, and it requires special treatment depending on the specific application.
We formalize the corresponding conditions in the following definition.

Definition 6 (Applicability of calcW). calcW is applicable up to depth dmax
with parameters (S,T) and a PIS pis, if the following conditions hold:

(b1) the pair (S,T) satisfies the restrictions of Setting 1 with 2dmax < |N| (N
is defined in Setting 1), and

(b2) considering the recursion tree with root calceW ;s ... (0, (NULL),S,T,N):
for every node v at depth at most dmax — 1 such that j = pis(v), for all i €
N A\{j} and a € S,, T, () can be (uniquely) recovered from Ty, () = Ty (a)®U4)
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Restriction (b2) needs to holds only up to depth dpa.x — 1 as Proposition 9 is
not used at the leaves. Before formally analyzing calcW, we simplify the second
condition of Definition 6. This simplification will be useful in applications.

Proposition 11 (Sufficient condition for applicability of calcW). Given
(8,T) and a PIS pis, assume that

(c1) the pair (S,T) satisfies the restrictions of Setting 1 with 2dmax < |N| (N
is defined in Setting 1), and

(c2) considering the recursion tree with root caleW s a,... (0, (NULL),S,T,N):
for every node v at depth at most dyax—1 such that j = pis(v), for alli € N,\{j}
and o € Sy, T,(a); can be recovered from T, (c).

Then, calcWy is applicable up to depth dya.x with S,T and pis.

Proof. Condition (b1l) of Definition 6 holds by assumption. We prove con-
dition (b2). Fix a node v of depth at most dpa.x — 1 and let a € S,. Ac-
cording to Definition 6, we need to prove that T,(«) can be recovered from
T,,(a) = Ty(a)®U4 (for all i € N,\{j}). Since only entries j and i are mod-
ified in T, () by the mapping T,,, it is sufficient to prove that both T,(«);
and T, (a); can be computed from T, (o). By assumption, T, (a); can be recov-
ered from T, (). Moreover, since T, (a); = (T,(a)®0D); = T,(a); ® To(a);,
then Ty (a); = T, (o) @ T, (cr); can also be recovered from T, (c). Hence both
conditions of Definition 6 hold. |
The following definition will be useful in applications.

Definition 7 (Unaltered index). An index ¢’ € [K'] is called unaltered at a
node v = (i1, ...,%4,01,...,bq) if ¢ has not been selected as primary or secondary
index. Namely, €' # jo and £/ # ig for all d' € [d].

The definition is motivated by the simple property that if £’ is unaltered at node
v, then for any o € S, Ty(a)er = T'(cv)pr (where T is the initial mapping at the
root). This property holds since the mappings T, at any node v only modify
the entries of the primary index j and secondary index i.

Denote by U, the set of all unaltered indices at node v. At the root node v,
U, = [K']. Since every child of any node v has one primary and one secondary
index, a node at depth d has |U,| > k' — 2d.

max

Analysis of calcW. The main result regarding calcW is given below.

Lemma 3. Assume that calcW is applicable up to depth d = dpmax > 0 with
parameters (S, T) (where T : S — F5 *™) and a PIS, pis. Assume further that
indtially #T (o) = ko < k' satisfies 2d < ko < N/8 for all a« € S. Then,

1 (k0)?4 (ko — 2d)ko/2—d ko )ko/2+d

fin i (T(a))? <2 <2d
O%;SM w(T(a))” < (N — kq)ko/2+d = (N—ko

The proof of Lemma 3 is given in Appendix C. Note that the improvement
over the naive application of Lemma 2 is by a factor of about 2d(Nkf0kO)d. This
emphasizes the importance of defining a PIS that allows applying calcW up to
a large depth d. Appendix C also describes possible variants of calcW.
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4 Indistinguishability Upper and Lower Bounds for
SXoP[r, n]

In this section, we analyze the SXoP[r, n] construction, proving the main theorem

below. Unless stated otherwise, missing proofs are found in Appendix D.

Theorem 1. Assume that rq < N/8 and N > 2'3r. The following bounds (de-
pending on r) hold.

Odd r > 3. OPtEY (@) <2717 =z < O, ( Nﬁo.s) , and
6
OPZEIE i) <20 Lot < o (Yias)
where the second inequality also requires 27 ~0-5p" ffi'};’; < %
r=2. OPLY ppo. (0) < 5—]3 <o(£).
Even r > 4. Optggop[r n]( q) <2TT/2N 7z < O, (%) , and
Optrsn;g%r[im],u(qmam) < min (rr/2 Z\\]/T%Q ,2r r/2 7;31;17;) (8)
<min (0. (7)o ().
where the first bound on Optrsn;;%r[i7n}7u(q7,Lax) also requires r"/? N%Q <i

Lower bound for even r > 4. Optgg Pl n]( q) > 2_16_T/27"(T_1)/2ﬁ > (2, (%) .

9)
Note that for r > 4, the theorem proves matching upper and lower single-user
bounds of @, (NT/Q) The bound for » = 2 and both bounds for odd r > 3 are
tight, as they are matched by attacks described in previous works.

The proof relies on the following three lemmas (proved in the remainder of

this section) regarding the density function 1/( ,)c, generated by SXoP|[r, n].

Lemma 4 (£' bidirectional bounds on ﬁy(”)c for even r). Assummg k<

N/4 and r is even, 2\/% <E R \ZaeM,leix\r(fk( )Xa(2)] < ()

Lemma 5 (Variance and weight bounds for VT(LZ()I) Assume that N > 100
and ¢ < N/16. Then, > {_, W= < 1;3‘122, and Var[p?)] < 4

N

Lemma 6 (Variance and weight bounds for fot)] with r > 3). Assume
2

that N > 283y rq < N/S Then, for odd r > 3, Var[uy(l ()1] < 92rp2r ~a—t. For

evenr >4, S0 _ W, M) < g2r+ip2r Ngf_g, and Var[p{')] < 2r"

q
Nr—1-
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Proof overview of Theorem 1. The proof of Theorem 1 is in Appendix D.
Most upper bounds follow directly from the variance bounds of Lemma 5 and
Lemma 6, combined with Proposition 5. The more interesting proofs for even r
use Lemma 4 with Proposition 3, as summarized below for r > 4.

We use Proposition 3 with § = M2, = {a € FI*": #a = 1}. Thus,
combining (1) in Section 2 and Proposition 3 we obtain

2OptSXoP[r n) (q) S EIN]FgX" ‘ ZGEM" /V\7(’LT¢)1( Xa | + \/ZQEM" V”T;( ) .
By Lemma 6 the

By Lemma 4, the first term is bounded by W < Or(F52)-

T

second term is bounded by /2% 12" od— < O, (k= ). Summing up the terms

(noting that r/2 < r—1asr > 4), we conclude Optggop[r n]( q) < Or(Fi2)s
asymptotically proving the first inequality of (8).

For the other direction, by (1) and Proposition 3,
QOptg;(op[r n](q) e ZaeMn . Vn,q( x)| — \/ZaeMn 1/7,7,)1(04)2.
By Lemma 4, the first term is lower bounded as \/‘ET (L= ). We have

already upper bounded the second term above by O,.(

1), and thus the first

N=
q) > (%), asymptot-

term dominates the second. This implies OptSXoP[T n](

ically proving (9).

()

4.1 Relation Between v, ; and iy,

We first establish the connection between 177(:1)@ and L, rk-

=(r )

Proposition 12 (Relation between 7, ; and i, ). For any o € @2”",

PU(@) = fini(@°7) = fin,e(a®T), where un,rm@r) = T (a§7, ).

