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Abstract

In the Distributed Secret Sharing Generation (DSG) problem n parties wish to obliviously sam-
ple a secret-sharing of a random value s taken from some finite field, without letting any of the
parties learn s. Distributed Key Generation (DKG) is a closely related variant of the problem in
which, in addition to their private shares, the parties also generate a public “commitment” gs

to the secret. Both DSG and DKG are central primitives in the domain of secure multiparty
computation and threshold cryptography.

In this paper, we study the communication complexity of DSG and DKG. Motivated by
large-scale cryptocurrency and blockchain applications, we ask whether it is possible to ob-
tain protocols in which the communication per party is a constant that does not grow with
the number of parties. We answer this question to the affirmative in a model where broad-
cast communication is implemented via a public bulletin board (e.g., a ledger). Specifically,
we present a constant-round DSG/DKG protocol in which the number of bits that each party
sends/receives from the public bulletin board is a constant that depends only on the security
parameter and the field size but does not grow with the number of parties n. In contrast, in all
existing solutions at least some of the parties send Ω(n) bits.

Our protocol works in the near-threshold setting. Given arbitrary privacy/correctness pa-
rameters 0 < τp < τc < 1, the protocol tolerates up to τpn actively corrupted parties and delivers
shares of a random secret according to some τpn-private τcn-correct secret sharing scheme,
such that the adversary cannot bias the secret or learn anything about it. The protocol is based
on non-interactive zero-knowledge proofs, non-interactive commitments and a novel secret-
sharing scheme with special robustness properties that is based on Low-Density Parity-Check
codes. As a secondary contribution, we extend the formal MPC-based treatment of DKG/DSG,
and study new aspects of Affine Secret Sharing Schemes.

1 Introduction

Consider the following secure multiparty computation problem: n parties wish to obliviously
sample a secret sharing of a random value s taken from some finite field F without letting any of
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the parties learn the value of s. Roughly speaking, given a privacy threshold and a correctness
threshold tp < tc, the protocol must ensure that any adversary A that actively (aka maliciously)
corrupts up to tp parties learns nothing about the secret s and cannot bias it, and that any set of tc
honest parties can recover the secret even in the presence of A .

This task, hereafter referred to as Distributed Secret Sharing Generation (DSG), can be viewed
as a natural extension of Verifiable Secret Sharing (VSS), with the difference being that in DSG
the secret is obliviously sampled, whereas in VSS it is chosen by a designated dealer. DSG plays
an important role in many secure multiparty computation protocols (MPC), especially in the on-
line/offline setting. It is also closely related to the problem of Distributed Key Generation (DKG),
in which, at the end of the sharing phase, the protocol publishes a commitment to the secret (e.g.,
the value gs where g is a generator of a cyclic group of appropriate order).1 (See, e.g. [44, 29, 14,
25, 28, 32, 49, 34, 37, 16, 40].) DKG protocols are typically employed to distribute a private key s
and publish a corresponding public key for a threshold signature scheme or cryptosystem (e.g.,
ElGamal, ECDSA, Schnorr, and BLS). The rise of digital currencies and proof-of-stake blockchains
have lead to the deployment of DSG protocols for large scale systems with hundreds and even
thousands of users [33, 19]. As a result, an extensive body of research is currently devoted to the
study of DSG protocols and their complexity. There are also many real-world implementations of
DKG, e.g. [47, 46, 43, 21, 20, 50, 19, 4].

The communication complexity of DSG and DKG. In this work we study the communication
complexity of DSG and DKG. Motivated by recent applications, we assume that the vast majority
of the communication is performed via a public ledger. That is, in the distribution protocol parties
write messages on a public bulletin board (BB) and read messages from the board, but cannot erase
anything. The communication to the BB is non-anonymous and authenticated (e.g., via digital
signatures and PKI). We also allow parties to send messages via private authenticated channels
though such channels can be emulated over the public board assuming public-key encryption.
Qualitatively, the BB can be simply viewed as an implementation of a broadcast channel. However
it allows for a refined communication complexity measure. Specifically, we define the upstream
complexity of a party as the number of bits that the party sends either to the BB or via private
channels, the downstream complexity as the number of bits that a party reads from the BB or receives
via private channels, and refer to the sum of the upstream complexity and downstream complexity
as the communication complexity of the party. The total communication complexity is the sum of the
communication complexity of all parties. For example, if Alice publishes 10 bits on the BB and Bob
reads only the first 2 bits then Alice’s communication complexity is 10 but Bob’s communication
complexity is only 2. When measuring the communication complexity of DSG and DKG we will
focus on the distribution phase and ignore the communication complexity of the task of recovering
the secret. Indeed, in all standard protocols (including the ones in this paper) one can release the
secret s (or a committed version of it) to a receiver R via a single-round protocol with a linear
communication complexity. If only a few parties need to recover the secret, the reduction in the
communication is effective. For example, in the setting of threshold signatures, where a single
client receives a signature on a document, only the client has to read O(n) symbols from the BB

1There are several definitions and variants of DSG and DKG. In particular, sometimes the protocol is required to
generate public commitments to the private shares, and, typically, one should be able to securely recover the secret in
the exponent of a given group element h. To simplify the exposition, we postpone the formal definition, but mention
for now that our protocols support these features.

2



whereas the n servers only have constant communication.

Existing solutions. The most common approach is to reduce the DSG problem to n parallel calls
to verifiable secret sharing (VSS), where in each call a different party Pj deals shares of a random
secret according to some linear secret sharing scheme (e.g., Shamir [48]), and where the final shares
are defined by locally summing-up the received shares. One can optimize the protocol a little bit
by using only tp+ 1 dealers. Assuming that tp, tc are both linear in n (which will be taken to be
our default setting), the total communication complexity of this protocol is about Ω(n2) field ele-
ments since Ω(n) parties must each communicate at least Ω(n) field elements (even if the protocol
is only passively secure). General MPC solutions for computing the randomized sharing function-
ality also lead to a similar communication cost. One can slightly improve the communication by
running the protocol over a small super-logarithmic size sub-committee that is chosen at random
via collective random coin-tossing. Ignoring the cost of the coin-tossing protocol, this reduces the
total communication to ω(n logn) field elements although the communication overhead is unbal-
anced and some parties still have a communication complexity of Θ(n).2 Finally, we mention that
if many instances of DSG are needed then one can amortize the communication cost to O(1) per
instance (e.g., via the use of hyper-invertible matrices [6]). This approach is typically useful for
MPC applications, but is less useful in the DKG setting when the protocol is being used to set-up
a single private key. Our main goal is to understand whether a constant cost can be established in
a non-amortized setting. That is, we ask:

How does the communication complexity of DSG and DKG protocols scale with the
number of parties n? Specifically, is it possible to design a protocol where the commu-
nication complexity of each party is a constant that is independent of n?

The information bottleneck. All existing protocols suffer from the following “information bot-
tleneck” which affects their communication overhead: There are some (typically, Ω(n)) parties
whose input influences the outputs of Ω(n) parties. However, in a constant-round protocol with
a constant communication overhead per party each party can only affect the output of a constant
number of parties.

2 Our Results

We show that n parties can obliviously sample a secret sharing for a random secret with constant
communication complexity per party. Formally, we prove the following theorem.

Theorem 2.1 (main theorem). Assuming the existence of NIZKs the following holds. For any constants
0 < τp < τc < 1 and every field F of size super-polynomial in the number of parties, there exists a constant-
round n-party DSG (resp., DKG) protocol over F with privacy threshold of τpn and recovery threshold of τcn
such that each party sends and receives only a constant number of field elements and a constant number of
commitments and NIZK proofs for constant-size relations. Moreover, each party computes only a constant
number of arithmetic operations and cryptographic operations.

2In the standard model where there is no external source of randomness (e.g., random beacon), coin-tossing proto-
cols suffer from a quadratic downstream communication cost (since Ω(n) parties contribute randomness to the process
and each party has to read these contributions). Also, in the standard model, this solution is restricted to non-adaptive
adversaries that select the corrupted parties before the committee is established.
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In contrast, existing protocols fail to achieve constant communication even in relaxed models,
e.g., if the downstream complexity is ignored and broadcasting a bit is counted as a unit cost
operation or if the upstream complexity is ignored and only downstream complexity is counted.
We proceed with some comments.

1. (About the thresholds) The protocol guarantees that even if the adversary actively corrupts
up to tp = τpn parties, at the end of the protocol the (honest) parties hold shares of a random
secret according to tp-private tc-correct secret-sharing scheme for tc = τcn. For example, we
can assume that every un-corrupted party will be participating in the reconstruction proce-
dure and so we can take tp = n− tc (e.g., tp = n/3 and tc = 2n/3). We note that the theorem
is still meaningful even when tp+ tc ̸= n. (For example, to support the case of some honest
parties being offline and not participating in the reconstruction of the secret, the parameters
can be set such that tp+ tc < n, e.g., tp = n/3 and tc = 0.5n to support up to n/6 honest parties
being offline. As another example, to support the case of parties that are passively dishonest
and thus leak their shares while still participating in the reconstruction, the parameters can
set such that tp+ tc > n, e.g., tp = 0.6n and tc = 0.7n.)3 It should be emphasized that, unlike
Shamir-based schemes, we do not get an exact threshold of tc = tp + 1, rather we only get
near-threshold secret sharing.

2. (The field size) The limitation on the field size being super-polynomial in n can be completely
waived at the expense of allowing a large constant gap between the parameters τc and τp.
That is, for any finite field (including the binary field) the theorem can be proved for some
constants τc < τp. (See Remark 4.15.) We focus on large fields since this is the natural setting
for DKG applications (e.g., when the secret is taken to be the private key of a DLOG-based
system).

3. (Formalizing security) Despite the popularity of DKG, there is no single canonical defini-
tion for its security. Building on Katz [38] and Gennaro et al. [29], we formalize secu-
rity via an MPC framework by presenting abstract DSG/DKG functionalities that are in-
dependent of any concrete secret sharing scheme (similarly to the abstract definition of
a commitment functionality). We assume that the network is synchronous and consider
computationally-bounded, rushing, non-adaptive adversaries. Simple variants of our pro-
tocol achieve adaptive security assuming secure erasures and perfect commitments. Our
simulators are straight-line black-box, so given UC-secure building blocks the protocol can
be proved to be UC-secure.

4. (Round complexity) The number of rounds is a constant that grows linearly with the privacy-
to-correctness gap τc− τp. We can optimize the round complexity and get 3 rounds if we
allow a larger correctness-to-privacy gap (i.e., settle on some universal constants τp < τc). For
DSG, we can even reduce the round complexity to 2, assuming a public-key infrastructure.
This two-round solution can be also applied to DKG at the expense of a slight relaxation of
the functionality (see Section 6.2).

5. (Concrete communication) Using DLOG-based primitives (e.g., ElGamal commitments and
RO-based NIZK), each party communicates a constant number of elements from F and the

3Formally, we capture this property via the use of a mixed adversary [24] that applies different types of corruptions.
See Section 5.
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underlying group G, where the constant is determined by information-theoretic objects (the
sparsity of some low-density parity-check matrices). A concrete instantiation is described in
Section 7. It therefore seems likely that one can get competitive practical results, at least for
some range of parameters. We leave this direction for future work.

6. (The cost of recovering of the secret) Our DSG protocol generates O(n) public elements on the
BB. To recover the secret (either directly or taken to the power of some public group element
h) one has to read these values from the BB and receive O(1) values from each of at least tc
honest parties. Other existing protocols typically suffer from a similar cost as they have to
read some certificates for the validity of the submitted shares (e.g., commitments). However,
unlike other protocols, in our setting such access to the BB is necessary even if the adversary
remains silent and only valid honestly-generated shares are being used. Put differently, our
protocol suffers from the non-standard caveat that the local shares of authorized coalitions
of size tc have no information about the secret, and recovery is possible only when these
shares are accompanied by the public values that are published on the BB. Similarly, in the
context of DKG, computing the “public key” gs requires reading Ω(n) public values that are
available on the BB. Of course, such a computation can be done once and for all, and can be
verified later by anyone based on public values. So in terms of usability, this property does
not seem very limiting. Interestingly, it turns out that this non-standard property is necessary
for bypassing the aforementioned information bottleneck, as we prove in Appendix A.

2.1 Technical overview

To prove Theorem 2.1, we will try to design a special-purpose secret-sharing scheme (SS) that na-
tively supports distributed sampling. This requirement is satisfied if the shares are independently
distributed. On the other hand, the correctness requirement implies that shares must be highly
correlated. To bypass this problem, we design a scheme in which the shares are sampled inde-
pendently at random and the correlation is achieved by publishing global public information that
depends on all the shares. For example, think of the following variant of Shamir’s scheme where
each party i locally samples a random field element yi as its share. We can think of these shares as
defining a polynomial f of degree n−1 for which f (i) = yi,∀i ∈ [n]. To add redundancy, the parties
securely evaluate the polynomial f in additional m = n− t points n+ 1, ...,n+m and publish the
resulting vector y = (yn+1, . . . ,yn+m) on the BB as a “public header”. Given this information, every
set of t parties can recover the secret f (0). Now, our goal is to securely compute a function that
takes a single field element from each party and publishes O(n) field elements on the BB. At least
in terms of information (ignoring secrecy), this may be doable by using O(1) communication per
party. While it is not clear how to do it securely, at least we do not face the previous information
bottleneck.

The AFS abstraction. Let us abstract the above idea. Our goal is to design a secret-sharing with
public header y that is available to all parties such that (1) a random sharing x = (x1, . . . ,xn) can be
sampled by letting each party sample her share xi uniformly at random, and (2) the header y can
be securely computed based on x. We note that any linear secret sharing (LSS) Σ can be brought
to this form. To see this, observe that a random sharing x = (x1, . . . ,xn) ∈ Fn according to Σ is a
random vector in the Kernel of some m× n “constraint” matrix M (i.e. M · x = 0), and the secret
s associated with x can always be written as some linear combination v ∈ Fn of the shares, i.e.,
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s = ∑i vixi. Consider a new secret sharing scheme in which x = (x1, . . . ,xn) are sampled uniformly at
random, rather than be sampled subject to M ·x = 0, and where the public header y∈ Fm is taken to
be the “syndrome” M ·x. It is not hard to see that a set T of parties can reconstruct the secret in the
new scheme (given y) if and only if it can reconstruct the secret in the original scheme Σ. Thus, any
LSS, specified by M and v, gives rise to an affine secret sharing scheme (AFS) with similar privacy
and correctness thresholds. More generally, the scheme remains secure for any fixing of the public
header y when the vector of shares x is sampled uniformly subject to Mx = y. (See Section 4 for
formal definitions and statements.)

Computing the public header efficiently. Our goal now is to find an MPC-friendly AFS such
that the mapping F : x 7→ y given by y = Mx can be securely computed with low communication.
(The output of F should also consist of commitments to the private shares xi, but let us ignore
this for simplicity.) The functionality F takes a single field element from each party and publishes
m = Ω(n) elements, and generic protocols for this task consume Ω(n2) communication even in the
presence of a broadcast channel. To cope with this problem, we employ a concrete secret-sharing
scheme in which the constraint matrix M is sparse, i.e., each row and column have only a constant
number of ones. Such a scheme was recently suggested by [3] based on Low-Density-Parity-
Check Codes (LDPC). We extend their construction and show that such secret-sharing schemes
can achieve near-threshold parameters.4 Since the matrix is sparse, each output yi depends on a
constant number of inputs, and each party i affects a constant number of outputs. In the passive
(aka semi-honest) setting, this immediately leads to a highly efficient protocol for computing the
public header y. For instance, to compute an output yi = x1 + . . .+ xd , the d relevant parties collec-
tively generate an additive sharing of zero, with shares r1, . . . ,rd given to the d parties, and post to
the BB the values xi+ ri that sum-up to yi. (To generate a sharing of zero we let each relevant party
additively share the value zero and take the sum of these shares.)

