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Abstract

We study elastic SNARKs, a concept introduced by the elegant work of Gemini (EUROCRYPTO
2022). The prover of elastic SNARKs has multiple configurations with different time and memory
tradeoffs and the output proof is independent of the chosen configuration. In addition, during the
execution of the protocol, the space-efficient prover can pause the protocol and save the current
state. The time-efficient prover can then resume the protocol from that state. Gemini constructs an
elastic SNARK for R1CS.

We present Epistle, an elastic SNARK for Plonk constraint system. For an instance with size
𝑁, in the time-efficient configuration, the prover uses 𝑂𝜆 (𝑁) cryptographic operations and 𝑂 (𝑁)
memory; in the space-efficient configuration, the prover uses 𝑂𝜆 (𝑁 log 𝑁) cryptographic operations
and 𝑂 (log 𝑁) memory. Compared to Gemini, our approach reduces the asymptotic time complexity
of the space-efficient prover by a factor of log 𝑁. The key technique we use is to make the toolbox for
multivariate PIOP provided by HyperPlonk (EUROCRYPTO 2023) elastic, with the most important
aspect being the redesign of each protocol in the toolbox in the streaming model.

We implement Epistle in Rust. Our benchmarks show that Epistle maintains a stable memory
overhead of around 1.5 GB for instance sizes exceeding 221, while the time overhead shows a linear
growth trend.
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1 Introduction

Succinct non-interactive arguments of knowledge (SNARKs) [1–4] are powerful cryptographic tools for
checking some statements holding with succinct proofs and fast verifications. In recent years, research on
SNARKs has received extensive attention in both theoretical and engineering fields. For example, SNARKs
provide solutions for blockchain scalability. SNARKs can rapidly verify whether a large set of transac-
tions is valid by proving the correctness of a certain computation (program) in a short amount of time. In
fact, SNARKs are widely used in verifiable computation. SNARKs can generate succinct (possibly zero-
knowledge) proo for long computation, and a weak verifier can efficiently (in logarithmic time relative to
the original computation) verify whether the computation is correct. However, designing efficient SNARKs,
especially reducing the prover time/space complexity, presents an intricate challenge.

Plonk, invented by Gabizon et al. [5], is currently one of the most popular SNARKs. The overall strategy
of Plonk is to convert a program to an arithmetic circuit, commonly referred to as Plonkish circuits, and then
verify the correctness of the arithmetic circuit. For an arithmetic circuit with 𝑁 gates, the prover runs in time
𝑂𝜆(𝑁 log 𝑁)¹ to generate a proof with size 𝑂 (1) and the verifier runs in time 𝑂𝜆(1) to verify the validity of
the proof. The main bottleneck for Plonk’s prover lies in the need to perform Fast Fourier Transforms (FFT).
HyperPlonk [6] replaces the FFT (used in Plonk) by the classical SumCheck protocol at its core, resulting
in linear proof generation time. However, both Plonk and HyperPlonk consume a lot of memory in proof
generation. Experiments in Pianist [7] show that for a circuit of size 225, Plonk’s prover requires 200GB of
memory for the proof generation. Pianist then proposes a fully distributed SNARK through distributed proof
generation across multiple machines with minimal communication among machines.

Gemini [8] adopts streaming algorithms to address the aforementioned memory overhead issue. The
term streaming algorithm, loosely speaking, refers to an algorithm that does not load all input into memory
at once but rather processes it one at a time in a certain (fixed) order. Gemini achieves logarithmic space
complexity with quasilinear prover time. Furthermore, their construction is “elastic”, which means that
the prover has multiple configurations with different time and memory tradeoffs and the output proof is
independent of the chosen configuration. They construct an elastic SNARK for rank-1 constraint system
(R1CS), anNP-complete language; roughly speaking, an R1CS instance is a vector equation that can capture
the arithmetic circuit computation (slightly different from Plonkish circuits). For an R1CS instance with size
𝑁 (where 𝑁 corresponds to the number of gates in an arithmetic circuit), their construction supports two
different configurations for prover:

• a time-efficient prover that runs in 𝑂𝜆(𝑁) time and 𝑂 (𝑁) space,
• a space-efficient prover that runs in 𝑂𝜆(𝑁 log2 𝑁) time and 𝑂 (log 𝑁) space.