Proof. By definition of SXoP[r,n] and Proposition 1, for any o € @2“ xn

@)= B a@l= B [a(Su’... &)

xNVT(zT;c Y1k~ rk =1 =1

~ o E HXO‘7 (K) E [H Xa(yge)k)]

o 1..
Y1 R~ Hn ek yl__z’\’l"n,rk

i€[k] L€[r]
Le(r]
1 T ~ or
= B [Xaor e 0] = Finan (@)
Y1 kM0, rk
Finally, fin rx(a°") = fin 1 (a®") holds by Proposition 6. [ ]

Lemma 5 is proved in Appendix D. It is based on bounds similar to (3)
and (4), proved in the motivating example of Section 3.
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4.2 Proof of Lemma 4 and Optimal Adversary

Proof (of Lemma 4). Let 8 € @2”” be any fixed mask with #5 = 1. Also,

let o € ITT’;X" be a mask with #a = 1. Observe that a°" has #(a°") = r
and all its r non-zero elements are equal. Since r is even, by Proposition 10,
Lok (@°7) = Lnk(8°7) is independent of the actual non-zero element. Fixing
T € ]Fg *"and applying Proposition 12 and Proposition 10,
> @@ = D k(@ )Xa(@) = Bk (BT) Y. Xala).
aeMglyk aGMglyk aeM?
(10)

For o € @2”” with #a = 1, let in(a) be the unique index with a;,, (o) # 0. Then,

Z Xa(m) = Z H Xou; (:El) = Z Xa7n<a) Tin( a) Z Z Xv

aeM, aeMZ, . i€[k] aeM, =1y efp
770
k k
=3 (D xy(@i) — xol@:)) NZ Doy (@) k=N (L(z; = 0) — k
=1 e —1 o~y i=1

where the sixth equality is by orthogonality of the characters (as x(z;) =
X, (V) = Xa. (V) X0(7)), and Z, = |{i € [k]: z; = 0}|. For 2 ~ F5*", the random
variable Z, is binomially distributed with number of experiments k and success
probability +, and thus satisfies E[Z,] = £. Hence, N - Z, —k = N(Z, —E[Z,]).
Combining with (10),

S @A) = N fin k(87 (Ze — B[Z]). (1)
aeM?,
Hence, the expression we wish to bound satisfies
E | Y 7 @)xa@)| =N [nw(B") E_|Z:—E[Z).
z~Fy " Q€M™ , z~ 3"
| 1
@)
3% <E,|Z, — E[Z,]| < 2. Since E[Z,] = £ satisfies 0 < E[Z,] < 1,
B|Z, - E[Z,]| = E[(E[Z:] = Z2)(W(E[Z:] > Z2) = 1(Z: > E[Z,]))]

(BlZ:] = Z)(1(Ze = 0) = 1(Ze > 0))]
(E[Zs) — Z4)(2-1(Z, =0) — (L(Z, = 0) + 1(Z, > 0)))] (12)

=2E[(E[Z.] - Z.)1(Z. = 0)] - E[E[Z,] - Z,] = 24 P1[Z, = 0].

x

. It remains to prove that

By Proposition 10, \/— < |tn,r1(8°7)

Finally, Pr[Z, = 0] = (1 — %)k <1, and as k < %7 (1-
|

Pz a-pves
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Optimal adversary for SXoP[r,n] with even r > 4. For z € F3 " let
Z; = {i € [q]: ©; = 0}|. Define the adversary A(z) = 1(Z, = 0). We argue that
A is optimal. Similarly to the proof of (9) in Theorem 1, its advantage is

| Bl (2) = DL(Zx = 0)]| = | E[(D_ 7} (@)xa(2)1(Z: = 0)]

a#0

> 1B A<f;<a>xa<x>>n<zzom¢Zaem2 P)(0)?.

=1,q

By (11) in the proof of Lemma 4, there is some C' independent of = such that
ZaeMn 37(:’()1( YXa(z) = C(Z, — E|Z;]), and the first term is

C-BI(Z:~ElZ)1(Z: = 0)| = 3 BIC(Z~EIZD)| = 3B1) |\, Pg(e)xa(@)]

where the two equalities are by (12) and the definition of C' above. Thus, ignoring
the second term, the advantage of A is lower bounded by £ E, | Daemr, ﬁ,sfl)l(a)xa (z)],
=1,q

which dominates the optimal advantage by the proof of Theorem 1 (the second
term is negligible). Hence, A is optimal up to a negligible factor.

4.3 Application of Main Framework and Proof of Lemma 6

We apply our main framework and use it to prove Lemma 6.

Proposition 13. Assume that rk < N/8. Define ¢, = 0 if rk is even and
Crk = % if rk is odd (i.e., ¢ = T’““i;‘“) Then, for anyr >3

(r—=Dk+crk
=k1,(r)7] < 9\ o(r—2)k/2+cri L
W [V’]_(k>2 (Nrk '

Proof. Applying Proposition 12,

WO = (W =) Y 3@ =) > Fink(@®)?
aeM?Z, aeML,
(13)

We would like to bound ZaeMn Ak (a®7)? using Lemma 3. We start by

introducing several definitions referrlng to Setting 1 and then define the PIS,
pis. First, define § = M2, , = {a € FE*m: #a = k}, and T(a) = Ty x(a) =
a®” = ((1)°",..., (ag)°") (using notation of Lemma 3, here kg = k' = rk).
Given an index Ce k], forall ¢/ € [(0 —1)r+1,0r], T(a)py = (a®")p = ay.
Thus, for a recursion node v, if £/ € [(£—1)r+1, £r] is unaltered by Definition 7,
then T, () = T(a)pr = ay for every a € S,,. We call an index ¢ € [k] redundant
(for a node v) if at least 3 of the r indices in [(¢ — 1)r + 1, £r] are unaltered.
Given a recursion node v, let £ € [k] be the largest redundant index. The PIS
pis selects as primary index the largest unaltered index j € [(¢ — 1)r + 1, ¢r].
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Let d = dmax = f@} We first prove that there is always a redundant
index for nodes up to depth d — 1 = (%] -1

Every recursive call can remove at most 2 unaltered indices. Thus, the number
of unaltered indices of each node at depth d — 1 is at least ¥’ — 2(d — 1) =
rk— 2[(’“7T2)k] +2>rk—((r—2)k+1)+2 = 2k+1. By an averaging argument,
there exists ¢ € [k] such that [({ — 1)r + 1,¢r] contains at least [25l] = 3
unaltered indices. Namely, ¢ is redundant. This proves that pis is well-defined
up to depthd —1 = [%] —1 (at the leaves of depth d we do not invoke pis).

In order to apply Lemma 3, it is sufficient to prove that the two conditions of
Proposition 11 hold. Clearly, the pair (S, T') satisfies the restrictions of Setting 1,
and condition (c1) holds (note that 2d = 2[@] <(r—2)k+1<rk=k).

We now prove condition (c¢2). Specifically, we prove that for a node v such
that j = pis(v) and a € S, Ty(); can be computed from T, (o) = T, (a)®0:)
(where i is a secondary index).

For a node v we select a primary index j € [rk] such that T, (a); = oy and
since ¢ is redundant, T;,(a)e = ay for at least 3 indices ¢/ € [(£ — 1)r + 1, 4r].
As T, (a) = T, ()®9) | and T,(a)®U") modifies 2 entries of T, (a), then oy =
T, (), still appears at least 3—2 = 1 time in T}, («). This proves condition (c2)
as required.

Applying our framework of Lemma 3 (with d = [(ng)k] = (Tf)k + Crk,
ko = k' = rk), we obtain

Z ﬁnmk(a@r)Q < 2d( k' )k//2+d _ 2(7-—2)k/2+c7.k( rk k)(r_l)k—i_crk'

N—Fk’ N—r
aeML,

Combining with (13) completes the proof. |

The proof of Lemma 6 (given in Appendix D) uses the bounds on W=* [w(f()l] of
Proposition 13 and additional simple bounds to analyze several sums of weights.
It essentially shows that in all cases the lowest-level weight bound dominates the

sum (except for r odd, as for k =1, Wzl[uy(,f,)l] =0).

5 Indistinguishability Bounds for LXoP[L, n]

In this section, we state and prove our main theorem regarding LXoP[L,n].
Missing proofs are given in Appendix E.

Theorem 2. Assume that the function L'(x) = x @ L(x) is a permutation on

. f
F2. Given that N > 2'° and ¢ < N/16, OptErXOP[Lyn](q) < A;llqﬁ.
: max -prf max
Moreover, assuming % < %, Opt?%%rwn]’u(qﬂmz) < %.

The proof uses the following lemma, proved in the remainder of this section.

Lemma 7. Assume that the function L'(x) = x @ L(x) is a permutation on Fy.

Given that N > 219 and ¢ < N/16, Var| ;Lq)] < 6;\1[%2.

Proof (of Theorem 2). Immediate from Lemma 7 and Proposition 5. |
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5.1 Elementary Results
We establish the connection between the Fourier coefficients of fflLk) and fip 2k

&

Proposition 14 (Relation between . and Hnak). For any a € I@’;X",

& (@) = Fine(o, LT (@) = Bnzi(a1, L (1), .., L (o).
Proof. By definition of LXoP[L,n] and Proposition 1, for any a € @SX"

€)= E a@l= _E (" oLe®).....0 @ L))

2
I"“En,k Yy g Hn,2k

1) (2)

= E [Xa,oz(yl,,k;a L(y1k))] = E [Xa,LT(a)(y;l,)ka y?)k)] = //’ZH,Qk,‘ (057 LT(O[))-

1,2 1,2
Y1, k~Hn 2k Yy~ Hn, 2k

Proposition 15. Assuming that L' (z) = x® L(x) is a permutation on FY, then
W=ehia] = 0.

