
Laconic Function Evaluation and ABE for RAMs
from (Ring-)LWE

Fangqi Dong*

IIIS, Tsinghua University
Zihan Hao†

IIIS, Tsinghua University
Ethan Mook‡

Northeastern University

Hoeteck Wee§

NTT Research and ENS, Paris
Daniel Wichs¶

Northeastern University and NTT Research

June 5, 2024

Abstract

Laconic function evaluation (LFE) allows us to compress a circuit f into a short digest.
Anybody can use this digest as a public-key to efficiently encrypt some input x. Decrypting
the resulting ciphertext reveals the output f(x), while hiding everything else about x. In this
work we consider LFE for Random-Access Machines (RAM-LFE) where, instead of a circuit f , we
have a RAM program fDB that potentially contains some large hard-coded data DB. The de-
cryption run-time to recover fDB(x) from the ciphertext should be roughly the same as a plain
evaluation of fDB(x) in the RAM model, which can be sublinear in the size of DB. Prior works
constructed LFE for circuits under LWE, and RAM-LFE under indisitinguishability obfuscation
(iO) and Ring-LWE. In this work, we construct RAM-LFE with essentially optimal encryption
and decryption run-times from just Ring-LWE and a standard circular security assumption,
without iO.

RAM-LFE directly yields 1-key succinct functional encryption and reusable garbling for
RAMs with similar parameters.

If we only want an attribute-based LFE for RAMs (RAM-AB-LFE), then we can replace Ring-
LWE with plain LWE in the above. Orthogonally, if we only want leveled schemes, where the
encryption/decryption efficiency can scale with the depth of the RAM computation, then we
can remove the need for a circular-security. Lastly, we also get a leveled many-key attribute-
based encryption for RAMs (RAM-ABE), from LWE.

*dfq20@mails.tsinghua.edu.cn
†haozh20@mails.tsinghua.edu.cn
‡mook.e@northeastern.edu
§wee@di.ens.fr
¶wichs@ccs.neu.edu Research supported by NSF grant CNS-1750795, CNS-2055510 and the JP Morgan Faculty

Research Award.

Contents

1 Introduction 1
1.1 Prior Work on LFE for TMs and RAMs . 2
1.2 Our Results and Applications . 3
1.3 Our Techniques . 5

2 Preliminaries 9
2.1 Learning with Errors and Lattice Tools . 10
2.2 The GSW FHE Scheme . 11
2.3 RAM-FHE . 12
2.4 Garbled Circuits . 13

3 RAM Circuits and RAM Programs 14

4 Homomorphic Operations for RAM Circuits 17
4.1 Database Read Gates . 20
4.2 Matrix Read Gates . 22
4.3 Wire Read Gates . 24
4.4 Bootstrapping . 25
4.5 Putting it all together . 28

5 RAM-LFE 29
5.1 RAM AB-LFE . 31
5.2 Upgrading to full RAM-LFE . 35

6 RAM-ABE 38

A Laconic Encryption 45

i

1 Introduction

Laconic Function Evaluation. Laconic function evaluation (LFE) [QWW18,CDG+17], determin-
istically generates a short digest dig := Hash(f) for a boolean function f . The digest can be used as
public key to encrypt some input x resulting in a ciphertext ct ← Enc(dig, x). Encryption should
be very efficient, ideally linear in |x|, and independent of the complexity of f . Anybody can de-
crypt the resulting ciphertext ct using only knowledge of the function f to recover the output
f(x) := Dec(f, ct), but the ciphertext should hide all other information about the input x. In short,
LFE allows one to only reveal f(x) without computing f . Security is formalized via the simulation
paradigm, which dictates that the ciphertext can be simulated given only the function f and the
output f(x), but without any additional knowledge of x.1

We can think of LFE as a “flipped” version of fully homomorphic encryption (FHE). Consider
a powerful server who has some function f and a weak client who holds a private input x, but
does not have the computational power to compute f ; they want to run a 2-round secure protocol
to compute f(x) by having the server do all the work. FHE provides a solution where the client
gets the output: the client encrypts x, the server homomorphically computes an encryption of
f(x), and the client decrypts. LFE provides a solution where the server learns the output: the
server computes the digest of f , the client encrypts x, and the server decrypts f(x). Moreover, the
first round is reusable and many different clients can non-interactively encrypt various inputs xi
under the digest to ensure the server only learns the function outputs f(xi).

As an example application described in [DHMW24], consider a scenario where the FBI has a
database of most-wanted suspects. There are many security cameras in public spaces with very
limited computational power, and we want to allow the FBI to learn when one of the suspects
passes in front of one the cameras, but not to learn anything else about what the cameras are
observing. LFE gives a simple non-interactive solution to this problem. The FBI publishes a digest
dig for the function f that contains a hard-coded database of suspects and, given an image x, it
outputs whether x has a match in the database. The cameras periodically capture images x of their
surroundings, encrypt them under the digest dig, and send the ciphertexts to the FBI, which then
only learns if a suspect passed in front of the camera but nothing else.

LFE implies succinct 1-key functional encryption (FE), which is in turn known to imply reusable
garbled circuits [GKP+13b]. It also implies a form of online-efficient multiparty computation, where
most of the computation can be done offline before the protocol starts and after it ends, but the
computation during entire online part of the protocol is independent of the complexity of f .

Prior Work on LFE for Circuits. The work of [QWW18] constructed leveled LFE for boolean circuits
under the learning-with-errors (LWE) assumption. For a boolean function f represented by a
circuit of size |f | depth d and 1-bit output, the server’s run-time to generate the digest and to
decrypt is |f | · poly(d), the digest size is O(1), and the client’s run-time (to encrypt) is |x| · poly(d),
which also upper bounds the size of the CRS and the ciphertext size.2 The recent work of [HLL23]
shows how to get a fully succinct (non-leveled) LFE scheme that removes all of the above poly(d)

1For the above to be possible we also need to have a short common random string (CRS) that is given as an input to
all the algorithms, but for simplicity we often omit it in the introduction.

2The scheme is selectively secure where the input x cannot be chosen depending on the CRS. Selective security will
be the default notion throughout the introduction. We also ignore fixed polynomial factors in the security parameter as
well as other polylogarithmic factors throughout the introduction.

1

factors via a “bootstrapping procedure”, by relying on the same circular-security assumption as is
needed to bootstrap FHE.

1.1 Prior Work on LFE for TMs and RAMs

LFE for TMs. The work of [DGM23] constructed LFE for Turing Machines assuming indistin-
guishability obfuscation (iO) and somewhere statistically binding hash functions. In particular,
for a boolean function f represented as a Turing Machine of description-size |f |, the server’s run-
time to generate a digest is O(|f |), the size of the digest is O(1), the client run time (to encrypt) is
O(|x|), and the server run time to decrypt is O(T), where T is the run-time of the computation.
The main advantage of LFE for TMs over LFE for circuits is in the smaller run-time to generate the
digest, which doesn’t depend on the input size or the run-time of the computation.

LFE for RAMs. The recent work of [DHMW24] defined the notion of LFE for RAM programs
(RAM-LFE) that we study in this work. Instead of a circuit f(x) we consider a RAM program
fDB(x) with random access to the input x and a potentially large hard-coded dataset DB. The
main goal of RAM-LFE is to improve the decryption run-time needed to recover fDB(x) from the
ciphertext to ideally be roughly proportional to the RAM run-time T of the plaintext computa-
tion, rather than its potentially much larger circuit size. Most importantly, it allows the decryption
run-time to be sublinear in both x and DB. In order for this to be feasible, the deterministic di-
gest generation procedure (dig,DS) := Hash(fDB) also creates an auxiliary data structure DS. The
encryption procedure ct ← Enc(dig, x) only gets the small digest dig as before, but the decryption
procedure now also uses the data-structure DS to efficiently decrypt the ciphertext ct and compute
fDB(x). It was noted in [DHMW24] that RAM-LFE implies a form of doubly efficient private infor-
mation retrieval (DEPIR) [BIM00, CHR17, BIPW17, LMW23], which was recently constructed from
Ring-LWE [LMW23]. The work of [DHMW24] uses DEPIR to achieve their results. It presents
two constructions of RAM-LFE. Both constructions rely on a CRS of size O(1), have digest size
O(1), and the digest generation run-time of Hash as well as the size of the data structure DS are
O(|f |+ |DB|)1+ε for an arbitrary constant ε > 0, where |f | here denotes the description-size of the
RAM program. The first construction achieved “weak efficiency” under just Ring-LWE. For a RAM
program fDB(x) with run-time T :

• The encryption run-time to encrypt x under a digest dig is O(|x|+ T).

• The decryption run-time to decrypt fDB(x) from the ciphertexts is O(T).

Here, the encryption run-time scales with the RAM run-time T of the computation, which is an-
tithetical to one of the main goals of LFE, that the encryptor should do less work than computing
the function. It is also incomparable with LFE for circuits where the encryption run-time can be
much smaller. The second construction achieved essentially optimal “full efficiency” by addition-
ally relying on indistinguishability obfuscation (iO).

• The run-time to encrypt x is O(|x|).

• The run-time to decrypt the ciphertext and recover fDB(x) is O(T).

2

1.2 Our Results and Applications

RAM-LFE. Our main result is a new construction of RAM-LFE from Ring-LWE and a standard
circular-security assumption (i.e., the circular security of the GSW FHE scheme [GSW13]), avoid-
ing the use of iO. Under these assumptions we achieve RAM-LFE with close-to optimal encryp-
tion/decryption run-time. For a RAM program fDB(x) with run-time T :

• The run-time to encrypt x is O(|x|1+o(1)).

• The run-time to decrypt the ciphertext and recover fDB(x) is O(T 1+o(1)).

We also achieve essentially optimal digest size of O(1). However, compared to both of the RAM-
LFE constructions of [DHMW24], we pay a heavier price for the digest generation. Namely, we
need to fix the input size |x| upfront, and our CRS size is O(|x|). The run-time of the digest-
generation procedure Hash(fDB) and the size of the produced data structure DS are now O(s1+o(1)),
where s is the circuit size of the function fDB for the given input size. We argue that, in most
applications, the digest of a function fDB is computed once and reused repeatedly to evaluate the
function on many inputs x, in which case the efficiency of encryption/decryption is much more
crucial than that of digest generation. In short, our construction gives a strict improvement over
LFE for circuits,3 by having an improved decryption time that only scales with the RAM run-
time of the computation, but it does not improve on the digest generation, which still essentially
translates the computation into a circuit.

We can also remove the circular security assumption and get a leveled RAM-LFE scheme, where
all the parameters scale with the depth of the RAM computation, which can be significantly
smaller than the run-time T .

RAM-AB-LFE. Our construction of RAM-LFE follows the high-level approach of [QWW18], by
first constructing a weaker attribute-based notion of LFE and then upgrading it. In a RAM-AB-LFE
scheme, the encryption procedure ct ← Enc(dig, (x, µ)) takes an attribute/message pair (x, µ),
and the ciphertetext ct always reveals the attribute x, while the output fDB(x) determines whether
the ciphertext should reveal or hide the message µ. The difference between attribute-based LFE
and LFE is the same as that between attribute-based encryption and functional encryption. We
construct RAM-AB-LFE under the LWE assumption (no need for Rings) and a circular security
assumption. The RAM-AB-LFE scheme also gets a slightly improved encryption run-time O(|x|+
|µ|) and digest generation run-time O(s), removing the o(1) terms in the exponent. Furthermore,
we can also remove the circular security assumption and get a leveled RAM-LFE scheme, where
all the parameters scale with the depth of the RAM computation.

RAM-ABE. Lastly, as a side result, our techniques also give a leveled many-key attribute-based
encryption (ABE) for RAMs (RAM-ABE) under the LWE assumption. Each secret key skfDB

is as-
sociated with a RAM program fDB having some fixed input size and RAM run-time T . The run
time of encrypting a message µ under attribute x is (|x|+ |µ|)poly(d), the run-time of the decryp-
tion is T · poly(d) and the run-time of key generation and the size of the secret key is s · poly(d),
where s is the circuit size of fDB and d is the depth of the RAM-computation. Unfortunately, in

3Ignoring the o(1) terms in the exponent, but since poly(λ)o(1) = o(λ), all these terms are anyway subsumed by
fixed polynomials in the security parameter λ.

3

the many-key RAM-ABE setting, we do not know how to remove depth dependence via a circular
security assumption alone. However, following the approach of [HLL23], it can be done under a
significantly stronger circular evasive LWE assumption defined there, resulting in a scheme whose
efficiency is as above but without the poly(d) factors. We note that a prior work of [AFS19] gave an
alternate construction of RAM-ABE from LWE, albeit one where the encryption run-time is linear
in the RAM run-time T . Additionally, [JLL23] gave a construction of a form of RAM-ABE based
the assumption of circuit FE, but in their construction decryption runs in time linear in the sum
T + |DB|+ |x| of the RAM run-time, database size and attribute size.

Applications. Most of the prior applications of LFE [QWW18] can be directly lifted to RAM-LFE,
yielding analogous improvements. We summarize three prominent applications briefly below.

Firstly, LFE implies 1-key succinct functional encryption (FE), and the same approach shows
that RAM-LFE implies 1-key succinct RAM-FE. In a RAM-FE scheme, a master authority creates
a master public key and hands out secret keys skfDB

for various RAM programs fDB. Given an
encryption of an input x under the master public key and a single secret key skfDB

, the recipient
only recovers fDB(x), but learns nothing else about x. RAM-FE can be constructed from RAM-LFE
by using a generic non-succinct FE for circuits (constructed generically from public-key encryption
[SS10]) for the small circuit that performs a RAM-LFE encryption of x under the digest of the
function fDB. The encryption/decryption run-time of the RAM-FE is linear in that of the RAM-
LFE, and the key generation run-time of the RAM-FE is linear in the digest generation run-time of
the RAM-LFE.

Secondly, RAM-LFE gives reusable garbled RAM [GHRW14], which is a generalization of reusable
garbled circuits [GKP+13b], and was previously studied in [GHRW14, CHJV15, CH16, BCG+18].
All prior constructions relied on iO, while we get a new construction without iO. In a reusable
garbled RAM scheme a client garbles some RAM program fDB and gives the garbled program
f̃DB to a remote server while keeping some short secret key sk. Later the client can use sk to gar-
ble some input x and give the garbled input x̃ to the server. Given the garbled program f̃DB and
the garbled input x̃, the server can recover the output fDB(x), but should not learn anything else
about the values fDB, x (except the code/data/input sizes and the run-time). RAM-LFE almost
directly solves the problem by setting the garbled input x̃ to be an LFE encryption of x. While this
hides the input x, the program/data fDB would be given in the clear. To hide them, we follow the
same approach as [GKP+13b] and simply encrypt the code f and the database DB under a secret
key k and then include k as part of the garbled input. We then apply RAM-LFE on the modified
program that decrypts each entry of DB or instruction from the code f as they are accessed, us-
ing the key k given as input. In the resulting reusable garbled RAM, the time to garble the RAM
program fDB and the size of the garbled program are larger than in the iO based constructions,
proportional to the circuit size of the computation. But the run-time to garble each input and to
evaluate the garbled RAM on each garbled input are nearly optimal.

Lastly, LFE implies a form of multiparty computation with small online complexity. The par-
ties individually compute an LFE digest for the function f in an offline preprocessing stage. Then
they simply run an generic MPC online to compute the LFE encryption of their inputs. Finally,
they decrypt the LFE ciphertext in an offline postprocessing stage to recover the output. By plug-
ging in RAM-LFE we get an analogous result in the RAM model, where the run-time of the post-
processing stage scales with the RAM run-time of the computation rather than its circuit size.

Separately from the applications of RAM-LFE, our techniques also yield a new construction of

4

laconic encryption from LWE that is conceptually different from the one in [DKL+23]. We briefly
sketch our construction in Appendix A.

1.3 Our Techniques

We start by constructing attribute-based RAM-LFE (RAM-AB-LFE), and then show how to upgrade
it to full RAM-LFE. We first review the main techniques of prior works.

Homomorphic Operations. The main tool used to construct many homomorphic cryptosystems
including AB-LFE [QWW18] is a system of homomorphic operations first developed by [GSW13,
BGG+14] and refined in subsequent works [GVW15a,GVW15b,BV15,BTVW17, . . .]. This is a pair
of polynomial-time algorithms EvalPK and EvalCT with the following syntax. Let C : {0, 1}ℓ →
{0, 1} be a circuit, x ∈ {0, 1}ℓ be an input, A1, . . . ,Aℓ ∈ Zn×m

q be matrices, and b1, . . . ,bℓ ∈ Zm
q be

vectors. Then:

• AC := EvalPK(C,A1, . . . ,Aℓ) ∈ Zn×m
q ,

• bC := EvalCT(C,A1, . . . ,Aℓ, x,b1, . . . ,bℓ) ∈ Zm
q ,

such that the following holds for any s ∈ Zn
q :

if b⊤i ≈ s⊤(Ai − xiG) then b⊤C ≈ s⊤(AC − C(x) ·G) (1)

where G is the “gadget matrix” [MP12] and the “≈” hides small error. For convenience we some-
times write A = [A1 | · · · | Aℓ] ∈ Zn×mℓ

q and b⊤ = [b⊤1 | · · · | b⊤ℓ] ∈ Zmℓ
q . Furthermore, such sys-

tems are linear, meaning there is some efficiently computable matrix HC,x ∈ Z(ℓm)×m that depends
on C, x and A, with small norm ||HC,x||, such that EvalCT works by outputting b⊤C := b⊤HC,x.

Homomorphic Operations give LFE. The work of [QWW18] showed that a system of homomor-
phic operations EvalPK,EvalCT for a given circuit class gives an AB-LFE scheme for that circuit
class. The CRS consists of random matrices A1 . . . ,Aℓ. The EvalPK procedure is used to compress
a circuit C into a digest AC . To encrypt a message µ under an attribute x, the encryption procedure
outputs LWE samples b⊤i ≈ s⊤(Ai−xiG) and uses an LWE sample≈ s⊤AC to derive a one-time-
pad for the message µ. The decryption algorithm uses EvalCT computes bC ≈ s⊤(AC −C(x) ·G)
and if C(x) = 0 then this allows us to remove the one-time-pad and recover the message.

From Gates to Circuits. The homomorphic operations EvalPK,EvalCT compose: if we construct
such procedures for some set of gates, then we can compose them to get such procedures for an en-
tire circuit made out of these gates, and the composition preserves linearity. Existing constructions
give a linear system of homomorphic operations for (e.g.,) NAND gates, where the error grows
by a factor of O(m) with each NAND gate and therefore a factor of O(m)d for a circuit of depth d
made up for NAND gates. This gives a “leveled” scheme where the complexity of all the proce-
dures scales polynomially in d. The recent work of [HLL23] gives a clever new “bootstrapping”
procedure that removes this depth-dependence under a circular security assumption.