Regardless of the prover configuration, the verification time is 𝑂𝜆(|x| + log 𝑁) and proof size is 𝑂 (log 𝑁),
where x is the public input of the circuit.

¹For time complexity, we use the standard big-𝑂 notation 𝑂 (·) to denote the number of field operations and use 𝑂𝜆 (·) to denote the
number of cryptographic operations, where 𝜆 is the security parameter. Formally, 𝑂𝜆 (𝑇) = 𝑂 (𝜆𝑐𝑇) for some constant 𝑐.
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Table 1: Comparison with the most relevant SNARKs

Prover’s configuration Prover time Prover space Proof size Verifier time
Plonk Time-efficient prover 𝑂𝜆(𝑁 log 𝑁) 𝑂 (𝑁) 𝑂 (1) 𝑂𝜆(|x|)

HyperPlonk Time-efficient prover 𝑂𝜆(𝑁) 𝑂 (𝑁) 𝑂 (log 𝑁) 𝑂𝜆(|x| + log 𝑁)

Gemini
Time-efficient prover 𝑂𝜆(𝑁) 𝑂 (𝑁) 𝑂 (log 𝑁) 𝑂𝜆(|x| + log 𝑁)
Space-efficient prover 𝑂𝜆(𝑁 log2 𝑁) 𝑂 (log 𝑁) 𝑂 (log 𝑁) 𝑂𝜆(|x| + log 𝑁)

Our scheme
Time-efficient prover 𝑂𝜆(𝑁) 𝑂 (𝑁) 𝑂 (log 𝑁) 𝑂𝜆(|x| + log 𝑁)
Space-efficient prover 𝑂𝜆(𝑁 log 𝑁) 𝑂 (log 𝑁) 𝑂 (log 𝑁) 𝑂𝜆(|x| + log 𝑁)

1.1 Our Contribution

We continue the exploration of elastic SNARKs. Drawing inspiration from the elegant work of Gemini,
we integrate techniques from Gemini into HyperPlonk. We present Epistle, an elastic SNARK for Plonk
constraint system. Our contribution shows that for proof generation time, the space-efficient prover of Epistle
can save a logarithmic overhead compared to Gemini.

Theorem 1.1. There exists an elastic SNARK for Plonk constraint system with two different configurations
for prover:

• a time-efficient prover that runs in 𝑂𝜆(𝑁) time and 𝑂 (𝑁) space,
• a space-efficient prover that runs in 𝑂𝜆(𝑁 log 𝑁) time and 𝑂 (log 𝑁) space.

The verification time is 𝑂𝜆(|x| + log 𝑁) and proof size is 𝑂 (log 𝑁), where 𝑁 denotes the number of gates
of the circuit and x is the public input of the circuit. In addition, during the execution of the protocol, the
space-efficient prover can pause the protocol and save the current state and the time-efficient prover can then
resume the protocol from that state.

Similar to the construction of most modern SNARKs, our SNARK relies on two components: polyno-
mial IOP [9–11] and polynomial commitment [12]. Finally, the protocol is transformed into a non-interactive
form through the standard Fiat-Shamir transformation [13]. Our starting point is HyperPlonk, a linear time
SNARK for the Plonkish circuit. HyperPlonk provides a toolbox for multivariate polynomials and we ob-
serve that most polynomial IOPs in the toolbox (except for the lookup protocol) can be realized elastically.
By employing techniques from Gemini, we provide a toolbox for multivariate polynomials with elastic prover
and we construct an elastic polynomial IOP for Plonkish circuit based on this toolbox. For the polynomial
commitment part, Gemini adopts univariate KZG polynomial commitment [12] in their construction since
it can be realized elastically. We work with multilinear polynomials since HyperPlonk does, we find that
the multilinear KZG scheme [14] can also be realized elastically. In Table 1, we compare our work with
the most relevant SNARKs. Note that Plonk and HyperPlonk did not consider space complexity, so their
prover’s configuration is time-efficient only.
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1.2 Discussions

Degree of custom gates. In our work, for simplicity, we treat the max degree of custom gates as a constant.
For instance, in Scroll [15], the maximum degree of custom gates does not exceed 9.