Proof. By Proposition 14,

Wl = (9) Z . g;{g(a)z _ qZQEMz . Tin.2 (v, LT (@))2.

For o € IE?S # 0 we have a ® LT (a) = (L')T(a). Since L’ is a permutation, so is
(L")T. Since (L")T(0) = 0, this implies that (L')T(a) # 0, hence o ® LT () # 0.
By proposition 7, we deduce fi, 2(a, LT (a)) = 0, implying W= ,(LLq)] =0. N

5.2 Application of Main Framework and Proof of Lemma 7
We use our main framework to prove Lemma 7.

Proposition 16. Assume that the function L'(xz) = x & L(z) is a permutation
on FY, and assume that 2 < k < N/16. Define ¢, = 0 if k is even and ¢, = %
otherwise (i.e. ¢, = 2942) Then,

kk+2ck (k o 2Ck)k/2fck
(N — 2k)3F/2+ex

- q c
W) < ()20
Proof. Based on Proposition 14,

WHER =) Y eR@?=() > fmale LT(@)%  (14)

aEM, L aeEMZ, o

We now use Lemma 3 to upper bound ZaeMik . fin2k(a, LT (a))? =

Yaemn,  Fnan(er, L (1), -, ok, LT (ak))?.
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We start by introducing some definitions referring to Setting 1 and then define
the PIS pis. Define § = MZ,; ; = {a € Fh*n: da =k}, and T(a) = Tp(a) =
(a1, LT (aq), ..., ak, LT (ay)) (using notation of Lemma 3, kg = k' = 2k).

Given a node v, we say that an index ¢ € [k] is redundant if both 2¢ — 1
and 2/ are unaltered by Definition 7. Note that if ¢ is redundant, then for every
a€S8,, Ty(a)y_1 = ap and Ty(a)ey = LT ().

At a given recursion node v, the PIS pis will select as primary index the
largest index 2¢ — 1 such that £ € [k] is redundant.

Let d = dmax = [k/2]. We first prove that there is always a redundant
index for nodes up to depth d — 1 = [k/2] — 1. Indeed, every recursive call can
remove at most 2 redundant indices, and thus at depth d — 1, we have at least
k—2(d—-1) =k —2[k/2] + 2 > 1 redundant indices. This proves that pis is
well-defined up to depth d = [k/2] (at leaves of depth d we do not invoke pis).

In order to apply Lemma 3, we prove that the two conditions of Proposi-
tion 11 hold. First, the pair (S,T) satisfies the restrictions of Setting 1, and
condition (c1) holds (note that 2d = 2[k/2] < k+1 < 2k, as k > 2).

We now prove condition (c2). Namely, for a node v such that j = pis(v) and
a € S,, we prove that 7, (); can be computed from T, (o) = T, ()®) (where
i is a secondary index).

For a node v we select as primary index j = 2¢ —1 for ¢ € [k] redundant, and
we have T, (a); = T, ()21 = oy and T, (a)2r = LT (ap).

If 4 # 2¢, then

Ty, ()20 = (T () 1)y = Ty (@)ar = LT (o),
and we can compute L™ (T, (a)2¢) = ap = T,y(c)j. Otherwise, i = 2/, and
T, (@)2e = (T (@)® P 129)op = T (@)201 BT, ()20 = ae® L™ () = (L) ().

Since (L')T is an invertible linear transformation, we can compute (L") =T (T}, (a)2¢) =
oy = T, (). This proves condition (c2).

Applying our framework of Lemma 3 (with d = [k/2] = k/2+ ¢y, ko = k' =
2k), we obtain

R n2d . _onk'/2—d
S0 nan(on, LT (1), . op, L (a)? < 20 G20

aEMZ,
- 2k/2+ck (2k)k+2ck (k_gck)k/z—ck - 23k/2+3ck kk+2ck(k_20k)k/2—ck
- (N—2k)3F/2+ep, - (N—2k)3k /2T ek
Combining with (14) completes the proof. |

The proof of Lemma 7 (given in Appendix E) uses Proposition 16 and shows
that the bound on W=2| ,(qu) | dominates Var| ,(qu) ].

6 Indistinguishability Bounds for LXoP[L, 2, n]

In this section, we state and prove our main theorem regarding LXoP[L, 2, n].
Missing proofs are given in Appendix F.
Throughout this section, we assume that L'(x) = x & L(z) is invertible.
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Theorem 3. Given that N > 210 and ¢ < N/32, OptP: (L.2,m] (q) < 24

LXoP S Nis-
. 32 x -prf 32 x
Moreover, assuming ‘]qu“a <1 Opt§§o¥[h27n],u(qmax) < %

The proof is based on the following two lemmas, proved below.

Lemma 8. W=[¢(" 2,q] M%
Lemma 9. Given that N > 2'° and ¢ < N/32, >} _, W:k[f,(fg’q] < 21?\;‘12.
Proof (of Theorem 3). By Lemma 8 and Lemma 9, Var[{n 5.4 =
10.5 2 11
[§n,27q] e 1;‘(3\[ 2)2—|—2 s < 2N§ ,as N > 210 The result follows
from Prop051t10n |

6.1 Relation Between &Lg , and [in 3, and Proof of Lemma 8

We first establish a connection between the Fourier coefficients of f( o and

those of py, 3k For a = (aq,...,ax) = (agl),ag ), . ,(cl) (2)) € FkXQ" denote
t(a) = (agl),LT(Ong)),Ong)@LT(agU) a’gl),LT(QIEQ)) (2)@LT( (1))) c I’B:g)kxn
Thus t(e;) = (&Y, L7(a?),0? @ LT (V).

Proposition 17 (Relation between ESLLQ) p and [i, 3x). For any a € @2”2"

g(nLQ)k() fin 3k (t()).

Proof. By definition of LXoP[L,2,n] and Proposition 1, for any a € ]@’2”2"

)

= B a0 e LG @ L) @ L) © L))

_ (1) (2) (3)
= 2B Do WX 0 yea®, XL ) (0175)]

Y1 % ot 3k
~ 1 1 2 2 —~
=finan(al), LT (@) @ o) LT (01D)) = finan(t(@).

The proof of Lemma 8 is given in Appendix F. It uses Proposition 17 and
simple calculation. |

6.2 Basic Properties of t(a)

We prove basic properties of t(a). For a € @2”2", recall that #a = |{i €
[k]: a; # 0} is the size of the support of o (over elements of F2"). On the other
hand, for t(a) € F3**" #t(a) = |{i € [3k]: t(a); # 0}|. In addition, note that
for i € [k], #t(a;) € {0,1,2,3}. In fact, as proved below, #t(«a;) € {0, 2, 3}.
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Proposition 18 (Basic propertles of t(«a )) For a=(aM a?) e @%" with
#a=1 (ie., a#0), let t(a) = (), LT (a®),a® @ LT (aM)).

Then, #t(a) € {2,3}. Moreover, if #t(a) = 2, denoting (L*)T(aM)) =
LT(LT (o)),

t(a) € {(0,LT(a!?),a?), (@, 0, LT (o)), (@, (L*)T(a!V),0)}.

Proof. We iterate over the 3 possibilities for a zero entry in ¢(«).

If o) = 0, then a® # 0. We have t(a) = (0, LT (a(?), a®), where LT (o) #
0,as LT(0) =0, a® #£ 0 and LT is a permutation. Hence, #t(a) = 2.

Similarly, if LT (a(®) = 0, then a® = 0 and hence o) # 0. Therefore,
#t(a) = #(aM,0, LT (o)) = 2.

Finally, if «® @ LT (M) = 0 then o® = LT (aM), hence o™ # 0. We have
4(a) = #(a®, LT(LT(0D)),0) = £, (I2)T(a1),0) = 2, as ol £ 0,
(L?)T(0) = 0 and (L*)T is a permutation. [ |

We conclude that if #a = k (for a € F5*?"), then #t(a) € [2k, 3k]. Denote
#Hoa = |{i € [k]: #t(a;) = 2}| and #3a = #a — #oa = |{i € [k]: #t(ay) = 3}
Therefore, if #a =k and #3a = m then #t(a) = 2(k — m) + 3m = 2k + m.

6.3 Application of Main Framework and Proof of Lemma 9

We apply our main framework and use it to prove Lemma 9.

Proposition 19. Let2 < k < g < N/32, and define ¢y, = 0 if k is even and ¢, =

% otherwise (i.e. ¢, = k mod 2 mgd 2). Then W™ [ffLLQ) q] ( )27k/2+36k(7N]_“2k)3k/2+c’“.

