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Abstract. We present an efficient quantum algorithm for solving the
semidirect discrete logarithm problem (SDLP) in any finite group. The
believed hardness of the semidirect discrete logarithm problem under-
lies more than a decade of works constructing candidate post-quantum
cryptographic algorithms from non-abelian groups. We use a series of
reduction results to show that it suffices to consider SDLP in finite sim-
ple groups. We then apply the celebrated Classification of Finite Sim-
ple Groups to consider each family. The infinite families of finite simple
groups admit, in a fairly general setting, linear algebraic attacks pro-
viding a reduction to the classical discrete logarithm problem. For the
sporadic simple groups, we show that their inherent properties render
them unsuitable for cryptographically hard SDLP instances, which we
illustrate via a Baby-Step Giant-Step style attack against SDLP in the
Monster Group.
Our quantum SDLP algorithm is fully constructive, up to the compu-
tation of maximal normal subgroups, for all but three remaining cases
that appear to be gaps in the literature on constructive recognition of
groups; for these cases SDLP is no harder than finding a linear represen-
tation. We conclude that SDLP is not a suitable post-quantum hardness
assumption for any choice of finite group.
Keywords: Group-Based Cryptography, Semidirect Discrete Logarithm
Problem, Post-Quantum Cryptography



1 Introduction

There has been a significant amount of research on semidirect product cryptogra-
phy within the post-quantum community [24, 28, 41, 42, 23] since its introduction
in 2013 by Habeeb et al. [24]. This approach aims to use the group-theoretic no-
tion of the semidirect product to generalize the discrete logarithm problem (DLP)
in a manner that resists quantum attacks. The resulting problem is called the
Semidirect Discrete Logarithm Problem (SDLP), and is the subject of this paper.

The NIST Post-Quantum Standardization process [39] has motivated work
on a wide variety of computational problems and candidate constructions for
post-quantum cryptographic algorithms. While lattice-based cryptography may
currently be the most well-represented among post-quantum schemes, there is
a desire to have a diverse collection of candidates, computational hardness as-
sumptions and algorithms. This would provide a hedge against cryptanalytic
surprises (such as the late-breaking attacks against Rainbow and SIKE) and
allow for different performance tradeoffs, as well as advanced functionalities.

In this light, SDLP is an appealing generalization of DLP over cyclic groups
that can be used to define analogues of discrete logarithm-based cryptography
over non-commutative (semi-)groups. SDLP offers an unusual degree of flexibil-
ity; almost all of the cryptosystems are defined for any finite group, and several
are defined for finite semigroups. Battarbee et al. [7, 6] showed that the ma-
chinery of SDLP gives rise to a group action and suggests that this might allow
efficiency improvements over other candidates for group-action based cryptog-
raphy, especially in the realm of digital signature schemes.

Historically, cryptanalysis of SDLP-based schemes has been specific to a par-
ticular choice of group. For example, there have been several proposals of groups
to be used with Semidirect Product Key Exchange (SDPKE), which is the ana-
logue of Diffie-Hellman Key Exchange (DHKE) for SDLP [24, 28, 41, 42, 23].
Each of these proposals was later shown to be insecure due to some feature of
the selected platform group [38, 43, 16, 37, 36]. However, analogously to the rela-
tionship between DHKE and the Diffie-Hellman problems, a break of SDPKE for
some group does not demonstrate that SDLP is easy in that group. More recently,
Imran and Ivanyos [25] showed that SDLP in a solvable group admits a reduc-
tion to standard quantum-vulnerable problems. While this work has eliminated
some candidate constructions, it leaves unresolved the question motivating our
work: is there any choice of finite group G such that SDLP in G is post-quantum
secure?

This question has remained unanswered for over a decade of active research
in the area. In this work, we prove that the answer is negative. Our result
makes use of the famous Classification of Finite Simple Groups and develops
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a generalization of the “decomposition” methods of [25]. In particular, we will
repeatedly use the “recursion tool” of [25] to reduce an instance of SDLP in an
arbitrary finite group to several instances of SDLP in finite simple groups. Since
there is a relatively short and known list of all possible finite simple groups, we
then devise quantum and classical algorithms for solving SDLP or reducing it to
the problem of finding a linear representation of the group, that we can solve
(up to some technical detail concerning constructive recognition of groups) in
each family of finite simple groups.

Our contributions are highlighted below.

– We develop a more sophisticated method of decomposition into “smaller”
instances of SDLP, based on the ideas of [25]. In particular we show that, for
SDLP in an arbitrary finite groupG, one can always generate logarithmically-
many instances of SDLP in simple groups; moreover, solving these instances
of SDLP suffices to solve SDLP in the group G.

– We solve SDLP in non-sporadic simple groups by studying their representa-
tions and, building on another idea of [25], give a reduction to the classical
DLP after some linear algebra calculations of polylogarithmic complexity.

– We propose an adaptation of Shanks’ Baby-Step-Giant-Step algorithm which
efficiently (and classically) solves SDLP in sporadic groups, exploiting the
relatively low orders of their elements. This completes our claim that one
can solve SDLP in a practical manner in an arbitrary finite group G.

While our work eliminates hope for quantum-secure SDLP-based cryptog-
raphy over finite groups, the corresponding problem for semigroups, which is
featured in some previous proposals [24], remains an interesting open problem.
Indeed, evidence suggests that some group-theoretic problems may be harder
to solve on semigroups than on groups. For example, Childs and Ivanyos [17]
prove an exponential lower bound on the number of quantum queries required
to solve the constructive semigroup membership problem on a black-box semi-
group, whereas the corresponding problem for black-box groups is known to be
quantum polynomial-time since it simply reduces to DLP. We remark also that
our techniques are unlikely to translate to the infinite case of SDLP.

1.1 Paper Organization and Contributions

We prove the following main results.

Theorem 1. Let G be a finite black-box group. Given an oracle computing max-
imal normal subgroups, in order to solve SDLP in G, it suffices to solve SDLP in
at most log |G| many simple groups. We can compute the information defining
these instances of SDLP in simple groups in quantum polynomial time in log |G|.

Theorem 2. Let G be a finite black-box group and suppose there is an efficient
linear (or projective) representation of G of dimension n. One can solve SDLP
in G in quantum polynomial time in n and log |G|.
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Corollary 1. Let S be a finite simple black-box group, that is not one of the
groups 2F4(2

2n+1) or 3D4(2
e). One can solve SDLP in S in quantum polynomial

time in log |S|.

We will explicitly discuss SDLP in the two groups omitted by Corollary 1 in
Section 6. The techniques for computing arbitrary maximal normal subgroups
comes from the literature on various computational group theoretic problems, in
particular the task of computing composition series of groups. The literature here
does not appear to be completely resolved, and we discuss it in Appendix A. The
rest of our paper is organized as follows (which also gives a guide to the structure
of our results). Section 2 gives some background on group theory and some of the
computational problems that arise in this work. This section also summarizes
the main results of [25] that we generalize in this work. In Section 3, we go into
more detail on the main decomposition tool, and generalize it in several steps to
finite simple groups. In Section 4, we give a generic method to solve SDLP for any
finite group using its linear representation. Combining the results in these two
sections gives an efficient reduction of SDLP in any group to SDLP in finite simple
groups, as well as an algorithm solving SDLP with running time dependent on
the faithful dimension in simple groups. In Section 5, we use the classification
of finite simple groups to iterate through each of the families of finite simple
groups in turn. Given the previous computational reductions, the main question
for each of these families is to construct an efficient linear representation from a
black-box group; this is known to be in probabilistic quantum polynomial time
for all but two minor special cases. Finally, the sporadic groups can be easily
dispensed with, either via a brute-force search or via an adapted baby-step giant-
step algorithm. We conclude in Section 6 that SDLP on finite groups is not a
reliable candidate for quantum-resistant cryptography.