5

Random-Access Gates. Our main new technical contribution is to extend the homomorphic op-
erations EvalPK,EvalCT to “random-access gates”. We consider two types of random-access gates:

• Data-read gates dReadDB(x1, . . . , xℓ) = DBx contain a hard-coded database DB ∈ {0, 1}L of
size L = 2ℓ. The input wires x1, . . . , xℓ ∈ {0, 1} are interpreted as an index x written in
binary, and the gate outputs the x’th bit of the database DBx.

• Wire-read gates wRead(x1, . . . , xℓ, y0, . . . , yL−1) = yx take as input L = 2ℓ wires yj along with
ℓ additional wires xj interpreted as an index x in binary, and the gate outputs yx.

Both of the above gates can be implemented by standard circuits of size O(L), and therefore we
can evaluate the homomorphic operations EvalPK,EvalCT for them in O(L) time. However, we
show how to do better. We will still evaluate EvalPK for these gates during digest-generation in
Õ(L) time, but we also build a special data structure DS during this process. Using DS, we can
then evaluate EvalCT during decryption in only poly(ℓ) time.

Homomorphic Data-Read. The main idea to construct the data structure DS is to rely on linear-
ity. During the computation AdRead = EvalPK(dReadDB,A), we can pre-compute the small matrix
HdReadDB,x ∈ Zℓm×m

q for every x ∈ [L] and store these matrices in the data structure DS. Then,
we can compute bdRead = EvalCT(dReadDB,A, x,b) very efficiently in poly(ℓ) time for any x,b, by
just setting b⊤dReadDB

:= b⊤HdReadDB,x, where we can look up the correct matrix HdReadDB,x for the
desired x inside DS. While this already gives us the desired efficiency of EvalCT, computing the
data structure DS naively during EvalPK would take Õ(L2) time: each matrix HdReadDB,x depends
on the entire DB requiring Õ(L) time to compute, and we need to compute L such matrices. We
show a smarter way to compute the entire data-structure DS in just Õ(L) time. The main idea is
to implement the dReadDB function recursively via:

dReadDB(x1, . . . , xℓ) = dReadDBL(x1, . . . , xℓ−1) · xℓ + dReadDBR(x1, . . . , xℓ−1) · (1− xℓ),

where DBL = (DB0, . . . ,DBL/2−1), DBR = (DBL/2, . . . ,DBL) are the “left” and “right” halves of
the database respectively, and we think of xℓ as the most significant bit of x. If we recursively
compute the L/2-size sub-problems AdRead

DBb
:= EvalPK(dReadDBb ,A1, . . . ,Aℓ−1) along with the

corresponding data structures DSb for b ∈ {L,R}, then we can use these to derive the overall
data structure DS in Õ(L) time. This is because for each x ∈ {0, 1}ℓ, the matrix HdReadDB,x in
DS can be computed very efficiently as a linear combination of the matrices HdRead

DBL
,x− and

HdRead
DBR

,x− stored in DSL,DSR respectively, where x− = (x1, . . . , xℓ−1). Therefore, the run-time

T (L) of generating the full data structure DS satisfies the recurrence T (L) = 2 · T (L/2) + Õ(L)

which implies T (L) = Õ(L).

Homomorphic Wire-Read. For the wire-read gate wRead(x1, . . . , xℓ, y1, . . . , yL), it’s not immedi-
ately obvious whether an analogous data-structure DS similar to the one above even exists. The
issue is that this this gate has L+ ℓ input wires and hence we would need 2L+ℓ matrices HwRead,x,y

to handle every possible input, making the data structure exponentially large; moreover, each
such matrix would already be of size Ω(L) so just reading it would already take linear time! We
take a different approach.

6

First, we generalize the data-read gates above to matrix-read functions mReadM(x) = Mx where
M = (M0, . . . ,ML−1) is a database of L = 2ℓ matrices Mi ∈ Zn×m

q . While mRead is not a a boolean
function, we can generalize the homomorphic operations

AmReadM := EvalPK(mReadM,A1, . . . ,Aℓ),

bmReadM := EvalCT(mReadM,A1, . . . ,Aℓ, x,b1, . . .bℓ),

to satisfy the following:

if b⊤i ≈ s⊤(Ai − xiG) then b⊤mReadM
≈ s⊤(AmReadM −Mx) (2)

where EvalCT is computed by some linear function HmReadM,x ∈ Zℓm×m
q . The implementation

of such EvalPK,EvalCT is a small variant of data-read gates above. As before, we can also make
EvalPK compute a data structure DS consisting of the matrices HmReadM,x for every x ∈ {0, 1}ℓ,
which allows us to later compute EvalCT in only poly(ℓ) time. Furthermore, as before, we can
compute the data structure DS in Õ(L) time using a similar recursive strategy.

Second, we utilize matrix-read functions to efficiently implement the homomorphic operations
for wire-read gates. We define the operations:

AwRead := EvalPK(wRead,A = (AX
1 . . . ,AX

ℓ ,AY
0 , . . . ,A

Y
L−1))

Output: EvalPK(mReadM,AX
1 , . . . ,AX

ℓ) where M := (AY
0 , . . . ,A

Y
L−1)

bwRead := EvalCT(wRead,A, (x, y),b = (bX
1 , . . . ,bX

ℓ ,bY
0 , . . . ,b

Y
L−1))

Output: EvalCT(mReadM, x,AX
1 , . . . ,AX

ℓ ,bX
1 , . . . ,bX

ℓ) + bY
x .

If the preconditions of (1) hold with bX
i ≈ s⊤(AX

i − xiG) and bY
j ≈ s⊤(AY

j − yjG) then:

bwRead ≈ s⊤(AwRead −Mx) + bY
x

≈ s⊤(AwRead −AY
x) + s⊤(AY

x − yxG)

≈ s⊤(AwRead − yxG)

as desired. Furthermore, the efficiency properties of the homomorphic operations for mReadM
directly translate into those for wRead: the EvalPK procedure constructs a data structure DS in
Õ(L) time that allows us to later execute EvalCT for any choice of x, y,b in only poly(ℓ) time.

AB-LFE for RAM Circuits. By composing the above, we get homomorphic operations EvalPK,
EvalCT for RAM-circuits made up of standard NAND gates as well as arbitrary data-read gates and
wire-read gates.4 The EvalPK procedure now also generates a data structure DS which is used by
the EvalCT procedure. The data structure has a separate component DSg for each data-read/wire-
read gate g in the circuit.

For a RAM circuit C, we define its compressed size sizec(C) to be the total number of gates
in the circuit, where we count each database-read gate and each wire-read gate as a single gate.
The compressed size sizec(C) can meaningfully be sublinear in the database size or the input size.
We define the expanded sizee(C) as the total number of gates one would get if one expanded each

4In general, each data-read gate can contain its own different database DB, although we will usually think of the
special case where they all have the same database.

7

database-read gate and each wire-read gate into a standard sub-circuit of just NAND gates. The
total run-time of EvalPK(C, . . .) and the size of the data-structure DS is Õ(sizee(C)), proportional to
the expanded size of C. The run-time of EvalCT(C, . . .), given random-access to the data structure
DS, is then just Õ(sizec(C)), proportional to the compressed size of C. Because of the error growth,
all parameters also suffer an poly(d) blow-up where d is the depth of the RAM-circuit. However,
by employing the bootstrapping procedure of [HLL23], we can remove this depth dependence
at the cost of needing a circular security assumption. Overall, by plugging the corresponding
EvalPK,EvalCT procedures for RAM-circuits into the AB-LFE construction of [QWW18], we get a
RAM-AB-LFE for RAM-circuits C with input size N , where the digest-generation procedure runs
in time Õ(sizee(C)), the encryption run-time is Õ(N), and the decryption run-time is Õ(sizec(C)).

RAM Programs to RAM Circuits. The above gives us AB-LFE for RAM circuits, but our goal is
to handle RAM programs. We show how to generically convert an arbitrary RAM program with
some fixed input size into a RAM circuit while preserving efficiency. For a RAM program fDB(x)
having total description size |f | + |DB| = L, and some fixed input size |x| = N and run-time T ,
we can convert it into a RAM circuit C of compressed-size sizec(C) = Õ(T) and expanded-size
sizee(C) = Õ(T (N + L + T)). Note that the expanded-size corresponds to the naive conversion
of a RAM program into a standard circuit, by implementing each memory access via a linear size
sub-circuit, where the memory size is bounded by N + L+ T .

The main idea for converting a RAM program into a RAM circuit is that the data-read gates
allow us to efficiently emulate random-accesses to DB, and wire-read gates allow us to efficiently
emulate random-access reads the input x as well as to any additional read/write memory, where
the memory contents are represented by a bundle of wires in the RAM circuit. However, there is a
mismatch: a RAM program can both read and write to arbitrary locations in memory, while a RAM
circuit can only read from arbitrary locations in memory, but each write corresponds to outputting
a value on some fixed wire in the circuit. In other words, RAM circuits efficiently emulate fixed-
writes RAM programs, where each step of the computation can only write to some fixed (input-
independent) location in memory, but can read arbitrary locations in memory. We show that
fixed-writes RAM programs can efficiently emulate general RAM programs at a small loss. The
idea is inspired by hierarchical ORAM [GO96]; and was used in a similar vein in [HOWW19,
HHWW19, LMW23]. We emulate general writes to arbitrary locations in memory via fixed writes
to a hierarchical data structure. The data structure consists of t = log T levels, where T upper
bounds the total number of writes. Each level i ∈ {0, . . . , t − 1} contains 2i pairs of the form
(location, value). Whenever the program writes a bit b to location j we place the pair (j, b) in the
fixed unique slot in level i = 0. After every 2i writes we take all the values in levels ≤ i and sort
them by location into level i+ 1 using a data-independent sorting circuit. Note that the sequence
of writes to the data structure is completely fixed and data independent, and the amortized cost
of a write is O(log T). Whenever we want to read an index j we do a binary search for j at every
level of the data-structure and take the “freshest” pair (j, b) that we find from the smallest level.
Overall, the above compiler from general RAM to fixed-writes RAM only incurs a polylogarithmic
overhead.

From AB-LFE to LFE for RAMs via RAM-FHE. The above gives us AB-LFE for general RAM
programs. The work of [QWW18] showed how to upgrade AB-LFE to LFE in the circuit model via
FHE and garbled circuits, following the approach of [GKP+13b] for transforming ABE to 1-key

8

Succinct FE. We show that the same approach allows us to go from AB-LFE to LFE in the RAM
model, by relying on RAM-FHE [LMW23] instead of standard FHE.

In a RAM-FHE scheme there is a deterministic procedure to preprocess some public database
DB into D̃B := Prep(DB). There is also a way to encrypt an input x under a secret key sk to gets
a ciphertext x̂ ← Encsk(x). Moreover there is an FHE evaluation procedure ŷ := Eval(f, x̂, D̃B)
that homomorphically evaluates a RAM program f(·)(·) with some fixed run-time T , and outputs
an encryption ŷ of the output y = fDB(x). The run-time of the preprocessing and encryption
procedures should be nearly linear in x and DB respectively, while the run-time of the Eval proce-
dure should be nearly linear in T . The work of [LMW23] showed how construct RAM-FHE from
the Ring-LWE assumption with circular security, by building on top of doubly efficient private
information retrieval (DEPIR) from Ring-LWE.

The transformation from AB-LFE to LFE in the RAM model proceeds as follows. To encrypt
an input x under the LFE scheme, we first encrypt x under the RAM-FHE scheme with a secret
key sk to get a ciphertext x̂ ← FHE.Encsk(x). We then also construct a garbled circuit C̃ for the
FHE decryption circuit Decsk(·) with the secret key sk hard-coded. Lastly, we encrypt the labels
{labi,b} of the garbled circuit under a RAM-AB-LFE scheme with x̂ in the attribute to ensure that
the recipient can only recover the labels corresponding to the bits of ŷ. In particular, we use a
RAM-AB-LFE scheme for the RAM Program f̂

D̃B
(x̂, i, b) that computes ŷ := Eval(f, x̂, D̃B) and, if

the i’th bit of ŷ is b, it allows the message to be revealed. The encryptor gets the digest digf̂ and
uses it to encrypt the labels labi,b under the attributes (x̂, i, b) respectively. The recipient uses the
RAM-AB-LFE to recover the labels for ŷ and then runs the garbled circuit to recover the output
y; security of RAM-AB-LFE, garbled circuits and RAM-FHE ensures that nothing else about x is
revealed.

RAM-ABE. Our techniques for constructing RAM-AB-LFE by extending the homomorphic op-
erations to RAM circuits also allow us to get attribute-based encryption for RAMs (RAM-ABE). How-
ever, there is one major difference. Any system of homomoprhic operations is good enough for
AB-LFE [QWW18], but for ABE we further need this system to be linear [BGG+14]. While our
extensions for RAM circuits are linear, the bootstrapping technique of [HLL23] is not linear. There-
fore, we only get a leveled RAM-ABE scheme under LWE, where efficiency of all operations scales
polynomially with the maximal depth d of the supported RAM circuits. Although we usually
think of RAM computation as sequential, and hence the default compiler from a time T RAM pro-
gram to a RAM circuit results in depth d = O(T), it is often possible to construct much shallower
RAM circuits for specific problems (e.g., ones that have small run time on a parallel RAM). Al-
ternatively, the work of [HLL23] also shows that a non-linear system of homomorhpic operations
is sufficeint to yield ABE under an additional evasive circular LWE assumption, which strengthens
the evasive LWE assumption of [Wee22, Tsa22]. The same approach therefore also yields a full
RAM-ABE scheme under the evasive circular LWE assumption.

2 Preliminaries

Define N = {0, 1, 2, . . .} to be the set of natural numbers. For any integer n ≥ 1, define [n] =
{1, . . . , n}. For an array A ∈ {0, 1}n, we index the array from 1, and A[i] denotes the bit in position
i ∈ [n]. By default, all our logarithms are base 2 and log n stands for log2 n. A function ν : N → N

9

is said to be negligible, denoted ν(n) = negl(n), if for every positive polynomial p(·) and all
sufficiently large n it holds that ν(n) < 1/p(n). We use the abbreviation PPT for probabilistic
polynomial time. For a finite set S, we write a ← S to mean a is sampled uniformly randomly
from S. For a randomized algorithm A, we let a ← A(·) denote the process of running A(·) and
assigning the outcome to a; when A is deterministic, we write a := A(·) instead. We denote the
security parameter by λ. For two distributions X,Y parameterized by λ we say that they are
computationally indistinguishable, denoted by X ≈c Y if for every PPT distinguisher D we have
|Pr[D(X) = 1] − Pr[D(Y) = 1]| = negl(λ). We say X and Y are statistically indistinguishable
instead if the same holds for every unbounded distinguisher D.

For any integer q ≥ 1, let Zq be the ring Z/qZ. We adhere to the convention that vectors
u ∈ Zn

q are column vectors and we define the ℓ∞-norm over vectors over Zq by first lifting each
coordinate to its representative in the set [−q/2, q/2). That is, for any u = (u1, . . . ,un)

⊤ ∈ Zn
q we

define ∥u∥∞ = maxi |ui|. For a matrix A ∈ Zn×m
q , we define ∥A∥ as the operator norm of A with

respect to the ℓ∞-norm, that is,

∥A∥ = max
∥u∥∞=1

∥Au∥∞ = max
i

∑
j

|Aij |

where (Aij) are the entries of A. We define the function roundq : Zq → {0, 1} via roundq(x) =
⌈2x/q⌋ where x ∈ Zq is identified with its representative in the set [−q/2, q/2). Note that for any
µ ∈ {0, 1} and e ∈ Z with |e| < q/4, we have roundq(µ ⌈q/2⌋+ e) = µ.

2.1 Learning with Errors and Lattice Tools

Learning with Errors. Let DZ,σ denote the discrete Gaussian distribution over Z with width
σ ≥ 0. The truncated discrete Gaussian DZ,σ,≤B over Z with width σ and bound B ≥ 0 is the
distribution that samples x ← DZ,σ and outputs x if |x| ≤ B and 0 otherwise. Setting B =
σ · Ω(

√
λ), we have that DZ,σ ≈s DZ,σ,≤B . Throughout this paper, we use the shorthand χB to

denote the truncated discrete Gaussian over Z with width σ = B/λ and bound B.

Definition 2.1 ((Decision) LWE). Let n, q,B ∈ N be functions of the security parameter. The learning
with errors (LWE) assumption LWEn,q,B states that for all m = poly(λ),

(A, s⊤A+ e⊤) ≈c (A,u),

where A← Zn×m
q , s← Zn

q , e← χm
B .

We write simply that LWE holds to mean the statement that for any p = poly(λ) there exists
some n = poly(λ), q = 2poly(λ) and B = B(λ) such that B ≤ q/2p and LWEn,p,B holds.

The Gadget Matrix. Let n, q ∈ N and let m = n ⌈log q⌉. Define the vector

g⊤ = (1, 2, 4, . . . , 2⌈log q⌉−1) ∈ Zm
q .

The gadget matrix is the block diagonal matrix g⊤ ⊗ I ∈ Zn×m
q . We also define the gadget matrix

for m ≥ n ⌈log q⌉ by appropriately padding with zeros.
There is an efficient algorithm G−1(·) that, on input a vector u ∈ Zn

q , outputs a binary vector
t = G−1(u) ∈ {0, 1}m such that Gt = u.

10

Lattice Trapdoors. Let n, q ∈ N. For a matrix A ∈ Zn×m
q , a trapdoor for A is a matrix T ∈

Zm×m
q such that AT = G. There exists some m0 = O(n log q) and a PPT algorithm (A,T) ←

TGen(1n, 1m, q) that, as long as m ≥ m0, samples a matrix along with an associated trapdoor such
that A is statistically close to a uniform matrix over Zn×m

q and T ∈ {0, 1}m×m and hence ∥T∥ ≤ m.
Choosing (e.g.) m0 = 3n ⌈log q⌉ suffices. Given a trapdoor for A it is possible to efficiently compute
one for [A | B] or [B | A] for any matrix B ∈ Zn×m′

q .
Moreover there exists a PPT algorithm t← TSamp(A,T,u, B) that, as long as B = Ω(

√
λm ∥T∥),

samples a vector t such that the distribution on t is statistically indistinguishable from the distri-
bution χm

B conditioned on At = u.

Noise Smudging. We use the following fact.

Lemma 2.2 (Noise smudging, (e.g.) [AJL+12]). Let B,B′ ∈ Z be functions of the security parameter.
Let e1 ∈ [−B,B] be arbitrary and let e2 ← [−B′, B′] be chosen uniformly at random. Then the distribution
of e2 is statistically close to e1 + e2 as long as B/B′ = negl(λ).