The lookup protocol. The lookup protocol [16] is used to prove that all elements in a vector f are contained
in another vector g. Plonk uses the lookup protocol to support lookup gates. The most crucial step in the
lookup protocol is to construct a vector w = sort(f, g). Here, sort(f, g) means concatenating the vectors f and
g, and then sorting the concatenated vector according to the order of elements in g. However, generating the
stream w using limited space in the streaming model is challenging, so we do not design the lookup protocol
in the streaming model. Gemini uses the lookup protocol to achieve holography. In their protocol, the order
of elements in vector f matches the order in g, allowing them to construct the stream w using a merge sort
approach. We leave the construction of the lookup protocol for the general case in the streaming model as
future work.

Error correcting code in the streaming model. HyperPlonk adopts a variant of Orion [17] as its polynomial
commitment scheme, which relies on linear-time encodable codes [18]. However, constructing good linear
codes with encoding algorithms featuring low space complexity poses a significant challenge, and there are
some negative results [19, 20] in this domain.

Customizable constraint systems. Setty et al. [21] introduced a new generalization of R1CS that they
called Customizable Constraint System (CCS). They showed that CCS simultaneously generalizes Plonkish,
AIR (algebraic intermediate representation) [22], and R1CS without overhead. They observed that known
polynomial IOPs for R1CS (Spartan [23] and Marlin [10]) extend easily to handle CCS. They referred to
these generalizations as SuperSpartan and SuperMarlin respectively. As a corollary, SuperSpartan provides
a linear-time polynomial IOP for Plonkish, similar to HyperPlonk, but via a different route. Our work shows
that in the streaming model, if we convert Plonkish to CCS and employ a construction similar to Gemini, we
incur additional logarithmic overhead for proof generation time. We have explained why this overhead arises
in the previous section since the techniques used to handle CCS are nearly identical to those used for R1CS.

1.3 Additional Related Works

The first construction of SNARK [1, 2] was provided by the famous PCP theorem [24, 25]. Many
techniques employed in modern SNARKs have their roots in the PCP theorem, including SumCheck protocol
and low-degree testing.

Time-efficient SNARKs. However, The concrete efficiency of PCPs is not acceptable for practice. As
demonstrated in Pinocchio [26], verifying small instances would take hundreds to trillions of years. Eli
Ben-Sasson et al. introduced the concept of Interactive Oracle Proof (IOP) [9], which can be viewed as
an interactive version of PCP. Benedikt Bünz et al. introduced a variant of IOP called polynomial IOP [11],
where the messages sent by the prover can be a polynomial oracle, and the verifier can query the values of this
polynomial at any point. SNARK can be constructed from polynomial IOP and polynomial commitment [12],
which is a cryptographic primitive designed for efficient verification of polynomial evaluations. Recently,
there has been a series of exciting work focused on reducing the time complexity of the prover [6, 17, 27–
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30]. The overall strategy of the aforementioned works is to replace the FFT, which takes 𝑂 (𝑁 log 𝑁) time
by the classical SumCheck protocol and use a linear time encodable error correcting code when designing
polynomial commitment scheme. None of the protocols cited in this paragraph considers space complexity.