One can handle active (malicious) adversaries by applying the GMW compiler (or cheaper
variants of it). That is, we let the parties publicly commit to their inputs and randomness, send
private messages publicly via the use of public-key encryption, and use NIZK to prove the consis-
tency of their messages with the committed values and the previous rounds. The communication
per party remains constant. One may worry that the adversary chooses its shares in a non-uniform
way, however, it is not hard to show that such an attack does not violate the security of the secret.
(The adversary still has no control or knowledge about the secret.) A more serious problem arises
when the adversary aborts some of the outputs. Indeed, if a corrupt party aborts then it is impos-
sible to compute any output yi that depends on the input of that party.

Handling aborts. Assuming an honest majority, a naive solution for aborts is to force parties to
share their inputs at the beginning of the protocol, and later when a party aborts have the other
parties reveal the corresponding input. This solution has a linear communication cost per party
and is therefore not applicable in our context. Alternatively, since the aborts in our case are identifi-
able [36] (i.e., we can identify a corrupted party that misbehaves) we can repeat the computation for
an aborted output yi without the corrupted parties. It is possible to implement this solution with
low communication. However, it can be shown that the adversary can force a linear number of

4Along the way, we prove that, over large fields, LDPC codes can approach the singleton bound – a result that may
be of independent interest. See Remark 4.4.
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rounds by corrupting only a single party in each “correction round”.5 To derive a constant round
solution, we take a different route and require the underlying AFS to be robust against a bounded
number of erasures of the public header. (This notion of robustness should not be confused with
the standard notion of robust secret sharing tolerating faulty shares.)

Robust AFS. Roughly speaking, in robust AFS, we want the secret to be recoverable even if the
adversary erases some subset B⊂ [m] of the entries of y = (y1, . . . ,ym). (Think of |B| as a small con-
stant fraction of m.) Intuitively, this means that a subset of tc honest parties T that holds the shares
(xi)i∈T should be able to recover the secret s = ∑i vixi given only some of the public shares (yi)i/∈B.
Unfortunately, when the matrix is sparse such a strong level of robustness cannot be achieved
since the adversary can erase all the O(1) equations in which, say, the first honest party partic-
ipates. This means that an honest coalition that does not contain the first honest party cannot
recover x1 and thus cannot reconstruct the secret s = ∑i vixi. Indeed, erasures can effectively re-
move all the information about the shares of some of the (possibly honest) parties. We solve the
problem by compromising on the following weaker notion of robustness: After the removal of B
it should be possible to efficiently locate a set A of parties such that after their removal, the residual
scheme (M′,y′,v′) obtained by removing (more precisely zero-ing) the B entries of y, the A entries of
v, and the B×A submatrix of M, still supports recovery for a sufficiently large correctness threshold
tc. This means that we can “sacrifice” the B entries of y and still recover the newly defined secret
s′ = ∑i/∈A vixi. Observe that the adversary effectively shifts the secret to s′, moreover, the adversary
(which is rushing) can choose which subset B to abort after seeing the entire vector of pubic shares
y. The robustness definition takes this into account and guarantees that, even under such an at-
tack, security holds (i.e., the secret remains private and independent of the adversary’s attack). To
make this approach work, we show that sparse matrices can be used to derive robust AFS. We also
need to carefully define ideal functionalities that capture the adversary’s behavior and show that,
when instantiated with robust-AFS, they realize the abstract DSG and DKG functionalities.

Achieving constant rounds, constant communication and near-threshold. With the help of
robust-AFS, we can run the GMW-based protocol for computing the headers y = Mx and sim-
ply give up on the “erased” header (yi), i∈ B. This immediately yields a three-round protocol with
low communication assuming that the adversary can erase up to b entries where b is the robust-
ness parameter of the AFS. This limitation induces a very small (yet linear) bound on the privacy
threshold tp. In order to improve this and derive near-threshold scheme, we apply the robustness
property in a less aggressive way. Specifically, the robustness parameter b is taken to be some
small (linear in n) value, and we apply robustness only if there are less than b erasures. If the
number of erasures is larger, we remove the parties that were publicly identified as cheaters and
re-compute the missing entries. This is done repeatedly, and it can be shown that after a constant
number of rounds (that depends on the tp, tc and b), the number of erasures is sufficiently small
and robustness can be applied. This strategy is non-trivial to implement with constant down-
stream communication (since we do not even have enough bandwidth to publish the number of
missing entries), nevertheless we realize this approach with constant communication by carefully

5Such a protocol has an “optimistic” constant round complexity (when there are no aborts), and a “pessimistic”
linear round complexity. Moreover, if the adversary delays the protocol by r ≤ tp rounds it must publicly reveal Ω(r)
corrupted parties. Assuming some penalty mechanism, such a protocol may be acceptable in practice.
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postponing some of the computation to a post-processing public-decoding phase that is invoked
after the sharing phase as part of the reconstruction.

Organization. Following some preliminaries in Section 3, we devote Section 4 to the study of
AFS including definitions, properties, and sparse constructions. In Section 5 we formalize DSG
and DKG protocols in an MPC framework and show how to realize these notions based on ap-
propriate protocols for robust-AFS. Communication-efficient protocols for distributing a secret
according to a sparse robust-AFS are presented in Section 6 and a concrete instantiation of this
protocol appears in Section 7.

3 Preliminaries

General notation. We let [n] denote the set of integers {1, . . . ,n}. For an m× n matrix M =
(M j,i) j∈[m],i∈[n] and sets R ⊂ [m] and C ⊂ [n], we let M[R;C] denote the m× n matrix whose ( j, i)th
entry is M j,i if ( j, i) ∈ R×C and zero otherwise. We also let M[;C] := M[[m];C] be the matrix that
agrees with M on the columns in C and takes the value zero in all other columns. The complement
of a set T ⊂ [n] is denoted by T̄ . For random variables X and Y , we write X ≡ Y to denote that X
and Y are identically distributed.

Cryptographic definitions and primitives. We use the standard notion of a non-interactive com-
mitment scheme Comcrscm(x;k) where crscm is a random reference string crscm, x is a message and
k is a random commitment key k. (See Appendix B for a definition.) To simplify notation, we
typically omit the reference string crscm from the description of the commitment algorithm. Such
commitments can be constructed based on one-way functions [35, 42].

We employ Non-interactive zero-knowledge proofs of knowledge (NIZK). In particular, following [38],
we rely on ID-based simulation-sound NIZK proof system (see also [45, 39]). Syntactically, this
means that proofs are generated with respect to an identifier. Roughly, zero-knowledge requires
that simulated proofs are indistinguishable from real proofs even for adaptively chosen state-
ments. Simulation soundness requires that if an adversary who is given an access to simulated
proofs with respect to a set of identities H, can generate a valid proof with respect to any identity
outside H, then a valid witness can be extracted. The formal definition appears in Definition B.1.

We assume familiarity with standard MPC definitions (see, e.g., [30, 13]). Throughout the
paper we let C denote the set of corrupted parties and H denote the set of honest parties.

The BB model. We assume that parties have an access to a public bulletin board (BB) that is
abstracted as an array or dictionary with random access. The array is partitioned to sections,
and each party has an exclusive write-once permission for her section, i.e., only party i can write
an element to the ith sub-array and once an element was written to cell number j, this value
remains unchanged forever, and so parties who read these cell will always agree on its value. We
view the elements on the BB as publicly available to all the parties, that is, all the parties have
read permission to all sections. Our protocols naturally define for every message an address (or
a key) in which it is stored, and instruct each party which addresses to read from the BB in each
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step.6 (Malicious parties can, of course, read everything.) For the sake of clarity, when describing a
protocol, we typically treat the BB as a broadcast channel (keeping the mapping between messages
and their addresses implicit), and only later analyze the fine-grained communication and see how
many elements a party reads/writes during the protocol.

4 Secret Sharing

4.1 Definitions and Basic Facts

Through the paper, we assume that F is a finite field or a family F = {Fn} of finite fields whose
size grows with the security parameter or the number of parties. In the latter case, we assume that
field operations can be implemented in polynomial time, and keep the dependency in n implicit.

We use a slightly non-standard variant of the notion of Linear Secret Sharing schemes. Roughly,
(1) we assume that the share of each party is a single field element and (2) we replace linearity
with affineness. (See Remark 4.5 for an explanation about the usage of affineness.) In addition, for
convenience, our definition is centered around the process of sampling a random secret sharing
vector that corresponds to a random secret, as opposed to sharing a given secret. (This difference
is mainly syntactic and one can easily move between these two variants.)

Definition 4.1 (AFS: Semantics). An n-party (tp, tc) Affine Secret Sharing Scheme (AFS) over a finite
field F is a pair (Σ,Rec) where Σ is a probability distribution of sampling shares over an affine subspace of
Fn and Rec is a recovery algorithm that takes a subset T ⊂ [n] and a vector of shares x[T ] = (xi)i∈T ∈ F|T |
and outputs a secret s ∈ F with the following properties:

• tc-Correctness: For every subset T ⊂ [n] of size at least tc (hereafter referred to as “authorized”) it
holds that

Pr
x R←Σ

[Rec(T,x[T ]) = s(x)] = 1,

where s(x) = Rec([n],x) is referred to as the secret associated with the vector of sharing x. Further-
more, for every fixing of T the mapping Rec(T, ·) : F|T |→ F is a linear mapping.

• tp-Privacy: For every set T ⊂ [n] of size at most tp (hereafter referred to as “unauthorized”), we have

(x[T ],s(x))≡ (x[T ],s′),

where x R← Σ, and s′ R← F is chosen independently and uniformly.

Standard representation. By default, we assume that the AFS works as follows:

• The AFS is specified by an m×n constraint matrix M, a column offset vector y ∈ Fm, and a row
vector v ∈ Fn referred to as the extraction vector.

• The sampling algorithm ΣM,y,v samples a uniform solution x ∈ Fn to the set of equations
Mx = y. When y is the all zero vector the scheme is linear as opposed to affine.

6We note that this convention is aligned with modern blockchains (e.g., Ethereum, Solana, Aptos) that implement
storage as a key-value store (RocksDB in the latter two), and support direct retrieval of data using keys. Thus the
download channel of reading values from the BB is cheap and straightforward.
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• The underlying secret s(x) = ∑i xivi is taken to be the inner-product between the vector of
shares x and the extraction vector v. (The terminology is borrowed from the notion of ran-
domness extractors, i.e., we extract the secret from the randomness of the parties).

• The recovery algorithm expresses the missing shares as a linear combination of the existing
shares, and outputs the multiplication of v by the vector of shares. More precisely, the re-
covery algorithm RecM,y,v(T,x[T ]) finds a row vector α ∈ Fm such that α ·M[ ; T̄ ] = v[T̄ ], and
outputs ∑i∈T vixi +α · (y−M[ ;T ] · x[T ]).
If there is no such vector α , i.e., v[T̄ ] is not in the row-span of M[ ; T̄ ], the recovery algorithm
fails. Note that both Σ and Rec can be computed efficiently by making poly(n) number of
arithmetic operations over F.

The following simple fact characterizes the correctness and privacy in linear algebraic terms.
(This is a straightforward generalization of the well-known linear algebraic characterization of
linear secert sharing to the affine setting).

Fact 4.2 (linear-algebraic characterization of privacy and correctness). Let M ∈ Fm×n, y ∈ Fm and
v ∈ Fn, and assume that the offset vector y is a vector in the image of the constraint matrix M. Let x be a
uniformly chosen solution to the system Mx = y and let s(x) = ∑i xivi denote the random variable induced
by the choice of x. For every set T ⊂ [n], if v[T̄ ] ∈ rowspan(M[ ; T̄ ]) then

Pr
x
[RecM,y,z(T,x[T ]) = s(x)] = 1,

and otherwise,
(x[T ],s(x))≡ (x[T ],s′)

where s′ is uniform over F. Consequently, (ΣM,y,v,RecM,y,v) is tc-correct (resp., tp-private) if and only if for
every set T ⊂ [n] of size tc (resp., tp) the vector v[T̄ ] is spanned (resp., not spanned) by M[ ; T̄ ].

We say that (M,y,v) is tc-correct (resp., tp-private) if the AFS given by (ΣM,y,v,RecM,y,v) is tc-correct
(resp., tp-private). By Fact 4.2, the offset vector y plays no role in the privacy/correctness of the
scheme as long as it is in the image of M. We will always assume that the offset vector y is in the
image of the constraint matrix M, and accordingly refer to (M,v) as tc-correct (resp., tp-private) if
(M,y,v) is tc-correct (resp., tp-private) for every y is in the image of M.

From codes to an affine secret sharing scheme (AFS). It is not hard to see that the correct-
ness property can be based solely on the error correction properties of the constraint matrix M,
regardless of the choice of v. Formally, define the dual distance of M, denoted by dd(M), to be
the smallest number of linearly dependent columns of M (over F). Note that this means that for
every subset T ⊂ [n] of size lesser than dd(M) the matrix M[ ;T ] is of rank at least |T | and so
v[T̄ ] ∈ rowspan(M[ ; T̄ ]) for every vector v ∈ Fn. Therefore, the tuple (M,y,v) is (n− dd(M) + 1)-
correct no matter how the extraction vector v is chosen. Privacy now boils down to the selection
of the extraction vector. We say that the extraction vector v is tp-private for M (over F) if for every
tp-subset T ⊂ [n], it holds that v[T̄ ] /∈ rowspan(M[ ; T̄ ]). Then, we have the following immediate
claim (whose proof is implicit in [3] and is closely related to the general transformation of [18]).

Claim 4.3. For every m×n matrix M, vector y ∈ Fm in the image of M and extraction vector v ∈ Fn which
is tp-private for M, the tuple (M,y,v) is (n− dd(M) + 1)-correct and tp-private. Moreover, except with
probability |F|−(n−m−tp)

(n
tp

)
, a randomly chosen vector v R← Fn is tp-private for M.
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Proof. The first part follows from the above discussion and Fact 4.2. The “Moreover” part, follows
by noting that for any fixed tp-subset T ⊂ [n], the rank of M[ ; T̄ ] is m, and therefore, the probability
that v[T̄ ] ∈ rowspan(M[ ; T̄ ]) is at most |F|m/|F|n−tp . By applying a union-bound over all possible
tp-subsets, we get a failure probability of |F|−(n−tp−m)

(n
tp

)
, as required.

Remark 4.4 (Near-threshold AFS). Assuming that the field size grows asymptotically with the number
of parties (e.g., |F|> ω(1)) we can take tp = (1− ε)(n−m) for an arbitrary small constant ε > 0, and still
get a negligible failure probability of 2−Ω(n).7 If the distance of the code approaches the singleton bound, i.e.,
dd(M)> (1− ε)m, then tc = (1+ ε)(n−m). Altogether, we get an almost-tight privacy-to-correctness gap
tc− tp ≤ 2ε(n−m).

For small fields (including the case of the binary field), we cannot hope to get arbitrarily small gap [11].
Still for a code with constant relative distance and constant rate, we still get, except with negligible proba-
bility, some non-trivial constants 0 < tp < tc < 1 that are bounded-away from zero and one.

Collections of AFS. A (τp,τc)-AFS collection with error ε(·) is specified by a probabilistic polynomial-
time algorithm Z that given 1n samples an index z= (M,y,v) such that, except with probability ε(n),
the pair (Σz,Recz) forms an n-party (τpn,τcn)-AFS. By default, we assume that the error parameter
ε is negligible in n. We may also assume that Z samples only the constraint matrix M and the ex-
traction vector v since any y in the image of M can be used. We say that an AFS collection is sparse
if the number of non-zero elements in every row and column of the constraint matrix is bounded
by a fixed constant that does not grow with n.