2 Preliminaries

The semidirect discrete logarithm problem arises from the study of the semidirect
product of a group G by its own automorphism group. Let us briefly recall the
definition:

Definition 1 (Holomorph). Let G be a group with automorphism group Aut(G).
The semidirect product of G by Aut(G), written G⋊Aut(G), is the set of ordered
pairs from G×Aut(G) equipped with multiplication defined by

(g, ϕ)(g′, ψ) := (gϕ(g′), ϕ ◦ ψ)

where ◦ denotes function composition. We call this structure the holomorph of G
and denote it by Hol(G).

By induction, one can verify that for (g, ϕ) ∈ Hol(G) and x ∈ N, we have

(g, ϕ)x = (gϕ(g) . . . ϕx−1(g)︸ ︷︷ ︸
=:sg,ϕ(x)

, ϕx),
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and we can think of this as a function sg,ϕ : Z → G, mapping the exponent x to
the projection onto the G-component of (g, ϕ)x. For finite groups G, the order
of elements in Hol(G) is bounded above by |G| (see [11]), so we may, without
loss of generality, choose to restrict the domain of sg,ϕ to a finite set.

Definition 2 (Semidirect Discrete Logarithm Problem). Let G be a
group and fix (g, ϕ) ∈ Hol(G). Suppose h = sg,ϕ(x) for some x ∈ Z. We define
SDLP(G,ϕ, g, h) to be the set consisting of all the integers i such that sg,ϕ(i) = h.
The Semidirect Discrete Logarithm Problem (SDLP) is to determine this set.

Remark 1. It will be useful in some contexts for us to say “SDLP for G and
ϕ”, for a finite group G and one of its automorphisms ϕ. By this, we just mean
an instance of SDLP where one recovers SDLP(G,ϕ, g, h), without wishing to
specify g and h.

Since sg,ϕ(x) is the projection of a holomorph element onto one of its coor-
dinates, the SDLP setup does not directly expose an element of G or Aut(G).
The problem is therefore not trivially equivalent to a standard DLP. Thinking
of sg,ϕ in terms of a projection also tells us how to efficiently compute it: we can
compute exponentiation in the holomorph using standard square-and-multiply
techniques, and then project the result to obtain the desired value.

2.1 Essential Group Theory Notions

Let G be a group. A subgroup N ≤ G is said to be normal if for all g ∈ G and
n ∈ N , gng−1 ∈ N . We use N ◁ G to denote that N is a normal subgroup of
G. We can then define the quotient group G/N to be the set of left cosets of N
in G. In other words, G/N = {gN | g ∈ G}. The group operation on G/N is
induced by the group operation on G in the obvious way.

A group G is simple if it has no non-trivial proper normal subgroups, and
we refer to a subgroup H of a group G as characteristic if ϕ(H) = H for every
automorphism ϕ ∈ Aut(G). The group G is said to be characteristically simple if
it has no non-trivial proper characteristic subgroups. The example Z/2Z×Z/2Z
illustrates that being characteristically simple is a strictly weaker property than
being simple. A subnormal series 1 = Hm ◁Hm−1 ◁ · · · ◁H1 ◁H0 = H of a group
H is called a composition series if each quotient Hi/Hi−1 is simple and called a
quasi-composition series if each quotient is either abelian or non-abelian simple.

For technical reasons we require that any computational representation of
a group G comes with two attributes CS Abelian Flag, and CS NonAbelianFlag,
which are by default set to 0 (i.e., G.CS Abelian Flag = G.CS NonAbelian Flag =
0). One of our algorithms later on may update these values if it detects that the
group is either of two special cases of characteristically simple.

A linear representation of a group G on a finite-dimensional vector space V
is a group homomorphism

ψ : G→ GL(V ).
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Here, GL(V ) denotes the general linear group on V . We also consider projective
linear representations, i.e., homomorphisms G → PGL(V ), where PGL(V ) ∼=
GL(V )/Z(GL(V )) contains the invertible linear maps acting on P(V ) (since scalar
matrices act trivially on P(V )). If A ∈ GL(V ) we write [A] for the corresponding
class in PGL(V ).

Black-Box Groups. The introduction of black-box groups can be traced back
to Babai and Szemeredi [4] as a useful abstraction of computations in groups.

Definition 3 (Black-Box Group). A black-box group G ⊂ {0, 1}n is a
group whose elements are bit strings of length n, endowed with an oracle that
performs the group operations, multiplication and inversion, and can check if
one element is the identity or not (this is equivalent to checking if two elements
are equal or not).

As an additional requirement, for technical reasons we will need our black-
box groups to come equipped with a unique labelling; that is, a function λ on
the bitstrings representing the group that is such that λ(x) = λ(y) if and only
if x and y represent the same group element.

The use of black-box oracles for groups is not new to cryptography. As an
example, Shoup proved lower bounds for generic algorithms solving DLP using
black-box groups [47]. This is a conservative computational model for crypt-
analysis of SDLP-based cryptography, since any construction instantiated on a
particular group will need to be able to perform operations on the base group
G (and Aut(G)) and test the equality of the resulting operations.

The Black-Box Group model is also of interest for computational group the-
orists as a tool to investigate the complexity of several group related problems
such as the Hidden-Subgroup Problem [26], or in relation to “The computational
matrix group project” [34, 40].

Of particular relevance is the Constructive Recognition Problem, pro-
posed by Babai and Beals [1, Section 9.2], in which one is asked to find a com-
putationally efficient isomorphism between a simple black-box group and an
explicitly defined simple group. Observe that for the case of cyclic groups of
prime order this problem reduces exactly to DLP since, given ϕ : G

∼−→ Z/pZ,
we can easily compute logarithms (divisions) in Z/pZ.

Several works [12, 13, 2, 27, 29, 30, 1] have investigated the constructive
recognition problem for other families of simple groups; this is commonly done
by reducing it to the case of PSL(2, q) using so-called number theory oracles, i.e.,
oracles for solving discrete logarithm and factoring, to handle large finite-field
computations [18, 2]. These algorithms thus run in quantum polynomial time
[46].

2.2 Related Work and Known Results

Broadly speaking, there are two main categories of literature on SDLP: crypto-
graphic constructions based on the Semidirect Product Key Exchange (SDPKE)

6



and the associated cryptanalysis, and algorithmic analysis of the underlying
SDLP problem itself.

The first category of literature encompasses a decades-long cat-and-mouse
game between papers suggesting parameters and choices of groups to instantiate
SDPKE [24, 28, 41, 42, 23], and works cryptanalyzing the results [38, 43, 16,
37, 36]. These papers occur as responses to each other, in the sense that new
proposals are patches to avoid the attacks of prior works. For a detailed review
of the chronology see [8].

In the same way that the security of DHKE is not precisely equivalent to
DLP, the security of SDPKE is not precisely equivalent to SDLP. The works
mentioned above do not address the complexity of solving SDLP; the first result
in this direction dates to 2022. This and subsequent such results form the second
category of literature mentioned above, which also includes the present paper.
Battarbee et al. [6] pointed out a connection to group actions and later exploited
it [7] to give a subexponential quantum algorithm for SDLP.

Mendelsohn et al. [35] found faster methods for some small parameters. Most
recently, Imran and Ivanyos [25] gave an efficient polynomial-time quantum al-
gorithm to solve SDLP for solvable groups and matrix groups with certain as-
sociated endomorphisms. Our work is a generalization of this paper to all finite
groups.

Imran and Ivanyos introduce two important notions, which we sketch here.
The first is that, given a group G and a normal subgroup N , in order to solve
SDLP in G, it suffices to solve SDLP in N and G/N . The second is that, if G
is a matrix group, we can show that SDLP reduces to an instance of DLP after
the application of some linear algebraic methods.1 Suppose we can compute
a composition series of an arbitrary group G; then, provided the composition
factors are suitable matrix groups (or elementary abelian groups, in which SDLP
is predictably easy), we can use the decomposition algorithm inductively to solve
SDLP in the composition factors and to recover a solution of SDLP in the group
that we started in. This breaks, among other things, all the finite solvable groups
(which includes every group proposed for use with SDLP-based cryptography).