Complexity-preserving SNARKs. There is also a line of works [31–34] that consider not only the time
complexity of the prover but also its space complexity. Bitansky and Chiesa [31] were the first to consider
optimizing both time and space complexity for SNARKs simultaneously. They introduced the notion of
complexity-preserving SNARKs, meaning both the time and space complexity required to generate a proof (for
a computation) is close to the complexity of the computation itself (up to a polylogarithmic factor). Holmgren
and Rothblum [32] explored complexity-preserving SNARKs for RAM computations; assuming the RAM
computation requires time 𝑇 and space 𝑆, the prover achieves time complexity 𝑂̃ (𝑇) and space complexity
𝑆+𝑜(𝑆). Holmgren and Rothblum’s construction relies on complex PCP and Fully Homomorphic Encryption
(FHE). Block et al. [33, 34] further optimized the scheme proposed by Holmgren and Rothblum, building on
modern constructions, namely polynomial IOP and polynomial commitment. They provided space-efficient
polynomial commitment schemes in the streaming model based on Bulletproof [35] and DARK [11]. The
ultimate goal of complexity-preserving SNARKs is to generate proofs in 𝑂 (𝑇) time and 𝑂 (𝑆) space, but
the currently known protocols are still far from this goal. Our work slightly deviates from this line; we
consider the computation of arithmetic circuits rather than RAM computations. We measure the complexity
of arithmetic circuits by the number of gates in the circuit, using it as the size of our input instances.

1.4 Organization of the Paper

We first provide a technical overview of our scheme in Section 2. Section 3 presents the preliminaries
used in this paper. In Section 4, we provide a toolbox for multivariate polynomials with elastic prover. In
Section 5, we demonstrate how to use the toolbox from Section 4 to construct an elastic polynomial IOP for
Plonk constraint system. We present the elastic multilinear KZG scheme in Section 6. Finally, in Section 7,
we present our experimental results.

2 Technical Overview

As mentioned before, our starting point is HyperPlonk. Our elastic SNARK is essentially the same
as HyperPlonk in time-efficient mode. In this section we give a high-level overview of how to design a
space-efficient prover for HyperPlonk. We first review the basic framework of HyperPlonk.

A review of HyperPlonk. Let C be an arithmetic circuit with a total of 𝑁 = 2𝑛 gates, where each gate has
fan-in two and can be one of addition, multiplication, input or a custom gate 𝐺 : F2 → F. Let x ∈ F𝑁𝑖𝑛

(𝑁𝑖𝑛 = 2𝑛𝑖𝑛 and 𝑁𝑖𝑛 ≤ 𝑁) be a public input to the circuit. Each gate is indexed by an element v ∈ {0, 1}𝑛

and each input gate is indexd by an element from 0𝑛−𝑛𝑖𝑛 × {0, 1}𝑛𝑖𝑛 (i.e., the first 𝑁𝑖𝑛 gates out of 𝑁 gates).
HyperPlonk uses three vectors (l, r, o) ∈

(
F𝑁

)3 to represent the computation trace of a circuit, where l
represents the left input of each gate, r represents the right input, and o represents the output. We assume
that the elements in a vector f with length 𝑁 = 2𝑛 are indexed by v ∈ {0, 1}𝑛, and we denote the v-th element
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of f as f (v). The prover needs to prove two things to the verifier.

• The gate identity: Let (s1, s2, s3) ∈
(
F𝑁

)3 be three selector vectors. To prove that all gate constraints
are correct, the prover needs to prove to the verifier that for all v ∈ {0, 1}𝑛:

s1(v) · (l(v) + r(v)) + s2(v) · l(v) · r(v) + s3(v) · 𝐺 (l(v), r(v)) − o(v) + x′(v) = 0, (1)

where x′ = x| |0 ∈ F𝑁 (padding x with 𝑁 − 𝑁𝑖𝑛 zeros). The three selector vectors are defined as
follows:

– for an addition gate: s1(v) = 1, s2(v) = 0, s3(v) = 0,
– for a multiplication gate: s1(v) = 0, s2(v) = 1, s3(v) = 0,
– for a custom gate: s1(v) = 0, s2(v) = 0, s3(v) = 1,
– for an input gate: s1(v) = 0, s2(v) = 0, s3(v) = 0.