Remark 4.5 (Why should we use affine schemes?). By Fact 4.2, privacy and correctness depend only
on the constraint matrix M and the extraction vector v, and any offset vector y (in the column span of M)
can be used. For this reason, the standard choice in the literature is to focus on LSS (as opposed to AFS)
and assume that y is the all-zero vector. Still, for computational efficiency, it will be beneficial to employ
a non-zero y since, in some cases sampling x conditioned on Mx = 0 is more expensive than sampling a
uniform x and setting y = Mx. In particular, in a distributed setting, each party can sample its own share
xi independently at random, and then the parties reveal y via MPC. This approach will be used in our DSG
and DKG constructions. Getting back to the information bottleneck mentioned in the introduction, the use
of a non-zero vector y is in fact necessary for achieving our results.

Remark 4.6 (From affine to linear). In many applications of secret sharing affineness provides a suffi-
ciently good substitute for linearity. Moreover, if this is not the case then one can easily turn an affine
sharing x of a random secret s under the AFS z = (M,y,v) into a linear sharing of a random secret s′ under
the linear secret sharing scheme (M,0). This can be done by letting each party i locally redefine its share to
xi− x′i where x′ ∈ Fn is some canonical vector for which Mx′ = y. It is not hard to verify that the resulting
sharing vector x− x′ is a random sharing under the scheme z′ = (M,0,v) of the shifted secret s− s′ where
s′ = ∑i x′ivi is the secret associated with x′ under z = (M,y,v). Moreover, if (M,y,v) is (tp, tc)-AFS then the
scheme (M,0,v) is an (tp, tc)-LSS.

4.2 AFS from Expanders

In this section we define a certain expansion property for matrices, use existing techniques (Fact 4.7)
to sample matrices with this property, and prove (Theorem 4.8) that such expanders can be used

7If the field is exponentially large (which is a reasonable scenario in the context of threshold cryptography), we can
even take tp = (n−m).
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to construct a near-threshold sparse-AFS.

Matrices, sparsity, and expansion. Let M = (M j,i) j∈[m],i∈[n] be an m× n matrix. We say that M is
d-sparse if every column of M has at most d non-zero elements, and say that it is (d,r)-sparse if,
in addition, every row of M has at most r elements. We say that M is (ℓ,e) column-expanding (or
just expanding) if for every set S of at most ℓ columns, the submatrix M[ ;S] has at least e · |S|
non-zero rows. Let ηe(M) denote the largest ℓ for which M is (ℓ,e) expanding. Note that ηe(M)
is monotonically decreasing with e and, for d-sparse matrices, ηe(M) = 0 for any e > d. It is well
known (see, e.g., [51, Problem 5.5.]) that for (d,r)-sparse matrices and every a > d/2,

ηa(M)≤ dd(M)−1≤ η1(M), (1)

where the equation holds regardless of the choice of the finite field F over which the dual-distance
is computed. That is, expansion beyond half-the-column-sparsity, d/2, guarantees good distance,
whereas non-shrinkage (expansion of at least 1) is necessary for good distance. Jumping ahead,
we note that for large fields and properly chosen matrices, non-shrinkage is also sufficient for
good distance.

Collections of matrices. For constants µ ∈ (0,1) and d,r ∈ N, a collection of (µ,d,r)-matrices is
defined by a (possibly randomized) polynomial-time algorithm M that given 1n outputs a (d,r)-
sparse µn× n matrix over F. We say that the collection is (λ ,e) expanding with error ε(n) (resp.,
has distance dd with error ε(n)) if the resulting matrix is (λn,e) expanding (resp., has distance ddn)
except with probability ε(n). By default, we assume that ε is a negligible function. The following
constructions are based on [15, 1].

Fact 4.7 (expanding collections). For every constant µ ∈ (0,1), constant ε > 0, and constant λ < µ/(1+
ε) there exist constants d,r, and a collection of (µ,d,r) binary matrices that are (λ ,1+ ε) expanding with
a negligible error probability.

Also, for every constant µ ∈ (0,1), there exist constants d,r,λ and a collection of (µ,d,r) binary ma-
trices that are (λ ,0.9d) expanding with zero error probability.

We note that the constant 0.9 in the second part of the fact was chosen arbitrarily, and could be
replaced by any constant larger than 0.5.

Proof. Observe that it suffices to prove the statement without worrying about the row sparsity.
Indeed, the average row sparsity must be d/µ and so, by Markov’s inequality, for every α > 0, all
but α-fraction of the rows have weight at most r = d/(µα). By removing these heavy rows we get
(d,r)-sparsity at the expense of a small constant degradation in the parameter λ . The second part
of the theorem now follows immediately from the celebrated result of [15].

To prove the first part we rely on [1]. Since the statement in the original paper refers to a
slightly different regime of parameters, we sketch the argument here. Consider a random µn× n
binary matrix R that each of its columns is sampled independently at random so that each column
contains d ones. Let pℓ denote the probability that there exists a non-expanding set of exactly ℓ
columns, i.e., a set that fails to expand by a factor of 1+ ε . A standard calculation shows that

pℓ ≤

[
cε,µ

(
(1+ ε)ℓ

µn

)d−2−ε
]ℓ

,
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where cε,µ is a constant that depends on ε and µ but is independent of d. By taking d to be a
sufficiently large constant, we can guarantee that pℓ is negligible for every ω(1) < ℓ < µn/(1+ ε).
However, for constant size ℓ’s we get an inverse polynomial failure probability, which means that
the overall failure probability ∑ℓ≤µn/(1+ε) pℓ is inverse polynomial in n. To reduce the error to be
negligible, we use the construction from [1] that samples a sparse matrix M′ such that, except
with negligible probability γ(n), there are no non-expanding sets of size smaller than ℓ0 for some
super-constant parameter ℓ0 = ω(1). Let M denote the matrix obtained by taking the union of
M′ with a random sparse matrix R (i.e., Mi, j = M′i, j ∨Ri, j for each i, j). Then M is a sparse matrix
that does not have a non-expanding set of size smaller than µn/(1+ ε) except with probability
γ(n)+∑ℓ0<ℓ≤µn/(1+ε) pℓ which is negligible in n.

Theorem 4.8 (near-threshold sparse-AFS from expanders). For every constants τp < τc there exists
constants d,r such that for every field F of size super-polynomial nω(1), there exists a (τp,τc)-AFS over F
whose constraint matrix is (d,r)-sparse. Furthermore, except with negligible probability the dual distance
of the constraint matrix is (1− τc)n.

Proof. Let µ ∈ (1− τc,1− τp) be a constant. Given 1n, we sample a tuple (M,y,v) as follows. (1)
Use the first part of Fact 4.7 to sample a sparse µn× n binary matrix which is ((1− τc)µ,1+ ε)
expanding for some constant ε > 0. Next, replace each non-zero position by a uniformly chosen
field element and let M denote the resulting matrix. It is shown in [52, Lemma 3.9] that, except
with negligible probability |F|−1, the dual distance of M over F, is at least as large as the expansion
parameter (1− τc)n. Sample a random reconstruction vector v R← Fn and take y to be an arbitrary
vector in the image of M. By Remark 4.4, except with exponentially small probability, we get a
(τcn,τpn)-AFS (since τp < 1−µ and τc = 1−dd(M)/n), as required.

Remark 4.9 (LDPC codes that almost achieve the singleton bound). Our proof implicitly shows that
when the field F is sufficiently large (say super-polynomial in n), for every ε > 0 there are dε -sparse m×n
parity-check matrices whose distance ∆ approaches the singleton bound, i.e., ∆ > (1− ε)n. Moreover, such
codes can be efficiently sampled with negligible error probability. To the best of our knowledge, this result
does not appear in the literature. For comparison, the work of [41, Thm. 2.14] shows that such codes can
achieve the Gilbert-Varshamov bound when the sparsity grows with the field size.

Remark 4.10 (sparse-AFS over small fields). One can efficiently construct matrices that achieve a con-
stant rate and a constant distance even under constant size fields [26]. In fact, by using the second part of
Fact 4.7 and the connection between expansion beyond half-the-column-sparsity d/2 in Eq. (1), one can get
binary matrices that achieve constant distance over any finite field. By sampling a random extraction vector
as in Claim 4.3, we get a (τp,τc)-AFS, for some non-trivial constants 0 < τp < τc < 0, that works over small
fields whose constraint matrix is a sparse binary matrix. (In fact, by using the techniques of [3], we can
get a single scheme that works universally over all finite fields that also enjoys several efficiency features in
reconstruction.)

Example 4.11 (sparse-AFS over large fields: Concrete numbers). Say that the field is of size at least
2100 (in threshold systems the size is typically larger, e.g., ≈ 2255 for Schnorr’s signature). Consider the
following examples:

1. Say that we have n≥ 10 parties and take an AFS matrix with µ ·n rows where µ = 0.5. By standard
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expansion calculations, there are sparse matrices with d = 8 and r ≈ 16, that achieve τc = 0.66.8 By
choosing a random extraction vector, we get τp = 0.4 except with failure probability 2−100. So we get
a (8,16)-sparse (0.4,0.66)-AFS. (This favorably compares to the canonical setting of 1/3 corrupt vs
2/3 honest that is used in many scenarios.)

2. As another data point, assume that the field F is of size at 2255 and that the number of parties n > 50.
Then, by taking µ = 0.6, we can get a (4,10)-sparse matrix with τp = 0.39, τc = 0.9.

4.3 Robust AFS

Motivation. When a DKG is run, some participants might behave maliciously and corrupt some
of the shares that are needed for reconstructing the newly distributed key. We need the AFS to
be robust to such attempts. For concreteness, consider the following scenario. Given an AFS
z = (M,y,v), we distribute a vector of random shares x ∈ Fn by sampling a uniform solution to the
system Mx = y. Then, an adversary who controls a tp-subset T ⊂ [n] of the parties gets his shares
x[T ] and is allowed to corrupt the index z by erasing a small subset B of the entries of the vector y.
(Think of B as a small constant fraction of n.) Intuitively, we want the secret to still be recoverable
given only (M[B̄; ],y[B̄],v). Unfortunately, when the matrix is sparse this is impossible since the
adversary can, for example, include in B and erase all the O(1) equations in which the first honest
party participates. In this case, an honest coalition that does not contain the first honest party has
no information on x1 and cannot reconstruct the secret s = ∑i vixi.

Indeed, erasures in z effectively remove all the information about the shares of some of the
(possibly honest) parties. The key idea is to make sure that these “lost” parties will not affect the
secret by zero-ing the corresponding entries of the extraction vector. This way the secret remains
recoverable even without the missing shares. In more details, we compromise on the following
weaker notion of robustness: After the removal of B, it should be possible to locate a set A of
parties such that even if their shares are lost, the residual scheme z2 = (M[B̄; Ā],y[B̄],v[Ā]), namely
the n-party scheme containing all the original shares except those of A that are effectively taken
to be zero, still supports recovery for a sufficiently large correctness threshold tc. That is, for
z2 = (M[B̄; Ā],y[B̄],v[Ā]), the recovery algorithm Recz2 can tc-recover the secret s′ = ∑i∈Ā xivi even
when the shares x are sampled according to Σz (i.e., as a uniform solution to Mx = y). Note that
the secret associated with x is changed to s′ since we use the restricted extraction vector v[Ā]. So
privacy now means that the secret s′ should remain information-theoretically hidden given x[T ].
That is, the restricted extraction vector v[Ā] should be tp-private for the original matrix M. Jumping
ahead, note that by erasing B, the adversary effectively shifts the shared secret from s to s′. Still
this does not bias the output since s′ is still uniform and since our DSG/DKG protocols will ensure
that the choice of B is independent of the secret. We continue with a formal definition of robust
AFS.

Definition 4.12 (robust AFS). Let M be an m× n matrix, y be a vector in the column span of M, and
v ∈ Fn. We say that the tuple z = (M,y,v) is b-robust (tp, tc)-AFS if for every b-subset B⊂ [m] there exists
a set A = A(B)⊂ [n], referred to as the sacrificed set of B, such that for

z1 = (M,y,v[Ā]) and z2 = (M[B̄; Ā],y[B̄],v[Ā])

8The calculation here is based on the probabilistic method (i.e., we bound the probability that a random sparse
matrix fails to expand well). We ignore here the issue of finding explicit expanding matrices and note that this can be
done via several existing techniques, e.g., [1].
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the pair (Σz1 ,Recz2) forms a (tp, tc)-AFS. (We use this pair of algorithms since the secret is shared with Σz1

and recovered with Recz2 .) We further assume that if B is an empty set then A must be an empty set as well,
and therefore every b-robust (tp, tc)-AFS, for b≥ 0, is also (tp, tc)-AFS, and a 0-robust (tp, tc)-AFS is simply
a (tp, tc)-AFS.

An AFS ensemble with an index sampler Z is β -robust (τp,τc)-AFS if for all but negligible probability
over (M,y,v) R← Z(1n), the AFS (M,y,v) is βn-robust (τpn,τcn)-AFS. We also require that the set A should
be efficiently computable given (M,B).

Importantly, the residual scheme is defined over n parties, and the definition guarantees that
even after the erasure, every subset of tc parties (possibly including parties in A) can recover the
secret.

Lemma 4.13 (Sparse AFS are robust). Suppose that (M,y,v) is a (tp, tc)-AFS and that M is a (d,r)-
sparse matrix whose dual distance is ∆ = n− tc + 1. Then (M,y,v) is a b-robust (tp− b · r, tc)-AFS for
every b. Furthermore, the set A(B) is taken to be the columns whose support intersects with B, i.e., A(B) =
{i : ∃ j ∈ B,M[ j, i] ̸= 0}.

Note that the lemma keeps the correctness parameter tc unchanged, and the extra robustness
property only affects the privacy thershold.

of Lemma 4.13. Fix a b-subset B⊂ [m] and let A = A(B) as defined above. We begin by claiming that
(⋆) the B̄× Ā sub-matrix L of M has distance of at least ∆ = n− tc+1. For this it suffices to show that
any set of ∆−1 columns {wi}i∈S in L are linearly independent. To see this, recall that each column
vector wi is obtained from a column ŵi of M via the projection wi = ŵi[B̄] where the B-coordinates
of wi are known to be zero (otherwise i ∈ A and wi is not a column of L). This means that {wi}i∈S
is linearly independent if the M-vectors {ŵi}i∈S are linearly dependent, which is the case by the
assumption on the distance of M.

Let t ′p = tp−b · r. We will now prove that (Σz1 ,Recz2) forms a (t ′p, tc)-AFS where z1,z2 are defined
as in Definition 4.12. Let x ∈ Fn be a random solution to the system Mx = y. Then, x′ = x[Ā] is also
a solution to the system defined by M′ = M[B̄; Ā] and y′ = y[B̄]). Let v′ = v[Ā]. Fix a set T ⊂ [n] of
size at least tc. Given x[T ], the recovery algorithm Recz2 recovers the secret s′ = ∑i v′ix

′
i if and only if

v′[T̄ ] is spanned by the rows of M′[ ; T̄ ]. This condition is equivalent to the condition that v′[T̄ ∩ Ā]
is spanned by the rows of M′[ ; T̄ ∩ Ā] (since the A entries/columns are set to zero). This is indeed
the case, since the set T̄ ∩ Ā is of size at most n− tc which is smaller than the distance, ∆, of the Ā× B̄
sub-matrix L of M, as shown in (⋆).