2.2 The GSW FHE Scheme

In this section we briefly recall the (leveled) fully homomorphic encryption scheme from [GSW13].
We only describe the details of the scheme that will be relevant for our purposes. Let n, q,B be
such that LWEn,q,B holds. The scheme works as follows:

• Key Generation: GSW.Gen(1λ, B) samples a public key/secret key pair (pk, sk) where sk =
s ∈ Zn

q is of the form s = (r,−1)⊤ and pk = A ∈ Zn×m
q is of the form A = [A | r⊤A + e⊤]⊤

where A← Z(n−1)×m
q and e← χm

B .

• Encryption and Decryption: For a message x ∈ {0, 1}ℓ, GSW.Enc(A, x) outputs a ciphertext
Cx ∈ Zn×mℓ

q that satisfies the correctness property

s⊤Cx = s⊤(x⊗G) + ex,

where ex is a short error vector with ∥ex∥∞ ≤ mB. The message x can then be efficiently
recovered from s⊤Cx.

• Evaluation: For any boolean circuit C : {0, 1}ℓ → {0, 1}, and any ciphertext C satisfying
s⊤Cx = xs⊤G+ ect, GSW.Eval(C,Cx) outputs a new ciphertext CC(x) such that

s⊤CC(x) = C(x)s⊤G+ eC(x),

where eC(x) satisfies
∥∥eC(x)

∥∥
∞ ≤ (m+ 1)d · ∥ex∥∞ where d is the depth of C.

The scheme satisfies standard semantic security. As was observed in [HLL23], GSW evaluation
can be extended to handle vector-valued circuits C : {0, 1}ℓ → Zm

q . For such circuits CC(x) :=
GSW.Eval(C,Cx) satisfies the alternate correctness property that

s⊤CC(x) = C(x)⊤ + eC(x),

where now eC(x) satisfies
∥∥eC(x)

∥∥
∞ ≤ (m+ 1)d ⌈log q⌉ · ∥ex∥∞.

11

Circular Security. The circular security assumption for the GSW scheme states that LWE still
holds with respect to the GSW secret key in the presence of an encryption of the secret key. That
is, for all m′ = poly(λ) the following distributions are computationally indistinguishable

(A,S,B, s⊤B+ e) ≈c (A
∗,S∗,B∗,u)

where on the left hand side (A, s) ← GSW.Gen(1λ, B), S ← GSW.Enc(A, bits(s)), B ← Zn×m′
q and

e← χm′
B , and on the right hand side all the entries are uniform over the appropriate sets.

2.3 RAM-FHE

In this section we define the notion FHE for RAM programs as defined in [LMW23].

Definition 2.3 (RAM-FHE). A RAM-FHE scheme is a tuple of algorithms (Setup,Gen,Prep,Enc,Eval,Dec)
with the following syntax:

• params := Setup(1λ,M): On input security parameter λ and a space bound M , deterministically
output public parameters params.

• (pk, sk)← Gen(params): Given public parameters params, sample and output a public key pk and a
secret key sk.

• DS := Prep(params, fDB): Given public parameters params and a RAM program fDB,5 output a
preprocessed data structure DS. For convenience, we assume DS contains a description of fDB.

• ctx ← Enc(pk, x) Given a public key pk and a database x, output a preprocessed ciphertext ctx.

• ctout := Eval(pk,DS, ctx): Given a public key pk, a data structure DS and a preprocessed ciphertext
ctx, output an output ciphertext ctout.

• µ := Dec(sk, ct): Given a secret key sk and a ciphertext ct, it outputs a plaintext µ.

Correctness. For any λ,M ∈ N, any RAM program fDB and any input x such that |x| ≤ M , |DB| +
|f | ≤M , and fDB runs in time T ≤M , it must hold that

Pr

Dec(sk, ctout) = P (x, y) :

params := Setup(1λ,M)
(pk, sk) ← Gen(params)

DS := Prep(params, fDB)
ctx ← Enc(pk, x)

ctout := Eval(pk,DS, ctx)

 = 1.

Security. The algorithms (Gen,Enc,Dec) satisfy the standard notion of public-key semantic security.

The recent work of [LMW23] shows the existence of RAM-FHE assuming the hardness of
RingLWE as well as a circular security assumption.

Theorem 2.4 ([LMW23]). Assume RingLWE holds together with a circular security assumption. Then
there is a RAM-FHE scheme (Setup, Gen, Prep, Enc, Eval, Dec) with the following efficiency properties:
for any λ,M ∈ N,

5See Section 3 for a description of the RAM model we use in this paper.

12

• Setup and Gen run in time Mo(1) · poly(λ)

• Enc and Prep run in time |x| ·Mo(1) · poly(λ) and (|DB|+ |f |) ·Mo(1) · poly(λ) respectively

• Eval runs in time T ·Mo(1) · poly(λ) where T is an upper bound on the run time of fDB

• Dec runs in time ℓ ·Mo(1) · poly(λ) where ℓ is an upper bound on the output size of fDB

2.4 Garbled Circuits

In this section we define garbled circuits, originally introduced by Yao ([Yao86]).

Definition 2.5. A circuit garbling scheme is a pair of algorithms GC = (GC.Garble,GC.Eval) with the
following syntax:

• (Γ, {L0
j , L

1
j}kj=1)← GC.Garble(1λ, C): Given the security parameter λ and a circuit C : {0, 1}k →

{0, 1}ℓ, it outputs a garbled circuit Γ and a set of labels {L0
j , L

1
j}kj=1.

• z := GC.Eval(Γ, {Lj}kj=1): Given the garbled circuit Γ and a subset of labels, it outputs a value
z ∈ {0, 1}ℓ.

Correctness. For any circuit C : {0, 1}k → {0, 1}ℓ and any input x ∈ {0, 1}k, it must hold that

Pr

[
z = C(x) :

(Γ, {L0
j , L

1
j}kj=1) ← GC.Garble(1λ, C)

z := GC.Eval(Γ, {Lj}kj=1)

]
= 1.

Security. We define the privacy of circuit and input with the following two experiments:

RealAGC(1
λ) :

1. (x,C)← A(1λ)

2. (Γ, {L0
j , L

1
j}kj=1)← GC.Garble(1λ, C)

3. b ∈ {0, 1} ← A(Γ, {Lxj

j }kj=1)

4. Output b.

IdealAGC(1
λ) :

1. (x,C)← A(1λ)

2. (Γ, {L0
j , L

1
j}kj=1)←

SimGC(1
λ, |C|, |x|, C(x))

3. b ∈ {0, 1} ← A(Γ, {Lxj

j }kj=1)

4. Output b.

We say that the garbling scheme GC = (GC.Garble,GC.Eval) is circuit and input private if there exists
a PPT simulator SimGC such that for any stateful PPT adversary A, we have:∣∣∣Pr[RealGC(1λ) = 1]− Pr[IdealGC(1

λ) = 1]
∣∣∣ ≤ negl(λ).

Efficiency. For any circuit C : {0, 1}k → {0, 1}ℓ and security parameter λ, the efficiency holds that:

• GC.Garble(1λ, C) and GC.Eval(Γ, {Lj}kj=1) run in time |C| · poly(λ).

• The garbled circuit Γ is of size |C| · poly(λ), and the labels Lb
j are of size poly(λ) for j ∈ [k] and

b ∈ {0, 1}.

13

3 RAM Circuits and RAM Programs

In this section we introduce a “RAM circuit” model of computation that captures the power of
RAM programs by augmenting the circuits with special gates for reading from a large database
or large bundle of wires. We show how to compile RAM programs with fixed run-time and input
size into a RAM circuit with low overhead.

RAM Circuits. We define the class of RAM circuits as consisting of standard (fan-in 2) NAND
gates along two additional types of gates: dRead and wRead.

For any DB = (DB0, . . . ,DBL−1) ∈ {0, 1}L=2ℓ , we define a “data read” gate dReadDB : {0, 1}ℓ →
{0, 1} via

dReadDB(x1, . . . , xℓ) = DBx where x =

ℓ∑
i=1

xi · 2i−1.

For any ℓ ∈ N, we define the “wire read” gate wReadℓ : {0, 1}ℓ+L → {0, 1}with L = 2ℓ via:

wReadℓ(x1, . . . , xℓ, y0, . . . , yL−1) = yx where x =
ℓ∑

i=1

xi · 2i−1.

We call the value L above the load of a dRead or a wRead gate.
A RAM circuit C is composed of (fan-in-2) NAND gates, along with dRead gates, and wRead

gates with arbitrary load. All gates can have arbitrary fan-out. In general, each dRead gate can
have its own distinct database DB, although typically we will have the same DB for all gates. For
a RAM circuit C, we define its compressed size sizec(C) to be the total number of gates in the circuit,
where each NAND gate, each database-read gate and each wire-read gate is counted as a single
gate. The compressed size sizec(C) of a RAM circuit C can meaningfully be sublinear in the size
of the database(s) contained in the dRead gates or in the input size of the circuit. We define the
expanded sizee(C) as the total number of gates one would get if one expanded each database-read
gate and each wire-read gate into a sub-circuit of just NAND gates, thereby converting the overall
RAM circuit into a standard boolean circuit of NAND gates. Each database-read gate and wire-
read gate with load L has expanded size O(L). Therefore, for a RAM circuit C with compressed
size S = sizec(C) and maximum load L in any dRead,wRead gate, we can bound its expanded size
by sizee(C) = O(SL).

From RAM Program to RAM Circuits. We show how to convert an arbitrary RAM program fDB

with a given input size and RAM run-time, into a RAM circuit whose compressed size essentially
matches the RAM run-time.

For concreteness, let us briefly describe a RAM model. We think of the RAM program fDB

as starting with its description (i.e., code) f and the database DB written in a read-only random-
access memory MR. We also think of the program as having access to additional read/write
random-access memory MRW initialized to all 0’s. Lastly the program has read-only random-
access to its input x. We can think of both memories as arrays of size 2w with w-bit addresses, and
each memory location stores a single bit. The program execution consists of repeated evaluations
of a universal “CPU Step” circuit CPU having some fixed O(w) size state (i.e. a constant number
of registers) and in each step it updates its state, and specifies which locations ix, iR, iRW of the

14

input x and of the memory MR,MRW (respectively) to read from, and a location/value (j, b) to
write to MRW . The read bits bx, bR, bRW are then given as inputs to the next step. The execution
proceeds by repeatedly evaluating the CPU function, where initially all inputs state0, b0x, b

0
R, b

0
RW

are set to 0s, and in each step t we compute

(statet, itx, i
t
R, i

t
RW , jt, bt) = CPU(statet−1, bt−1x , bt−1R , bt−1RW),

we update MRW [jt] := bt, and set btx := x[itx], b
t
R := MR[i

t
R], b

t
RW := MRW [itRW]. If statet corre-

sponds to some special state (say all 1s) then the computation terminates and the output is bt. The
size of the CPU step circuit is some fixed |CPU| = poly(w).

Lemma 3.1. Let fDB be a RAM program with some database DB and address-size w. For a fixed input
size N and run-time T , we can compile fDB into a boolean RAM circuit C of compressed size sizec(C) =

Õ(T) · poly(w) with each dRead,wRead gate having maximum load O(max{Tw,N, |DB| + |f |}). The
expanded size of C is sizee(C) = Õ(T)(T + N + |DB| + |f |)poly(w). Furthermore, the run-time of the
compiler is O(sizee(C)).

Proof. The proof proceeds in two steps. First, we compile the RAM program fDB into a fixed-writes
RAM program f ′DB, where each step t writes to some fixed location j(t) of the read/write memory
that does not depends on the input of the computation (however, the bit being written can depend
on the input); moreover it only writes to the first O(t · w) locations in memory within any t steps.
Second, we compile a fixed-writes RAM program into a RAM circuit.

RAM to Fixed-Writes RAM. The compiled RAM program f ′ works by executing the original
program f , but every time f wants to read/write to its “virtual memory” MRW , the compiler
translates this into a new sequence of read/write operations to its “physical memory” M ′RW . We
think of the physical read/write memory M ′RW as containing a hierarchical data structure consist-
ing of levels ℓ = 0, 1, . . ., where each level ℓ has slots for up to 2ℓ location/value pairs (j, b) with
j ∈ {0, 1}w, b ∈ {0, 1}. In each time-step t, when f issues a write (j∗, b∗), the compiled program f ′

does the following:

• Find the largest integer ℓ∗ such that 2ℓ
∗

divides t.

• Take all the pairs (j, b) contained in the levels ℓ = 0, . . . , ℓ∗ − 1 of the data structure together
with the new pair (j∗, b∗) and put them in level ℓ∗, sorted by the index j. If there are multiple
pairs with the same j, take only the freshest copy from the smallest level and discard the rest.
This sorting is done via a data-independent sorting network [Bat68, AKS83, Goo14]. At the
end of this process, the levels ℓ = 0, . . . , ℓ∗ − 1 are set to empty.

In each time-step t, whenever f issues a read iRW to read/write memory, do the following:

• For each level ℓ = 0, . . . , ⌊log t⌋, do a binary search for a tuple of the form (iRW , b) in that
level, and output the first one found. If none are found, output 0.

To see correctness, we argue that at the end of any step t having binary representation t =∑⌊log t⌋
ℓ=0 tℓ2

ℓ, all the levels ℓ for which tℓ = 0 are empty. This is easy to see by induction: whenever
t is incremented, all the bit of tℓ that turned from 1 to 0 correspond to levels ℓ that are emptied out.
This implies that at the beginning of step t, the level ℓ∗ is empty. Therefore the 1 +

∑ℓ∗−1
ℓ=0 2ℓ ≤ 2ℓ

∗

tuples contained in the levels ℓ = 0, . . . , ℓ∗ − 1 of the data structure together with the new pair

15

(j∗, b∗) can fit in level ℓ∗. It is also easy to see that the compiled program f ′ has fixed data-
independent writes and that it only uses the first O(tw) locations of memory after t steps. Finally,
the run-time of any read-operation t is at most O(log2 tw) corresponding to O(log t) copies of bi-
nary search with data size ≤ t. The run-time of any write operation t is O(2ℓ

∗
ℓ∗w) corresponding

to sorting 2ℓ
∗

items, where ℓ∗ is the largest integer such that 2ℓ
∗

divides t. To compute the amor-
tized run-time of T write operations, note that each level ℓ acts as ℓ∗ in T/2ℓ operations for a total
cost of

⌊log T ⌋∑
ℓ=0

O((T/2ℓ)(2ℓ · ℓw)) = O(T (log2 T)w).

Therefore, if the run-time of fDB(x) is T then the run-time of f ′DB(x) is O(T log2 Tw).
Fixed-Writes RAM to RAM Circuit. Given a fixed-writes RAM program f ′DB along with a time

bound T ′ and an input size N we compile it into a RAM circuit C. Set DB′ = (f ′,DB) to consist
of the code f ′ and the database DB. Assume that f ′DB only writes to the first LRW = O(T ′w)
locations of read/write memory within time T ′. We can assume the size of |DB′|, the input length
N and LRW are all powers-of-2 by padding with 0’s. Lastly, we assume w.l.o.g. that all the indices
ix, iR, iRW , j being read/written during the first T ′ steps of the execution of f ′DB(x) for x ∈ {0, 1}N
are in the appropriate ranges ix < N, iR < |DB′|, iRW < LRW , j < LRW , and hence we can just
consider corresponding first few bits of the index (i.e., can think of ix ∈ {0, 1}logN). The RAM
circuit C is constructed as follows.

• CPU Steps: We “chain” together T ′ copies of the CPU circuit (consisting solely of NAND
gates) connecting up the wires that correspond to state from the output of t’s circuit to the
input of the (t+ 1)’st circuit. We fix all the input wires to the first CPU circuit in the chain to
0’s.

• Reads to x: We create N input wires corresponding to the input x. For each step t, we take the
wires corresponding to the index itx coming from the output of the t’th CPU circuit, together
with the input wires for x and add a wRead(itx, x) gate, connecting its output to the input bit
bt+1
x in (t+ 1)’st CPU circuit.

• Reads to MR: For each step t, we take the wires corresponding to the index itR coming from
the output of the t’th CPU circuit and add a dReadDB′(itR) gate, connecting its output to the
input bit bt+1

R in (t+ 1)’st CPU circuit.

• Writes to MRW : We create an initial bundle of LRW wires corresponding to memory MRW

that we initialize to 0. (Concretely, we can create a constant-0 circuit made up of NAND
gates and think of it as having fan-out LRW which defines the initial bundle.) We maintain
a bundle of wires corresponding to MRW alongside the CPU circuits, but we periodically
exchange which wires are in the bundle. In each step t we compute the “write location”
jt = j(t) using the fact that in a fixed-writes RAM program, it does not depend on the input
x.6 We then replace the (jt)’th wire in the bundle with the output wire bt of the t’th CPU
circuit.

• Reads to MRW : For each step t, we take the wires corresponding to the index itRW coming
from the output of the t’th CPU circuit and the current bundle of wires corresponding to

6We can compute all the jt values efficiently in time O(T) by running f ′
DB(0

N) on a dummy input 0N .

16

MRW and add a wRead(itRW ,MRW) gate, connecting its output to the input bit bt+1
RW in (t +

1)’st CPU circuit.

• Output: We set the output bit bT
′

of the T ′th CPU circuit as the overall output of the RAM
circuit.

The resulting RAM circuit has compressed size sizec(C) = O(T ′poly(w)) and expanded size sizee(C) =
O(T ′(poly(w) + Tw +N + |DB|+ |f |)).

Combining the two steps we get the lemma.

Note that the above gives the worst-case complexity of converting a RAM program into a RAM
circuit, especially when it comes to the expanded circuit size sizee(C). In many special cases, we
can do significantly better. For example, if we start with a RAM program that only performs a few
accesses to memory and then does some heavy computation without random accesses, we will
get a much smaller expanded circuit size.

4 Homomorphic Operations for RAM Circuits

Definition 4.1 (Homomorphic Operations). Let n, q ∈ N and m ≥ n · ⌈log q⌉. A system of ho-
momorphic operations with error growth γ and circuit class C is a pair of deterministic algorithms
(EvalPK,EvalCT) with the following syntax:

• AC := EvalPK(C,A1, . . . ,Aℓ): On input a circuit C : {0, 1}ℓ → {0, 1} ∈ C and matrices
A1, . . . ,Aℓ ∈ Zn×m

q ∈ C, output a matrix AC ∈ Zn×m
q .

• bC := EvalCT(C,A1, . . . ,Aℓ, x,b1, . . . ,bℓ): On input a circuit C ∈ C, matrices A1, . . . ,Aℓ ∈
Zn×m
q , an input x ∈ {0, 1}ℓ and vectors bx ∈ Zℓm

q , output a vector bC ∈ Zm
q that encodes the

evaluation C(x).