Our work can be seen as a more sophisticated version of this method. By
refining the method of computing the appropriate subgroups we can reduce
the solution to solving appropriate instances of SDLP in the simple groups.
In addition, we construct a generalization of the reduction in a matrix group
that turns out to be particularly effective for simple groups. Indeed, because we
know that only the simple groups listed by the classification of simple groups
can appear in this decomposition, and since we can show that each of these is
vulnerable to some method of solving SDLP, we can show that SDLP is easy for
any finite group, resolving a loose conjecture of [25].

1 Interestingly, this method is somewhat similar to the “linear decomposition” attacks
presented in the analysis of SDPKE.
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For the purpose of describing our algorithms let us recall some of the known
results relating to the structure of SDLP.

Prior Results. One of the main ideas of [25] is to reframe SDLP as an or-
bit problem. For each pair (g, ϕ) in the holomorph of G consider the function
ρ(g,ϕ) defined by ρ(g,ϕ)(h) = gϕ(h). It is not difficult to check by induction that
ρx(g,ϕ)(h) = gϕ(g) · · ·ϕx−1(g)ϕx(h). We therefore get the following equivalent
definition of SDLP.

Definition 4 (SDLP(G,ϕ, g, h)). Let G be a finite group, and ϕ ∈ Aut(G)
be one of its automorphisms. Suppose h = ρx(g,ϕ)(1G) for some x ∈ N. We define

the set SDLP(G,ϕ, g, h) to be the set of integers i satisfying

h = ρi(g,ϕ)(1G).

The Semidirect Discrete Logarithm Problem, or SDLP, is to determine this set.

We will use both variants interchangeably. Let us also recall some of the results
on the set of solutions to SDLP: the following is a synthesis of ideas found in [6,
7]. In the following, the symbol 1 refers to the integer value 1, and 1G denotes
the group identity; these are (clearly) not the same.

Theorem 3. Let G be a finite group and ϕ one of its automorphisms. Consider
SDLP for g, h ∈ G. There exists an integer n0 (dependent on g and ϕ) such that
ρn0

g,ϕ(1G) = sg,ϕ(n0) = 1G, and the set

{1G, s(g,ϕ)(1), ..., s(g,ϕ)(n0 − 1)} = {1G, ρ(g,ϕ)(1G), ..., ρn0−1
(g,ϕ) (1G)}

has size n0, and is exactly the codomain of s(g,ϕ). We have that one can compute
n0 in quantum polynomial time with a Shor-like period-finding algorithm, and
that the solution set SDLP(G,ϕ, g, h) is of the form

{t0 + tn0 : t ∈ Z}

where 0 ≤ t0 < n0.

Finally, although some of the ideas of [25] are given in detail in the main
body of the present paper, we will just quote the fact given as [25, Theorem 6]
that one can solve SDLP in an elementary abelian group in time polynomial in
the input size of the group. This will be necessary since several of the results
on simple groups will require that the simple group is non-abelian, and finite
cyclic groups of prime order are the only abelian simple groups. Note also that,
although our more general ideas capture the result of [25] for solving SDLP in
solvable groups, their specific methods may be slightly more efficient in practice
for this particular case.
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3 The Main Reduction

Recall from the discussion in the previous section that Imran and Ivanyos [25]
provide a solution for SDLP in solvable groups by descending a composition se-
ries (using Theorem 3 in their paper), at each step encountering an easy variant
of SDLP in an elementary abelian group. In this section, we significantly gener-
alize the results of [25], by using their method to completely reduce an arbitrary
instance of SDLP to several instances of SDLP in a simple group. In particular,
Theorem 6 demonstrates that if we know how to compute maximal normal sub-
groups, in order to solve some instance of SDLP in a finite group G, it suffices to
solve at most log |G| instances of SDLP in a simple group. The data describing
each of these instances of SDLP can be obtained in time quantum polynomial in
log |G|.

We will defer the proof of this result to the end of the section. We begin by
developing more sophisticated techniques for computing the subgroups required
for [25, Theorem 3], and devise a contingency for the case in which no such
subgroups exist.

3.1 Reduction to SDLP in Simple Groups

Let us review the central “recursion tool” of Imran-Ivanyos [25, Theorem 3]. The
main idea of the recursion tool is to demonstrate that if we can find a normal
subgroup N of G that is invariant under our automorphism, solving SDLP(G,ϕ)
can be reduced to solving SDLP(N, (ϕ|N )n0) and SDLP(G/N, ϕ̄) for some n0,
automorphism ϕ̄ and suitable elements.

We will state and prove the result in full, in order to review ideas from its
proof that are important in our reduction algorithms. For these purposes, we
first provide the following lemma concerning powers of ρ(g,ϕ).

Lemma 1. Let g ∈ G, ϕ ∈ Aut(G). For any integer x, then ρ−x
(g,ϕ)(h) :=

(ρx(g,ϕ))
−1(h) = ρx(ϕ−1(g−1),ϕ−1)(h). Additionally, for any m,n ∈ Z, then ρmn

(g,ϕ) =
ρm(ρn

(g,ϕ)
(1G),ϕn).

Proof. The first statement follows from the observation that (ρ(g,ϕ))
−1(f) =

ϕ−1(g−1f) = ρ(ϕ−1(g−1),ϕ−1)(h).
As ρx(g,ϕ)(h) = ρx(g,ϕ)(1G)ϕ

x(h) it suffices to prove the statement for h = 1G.
Assume first m is positive. If n is also positive then

ρm(ρn
(g,ϕ)

(1G),ϕn)(1G) =

m−1∏
i=0

(ϕn)i
(
ρn(g,ϕ)(1G)

)
= ρmn

g,ϕ (1G).

While for negative n applying the formula for ρ−x
(g,ϕ) above yields

ρmn
(g,ϕ)(1G) = ρ

m(−n)
(ϕ−1(g−1),ϕ−1)(1G) = ρm

(ρ−n

(ϕ−1(g−1),ϕ−1)
(1G),ϕn)

(1G) = ρm(ρn
(g,ϕ)

(1G),ϕn)(1G).
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On the other hand, if m is negative then

ρmn
(g,ϕ) =

(
ρ−mn
g,ϕ (1G)

)−1

(1G) =
(
ρ−m
(ρn

(g,ϕ)
(1G),ϕn)

)−1

(1G) = ρm(ρn
(g,ϕ)

(1G),ϕn)(1G).

□

Theorem 4 (Recursion tool, [25]). Let G be a finite group, ϕ ∈ Aut(G)
and g, h ∈ G. Given a ϕ-invariant normal subgroup N , set ϕ to be the induced
automorphism on G/N and ϕ|N the induced automorphism on N . Then

SDLP(G,ϕ, g, h) = (t0 + t1n0) + (n1n0)Z,

where
SDLP(G/N, ϕ, gN, hN) = t0 + n0Z

and
SDLP(N, (ϕ|N )n0 , ρn0

(g,ϕ)(1G), (ρ
t0
(g,ϕ))

−1(h)) = t1 + n1Z
.

Proof. As N is ϕ-invariant it follows that ϕ|N ∈ Aut(N) and ϕ(gN) := ϕ(g)N
is a well defined automorphism of G/N . In the group G/N , for any f ∈ G, it
follows that

(ρ(g,ϕ)(f))N = (gϕ(f))N = (gN)ϕ(fN) = ρ(gN,ϕ)(fN)

and thus inductively it can be shown that (ρx(g,ϕ)(f))N = ρx
(gN,ϕ)

(fN) for any

integer x.
Assume h = ρx(g,ϕ)(1G) for some x. Then hN = ρx(g,ϕ)(1G)N = ρx

(gN,ϕ)
(1G/N ).

In other words x ∈ SDLP(G/N, ϕ, gN, hN) = t0 + n0Z. Hence it suffices to
compute the set of all t such that h = ρt0+tn0

(g,ϕ) (1G).