Fix a t ′p-subset T ⊂ [n]. To show that s′ is distributed independently of x[T ], it suffices to show
that

v′[T̄ ] = v[Ā∩ T̄ ] is not in colspan(M[ ; T̄ ]). (2)

Taking S := A∪ T , it holds that S̄ = Ā∩ T̄ , and so (2) holds if v[S̄] /∈ colspan(M[ ; T̄ ]) which must
be the case since |S| = (t ′p+ |A|) ≤ t ′p+ br = tp and since v is tp-private for M by assumption. (The
inequality |A| ≤ b · r follows by the sparsity condition on the matrix).

By combining Lemma 4.13 with Theorem 4.8 we derive the following corollary.

Corollary 4.14 (near-threshold robust sparse-AFS). For every constants τp < τc there exists constants
d,r such that for every field F of size super-polynomial nω(1), there exists a (d,r)-sparse AFS collection
which is β -robust (τp− rβ ,τc)-AFS over F for every β ≥ 0.
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Remark 4.15 (robust sparse binary AFS). For constant-size fields (e.g., the binary field), a similar corol-
lary can be obtained for some constants τp < τc, by combining Lemma 4.13 with Remark 4.10.

Remark 4.16 (Comparison to [3]). Binary LDPC codes were employed in [3] to obtain secret sharing
schemes with highly efficient recovery algorithm (that makes only linear number of additions regardless of
the underlying field). Our constructions are quite similar but our motivation (reducing the complexity of
secure distributed sharing) is different, and accordingly we exploit “sparsity” in a different way. This leads
to new variants (e.g., the use of non-binary sparse matrices) and to novel notions such as robustness that
were not considered in [3].

5 Distributed Secret-Sharing Generation

Following Katz [38] we define distributed key generation in the discrete-logarithm setting (hereafter
referred to as DKG), and distributed secret-sharing generation DSG, via an MPC framework. While
Katz’s definitions are tailored to Shamir-based DKG, we will need slightly more general defini-
tions that are compatible with general collections of AFS schemes. We begin with an abstract
version that captures the desired security properties and move on to more concrete variants, for-
mally captured by canonical protocols, that provide additional efficiency features.

5.1 DSG and DKG: Abstract Version

Syntactically, a DSG is a two-stage n-party protocol where the parties hold no input. The first
phase, Share, distributes to each party a private share and generates some public information. At
the second phase, Rec, the parties recover the secret s ∈ F, where the field F = Fp is implicitly
specified as part of the parameters of the scheme. For technical reasons, it will be convenient to
add a special party, a “client”, whose role is to invoke the two stages of the protocol. The syntax
of DKG is similar, except that after the sharing phase, the protocol reveals also the public key
gs as part of the public information where g generates a cyclic group G of order p that is given
implicitly as part of the parameters of the scheme. In its most abstract form, the scheme should
realize the following reactive ideal functionality (Functionality 1). The term “broadcasts” should
be interpreted as writing a message on the public BB.

Functionality 1 (Fdsg and Fdkg). The functionality has two phases that are invoked by the client:

1. Share phase: the functionality samples a secret s ∈ F and broadcasts the message “shared”,
and, in the case of Fdkg, also the value gs.

2. Recovery phase: the functionality broadcasts the secret s.
(For Fdkg, we can consider a variant in which the client specifies a public group element h,
and the functionality broadcasts the pair (h,hs).)

We will say that a protocol (tp, tc)-realizes Fdsg (resp., (tp, tc)-realizes Fdkg) if it realizes Fdsg

(resp., Fdkg) in the presence of a mixed adversary that controls the client, and corrupts up to tp par-
ties with an arbitrary mix of t1 passive and t2 active corruptions as long as t1 + t2 ≤ tp. In addition,
at the reconstruction phase, the adversary is allowed to abort (i.e., “crash”) additional t3 honest
parties as long as n− (t1 + t3)≥ tc, i.e., at least tc parties honestly participate in the reconstruction.
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This definition implies that any set of tc honest/passively corrupted parties can recover the secret
even when the adversary submits faulty shares on behalf of the actively corrupted parties. Such
a protocol is also private in the sense that during the sharing phase, an adversary controlling up
to tp parties cannot bias the distribution of the secret and cannot learn anything about s (except
for what follows from gs in the case of DKG). In particular, the above MPC-based definition im-
plies the property-based definition of DKG from [29] in its strongest form. We always assume that
tp < tc and note that the definition is meaningful even when tc + tp ̸= n (due the use of a mixed
adversary).

Remark 5.1 (Relaxation). For completeness, we present here a relaxed variant of the definition, which is
not used in our work. In some scenarios, it makes sense to relax the definition by requiring simulatability
only for the sharing phase. Formally, we say that a two-phase protocol Π weakly realizes Fdsg if for every
adversary A there exists an efficient simulator Sim such that the random variable (ViewShare

A ,Π ,OutputRecA ,Π),
consisting of the view of the adversary after the sharing phase and the output of the honest parties after the
recovery phase, is computationally indistinguishable from the pair (Sim,s) where Sim is the output of the
simulator and s R← F is a uniformly chosen secret. For the case of DKG, the simulator also gets gs as an
input. Indeed, the DKG variant of this definition is essentially equivalent to the property-based definition
from [29].

5.2 Canonical Schemes

While the above definition nicely captures the desired security properties of DSG and DKG, it
misses some useful “efficiency” aspects such as non-interactive reconstruction or the ability to
reconstruct shares via linear operations – a feature that is necessary for “reconstruction-in-the-
exponent” in DLOG-based threshold systems. To capture these additional properties (which are
common to most existing schemes), we introduce the notion of canonical schemes and focus
throughout the paper on such schemes.9

Let E be a non-interactive commitment scheme. We say that a DSG is in canonical form if, at
the end of the sharing phase, each honest party holds a share xi ∈ F of the secret s according to
some (tp, tc)-AFS that is specified by the public values z = (M,y,v) that are known to all parties
(e.g., broadcast during the protocol). In addition, at the end of the sharing phase all the parties
learn commitments (αi = E(xi;ρi))i∈[n] to all the shares. In this case, the recovery phase can be
implemented by the following single-round canonical recovery protocol (Protocol 1).

9Alternatively, one could try to formalize an these properties as part of the ideal functionality (e.g., by letting the
functionality distribute “handles” for the secret). We feel that the current solution is simpler and more intuitive.
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Protocol 1 (Canonical Recovery Protocol ΠRec). We assume a common reference string crspf,
public index z = (M,y,v) and public share commitments α = (αi)i∈[n]. In addition, each honest
party Pi holds (xi,ρi) such that αi = E(xi;ρi).

• R1: Each party Pi broadcasts xi and a NIZK πi (with respect to crspf) that xi and αi satisfy the
equality αi = E(xi;ρi) with respect to the witness ρi.

• Output Let (x′i,α
′
i ) denote the values broadcasted by the ith party and let T ⊂ [n] be the set of

indices i ∈ [n] for which the proof π ′i passes verification with respect to α ′i and x′i. Compute the
linear recovery algorithm RecM,y,v(T,x′[T ]) and output the result.

If we strive for the weaker variant of DSG/DKG that is mentioned in Remark 5.1 then we can
simply open the commitment in the recovery phase and avoid the NIZK. (See Footnote 16 in the
proof of Lemma 5.3 for more details.)

Remark 5.2 (Canonical recovery in the exponent). The above protocol can be easily modified to allow
the reconstruction of the secret s in the exponent of a public group element h ∈ G (which is broadcasted to
all the parties by the “client”). In the first round, each party sends hxi together with NIZK that certifies
that xi is consistent with its commitment αi. At this point any (possibly external) party can compute hs

by dropping the invalid elements (whose validity proofs fail) and by computing the linear reconstruction
algorithm Recz “in the exponent”. Thus canonical protocols efficiently support “reconstruction in the ex-
ponent”, which is a crucial feature in the context of DLOG-based threshold cryptography. We emphasize
that most threshold cryptography applications use recovery in the exponent, for example to compute BLS
signatures or to compute a verifiable random function (VRF). The secret is used as the key for these func-
tions. Furthermore, in these applications, when there are multiple invocations of the threshold function, the
same secret is recovered multiple times in the exponent, using different random public bases. (One can cap-
ture this by defining the DSG/DKG functionality as a reactive multi-phase functionality in which sharing
happens once during initialization and recovery-in-the-exponent can be called multiple times with different
group elements h; Our protocols hold in this setting as well.)

Given the above discussion, to realize a canonical DSG it suffices to implement a secure pro-
tocol for the sharing phase. This is formalized by Functionality 2 in Fig. 1. The ideal functionality
Fcdsg,b is parameterized with a robustness parameter b and is implicitly parameterized by a non-
interactive commitment scheme E and by a b-robust (tp, tc)-AFS. The latter is specified by a public
m× n constraint matrix M, and a public extraction vector v ∈ Fn such that for every y ∈ Fm in the
image of M the AFS (M,y,v) is b-robust (tp, tc)-AFS.10 The non-robust variant is handled by taking
the robustness parameter b to be zero. Jumping ahead, we will show later (Lemma 5.3) that secu-
rity holds even if the adversary is allowed to choose her own shares based on the residual value
of the offset y and to erase up to b of entries of the resulting offset vector.

To understand the definition, let us focus on the non-robust version where the adversary does
not erase entries, i.e., B = /0. Intuitively, security holds since for any fixing of y in the image of
M, and any fixing for the shares of the corrupted parties, x[C], if we choose the shares of the
honest parties x[H] uniformly at random subject to Mx = y, then the secret s = ∑i vixi is uniformly
distributed.

10Asymptotically, we may assume that M and v are sampled from some b-robust (tp, tc)-AFS sampler Z(1n) during a
one-time set-up phase; Such a phase is needed any way to set the field and the underlying cyclic group G.
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Functionality 2 (Fcdsg,b). The functionality gets the set of corrupt parties C.

1. (Sampling) The functionality samples random commitment keys for the honest parties (ρi)i∈H

and samples random field elements as shares for the honest parties xH = (xi)i∈H
R← F|H|. Then

it computes the residual offset vector y′ = MH · xH ∈ Fm where MH is the restriction of M to
the columns indexed by H. The adversary gets the commitments of the honest parties (αi)i∈H
where αi = E(xi;ρi) and the offset vector y′. (The constraint matrix M and the extraction
vector v are assumed to be public.)

2. (Corruption) The adversary selects her own shares xC = (xi)i∈C, her own commitment keys
ρC = (ρi)i∈C and specifies an erasure subset B⊂ [m] of size at most b. The tuple (xC,ρC,B) is
sent to the functionality.

3. The functionality merges xH,xC to a single vector x∈Fn, computes y=Mx= y′+MC ·xC where
MC is the restriction of M to the columns indexed by C. Finally, the functionality broadcasts
the erasure set B, the modified, erased, offset vector y[B̄], and the commitments (E(xi;ρi))i∈[n].
In addition, each honest party i privately receives (xi,ρi).

Figure 1: Functionality 8 – sharing phase for a canonical DSG.

Formally, we prove the following lemma.

Lemma 5.3. Let Π be a protocol that tp-realizes Fcdsg,b for some b-robust (tp, tc)-AFS (M,y) and let ΠRec

denote the canonical recovery protocol. Then, (Π,ΠRec), viewed as a two-phase protocol, (tp, tc)-realizes
Fdsg where we assume that ΠRec is applied to the index (M[Ā; B̄],y[B̄],v[Ā]) where B,y[B̄] are the public
output of the first phase and A is the sacrificed set of B (which is computed based on B and M by using the
specification of the AFS).

sketch. We begin with a brief intuition under the simplifying assumption that the commitment
scheme is perfectly hiding. (This assumption will be waived in actual proof.) In this case, by the
privacy properties of the AFS, for any fixing of the view of the adversary after the sharing phase,
the distribution of the secret is uniform and independent of the view. Furthermore, assume that in
the reconstruction phase, the adversary aborts all but tc parties that submit honest (uncorrupted)
shares. Then, by the correctness and robustness properties, the secret is recovered properly. In
the actual proof, we argue that (1) computationally hiding commitments suffice for achieving
computationally close simulation and that (2) the binding properties and the NIZK guarantee that
a computationally bounded adversary cannot modify its shares during the reconstruction. The
full proof is deferred to Appendix C.1.

5.3 From DSG to DKG

We reduce Fdkg to canonical DSG, Fcdsg, by adding a single round of “reconstruction in the expo-
nent” of the generator g. (Party i broadcasts gsi with a NIZK that proves consistency with αi, and
the valid elements can be combined into gs as explained in Remark 5.2.) This allows everyone to
recover the public key gs without revealing any additional information on s. The communication
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per party is constant (it depends on the security parameter but does not grow with n). Formally,
we have the following lemma whose proof is deferred to Section C.2.

Lemma 5.4. Let Π be a protocol that tp-realizes Fcdsg,b for some b-robust (tp, tc)-AFS (M,y) and let Π′Rec
denote the “canonical recovery in the exponent” protocol from Remark 5.2. Then, the functionality Fdkg is
(tp, tc)-realized by the following two-phase protocol:

• (Sharing) Invoke Π and then apply Π′Rec with the public group generator g and where the index of the
AFS is taken to be (M[Ā; B̄],y[B̄],v[Ā]) where B,y[B̄] are the public output of Π and A is the sacrificed
set of B (which is computed based on B and M by using the specification of the AFS).

• (Reconstruction in the exponent) Given public group generator h, invoke Π′Rec with the generator h
and where the index of the AFS is taken to be (M[Ā; B̄],y[B̄],v[Ā]) as defined above.

The drawback of the above approach is that it adds a single round of communication in order
to reconstruct the secret in the exponent. This can be avoided if we are willing to realize a weaker
variant of the DKG functionality. The idea is to make a single call to the Fcdsg functionality while
setting the underlying commitment scheme in Fcdsg to E(xi;ρi) := gxi . We refer to this variant as
canonical DKG, Fcdkg. Although E is not a valid commitment scheme (being deterministic it fails
to satisfy semantic security), the values (gxi)i∈[n] leak exactly the public key gs which should be re-
vealed anyway. Still, strictly speaking, Fcdkg does not realize Fdkg since the adversary can choose
its inputs after seeing the “exponentiated shares” of the honest parties, and so the adversary can
effectively shift the public key by an arbitrary shift ∆∈ F. This issue is discussed by [29] who show
that this variant suffices for typical applications of threshold cryptography (e.g., Schnorr’s signa-
tures). Intuitively, if the underlying hardness assumption (e.g., in-feasibility of extracting DLOG)
holds over the un-shifted key, then it also holds with respect to the shifted public key since the
shift ∆ can be extracted from the adversary. We note that this variant can be formalized by a vari-
ant of the DKG ideal functionality in which the functionality first sends the public key gs to the
adversary who is allowed to shift it by a chosen ∆, and then forwards the shifted public key gs+∆

to the honest parties.

6 Realizing Robust Canonical DSG

In Section 5 we showed that the task of realizing DSG/DKG reduces (with constant overhead) to
the task of realizing the Fcdsg,b functionality. In this section we present two protocols that realize
Fcdsg,b. In both cases, each party reads/writes O(1) elements from the BB such that at the end of
the protocol each party holds her private output. In addition, everyone can recover the public out-
puts by reading the content of the BB. Our first “basic” protocol (Section 6.2) achieves a relatively
low, yet constant, privacy threshold, and our second “extended” protocol (Section 6.3) provides a
near-threshold result, namely an arbitrarily small gap between the privacy and correctness thresh-
olds, τp and τc. We begin with some preliminaries (Section 6.1).