The algorithms satisfy the following correctness property: For all circuits C ∈ C, matrices A1, . . . ,Aℓ ∈
Zn×m
q , and inputs x ∈ {0, 1}ℓ, if there exists a vector s ∈ Zn

q such that each of the vectors bi is of the form

b⊤i = s⊤(Ai − xiG) + e⊤i , (3)

for some ei, then AC := EvalPK(C, {Ai}i≤ℓ), bC = EvalCT(C, {Ai}i≤ℓ , x, {bi}i≤ℓ) satisfy

b⊤C = s⊤(AC − C(x)G) + e⊤C , (4)

where eC is another short error vector with ∥eC∥∞ ≤ γ(C) · (maxi ∥ei∥∞).

For the sake of convenience, we sometimes write A = [A1, | · · · | Aℓ] ∈ Zn×mℓ
q and similarly

b⊤ = [b⊤1 | · · · | b⊤ℓ] ∈ Zmℓ
q . In this case, equation (3) can be written as b⊤ = s⊤(A− x⊗G) + e⊤.

We also define the following notion of homomorphic operations that satisfy an additional linearity
property.

Definition 4.2 (Linearity). Let n, q ∈ N and m ≥ n · ⌈log q⌉. A linear system of homomorphic opera-
tions with error growth γ and circuit class C is a pair of deterministic algorithms (EvalPK,EvalCTCoeffs)
where EvalPK has the same syntax as in Definition 4.1 and EvalCTCoeffs has syntax:

17

• HC,x := EvalCTCoeffs(C,A, x): On input a circuit C : {0, 1}ℓ → {0, 1}, matrix A ∈ Zn×mℓ
q , an

input x ∈ {0, 1}ℓ, output a matrix HC,x ∈ Zmℓ×m
q .

The algorithms satisfy the following correctness property: For all circuits C ∈ C, matrices A ∈ Zn×mℓ
q and

inputs x ∈ {0, 1}ℓ, the matrix HC,x = EvalCTCoeffs(C,A, x) has
∥∥∥H⊤C,x

∥∥∥ ≤ γ(C) and satisfies

(A− x⊗G) ·HC,x = AC − C(x)G, (5)

where AC = EvalPK(C,A).

It is easy to see a linear system of homomorphic operations immediately implies a system
in the sense of Definition 4.1 because one can simply define EvalCT(C,A, x,b) = b⊤ · HC,x for
HC,x := EvalCTCoeffs(C,A, x) in which case (5)⇒ (4):

b⊤C = b⊤ ·HC,x = (s⊤(A− x⊗G) + e⊤)HC,x = s⊤(AC − C(x)G) + e⊤HC,x

with the same error growth e⊤C = e⊤HC,x having ∥eC∥∞ ≤ γ(C) · ∥e∥∞.

Theorem 4.3 ([BGG+14]). There is a linear system of homomorphic operations (EvalPK,EvalCTCoeffs)
for the class of boolean circuits composed of NAND gates. The system has error growth γ(C, n, q) ≤
(m+ 1)d where d is the depth of the circuit C. The algorithms EvalPK and EvalCTCoeffs each run in time
|C| · poly(n, log q).

We briefly recall the core construction of the BGG+ homomorphic operations below as it will
serve as inspiration for our constructions throughout this section. Let x1, x2 ∈ {0, 1} and let
b1,b2 ∈ Zm

q be their vector encodings with respect to matrices A1,A2 ∈ Zn×m
q . For addition

gates, the algorithms EvalPK and EvalCT are defined as

EvalPK(+,A1,A2) = A+ = A1 +A2

EvalCTCoeffs(+,A1,A2, x1, x2) = H+,x = [I | I]⊤

EvalCT(+,A1,A2, x1, x2,b1,b2) = b+ = b1 + b2.

And for multiplication gates, the algorithms are defined as

EvalPK(×,A1,A2) = A× = A1 ·G−1(A2)

EvalCTCoeffs(×,A1,A2, x1, x2) = H×,x =

(
G−1(A2)

x1I

)
EvalCT(×,A1,A2, x1, x2,b1,b2) = b× = b1G

−1(A2) + x1 · b2.

Lastly, for NAND gate, the algorithms are defined as

EvalPK(NAND,A1,A2) = ANAND = G−A1 ·G−1(A2)

EvalCTCoeffs(NAND,A1,A2, x1, x2) = HNAND,x =

(
−G−1(A2)
−x1I

)
EvalCT(NAND,A1,A2, x1, x2,b1,b2) = bNAND = −(b1G

−1(A2) + x1 · b2).

18

Composition. Note that the operations EvalPK,EvalCT,EvalCTCoeffs compose nicely. Assume
we have these procedures for some functions C1, . . . , Ck : {0, 1}ℓ → {0, 1} and C : {0, 1}k →
{0, 1}. Then we can define these procedures for C∗(x) = C(C1(x), . . . , Ck(x)) by computing:

EvalPK(C∗,A1, . . . ,Aℓ) = EvalPK(C,AC1 , . . . ,ACk
)

where ACi = EvalPK(Ci,A1, . . . ,Aℓ)

EvalCTCoeffs(C∗,A1, . . . ,Aℓ, x) = [HC1,x | . . . |HCk,x]HC,y

where HCi,x = EvalCTCoeffs(Ci,A1, . . . ,Aℓ, x)

and HC,y = EvalCTCoeffs(C,A1, . . . ,Aℓ, y) for y = (C1(x), . . . , Ck(x)) ∈ {0, 1}k

EvalCT(C∗,A1, . . . ,Aℓ, x,b1, . . . ,bℓ) = EvalCT(C,AC1 , . . . ,ACℓ
, y,bC1 , . . . ,bCℓ

)

where bCi = EvalCT(Ci,A1, . . . ,Aℓ, x,b1, . . . ,bℓ)

The correctness property in (5) holds since:

(A− x⊗G) ·HC∗,x = (A− x⊗G) · [HC1,x | . . . |HCk,x]HC,y

= ([AC1 | . . . |ACk
]− y ⊕G)HC,y

= AC∗ − C(y)G = AC∗ − C∗(x)G

Moreover the error growth follows γ(C∗) ≤ γ(C)maxi γ(Ci)
The above works when the circuits Ci all operate over the entire input. We can also apply it to

circuits Ci that operate on different subsets of the input bits. The only difference is that we need
to pad the matrices HCi,xi with appropriate 0’s for the bits that aren’t touched.

Preprocessing. In the remainder of this section we construct a linear system of homomorphic
operations for RAM circuits by extending the BGG+ construction to handle database read and
wire read gates. The core idea behind our construction is to preprocess the work of computing the
matrices HC,x in advance during the run time of EvalPK, before we know the value of x. In that
pursuit we also define an alternate notion of homomorphic operations where we allow EvalPK to
output a data structure for EvalCT to use during it’s computation.

Definition 4.4 (Preprocessing Homomorphic Operations). A preprocessing system of homomor-
phic operations is a pair of algorithms (EvalPK,EvalCT) as in Definition 4.1 except with the modified
syntax:

• (AC ,DS) := EvalPK(C,A) additionally generates a data structure DS.

• bC := EvalCT(C,DS,A, x,b): additionally takes a data structure DS as input.

The algorithms must satisfy the same correctness property as in Definition 4.1 where the data structure DS
generated by EvalPK is passed to EvalCT. Similarly, a preprocessing linear system of homomorphic
operations is a pair of algorithms (EvalPK, EvalCTCoeffs) as in Definition 4.2 but where EvalPK addi-
tionally generates DS and EvalCTCoeffs additionally takes DS as input. The algorithms must satisfy the
same correctness property as in Definition 4.2, where the data structure DS generated by EvalPK is passed
to is passed to EvalCTCoeffs.

19

4.1 Database Read Gates

Theorem 4.5. There exists a preprocessing linear system of homomorphic operations (EvalPK,EvalCTCoeffs)
for the class of database read gates {dReadDB : DB ∈ {0, 1}2ℓ , ℓ ∈ N}. The system has error growth
γ(dReadDB) = ℓm for a database DB ∈ {0, 1}2ℓ , and it has efficiency properties:

• The size of the data structure DS and run time of EvalPK(dReadDB,A) are both bounded by O(ℓ ·
2ℓ) · poly(n, log q).

• EvalCTCoeffs(dReadDB,DS,A, x) runs in time poly(ℓ, n, log q).

Proof. Let select : {0, 1}3 → {0, 1} be the function select(y0, y1, x) = (1 − x) · y0 + x · y1 = yx. We
can write dReadDB recursively as

dReadDB(x1, . . . , xℓ) = select(dReadDBL(x1, . . . , xℓ−1), dReadDBR(x1, . . . , xℓ−1), xℓ)

where DBL = (DB0, . . . ,DBL/2−1),DB
R = (DBL/2, . . . ,DBL−1) ∈ {0, 1}L/2 are the “left” and

“right” halves of DB = (DB0, . . . ,DBL−1) respectively. We abbreviate dReadDB as g and dReadDBL ,
dReadDBR as gL, gR respectively so that g(x) = select(gL(x−), gR(x−), xℓ) for x− = (x1, . . . , xℓ−1).
Our construction recursively computes the matrices and data structures for the left and right sub-
instances gL, gR, and then composes them with the constant-size circuit for select. Formally, we
define EvalPK and EvalCTCoeffs as follows:

EvalPK(g,A): Let L = 2ℓ be the length of DB.

1. If ℓ = 1, parse DB = (DB0,DB1) ∈ {0, 1}2. Let selectDB0,DB1 : {0, 1} → {0, 1} be the function
selectDB0,DB1(x) = (1− x)DB0 + x · DB1 = DBx. Set:

Ag := EvalPK(selectDB0,DB1 ,A)

= DB0 ·G+A(G−1(DB1 ·G)−G−1(DB0 ·G))

Hg,x := EvalCTCoeffs(selectDB0,DB1 ,A, x)

= G−1(DB1 ·G)−G−1(DB0 ·G) for x ∈ {0, 1}

and output (Ag,DSg = {Hg,x}x∈{0,1}).
7

2. Recursively call (AgL ,DSgL) := EvalPK(gL,A−) and (AgR ,DSgR) := EvalPK(gR,A−) where
A− = [A1 | · · · | Aℓ−1].

3. Set Ag := EvalPK(select,AgL ,AgR ,Aℓ) = AgL +Aℓ · (G−1(AgR)−G−1(AgL)).

4. For all (y0, y1, xℓ) ∈ {0, 1}3 compute8

Hselect,y0,y1,xℓ
:= EvalCTCoeffs(select,AgL ,AgR ,Aℓ, y0, y1, xℓ)

=

 (1− xℓ)I
xℓI

G−1(AgR)−G−1(AgL)


7In this case it turns out that Hg,0 = Hg,1, but we do not rely on this fact.
8The matrices are independent of y0, y1 so it suffices to compute only 2 rather than 8 of them.

20

For each x ∈ {0, 1}ℓ, look up HgL,x− ∈ DSgL and HgR,x− ∈ DSgR . Then compute Hg,x by
composing HgL,x− ,HgR,x− ,Hselect,gL(x−),gR(x−),xℓ

, resulting in:

Hg,x =

(
HgL,x− HgR,x− 0

0 0 I

)
·Hselect,gL(x−),gR(x−),xℓ

=

(
(1− xℓ)HgL,x− + xℓHgR,x−

G−1(AgR)−G−1(AgL)

)

5. Output (Ag,DS = {Hg,x}x∈{0,1}ℓ)

EvalCTCoeffs(dReadDB,DS,A, x): Look up Hg,x ∈ DS and output it.

In the base case where ℓ = 1, correctness follows via the correctness of EvalPK,EvalCTCoeffs for
selectDB0,DB1 . In detail, for x ∈ {0, 1} and DB = (DB0,DB1) ∈ {0, 1}2, we have

(A− xG)Hg,x = (A− xG)(G−1(DB1 ·G)−G−1(DB0 ·G))

= A(G−1(DB1 ·G)−G−1(DB0 ·G))− xDB1 ·G+ xDB0 ·G
= Ag − (1− x)DB0 ·G− xDB1 ·G
= Ag − DBx ·G

We also have that Hg,x is an m×m matrix with entries in {−1, 0, 1}, hence it has
∥∥H⊤g,x∥∥ ≤ m.

For the inductive case, assume that correctness holds for ℓ − 1. First we verify the correctness
of EvalPK,EvalCTCoeffs for the select function. For any y0, y1, xℓ:

[AgL − y0G | AgR − y1G | Aℓ − xℓG]Hselect,y0,y1,xℓ

=[AgL − y0G | AgR − y1G | Aℓ − xG]

 (1− xℓ)I
xℓI

G−1(AgR)−G−1(AgL)


=AgL +Aℓ · (G−1(AgR)−G−1(AgL))︸ ︷︷ ︸

=Ag

−yxℓ
G.

Now, by composing select with gL, gR, we get that for any x ∈ {0, 1}ℓ and DB ∈ {0, 1}2ℓ :

(A− x⊗G)Hg,x = (A− x⊗G)

(
HgL,x− HgR,x− 0

0 0 I

)
·Hselect,gL(x−),gR(x−),xℓ

= [AgL − gL(x−)G | AgR − gR(x−)G | Aℓ − xℓG] ·Hselect,gL(x−),gR(x−),xℓ

= Ag − select(gL(x−), gR(x−), xℓ) ·G
= Ag − DBx ·G

Additionally we can inductively assume that HgL,x− ,HgR,x− both have entries in {−1, 0, 1},
hence Hg,x does too because only one of xℓ and (1− xℓ) are nonzero. Thus we have

∥∥H⊤g,x∥∥ ≤ ℓm.
It remains to show efficiency. First it is clear that EvalCTCoeffs runs in the desired time. Let

T (ℓ) denote the run time of EvalPK when run on a database of size L = 2ℓ. After recursively

21

computing (AgL ,DSgL) and (AgR ,DSgR), the matrix Ag and each matrix Hg,x can be computed as
a linear combination of entries in the outputs of the recursive calls. Since there are 2ℓ coefficient
matrices to compute, we can see that the run time of EvalPK satisfies the recurrence

T (ℓ) = 2T (ℓ− 1) +O(2ℓ) · poly(n, log q),

which implies T (ℓ) = O(ℓ2ℓ) · poly(n, log q) as desired.

4.2 Matrix Read Gates

As a stepping stone towards constructing our system of homomorphic operations for wire read
gates wRead, we generalize the theorem from the previous section to handle reading from “matrix-
valued databases”. That is, for a database M = (M0, . . . ,ML−1) ∈ (Zn×m

q)L, we define the matrix
read function mReadM(x) = Mx. As was observed in [BTVW17], it is possible to extend the
notion of homomorphic operations to capture matrix valued functions by slightly modifying the
correctness property.

Definition 4.6 (Matrix-valued Homomorphic Operations). A system of homomorphic operations with
error growth γ and a class of matrix-valued circuits C is a pair of algorithms (EvalPK,EvalCT) with syntax
as in Definition 4.1 the following correctness property: For all circuits C ∈ C, matrices A ∈ Zn×mℓ

q , and
inputs x ∈ {0, 1}ℓ, if there exists a vector s ∈ Zn

q such that b⊤ = s⊤(A − x ⊗G) + e⊤ for some short
error vector e, then the output bC = EvalCT(C,A, x,b) satisfies

b⊤C = s⊤(AC −C(x)) + e⊤C,

where eC is another short error vector with ∥eC∥∞ ≤ γ(C) · ∥e∥∞.
Similarly we define a linear system of homomorphic operations with γ and C as above as a pair of algo-

rithms (EvalPK,EvalCTCoeffs) with syntax as in Definition 4.2 and the following correctness property: For
all circuits C ∈ C, matrices A ∈ Zn×mℓ

q and inputs x ∈ {0, 1}ℓ, the matrix HC,x = EvalCTCoeffs(C,A, x)

has
∥∥∥H⊤C,x

∥∥∥ ≤ γ(C) and satisfies

(A− x⊗G) ·HC,x = AC −C(x),

where AC = EvalPK(C,A).
We also define the preprocessing variant of matrix-value homomorphic operations with the correctness

property as above and syntax as in Definition 4.4.

Theorem 4.7 ([BTVW17]). There is a linear system of homomorphic operations (EvalPK,EvalCTCoeffs)
for the class of matrix-valued boolean circuits composed of NAND gates. The system has error growth
γ(C) ≤ (m + 1)d · log q where d is the depth of the circuit C. The algorithms EvalPK and EvalCTCoeffs
run in time poly(|C|, n, log q).

We now show how to use the homomorphic operations of [BTVW17] to create a preprocessing
system for matrix-read gates mRead in the same manner as we constructed homomorphic opera-
tions for data-read gates.

Theorem 4.8. There exists a preprocessing linear system of homomorphic operations (EvalPK,EvalCTCoeffs)
for the class of matrix read gates {mReadM : M ∈ (Zn×m

q)2
ℓ
, ℓ ∈ N}. The system has error growth

γ(mReadM) ≤ ℓm, and it has efficiency properties:

22

• The size of the data structure DS and run time of EvalPK(mReadM,A) are both bounded by O(ℓ ·
2ℓ) · poly(n, log q).

• EvalCTCoeffs(mReadM,DS,A, x) runs in time poly(ℓ, n, log q).

Proof. We proceed by an almost identical argument to as in the proof of Theorem 4.5. Define the
function select : (Zn×m

q)2 × {0, 1} → Zn×m
q similarly to as in Section 4.1 only with matrix-valued

inputs/outputs select(Y0,Y1, x) = (1− x)Y0 + xY1 = Yx. Recursively write

mReadM(x) = select(mReadML(x−),mReadMR(x−), xℓ),

where x− = (x1, . . . , xℓ−1) and ML,MR ∈ (Zn×m
q)L/2 are respectively the “left” and “right”

halves of M and we think of xℓ as the most significant bit in x. We abbreviate mReadM as h
and mReadML ,mReadMR as hL, hR respectively. We define EvalPK and EvalCTCoeffs as follows:

EvalPK(mReadM,A): Let L = 2ℓ be the length of M.

1. If ℓ = 1, parse M = (M0,M1) ∈ (Zn×m
q)2. Let selectM0,M1(x) = (1−x)M0+xM1 = Mx. Set:

Ah := EvalPK(selectM0,M1 ,A)

= M0 +A(G−1(M1)−G−1(M1))

Hh,x := EvalCTCoeffs(selectM0,M1 ,A, x)

= G−1(M1)−G−1(M0) for x ∈ {0, 1}

and output (Ah,DSh = {Hh,x}x∈{0,1}).

2. Recursively call (AhL ,DShL) := EvalPK(hL,A−) and (AhR ,DShR) := EvalPK(hR,A−) where
A− = [A1 | · · · | Aℓ−1].

3. Set Ah = EvalPK(select,AL
h,A

R
h ,Aℓ) = AhL +Aℓ · (G−1(AhR)−G−1(AhL)).

4. For all (Y0,Y1, xℓ) ∈ (Zn×m
q)2 × {0, 1} compute9

Hselect,Y0,Y1,xℓ
:= EvalCTCoeffs(select,AL

h,A
R
h ,Aℓ,Y0,Y1, xℓ)

=

 (1− xℓ)I
xℓI

G−1(AhR)−G−1(AhL)

 .