By applying the second property from Lemma 1,

h = ρt0+tn0

(g,ϕ) (1G) ⇐⇒ (ρt0(g,ϕ))
−1(h) = ρtn0

(g,ϕ)(1G) = ρt
(ρ

n0
(g,ϕ)

(1G),ϕn0 )
(1G).

Moreover, by Theorem 2.5, the definition of n0 implies that ρn0

(g,ϕ)(1G)N =

ρn0

(gN,ϕ)
(1G/N ) = 1G/N . In other words ρn0

(g,ϕ)(1G) ∈ N . Thus h = ρt0+tn0

(g,ϕ) (1G) if

and only if t ∈ SDLP(N, (ϕ|N )n0 , ρn0

(g,ϕ)(1G), (ρ
t0
(g,ϕ))

−1(h)). In particular,

SDLP(G,ϕ, g, h) = t0 + n0(t1 + n1Z) = t0 + n0t1 + n0n1Z.

□

We can now consider applying this tool to reduce the general case of SDLP,
via a composition series, to the case of SDLP in simple groups.

To determine SDLP(G,ϕ, g, h) via the application of Theorem 4, we need to
construct the following: a ϕ-invariant normal subgroup N of G; the quotient
G/N ; the induced map ϕ̄ on the quotient; and the integer n0. We assume that
given N ◁G, constructing G/N can be done efficiently. Moreover, [25] describes
a general method of evaluating the induced map ϕ̄. The computation of the
integer n0 can be done with a Shor-like algorithm by Theorem 3. Thus the main
obstacle is the computation of the ϕ-invariant normal subgroup.
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3.2 Computing automorphism invariant Normal Subgroups.

The purpose of this section is to describe an algorithm that computes the invari-
ant subgroups. The technique can be understood as building a machine taking as
input some maximal normal subgroup of the group in which we wish to address
SDLP, and outputting a ϕ-invariant subgroup of the maximal normal subgroup.
The techniques for computing maximal normal subgroups in arbitrary finite
groups are taken from the literature, which does not appear to be entirely re-
solved on this subject. For now, we assume we have an oracle Γ (), that on input
of a black-box description of a group G, outputs a black-box description of one
of its maximal normal subgroups. Discussion of the methods in the literature for
implementing such an oracle are delayed to Appendix A.

Our method consists of showing that either we can compute a ϕ-invariant
normal subgroup from an arbitrary maximal normal subgroup, or G has no
characteristic subgroups (that is, it is “characteristically simple”) - and it is well
known (see [48, Lemma 2.8]) that a group is characteristically simple if and only
if it is isomorphic to Sk, where S is a simple group. In this latter case we have
two sub-cases: either G is abelian, or ϕ acts transitively on the k factors of G,
allowing a bespoke method of reduction.2

A method of computing ϕ-invariant normal subgroups from an arbitrary
maximal normal subgroup N is given in [25], and works as follows. Set N1 = N
and for i ≥ 2 define Ni = Ni−1 ∩ ϕi−1(N). This sequence must eventually
stabilize, say for some integer j ∈ N: it is not difficult to show that Nj is
ϕ-invariant, and that, since each intersection is a subgroup, we arrive at this
stabilization within log |G| steps. For brevity we will refer to this method as the
“intersection trick”.

Notice that we are not a priori guaranteed that the output of the intersection
trick is non-trivial (certainly the trivial subgroup is ϕ-invariant). The intersec-
tion trick, however, will not terminate with the trivial subgroup if the maximal
normal subgroup we started with contains a G-characteristic subgroup, since
such a G-characteristic subgroup is also contained in the image of N under any
automorphism, by definition. It would therefore suffice to demonstrate that a
non-characteristically simple group is such that every maximal normal subgroup
contains a characteristic subgroup in G. In fact, we are able to provide this
alternate classification of the characteristically simple groups, as shown below.

Lemma 2. Let G be a finite group. G possesses a non-trivial G-characteristic
subgroup if and only if every maximal normal subgroup N of G contains a non-
trivial G-characteristic subgroup.

Proof. The reverse direction is trivial. Assume then that G is not characteris-
tically simple and contains a maximal normal subgroup N . We show that N
contains a nontrivial characteristic subgroup of G.

2 The situation is actually slightly more complicated than this, as we will see.
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Consider the subgroup J (G) defined as the intersection of all maximal nor-
mal subgroups, known as the “Jacobson radical” of G. By definition, J (G) is
contained in N and J (G) is characteristic. Hence it can be assumed that J (G)
is trivial, which implies G is a direct product of simple groups by [5, Remark 4.8]

Set G = Sa1
1 × . . . San

n , with Si ̸∼= Sj for i ̸= j. As G is not characteristically
simple, n ≥ 2. Assume S1, . . . , Sm are non-abelian and Sm+1, . . . , Sn are abelian,
so that the centre of G is given by Z(G) =

∏n
i=m+1 S

ai
i . Additionally, write each

factor as Sai
i = Si,1 × · · · × Si,ai

.

If N is a maximal normal subgroup, then there exists some pair (i, j) such
that Si,j ̸⊆ N . By normality, [N,Si,j ] ≤ N∩Si,j = 1. It follows thatG ∼= N×Si,j .
Hence for any k ̸= i it follows that Sak

k ⊆ N , as otherwise there is some l such
that G ∼= N × Sk,l implying that Sk,l

∼= Si,j . To prove the statement, it thus
suffices to show that for each 1 ≤ k ≤ n the subgroup Sak

k is characteristic in G.

Assume first k ≤ m and ϕ ∈ Aut(G). Let 1 ≤ j, j′ ≤ ak. If ϕ(Sk,j) ∩
Sk,j′ = 1 then [ϕ(Sk,j), Sk,j′ ] = 1. Thus if ϕ(Sk,j) ∩ Sk,j′ = 1 for all j′, then
ϕ(Sk,j) ≤ CG(S

ak

k ) =
∏

j ̸=k S
aj

j ; which yields a contradiction as CG(S
ak

k ) has no
composition factor isomorphic to Sk. Thus there must exist some j′ such that
ϕ(Sk,j) = Sk,j′ and so ϕ(Sak

k ) = Sak

k .

Finally consider k ≥ m+ 1. As the Sk are non-isomorphic groups, each Sak

k

must be the unique Sylow pk subgroup of Z(G) for some prime pk. Therefore
Sak

k is characteristic in G as being characteristic is transitive. ⊓⊔

Notice that if the intersection trick terminates with the identity, by Lemma 2,
G is characteristically simple. However, there are situations where a maximal
normal subgroup of a characteristically simple group contains a ϕ-invariant nor-
mal subgroup. Whether or not this happens, in the non-abelian case, is related
to the the automorphism ϕ. In particular, for S a non-abelian simple group,
Aut(Sk) ∼= Aut(S)k ≀ Sym({1, ..., k}); in other words, every automorphism in
Aut(Sk) can be thought of as possessing a unique permutation component.

Lemma 3. Let G be a non-abelian finite group, and ϕ one of its automorphisms.
The intersection trick for determining a ϕ-invariant normal subgroup from a
maximal normal subgroup of G terminates in the trivial subgroup if and only if
the group G ∼= Sk for some non-abelian simple group S with k ∈ N, and the
permutation component of ϕ is a k-cycle.

Proof. First, we note that the normal subgroups of a non-abelian characteristi-
cally simple group Sk are exactly the subgroups

∏l
j=1 Sij , where {i1, ..., il} ⊂

{1, ..., k}. In other words, every normal subgroup of Sk corresponds uniquely
with a subset of {1, ..., k}. Clearly, the maximal normal subgroups of Sk corre-
spond to the subsets of {1, ..., k} of size k − 1.

Set G = Sk for S a non-abelian simple group and suppose the permutation
component of ϕ is a k-cycle. Since the maximal normal subgroup N we give as
input to the intersection trick is of the form

∏k
i=1,i̸=j Si for some j ∈ {1, ..., k},

12



we have that

{ϕi(N) : i ∈ N} =


k∏

i=1,i̸=j

Si : 1 ≤ j ≤ k


The intersection of all these subgroups is trivial, and so we are done in this
direction.