6.1 Notation and Tools

Notation. Let M = (M j,i) j∈[m],i∈[n] be a sparse m× n matrix. We focus on binary matrices though
the following can be easily generalized to the non-binary case. The support of column number
i ∈ [n] is denoted by Ri =

{
j ∈ [m] : M j,i ̸= 0

}
and the support of row number j ∈ [m] is denoted by
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L j =
{

i ∈ [n] : M j,i ̸= 0
}

. We let L j,−i denote the set L j \{i}. The matrix M will be used as a mapping
from vectors x ∈ Fn to vectors y ∈ Fm where y = Mx. Accordingly, each column of M corresponds
to an input and each row corresponds to an output, and so j ∈ Ri means that the output j is
influenced by the input i and by the inputs in L j,−i. For a set of inputs I ⊂ [n], we let R(I) = ∪i∈IRi

denote the set of outputs that are affected by inputs in I. Throughout the section, Eρ(x) is taken to
be a non-interactive commitment scheme that is specified as part of the description of Fcdsg,b. The
algorithm E takes a field element x ∈ F and a key ρ as input, and outputs some “tag”.

Tools. We will need non-interactive commitments Comcrscm(x;k), and for clarity we distinguish
between these commitments and the “internal” commitments E that is specified by Fcdsg,b. We
will also need an ID-based simulation-sound NIZK proof system for the following relations: The
E-relation, defined wrt the tagging-algorithm E, via

RE :=
{
(α,(ρ,x)) : α = Eρ(x)

}
,

and an additive commitment relation, about a value y being equal to a linear combination of
committed values. For a coefficient vector v ∈ Fκ , it is defined as

Rv = {(crscm,y,α,(ci)i∈[κ]),(x,ρ,(xi,ki)i∈[κ] :

∀i ∈ [κ],ci = Comcrscm(xi;ki),α = Eρ(x),y = x+∑
i

vi · xi}.

To simplify notation, we typically omit the CRS crscm from the subscript of the commitment and
from the relations.

6.2 The Basic Protocol

Protocol 2 in Fig. 2 describes a basic DSG protocol that realized Fcdsg,b. Intuitively, the protocol
ΠM,E securely computes the mapping x = (x1, . . . ,xn) 7→ y = Mx for an arbitrary security threshold t,
except that it allows the adversary to abort outputs that depend on the adversary’s inputs.11 Since
the matrix is sparse and each column contains at most d non-zero elements, an adversary that
corrupts t parties can only abort at most dt outputs. As a result, if (M,v) is a b-robust (tp, tc)-AFS
then ΠM,E realizes Fcdsg,b with security threshold of t ′p =min(tp,b/d). We also note that the protocol
publicly identifies some of the corrupted parties (i.e., the “auxiliary output” C′) – a feature that is
not needed under the definition of Fcdsg,b. To match the syntax of Fcdsg,b we can always assume
that C′ is dropped from the output. The following theorem is proved in Appendix D.

Theorem 6.1. Suppose that M is a (d,r)-sparse constraint matrix that together with a recovery vector v
forms a b-robust (tp, tc)-AFS. Then, ΠM,E t ′p-realizes the functionality Fcdsg,b for t ′p = min(tp,b/d).

Remark 6.2 (The complexity of ΠM,E). The protocol has 3 rounds of interaction and each party sends
(either privately or to the BB via broadcast) at most O(d · r ·max(κ, log |F|)) bits where d and r are the
maximal number of non-zero elements in a column of M and the maximal number of non-zero elements
in a row of M, respectively. Similarly, each party Pi receives at most O(d · r ·max(κ, log |F|)) bits via

11We emphasize again that we used affine secret sharing in order to let each participant choose its share xi at random,
and have the system publish y=Mx to enable recovering the joint secret. If, instead, we were using secret sharing where
y = Mx = 0 then the participants would have needed to coordinate their share generation, to ensure that Mx = 0.
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Protocol 2 (The basic protocol ΠM,E). We assume a common reference string crs= (crspf,crscm).
Each party Pi, i ∈ [n] locally samples random (xi,ρi) and proceeds as follows.

• R1: (Sending Randomizers) For every output o ∈ Ri influenced by i and every j ∈ Lo,−i,
party Pi samples a random mask ro,i, j

R← F and a random commitment key ko,i, j, broadcasts the
commitment co,i, j = Com(ro,i, j;ko,i, j), and sends the opening (ro,i, j,ko,i, j) of the commitment
to the jth party Pj over a private channel.

• R2: (Resolving Private Inconsistencies) For every o ∈ Ri, j ∈ Lo,−i, if Pi does not receive from
Pj an opening for the published commitment co, j,i, or receives an opening that is inconsistent
with co, j,i, then Pi broadcasts a “complaint” ( j,o). This complaint asserts that ro, j,i and ko, j,i

should be set to zero and co, j,i = Com(0;0). (We assume that i, j ∈ Ro, and if this is not the
case, ignore the complaint.)a

• R3: (Computing shares of the vector y: Local Sums and Output Tags) Party Pi broadcasts
αi = Eρi(xi) together with a NIZK πi for consistency. In addition, for every output o ∈ Ri,
party Pi broadcasts the value

yo,i = xi + ∑
j∈Lo,−i

ro,i, j− ∑
j∈Lo,−i

ro, j,i,

together with a NIZK πo,i that the committed values in αi,(co,i, j,co, j,i) j∈Lo,−i satisfy the above
linear equation about yo,i.

• Private outputs: The private output of the ith party is taken to be its private inputs (xi,ρi).

• Public output: The broadcasted values define the public outputs of the protocol via the fol-
lowing decoding procedure. If, for some party i, the proof πi fails to verify, set αi = E0(0) and
replace πi with a valid proof. In addition, initialize C′,B = /0. For every output o ∈ [m]:

– If there exists j ∈ Lo for which the proof πo, j fails to verify insert o to B and j to C′.

– Otherwise, set yo = ∑ j∈Lo yo, j.

Set B,(yo)o/∈B and (αi)i∈[n], as the public verification information of the DSG. (Treat C′ as
auxiliary output.)

aNote that an adversary can issue false complaints and force ro, j,i and ko, j,i to be zero. In the proof, we
show that this is not an issue (essentially since ro, j,i is being used to pad information known to the adversary
anyway).

Figure 2: The basic protocol ΠM,E .
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point-to-point communication and has to read a similar amount of bits from the BB (basically, only the
commitments sent by parties that influence an output that is also influenced by Pi). Since r = d = O(1), the
communication per party is a constant that does not grow with the number of parties. The computational
complexity per party is O(rd) = O(1) cryptographic operations/field operations during the execution of the
protocol. The final public decoding costs O(n) downstream communication and O(n) operations and it can
be postponed to the recovery phase.

Variants: The above protocol can be tweaked in many ways to optimize different goals. We
mention some of these variants.

• Two-Round version: If we assume a PKI we can reduce the round complexity to two rounds
as follows. Recall that in the first round Pi broadcasts a commitment co,i, j = Com(ro,i, j;ko,i, j))
and sends its private opening (ro,i, j,ko,i, j) to the jth party Pj. Instead, we let Pi broadcast an
encryption of ro,i, j encrypted under the public-key of Pj together with a NIZK for the validity
of the ciphertext. Now we can remove the “complaining round” R2 and proceed directly
to R3. (The NIZK relations in R3 should be updated, e.g., instead of proving consistency
with commitments one has to prove consistency with a ciphertext.) The security proof goes
through assuming that the underlying encryption is perfectly correct. Conveniently, the first
round of this protocol is independent of the inputs (xi,ρi) and so it can be invoked as an
“offline” round.

• Adaptive security: Assuming secure erasures and trapdoor commitments (e.g., Pedersen com-
mitments), the protocol can be made adaptively secure by letting each party erase the ran-
domness used for the NIZKs.

• Abstraction: The protocol can be viewed as a concrete instantiation of the following more
general approach. Say that a set of n parties holding inputs x1, . . . ,xn ∈ X wishes to securely
compute m functions f1, . . . , fm such that the output is delivered to all the parties and where
each function fi depends on a small set of inputs Si ⊂ [n]. Then, we can get such a protocol
(with refined identifiable abort) based on protocols Π1, . . . ,Πm for individually computing
the functionalities f1, . . . , fm where protocol Πi is defined over the parties Si. Assuming a PKI
and NIZK, the idea is to start by letting each party commit to its randomness and input, then
run the protocols Π1, . . . ,Πm where private messages are sent encrypted over public channels
together with NIZKs that certify consistency with the committed inputs and committed ran-
domness. This variant of the well-known GMW compiler [31] inherits the security properties
of the underlying protocols, and leads to a communication complexity which is essentially
the sum of the complexities of the Πi protocols. Furthermore, by using the “undeniable
transmission” mechanism from [5, 2], the public key encryption scheme can be replaced by
standard commitments. The actual version that appears above is obtained by tailoring this
approach to the special case of linear functions while exploiting the simple structure of the
standard secure-addition protocol.

• Relaxing E: The proof of Theorem 6.1 does not make use of the hiding property of the un-
derlying commitment E. This means that Protocol ΠM,E realizes the functionality Fcdsg,b
even if the underlying function E is binding but not necessarily hiding. Of course, in such
a case Lemmas 5.3 and 5.4 do not hold. Still, this observation allows us to employ the pro-
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tocol where E(x) = gx and realize the canonical DKG protocol (with the caveats discussed in
Section 5.3).

6.3 Improving Security by Limiting Aborts

In order to achieve near-threshold results (i.e., an arbitrarily small gap between the privacy τp and
correctness τc thresholds), we need to limit the number of aborts. Recall that the basic protocol
ΠM,E aborts each output that depends on an input from a party that was publicly identified as
being corrupted. To limit the number of aborts, we invoke the basic protocol ΠM,E and then try to
recover the aborted outputs by using an additional sub-protocol. (Protocol 3 in Fig. 3.)

Informally, the idea is to remove the set of publicly corrupted parties, and to re-compute the
corresponding outputs over the inputs of the other parties as if all the inputs of the publicly cor-
rupted parties were taken to be zero. This approach means that all the outputs o ∈ RC′ that are
affected by publicly corrupted parties (including valid ones) have to be re-computed. Fortunately,
re-computing such values is quite simple given the information that was gathered in ΠM,E : All that
is needed is to reveal the randomizers ro,i, j that correspond to a pair (i, j) consisting of a party i /∈C′
and a publicly corrupted party j ∈ C′ (or vice versa). Since each such value was already commit-
ted to, and the honest party from the pair knows it, that party can simply open the corresponding
commitment.

A potential difficulty is that malicious parties that acted honestly in ΠM,E and were not de-
tected, may decide not to collaborate in this new sub-protocol. Namely, these parties will not
open in the new sub-protocol the commitments that the protocol requires them to open. This be-
havior will be detected during the new sub-protocol, the corresponding parties will be added to
the set of publicly corrupted parties, and as a result their inputs will be set to zero and additional
outputs will need to be computed. This process might cascade over multiple iterations of running
the sub-protocol, if in each iteration a new party is identified as being corrupted, and as a result
its inputs must be set to zero. Fortunately, it can be shown that the amount of communication
is still constant per party. Moreover, if the number of aborts is linear and is equal to b = βn for
some small constant β , then the round complexity will be constant as well. The resulting protocol,
ΠM,E,b, is described in Protocol 3 in Fig. 3. It is parameterized with the number b of outputs that
the adversary is allowed to abort (which corresponds to the robustness parameter).

To simplify the presentation, the protocol description ignores communication complexity lim-
itations. It will be also convenient to drop the distinction between online protocol operations and
public-decoding operations that will be post-processed after the execution (e.g., as part of the re-
covery phase) based on publicly available values that appear on the BB. Still, we highlight such
public operations by the label “All:” that indicates that the following operations can be computed
based on public values. We will later explain how to obtain a communication-efficient variant of
the protocol.

Analysis. It is not hard to verify that C′ contains only corrupted parties, that B⊆ R(C′), and that
if the procedure halts then |B| ≤ b. We also prove an upper-bound on the number of iterations
needed for the procedure to halt.

Claim 6.3. The sub-protocol Π2 halts after at most 1+ |C| ·d/(b+1) iterations.

Proof. At the end of each iteration, if an output o is in B, then there must exist at least one new
publicly-corrupted input i ∈ Lo that influences o. Since such a party i can influence at most d
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Protocol 3 (The extended protocol ΠM,E,b). Execute Protocol 2, and compute but do not output
the values C′,B,(yo)o/∈B,(αi)i∈[n] as in the last step of the protocol. Initialize an empty set Z , and
apply the following sub-protocol Π2 as long as the set B is larger than b:

1. Every party Pi, i /∈ C′ does the following: For every output o ∈ Ri and every publicly cor-
rupted j ∈ Lo,−i ∩C′, broadcast all the private randomizers ro,i, j,ro, j,i and their commitment
keys ko,i, j,ko, j,i that were sent to/from the corrupted party j. (If these values were sent in the
previous iterations there is no need to send them again.) We say that the randomizers are
successfully revealed if the opening is consistent with the commitments co,i, j,co, j,i.

2. All: For every output o that depends on some publicly corrupted input j ∈ C′ \Z , If for every
i ∈ Lo \C′ and j ∈ Lo ∩C′ the randomizers ro,i, j,ro, j,i were successfully revealed by Pi, Then
call o tentatively ready and set a tentative value

y′o = ∑
i∈Lo\C′

(
yo,i− ∑

j∈Lo,−i∩C′
ro,i, j + ro, j,i

)
.

3. All: For every publicly corrupted party j ∈ C′, if all the outputs that are influenced by j are
tentatively ready do: (a) insert j to Z and redefine α j = E0(0); and (b) update all the affected
outputs o ∈ R j to be yo = y′o.

4. All: Insert to C′ every party j that did not successfully reveal one of its randomizers. (Such a
party is now publicly corrupted.) Insert to B all the outputs that are influenced by these new
publicly-corrupted parties.

All: Output B,(yo)o/∈B and (αi)i/∈C′ . (Auxiliary output: C′.)

Figure 3: The extended protocol ΠM,E,b.

outputs, we discover at least (b+ 1)/d new corrupt parties in each iteration (except for the last
one), and the number of iterations is at most 1+ |C| ·d/(b+1).

Hence, when the robustness parameter is b = 0, we need a linear number of iterations, and
when b = βn for a constant β , only a constant number of O(1/β ) iterations is needed. In fact, even
if b= 0, the proof shows that the number of rounds scales linearly with the number of (identifiable)
corrupted parties. So an adversary can only slow down the process at the expense of revealing the
identities of corrupted parties. (Specifically, in an optimistic execution path where all the parties
behave honestly, the above extension adds no overhead.)

Intuitively, the security of the protocol relies on the following observations: (1) The information
revealed during Π2 (i.e., the randomizers adjacent to the publicly corrupted parties) does not
violate privacy since it is already known to the adversary; and (2) Assuming that the adversary
cannot violate the binding of the commitments, the outputs (yo)o/∈B are consistent with the inputs
(xi)i∈H,(x′i)i∈C where x′i is either the witness used to generate πi (for parties that weren’t caught
cheating), or zero otherwise. Formally, in Appendix E we prove the following theorem.
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Theorem 6.4. Suppose that M is a (d,r)-sparse constraint matrix that together with a recovery vector v
forms a b-robust (tp, tc)-AFS. Then, the protocol ΠM,E,b tp-realizes the functionality Fcdsg,b.