For each x ∈ {0, 1}ℓ, look up HhL,x− ∈ DShL and HhR,x− ∈ DShR , then compose with
Hselect,hL(x−),hR(x−),xℓ

to compute

Hh,x =

(
(1− xℓ)HhL,x− + xℓHhR,x−

G−1(AhR)−G−1(AhL)

)
5. Output (Ah,DS = {Hh,x}x∈{0,1}ℓ)
9As in the data-read case, these matrices are independent of Y0,Y1 so it suffices to compute only 2 matrices in

total.

23

EvalCTCoeffs(mReadM,DS,A, x): Look up Hh,x ∈ DS and output it.

In the base case, correctness follows from correctness of EvalPK and EvalCTCoeffs for selectM0,M1 .
In more detail, for any x ∈ {0, 1} and M = (M0,M1) ∈ (Zn×m

q)2, we have that

(A− xG)Hh,x = (A− xG)(G−1(M1)−G−1(M0))

= A(G−1(M1)−G−1(M−))− xMR + xM0

= Ah − (1− x)ML − xMR.

Additionally noting that Hh,x has entries in {−1, 0, 1}, we get that
∥∥∥H⊤h,x∥∥∥ ≤ m.

In the inductive case, for any x ∈ {0, 1}ℓ, M ∈ (Zn×m
q)2

ℓ
, we inductively assume EvalPK(hL,A−)

and EvalPK(hR,A−) are correct. Choosing HhL,x− ∈ DShL , HhL,x− ∈ DShL yields

(A− x⊗G)Hh,x = [A− − x− ⊗G | Aℓ − xℓG]

(
(1− xℓ)HhL,x− + xℓHhR,x−

G−1(AhR)−G−1(AhL)

)
= Ah −Mx.

As before, we inductively assume that HhL,x− , HhL,x− have entries in {−1, 0, 1}, hence so does

Hh,x, and thus
∥∥∥H⊤h,x∥∥∥ ≤ ℓm.

The proof of efficiency is the same as that in the proof of Theorem 4.5. The run time of EvalPK
on a matrix database M of length 2ℓ satisfies the recurrence T (ℓ) = 2T (ℓ−1)+O(2ℓ) ·poly(n, log q),
thus T (ℓ) = O(ℓ2ℓ) · poly(n, log q).

4.3 Wire Read Gates

Theorem 4.9. There exists a preprocessing linear system of homomorphic operations (EvalPK,EvalCTCoeffs)
for the class of database read gates {wReadℓ : ℓ ∈ N}. The system has error growth γ(wReadℓ) ≤ ℓm+ 1,
and it has efficiency properties:

• The size of the data structure DS and run time of EvalPK(wReadℓ,A) are both bounded by O(ℓ · 2ℓ) ·
poly(n, log q).

• The implied homomorphic operation EvalCT that computes the function

EvalCT(wReadℓ,DS,A, (x, y),b) = b⊤ ·HwReadℓ,(x,y)

for HwReadℓ,(x,y) := EvalCTCoeffs(wReadℓ,DS,A, (x, y)) runs in time poly(ℓ, n, log q).

Proof. We use the system of homomorphic operations for matrix read functions mRead from The-
orem 4.8 to construct EvalPK and EvalCTCoeffs as follows:

EvalPK(wReadℓ,A): Parse A = [AX | AY] for AX = [AX
1 | . . . | AX

ℓ] ∈ Zn×mℓ
q and AY =

[AY
0 | . . . | AY

L−1] ∈ Zn×mL
q where L = 2ℓ. Then compute and output (AwReadℓ = AmRead

AY
,DS) =

EvalPK(mReadAY ,AX).

24

EvalCTCoeffs(wReadℓ,DS,A, (x, y)): Parse A = [AX | AY] as above. Compute HmRead
AY ,x =

EvalCTCoeffs(mReadAY ,DS,AX , x) and let Ex = [0 | · · · | I | · · · | 0]⊤ ∈ Zm×mL
q denote the matrix

with the identity in the x-th block and zeros elsewhere. Output HwReadℓ,x = [H⊤mRead
AY ,x | E]⊤.

We also construct the algorithm for the function EvalCT(wReadℓ,DS,A, (x, y),b) = b⊤HwReadℓ,x

as follows:

EvalCT(wRead,DS,A, (x, y),b): Parse A = [AX | AY] as above and b = [bX | bY]⊤ with
bX = [bX

1 | . . . | bX
ℓ] ∈ Zmℓ

q and bY = [bY
0 | . . . | bY

L−1] ∈ ZmL
q . Compute HmRead

AY ,x =

EvalCTCoeffs(mReadAY ,DS,AX , x) and output bwReadℓ = (bX)⊤ ·HmRead
AY ,x + bY

x .

Let x ∈ {0, 1}ℓ and y ∈ {0, 1}L=2ℓ . By correctness of the homomorphic operations for mRead, we
get

[AX − x⊗G | AY − y ⊗G]HwReadℓ,x = (AwReadℓ −AY
x) + (AY

x − yxG)

= AwReadℓ − yxG.

Additionally, the matrix HmRead
AY ,x has

∥∥∥H⊤mRead
AY ,x

∥∥∥ ≤ ℓm and thus HwReadℓ,x = [HmRead
AY ,x |

E]⊤ has
∥∥∥H⊤wReadℓ,x∥∥∥ ≤ ℓm + 1 because each column of E is a standard basis vector. The stated

efficiency properties follow immediately from those in Theorem 4.8.

4.4 Bootstrapping

In this section we recall the bootstrapping algorithms of [HLL23]. These algorithms take in a
vector encoding bx of an input x and output a new vector encoding of x with a smaller error
vector. In order to do so, the algorithms require a circular GSW ciphertext encrypting the secret
vector s as well as an vector encoding of that ciphertext.

Theorem 4.10 ([HLL23]). Let λ, n, q,m,B ∈ N, be such that q is a power of 2, m ≥ n ⌈log q⌉ and
m = O(n log q), (23λmB)2 < q and λ ≫ (log n + log log q)3. There is a pair of deterministic algorithms
(BootStrapPK,BootStrapCT), with syntax:

• Aout := BootStrapPK(A,B,w): On input matrices A ∈ Zn×m
q and B ∈ Zn×mK

q along with a
random vector w ∈ Zm

q , output a matrix Aout ∈ Zn×m
q .

• bout := BootStrapCT(A,B, x,S,bx,bS,w): On input matrices A ∈ Zn×m
q , B ∈ Zn×mK

q along
with an input x ∈ {0, 1} and ciphertext matrix S ∈ Zn×mk

q and their vector encodings bx ∈ Zm
q ,

bS ∈ ZmK
q and also a random vector w ∈ Zm

q , output a new vector encoding of x, bout ∈ Zm
q .

Where k = n log q is the number bits in the description of a vector in Zn
q and K = m(n log q)2 is the

number of bits in the description of S ∈ Zn×mk
q . The algorithms BootStrapPK and BootStrapCT satisfy

the following correctness property: Let x ∈ {0, 1}, A ∈ Zn×m
q and B ∈ Zn×mK

q . Suppose there exists a

25

vector s ∈ Zn
q such that S,bx,bS satisfy

b⊤x = s⊤(A− xG) + e⊤x

s⊤S = s⊤(bits(s)⊗G) + e⊤ct (6)

b⊤S = s⊤(B− bits(S)⊗G) + e⊤S , (7)

for error vectors ex, ect, eS with ∥ex∥∞ ≤ 22λB and ∥ect∥∞ , ∥eS∥∞ ≤ B. Then

Pr
w←Zm

q

∥eout∥∞ ≤ 2λB

∣∣∣∣∣∣∣
Aout := BootStrapPK(A,B,w)

bout := BootStrapCT(A,B, x,S,bx,bS,w)

e⊤out := b⊤out − s⊤(Aout − xG)

 ≥ 1− negl(λ).

The algorithms BootStrapPK and BootStrapCT run in time poly(n, log q).

This theorem is adapted from Theorems 11 and 12 in [HLL23] with the “stronger correctness”
variants (see Section 3.4 in [HLL23]). The core idea of the construction is to first round the encoded
vector bx according to some rounding resolution M and then use a circular FHE ciphertext of the
secret s to compute an additive term that is used to return the rounded vector to the proper form.
We sketch the argument below

Proof sketch. Let M = Θ(
√
q) be a power of two dividing q such that M2 < q. Such an M satisfies

22λ+1mB/M = O(2−λ) = negl(λ). Let GL,GR denote a rearrangement of the columns of G such
that GR contains all of the columns of G that are divisible by M and GL contains the rest. Then let
Q be the permutation matrix such that G = (GL,GR)Q. Now define the matrices

Γ = G−1(MGL,GR) U =

(
I 0
0 MI

)
Q.

The rounding procedure RemoveNoise(u,w) is as follows. It takes as input two vectors u,w ∈
Zm
q and outputs

RemoveNoise(u,w) = M

⌈
u⊤Γ+w⊤

M

⌋
U.

The matrices Γ,U satisfy the properties that M divides GΓ = (MGL,GR) and M ⌈GΓ/M⌋U =
G. This means that, for b⊤x as in the hypothesis and a randomly sampled w← Zm

q , we have

RemoveNoise(b,w) = RemoveNoise(s⊤A+ ex,w)− xs⊤G.

Additionally note that
∥∥Γ⊤∥∥ = 1, so as long as each entry of the uniformly random vector s⊤AΓ+

w⊤ is distance at least 22λB away from a rounding boundary we have RemoveNoise(s⊤A+ex,w) =
RemoveNoise(s⊤A,w). By a union bound, this occurs with probability at least 1 − 22λ+1Bm/M .
Thus with overwhelming probability

RemoveNoise(b,w) = RemoveNoise(s⊤A,w)− xs⊤G.

Now define RndPadA,w(s) = RemoveNoise(s⊤A,w). It’s easy to see that the circuit computing
RndPadA,w has depth d = O(log n + log log q). Let S be as in the hypothesis and let GSW.Eval

26

be the (vector-valued) GSW FHE evaluation procedure from Section 2.2. By FHE correctness the
evaluated ciphertext CRndPadA,w(s) = GSW.Eval(RndPadA,w,S) satisfies

s⊤CRndPadA,w(s) = RndPadA,w(s) + e⊤FHE,

where ∥eFHE∥∞ ≤ O(md · log q) ∥ect∥∞. Additionally the circuit C := GSW.Eval(RndPadA,w, ·) has
depth d′ = d · O(log n + log log q). Let (EvalPK,EvalCT) be the matrix-value system of homomor-
phic operations from Theorem 4.7. Then given a vector encoding bS of S as in the hypothesis,
homomorphically executing C using EvalCT yields bC := EvalCT(C,B,S,bS) satisfying

b⊤C = s⊤(Aout −CRndPadA,w(s)) + eEvalCT,

where Aout = EvalPK(C,B) and ∥eEvalCT∥∞ ≤ O(md′ · log q) ∥eS∥∞. Combining the above, define
(BootStrapPK,BootStrapCT) as follows:

• BootStrapPK(A,B,w): Compute and output Aout = EvalPK(GSW.Eval(RndPadA,w, ·),B).

• BootStrapCT(A,B, x,S,bx,bS,w): Compute

b1 := EvalCT(GSW.Eval(RndPadA,w, ·),B,S,bS)

b2 := RemoveNoise(bx,w)

Output bout = b1 − b2.

It is clear by inspection that BootStrapPK and BootStrapCT satisfy the stated efficiency properties.
By correctness of the system of homomorphic operations and GSW FHE evaluation,

b1 = s⊤(Aout −CRndPadA,w(s)) + e⊤EvalCT

= s⊤Aout − RndPadA,w(s) + e⊤EvalCT + e⊤FHE︸ ︷︷ ︸
:=e⊤out

,

where the error satisfies

∥eout∥∞ ≤ ∥eEvalCT∥∞ + ∥eFHE∥∞
≤ O(md′ · log q)B +O(md · log q)B ≤ 2O(logn,log log q)3 ·B < 2λ ·B.

Finally, with high probability over the sampling w← Zm
q , subtracting b2 yields

b⊤out = s⊤(Aout − xG) + e⊤out.

Using their bootstrapping algorithms, [HLL23] define a notion of a “bootstrapped” system of
homomorphic operations, where the error in the output encoding vector does not grow as a func-
tion of the circuits that is evaluated. We state their definition here, making the minor modification
to allow preprocessing.

27

Definition 4.11 (Bootstrapped Homomorphic Operations, [HLL23]). A bootstrapped preprocessing
system of homomorphic operations with error bound B and circuit class C is a tuple (EvalPK,EvalCT,K)
where K is a set and EvalPK,EvalCT are a pair of deterministic algorithms as in Definition 4.4 except with
the modified syntax:

• (AC ,DS) := EvalPK(C,A,B, R) additionally takes a matrix B ∈ Zn×mK
q and a random value

R ∈ K from some appropriate set K.

• bC := EvalCT(C,DS,A, x,bx,B,S,bS, R) additionally takes B ∈ Zn×mK
q along with a matrix

S ∈ Zn×mk
q and vector encoding bS ∈ Zm

q K as well as the random value R ∈ K.

Where k = n log q is the number bits in the description of a vector in Zn
q and K = m(n log q)2 is the

number of bits in the description of S ∈ Zn×mk
q . The algorithms satisfy the following correctness property:

Let C ∈ C with C : {0, 1}ℓ → {0, 1}, x ∈ {0, 1}ℓ, A ∈ Zn×mℓ
q and B ∈ Zn×mK

q . Suppose there is a vector
s ∈ Zn

q such that b⊤x = s⊤(A − x ⊗G) + e⊤x and S,bS satisfy equations (6) and (7) as in Theorem 4.10
where the error vectors have ∥ex∥∞ , ∥ect∥∞ , ∥eS∥∞ ≤ B. Then with all but negligible probability over the
sampling of R← K, bC := EvalCT(C,DS,A, x,bx,B,S,bS, R) satisfies b⊤C = s⊤(AC −C(x)G)+ e⊤C
where (AC ,DS) := EvalPK(C,A,B, R) and the error vector eC satisfies ∥eC∥∞ ≤ 2λB.

4.5 Putting it all together

Now that we have shown how to define systems of homomorphic operations for data-read and
wire-read gates, we can combine our results with the BGG+ system of homomorphic operations
for NAND gates to get homomorphic operations for all RAM circuits.

Theorem 4.12. Let n, q,m ∈ N be such that m ≥ n ⌈log q⌉ and m = O(n log q). There is a preprocessing
linear system of homomorphic operations (EvalPK,EvalCTCoeffs) for the class of RAM circuits. The system
has error growth γ(C) = (m logL+ 1)d where d is the depth of C and L is the maximum load of C.10 The
system has the following efficiency properties:

• EvalPK(C,A) runs in time sizee(C) · poly(n, log q, logL).

• The algorithm EvalCT that computes the function EvalCT(C,DS,A, x,bx) = b⊤x EvalCTCoeffs(C,A, x)
runs in time sizec(C) · poly(n, log q, logL).

Proof. The theorem immediately follows from Theorems 4.3, 4.5 and 4.9 together with the compo-
sition procedure described earlier in this section. Recall that composition works “gate-by-gate”,
so in composing the operations we call EvalPK and EvalCTCoeffs/EvalCT once on each gate of
the overall circuit C. The final data structure DS is the concatenation of the data structures for
each gate. By Theorems 4.5 and 4.9, executing EvalPK for the gates wReadℓ and dReadDB for
DB ∈ {0, 1}2ℓ runs in time O(ℓ2ℓ) · poly(n, log q) which is proportional to the size of the canon-
ical expanded circuits for wReadℓ and dReadDB. On the other hand, running EvalCT for those gates
only takes time poly(n, log q, ℓ) = poly(n, log q, logL).

10Recall the load of a database-read or wire-read gate is size of the database DB or wire-bundle y being read in that
gate. The maximum load of a RAM circuit C is the maximum over the load of all database-read and wire-read gates in
C.

28

To make use of the above, we need to set the modulus q > γ(C) for correctness, meaning that
efficiency scales polynomially with the depth d. We can get rid of this depth-dependence via boot-
strapping. Combining our system of homomorphic operations for RAM circuits with the boot-
strapping algorithms of [HLL23], we extend the bootstrapped homomorphic operations to RAM
circuits with dRead and wRead gates. It is important to note, however, that this transformation
comes at the cost of losing the linearity property as well as requiring a GSW circular encryption of
the secret vector s.

Theorem 4.13. Let λ, n, q,m,B ∈ N satisfy the conditions of Theorem 4.10 and let L ∈ N be such that
log(m logL+ 1) ≤ λ. Assuming the existence of one-way functions, there is a bootstrapped preprocessing
system of homomorphic operations (EvalPK,EvalCT,K) with error bound B for the class of RAM circuits
with maximum load L. The system satisfies the following efficiency properties:

• Elements R ∈ K have size |R| = poly(λ).

• EvalPK(C,A,B, R) runs in time sizee(C) · poly(λ, n, log q, logL)

• EvalCT(C,DS,A, x,bx,B,S,bS, R) runs in time sizec(C) · poly(λ, n, log q, logL)

Proof. We work gate by gate, where for each gate we compose one step of the homomorphic
evaluation using the system from Theorem 4.12 on that gate with an application of the boot-
strapping algorithms from Theorem 4.10. The set K is the set of keys for a PRF family F ={
Fλ =

{
F : {0, 1}∗ → Zm

q

}}
. The randomness passed to the bootstrapping algorithms will be a

PRF evaluated on the index of the gate within the circuit C.
We argue correctness inductively, layer by layer. Beginning with vector encodings of the in-

put wires with error bounded by B < 2λB, correctness of the system of homomorphic opera-
tions from Theorem 4.12 gives that evaluating one gate yields a vector encoding with error at
most 2λB(m logL + 1) < 22λB. Then correctness of the bootstrapping algorithms implies that, if
we bootstrap with truly random w ← Zm

q , then with overwhelming probability, resultant boot-
strapped vector encoding has error bounded by 2λB. Applying PRF security means that the error
bound on the encoding vector only negligibly changes when we replace w← Zm

q with F (i) where
i is the index of the gate being evaluated.

The stated efficiency properties follow from those of Theorems 4.10 and 4.12 together with the
fact that this composition procedure only evaluates the homomorphic and bootstrapping algo-
rithms once per gate.

5 RAM-LFE

In this section we show how to use our system of homomorphic operations for RAM circuits to
construct laconic function evaluation schemes for RAM circuits. We give two constructions, one
for bounded depth circuits based on the homomorphic operations from Theorem 4.12 and one
unbounded circuits where we use the bootstrapped homomorphic operations from Theorem 4.13.
Our constructions closely follow those of [QWW18] and [HLL23]. We begin by defining (RAM-)
LFE.