Overview of the proofs of Proposition 19 and Lemma 9. The proof of
Proposition 19 is given in Appendix F. It is a generalization of the analogous
proof of Proposition 16 for LXoP[L,n], but is more technical, as it takes into
account the different mask structures according to Proposition 18.

We begin by applying Proposition 17 and Proposition 18 and deducing

WHER J=OWFER I =) Y &= D fins(t(@)?

aeM?n | aeMZ
k
= Z) E E :U/n 3k:< § E Mn 3k )
m:()aEMZ:TL,w#SQ:m m=0 qecS(k,m)

(15)

where S*®™) = {a € MZ}M #s3a = m}. Fix a pair (k,m). We upper bound
> aestem fngk(t(a))? using Lemma 3. According to restriction (a2) of Set-
ting 1, we first need to partition the set S*™) into subsets such that the (trans-
formed) masks in each subset, t(a), share the same non-zero entries (over @3)

For every a € S*™)  there are m indices i with #¢(c;) = 3 and k—m indices
i with #t(ag) = 2 (thus #t(a) = 3m + 2(k — m) = 2k +m for a € SF™),
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By Proposition 18, every i € [k] with #t(a;) = 2 has 3 possible structures that
determine which 2 of its 3 entries are non-zero over @g (while every ¢ € [k] with
#t(o;;) = 3 always has 3 non-zero entries). Therefore, t(a) for a € S*™) has
( :1 ) 3F=™ possible non-zero index sets (with non-zero values over @3)

We thus partition the set S*™) into (:1) 3+~=™ subsets, each with a common
non-zero index set for t(a). We then apply Lemma 3 to bound the contribution
of each subset of S(*™) to the total weight very similarly to Proposition 16.
The Lemma 3 parameters we use are d = k/2 + ¢; (as in Proposition 16) and
ko = #t(a) = 2k + m (instead of ko = 2k in Proposition 16). Ignoring terms
of order 2°®) Lemma 3 bounds the weight for each of the (fn) 3k=™ subsets of
Skm) by

QO(k)(Nkf%)kO/2+d < 2O(k)(N2_k2J]rng)3k/2+m/2+Ck )

Since ( )3’“’7” <4k < ZO(k), then

k
> finak(t(@)?
acSk,m)
k k—moO(k 2k+m 3k/24+m/24c O(k 2k+m 3k/24+m/24c
< ()30 20W) (RGBT m e < 9O (QAm 3R/ Brm 2,

Combining with (15), the total weight is bounded as

k k
WHER T< @Y 3 fnsn(t(@)? < (1) D 200 (Zhtmsk/2m/2 ke,

m=0 oSk m) m=0

Observing that the term with m = 0 dominates the sum (as k < ¢ is bounded),
we deduce
=k L O c O c
W) < (200 () ™20 < (270 (k)™
as claimed in Proposition 19 (up to the constant factor hidden in 2O(k)).
Finally, the proof of Lemma 9 (given in Appendix F) uses Proposition 19

and shows that the bound on W:2[57(1?2)7q} dominates the sum Y {_, W:k[§£?£7q].
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A Missing Proofs and Details from Section 2

Proposition 20. Let a,b,c,d,k € RZ°. Define the functions B(k) = (ak +
bkt and C(k) Then

_ 1
— (b—ak)ckta-

B(k+1) alch+d) Clk+1) 1 _a(ck+d)_
< k41 Ce ak+b < b—a(k+1)
B < (a(k+1)+0b) , and oS (b—a(k—i—l))ce ,

where the last inequality assumes b > a(k + 1).

Proof (of Proposition 20). We have

B(k+1) _ (a(k+1)+4b)cFtD+d (g(k41)4b)FHD+ (q(k41)4p)ck+e
B(k) (ak+b)F+d = " (a(k+1)+b)cFtd (ak+b)cF+d
’ td ’ a(ck+d)
=(a(k+ 1) +b)°(1+ 755)"" < (a(k + 1) + b)%e ak+b .

and

Ck+1) _ (b—a(k+1))=**TD=4 _ (h—a(k+1)) = TD74 (b—a(kt1))—F¢

) (b=ak) =T = (bma(k+D)"F T (bak) F7
1 ktd L _a(ck+d)
= G=atyr U+ =ty < gmarmre? D

Proof (of Proposition 3). We have

2SD(p,10n) = E_p(@)—1= E | Y Fa)xa(z)l

X 3
IN]FS " ZEN]FgXﬂ —axn
a€clfy

a0

> Bla)xalz) + ) Bla)xale)]

a€cS a€ES

Aopa@l+ B 1Y Fa)a()
#te aeS

E |
xNIFan

A
=
AN
©

For the upper bound, it remains to prove that E, pgxn I D acs Pla)xalz)| <
V2 aes P(@)?. Applying the Cauchy-Schwarz inequality,

E 1Y fla)xal)] < \/ZNIEXJZ B(0)xa (@)]?

a:w]Fg Xn il
a€eS

= | > #@eB) E_[xal@)xs@)]= [> @e)?

< _ ~FIX™ -~
(,8)ES XS ot «€S

where the final equality is by orthogonality of the characters.
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For the lower bound, observe similarly that

@)+ Y )

a€eS =3

B0 ()| - FW|Z

a€eS =

z E P(a
N]qun
Tts a€S =3

2 SD(QOa 1qn) =

Y \
2 =
x
] 20
‘G
>
Q

V
=
g
E
X
2

|
Proof (of Proposition 5). First, by (1) and Proposition 3,
Optly' () = SD(¢", 14n) < 5/ Varlg).
Second, by (2), Proposition 3 and Proposition 4,
Opt P (@maz) = SDPH ™), Lugpun)
< \/T < L fuVarlg]
|

Proof (of Proposition 7). Let y € F} be arbitrary. Observe that for z € F5*™,

W k() = k(21 B Y, ..., zr By). Therefore,

fng(@) = B Jpnp(@)xa(@)] = B (pnr(e @y, 2k ©y)xales, .. 2p)]

kXn k
o~y z~Fy

- EX7L[NTL’k(x1 DY, Tk O y)X"‘(xl QY,..., Tk D y)}X(EBq‘,e[k]ai)(y)

INJF;”

= E n[Mn,k(x)Xa(x)]X(éBie[k]ozi)(y) = ﬁn,k(a)X(@ie[k]

IN]FI;X

a,)(y)

If i 1 (o) # 0, we divide both sides by fin, x(a). We deduce that for every y € F3,

X(@,cmas) (¥) = 1, implying that @;epya; = 0.

Proof (of Proposition 8). Denote kg = k. We assume that N Z,, = [ko] = [k],

which is possible without loss of generality by Proposition 6.

We further assume that k; = k, as adding or removing zero elements from «
does not change fi,, ;(«). Finally, using Proposition 6 we assume without loss of
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generality that j = k. By Proposition 1,

fnk(@) = E [xa(z)] = E E Xa(T1. k=1, Tk)]]
T,k Tpin k1 T ~F\{z1,..o Tk 1}
__ N
= N—kt1 x"’N]:?,k—l[xkE]Fg Xa(®1. k=1, 28)]]
k-1
k=1 E E N L
N—k+1 J}NU"L,k—l[ka{JCl,uwﬂ')k—l}[X (@11 xk)]]
N
= N—k+1 mwyl:?k7 [Xal..k—l (xl..k—l)} mklg]Fg [Xak (l'k)]

- N= k+1z Xa L1.k—1,T )]

zN:U'n k—1

k—1
=0—- =71 k+1 Zz [X(oq 1, Bk, 1.k 1)(931 s—1)]
~Hn,k—1
1=1
— 1 ~ B(k,i)y _ (ki
= T N—ok+I Z“n,k—l(o‘ 1)) = T N—k+1 k+1 Zl‘nk bt
=1

where in the fifth equality we used E;, ~ry[Xa, (7)) = E[xa,X0] = 0, which
holds by orthogonality of characters since oy, # 0. |
Proof (of Lemma 1). We may assume that kg = k1 = k, as adding and
removing 0 elements from « does not change fi,, x(a). The proof is by induction
on k.
For k = 0, we have M= 1, x] = 1 = %N

(5)
Next, let o € IEA?SX" have #a = k. For k = 1, by Proposition 7, |f, x(a)| =
\/(17). Proposition 8 and the triangle inequality,