Remark 6.5 (Reducing the Communication). Let d and r be the maximal number of non-zero elements
in a column of M and the maximal number of non-zero elements in a row of M, respectively. Observe that
each party needs to communicate at most d(r−1) openings during the protocol (since this is the number of
randomizers that are “adjacent” to her). So the upstream communication per party is constant. To obtain
constant downstream communication, we split the protocol into an online part and a post-processing public-
decoding part. In the online part, we apply the first step of the protocol for T = 1+ tp ·d/(b+1) iterations
while updating the set C′. (Below we show that this can be done with constant downstream complexity.) In
the decoding phase, we iteratively repeat over Steps 2–4 while in each iteration i we use the values that were
computed in the ith iteration of the online phase. We terminate the post-processing public-decoding once B
is smaller than b, which, by Claim 6.3, takes at most T iterations.12

Let us get back to the online part and analyze the downstream complexity. Assuming that b = Ω(n),
the number of iterations is constant. We will show that the downstream complexity of every party Pi is also
constant. Call Pj a neighbor of Pi if they both influence a common output o. Recall that in each iteration
Pi has to check, for each of her neighbors Pj, whether Pj publicly cheated, i.e., if j ∈ C′. Let us denote by
C′k the set of parties that publicly cheated for the first time at the kth iteration where C′0 is the set of parties
that publicly cheated in ΠM,E . At the first iteration, the communication cost of checking if Pj is in C′0 is
constant (since it suffices to check the validity of the proofs sent by Pj during ΠM,E). For k > 0, the party
Pj is in C′k if (a) Pj is supposed to open a commitment; and (b) the opening is either invalid or was not sent.
Condition (b) is easy to verify with O(1) communication (by accessing the opening and verifying against
the commitment). Condition (a) boils down to checking whether Pj has a neighbor that publicly cheated in
the k−1 iteration. Denoting by ck the downstream communication needed for checking if a party is in C′k,
we have that ck = O(D · ck−1) where D = d(r−1) is the maximal number of neighbors of a party. It follows
that the communication in the kth iteration is O(Dk) which is still constant since the number of rounds is
constant. Furthermore, the computational complexity of each party is constant as well. (See Section F for a
more detailed description.)

By combining Theorem 6.4 with Lemma 5.3 (or Lemma 5.4 for the case of DKG) and with
Corollary 4.8, we derive the following corollary (formal version of the main theorem).

Corollary 6.6 (near-threshold DSG and DKG). Assuming the existence of NIZKs the following holds.
For every constants τp < τc and every field F of size super-polynomial nω(1), there exists a protocol that
(τp,τc) realizes the Fdsg functionality (resp., Fdkg functionality) over F in which each party sends and re-
ceives only a constant number of field elements and commitments/NIZKs and computes a constant number
of arithmetic and cryptographic operations. Moreover, the sharing phase has a constant number of rounds.

7 Instantiating the Protocols

We describe here a straightforward instantiation of the protocols, using El-Gamal based commit-
ments [27] and simple proofs. The purpose of this instantiation is to demonstrate feasibility rather
than optimize efficiency. Accordingly, we will focus on the cryptographic components and leave

12In the online phase, we do not update the size of B since this is communication expensive, and therefore just iterate
T times.
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the instantiation of the combinatorial part of the protocol (i.e., the AFS scheme) for future opti-
mizations. (Some preliminary non-optimized suggestion is given in Remark 7.2 at the end of this
section.)

The protocols work over a finite cyclic group G of order p, and will deal a secret s ∈ F, where
F= Fp is a field. The values g,h are generators of G. We assume that the decisional Diffie-Hellman
assumption (DDH) holds in G, and that no one knows logg h. El-Gamal’s commitment is defined
as follows: given a value x and a key r, both in F, the commitment to x is Com(x;r) = (gr,gxhr).
This commitment is perfectly binding and computationally hiding. The zero-knowledge proofs
are obtained by using standard Sigma protocols that can be compiled into NIZK via the aid of
Random Oracles (e.g., [22, 8, 23]). (As usual, the identifier of a party should appear as part of the
input to the Random Oracle).13

7.1 Instantiating the Sharing Phase

The CRS contains G,Fp as well as two generators g,h of G. We assume that the AFS is specified by
a matrix M and an extraction vector v. Each party Pi samples random inputs (xi,ρi). We instantiate
the Basic Protocol (Protocol 2) as follows.

R1: (Sending Randomizers) For every output o ∈ Ri and every j ∈ Lo,−i, party Pi samples in F
a random mask ro,i, j and a random commitment key ko,i, j, and broadcasts the commitment co,i, j =
Com(ro,i, j;ko,i, j) = (gko,i, j ,gro,i, j hko,i, j). Pi also sends the opening (ro,i, j,ko,i, j) of the commitment to Pj.

R2: (Resolving Private Inconsistencies) For every o ∈ Ri, j ∈ Lo,−i, if Pi does not receive from
Pj an opening that is consistent with the published commitment co, j,i, then Pi broadcasts a “com-
plaint” ( j,o). This complaint asserts that ro, j,i and ko, j,i should be set to zero and co, j,i = Com(0;0).

R3: (Local Sums and Output Tags) Pi broadcasts αi = Eρi(xi) = Com(xi,ρi). The ZKPOK πi for
proving the consistency of this value is standard. (Publish a random commitment α ′i = Com(x′i,ρ

′
i )

and, given a challenge β ∈ F, send the pair (x′i +βxi,ρ
′
i +βρi). To verify check that the sent pair is

a valid opening of the commitment α
β

i ·α ′i .)
In addition, for every output o ∈ Ri, party Pi broadcasts the value

yo,i = xi + ∑
j∈Lo,−i

ro,i, j− ∑
j∈Lo,−i

ro, j,i.

To prove that yo,i agrees with the committed value in αi and the committed randomizers in (co,i, j,co, j,i) j∈Lo,−i ,
we first use the linear homomorphism of El-Gamal’s commitments to combine all the commit-
ments of the right-hand side into a single commitment co,i = (co,i[1],co,i[2]) and then prove the
knowledge of a key ro,i that opens the commitment to yo,i. The latter can be done via the Chaum-
Pedersen Sigma protocol [17] for proving that (g,h,co,i[1],co,i[2]/gyo,i) is a DH tuple.

(Optimization) Pi needs to broadcast a value yo,i and a proof πo,i for every output o ∈ Ri. To
reduce communication and improve run time through multi-exponentiations, Pi can batch these
proofs by using random coefficients ρo (chosen, again, by the random oracle) for every o ∈ Ri, and
proving that the commitment ∏o∈Ri cρo

o,i opens to ∑o∈Ri ρoyo,i.

13While Fiat-Shamir is somewhat problematic when it is needed to ensure adaptive knowledge-extraction based
simulation soundness (SS) (see, e.g., [9]), we can rely on the weaker variants mentioned in Remark B.2. Specifically, we
only need weak non-adaptive SS for Theorems 6.1 and 6.4 (by Remark D.3), and only SS without knowledge extraction
for Lemmas 5.3 and 5.4 (by Remark C.2 and since we use perfectly-binding commitments). It is known that Fiat-Shamir
compiled Sigma protocols satisfy these notions, see, e.g., [10, 7].
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Computing the Outputs: The private output of the ith party is taken to be its private inputs
(xi,ρi). The public outputs can be computed by all parties based on the information that was
broadcasted as follows.14 If for some party i, the proof πi fails to verify, set αi = E0(0) and replace
πi with a valid proof. (This is trivial to do, since we know that αi = (g0,g0h0).) In addition, initialize
C′,B = /0. For every output o∈ [m]: If there exists j ∈ Lo for which the proof πo, j fails to verify insert
o to B and j to C′. Otherwise, set yo = ∑ j∈Lo yo, j. Output B,(yo)o/∈B and (αi)i∈[n]. (One can also
output C′ and apply some penalty mechanism to the parties in C′.)

Recovering the public key for a DKG: In a DKG application, as defined in Functionality 1, the
sharing protocol must publish g raised to the power of the secret. This can be implemented using
the method described in the next section (Section 7.2) for recovering the secret in the exponent, by
replacing the computation of H(m) to the power of the secret with computing g to the power of
the secret. (As mentioned in Section 5.3, this step is not needed if the parties run a canonical DKG,
set Eρi(xi) = gxi , and take care of the subtleties discussed in Section 5.3.)

Remark 7.1 (Other variants). Assuming a PKI (instantiated with, say, El-Gamal encryption), one can
turn the above protocol into a two-round protocol as described in Section 6.2. We can also realize the
extended protocol from Section 6.3 on top of the current instantiation in a straightforward way. (Recall that
the extension only requires openning commitments for randomizers).

Remark 7.2 (Consrete instantiation of the robust-AFS). Recall that in the second item in Example 4.11
we showed that when |F| ≥ 2255 and n > 50, we can get a (4,10)-sparse matrix with τp = 0.39, τc = 0.9
(by taking µ = 0.6). For (relative) robustness of β = 0.029, we get, by Lemma 4.13, a privacy threshold of
τ ′p = 0.39− 10 · 0.029 = 0.1. Plugging this into the extended protocol (Protocol 3), yields a DKG with a
privacy threshold of τ ′p = 0.1, correctness threshold of τc = 0.9, optimistic round complexity of, say, 2, and
additional τ ′p ·d/β < 14 rounds in the worst case.

7.2 Instantiating the Recovery Phase

Recovering the secret itself:

• Each party broadcasts its private input xi, and proves in ZK via the Chaum-Pedersen proof
that he knows an opening ρi that opens the commitment αi to gxi .

• Each party that wishes to compute the output verifies all published proofs.

• Let T ⊂ [n] be the set of indices i ∈ [n] for which theses proofs pass verification. A party
that wishes to compute the output does the following. (1) retrieve the public outputs B and
(yo)o/∈B, compute the set A based on B and M using the robust-AFS algorithm15 and set

M′ = M[Ā; B̄], y′ = y[B̄], and v′ = v[Ā] (3)

Next, (2) call the linear recovery algorithm RecM′,y′,v′(T,x[T ]) and output the result. (Recall
that the recovery algorithm expresses the missing shares as a linear combination of the exist-
ing shares, and outputs the multiplication of v′ by the vector of shares.) Since all computation
is deterministic and is based on data that was publicly broadcast, anyone can individually
compute the recovery algorithm and arrive at the same result.

14This computation can be postponed to the recovery phase.
15In our AFS constructions, this is simply the set A of columns in M whose support intersects with B.
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Recovering the secret in the exponent: Many applications of threshold cryptography do not
recover the secret itself. Instead, the participants receive an input m, compute H(m) ∈G, and must
jointly compute H(m) raised to the power of the shared secret. This can be done in the following
way:

• Each Pi broadcasts si =H(m)xi , and proves in ZK that it knows xi,ρi such that αi = (gρi ,gxi ·hρi)
and si =H(m)xi . (One can easily design an appropriate Sigma protocol for this statement, see,
e.g., [12, Section 19.5.3].)

• Each party that wishes to compute the output verifies all these proofs that were published.

• Let T ⊂ [n] be the set of indices i ∈ [n] for which theses proofs pass verification. Each party
that wishes to compute the output defines (M′,y′,v′) as in Eq. (3) and computes the lin-
ear recovery algorithm RecM′,y′,v′(T,x[T ]) in the exponent and outputs the result. Namely,
Rec searches for a row vector α ∈ Fm such that α ·M′[ ; T̄ ] = v′[T̄ ], and outputs ∏i∈T sv′i

i ·
H(m)α·y′ . (In other words, we know that ∑ j∈T̄ v′jx j = α · y′, and therefore ∏i∈[n] H(m)xiv′i =

∏i∈T sv′i
i ·H(m)α·y′ .)

As before, all computation is deterministic and is based on data that was publicly broadcast,
and therefore anyone can individually compute the recovery algorithm and arrive at the
same result.
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A The Necessity of Public Headers

Fix some constants 0 < τp < τc < 1 and let Π be a (τpn,τcn) DSG protocol that takes randomness ri

from each party Pi and delivers a share xi to each party. We assume that there is no public header, i.e.,
the shares (xi)i∈T of any tc-subset T uniquely determine the secret s. We also assume that there is
no external source of randomness, i.e., the secret is fully determined by the randomness (r1, . . . ,rn).
We prove that in this case, the protocol suffers from the information bottleneck mentioned in the
introduction. That is, there are Ω(n) parties (“influencers”) whose inputs influence the output of at
least Ω(n) parties. Formally, consider a digraph G over n parties where we put an edge from Pi to
Pj, denoted i→ j, if there exists a pair of input vectors r = (rk)k∈[n] and r′ = (r′k)k∈[n] that differ only
in their ith location (i.e., rk = r′k for k ̸= i) such that the share y j delivered to Pj in an honest execution
with the inputs r is different from the share y′j that is delivered to Pj in an honest execution with
the inputs r′. We will show that there are Ω(n) influential nodes with out-degree of Ω(n).

For every authorized set S of size at least tc, let NS = {i : ∃ j ∈ S, i→ j} denote the set of parties
that influence the shares of S. By correctness, the secret depends only on the random tape of the
parties that belong to N∗ =

⋂
S NS. (If a party i /∈ N∗ affects the secret, then there exists a recovery

set S whose shares do not depend on the randomness of i and so correctness is violated.) Put
differently, each party i in N∗ talks to a set Mi that contains at least a single party in each recovery
set. We conclude that i talks to at least |Mi|> n− tc = Ω(n) parties. Otherwise, if |Mi|< n− tc party
i misses the complement M̄i of Mi which is a set of size tc and so it is an authorized set. Finally, by
privacy, N∗ must be larger than tp = Ω(n), and the claim follows.

Note that the above argument applies even when the protocol achieves only a weak level of
semi-maliciously security. (That is, security holds only against corrupted parties that choose their
inputs arbitrarily but follow the protocol honestly.)

B Omitted Preliminaries

Non-Interactive commitment. A non-interactive commitment Comcrscm(x;k) is an efficient algo-
rithm that takes a random reference string crscm sampled from some efficiently samplable distri-
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bution D(1κ), a message x and a random commitment key k and outputs a commitment string
α . Hiding asserts that for any pair of messages x,x′, and randomly chosen crscm and key k the
commitments Comcrscm(x;k) and Comcrscm(x′;k) are computationally indistinguishable. Binding
asserts that for a randomly chosen crscm, except with negligible probability, no efficient algorithm
can find a pair of messages x ̸= x′ and a pair of keys k,k′ for which Comcrscm(x;k) = Comcrscm(x′;k).
Such commitments can be constructed based on one-way functions [35, 42].

The following formalization of NIZK is taken from [38].

Definition B.1 (Non-Interactive Zero-Knowldge). For an NP-relation R a NIZK is a tuple of efficient
algorithms (CRSGen,P,V,Sim1,Sim2,KE) that satisfy the following requirements.

Completeness asserts that for all (x,w)∈ R, all identities i∈ [n] and every security parameter κ it holds
that

Pr
crspf

R←CRSGen(1κ )

[V(crspf, i,x,P(crspf, i,x,w)) = 1] = 1,

Adaptive, multi-theorem zero-knowledge asserts that for every efficient adversary A the following
quantity is negligible∣∣∣∣∣ Pr

crspf
R←CRSGen(1κ )

[A P∗(crspf,·)(crspf)]− Pr
(crspf,tdpf)

R←Sim1(1κ )

[A Sim∗2(tdpf,·)(crspf)]

∣∣∣∣∣ ,
where P∗(crspf, i,x,w) returns P(crspf, i,x,w) if (x,w) ∈ R and ⊥ otherwise and Sim∗2(tdpf, i,x) returns
Sim2(tdpf, i,x) if (x,w) ∈ R and ⊥ otherwise.

Identity-based simulation soundness (SS) asserts every efficient adversary A wins in the following
game with at most negligible probability.