Definition 5.1 (RAM-LFE). A laconic function evaluation scheme (LFE) for a class of functions F =
F(λ) is a tuple of algorithms (Gen, Hash, Enc, Dec) that have the following syntax:

29

• crs← Gen(1λ, 1N) : Given the security parameter 1λ and an input length bound 1N , the generation
algorithm returns a common random string crs. For the sake of convenience we assume that the data
of the crs contains the input length bound N .

• (digf ,DS) := Hash(crs, f) : Given the common random string crs and a function f ∈ F , the
compression algorithm deterministically outputs a short digest dig and a preprocessed data structure
DS. For convenience, we assume that DS contains a description of f .

• ct ← Enc(crs, digf , x) : Given the common random string crs, a digest digf and a secret input
x ∈ {0, 1}N , the encoding algorithm returns a ciphertext ct.

• z := Dec(crs,DS, ct) : Given the common random string crs, the preprocessed database DS, and a
ciphertext ct, the decoding algorithm returns a RAM program output z ∈ {0, 1}.

We require the algorithms to satisfy the following correctness and security properties.

Correctness: We require that for all λ,N ∈ N, functions f ∈ F , and inputs x ∈ {0, 1}N it holds that

Pr

z = f(x)

∣∣∣∣∣∣∣∣∣∣
crs← Gen(1λ, 1N)

(digf ,DS) := Hash(crs, f)

ct← Enc(crs, digf , x)

z := Dec(crs,DS, ct)

 = 1− negl(λ).

We say an LFE has perfect correctness if the above occurs with probability 1.

(Selective) Security: There exists a PPT algorithm Sim such that for any stateful PPT adversary A, we
have ∣∣∣Pr [RealLFE(1λ) = 1

]
− Pr

[
IdealLFE(1

λ) = 1
]∣∣∣ = negl(λ),

where the experiments RealLFE and IdealLFE are defined as follows:

RealLFE(1
λ) :

1. x← A(1λ)

2. Sample crs← Gen(1λ, 1|x|)

3. f ← A(crs) where f ∈ F

4. (digf ,DS) := Hash(crs, f);
ct← Enc(crs, digf , x)

5. Output A(ct)

IdealLFE(1
λ) :

1. x← A(1λ)

2. Sample crs← Gen(1λ, 1|x|)

3. f ← A(crs) where f ∈ F

4. ct← Sim(crs, f, f(x))

5. Output A(ct)

We refer to the above as (input-)selective security. We also define a weaker version of input/function-
selective security where the above experiments are modified so that A has to choose f along with x
in step 1.

We will consider LFE schemes for classes F consisting of RAM circuits or RAM programs, and refer to
these as RAM-LFE.

30

Remark 5.1. While in this work we will only consider function classes that consist of RAM circuits
C or RAM programs fDB as described in Section 3, we note that this definition is a generalization
of the definition of LFE in [QWW18]. While we generalize the syntax to allow the Hash algorithm
to output a preprocessed data structure, this is only for the sake of efficiency and can be removed
without loss of generality at the cost of increasing the decryption run-time. Indeed, because we
require Hash to be deterministic, a RAM-LFE for a function class F implies a (standard) LFE for F
wherein the decoding algorithm Dec simply recomputes the data structure itself before proceeding
as in the RAM-LFE scheme.

5.1 RAM AB-LFE

Following the construction of [QWW18], we first define and construct attribute-based RAM-LFE
where the ciphertext contains a public attribute x and a hidden message µ. Decryption recovers
the message if and only if C(x) = 0. More formally, we define RAM-AB-LFE as follows.

Definition 5.2. For any function f : {0, 1}N → {0, 1}, the conditional disclosure functionality CDF
for f is defined as

CDF[f](x, µ) =

{
(x, µ) f(x) = 0

(x,⊥) otherwise.

An attribute based LFE (AB-LFE) for a function class F is an LFE for the function class CDF[F] =
{CDF[f] : f ∈ F}. We refer to such a scheme as a RAM-AB-LFE if F consists of RAM circuits or RAM
programs.

Theorem 5.3. Assume LWE holds. For any λ, d ∈ N, there exists an AB-LFE scheme (Gen, Hash, Enc,
Dec) with perfect correctness and input-selective security for the class Cλ,d of RAM circuits C with binary
output, depth at most d and maximum load L < 2λ. The scheme satisfies the following efficiency properties:

• The running time of Gen(1λ, 1N) and the size of the crs are bounded by N · poly(λ, d).

• The running time of Hash(crs,CDF[C]) and the size of DS are bounded by sizee(C) · poly(λ, d).

• Enc(crs, dig, (x, µ)) runs in time N · poly(λ, d).

• Dec(crs,DS, ct) runs in time sizec(C) · poly(λ, d).
Proof. Let n = poly(λ, d), q = 2poly(λ,d), m = n ⌈log q⌉ and let B,B′ ∈ Z be such that LWEn,q,B holds
and (λm+1)d+1 ·2λB < B′ < q/8. Let (EvalPK,EvalCT) be the system of homomorphic operations
for RAM circuits from Theorem 5.6. We construct our RAM-AB-LFE as follows:

Gen(1λ, 1N): Sample and output crs = A← Zn×mN
q .

Hash(crs,CDF[C]): Parse crs = A. Then compute and output (digC ,DS) = (AC ,DS) := EvalPK(C,A).

Enc(crs, digC , (x, µ)): Parse crs = A and digC = AC . Sample s ← Zn
q , ex ← χNm

B and ẽ ←
[−B′, B′]. Sample u← Zn

q and put t = G−1(u). Set:

b⊤x := s⊤(A− x⊗G) + e⊤x

β = s⊤ACt+ ẽ+ µ · ⌈q/2⌋ .
Output ct = (bx, β, t, x).

31

Dec(crs,DS, ct): Parse crs = A and ct = (bx, β, t, x). If C(x) = 1 output (x,⊥). Otherwise,
compute bC := EvalCT(C,DS′,A, x,bx), µ := roundq(β − b⊤Ct). Output (x, µ).

Correctness. Let C have maximum load L and let ℓ = logL < λ. Assume C(x) = 0. By correct-
ness of (EvalPK,EvalCT), b⊤C = s⊤AC + e⊤C , where ∥eC∥∞ ≤ B(ℓm+ 1)d. Therefore

β − b⊤Ct = (s⊤ACt+ ẽ+ µ · ⌈q/2⌋)− (s⊤ACt+ e⊤Ct)

= µ · ⌈q/2⌋+ (ẽ− e⊤Ct).

And |ẽ− e⊤Ct| ≤ B′ +B(ℓm+ 1)d+1 < 2B′ < q/4.

Security. It suffices to consider the case where C(x) = 1 because otherwise (x, µ) is revealed in
the output and the simulator can just generate an honest ciphertext for (x, µ). Define a simulator
as follows:

Sim(crs,CDF[C], (x,⊥)): Sample bx ← ZNm
q , β ← Zq, u ← Zn

q and set t = G−1(u). Output
ct = (bx, β, t, x).

We now show indistinguishability of the RealLFE(1
λ) and IdealLFE(1

λ) experiments by defining
the following hybrid experiment:

Hybrid: This is the same as RealLFE except we change how β is computed during the encryption.
After computing b⊤x = s⊤(A−x⊗G)+ex and t ∈ Zm

q , compute bC := EvalCT(C,DS,A, x,bx).
Then set α = s⊤Gt+ e0 for e0 ← χB and put

β = b⊤Ct+ α+ µ · ⌈q/2⌋ .

In the hybrid experiment, correctness of (EvalPK,EvalCT) together with the fact that PC(x) = 1
gives

b⊤Ct+ α = s⊤(AC −G)t+ e⊤Ct+ (s⊤Gt+ e0) = s⊤ACt+ e⊤Ct+ e0.

Thus we have
β = s⊤ACt+ (ẽ+ e⊤Ct+ e0) + µ · ⌈q/2⌋ ,

which is statistically indistinguishable from the value of β in RealLFE(1
λ) by noise smudging

(Lemma 2.2).
Next we show that the hybrid experiment is computationally indistinguishable from IdealLFE(1

λ)
under the LWE assumption. Consider the reduction that when given LWE challenges (u, α) and
(M,bx) for u← Zn

q and M← Zn×Nm
q , it gets x from the adversary and sets crs = A := M−x⊗G,

t = G−1(u) and β is computed as in the hybrid. In the case that the (α,bx) are LWE samples,
the view of the adversary is exactly as in the hybrid experiment. On the other hand if (α,bx) are
uniform then the view of the adversary is as in IdealLFE(1

λ).

32

Efficiency. The efficiency properties of Hash and Dec follow respectively from the efficiency
properties of EvalPK and EvalCT in Theorem 4.12. The properties of Gen and Enc follow by in-
spection.

Similarly we can modify the above construction to use the bootstrapped system of homo-
morphic operations from Theorem 4.13 yielding a RAM-AB-LFE for RAM circuits of unbounded
depth.

Theorem 5.4. Assume LWE and circular security of the GSW encryption scheme (see Section 2.2). For all
λ ∈ N, there exists a RAM-AB-LFE scheme (Gen, Hash, Enc, Dec) with input/function-selective security
for the class Cλ of RAM circuits C with binary output and maximum load L < 2λ. The scheme satisfies the
following efficiency properties:

• The running time of Gen(1λ, 1N) and the size of the crs are bounded by N · poly(λ).

• The running time of Hash(crs,CDF[C]) and the size of DS are bounded by Õ(sizee(C)) · poly(λ).

• Enc(crs, dig, (x, µ)) runs in time N · poly(λ).

• Dec(crs,DS, ct) runs in time sizec(C) · poly(λ, logL).

Proof. The construction and proof are very similar to as in Theorem 5.3. Let n = poly(λ), q =
2poly(λ), m = n log q and let B,B′ ∈ N be as chosen to satisfy the conditions of Theorem 4.13,
such that LWEn,q,B holds and such that 22λBm < B′ < q/8. Let (EvalPK,EvalCT,K) be the boot-
strapped system of homomorphic for RAM circuits from Theorem 4.13 and let GSW be the GSW
FHE scheme. We modify the construction from Theorem 5.3 as follows:

Gen(1λ, 1N): In addition to A, sample B← Zn×mK
q and R← K and output crs = (A,B, R).

Hash(crs,CDF[C]): This is the same as in the previous construction except (AC ,DS) := EvalPK(C,A,B, R)
is computed according to the bootstrapped system of homomorphic operations.

Enc(crs, digC , (x, µ)): Instead of sampling the secret s uniformly, sample a GSW secret key (pk, sk)←
GSW.Gen(1λ, χB) and set s = sk. Then sample eS ← χmK

B and set:

S← GSW.Enc(pk, bits(s))

b⊤S := s⊤(B− bits(S)⊗G) + eS.

Then output ct = (bx, β, t, x,S,bS), where bx, β, t are all computed as in the previous construc-
tion.

Dec(crs,DS, ct): This is the same as in the previous construction except the output encoding
bC := EvalCT(C,DS,A, x,bx,B,S,bS, R) is computed according to the bootstrapped system of
homomorphic operations.

33

Correctness. The correctness argument is almost identical to that in Theorem 5.3. Assume C(x) =
0, then, by correctness of the bootstrapped system of homomorphic operations, with overwhelm-
ing probability over the choice of R ← K in the crs, b⊤C = s⊤AC + e⊤C where ∥eC∥∞ ≤ B2λ.
Therefore

β − b⊤Ct = µ · ⌈q/2⌋+ (ẽ− e⊤Ct).

And |ẽ− e⊤Ct| ≤ B′ +Bm2λ ≤ 2B′ < q/4.

Security. As before, it suffices to consider the case C(x) = 1. Define the simulator as follows:

Sim(crs,CDF[C], (x,⊥)): As in the previous simulator, uniformly and independently sample bx ←
ZNm
q , β ← Zq,u ← Zn

q , setting t = G−1(u). Similarly pick S ← Zn×mk
q and bS ← Zn×mK

q . Output
ct = (bx, β, t, x,S,bS).

We show that, instantiated with this simulator, the input/function-selective experiments RealLFE(1λ)
and IdealLFE(1

λ) are computationally indistinguishable. We define hybrid experiments as follows:

Hybrid 1: This is analogous to the hybrid experiment in the proof of Theorem 5.3. The experiment
is the same as RealLFE(1λ) except we change how β is computed. After computing bx,S,bS,
compute the encoding of the output bC := EvalCT(C,DS,A, x,bx,B,S,bS, R). Then set
α = s⊤Gt+ e0 for e0 ← χB and put

β = b⊤Ct+ α+ µ · ⌈q/2⌋ .

The experiments RealLFE(1
λ) and hybrid 1 are statistically indistinguishable by noise smudg-

ing using the same argument as in the proof of Theorem 5.3. Indistinguishability of hybrid 1
and IdealLFE(1

λ) follows from circular security of the GSW encryption scheme. We define the
reduction that takes in a matrix S and LWE challenges (u, α), (Mx,bx) and (MS,bS) for u ←
Zm
q ,Mx ← Zn×Nm

q and MS ← Zn×mK
q , then it gets C, x from the adversary and sets crs = (A =

Mx − x ⊗ G,B = MS − bits(S) ⊗ G, R) for R ← K. If the reduction is given a GSW circular
ciphertext S encrypting s and LWE samples with respect to s, then it matches the view of the ad-
versary in hybrid 2, and if the reduction is given uniform S and uniform samples, then it matches
the ideal experiment. Note that it is necessary for the reduction to receive C, x before sampling
R ← K because correctness of the bootstrapped (EvalPK,EvalCT) requires that C, x are chosen
independently from R.

Efficiency. As in Theorem 5.3, efficiency follows directly from the efficiency properties of the
homomorphic operations as stated in Theorem 4.13 with the key difference here being that here
the noise growth and hence also the parameters n, q,m do not depend on the depth of the RAM
circuits.

We can combine the above construction with Lemma 3.1, to get RAM-ABE-LFE for the function
class consisting of RAM programs. To do this we modify the definition of Hash to first run the
compiler that, given a fixed input size N and time bound T , converts a RAM program fDB into
a RAM circuit C before running the hash function of the above construction. This modification
yields the following corollary.

34

Corollary 5.5. Assume LWE and circular security of the GSW encryption scheme (see Section 2.2). For
any λ ∈ N , there exists a RAM-AB-LFE scheme (Gen, Hash, Enc, Dec) with input/function-selective
security for the function class Fλ = {(fDB, T)} consisting of all RAM programs fDB with binary output,
run time at most T , and address size w ≤ λ. The scheme satisfies the following efficiency properties:

• The running time of Gen(1λ, 1N) and the size of the crs are bounded by N · poly(λ).

• The running time of Hash(crs,CDF[fDB]) and the size of DS are bounded by TM · poly(λ, log T),
where M = max{T, |DB|+ |f |, N}.

• Enc(crs, dig, (x, µ)) runs in time N · poly(λ).

• Dec(crs,DS, ct) runs in time T · poly(λ, log T).

Remark 5.2 (RAM circuits of low depth). Naively applying the above transformation to Theorem
5.3 would yield a RAM-AB-LFE where the encryption time scales polynomially in the run-time T
of the RAM program being evaluated. This is because, in Lemma 3.1 a RAM program with run
time T is transformed into a RAM circuit with depth at least T . However, we note that there are
indeed many RAM programs that can be represented as a low-depth RAM circuit. In particular,
highly parallel RAM computations need not have large depth.

Remark 5.3 (Multi-bit output). While the above constructions build RAM-AB-LFE for function
classes with single-bit output, it is possible to generically build RAM-AB-LFE for larger output
functions by merely running many copies in parallel. This transformation incurs a multiplicative
cost in the output length to the ciphertext size and decryption run time. However it is possible to
reduce this cost to an additive overhead in the output length using the techniques of [QWW18].
We omit the details here.

5.2 Upgrading to full RAM-LFE

Theorem 5.6. Assuming the existence of RAM-FHE and a RAM-AB-LFE with input/function-selective
security for the function class Fλ = {(fDB, T)} consisting of all RAM programs fDB with binary output,
run time at most T , and address size w ≤ λ, there exists a RAM-LFE scheme with input/function-selective
security for Fλ. In particular, assuming the RingLWE assumption holds as well as the circularity assump-
tions in Section 2.2 and Theorem 2.4, there is such a scheme with the following efficiency properties:

• The running time of Gen(1λ, 1N) and the size of the crs are bounded by N · poly(λ).

• The running time of Hash(crs, fDB) and the size of DS are bounded by TM1+o(1) · poly(λ), where
M = max{T, |DB|+ |f |, N}.

• Enc(crs, dig, (x, µ)) runs in time NMo(1) · poly(λ).

• Dec(crs,DS, ct) runs in time TMo(1) · poly(λ).

Notation for Two-Outcome RAM AB-LFE. Before we prove the theorem, we first define the
following convenient notation. Given a RAM-AB-LFE for the class of all RAM programs with
multi-bit output, we consider the task of encrypting a pair of messages (µ0, µ1) under attribute x
such that the decoding algorithm for a RAM program fDB will recover µb when fDB(x) = b. This

35

can be accomplished using RAM-AB-LFE by using the Hash algorithm to produce a digest for the
RAM program that outputs the concatenation of fDB(x) with its bitwise complement.

For a RAM AB-LFE scheme (AB-LFE.Gen, AB-LFE.Hash, AB-LFE.Enc, AB-LFE.Dec), we define
the following “two-outcome” RAM-AB-LFE syntax (AB-LFE.Gen′, AB-LFE.Hash′, AB-LFE.Enc′,
AB-LFE.Dec′):

• AB-LFE.Gen′(1λ, 1N): Output crs← AB-LFE.Gen(1λ, 1N).

• AB-LFE.Hash′(crs,CDF[fDB]): Given fDB with ℓ-bit output, define f̃ such that f̃DB(x) =
(fDB(x)||f̄DB(x)), where f̄DB(x) is the bitwise complement of fDB(x). Output (dig,DS) :=
AB-LFE.Hash(crs,CDF[f̃DB]).

• AB-LFE.Enc′(crs, dig, (x, {µ0
j , µ

1
j}ℓj=1)): Output ct← AB-LFE.Enc(crs, dig, (x, {µ0

j}ℓj=1, {µ1
j}ℓj=1)).

• AB-LFE.Dec′(crs,DS, ct): Run ({µ̃0
j , µ̃

1
j}ℓj=1) := AB-LFE.Dec(crs,DS, ct). Output {µj}ℓj=1 such

that, for each j, µj is the one of µ̃0
j , µ̃

1
j which is not ⊥.

Proof of Theorem 5.6. The proof is similar to the ones in [GKP+13a] and [QWW18]. We use the
following building blocks for the construction of RAM LFE.

• A RAM-FHE scheme FHE = (FHE.Setup,FHE.Gen,FHE.Prep,FHE.Enc,FHE.Eval,FHE.Dec).