1

|ﬁn,k( ) =

0<

T N—kEE1 k+1 Zﬂnk S k_;,_lZ“Lnk ’i |

We have #a®®9) ¢ {k — 1,k — 2}. Assume that for m values of i € [k — 1],
#a®F) =k — 2 holds. Then, by the induction hypothesis (assuming k < N/2),

|ﬁn,k( )| < N— k+1M [,un k} + N k+1M_ B [Nn,k]
< 1 k—1—m 1 k—1 1

+ <
— N—k+1 N—k+1 — N—k+1
VYD) Y6 VYD)
_ ﬁ\/ﬁﬂ 1
~ N—k+1 N N-1°""" N—(k-3)

< k—1 k—2 k—3 1 _ 1
N—k+2 k+2N 1\ N N=1" " N=(k=3) [Ny

()

~—
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Proof (of Proposition 10). We assume without loss of generality that ko =
k1 = k. The proof is by induction on k. By Proposition §,

k—1
fink () = ,N_;k“ Z ﬁnyk(a@(k,z)).
i=1
For k = 2, this gives — 527 i 2(a®®V) = — L as #(a®@1) = 0 and hence

ﬁn,Q(O‘@(Zl)) =1

For k > 2, for all i € [k—1], a®® is equal to a®®1) (up to a permutation of
the elements). Therefore, [, x(a) = —Nk%]élﬁnyk(a@(k’l)). Since #(a®k1)) =
k—2, and o®®1 has all non-zero elements equal (as a), we apply the induction
hypothesis to a®*1) and deduce

~ _ k—1
Mn,k(a) = _N7k+1(_1) N—1'""N—(k—3)

V&)

k/2—1 k-3 1 _ (_ )k/2 k—1 k-3

1
N-1N—-3 " N—(k-1)"

Next, note that |f, (a)| <

p

\/Em"k( )‘_\/Ek ] ?é " N- (k 1) —\/N (k= 1)\/11\6/ 111]\3 22 'N—(lk—l)

holds by Lemma 1. It remains to prove

that

< |fin, k(). Indeed,

Cryptographic Preliminaries

We use the standard notion of PRF security, as defined below. Let H : I x
{0,1}™ — {0, 1}™2 be a family of functions and Func(mq,ms) be the set of all
functions ¢ : {0,1}™ — {0,1}™2. Let A be an algorithm with oracle access to
a function f: {0,1}™ — {0,1}™2. The PRF advantage of A against H is

AdvPr(A) = | Pr [AFx0O) =] — Pr [A70) = 1))

K~K f~Func(mi,m2)
We further define the optimal advantage
Opt2(g) = max{AdvP*(A): A makes ¢ queries}.
In the multi-user setting we have u users, each with an independent instantiation

of the cryptosystem. The adversary can issue (up to) gmax queries to each user
with the goal of distinguishing the u instantiations of the cryptosystem from w
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instantiations of a random function. We define the PRF advantage of A against
H in the multi-user setting as

_’ Pr [AHK1('),-~7HK,“(‘) = 1]
Kiyo Ku~K

_ Pr [Af1C)nful) o 1]|

fisees fu~vFune(my,m2)

Advit (A

We further define the optimal advantage

o) tguuprt(qmax) = max{Advy"" "(A): A makes guax queries to each user}.

B Bounds on Advantage for Symmetric Functions

Proposition 21 (Bounds on advantage for symmetric functions). As-
sume that the output distribution generated by H : K x {0,1}™ — {0,1}™ is
independent of the queries of the adversary. Denote by ¢’y : F4*" — R0 the
density function generated by H. Moreover, assume that ;" is symmetric in the
sense that every element of the sample is marginally distributed as cp%l. Then,

Opt?(q) < ¢SD(¢l",1,) +

N =

Proof. Let S = M2, , = {a € F2*": #a = 1}. By (1) and the upper bound of
Proposition 3,

2OptII){rf(Q) = 2SD(¢g", 14n)

< B | Y @he)xe(@)]+

gXxXn
z~F
2 aeEMZ,

It remain to prove that

E | Y @i'(@)xa(@)] <2¢SD(¢y", 1n).

gxXn
z~IF
2 aeM?Z, |
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For o € H?g”‘ with #a = 1, define in(a) to be the unique index i with «; # 0.
By symmetry of ¢, we have §5;7(a) = @Z’l(am(a)). Therefore,

Y FHexa@l= E | Y @5 (@) [] xai(@i)l

ZL’N]F%X" INngn

aeM?Z, aeMZ, i€[q]
~n,1
= E | E 90713[ (ain(a))onm(a)(Iin(a)”
mNFgX" 016./\/1"

= WZ Bxs (@) = WIZ P (@) = B (0)x0 )]

i=1 ,BG]Fn i=1
540

Z E [(¢h'(x -)—1)\=Qy3nlwﬁl()—1\—2qSD(s0H7 1,).
2

— r~ ]qun

IN

C Missing Proofs and Additional Details from Section 3

Lemma 3 is proved using three additional propositions which we state and prove
below.

Proposition 22 (Recursive validity of Setting 1). Assume that calcW is
applicable up to depth dpyax with parameters S, T and a PIS, pis. Then, for each
node v at depth at most dmax, (d1) T, is injective on the elements of S,, (d2)
for every a € S, and every £ € [k'], T,(a)e # 0 if and only if £ € N,.

Proof. The proof is by induction on the depth d < d,.x of v. The two restrictions
hold at the root (d = 0) by assumption. Assume correctness up to depth d <
dmax — 1 and let v be a node of depth d. Consider a child node v; j, for i € N,\{j}
and b € {0,1}. Recall that T,, , (a) = T,,(a) = T,,(a)®9) only changes entries
i,7 of T, ().

We prove (d1). Consider a, 3 € S,, , such that T, , (a) = T, ,(3). We show
that o« = (. Since calcW is applicable up to depth dpax, condition (b2) of
Definition 6 implies that T, (a) = T,(8). Indeed, if T, () # T,,(8) but T, , (o) =
Ty, ,(B) then Ty () cannot be uniquely recovered from T, , (o) = Ty, ().

Since T, (a) = T,(3), the induction hypothesis implies that o = 3 (as S,, , C
S, and T, is injective of S,). This proves (d1).

We prove (d2). Consider a € S, , and let £ € [k']. If £ = j, then T, , (a)¢ = 0
and £ ¢ N, , by definition of calcW.

Next, consider £ = i. Then T,(a)¢ # 0 and ¢ € N, by the hypothesis.
Therefore, if T, , (a)¢ # 0, then b = 1 and also i € N,,, ,, while if T, , (), = 0,
then b = 0 and also i ¢ N, , (by definition of calcW).

Otherwise £ ¢ {i,j}. Then T, , ()¢ = Tyy(0)¢, s0 T, , ()¢ # 0 if and only if
T,(a)¢ # 0. By the induction hypothesis, this holds if and only if ¢ € N,,, which
holds if and only if £ € N,,, (by definition of calcW). This completes the proof.
|
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Proposition 23. Assume that calcW is applicable up to depth dyp.x > 0 with
parameters (S,T) and a PIS, pis. Then, for every node v with depth d < dpmax
such that [N,| < &,

Z Hn, k’ < Calcwpze dimax (dv v, Sva Tvv-/\/;))~
a€S,

Proof (of Proposition 23). We prove the result by induction on d < dpax
(starting with d = dpax, down to d = 0). Let k!, = |N,|. For d = dax,

=k, k! !
Z Fn, g ( Z Fingky, (B)" = W™ [l g ] < (Nfuk;] )kv/z
a€ES, BE]FQ”
= Calcwpis,dmax (d7 v, Sva ﬂ)7Nv)a

where the first inequality relies on (d2) in Proposition 22, as we trim the k&’ —| N, |
zero entries that are common to all T, («) for a € S,. It further relies on (d1)

in Proposition 22, as each o € S, is mapped to a single § € ﬁ’;i after removing
the common zero entries. The second inequality is by Lemma 2. We remark that
the assumption that calcW is applicable up to depth dpay implies 2dmpax < [N
and hence kl, = |Ny| > |N| — 2dmax > 0, so Lemma 2 can indeed be applied.

For d < dpax, by reordering elements, we assume without loss of generality
that NV, = [k]] and pis(v) = k,. Then, by Proposition 9,

k! —1
D A (T(@)® < et D 2 Anae (Tu(@) )2
aES, a€S, i=1
K —1
k! —1 / ’
i S CE @S2 - Y (P,
i=1 «a€S,, i0 a€ES

Vi, 1

(16)

where we use the fact that S,,, US,,, = S, for every i € [k, — 1]. Also,
= [Ny| > |IN] = 2(dmax — 1) > 2, so Proposition 9 can indeed be applied.
We have

Z Hon g (T, Qa(kf”l) Z Fin ke (T, ))2

a€Sy,; 4 aes%,o

S Calcwpis,dmax (d + ]-7 vi,Oa S’Ui,ga T’Ui,o ) N’Ui,o)v

where the inequality is by the induction hypothesis (relying on applicability up
to depth diax).