It is easy to verify that the definitions of these three vectors are “appropriate”. For any vector f ∈ F𝑁

with length 𝑁 = 2𝑛, we can view it as a function f : {0, 1}𝑛 → F, let f̂ (𝑋1, · · · , 𝑋𝑛) ∈ F[𝑋1, · · · , 𝑋𝑛]
be its multilinear extension (see Section 3.3) and define a polynomial 𝑃 ∈ F[𝑋1, · · · , 𝑋𝑛]:

𝑃(X) = ŝ1(X) ·
(̂
l(X) + r̂(X)

)
+ ŝ2(X) · l̂(X) · r̂(X) + ŝ3(X) · 𝐺

(̂
l(X), r̂(X)

)
− ô(X) + x̂′(X), (2)

where X = (𝑋1, · · · , 𝑋𝑛). Then for checking the gate identity constraints, it is suffice to check that
𝑃(v) = 0 for all v ∈ {0, 1}𝑛. This is achieved by ZeroCheck, which is based on the classical SumCheck
protocol [36].

• The wiring identity: Let w = l| |r| |o| |0 ∈ F4𝑁 (we pad w such that the length of w is a power
of two), then in this vector, there are some equal values (for example, the output of the 5-th gate
is the left input of the 8-th gate). In HyperPlonk, the wiring identity constraints are captured by a
permutation 𝝉 : {0, 1}2𝑛 → {0, 1}2𝑛. The prover needs to prove the verifier that for all v′ ∈ {0, 1}2𝑛,
w(v′) = w(𝝉(v′)). This is achieved by a prescribed permutation check protocol, which is based on
the product check protocol.

The streaming model. To construct a space-efficient SNARK, we cannot load all the vectors from the
HyperPlonk instance into memory at once (which would require 𝑂 (𝑁) memory). Instead, we assume the
prover accesses the vectors in a streaming fashion. Suppose f ∈ F𝑁 , in the streaming model, a streaming
algorithm can only scan the vector in the given order. We use the notation S(f) to denote the stream of f. A
streaming algorithm can perform two operations on a stream: init and next. The next operation returns the
next element in the stream, while the init operation resets the stream to its initial state, i.e., back to the first
element of the stream. The streaming algorithm does not allow random access to elements of f.

SumCheck in the streaming model. In HyperPlonk, the foundational protocol is the classical SumCheck
protocol. We use techniques from Gemini, which is also borrowed from [37] to implement a space-efficient
SumCheck in the streaming model. Recall that the goal of SumCheck protocol is for the prover to convince
the verifier that

∑
v∈{0,1}𝑛 𝑃(v) = 𝛾 for a multivariate polynomial 𝑃(𝑋1, · · · , 𝑋𝑛) ∈ F[𝑋1, · · · , 𝑋𝑛] and a

field element 𝛾 ∈ F. Let f ∈ F𝑁 for some 𝑁 = 2𝑛, we can view f as a function f : {0, 1}𝑛 → F. Let
f̂ ∈ F[𝑋1, · · · , 𝑋𝑛] be the multilinear extension of f, we first explain how to perform a SumCheck for the
multilinear polynomial f̂. In the first round of the SumCheck protocol, the prover constructs and sends an
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univariate polynomial
f̂𝑛 (𝑋𝑛) =

∑
𝑣1, · · · ,𝑣𝑛−1∈{0,1}

f̂ (𝑣1, · · · , 𝑣𝑛−1, 𝑋𝑛) (3)

to the verifier. Since f̂ is multilinear, it follows that for any 𝑣1, · · · , 𝑣𝑛−1 ∈ {0, 1},

f̂ (𝑣1, · · · , 𝑣𝑛−1, 𝑋𝑛) = f (𝑣1, · · · , 𝑣𝑛−1, 0) · (1 − 𝑋𝑛) + f (𝑣1, · · · , 𝑣𝑛−1, 1) · 𝑋𝑛, (4)

which can be computed from two adjacent elements in vector f. Therefore, the univariate polynomial f̂𝑛 (𝑋𝑛)
can be computed by making one pass over the stream S(f) with 𝑂 (𝑁) field operations. After receiving
f̂𝑛 (𝑋𝑛), the verifier first checks that f̂𝑛 (0) + f̂𝑛 (1) = 𝛾, then samples a random value 𝑟𝑛 ← F, and then use
the SumCheck recursively to check that

f̂𝑛 (𝑟𝑛) =
∑

𝑣1, · · · ,𝑣𝑛−1∈{0,1}
f̂ (𝑣1, · · · , 𝑣𝑛−1, 𝑟𝑛). (5)