• A RAM-AB-LFE scheme AB-LFE = (AB-LFE.Gen, AB-LFE.Hash, AB-LFE.Enc, AB-LFE.Dec)
for the class of all RAM programs, using the two-outcome syntax as above.

• A circuit garbling scheme GC = (GC.Garble,GC.Eval).

We construct our RAM LFE scheme LFE = (LFE.Gen, LFE.Hash, LFE.Enc, LFE.Dec) as follows:

LFE.Gen(1λ, 1N): Sample and output crs← AB-LFE.Gen(1λ, 1N).

LFE.Hash(crs, (fDB, T)): Let M = max{N, |DB| + |f |, T}. Compute params := FHE.Setup(1λ,M)
and DSf := FHE.Prep(params, fDB). Then let f̃DSf be the RAM program computing the func-
tion f̃DSf (pk, ctx) = FHE.Eval(pk,DSf , ctx). Compute (digf̃ ,DS) := AB-LFE.Hash(crs, f̃DSf).
And output (digf = (digf̃ , params),DS).

LFE.Enc(crs, digf , x): (digf = (digf̃ , params),DS) and then run the following:

1. Generate keys for RAM-FHE (pk, sk)← FHE.Gen(params) and compute ctx ← FHE.Enc(pk, x).

2. Garble the RAM-FHE decryption circuit to get (Γ, {L0
j , L

1
j}ℓj=1)← GC.Garble(FHE.Dec(sk, ·)).

3. Use the RAM-AB-LFE to encrypt the labels with respect to the attribute (pk, ctx): ct′ ←
AB-LFE.Enc(crs, digf̃ , (pk, ctx), {L

0
j , L

1
j}ℓj=1).

4. Output ct = (Γ, ct′).

LFE.Dec(crs,DS, ct): Parse ct = (Γ, ct′). Run AB-LFE decryption to recover {Lj}ℓj=1 := AB-LFE.Dec(crs,DS, ct′).
Then output the result of the garbling evaluation z := GC.Eval(Γ, {Lj}ℓj=1).

36

Correctness. In the decryption step, following the correctness of RAM AB-LFE, we recover Lj =

L
ct∗j
j for all j ∈ [ℓ], where ct∗j is the j’th bit in ct∗ = FHE.Eval(pk,DSf , ctx). Then by the correctness

of the circuit garbling scheme and the RAM-FHE scheme, the result z = GC.Eval(Γ, {Ldj
j }ℓj=1) =

FHE.Dec(sk,FHE.Eval(pk,DSf , ctx)) = fDB(x).

Security. We define the following simulator:

Sim(crs, (fDB, T), fDB(x)):

1. Let M = max{N, |DB| + |f |, T}. Compute params := FHE.Setup(1λ,M) and DSf :=
FHE.Prep(params, fDB).

2. Sample RAM-FHE keys (pk, sk)← FHE.Keygen(params) and a dummy encryption ct0 ←
FHE.Enc(pk,0).

3. Run the simulator for the garbling scheme: (Γ̂, {L̂j}ℓj=1)← SimGC(1
λ, |FHE.Dec(sk, ·)|, |ct0|, fDB(x)).

4. Run the simulator for the RAM-AB-LFE scheme:

ĉt′ ← SimAB-LFE(crs,CDF[f̃DSf], (ct0, {L̂j}ℓj=1)),

where f̃DSf (pk, ct) = FHE.Eval(pk,DSf , ct).

5. Output ct = (Γ̂, ĉt′).

We show that, instantiated with this simulator, the input/function-selective experiments RealLFE(1λ)
and IdealLFE(1

λ) are computationally indistinguishable. We define hybrid experiments as follows:

Hybrid 0: This is just the experiment RealLFE(1λ).

Hybrid 1: We use the simulator for RAM-AB-LFE to generate ĉt′. Let d = FHE.Eval(pk,DSf , ctx)
and dj be its j-th bit, compute

ĉt′ ← SimAB-LFE(crs,CDF[f̃DSf], (ctx, {L
dj
j }

ℓ
j=1)).

By the input/function-selective security of the RAM-AB-LFE scheme, hybrid 0 is computa-
tionally indistinguishable from hybrid 1.

Hybrid 2: We use the simulator for the circuit garbling scheme to generate Γ. That is, we first use
SimGC to compute

(Γ̂, {L̂j}ℓj=1)← SimGC(1
λ, |FHE.Dec(sk, ·)|, |ctx|, fDB(x)),

and then generate ĉt′ with {L̂j}ℓj=1,

ĉt′ ← SimAB-LFE(crs,CDF[f̃DSf], (ctx, {L̂j}ℓj=1)).

By the security of the circuit garbling scheme, hybrid 1 and 2 are computationally indistin-
guishable.

37

Hybrid 3: This is the ideal experiment IdealLFE(1λ). That is, we replace ctx by ct0 = FHE.Enc(pk, 0),
and then generate ĉt′ as

ĉt′ ← SimAB-LFE(crs,CDF[f̃DSf], (ct0, {L̂j}ℓj=1)).

Hybrid 2 and hybrid 3 are computationally indistinguishable by the security of the RAM-FHE
scheme.

Efficiency. Efficiency follows in a straightforward manner from the efficiency of the underlying
primitives. In particular, the run time of LFE.Hash is dominated by the time it takes to produce
an AB-LFE digest for the RAM program f̃DSf . The efficiency of RAM-FHE implies that f̃DSf has
run time TMo(1), thus the RAM-AB-LFE digest for f̃DSf can be computed in time TM1+o(1). The
run time of LFE.Enc is dominated by the time it takes to compute a RAM-FHE ciphertext for x
which takes time NMo(1). Finally, the run time of LFE.Dec is dominated by running the AB-LFE
decryption procedure for f̃DSf which runs in time TMo(1).

Remark 5.4 (RAM-LFE for bounded depth). It is possible to avoid the circular security assump-
tions of the above construction at the cost of only being able to evaluate RAM programs that can
be represented by RAM circuits of bounded depth. The construction of such a scheme is very
similar to the one above where instead we use the bounded RAM-AB-LFE from Theorem 5.3 and
a leveled RAM-FHE. We omit the details here for the sake of brevity.

6 RAM-ABE

In this section we show how to use our linear system of homomorphic operations for RAM circuits
(Theorem 4.12) to construct attribute based encryption for bounded-depth RAM circuits under the
LWE assumption. Our construction closely follows the (circuit-)ABE construction from [BGG+14].
We first recall the definition of ABE below.

Definition 6.1 (ABE). An attribute-based encryption (ABE) scheme for a class of circuits C is a tuple
of algorithms (Setup, KeyGen, Enc, Dec), with the following syntax

• (mpk,msk) ← Setup(1λ, 1N): On input the security parameter λ and an attribute size bound N ,
output a master public key mpk and master secret key msk.

• skC ← KeyGen(msk, C): On input the master secret key and a circuit C ∈ C, output a function
specific secret key skC .

• ct ← Enc(mpk, x, µ): On input the master public key mpk an attribute x ∈ {0, 1}N and a message
µ ∈ {0, 1}, output a ciphertext ct encrypting µ.

• µ∗ := Dec(skC , x, ct): On input a function key skC , attribute x ∈ {0, 1}N and ciphertext ct, output
a bit µ∗ ∈ {0, 1}.

The algorithms satisfy the following correctness and security properties.

38

Correctness: For any λ,N ∈ N, C ∈ C and x ∈ {0, 1}N such that C(x) = 0, and any µ ∈ {0, 1},

Pr

Dec(skC , x, ct) = µ

∣∣∣∣∣∣
(mpk,msk)← Setup(1λ, 1N)
skC ← KeyGen(msk, C)
ct← Enc(mpk, x, µ)

 = 1,

where the probability is over the random coins of Setup, KeyGen and Enc.

(Selective) Security: For any stateful PPT adversary A,∣∣∣Pr[ExptAABE(1λ, 0) = 1− Pr[ExptAABE(1
λ, 1) = 1]

∣∣∣ = negl(λ),

where, for b ∈ {0, 1}, the experiment ExptAABE(1
λ, b) is defined as follows:

1. x← A(1λ) where x ∈ {0, 1}N .

2. (mpk,msk)← Setup(1λ, 1N).

3. (µ0, µ1)← AKGmsk,x(·)(mpk).

4. ct← Enc(mpk, x, µ)

5. b∗ ← AKGmsk,x(·)(ct). The output of the experiment is b∗.

Where in the above KGmpk,x(C) is an oracle that outputs KeyGen(msk, C) if C(x) = 1 and ⊥
otherwise.

We will consider ABE schemes for classes F consisting of RAM circuits or RAM programs, and refer to
these as RAM-ABE.

Theorem 6.2. Assume LWE holds. For any d, L ∈ N, there exists an ABE scheme (Setup, KeyGen, Enc,
Dec) for the class of RAM circuits that have depth at most d and maximum load L. The scheme has the
following efficiency properties:

• Setup(1λ, 1N) runs in time N · poly(λ, d).

• The running time of KeyGen(msk, C) and the size of skC are bounded by sizee(C) ·poly(λ, d, logL).

• Enc(mpk, x, µ) runs in time N · poly(λ, d).

• Dec(skC , x, ct) runs in time sizec(C) · poly(λ, d, logL).

Proof. Let n = poly(λ, d), q = 2poly(λ,d), m ≥ 3n ⌈log q⌉ and let B,B′ ∈ N be such that LWEn,q,B

holds and the following inequalities hold: B = Ω(m
√
λN(ℓm+ 1)d), B′ > 2λmB and B2B′(ℓm+

1)d+1 ≤ q/4. Let (EvalPK,EvalCTCoeffs) be the linear system of homomorphic operations for RAM
circuits from Theorem 5.6, and let EvalCT be the algorithm given by the efficiency statement in
that theorem. We define our ABE for RAM circuits as follows:

Setup(1λ, 1N): Sample a matrix with an associate trapdoor (P,T) ← TGen(1n, q). Then uni-
formly and independently sample A ← Zn×m

q and u ← Zn
q . Output (mpk = (P,A,u),msk =

(mpk, τ)).

39

KeyGen(msk, C): Parse msk = (mpk, τ) and mpk = (P,A,u). Compute (AC ,DS) := EvalPK(C,A).
Sample t← TSamp([P | AC],T,u, B). Output skC = (t,DS).

Enc(mpk, x, µ): Parse mpk = (P,A,u). Sample s← Zn
q , ex ← [−B′, B′]Nm, e0 ← χm

B and ẽ← χB

and set:

b⊤x = s⊤(A− x⊗G) + e⊤x

b⊤0 = s⊤P+ e⊤0

β = s⊤u+ ẽ+ µ ⌈q/2⌋ .

Output ct = (bx,b0, β).

Dec(skC , ct, x): Parse skC = (t,DS) and ct = (bx,b0, β). If C(x) = 1, output ⊥. Otherwise,
compute bC := EvalCT(C,DS,A, x,bx) and output roundq(β − [b⊤0 |b⊤x]t).

Correctness. Let C ∈ C and x ∈ {0, 1}N such that C(x) = 0. By correctness of (EvalPK,EvalCTCoeffs)
and the fact that C(x) = 0, the vector bC := EvalCT(C,DS,A, x,bx) computed in Dec satisfies
b⊤C = s⊤AC + e⊤C where ∥eC∥∞ ≤ (ℓm+ 1)d ·B. Thus by the fact that [P | A]t = u we have

β −
[
b⊤0 | b⊤x

]
t = s⊤u+ ẽ+ µ ⌈q/2⌋ − s⊤ [P | AC] t−

[
e⊤0 | e⊤C

]
= µ ⌈q/2⌋+ ẽ−

[
e⊤0 | e⊤C

]
t︸ ︷︷ ︸

:=e∗

.

Then correctness of the scheme follows from the fact that

|e∗| ≤ |ẽ|+
∥∥∥t⊤∥∥∥

∞
(∥e0∥∞ + ∥eC∥∞) ≤ B +mB(B +B′ · (ℓm+ 1)d+1) ≤ B2B′(ℓm+ 1)d+1 < q/4.

Security. We proceed by defining the following sequence of hybrid experiments:

Hybrid 0: This is the experiment ExptAABE(1
λ, 0).

Hybrid 1: This is the same as hybrid 0 except we change the way A is sampled in the master pub-
lic key. Given the adversary’s chosen attribute x ∈ {0, 1}N , we sample R ← {−1, 1}m×Nm

and put A = PR+ x⊗G.

Hybrid 2: This is the same as hybrid 1 except we now sample P ← Zn×m
q in the master public

key uniformly instead of via TGen; then we still set A = PR + x ⊗G as in hybrid 1. Then
to instantiate the KeyGen oracle, since we don’t have a trapdoor for P anymore, we compute
HC,x := EvalCTCoeffs(C,DS,A, x) and sample t ← TSamp([P | AC],T

′,u, B) where T′ =
[−RHC,x | I]⊤.

Hybrid 3: This is the same as hybrid 2 except we change how bx is sampled in the challenge
ciphertext. Sample b0 and ex as normal and then set b⊤x = b0R+ e⊤x .

Hybrid 4: This is the same as hybrid 3 except we now sample b0 ← Zm
q and β ← Zq uniformly at

random.

40

We can see hybrid 0 is statistically indistinguishable from hybrid 1 by a straightforward ap-
plication of the leftover hash lemma. Next we show that hybrid 1 is statistically indistinguishable
from hybrid 2. In hybrid 2, the matrix T′ is a trapdoor for [P | AC] because, by correctness of
(EvalPK,EvalCTCoeffs) together with the fact that C(x) = 1,

AC = (A− x⊗G)HC,x +G = PRHC,x +G

and hence [P | AC]T
′ = G. Moreover correctness of the homomorphic operations also implies

that ∥T′∥ ≤ ∥R∥ ·
∥∥∥H⊤C,x

∥∥∥ ≤ Nm(ℓm + 1)d. Thus hybrid 1 is statistically indistinguishable from
hybrid 2 by the fact that matrices sampled via TGen are statistically close to uniform and the
distributions on the vector t sampled in each hybrid are both statistically close to the distribution
that samples from χm

B conditioned on [P | AC]t = u.
Next observe that, since A = PR+ x⊗G, we have that in hybrid 3

b⊤x = b⊤0 R+ e⊤x

= s⊤PR+ e⊤0 R+ e⊤x

= s⊤(A− x⊗G) + e⊤x + e⊤0 R.

Thus hybrids 2 and 3 are statistically indistinguishable because the distributions of e⊤x and e⊤x +
e⊤0 R are indistinguishable by noise smudging (see Lemma 2.2) since B′ > 2λmB ≥ 2λ ∥e0∥∞ ·∥∥R⊤∥∥.

Finally we argue that hybrids 3 and 4 are computationally indistinguishable under the LWE
assumption. Consider the reduction that takes as input LWE challenges (P,b0) and (u, α) and
then gets x from the adversary and generates the master public key as mpk = (P,A = PR +
x ⊗G,u) for R ← {−1, 1}m×Nm. It answers KeyGen queries as in hybrid 3, and constructs that
challenge ciphertext by using b0 from the LWE challenge, setting β = α + µ0 ⌈q/2⌋ and setting
bx as in hybrid 3. In the case that (P,b0) and (u, α) are LWE samples, then the reduction exactly
matches the view of the adversary in hybrid 3. On the other hand if b0 and α are uniform, then
the reduction matches the view of the adversary in hybrid 4.

A symmetrical argument to the one above also shows that ExptAABE(1
λ, 1) is indistinguishable

from hybrid 4, and thus we have ExptAABE(1
λ, 0) ≈c ExptAABE(1

λ, 1) which completes the proof of
security.

Efficiency. The efficiency properties of KeyGen and Dec follow respectively from the efficiency
properties of EvalPK and EvalCT in Theorem 4.12. The properties of Setup and Enc follow by
inspection.

Remark 6.1 (RAM-ABE for unbounded depth circuits from evasive LWE). The security argument
for the above construction crucially relied on the linearity property of the system of homomorphic
operations in order for the reduction to be able to instantiate the KeyGen oracle for the adversary
when it no longer had a trapdoor for P. This made it impossible to use the bootstrapped system
of homomorphic operations we constructed in Theorem 4.13 because it lacked linearity. However,
[HLL23] show how to fix the security argument for non-linear systems under the evasive LWE
assumption. Their techniques also apply in our setting.