Moreover, a similar inequality holds for the sum over S, ;. Plugging these
inequalities into (16), and comparing with the return value of calcW, we deduce
Yacs, g (Ty(@))? < caleW s dy,, (d, v, Sy, Ty, Ny), concluding the proof.

|
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Proposition 24. Let v be a node of depth d such that d < dmax and ki, =
|Ny| < N/8. Denote d' = dmax — d. Then,

(k‘/ )Qd (k‘ Qd/)k’ /2—d’

d/
Calcwpisadn\ax (d7 U>Sv7 Tva) <2 (N — ]@;)k' J2+d’

Proof. To simplify notation, denote k = k] . The recursion tree starting from v
is of depth d’ = dpax — d. Each leaf u contributes to the output at most

’

U k //
(ﬁ)d (72 ) /2, (17)

u

Where we used the fact that for each internal node w, k!, < k and thus (Nf:];%—il-l)? <

(N—k+1)2 < i

Initially, |N,| = k! = k. For each internal node w, for each i € N,\{j},
[Nuw, o] = Nw| — 2 (there are ki, < k such children w; o) and [Ny, ,| = [Ny| —1
(there are k], < k such children w; 7).

Therefore, for every leaf u, k, € [k — d',k — 2d']. More specifically for ¢ €

{0,1,...,d'}, the number of leaf nodes u with k/, = k—2d’ + ¢ is at most k% (Ci/).
Hence, using (17), we bound

/ k/
CAleW pis dpar (4, 0, S0, Tos o) < ()™ D (5% Yrul?

u
u leaf

d/
k d 1.d d’ k—2d'+c k—2d'+c¢)/2
< (k) kY () () (18)
c=0

E_N\2d od k—2d'+c \(k—2d'+c)/2
< ()2 _max {5 ),

Denote B(c) = (%)(k‘ml“)/? For ¢ + 1 < d’, by Proposition 20,

(k—2d'+c)/2 , (k—2d'+4c)/2
Bletl) « " f—2dtc tN—kt2d—c—1 (‘Nkﬁ;g:zr/cﬂ 1)1/2
< - e

l+ﬂ
<e2 —k(ﬁ)lﬂ < 4/7( )1/2 <1,

where we have used the assumption that k < N/8. Thus,

k—2d'+c \(k—2d'+c)/2 _ _
e (=) T = e, (PO} = BO)

:(N}c_—ki_de/)(k72d)/ < (k Ei)(k 2d')/2.

Finally, plugging this back into (18) we deduce

caleWpis doas (d, 0, Sy, Ty, Noy) < (g k)2d 2¢' pmax, }{B(c)}
ce /
’ ’ ’ ’ s .2d! d (k 24’ )/2
<2d ( k)2d (kNEl]i )(Ic 2d")/2 _ — od k ((Jli[ Zk)k)/2+d/
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Proof (of Lemma 3). Let N be the set defined in Setting 1. By Proposition 23
(with d = 0,v = (NULL), k!, = ko) and Proposition 24,

~ 2d _ ko/2—d
Z Hn, k! (T(O‘))2 < Ca‘lcwpi&d(O? (NULL)7S’ Ta N) < 2d (kO)(NgCI(c)o)ﬁti?Zid .
a€ES

Possible Variants of calcW

There are many possible variants of calcW that may give better bounds in dif-
ferent settings, but are not used in this paper. We summarize a few below.

1. Instead of fixing the maximal depth dy,.x in advance, we can continue recur-
sive calls from a node v as long as condition (c2) of Proposition 11 holds.

2. The purpose of condition (b2) of Definition 6 (or condition (c2) of Propo-
sition 11) is to assure that 7 remains injective on the elements of S, at all
nodes v. This can be assured without this condition if we partition S, into
more subsets that result in more recursive calls (with additional information
about the masks added to the recursion stack v to assure injectivity).

3. Instead of using the bound derived from Lemma 2, ( Nk_:JM )k;/ 2, at the leaves

with d = dpax, we can use a bound derived from Lemma 1 (or a minimum
of these bounds).

D Missing Proofs from Section 4

D.1 Proof of Theorem 1

Proof (of Theorem 1). We prove the inequalities of the theorem.

Proof of (6). For r odd, by Lemma 6, Var[v)] < 222" Ngf,l . Both inequalities
then follow by Proposition 5.

Proof of inequalities for even r. For even r > 4, we have Var[u,(f,)} < 2r" s

by Lemma 6. Combined with Proposition 5, this proves the first multi-user in-
equality of (8).

This variance bound gives a bound of O, (%) on the statistical distance

from uniform for 7 > 4, and a similar bound for r = 2 is obtained by Lemma 5.
However, these bounds are not tight. For example, for » = 2, we obtain O (\/% ),
where the tight bound is known to be O ().

In order to improve the bound we use Proposition 3 with

S=M2,,={acFy": #a=1}.
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Thus, combining (1) in Section 2 and Proposition 3 we obtain

20Dt8% o .y (1) S2SD(), 1)

< B Y @@+ [ Y 2@z 19

gXxXn
z~F
2 n n
aeMZ, o aeM3, |

By Lemma 4, the first term in (19) is bounded by

> Pl )Xa(z)lé\/%)_ /2 (20)

aeM™?

xNFan
=1,q

Proof of (7). For r = 2, by Lemma 5, the second term in (19) is bounded by
> war < =G

aEM™

>2.q

Therefore, using (19) with (20) and the bound on the second term above,

rf V4.5q
OpthOP[Q n]( q) < Wq 5 <3

2lg

Proof of (8). The first multi-user inequality of (8) was proved above. It remains
to prove the single-user and second multi-user inequalities.
For r > 4, we apply Lemma 6 to bound the second term in (19) by

’\(7“) 2 2r+1,.2 q2 r+1/2 P A r+1/2,.r 1 q
Z Vn,g()? < /22 +ir2r =27t/ N = 2 /%r N2 N7/
aEMglq

r+1/2, .r 1 _q 5.5r+13.5 7"/2—}-1 _q
<2 T Gy EINTE T =27 Nz

(21)

where we have used the fact that N > 213
Therefore, using (19) with (20) and the bound on the second term above,

f 2 5.5r+12.5_ r/2+1
Optgg(oP[T nJ (q) <7«7"/ q s+ 2" o T/ * N?/2
:TT/2N7/2 (1+2 5.57+12.5 ) < 2TT/2N?-/2,

where we have used the fact that for r > 4, 27557 +12:5; < 1. The second part
of the multi-user bound of (8) (the second term inside min) follows from the
single-user bound above by a straightforward triangle inequality.

Proof of (9). For the other direction, by Proposition 3,

20Dt oppon (@) =1 D TN @xal@) — [ >

aeM? aeMZ

=1,q >2,q
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By Lemma 4, the first term is lower bounded as

| Z A(r)( YXal(z)] > 3qN Z%efr/%(rfl)/ZW
aeMZ, o 2 T(r)

Combining with the upper bound on the second term (21) we obtain

f
2Optg§(op[r,n](q) > 3e r/2,r,(r 1)/2 g 9~ 5.57+13.5 r/2+1 N?/2

> Be—r/2,(r=1)/2 (1 — 9=5-5r+13.5,1/2,.3/2)

N \

Z% —r/2 (r 1)/2 ? (1_%) :efr/Zr(rfl)/QNL

where the second inequality is based on the assumption r > 4.

D.2 Proof of Lemma 5

We prove simple bounds that are similar to (3) and (4), proved in the motivating
example of Section 3. We then use these results to prove Lemma 5.

Proposition 25 (Bound 1 on level-k Fourier weight of 1/7(::()1 . Assume
that rq < N/2. Then, for even r

W) < (Z) Nk(ili) < (Z) (rk)k (?\’;)“Uk.

For odd r, W= [()]—0 and

W] < (Z‘)Nk_l(i’i) < (Z) (rk)E-1 (7]1\;:>(r1>k+1.

Proposition 26 (Bound 2 on level-k Fourier weight of 1/7(::()1 . Assume

that rq < N/2. Then,

<) ()< () (3

We remark that Proposition 25 gives a better bound than Proposition 26 for
small values of k, while Proposition 26 is better for large values of k. However,
both are very far from being tight in general.

Proof (of Proposition 25). Applying Proposition 12 and then Lemma 1,

WD = (WO = (@) Y (@)

aeM?,

= (Z) Z ﬁn,rk(acar)z < (Z)Nk<M=Tk[Mn,rkD2 < (Z:)Nk(%
aEMZ,
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When 7 is odd, then by Proposition 7, fin »x(a®") # 0 only if 0 = @;c[pg) (@®7); =
@ie[k)i, which holds only for at most Nk =1 of the masks in M2 C @;X"
Hence for odd r the bound is improved by a factor of N.