Let f (1) ∈ F𝑁/2 be the vector such that for all v = (𝑣1, · · · , 𝑣𝑛−1) ∈ {0, 1}𝑛−1,

f (1) (v) = f̂ (𝑣1, · · · , 𝑣𝑛−1, 𝑟𝑛) = f (𝑣1, · · · , 𝑣𝑛−1, 0) · (1 − 𝑟𝑛) + f (𝑣1, · · · , 𝑣𝑛−1, 1) · 𝑟𝑛, (6)

then the stream S
(
f (1)

)
can be constructed from S (f) and one pass over S

(
f (1)

)
needs one pass over S (f)

with 𝑂 (𝑁) field operations. In general, Let f (𝑙) ∈ F𝑁/2𝑙 be the vector such that for all v = (𝑣1, · · · , 𝑣𝑛−𝑙) ∈
{0, 1}𝑛−𝑙,

f (𝑙) (v) = f (𝑙−1) (𝑣1, · · · , 𝑣𝑛−𝑙, 0) · (1 − 𝑟𝑛−𝑙+1) + f (𝑙−1) (𝑣1, · · · , 𝑣𝑛−𝑙, 1) · 𝑟𝑛−𝑙+1, (7)

where 𝑟𝑛−𝑙+1 is the random challenge value sampled and sent by the verifier. The stream S
(
f (𝑙)

)
can be

constructed from S
(
f (𝑙−1) ) , which is based on the input stream S(f) (the prover can’t store the vector f (𝑙−1)

in the memory). It is not hard to show that one pass overS
(
f (𝑙)

)
needs one pass overS (f) with𝑂 (𝑁 +𝑁/2+

· · · + 𝑁/2𝑙−1) = 𝑂 (𝑁) field operations. Because the SumCheck protocol has a total of 𝑛 = log 𝑁 rounds,
with each round’s time complexity being 𝑂 (𝑁), the overall time complexity is 𝑂 (𝑁 log 𝑁) and the prover
makes 𝑂 (log 𝑁) passes over the input stream S(f). The space cost is 𝑂 (log 𝑁) since we only need to keep
track of at most two elements from each vector f (𝑙) . Note that if we do not consider the space overhead, the
prover can save the intermediate results of each round’s computation (i.e., can compute 𝑂 (f (𝑙) ) from vector
𝑂 (f (𝑙−1) ) in 𝑂 (𝑁/2𝑙−1) time), so the total time complexity for the prover is 𝑂 (𝑁 + 𝑁/2 + · · · + 2) = 𝑂 (𝑁)
in the time-efficient model [38]. However, the space complexity is 𝑂 (𝑁) in this model. In our work, the
polynomial that need to be verified using SumCheck are not multilinear but rather a combination of multiple
multilinear polynomials (for example, Equation (2)). We can use the method described above to compute
multiple multilinear polynomials and then combine them accordingly. See Section 4.1 for the details of
SumCheck protocol.

Proving gate indentity constraints. As mentioned before, for checking the gate identity constraints, it is
suffice to check that 𝑃(v) = 0 for all v ∈ {0, 1}𝑛, the polynomial 𝑃 is defined in Equation (2). We refer to
this type of check as ZeroCheck. We cannot rely solely on running the SumCheck protocol for checking that∑

v∈{0,1}𝑛 𝑃(v) = 0 to ensure that 𝑃(v) = 0 for all v ∈ {0, 1}𝑛. Using the idea from Spartan, define the
following polynomial

𝑄(X) =
∑

v∈{0,1}𝑛
𝑃(v) · êq(X, v), (8)
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where êq(X, v) =
∏𝑛
𝑖=1 ((1 − 𝑋𝑖) · (1 − 𝑣𝑖) + 𝑋𝑖 · 𝑣𝑖). From Schwartz-Zippel Lemma, if 𝑃(v) ≠ 0 for some

v ∈ {0, 1}, then for a random vector 𝝆 = (𝜌1, · · · , 𝜌𝑛) ∈ F𝑛, the probability that 𝑄(𝝆) = 0 is at most
𝑛
|F | . Therefore, it is suffice to run SumCheck protocol to check that