Now suppose that the intersection trick terminated in the trivial subgroup.
We have already seen that the group G must, in this case, be characteristically
simple, and so without loss of generality is of the form Sk, where S is a non-
abelian simple group. Consider a maximal normal subgroup N of G. We are
going to argue that if the permutation component of ϕ, which we will denote σϕ,
is not a k-cycle, then N will contain a non-trivial, ϕ-invariant normal subgroup,
and so the intersection trick could not have had as output the trivial subgroup
- a contradiction.

To see this, consider the orbits of the permutation σϕ (that is, the distinct
subsets of {1, ..., k} that are invariant under σϕ). Of course, σϕ is a k-cycle if and
only if it has a single orbit; suppose that it has strictly more than one. Denote
by IN the size k − 1 subset of {1, ..., k} corresponding to N under the bijection
alluded to above. Because IN has size k−1 and there are two or more orbits, IN
must contain one of the orbits. Consider the normal subgroup corresponding to
this orbit; since the orbit is fixed under the permutation σϕ, the corresponding
subgroup, say N ′, is fixed under ϕ. Now, the ϕ-invariant normal subgroup N ′ is
contained in N , so the intersection trick will terminate in a subgroup no smaller
than N ′. In particular, the intersection trick did not terminate in the trivial
subgroup, giving the desired contradiction. ⊓⊔

We are now ready to give the algorithm computing ϕ-invariant normal sub-
groups, given a maximal normal subgroup. In the case that no ϕ-invariant normal
subgroup can be found, our algorithm outputs its input as a characteristically
simple group, and determines whether this characteristically simple group is
abelian or not.

Theorem 5. Let G be a finite black-box group, and suppose ϕ is an automor-
phism of G. Given an oracle computing maximal normal subgroups, Algorithm 1
either computes a non-trivial ϕ-invariant subgroup of G, or detects that G is
characteristically simple. If characteristic simplicity is detected, the algorithm
also detects whether the group was abelian or not. In any case the algorithm
finishes in time quantum polynomial in log |G|.

Proof. Let N be a maximal normal subgroup of G obtained from the oracle Γ .
If N contains a non-trivial characteristic subgroup of G then, since this charac-
teristic subgroup will also be contained in ϕi(N) for every i ∈ N, the intersection
trick will not terminate with the trivial subgroup.

If it does terminate with the trivial subgroup, we have already seen that the
group we started with must be characteristically simple. If it is abelian, then,
it is elementary abelian, and there are efficient quantum methods of recognising

13



elementary abelian groups. If this test is failed we indicate instead that we have
a non-abelian characteristically simple group. ⊓⊔

Algorithm 1 (Inv): Computing ϕ-invariant normal subgroups, or detecting
either flavour of characteristically simple group.

Input: G,ϕ, oracle Γ computing maximal normal subgroups
Output: ϕ-invariant N ◁ G or G

1: N ← Γ (G)
2: N1 ← N
3: N2 ← ϕ(N)
4: j ← 2
5: while Nj ̸= Nj−1 do
6: j ← j + 1
7: Nj+1 ← Nj ∩ ϕj−1(N)
8: end while
9: if Nj ̸= {1} then
10: return Nj

11: else if G abelian then
12: G.CS Abelian Flag← 1 return G
13: else
14: G.CS NonAbelian Flag← 1 return G
15: end if

Before moving on to the full reduction, we note that in the case that G is
abelian and characteristically simple, the structure of the automorphisms is more
complicated than the structure described in Lemma 3, that is, Aut((Z/pZ)n) ∼=
GLn(Fp). In order to avoid dealing with this algebraically, we can now simply
outsource the abelian case to the method of [25] for solving SDLP in an elemen-
tary abelian group. Otherwise, the group and automorphism we started with
have the form described in Lemma 3. We develop an algorithm for handling this
case below.

Lemma 4. Suppose G is a finite, non-abelian, characteristically simple group
and ϕ is one of its automorphisms. We have that G = Sk for S some non-abelian
simple group and k ∈ N; suppose moreover that the permutation component of
ϕ is a k-cycle. Denote by [g]i the i-th coordinate of an element in the direct
product group. Provided access to an oracle Θ for solving SDLP in simple groups,
Algorithm 2 solves SDLP(G,ϕ) efficiently, with at most k2 calls to the oracle.

Proof. First note that by [1, Theorem 5.1], we can decompose G into its non-
abelian simple factors. As such we can talk about projections of G onto its
co-ordinates, and assume knowledge both of the integer k and black box repre-
sentation of the simple factor S.

We know that the permutation component of ϕ is a k-cycle, so ϕk must
consist only of co-ordinate-wise application of automorphisms in Aut(S). Call

14



these permutations to be applied co-ordinate wise ϕk = (ϕ1, ..., ϕk). Set also
(g1, ..., gk) = ρk(g,ϕ)(1G).

We wish to find the integers x such that h = ρx(g,ϕ)(1G). Of course, any such

integer is of the form i+ kt for 0 ≤ i < k. Defining (hi,1, ..., hi,j) = ρ−i
(g,ϕ)(h), for

any i ∈ {0, ..., k − 1}, have

h = ρxg,ϕ(1G) ⇐⇒ ρ−i(h) = ρkt(g,ϕ)(1G)

⇐⇒ (hi,1, ..., hi,k) = ρt(ρk
g,ϕ(1G),ϕk)(1S , ..., 1S)

⇐⇒ (hi,1, ..., hi,k) = (ρt(g1,ϕ1)
(1S), ..., ρ

t
(gk,ϕk)

(1S))

In other words, given an i ∈ {0, ..., k − 1}, we get k instances of SDLP in S
that we can input to the SDLP oracle Θ. Any value t that solves all k of these
instances is such that x = i+kt has h = ρx(g,ϕ)(1G). In order to find the solutions
of this latter instance of SDLP, then, it suffices to check the k problem instances
defined by all k choices of i, giving k2 total calls to the oracle. This procedure
is outlined in Algorithm 2. ⊓⊔

Algorithm 2 (CSimple): Solving particular instances of SDLP in non-abelian,
characteristically simple groups.

Input: G,ϕ, g, h
Output: Element of solution set of SDLP(G,ϕ) for g, h

1: S ← non-abelian simple factor of G
2: k ← number of copies of S
3: (ϕ1, ..., ϕk)← ϕk

4: Solutions ← {}
5: for i from 0 to k − 1 do
6: hi,1 ← [ρ−i

(g,ϕ)(h)]1
7: SubSolutions ← Θ(S, ϕ1, g1, hi,1)
8: for j from 2 to k do
9: hi,j ← [ρ−i

(g,ϕ)(h)]j
10: SubSolutions ←SubSolutions ∩ Θ(S, ϕj , gj , hi,j)
11: end for
12: Solutions ← Solutions ∪ {i+ k · SubSolutions}
13: end for

3.3 The Decomposition Algorithm

We are now ready to provide our reduction to simple groups.

Theorem 6. Consider SDLP(G,ϕ) for some finite group G, one of its auto-
morphisms ϕ, and group elements g, h. Suppose we have an oracle Γ computing
maximal normal subgroups of G. Suppose, moreover, that we have an oracle Θ
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that, on input of the data S, ν, g, h for S a simple group, ν one of its automor-
phisms, and g, h ∈ S, outputs the set of solutions of SDLP(S, ψ) for g, h. There
exists an algorithm Solve() that has the following properties: the algorithm ter-
minates in time polynomial in log |G|, having made logarithmically many calls
to Θ; and outputs a solution of SDLP(G,ϕ). The algorithm Solve() is defined as
in Algorithm 3, where ϕ, n0, g

′, h′, ϕ̄ and ψ have the same meaning as in the
proof of Theorem 4.