41

References

[AFS19] Prabhanjan Ananth, Xiong Fan, and Elaine Shi. Towards attribute-based encryp-
tion for RAMs from LWE: Sub-linear decryption, and more. In Steven D. Galbraith
and Shiho Moriai, editors, Advances in Cryptology – ASIACRYPT 2019, Part I, volume
11921 of Lecture Notes in Computer Science, pages 112–141. Springer, Heidelberg, De-
cember 2019. 4

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication, com-
putation and interaction via threshold FHE. In David Pointcheval and Thomas Jo-
hansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture
Notes in Computer Science, pages 483–501. Springer, Heidelberg, April 2012. 11

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n log n) sorting network.
In 15th Annual ACM Symposium on Theory of Computing, pages 1–9. ACM Press, April
1983. 15

[Bat68] K. E. Batcher. Sorting networks and their applications. In Proceedings of the April
30–May 2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring), page 307–314.
Association for Computing Machinery, 1968. 15

[BCG+18] Nir Bitansky, Ran Canetti, Sanjam Garg, Justin Holmgren, Abhishek Jain, Huijia Lin,
Rafael Pass, Sidharth Telang, and Vinod Vaikuntanathan. Indistinguishability ob-
fuscation for ram programs and succinct randomized encodings. SIAM Journal on
Computing, 47(3):1123–1210, 2018. 4

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology – EU-
ROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages 533–556.
Springer, Heidelberg, May 2014. 5, 9, 18, 38

[BIM00] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers computation in pri-
vate information retrieval: PIR with preprocessing. In Mihir Bellare, editor, Advances
in Cryptology – CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages
55–73. Springer, Heidelberg, August 2000. 2

[BIPW17] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can we access a database
both locally and privately? In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th
Theory of Cryptography Conference, Part II, volume 10678 of Lecture Notes in Computer
Science, pages 662–693. Springer, Heidelberg, November 2017. 2

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private
constrained PRFs (and more) from LWE. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017: 15th Theory of Cryptography Conference, Part I, volume 10677 of Lecture Notes
in Computer Science, pages 264–302. Springer, Heidelberg, November 2017. 5, 22

42

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs
from standard lattice assumptions - or: How to secretly embed a circuit in your PRF.
In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory of Cryp-
tography Conference, Part II, volume 9015 of Lecture Notes in Computer Science, pages
1–30. Springer, Heidelberg, March 2015. 5

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and
Antigoni Polychroniadou. Laconic oblivious transfer and its applications. In
Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017,
Part II, volume 10402 of Lecture Notes in Computer Science, pages 33–65. Springer, Hei-
delberg, August 2017. 1

[CH16] Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. In Madhu Sudan,
editor, ITCS 2016: 7th Conference on Innovations in Theoretical Computer Science, pages
169–178. Association for Computing Machinery, January 2016. 4

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct
garbling and indistinguishability obfuscation for RAM programs. In Rocco A. Serve-
dio and Ronitt Rubinfeld, editors, 47th Annual ACM Symposium on Theory of Comput-
ing, pages 429–437. ACM Press, June 2015. 4

[CHR17] Ran Canetti, Justin Holmgren, and Silas Richelson. Towards doubly efficient private
information retrieval. In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory
of Cryptography Conference, Part II, volume 10678 of Lecture Notes in Computer Science,
pages 694–726. Springer, Heidelberg, November 2017. 2

[DGM23] Nico Döttling, Phillip Gajland, and Giulio Malavolta. Laconic function evaluation
for turing machines. In PKC 2023: 26th International Conference on Theory and Practice
of Public Key Cryptography, Part II, Lecture Notes in Computer Science, pages 606–634.
Springer, Heidelberg, May 2023. 2

[DHMW24] Fangqi Dong, Zihan Hao, Ethan Mook, and Daniel Wichs. Laconic function evalua-
tion, functional encryption and obfuscation for rams with sublinear computation. To
appear in EUROCRYPT, 2024. https://eprint.iacr.org/2024/068. 1, 2, 3

[DKL+23] Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta,
and Ahmadreza Rahimi. Efficient laconic cryptography from learning with errors.
In Advances in Cryptology – EUROCRYPT 2023, Part III, Lecture Notes in Computer
Science, pages 417–446. Springer, Heidelberg, June 2023. 5, 45, 48

[GHRW14] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing private
RAM computation. In 55th Annual Symposium on Foundations of Computer Science,
pages 404–413. IEEE Computer Society Press, October 2014. 4

[GKP+13a] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. How to run turing machines on encrypted data. In Ran Canetti
and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part II, volume
8043 of Lecture Notes in Computer Science, pages 536–553. Springer, Heidelberg, Au-
gust 2013. 36

43

https://eprint.iacr.org/2024/068

[GKP+13b] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption.
In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th Annual ACM
Symposium on Theory of Computing, pages 555–564. ACM Press, June 2013. 1, 4, 8

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on obliv-
ious rams. J. ACM, 43(3):431–473, may 1996. 8

[Goo14] Michael T. Goodrich. Zig-zag sort: a simple deterministic data-oblivious sorting
algorithm running in O(n log n) time. In David B. Shmoys, editor, 46th Annual ACM
Symposium on Theory of Computing, pages 684–693. ACM Press, May / June 2014. 15

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I,
volume 8042 of Lecture Notes in Computer Science, pages 75–92. Springer, Heidelberg,
August 2013. 3, 5, 11

[GVW15a] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from LWE. In Rosario Gennaro and Matthew J. B. Robshaw, editors, Ad-
vances in Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in Computer
Science, pages 503–523. Springer, Heidelberg, August 2015. 5

[GVW15b] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homo-
morphic signatures from standard lattices. In Rocco A. Servedio and Ronitt Rubin-
feld, editors, 47th Annual ACM Symposium on Theory of Computing, pages 469–477.
ACM Press, June 2015. 5

[HHWW19] Ariel Hamlin, Justin Holmgren, Mor Weiss, and Daniel Wichs. On the plausibility
of fully homomorphic encryption for RAMs. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part I, volume 11692 of
Lecture Notes in Computer Science, pages 589–619. Springer, Heidelberg, August 2019.
8

[HLL23] Yao-Ching Hsieh, Huijia Lin, and Ji Luo. Attribute-based encryption for circuits of
unbounded depth from lattices. In 64th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 415–
434. IEEE, 2023. 1, 4, 5, 8, 9, 11, 25, 26, 27, 28, 29, 41

[HOWW19] Ariel Hamlin, Rafail Ostrovsky, Mor Weiss, and Daniel Wichs. Private anonymous
data access. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology –
EUROCRYPT 2019, Part II, volume 11477 of Lecture Notes in Computer Science, pages
244–273. Springer, Heidelberg, May 2019. 8

[JLL23] Aayush Jain, Huijia Lin, and Ji Luo. On the optimal succinctness and efficiency
of functional encryption and attribute-based encryption. In Advances in Cryptology
– EUROCRYPT 2023, Part III, Lecture Notes in Computer Science, pages 479–510.
Springer, Heidelberg, June 2023. 4

44

[LMW23] Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly efficient private information
retrieval and fully homomorphic RAM computation from ring LWE. In Barna Saha
and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 595–608.
ACM, 2023. 2, 8, 9, 12

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology
– EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 700–718.
Springer, Heidelberg, April 2012. 5

[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and ap-
plications. In Mikkel Thorup, editor, 59th Annual Symposium on Foundations of Com-
puter Science, pages 859–870. IEEE Computer Society Press, October 2018. 1, 3, 4, 5, 8,
9, 29, 31, 35, 36

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption
with public keys. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov,
editors, ACM CCS 2010: 17th Conference on Computer and Communications Security,
pages 463–472. ACM Press, October 2010. 4

[Tsa22] Rotem Tsabary. Candidate witness encryption from lattice techniques. In Advances in
Cryptology – CRYPTO 2022, Part I, Lecture Notes in Computer Science, pages 535–559.
Springer, Heidelberg, August 2022. 9

[Wee22] Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive lattice as-
sumptions. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryp-
tology – EUROCRYPT 2022, Part II, volume 13276 of Lecture Notes in Computer Science,
pages 217–241. Springer, Heidelberg, May / June 2022. 9

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th Annual Symposium on Foundations of Computer Science, pages 162–167. IEEE
Computer Society Press, October 1986. 13

A Laconic Encryption

In this section, we sketch how to use our techniques to derive a laconic encryption scheme, as
defined in [DKL+23]. While [DKL+23] gave a construction using LWE, our techniques yield an
alternate construction that is conceptually different and achieves a smaller ciphertext size (ℓ vs. 2ℓ
LWE matrices). We start with a simpler definition that does not allow updates, but then discuss
how to also enable efficient updates as well. Our construction essentially uses homomorphic
computation for matrix read gates from Section 4.2 to get a simple laconic encryption.

Syntax. A laconic encryption scheme allows a group of users to individually select public/secret
key pairs (pki, ski) ← KeyGen(pp) derived using some public parameters pp. A server Alice
gets all the public keys pk1, . . . , pkL and can deterministically construct a short digest dig =
Hash(pp, pk1, . . . , pkL). In addition, Alice deterministically computes decryption hints wit1, . . . ,witL

45

for each of the users respectively. Given dig along with an index ind ∈ [L] and a message µ, anyone
can compute a ciphertext ct ← Enc(dig, ind, µ) encrypting the message µ to user ind. Correctness
requires that the designated user can decrypt given the corresponding secret key and decryption
hint, namely:

Dec(skind,witind,Enc(dig, ind, µ)) = µ

Security stipulates that µ is hidden even given all other secret keys except for skind. The efficiency
requirement is that the digest and the hints have size poly(λ, logL) and that encryption and de-
cryption run in time poly(λ, logL).

Construction. We write L = 2ℓ and identify [L] with {0, 1}ℓ. Let n,m, q,B, β be parameters
and let χβ be the truncated discrete Gaussian distribution. We use EvalPK,EvalCTCoeffs from
Section 4.2.

• pp← Setup(1λ, 1ℓ): Sample A0 ← Zn×m
q , A← Zn×ℓm

q and set pp = (A0,A).

• (pk, sk) ← KeyGen(pp): Sample vi ← {0, 1}m, compute pi := A0vi and output (pki, ski) :=
(pi,vi).

• (dig, {witi}i∈[L]) := Hash(pp, pk1, . . . , pkL): For i ∈ [L], parse pki = pi, and set Pi := [pi | 0 | · · · | 0] ∈
Zn×m
q . Set P = (P1, . . . ,PL), and compute (Amr, {Hmr,i}i∈[L]) := EvalPK(mReadP,A). Set

dig := Amr,witi = (i,hmr,i) where hmr,i is the first column of Hmr,i.

• ct← Enc(pp, dig, ind, µ): Sample s⊤ ← Zn
q , e0 ← χm

β , e1 ← χmℓ
β , e2 ← [−B,B] and output

ct := (s⊤A0 + e⊤0 , s
⊤(A−

∈{0,1}ℓ︷︸︸︷
ind ⊗G) + e⊤1 , s

⊤amr + e2 + µ · ⌈q/2⌋)

where amr ∈ Zn
q denotes the first column of Amr.

• µ := Dec(sk,witind, ct): Parse ct = (c0, c1, c2), sk = vind,witind = (ind,hmr,ind) and output

roundq(c2 − c⊤1 hmr,ind − c⊤0 vind).

Lemma A.1 (Correctness). Let the parameters n, q,B,m ≥ ⌈n log q⌉, β in the construction be such that
B + βm(ℓ + 1) < q/4. Then the construction achieves correctness with probability 1. Namely, for all
pp ← Setup(1λ, 1ℓ), ind ∈ [L = 2ℓ], (pkind, skind) ← KeyGen(pp), all {pki}i∈[L]\{ind}, µ ∈ {0, 1}, and
for (dig, {witi}i∈[L]) := Hash(pp, pk1, . . . , pkL), if ct ← Enc(pp, dig, ind, µ), then Dec(sk,witind, ct) = µ
with probability 1.

Proof. Let ct = (c0, c1, c2), sk = vind,witind = (ind,hmr,ind) where hmr,iind is the first column of
Hmr,ind be generated as in the lemma with:

c⊤0 = s⊤A0 + e⊤0 , c
⊤
1 = s⊤(A− ind⊗G) + e⊤1 , c2 = s⊤amr + e2 + µ · ⌈q/2⌋)

By the correctness of the homomorphic operation for matrix-read gates (Theorem 4.8) we have:

c⊤1 Hmr,ind = s⊤(Amr −Pind) + e⊤mr

⇒ c⊤1 hmr,ind = s⊤(amr − pind) + emr

46

with |emr| ≤ ∥emr∥∞ ≤ γ(mRead) · ∥e1∥∞ ≤ ℓmβ. Therefore:

d := c2 − c⊤1 hmr,ind − c⊤0 vind

= s⊤amr + e2 + µ · ⌈q/2⌋ − s⊤(amr − pind)− emr − s⊤
pind︷ ︸︸ ︷

A0 · vind−e⊤0 vind

= µ · ⌈q/2⌋+ (e2 − emr − e⊤0 vind)︸ ︷︷ ︸
e∗

with ∥e∗∥∞ ≤ B + ℓmβ +mβ < q/4 and therefore roundq(d) = µ.

Lemma A.2 (Security). Consider the following security game LESecA,b(1λ) with a stateful adversary A:

1. The adversary chooses 1ℓ and ind ∈ [L = 2ℓ].

2. The challenger chooses (pkind, skind)← KeyGen(pp) and gives pkind to the adversary.

3. The adversary chooses {pki}i∈[L]\{ind} and sends these to the challenger.

4. The challenger computes (dig, {witi}i∈[L]) := Hash(pp, pk1, . . . , pkL).11 The challenger set µ := b,
samples ct← Enc(pp, dig, ind, µ) and sends ct to the adversary.

5. The adversary outputs a bit which is the output of the game.

We define a laconic encryption scheme to be secure if for all PPT A we have |Pr[LESecA,0(1λ) = 1] −
Pr[LESecA,1(1

λ) = 1]| = negl(λ). Then the above construction is secure under the LWEn,q,β assumption,
as long as B ≥ (ℓm+ 1)βλω(1).

Proof. The proof is similar to that of the AB-LFE scheme.
First, we consider a modified game LESec′ where the last component of the ciphertext ct =

(c0, c1, c2) is modified by replacing c2 with c′2 = s⊤pind + e2 + e′2 + µ ⌈q/2⌋ where e′2 ← χβ . Note
that in the modified game the ciphertext does not depend on the digest at all. First we claim
that if a PPT adversary A can break the security of the original game LESec with non-negligible
probability then we can construct a PPT adversary A′ that breaks the security or the modified
game LESec′ with non-negligible probability. The adversary A′ simply runs A until the last step
of the game. In the last step it receives a ciphertext ct′ = (c0, c1, c

′
2). It computes

c2 := c′2 + c⊤1 hmr,ind

= s⊤pind + e2 + e′2 + µ ⌈q/2⌋+ s⊤(amr − pind) + emr

= s⊤amr + (e2 + e′2 + emr)

with |e′2 + emr| ≤ β + ℓmβ by the same argument used to analyze correctness. It sends ct =
(c0, c1, c2) to A and outputs what it outputs. The resulting view of A is essentially the same as
in the original game LESec′ except that the error c2 is (e2 + e′2 + emr) instead of just e2, but this
is statistically close by noise smudging (Lemma 2.2). Therefore the advantage of A′ in the game
LESec′ is negligibly close to that of A in the game LESec.

11The adversary can compute these values on its own as well.

47

Secondly, we argue that any PPT adversary A′ has at most a negligible advantage in the mod-
ified game LESec′. This is because (a) we can replace the vector pind = A0vind by a uniformly
random vector by the leftover hash lemma, and (b) the ciphertext

ct = (c0, c1, c
′
2) = s⊤ [A0 | A− ind⊗G | pind]︸ ︷︷ ︸

=A′

+ [e⊤0 , e
⊤
1 , e

′
2]︸ ︷︷ ︸

=e′

+[0,0, e2 + µ ⌈q/2⌋]

is then computationally indistinguishable from uniform by the LWE assumption with the uni-
formly random coefficient matrix A′ ∈ Zn×(m+ℓm+1)

q and error e′ ← χm+ℓm+1.

Efficiency Optimization. Instead of choosing e2 ← [−B,B] for a super-polynomial B = λω(1)

we can choose e2 from a smaller polynomially-bounded discrete Gaussian distribution by utilizing
the same “LWE with error-leakage” analysis from [DKL+23] to argue security. This allows us to
use a smaller polynomial-size modulus q, which improves efficiency.

Exponential Index Space. We can extend the above construction to a scenario where the bit-
length ℓ of an index ind is an arbitrary polynomial in the security parameter, meaning that the
index-space L = 2ℓ is exponential. In this case, only some polynomial set of public keys {pkind}ind∈S
is defined for some subset S ⊆ {0, 1}ℓ and we can think of pkind = 0 for all ind ̸∈ S. Alternately, we
can think of this as corresponding to an exponentially large vector of L = 2ℓ public keys, which
is sparse with only polynomially many non-zero entries. We show that it is possible to compute
(dig, {witind}ind∈S) := Hash(pp, {pkind}ind∈S) efficiently in time |S|poly(ℓ, λ).

The construction is the same but now we need to compute:

(Amr, {Hmr,ind}ind∈S) := EvalPK(mReadP,A)

where the database of matrices P = (P1, . . . ,PL) is an exponentially large with only |S| non-
zero entries {Pind}ind∈S . We can do this efficiently by going under the hood of the recursive
construction of EvalPK form mRead gates in the proof of Theorem 4.8. Recall that we compute
(Amr, {Hmr,i}) = EvalPK(mReadP,A) by recursively computing (AmrL , {HmrL,i}) = EvalPK(mReadPL ,A−)

and (AmrR , {HmrR,i}) = EvalPK(mReadPR ,A−) where PL,PR denote the first/last L/2 matrices in
P respectively. We observe the following:

• Whenever P only has 0 matrices, then Amr = 0 and {Hmr,i = 0} for all i ∈ [L].

• Therefore, we can compute EvalPK(mReadP,A) recursively as before, but we stop the recur-
sion whenever the value PL or PR in one of the recursive calls is empty, in which case we
return AmrL = 0 or AmrR = 0 respectively. This results in a recursion tree with only O(|S|)
leafs and a total of |S| · poly(ℓ, λ) total run-time.

The security of the scheme is the same as before, but now in the security game described in Lemma
A.2, we modify step 3 to let the adversary chooses some set S containing ind and all the public keys
{pki}i∈S\{ind} except for pkind which is chosen by the challenger. In step 4 the challenger computes
(dig, {witi}i∈[L]) := Hash(pp, {pki}i∈S). The proof of security is identical.

48

Updates. We can further extend the above construction to allow for updates, where we can
add or replace a public key pkind at index ind and efficiently update the digest dig and the de-
cryption hints witi accordingly. Note that all the decryption hints witi change when a new pub-
lic is pkind is added at any index ind. Therefore, our model allows the server Alice to keep an
auxiliary data structure aux. Every time the set of public keys {pkind}ind∈S is updated, Alice
can update the digest dig as well as the data structure aux in poly(ℓ, λ) time via some proce-
dure dig′ := Updateaux(pp, ind, pkind) that read/writes to the data structure aux, independent of
the current number of keys |S|. Alice can use the data structure to compute a decryption hint
witind := WGenaux(ind) for any user in poly(ℓ, λ) time.

The data structure aux consists of an incomplete binary tree with all the matrices Amr :=
EvalPK(mReadP,A) computed during the recursive evaluation, where the recursion is cut off
when it reaches a node that has no public keys in its sub-tree. To update the tree by adding/modifying
a public key pkind at index ind, the procedure dig′ := Updateaux(pp, ind, pkind) just needs to update
the matrices along one path in the recursion tree going to the leaf ind. In other words, it redoes
the recursive computation of EvalPK(mReadP,A) with the updated set P, but it uses the cached
results stored in aux for all the recursive calls that are not on the path to ind. We do not keep track
of the matrices Hmr,ind during this process. Instead, looking at step 3 in the proof of Theorem 4.8,
we notice that these matrices are defined recursively via:

Hmr,ind =

(
(1− indℓ)HmrL,ind− + indℓHmrR,ind−

G−1(AmrR)−G−1(AmrL)

)
where indℓ is the last bit of the index ind. Note that only one of indℓ, 1 − indℓ is non-zero. Since all
the matrices AmrL ,AmrR in the tree are stored in aux, the procedure Hmr,ind := WGenaux(ind) can
compute Hmr,ind in poly(ℓ, λ) time by recursively computing only one of HmrL,ind− (if indℓ = 0) or
HmrR,ind− (if indℓ = 1).

49

	Introduction
	Prior Work on LFE for TMs and RAMs
	Our Results and Applications
	Our Techniques

	Preliminaries
	Learning with Errors and Lattice Tools
	The GSW FHE Scheme
	RAM-FHE
	Garbled Circuits

	RAM Circuits and RAM Programs
	Homomorphic Operations for RAM Circuits
	Database Read Gates
	Matrix Read Gates
	Wire Read Gates
	Bootstrapping
	Putting it all together

	RAM-LFE
	RAM AB-LFE
	Upgrading to full RAM-LFE

	RAM-ABE
	Laconic Encryption