1. The Challenger samples (crspf, tdpf) R← Sim1(1κ) and a challenge bit b R← {0,1} and sends crspf to
the adversary who specifies a set of “honest” identities H⊂ [n].

2. The adversary is given an access to a prover oracle and a verification oracle. The former takes an input
(i,x,w) and returns a simulated proof Sim2(tdpf, i,x) if i ∈ H and (x,w) ∈ R; otherwise, it returns ⊥.
The verification oracle takes an input (i,x,π) and returns⊥ if i∈H or V(crspf, i,x,π) = 0. Otherwise
it returns 1 if either b = 1 and the witness extractor KE(tdpf, i,x,π) extracts a valid witness w such
that (x,w) ∈ R, or if b = 0.

3. At the end, the adversary outputs b′ and wins the game if b′ = b.

Remark B.2 (weaker variants). The above formulation is somewhat strong and is adopted for the sake of
simplicity. We will later show that the following weaker variants of simulation soundness suffices for our
purposes:

• Identity-based simulation soundness without extraction: defined similarly to SS except that
we do not require knowledge extraction. Accordingly, the condition “KE(tdpf, i,x,π) extracts a valid
witness w such that (x,w)∈ R” is replace with the validity condition there is no witness w for which
(x,w) ∈ R.

• Alternatively, we will use Non-Adaptive identity-based simulation soundness that is defined
similarly to SS except that the adversary operates in two phases: First she calls the prover oracles
(multiple times), and then she makes a multiple parallel calls to the verification oracle. Notably, the
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calls to the verification oracle are non-adaptive, i.e., independent of its answers. A closely related
notion (without identifiers) was studied in [10] and is referred to as Simulation Sound Extractabil-
ity.

C Proofs of Lemmas 5.3 and 5.4

C.1 Proof of Lemma 5.3

By standard MPC composition theorems (e.g., [30, 13]), it suffices to prove that the 2-phase func-
tionality Fdsg is (tp, tc)-realized by the protocol Πdsg that makes a single call to the ideal function-
ality Fcdsg,b followed by a canonical recovery protocol. Indeed, let A be an adversary that attacks
Πdsg. Then, we construct a straight-line black-box simulator Sim that attacks Fdsg as follows.

1. (Setup) The simulator Sim uses the first-phase simulator Sim1 for the NIZK system to sam-
ple CRS/trapdoor pairs, (crspf, tdpf) and sends crs = (crspf,crscm) to A who responds by
specifying a set of corrupted parties C⊂ [n] of size at most tp where C′ ⊂ C are only passively
corrupted.

2. The simulator samples a random vector y′ in the image of MH (i.e., y′ = MH · x′H for randomly
sampled x′H). For each honest party i ∈H, sample a fresh zero commitment αi = Eρi(0) where
ρi is a random commitment key. Send y′ and (αi)i∈H to A .

3. The adversary responds with xC = (xi)i∈C, ρC = (ρi)i∈C and a set B⊂ [m] of size at most b. The
simulator computes y = y′+MC · xC and αi = Eρi(xi) for i ∈ C and returns B,y[B̄],(αi)i∈[n]. In
addition, the simulator invokes the sharing phase of Fdsg.

4. If the client (possibly controlled by the adversary) invokes the recovery phase of Πdsg, then
the recovery phase of Fdsg is also invoked and we get the secret s. We compute the set
A based on the set B specified by the adversary, and sample shares for the honest parties
xH = (xi)i∈H subject to y′ = MH · xH and subject to v[Ā] · x = s where · stands for inner-product
and x ∈ Fn is the vector of shares obtained by concatenating xH with xC that was chosen by
the adversary. We send to the adversary the messages (xi,πi)i∈H that the honest parties send
in the recovery phase where πi is a simulated (fake) NIZK for the commitment relation R ={
((α,x),ρ) : α = Eρ(x)

}
.16 The adversary responds with some values (x′i,π

′
i )i∈C where for

passively corrupted parties i∈C′ it holds that x′i = xi and π ′i is honestly generated (and passes
verification). The adversary selects a subset of the honest parties H′⊂H such that |H′|+ |C′| ≥
tc and resets the messages of the honest parties H \H′ outside H′ to ⊥. We terminate the
simulation by outputting the adversary’s view.

Let HI denote the output of the simulated experiment that consists of the output of the sim-
ulator (when interacting with Fdsg) concatenated with the secret s that the Fdsg delivers to the

16 Here we see why we cannot just open the commitment in the recovery phase: The committed value is unknown to
the simulator when the commitment is generated. We further note that the problem is avoided if one uses the weaker
variant of DSG/DKG that is mentioned in Remark 5.1. In this case, it suffices to simulate only the sharing phase, and so
we can just open the commitments in the recovery protocol. The indistinguishability property specified in Remark 5.1
then follows by the hiding and binding properties of the commitment. Unlike the current construction, this variant can
be constructed without employing NIZK and without a CRS.

35



honest parties in the reconstruction phase. Let HR be the output of the real experiment that cor-
responds to the case where A attacks the two-phase protocol Πdsg = (Fcdsg,b,ΠRec). Specifically,
HR consists of the output of A concatenated with the public output s′ of ΠRec. To show that HI is
computationally indistinguishable from HR we will use several hybrids.

The hybrid H1 is identical to the HR, except that the CRS is generated with a trapdoor and the
proofs (πi)i∈H in the recovery phase are generated by using the NIZK simulator. By the security of
the NIZK proofs, H1 is computationally indistinguishable from HR.

The hybrid H2 is identical to the H1, except that commitments (αi)i∈H generated by Fcdsg,b are
replaced by commitments to zeroes. By the hiding property of the commitments, H2 is computa-
tionally indistinguishable from H1.

To complete the proof of the theorem, it suffices to prove the following claim.

Claim C.1. The output of H2 is statistically close to the output of the ideal experiment HI .

From now on, we focus on the proof of the claim. First, observe that the first message that the
adversary receives y′,(αi)i∈H is distributed identically in both experiments. Let us fix these values.
Consequently, the values B,xC,ρC sent by the adversary are also distributed identically in both
experiments, and we can fix them as well, and move on to the recovery phase.

We show that in both experiments the vector of honest shares xH is distributed identically.
Recall that in H2 the vector xH is uniform subject to (1) y′ = MH · xH whereas in HI the vector xH is
uniform subject to (1) and to (2) v[Ā] ·x = s where s is uniformly distributed. Let X denote the set of
solutions to (1), and for any fixing of s, let Xs denote the subset of X that satisfies (2) for this choice
of s. By the tp-privacy of the scheme (M,y,v[Ā]), the sets Xs form a partition of X into sets of equal
size, and therefore the vector xH is uniformly distributed over X in both cases.

Let us fix xH in both experiments. Since the view of the adversary is now identical in both
experiments, it remains to show that the secret s that is delivered by the ideal functionality in HI

equals the secret s′ that is recovered in H2. Let us condition on the good event, G, that ∀i ∈ C if the
tuple (x′i,π

′
i ,αi) passes verification then x′i = xi. In this case, the secret s′ is obtained by applying

the recovery algorithm Rec(M[Ā;B̄],y[B̄],v[Ā]) over a vector of shares in the support of ΣM,y,v[Ā]. Since the
vector consists of at least tc shares, recovery succeeds and s′ = v[Ā] · x = s, as required.

Finally, we argue that the good event G happens with all but negligible probability. Indeed,
if G happens we can use the knowledge extraction algorithm to retrieve, except with negligible
probability, a witness ρ ′i such that Eρ ′i

(x′i) = αi = Eρi(xi) and violate the binding property of the
commitment. This completes the proof of the claim and the proof of the lemma.

Remark C.2 (Relaxing the proof-of-knowledge property). A closer look at the proof of Claim C.1 shows
that if the commitment E is perfectly binding (as opposed to computationally binding) then the knowledge-
extractor is not needed and standard soundness suffices. Since this is the only use of knowledge extraction
in the proof, we conclude that the Lemma 5.3 holds even when the underlying NIZK satisfies Identity-based
simulation soundness without extraction, provided that E is perfectly binding.

C.2 Proof of Lemma 5.4

The proof of Lemma 5.4 is very similar to the proof of Lemma 5.4, we highlight the main differ-
ences.

By standard MPC composition theorems (e.g., [30, 13]), it suffices to prove that the 2-phase
functionality Fdkg is (tp, tc)-realized by the protocol Πdkg whose first phase consists of a single call
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to the ideal functionality Fcdsg,b followed by a canonical recovery in the exponent protocol for the
generator g (with input as in Lemma 5.4) and its second phase consists of a canonical recovery in
the exponent protocol for an element h. Letting A be an adversary that attacks Πdkg, we construct
a straight-line black-box simulator Sim that attacks Fdkg as follows.

1. The first three steps are exactly as in the proof of Lemma 5.4 (Section C.1). Except that at the
end of Step 3, when the client invokes the sharing phase of Fdkg, the functionality returns
the value gs. We proceed as follows.

4. We compute the set A based on the set B specified by the adversary (in Step 3), and sample
a vector of exponentiated shares (gi = gxi)i∈H for the honest parties subject to y′ = MH · xH
and subject to v[Ā] · x = s where · stands for inner-product and x ∈ Fn is the vector of shares
obtained by concatenating xH with the vector xC that was chosen by the adversary in the third
step. This is done efficiently via the following standard technique. View the constraints as
a linear system over the formal variables (xH,s). Since the system is consistent (as follows
from the analysis of the simulation) and since s participates in a single constraint, we can
treat s as a “free variable” and locate a set of additional free variables xF ,F ⊂ H such that
every non-free variable xi, i ∈ H \F can be written as a linear combination vi of (s,xF). Now
to sample a solution in the exponent of g, we sample xF at random, set gi = gxi for free
variables i ∈ F , and for non-free variables, i ∈ H\F , set gi = (gs,gF)

vi . (Here we use a power-
product notation: for a vector of group elements α = (α1, . . . ,αk) and vector of field elements
v= (v1, . . . ,vk) we write αv to denote ∏i α

vi
i .) We send to the adversary the messages (gi,πi)i∈H

that the honest parties send in the recovery phase where πi is a simulated (fake) NIZK for
the relation R =

{
((α,β ,g),(ρ,x)) : α = Eρ(x),β = gx

}
. The adversary responds with some

values (gi,π
′
i )i∈C where for passively corrupted parties i ∈ C′ it holds that gi = gxi and π ′i is an

honestly-generated proof (that passes verification).

5. When the client (possibly controlled by the adversary A ) invokes the recovery phase of Πdkg

with group element h, we call the recovery phase of Fdkg and get hs. We proceed exactly as
in the previous step with the same values of the variables xH. That is, set hi = hxi for a free
variable i∈ F and hi = (hs,hF)

vi for a non-free variable i∈H\F , and send to the adversary the
messages (hi,πi)i∈H that the honest parties send in the recovery phase where πi is a simulated
(fake) NIZK for the relation R. The adversary responds with some values (hi,π

′
i )i∈C where

for passively corrupted parties i ∈ C′ it holds that hi = gxi and π ′i is an honestly-generated
proof (that passes verification). The adversary also selects a subset of the honest parties
H′ ⊂ H such that |H′|+ |C′| ≥ tc and resets the messages of the honest parties H \H′ outside
H′ to ⊥. We terminate the simulation by outputting the adversary’s view. We terminate the
simulation by outputting the adversary’s view.

The analysis of the simulator is similar to the analysis of Lemma 5.4 (see Section C.1). We note that
Remark C.2 applies here as well.

D Proof of Theorem 6.1

We describe a simulator Sim that interacts with an adversary A . We note that whenever A pas-
sively corrupts a party Pi our simulator also passively corrupts Pi, thus security against mixed
adversaries follows.
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• Setup: The simulator Sim uses the first-phase simulator Sim1 for the NIZK system to sample
CRS/trapdoor pairs, (crspf, tdpf). The simulator also samples a CRS crscm for the commit-
ment. We send crs= (crspf,crscm) to A who specifies a set C⊂ [n] of corrupted parties of size
at most t ′p.

• R1: The simulator generates the randomizers of the honest parties just like in the protocol;
That is, for each i /∈ C, o ∈ Ri and j ∈ Lo,−i: Sample a random mask ro,i, j

R← F and a random
commitment key ko,i, j, send to A the “broadcast values” co,i, j = Com(ro,i, j;ko,i, j), and, for
every j ∈ C, the opening (ro,i, j,ko,i, j) as private-channel messages. The adversary A returns
the tuple of (supposedly) committed randomizers

(co,i, j)i∈C,o∈Ri, j∈Lo,−i ,(ro,i, j,ko,i, j)i∈C,o∈Ri, j∈Lo,−i\C.

• R2: Raise complaints of honest parties on corrupted parties as in the protocol; That is, for
each i /∈ C, for every o ∈ Ri, j ∈ Lo,−i ∩C, if the opening ko,i, j (generated by the adversary)
is inconsistent with the published commitment co, j,i, send to A a “complaint” (i, j,o) and
update ro, j,i to zero and co, j,i = Com(0;0), ko, j,i = 0. The adversary responds with a (possibly
empty) list of complaints, for each such complaint (i, j,o) if i ∈ C, i, j ∈ Ro update ro, j,i to zero.

• R3: The simulator calls the ideal functionality Fcdsg,b and receives (αi)i∈H and a residual
offset vector y′. The simulator chooses some arbitrary x′H = (x′i)i∈H that satisfies the equation
MHx′H = y′ where MH is the matrix M restricted to the columns in H.

For every honest party i /∈ C:

– Generate a fake proof πi = Sim2(αi, tdpf) that certifies that the tag αi (received from the
ideal functionality) satisfies the relation RE .

– For every output o ∈ Li, compute

yo,i = x′i + ∑
j∈Lo,−i

ro,i, j− ∑
j∈Lo,−i

ro, j,i,

just like in the original protocol.

– Generate a fake proof πo,i that the committed values in αi,(co,i, j,co, j,i) j∈Lo,−i satisfy the
above linear equation, by using the second-phase simulator Sim2 and the trapdoor tdpf.

Send to A the tuple (yo,i,πo,i,αi,πi), ∀i /∈ C,o ∈ Ri and get back the tuple pairs (yo,i,πo,i,αi,πi),
∀i ∈ C,o ∈ Ri.

• Generating outputs: If for some i ∈ C the proof πi fails to verify, set xi = 0,ρi = 0. Else, use
the knowledge extractor to extract (xi,ρi). Next, compute the sets C′ and B just like in the
protocol. Formally, we iterate over every output o ∈ [m], if there exists j ∈ Lo for which the
proof πo, j fails to verify, insert o to B, and j to C′. Finally, call the ideal functionality with B
and (xi,ρi)i∈C. Recall that the functionality computes y = y′+MC · xC and returns to all the
parties the tuple (B,y[B̄],(αi)i∈H,(αi = Eρi(xi))i∈C.

It is not hard to see that C′ ⊆ C and that B is of size at most t ′p ·d ≤ b and so the simulator sends
legal input to the ideal functionality. Fix the random input of the honest parties in the protocol
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to some value x = (xi)i/∈C and ρ = (ρi)i/∈C, and let us condition on the event that the same input
is chosen by the ideal functionality Fcdsg,b. It suffices to show that the output of the simulated
experiment HS (that consists of the output of A concatenated with the public output that the
ideal functionality delivers to the honest parties) is computationally indistinguishable from the
real experiment HΠ (that consists of the output of A concatenated with the public output of the
honest parties in the execution of ΠM,E). We define a sequence of hybrids.

H1: Identical to to the simulator, except that in R1, for every output o ∈ [m] and every pair of
honest parties i, j ∈ Lo \C that influence o, we let co,i, j = Com(0;ko,i, j) be a random commitment of
zero. (All other commitments remain unchanged.) Since these commitments are never opened, by
the hiding property, we get that H3 is computationally indistinguishable from HS.