Algorithm 3 Solve(G,ϕ, g, h)

Input: (G,ϕ, g, h), oracles Γ,Θ
Output: (t, n) such that SDLP (G,ϕ, g, h) = t+ nZ
1: N ← Inv(G,ϕ) ▷ Algorithm 1
2: if N.CS Abelian Flag == 1 then
3: (t, n) ← solutions obtained from [25] method of solving SDLP in elementary

abelian groups
4: else if N.CS NonAbelian Flag == 1 then
5: (t, n) ← CSimple(G,ϕ, g, h) ▷ CSimple (Algorithm 2) can access Θ
6: else
7: (t0, n0) ← Solve(G/N, ϕ̄, ψ(g), ψ(h))
8: (t1, n1) ← Solve(N,ϕn0 , g′, h′)
9: (t, n) ← (t0 + t1n0, n0n1)
10: end if
11: return (t, n)

Proof. We verify that the algorithm terminates after at most log|G| − 1 internal
repetitions of Solve(). Start with G: if it is not simple, there are two cases. If the
group is characteristically simple, this is detected by the algorithm Inv defined
in Algorithm 1 (which implicitly calls Γ ) , and there are two sub-cases. Either
the CS Abelian Flag attribute is set to 1 by Inv, and we can solve the problem in-
stance by applying the method of [25] for solving SDLP in an elementary abelian
group; or CS NonAbelian Flag is set to 1, and we solve the problem instance with
Algorithm 2. If characteristic simplicity is not detected, Algorithm 1 computes a
ϕ-invariant subgroup N , and we run Solve() on the two induced problems defined
in N and G/N . For these groups, if they are not simple, repeat the procedure,
and so on.

As each normal subgroup of G/N is of the form M/N and (G/N)/(M/N) ∼=
G/M , it follows that the internal repetitions of Solve() reduces the problem to
solving instances Solve(Ni/Ni−1, ϕi, gi, hi) for a subnormal series 1◁N1 ◁ · · ·◁
Nn = G such that Ni/Ni−1 is either abelian or has no ϕi-invariant subgroup for
suitable automorphisms ϕi and elements gi and hi. Moreover, as each Ni/Ni−1

has order at least 2 it follows that n ≤ log|G| and thus Solve() must terminate
after at most log|G| internal repetitions.

□
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It now remains to develop methods for solving SDLP in simple groups. The
rest of the paper will be devoted to this effort.

4 Reduction to Matrix Power Problem

In this section, we present a rather generic method of solving SDLP—indeed, it is
defined for any group. We build on the ideas of [25, Theorem 8], which provides
a reduction of SDLP in some finite group G, to the matrix power problem in the
case that the group G is a matrix group over a field. Our observation is that, by
looking at the linear representations of an arbitrary group, there is a sense in
which every group is a matrix group over a field. Moreover, in the case where ϕ
is inner, we are able to compute a linear map that “mimics” the effect of ρ(g,ϕ),
thereby allowing us to apply the same techniques given by [25, Theorem 8]. It
turns out that simple groups are well-suited to the application of this method,
because the outer automorphism group of a simple group in general remains
quite small.

Let us first outline the intuition behind the method: first, by Cayley’s theo-
rem, we know that every finite group G admits a faithful linear representation3;
that is, an injective group homomorphism G→ GLn(K) for some field K. Now,
GLn(K) lives in the ambient spaceMn(K), the matrix algebra of all n×n matri-
ces with entries in the field K. We can think of this space as an n2-dimensional
vector space equipped with the natural addition and scalar multiplication, so
we can imagine that we have a linear map T on this vector space. Suppose that
this map T is such that T ◦ ψ = ψ ◦ ρ(g,ϕ); we then immediately have that
T i ◦ψ = ψ ◦ρi(g,ϕ). It follows that, in order to solve the SDLP instance, it suffices

to find an integer x such that T x ·ψ(1G) = ψ(h), where ψ(1G) is a vector in the
n2-dimensional vector space, and · refers to the usual notion of multiplication
of a matrix by a vector. We have arrived at an instance of the so-called matrix
power problem; when the matrices are invertible we have the same reduction
to the period-finding routine of Shor’s algorithm as one has for the standard
discrete logarithm problem, and so we have a solution in quantum polynomial
time.

If instead we have a projective linear representation, i.e., an injective ho-
momorphism G → PGLn(K) the same reduction can be applied to projective
matrices in PGLn2(K).

Lemma 5. Let G be a finite group, and ψ : G→ GLn(K) and ψ : G→ PGLn(K)
a (projective) linear representation. Given an instance of SDLP for G and ϕ,
where ϕ is an inner automorphism, i.e., ϕ(g) = mgm−1 for some m ∈ G, define
the linear map T :Mn(K) →Mn(K),M 7→ ψ(gm)Mψ(m−1). Then T descends
to a map T : PMn(K) → PMn(K) and

T ◦ ψ = ψ ◦ ρ(g,ϕ) and T ◦ ψ = ψ ◦ ρ(g,ϕ) (1)
3 Note that the dimension of the representation implied by Cayley’s theorem is rather
large. For the groups we are interested in we will have to work harder than this to
find lower-dimensional linear representations.
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Proof. Since T is linear, it clearly descends to a map T as described. Let h ∈ G,
then by definition

(T ◦ ψ)(h) = ψ(gm)ψ(h)ψ(m−1) = ψ(gmhm−1) = ψ(gϕ(h)) = (ψ ◦ ρ(g,ϕ))(h)

The projective case follows immediately. □

We delay the discussion of the case in which the automorphism ϕ is outer.
Armed with T, the reduction to the matrix power problem works as follows.

Lemma 6. Given a finite group G together with an efficiently computable in-
jective (projective) linear representation ψ : G → (P)GLn(K), if ϕ is an inner
automorphism, then we can reduce any SDLP instance to an instance of the
matrix power problem in time polynomial in n.

Proof. First suppose ψ is a linear representation. Given h ∈ G, we want to find
x ∈ N such that ρx(g,ϕ)(1G) = h. By Lemma 5, if ψ is faithful, this is equivalent to

finding x ∈ N such that T x(a) = b where a = 1n×n (the n× n identity matrix)
and b = ψ(h).

Let W := spanK(T i(a) | i ≥ 0), which is a K-linear subspace of Mn(K). We
define the K-linear map

S : W →W, v 7→ Txv

Note that even though we do not know x, we can compute S onW in polynomial
time since we know S(a) = b. Note that (T|W )x = S, and since both S and
T|W are known we can find x by solving the matrix power problem in GLn2(K)
(noting that S and T|W can be regarded as elements in GLn2(K) after a choice
of basis).

In the case that ψ is an injective projective representation, the result follows
similarly, reducing SDLP to the matrix power problem in PGLn2(K). □

Recall also that we did not have a method of computing the crucial map T,
should the automorphism in question not be inner. However, by [25, Proposi-
tion 2], we do have the option of taking the smallest power of the automorphism
that is inner, say y, and instead solving at most y instances of SDLP for G and
ϕy. It turns out, due to a result of Kohl [33, Theorem 1] that for simple groups
one can expect this power to be small.

Theorem 7 (Kohl). If G is a non-abelian finite simple group, then

|Out(G)| < log2 |G|.

Since Out(G) ∼= Aut(G)/ Inn(G) it follows that for any outer automorphism
ϕ of a non-abelian finite simple group G there exists an integer x such that
ϕx ∈ Inn(G); and crucially that this x is no larger than log2 |G|. We conclude
the following.
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Corollary 2. Let G be a non-abelian finite simple group, and suppose we have
an efficiently computable non-trivial (projective) linear representation ψ : G →
(P)GLn(K). Then we can solve SDLP in G, for any ϕ ∈ Aut(G), on a quantum
computer in probabilistic polynomial time in log |G|.

Remark 2. Note that we did not have to insist in the above that the linear
representation was faithful. In fact, any non-trivial representation of a simple
group is faithful, since if the map were not injective it would have non-trivial
kernel and therefore imply a proper normal subgroup of a simple group.

5 SDLP in Simple Groups

Now that we have an efficient reduction of the general case of SDLP to SDLP in
simple groups, and a method of solving SDLP in simple groups whose complexity
is a function of the faithful dimension in simple groups, let us review the known
results in this area.