For the particular case of k = 1, we have @;c[xja; # 0 when #a = 1, and

hence W™ [I/n q] =0. |
Proof (of Proposition 26). Applying Proposition 12 (similarly to (22) above)
and then Lemma 2,

W:k[l/,r(:()l] = (Z) Z ﬁn,rk(aer)2 S (Z) Z ﬁn,rk:(ﬁ)2

aEMik_yk BEMZNCJ%
= (W= i) < (1) (525)™72.

||
Proof (of Lemma 5). By Proposition 26, for r = 2,
q q q
=k (2 k k k \k
ZW [’/r(zz)z] < Z (Z)(N%ka) = Z (2)2 (NEZI@) :
k=2 k=2 k=2

Denote B(k) = (1)2%(525z)*. Assuming k + 1 < g, by Proposition 20,

2k 2q
B(k+1) k+1 b2k 2 4+FN"5g 1 e8/7T < 1
B0 < 2pbnoanet N2 < ghre N2 < m< 3,
as ¢ < N/16. Therefore,
q q
> Wil < ) B = 2(9)2 v < 18(%)%
k=2 k=2

as N > 100. Combining with Proposition 25 that asserts W='[1\*)] < ¢N i~ =

255, we deduce
q
V) = S € 2t 4158 <2+ < 8
=1
as & < 1z and N > 100. ]

D.3 Proof of Lemma 6
Proof (of Lemma 6). Consider any r > 3. By Proposition 13,
W:k[l/ rl)z} < (2)2(r72)k/2+crk(1vrk )(rfl)k+crk.

n, rk

Write N = Mr and define

BT(]{E) _ (Z)Q(T_2)k/2+cm(Nikrk)(r_l)k—i_crk _ (2)2(r—2)k/2+c,‘k( k)(r 1)k+cm

42



Then, for 2 < k < g — 2 (noting that ¢, = ¢, (r42)), by Proposition 20,

((r—l)k—‘—cm) 2((r Dk+crk)
By (k+2) 2 - — k+2  \2(r—1
Bk = (k+1)(k+2)2 k F2 ()Y
2(7 l)q k42 ¢* ( k+2 )2(7'71)
k+1 (k+2)2 \M—q

27" 2 2(r 1)+ +

rppyp 80=D 1
<200 ge Tk

M\»—A
N[

(%)2(7"71) < %(2e;2/7 )rfl < (%)2%6 <

M\)—A

1o
2¢

where we have used the facts k > 2, M = % > 8¢ and r > 3.
Therefore, using the fact that N > 213,

Z WwW=F (T)

:2( )237" 2)/2+C'§r( )3(r71)+63r+2( )22(1" 2)( 'r4 )4(7’ 1)

(k) <2B:(3) +2B,(4)

kMQ

§23r/2 4+(:3Tq (%)3(7‘ 1)+C3T+22r—7q4(%)4(r 1)

4
_ 27.57«_104’_3@3,“7“37’—3-&-0% + 214r—19r4r—4 Ngr_4

1 =+ 26.57‘—9—303TTT—1—03T

q
N3T—3+637‘

_ 27.57"— 10+3c3, ,r,37‘—3+03r

3

We have

6.5r—9—3cs3,,. r—1—cs3 q __ 06.5r—9—3c3 r \r—2—cs, rq
2 T " Nr—1-c3. — 2 T(W) TW
< 26.57"—9—3037~2—13(7"—2—037-)l _ 2—6.5r—9+26—3+100T
— 8

< 276.5r+14+1007. < 276‘5r+19 < 1’

where we have used the assumptions » > 3, r¢ < N/8 and N > 213

this into the previous inequality, we deduce

r. Plugging

3

q
Z W:k [V'r(;,z)z] < 27.5r—9+303rr3r—3+03r N3Tg3+03r . (23)
k=3

Assume that r is odd. Then, by Proposition 25, W= [u,(f()z] = 0. Moreover, by

Proposition 25 (which gives a better bound on W~ [1/7(“)1] than Proposition 13)

W2 < (@) (3)7 < gt

n7

Hence by the above results and (23) (noting that c3, = 4 and recalling that
rq < N/8),

Z 2r—1,.2r 2 7.5r—9+1.5_3r—340.5 3
Var W 2 # + 2 T W

2r—1_2r 5.5r— 657"25
:2 T N2qr 1(1+2 Nrgl.5)-
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We have

2545r—6.5 r—2.5 q _ 25.57"—645(

—— T25q<255r 6.59—13(r— 25)L

8-3

~)
<2 7.5r—6.5+32.5—4 — 9= 75r+22<1

where we have used the assumptions r > 3, r¢ < N/8 and N > 213r. Plugging
this into the previous inequality, we deduce the claimed inequality

2
Var[u,(:()l] <27y

For even r > 4, by Proposition 25, W=2[1")] < < (9)(2r)? (2—1\7)%72 = 22rp2r N;?f,Z.
Therefore, by the above inequality and (23) (with ¢, = 0),

3
ZW <22r 27"N2 — +275r 9 37" 3N§]T_3
:QQTTQTNZT 2(1+25 5r—9 rr Squ 1) ZQQTTQTNQT 2(1+255r 9(N>T_3%%)
§227‘r27‘N2T 2(1+25 5r— 92—13(7‘ 3) 1 l 2—13) <227",’,,27"N2T 2(1+2—75T 9+39—-5— 13)
2
:22Tr2rN2r 2(1+2 75r+12) < 22r+1 2r NgT72,

where we have used the assumptions r > 4, r¢ < N/8 and N > 213y,
Finally, by Proposition 25 and the above inequality (again using the assump-
tions r >4, r¢ < N/8 and N > 2137),

Var[v, ZW er_l
="y <1+22T+1 ") ST (L 22T R (5)7R)
<y’ q 1( + 22r+1r%2—13(r 2)) — TTN (1 +92- 11r+1— 3+267")

r—1
="l (L4 2712y < 27

q2
N2r—2

q
NT—T-

E Missing Proofs from Section 5

Proof (of Lemma 7). By Proposition 15, W=!| ,(LL,J)] = 0. Hence, by Proposi-
tion 16,

q q
k 3k/2+3 kk+20k(k 2 )k/2 C
Varlg[g] = > W ZW < D ()2 e
k=1 k=2
k+2c k/2—cy,
Denote B(k) = ({ )23k/2+3c’° k (Nk (I;k)??jg“k . Noting that ¢, = cxy2 and as-
suming 2 < k < g — 2, by Proposition 20,
2(k+2c 2(k/2—c 22(3k/2+c
Bhi2) o g g 2ZA 200  ZONEG) ()2 k20
B(k) — (k+1)(k+2) (N—2k—4)3
dcg k42
2 2+—7F+14 k42 k+2-2 4, 3+ +14q 1

<8¢e” "k T T e < 83e 14qq e S5
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where we have used the facts k > 2, 40’“ < % and g < N/16. Therefore,

Zw €8] < 21 (B2) + BG)) < §(D2° v2ap +3(9)2° =5

5 2 2
< (484 55 + i < 604 + 2930 § s <6045 + s <200,

where we have used the assumptions that ¢ < N/16 and N > 210, | |

F Missing Proofs from Section F

Proof (of Lemma 8). By Proposition 17,

— L — L L —~
WER T= (OWT R T=a Y E9,@? =4 Y fins(t(@)?
ack2" ach2n
#a=1 #Ha=1

Let a = (@, a®) € @%”7 hence t(a) = (@, LT(a®),a® @ LT (aWM)). By
Proposition 7, we have Ji,, 3(t(a)) # 0 only if aM S LT (a?))@al? )EBLT(a(l)) =0.
In this case, a' @ LT (o) = a® @ LT (a®) and thus (L) (aM) = (L) (o).
Hence, by invertibility of (L')T, a() = a(?), which implies that
t(a) = (@M, LT(aM),a® & LT (a™)). In particular, since LT and (L')T are
invertible then #t(a) = 3.