H2: Identical to H1, except that in R3, we replace x′i with xi for every honest party i ∈H . Note
that that after this modification, x′ is never used.

Claim D.1. H2 is distributed identically to H1.

Proof. By definition, for each output o ∈ [m], it holds that the “residual honest sum” y′o = ∑i∈Lo\C x′i
equals to the “residual honest sum” y′o = ∑i∈Lo\C xi computed over x. Thus the proof follows from
the information-theoretic security of the standard secure-sum protocol. We sketch the details for
completeness.

Fix all the randomness in the experiment up to the computation of yo,i, except for the choice
of (ro,i, j) for all o ∈ [m] and honest i, j ∈ Lo \C. It suffices to show that the vector (yo,i)o∈[m],i∈Lo\C is
identically distributed in both experiments. (Since this is the only value that depends on x′.) Fix
some o ∈ [m] and honest i ∈ Lo, and let us subtract from yo,i the fixed values zo,i = ∑ j∈Lo,−i∩C ro,i, j−
∑ j∈Lo,−i∩C ro, j,i, and show that the resulting values y′o,i = yo,i− zo,i are distributed identically in both
experiments. Indeed, it is not hard to verify that, for every o ∈ [m], the vector (y′o,i)i∈Lo\C is just a
fresh additive secret sharing of the value y′o. Furthermore, these sharings are statistically indepen-
dent across the o’s. The claim follows.

H3: Identical to H2, except that in R1, we switch back the commitments co,i, j to Com(ro, j;ko,i, j)
for every output o ∈ [m] and every pair of honest parties i, j ∈ Lo \C that influence o. (All other
commitments remain unchanged.) By the hiding property of the commitment, we get that H5 is
computationally indistinguishable from H2.

H4: Identical to H3, except that in R3 for each honest party i ∈ H and o ∈ Ri, we generate the
proof πo,i honestly (like in the protocol) based on the witnesses ρi,(ko,i, j,ko, j,i) j∈Lo,−i . By the zero-
knowledge property of the NIZK system we get that H4 is computationally indistinguishable from
H3.

H5: Identical to H4, except that in R3 for each honest party i ∈ H, the proof πi is computed
honestly by using the prover and the witness (xi,ρi). By the zero-knowledge property of the NIZK
system we get that H5 is computationally indistinguishable from H4.
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H6: Identical to H5, except that we ignore the response of the ideal functionality in R3 and define
the vector y′ :=MHxH and set αi :=Eρi(xi) for every i∈H. Recall that we fixed the inputs (xi,ρi)i/∈C of
the honest parties, and so, in both experiments the value αi is taken to be Eρi(xi) for every i∈H and
y′ := MH · xH. The modification does not change the output of A , and H6 is identically distributed
to H5.

H7: Identical to H6, except that we remove the second call to the ideal functionality in the final
stage, and define the output of the honest parties to be B,(yo)o/∈B,(αi)i∈[n]] computed as in the real-
world experiment by protocol ΠM,E .

Claim D.2. H7 is statistically close to H6.

Proof. First, observe that in both experiments, for i ∈ C the value of αi is taken to be E0(0) if the
proof πi is invalid. If the proof is valid, then αi is taken to be the value sent by the adversary at the
end of R3 unless the knowledge extractor fails to extract a valid witness (xi,ρi) from a valid proof
πi, which happens with negligible probability. Let us condition on the event that such failures do
not happen, and let us fix the values xi of the adversary (which is either extracted from a valid
proofs or taken to be zero for invalid proofs).

Observe that the sets C′,B are identically computed in both experiments, and so it remains
to show that, for every o /∈ B the output yo = ∑ j∈Lo yo, j, as computed as in the real-world experi-
ment, equals to the value ∑i∈Lo xi (as computed by the ideal functionality) except with negligible
probability. For this it suffices to show that for every i ∈ Lo, the good event Gi, defined by

yo,i = xi + ∑
j∈Lo,−i

ro,i, j− ∑
j∈Lo,−i

ro, j,i, (4)

happens with all but negligible probability. For every honest party i /∈ C, the event Gi holds with
probability 1, and so we focus on i ∈ C. Recall that o /∈ B which means that the proof πo,i passes
verification. Therefore, except with negligible probability, we can therefore use the knowledge-
extractor KE to extract a vector of openings to the commitments αi,(co,i, j,co, j,i) j∈Lo,−i that satisfy
the linear equation (4). If Gi does not happen, then, for at least one of these commitments, we
get two different valid openings, violating the binding property of the commitment scheme. The
claim follows.

Finally, observe that the only difference between the real experiment HΠ and H7, is that in
HΠ we honestly sample the CRS crspf of the proof system. By the indistinguishability of the CRS,
it follows that the two ensembles are computationally indistinguishable, completing the proof of
Theorem 6.1.

Remark D.3 (Relaxation: Non-Adaptive NIZK). Note that the adversary generates all her proofs in one
shot (at the end of round R3) and after that she does not get to see new proofs of honest parties. We can there-
fore employ NIZK with non-adaptive identity-based simulation soundness as discussed in Remark B.2.

E Proof of Theorem 6.4

We describe a simulator for Protocol 3. (A close variant of this simulator corresponds to the
communication-optimized variant mentioned in Remark 6.5). Again, when the simulator is type-
preserving (if the adversary passively corrupts a party, then the simulator also passively corrupts
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the party) and so the simulation automatically applies to mixed adversaries. The simulator is sim-
ilar to the simulator of the basic protocol ΠM,E (Section D) except that the last step (“Generating
outputs”) is extended as follows.

1. If for some i∈ C the proof πi fails to verify, set xi = 0,ρi = 0. Else, use the knowledge extractor
to extract (xi,ρi). Next, compute the sets C′ and B just like in the protocol ΠM,E . Formally, we
iterate over every output o ∈ [m], if there exists j ∈ Lo for which the proof πo, j fails to verify,
insert o to B, and j to C′.

2. Initialize an empty set Z , and iterate the sub-protocol Π2 as long as the set B is larger than
b while honestly emulating the role of honest parties. Specifically, in each iteration, the
simulator reveals the randomizers that are adjacent to honest parties and publicly corrupted
parties C′. (These randomizers were already defined in the steps R1 and R2 of the simulation
and were already leaked to the adversary.) Receive from A randomizers and commitment
keys on behalf of some of the parties in C, check these values and update the the sets Z ,
C′,Z and B based on the public values just like in the original protocol.

3. Finally, after the iterations ends, for every i ∈Z set xi = 0,αi = E0(0), call the ideal function-
ality with B and (xi,ρi)i∈C. Recall that the functionality computes y = y′+MC · xC and returns
to all the parties the tuple (B,y[B̄],(αi)i∈H,(αi = Eρi(xi))i∈C. Terminate with the output of A .

It is not hard to see that C′ ⊆ C. Also, by definition, the set B is of size at most b and so the
simulator sends legal input to the ideal functionality. Fix the random input of the honest parties
in the protocol to some value x = (xi)i/∈C and ρ = (ρi)i/∈C, and let us condition on the event that the
same input is chosen by the ideal functionality Fcdsg,b. It suffices to show that the output of the
simulated experiment HS (that consists of the output of A concatenated with the public output
that the ideal functionality delivers to the honest parties) is computationally indistinguishable
from the real experiment HΠ (that consists of the output of A concatenated with the public output
of the honest parties in the execution of ΠM,E). The proof uses the same hybrids used in the proof
of the basic protocol (Section D) except for the last hybrid H7 which is modified as follows.

H7: Identical to H6, except that we remove the call to the ideal functionality in the final stage,
and define the output of the honest parties to be B,(yo)o/∈B,(αi)i∈[n]] computed as in the real-world
experiment by protocol ΠM,E,b.

Claim E.1. H7 is statistically close to H6.

Proof. It suffices to show that the value returned by the functionality is statistically close to the
output of the honest parties as computed in H7. Call party Pi, i ∈ C public cheater (in short PC), if
she publicly cheats during the protocol, and decent otherwise. If Pi is PC then, in both experiments,
αi is taken to be E0(0). If Pi is decent then, in both experiments, αi is taken to be the value sent
by the adversary at the end of R3 unless the knowledge extractor fails to extract a valid witness
(xi,ρi) from a valid proof πi, which happens with negligible probability. Let us condition on the
event that such failures do not happen, and let us fix the values xi of the adversary (which are
either extracted from valid proofs or taken to be zero for invalid proofs).

Observe that the sets C′ and B are identically computed in both experiments and so it remains
to show that, for every o /∈ B the output yo, as computed as in the real-world experiment, equals to
the value ∑i∈Lo xi (as computed by the ideal functionality) except with negligible probability. For
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an output o /∈ B that remains unchanged during Π2, the argument is identical to the argument in
the proof of the basic protocol (specifically, Claim D.2).

We move on to the case of o /∈ B whose value yo was updated during the emulation of Π2. Each
of these values is computed in H6 as

yo = ∑
i∈Lo\C′

(
yo,i− ∑

j∈Lo,−i∩C′
ro,i, j + ro, j,i

)
,

where C′ is the set of PC and ro,i, j together with ko,i, j are valid openings for co,i, j that were published
by Pi. Since xi = 0 for i ∈ C′, the output delivered by the ideal functionality can be written as
∑i∈Lo\C′ xi. To prove that this value equals to yo, it suffices to show that for every i ∈ Lo \C′, the
good event Gi, defined by

yo,i = xi + ∑
j∈Lo,−i

ro,i, j− ∑
j∈Lo,−i

ro, j,i, (5)

happens with all but negligible probability. For every honest party i /∈ C, the event Gi holds with
probability 1, and so we focus on a decent party Pi, i ∈ C \C′. Assume that Gi does not happen.
Since the proof πo,i passes verification, we can use the knowledge-extractor KE to extract (except
with negligible probability) a vector of openings to the commitments αi,(co,i, j,co, j,i) j∈Lo,−i that sat-
isfies the linear equation (5). This means that, for at least one of these commitments, we get two
different valid openings, violating the binding property of the commitment scheme. The claim
follows.

Finally, observe that the only difference between the real experiment HΠ and H7, is that in
HΠ we honestly sample the CRS crspf of the proof system. By the indistinguishability of the CRS,
it follows that the two ensembles are computationally indistinguishable, completing the proof of
Theorem 6.4.

We note that Remark D.3 applies here as well. Indeed, no proofs are generated during the
extended protocol (after the basic part ends).

F Communication-efficient variant of Protocol 3

We formally describe the communication efficient variant of Protocol 3 as explained in Remark 6.5.
Below we say that Pi and Pj are neighbors if Pi and Pj influence a common output o, i.e., Ri ∩R j

is non-empty. Note that this neighborhood relation implicitly defines an undirected graph over
the parties P1, . . . ,Pn whose maximal-degree D is at most d · (r− 1) = O(1). We further assume
that tp is taken to τpn fro some constant τp < 1 and that b = βn for some constant β < 1. We let
T := 1+ |C| · d/(b+ 1) and note that under our setting of parameters, T is upper-bounded by a
constant that does not grow with n. The protocol is described in Figure 4.

Efficiency. During the entire online phase, Pi writes at most D values since she only reveals ran-
domizers that are adjacent to her. The downstream complexity is at most ∑

T
ℓ=1 D ·cℓ where cℓ is the

downstream complexity of a single call to IsCorrupt(·, ℓ). Noting that c0 is O(d) and cℓ ≤Dcℓ−1 we
get that cℓ ≤ d ·DT since d,D and T are constants the total downstream complexity is constant as
well.

42



Correctness. We claim that protocol Π′M,E,b tp-realizes the functionality Fcdsg,b just like ΠM,E,b.
Formally, consider a variant of ΠM,E,b, denoted by Π1, in which the number of iteration is taken to
be T but the final output B,(yo)o/∈B and (αi)i/∈C′ is taken to be the output that is recorded at the end
of the first iteration in which the set B is smaller than b. It is not hard to show that Theorem 6.4
applies also to Π1 (via essentially the same proof that appears in Section E). Now consider a
variant of Π′, denoted by Π′1, in which each call to the subroutine IsCorrupt(Pj, ℓ) is replaced by
checking whether Pj is in C′ which is defined as in the offline phase of Π′1. Clearly, Π1 is identical
to Π′1. (We only postponed some operations to the offline phase but these operations do not affect
the online part anyway.) So it suffices to show that Π′1 is identical to Π′M,E,b. This follows by the
correctness of IsCorrupt which can be edtablished by induction on the number of iterations.
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Protocol 4 (Communication-efficient extended protocol Π′M,E,b). Online: Execute Protocol 2
without the offline (public output) phase. Next, each party Pi initializes a flag fi, j for each of its
neighbors Pj that will indicate whether Pi knows that Pj was publicly cheating. We initialize all the
flags to false. For ℓ= 1, . . . ,T every party Pi does the following.

• Revealing randomizers: For every output o ∈ Ri and every neighbor j ∈ Lo,−i if fi, j is false
check if Pj is a new publicly-corrupted party by calling the subroutine IsCorrupt( j, ℓ−1)
defined below. If the result is positive we say that Pi is triggered by Pj in round ℓ with respect
to output o and do the following:

– Pi writes on the BB all the private randomizers ro,i, j,ro, j,i and their commitment keys
ko,i, j,ko, j,i that were sent to/from the corrupted party j. In addition, Pi sets fi, j to true.

The IsCorrupt subroutine: Given an index j ∈ [n] of a party and an iteration number ℓ the subrou-
tine IsCorrupt( j, ℓ) returns true if, during iteration ℓ, party Pj publicly cheated for the first time.
The subroutine is defined as follows.

• IsCorrupt( j, ℓ):

1. For ℓ = 0: output true if Pj publicly cheated in the basic protocol Π′M,E,b. That is, for
every o ∈ R j, read from the BB the proof πo, j and verify its validity. If any of these proofs
fail, output true; Else, output false.

2. For ℓ > 1: for every output o ∈ R j and every neighbor k ∈ Lo,− j:
If IsCorrupt(k, ℓ− 1) holds but Pj, who was triggered by Pk in iteration ℓ− 1, did not
reveal consistent randomizers in iteration ℓ, then output true; Else, output false.

Offline decoding: The public outputs are obtained by applying the protocol ΠM,E,b on the values
that were written on the BB so far. Formally, compute the values C′,B,(yo)o/∈B as in the last step
of the basic protocol based on the transcript of the basic protocol. Then repeat the following steps as
long as the set B is larger than b:

1. In the ℓth iteration, read the transcript of the ℓth iteration of the online part.

2. For every output o that depends on some publicly corrupted input j ∈ C′ \Z , If for every
i ∈ Lo \C′ and j ∈ Lo ∩C′ the randomizers ro,i, j,ro, j,i were successfully revealed by Pi, Then
call o tentatively ready and set a tentative value

y′o = ∑
i∈Lo\C′

(
yo,i− ∑

j∈Lo,−i∩C′
ro,i, j + ro, j,i

)
.

3. For every publicly corrupted party j ∈ C′, if all the outputs that are influenced by j are ten-
tatively ready do: (a) insert j to Z and redefine α j = E0(0); and (b) update all the affected
outputs o ∈ R j to be yo = y′o.

4. Insert to C′ every party j who was triggered but did not successfully reveal all its randomizers.
(Such a party is now publicly corrupted.) Insert to B all the outputs that are influenced by
these new publicly-corrupted parties.

Output B,(yo)o/∈B and (αi)i/∈C′ . (Auxiliary output: C′.)

Figure 4: The communication-efficient extended protocol Π′M,E,b.
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