The classification of finite simple groups [48] says any finite simple group is
isomorphic to one of the following:

1. A cyclic group of prime order p;

2. A group of even permutations of a finite set of cardinality n ≥ 5, also called
alternating group Altn;

3. A classical group of Lie Type:

Linear : An−1(q) ∼= PSLn(q), n ⩾ 2, except PSL2(2) and PSL2(3);
Unitary : 2An−1(q)PSUn(q), n ⩾ 3, except PSU3(2);
Symplectic: Cn(q) ∼= PSp2n(q), n ⩾ 2, except PSp4(2);
Orthogonal : Bn(q) ∼= PΩ2n+1(q), n ⩾ 3, q odd;

Dn(q) ∼= PΩ+
2n(q), n ⩾ 4;

2Dn(q) ∼= PΩ−
2n(q), n ⩾ 4

where q is a power pa of a prime p;

4. An exceptional group of Lie type:

G2(q), q ⩾ 3;F4(q);E6(q);
2E6(q);

3D4(q);E7(q);E8(q)

where q is a prime power, or

2B2

(
22n+1

)
, n ⩾ 1; 2G2

(
32n+1

)
, n ⩾ 1; 2F4

(
22n+1

)
, n ⩾ 1

or the Tits group 2F4(2)
′

5. One of 26 sporadic simple groups.

For cyclic groups, SDLP is known to be equivalent to classical DLP, so we
need to focus on the other families of groups. Our main tool for the infinite
families is to show the existence of a linear representation to use Corollary 2,
while for the sporadic groups (and the Tits group) we have a separate discussion
in Section 5.2.
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5.1 Infinite Families

For alternating groups and groups of Lie type, we show that they have a known
efficient linear representation. Thus, if we have them in their “natural repre-
sentation” (the explicit representation used in their textbook definitions), by
Corollary 2 there is a quantum polynomial-time algorithm to solve SDLP.

However, it is possible that, even if we know the isomorphism class of a
simple group, an isomorphism to the natural representation of the simple group
may still be unknown or hard to compute. A classical example of this is elliptic
curves of prime order, which are known to be cyclic groups but require difficult
discrete logarithm computations to actually map points to modular integers in
a homomorphic way.

This is known in the group theory literature as the Constructive Recog-
nition Problem [1, Section 9.2]; hence, for each family, we will discuss how
to go from a simple black-box group G to an efficient linear representation. By
efficient we mean that the complexity is polynomial in the string length of the
black-box group elements and in the logarithm of the target group cardinality.

Alternating Groups. Alternating groups are the group of even permutations
of a finite set of cardinality n. Since these are permutations, they act on any n-
dimensional vector space by permuting the entries, and thus can be represented
in GLn(K). Additionally, thanks to [27, Theorem 1], there is a probabilistic
algorithm in time O(n log2(n)N) to compute an isomorphism from any black-
box group to the permutation representation of Altn, where N is the string
length of the black-box group and a maximal n is provided. As a consequence
of Corollary 2, we have the following result.

Lemma 7. If G is a simple black-box group isomorphic to any alternating group
Altn, for some known maximal n, we can solve SDLP for G in probabilistic
polynomial time in n log |G| on a quantum computer.

Groups of Lie type. Following [22, Section 2], if S is a finite simple group
of Lie type, then there exists an algebraic group H ≤ GLn(F) over an al-
gebraically closed field F and a Steinberg endomorphism σ of H such that
S ∼= CH(σ)/Z(CH(σ)). Note that there are 8 small cases where this group is
not simple, however the only new non-abelian simple group which arises from
these cases is the Tit’s group 2F4(2) (see [22, Definition 2.2.8 and Theorem
2.2.10]), which will be considered alongside the sporadic simple groups. Given a
family of simple groups of Lie type ϵΓm(q) for any suitable ϵ and prime power q,
the dimension n of the underlying algebraic group H ≤ GLn(Fq) is determined
by Γm:

Γm Am Bm Cm Dm G2 F4 E6 E7 E8

n m+ 1 2m+ 1 2m 2m 14 52 78 133 248
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Thus they are naturally described as subgroups of PGLn(Fq) (or GLn(Fq) if the
centre is trivial). This means that we can solve SDLP for such groups using a
quantum computer as a consequence of Corollary 2.

Sadly, in contrast to the case of alternating groups, there is no plain polynomial-
time algorithm to solve the constructive recognition problem, even if extensive
literature has been written on it.

A series of works of Brooksbank and Kantor have proven that for all the
families of classical groups (linear [15], unitary [13], symplectic [12] and orthog-
onal [14]), summarized in [21], we can efficiently compute isomorphisms to the
natural representations of the groups under the availability of:

1. So called number theory oracles, computing discrete logarithms and factoring
in polynomial time;

2. An oracle that, for any input black-box group G isomorphic either to SL(2, q)
or PSL(2, q), produces in time polynomial in log(q) an effective isomorphism
SL(2, q) → G.

Similarly, in [29, 30] the authors show how to compute, in polynomial time,
isomorphisms for groups of exceptional Lie type, with the exception of large
Ree groups 2F4

(
22n+1

)
and even characteristic Steinberg triality groups of type

3D4(2
e), assuming the availability of number theory oracles and SL(2, q) oracles

as for classical types.
Since, thanks to Shor’s algorithm [46], we know that quantum computers can

implement efficient number theory oracles, we can combine the previous results
in the following lemma.

Lemma 8. On a quantum computer, if G is a simple black-box group isomor-
phic to any group of Lie Type of characteristic q and dimension n, with the
exception of 2F4

(
22n+1

)
and 3D4(2

e), we can reduce SDLP for G in probabilis-
tic polynomial time in n and log(q) to the constructive recognition problem for
the group SL(2, q).

Constructive Recognition of SL(2, q) Given its relevance for the general
formulation of the problem, several works have studied SL(2, q). For instance,
the authors in [19] show how to compute an efficient isomorphism when the
black-box group is a subgroup of the general linear group GLd(q

i), given discrete
logarithm oracles.

In [2, Lemma 2.10], the authors are able to generalize the result even fur-
ther, for the much wider class of black-box groups of quotients of matrix groups
by recognizable normal subgroups, showing that SL(2, q) can be constructively
recognized in polynomial time having access to number theory oracles.

For general black-box groups, the problem has been solved in [31] for even
characteristic and in [9] for the case of small characteristic p ≡ 1 mod 4. For

21



a general field, the research is partially open: actually, in the preprint [10], the
authors show how to compute an isomorphism in polynomial time between the
black-box group and SL2(K), where K is black-box field isomorphic to Fq, this last
isomorphism can be clearly computed via the solution of discrete logarithms over
K. Although these last results would suffice to solve the problem, we await further
review of these results among the community before drawing this conclusion
definitively.

5.2 Sporadic Groups

There are 26 finite simple groups that do not fall into one of the infinite families
and the Tits Group 2F4(2)

′. By the definition of ρ(g,ϕ), it suffices to find x ≤
maxg∈G(ord(g))·maxϕ∈Aut(G)(ord(ϕ)). The ATLAS of finite groups [20] provides
a complete list of element orders for sporadic groups and their automophism
group. In particular, it follows that maxg∈G(ord(g)),maxg∈G(ord(g)) ≤ 119 < 27

for each of these 27 groups.

Lemma 9. For any sporadic finite simple group G and automorphism ϕ ∈
Aut(G), there is a brute force algorithm to solve SDLP for G,ϕ with at most
214 multiplications in the holomorph of G.

Adapting Shanks’ Baby-Step Giant-Step algorithm Adjusting Shanks’
Baby-Step Giant-Step (BSGS) algorithm [45] to our setting is a reasonably sim-
ple task. Knowing a modest-size upper bound N for the possible values of x,
this can be a practical way to find x. Algorithm 4 shows the SDLP variant of
the BSGS algorithm, and it is easy to verify that the algorithm stores O(

√
N)

elements in the holomorph G ⋊ Aut(G) and recovers the secret exponent x in
O(

√
N) operations in G⋊Aut(G).