By Proposition 8, for every all) # 0, exact computation gives |fi, 3(a), LT (M), aM @
LT (aM))| = 5 7 Since oM € ]F" can attain N — 1 non-zero values, we
conclude that

—17.(L ~
W 1[57(“2),(1] =q Z fin3(t(a))® = (N — 1)(1\171)24(1\172)2 = (N71)4(%v72)2'
k2"
#a=1

Proof (of Proposition 19). By Proposition 17 and Proposition 18,

B =OWTER =) > €802 =(1) D nsk(t(@)

2 2
aeMZ L aeMZ

= (IZ) Z Z ,U'n,3k(t(o‘))

m=0 e M2}
#za=m

For m € {0,...,k}, denote S*™ = {a € @2”2”: #a =k A #s3a = m}. We
have shown that

W: = Z Z Mn 3k . (24)

m=0 qcSk,m)
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Fix a pair (k,m). We would like to upper bound Y gx.m) fin,3k(t(cr))? using
Lemma 3. For this purpose, according to restriction (a2) of Setting 1, we first
need to partition the set S*™) into subsets such that the (transformed) masks
in each subset, ¢(c), share the same non-zero entries (over F7).

We now analyze this partition of S*™). By proposition 18, every i € (k]
with #t(o;) = 2 has 3 possible structures that determine which 2 of its 3 entries
are non-zero over IF” For every o € S® ™) there are k — m such indices i
with #t(a;) = 2. Therefore, there are (m)Sk ™ possible non-zero index sets

(with non-zero values over IE?S) Note that every such index set has size equal to
#t(a) = 2k +m for a € SE™),

Denote by Ay, the collection of these (:fL) 3%=™ non-zero index sets, where
every A\ C [k] x [3] is of size 2k + m. We thus partition S*™) into (*)3+—m
subsets, denoted {Sik’m)},\e/lk,m, each with common non-zero entries of #(«)
over FZ. Concretely, a € 8™ satisfies o € S/(\k’m) if for every (4,j) € [k] x [3],
t(cy); # 0 if and only if (¢,7) € A\. We have

Z Fin, 35 (t Z Z Fin 35 (T . (25)

aecS(k,m) )\eAk m aes/(\k ,m)

Applying Lemma 3. Fix any A € Ay ,,. We now use Lemma 3 to bound
Eaes(k,m ﬁn’gk(t(a))? For this purpose, let S = S/(\k’m) and define T'(a) =
A

Ti(a) = t(a) for every a € S/(\k’m). In this case, k' = 3k and ko = 2k + m.

The PIS pis resembles the one defined in the proof of Proposition 16. Given
a node v, we say that an index ¢ € [k] is redundant if all 3 indices 3¢ —2,3¢ — 1
and 3¢ are unaltered by Definition 7.

At a given node v, let £ € [k] be the largest redundant index. The PIS pis
will select as primary index the smallest index in the triplet {3¢ — 2,3¢ — 1,3¢}
that is in N,.

The recursion is executed up to depth d = [k/2]. As in the proof of Proposi-
tion 16, a redundant index is guaranteed to exist up to depth d — 1 = [k/2] — 1
and pis is well-defined.

In order to invoke Lemma 3, we prove that the two conditions of Propo-
sition 11 hold. First, by our definition of & = Sgk’m)7 the pair (S,T") defined
above satisfies the restrictions of Setting 1, and condition (c1) holds (note that
2d =2[k/2] <k+1<2k, as k> 2).

It remains to prove condition (c2). Specifically, for a node v such that
j= pzs( ) and o € S,, we prove that T,(«); can be computed from T, (o) =
T,(a)®U9) (where i is a secondary index).

Note that if £ is redundant, then for every a € S,, the elements T, («)3¢—2, Tt () 30—1, Ty () 3¢
are equal to those of T'(cy) = t(c). Thus, depending on v, according to Proposi-
tion 18 we have 4 possibilities for the zero entries of T, (a)s¢—2, Ty () 30—1, Ty () 3¢-

First, assume that #t(ay) = 3, namely t(ay) = (a?), LY« (2)) af)@LT(aél)))

with all 3 entries non-zero. Then the first index with value agl) is selected as
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primary index (j = 3¢—2). We need to verify that T, (), = a@l) can be uniquely

recovered from Tv(a)@(j’i) regardless of the secondary index ¢, namely that it
can be recovered from the values of either

MW LT (), a? & LT (aV), in case i ¢ {30 —1,3(},
T @ D @) T (1) : o
Q)L (o) B oy’ )" ®L (o), in case i =3¢ —1, or
B) L (), a? & LT (a{") & oV, in case i = 3.

In case (1), aﬁl) can be recovered after computing 0422) due to the invertibility of

LT In case (2), we apply LT to the second value and XOR to the first to obtain
the value of

(L) (@) @ ol = ()T @) & LT () & LT (o) & oV
=L™(L) (")) @ (L) (af) = (L)) T (D).

Since ((L")?)7 is invertible, agl) can be uniquely recovered. In case (3), we deduce
af) and then LT(aél)) & aél) = (L’)T(aél)), from which we recover aél) since
(LT is invertible.

Second, if #t(ay) = 2, then according to Proposition 18,
2 2 1 1 1 1
t(ar) € {0, L7 (), o), (o, 0, LT (af)), (af", (L) (af"), 0)}.

By similar calculation to the case #t(ay) = 3, one can verify that in each of the
3 cases above the first non-zero entry (the value of the primary index) can be
recovered from T, (a)®U») regardless of the secondary index.

We conclude that the two conditions of Proposition 11 hold. Applying our
framework of Lemma 3 (with d = [k/2] = k/2 + ¢, ko = 2k + m), we obtain

=R 9 4 (ko) (ko—2d)¥0/2=4  _piot o (2kbm) 2ok (kpm—2c, )E/ 2T/ 2 ek
E ,un,Sk(t(a)) <2 (N—ko)ko/2+d =2 / (N—2k—m)2k/2¥m/2Fey, .

aéSE\hm)

We recall that [Ag.| = (F)35=7 and 38 ) (F)3k=™ = 4%, Using (24), (25)
and the inequality above we deduce

k k
WHERDT=O Y Y famt@)?=(0 > Y Y fus(ta)?

m=0 qeSk.m) M=0 XAk ,m g s

k
q k/24cp, (2k-pm)F+2ek (ktm—2c;,)k/2Hm/2=c;
< (k) Z |Ak,m|2 (N—2k—m)3k/2Tm/2 ey,
m=0

< (q)4k max  {2h/2Fer (2k4m) T2k (ktm)R/2tm/2 ey }

k2 me{0,1,... k} (N—2k—m)3F/2Ftm/2Fey
= (q) 95k/24ck max (2km)*+2k (kpm) R/ 2Hm /2=, !
b me{0,1,....k} (N —2k—m)3k/2Fm/2 ek
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kt2c k/24m/2—c
Denote B(m) = @htm) 7% (kebm) -

(N 2% — m)Sk/2+7n/2+ck
N/32, by Proposition 20,

. Then, assuming m+1 < k < ¢ <

k+2c k/2+m/2—ck
B(m+l) e2k+n’§
B(m) —

. 3k/24+m/24cy
k+m +

N—2k—m—1 (M)lﬂ
N—-2k—m—1
_2 1 ., _2q9
< 1+ck(2k+m_k+m)+N 3q(

7,2
73q)1/2 < elJr +29(%)1/2 < e6+29(2£)1/2 < 1

where we also used the facts that k > 2 and ¢z = 0, hence ¢ <

% . Therefore,

[é"l(’LLQ) q] < (Z) 25k/2+ck

B(m) < (1)2°%/2te B(0
meimax  Bm) < (i) (0)
5k /24-c; (2k)FH2¢k )"/2 ko Tk/243ck(  k_ \3k/2+c

= (f)2oh/2en G QI (1) 2T/ (ke yak e

Proof (of Lemma 9). Applying Proposition 19

[ ]
q (L) q
k: c c
ZW n g q Z 27k/2+3+3 k(Nlc )3k/2+ k
k=2 =
Denote B(k) = ( )27k/2+3c’° %)3’“/2"’% and note that cy1o = c;. Then, as-
suming k + g g < N/32, and recalling that k£ > 2 (and ¢o = 0), by Proposi-
tion 20,
3k+2ci | 2(8k+2ck)
B(k+2) 2 SEtac,
B(k) < (k+1(§(k+2)2 €

N—2k—4 (#}3_4)

274 3+ +30 (30q)3 27364(30)73 <

7 3+ JFN 2 k+2 g ?(k+2)
<2'e a k+1 (N—2q)3

1
5

Therefore, using the facts that N > 219 and ¢ < N/32

Eq: W=kl | < Z B(k

n2al ) <2B(2) +2B(3) < 2(3)2"(5%)° +2(5)2" (5%5)°
k=
10 2 1294 3 10.3 2 20 2 3 2 20 2 10.5 2
§ (12\/'_4)3 + (QNE6(§5 = 2 NSq + 2Ng %ﬁ S NSq + : g 3*12% S 2 Naq
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