Algorithm 4 Baby-step giant-step algorithm in G⋊Aut(G).

Input: (g, ϕ) ∈ G⋊Aut(G), h = (g, ϕ)x, N ∈ N with x ≤ N ;
Output: the solution of x of the input SDLP instance.

1: n←
⌈√

N
⌉

2: (s, t)← ((g, ϕ)n, (1, id))
3: T ← [(0, t)] ▷ Initialize table
4: for (j ← 1; j ≤ n; j ++)
5: t← t · s ▷ Giant step
6: Store (t, j) in T .
7: end for
8: (y, i)← (h, 0).
9: while (y, ) is not in T do
10: (y, i)← (y · (g, ϕ)−1, i+ 1) ▷ Baby step
11: end while
12: return jn− i where (y, j) is in T .
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We illustrate the algorithm with SDLP over M.

Example 1. We implemented our BSGS algorithm in approximately 30 lines of
Python using the mmgroup Python library [44], which offers an efficient imple-
mentation of M. In all of our experiments, the running time did not exceed
5 seconds on a 2022 Macbook Air with 16 GB of RAM.

5.3 Determining the isomorphism type of a black box simple group

Note that for the alternating group, the recognition algorithm requires as input
a maximum n such that G could be isomorprhic to Altn, while the recognition
algorithms for groups of Lie type require the isomorphism type of the black
box group. Therefore an important step to apply Lemma 7 and Lemma 8 re-
quires finding out which recognition algorithm needs to be implemented on a
given black box simple group. It turns out that nearly all simple groups (and
characteristically simple) are characterised by their order.

Theorem 8. [32, Theorem 6.1] Let S and T be non-isomorphic finite simple
groups. If |Sa| = |T b| for some natural numbers a and b, then a = b and S and
T either are A2(4) and A3(2) or are Bn(q) and Cn(q) for some n ≥ 3 and some
odd prime power q.

Once a black box simple groups order |S| is known, it can be tested to
which simple group does it coincide and then run the corresponding recognition
algorithm, while if there is a collision it is only between two groups and thus
both corresponding recognition algorithms could be run. For sporadic simple
groups (and the Tits group), this is a direct test against 27 fixed values and for
alternating groups this requires finding n such that |S| = n!. For finite groups

of Lie type their orders are of the form qN

m

∏n
i=1(q

di − ϵi) and thus it suffices
to find the valid values for q, N , n, m, di and ϵi. In particular, determining the
simple groups with order equal to that of a given black box group is polynomial
in log|S|.

6 Conclusion

We conclude by giving a comprehensive overview of our results, and discussing
the consequences for SDLP. We have also summarized the flow of our argument
visually in Figure 1; one can take this diagram as a map of the paper.

Consider a finite, black-box group G. Then, in quantum polynomial time (in
log |G|), we can reduce any SDLP in G instance to at most log |G| instances of
SDLP in a simple group by using Section 3. As a corollary of the Classification
of Finite Simple Groups, once the isomorphism type is known we can efficiently
study each possible instance separately, employing two main attack tools: for
infinite families, the results from Section 4; and for sporadic groups, an adapted
version of the Baby-Step Giant-Step algorithm (Algorithm 4).
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We see that, if the groups are given in their natural representations we can
find linear representations and apply Corollary 2 to produce a solution to SDLP
in the corresponding simple group S in quantum polynomial time in log |S|, so
SDLP on simple groups is no harder than the problem of computing an efficient
linear representation starting from a black-box group. Even if not conclusive, the
extensive group theory literature on the solution of the constructive recognition
problem in probabilistic quantum polynomial time is enough evidence to con-
clude that SDLP on finite groups is not a reliable candidate for the construction
of quantum resistant primitives.

We highlight that, from Figure 1, we could get also constructive quantum
probabilistic polynomial-time algorithms for solving SDLP in a finite, black-box
group G if we solve these last open questions:

1. Provide constructive recognition algorithms for large Ree groups 2F4

(
22n+1

)
and even characteristic Steinberg triality groups of type 3D4(2

e);

2. Have a clean, peer-reviewed discussion of the Constructive Recognition prob-
lem for SL(2, q) on quantum computers.

3. Resolve the gaps in the literature on the computation of maximal normal
subgroups (discussed in the appendix).

We close with some high-level remarks. It is perhaps not too surprising, that
an arbitrary instance of SDLP reduces to SDLP instances in finite simple groups.
However, the fact that all of these finite simple groups admit efficient methods of
solving SDLP relies on the property that simple groups have low dimension and
very small outer-automorphism groups. Recalling that the method of decompo-
sition into finite simple groups could only fail when no characteristic subgroups
were present, it is also rather unfortunate that this scenario coincides with the
group being a direct product of simple groups, from which a different method
of reduction is possible. The insecurity of SDLP in finite groups, in other words,
does not appear to result from some error in cryptographic design, but instead
from fundamental properties of the finite groups themselves.

Acknowledgments. This collaboration was initiated during the “Post-Quantum
Group-Based Cryptography” workshop at the American Institute of Mathemat-
ics (AIM), April 29-May 3, 2024. The authors are indebted to the workshop
organizers Delaram Kahrobaei and Ludovic Perret and the AIM team for bring-
ing this group together and creating a stimulating and collaborative atmosphere.

We want to thank Ray Perlner for spotting problems in the reasoning of an
earlier version of this paper, and bringing those to our attention. We would also
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Is G solvable?

Use [25] reduction. Use Algorithm 3.

Which type of finite simple group is S (or Si)? See Section 5.3

SDLP re-
duces to DLP.

Lemma 7.
Lemma 8 and
[10] with DLP.

Lemma 9.

Yes No

If Algorithm 1 returns G, consider
S where G ∼= Sk. Else, consider
output S1, . . . , Sδ.

Cyclic

Alternating Lie Type

Sporadic

Fig. 1. Visual summary of a possible roadmap for a general SDLP instance over a finite
group.
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A Appendix: Finding Maximal Normal Subgroups

The task of finding a maximal normal subgroup depends on the particular im-
plementation of the black-box group G. In general, if we know the particular
structure of the group G, we may be able to recover them immediately from it.
This can be done even with little knowledge, since from any subgroup S we can
construct the smallest normal subgroup containing it via computing the normal
closure ⟨SG⟩ in linear time as explained in [3].

In the literature, several techniques are known to solve this task more sys-
tematically, via computing a composition series, in this way the first element
in the series (starting from G) is our desired normal subgroup. However, this
branch of literature typically wishes to achieve much stronger results, in partic-
ular without using quantum computers - we do not impose this limitation upon
ourselves. To perform this calculation, aided by a quantum computer, we can:

– Use [25] if every non-Abelian composition factor of G possesses a faithful
permutation representation of degree polynomial in the input size;

– Otherwise, [1, Theorem 1.1] gives us a quasi-composition series for G. Note
that [1] requires a superset of the primes dividing the order of the group |G|
to solve the problem of computing order of group elements, with a quan-
tum computer we can solve both these tasks. This result provides a quasi-
composition chain {1}◁Gm−1◁ · · ·◁G1◁G, and tells us if G/G1 is abelian, or
simple and nonabelian. In the latter case, we have found a maximal normal
subgroup N = G1. In the former case, if A = G/G1 has the unique encoding
property, we can use [26, Theorem 6] on it, since abelian groups are solv-
able, i.e. ν(G) = 1, and the procedure runs in quantum polynomial time. In
this way we get the maximal normal subgroup A1 ◁ A from the composition
series, and A1G1 will be a maximal normal in G by the correspondence the-
oren. However, the general results from [1], does not immediately imply the
unique-encoding property requested, so additional work may be required to
solve this problem for the general case, even if in more concrete cases this
may be practical.

In general, we do not expect that these problems should be of some funda-
mental computational difficulty. We leave the full resolution of the computation
of maximal normal subgroups to further work.
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