∑
v∈{0,1}𝑛 𝑃(v) · êq(𝝆, v) = 0. Let

T𝝆 ∈ F𝑁 (𝑁 = 2𝑛) be a vector such that for all v ∈ {0, 1}𝑛, T𝝆 (v) = êq(𝝆, v), in the streaming model, the
prover does not compute and store all elements of vector T𝝆 in memory; instead, it generates the required
elements based on the explicit expression of êq when needed. In some middle rounds of the SumCheck
protocol, the prover needs to construct vector T(𝑙)𝝆 ∈ F𝑁/2

𝑙 such that for all v = (𝑣1, · · · , 𝑣𝑛−𝑙) ∈ {0, 1}𝑛−𝑙,
T(𝑙)𝝆 (v) = êq(𝝆, 𝑣1, · · · , 𝑣𝑛−𝑙, 𝑟𝑛−𝑙+1, · · · , 𝑟𝑛), where 𝑟𝑛−𝑙+1, · · · , 𝑟𝑛 are random challenge values sampled
and sent by the verifier. Unlike regular vectors, the construction of the vector T(𝑙)𝝆 does not depend on
the input vector T𝝆. Instead, each element of the vector can be generated based on the expression êq with
𝑂 (log 𝑁) field operations. One pass over the vector T(𝑙)𝝆 takes 𝑂 (𝑁 log 𝑁/2𝑙) field operations. In total,
the time complexity of ZeroCheck is

∑𝑛
𝑙=0 𝑂 (𝑁 log 𝑁/2𝑙) = 𝑂 (𝑁 log 𝑁) and the space complexity remains

𝑂 (log 𝑁). See Section 4.2 for the details of ZeroCheck protocol.

Product check in the streaming model. As described earlier, we need to perform a prescribed permutation
check to prove the wiring identity constraints, which is accomplished based on product check protocol. For a
vector f with length 𝑁 = 2𝑛. The main goal of product check protocol is for the prover to convince the verifier
that

∏
v∈{0,1}𝑛 f (v) = 1. HyperPlonk based their construction of product check prorocol on the following

theorem, which is proposed by Quark [39].

Theorem 2.1.
∏

v∈{0,1}𝑛 f (v) = 1 if and only if there exists a vector g with length 2𝑁 = 2𝑛+1 such that

• g(1, · · · , 1, 0) = 1,
• for all v ∈ {0, 1}𝑛, g(0, v) = f (v), g(1, v) = g(v, 0) · g(v, 1).

Let ĝ be the multilinear extension of g, the prover sends the polynomial oracle ĝ to the verifier. The
verifier first queries ĝ at point (1, · · · , 1, 0) and rejects if it is not 1, then runs the ZeroCheck protocol to
ensure the second condition holds. However, in the streaming model, it is not hard to check that one pass
over the stream S(g) requires 𝑂 (log 𝑁) passes over the stream S(f). Since the prover of the ZeroCheck
needs to make 𝑂 (log 𝑁) passes over the stream S(g), the total number of passes over S(f) is 𝑂 (log2 𝑁).
This means that the time complexity of the prover is at least 𝑂 (𝑁 log2 𝑁), which is not in line with our goal.

We use the ideas from [28] to design the product check protocol, and we find that this approach is
well-suited for working in the streaming model. The prover constructs a vector g ∈ F𝑁 such that

g = (1, f (0), f (0)f (1), · · · ,
∏

0≤ 𝑗≤𝑁−2
f ( 𝑗)),

where f ( 𝑗) is the 𝑗-th element of f. Let g𝜎 be the cyclic shift vector of g, that is

g𝜎 = (f (0), f (0)f (1), · · · ,
∏

0≤ 𝑗≤𝑁−2
f ( 𝑗), 1),

the prover sends two polynomial oracles ĝ and ĝ𝜎 to the verifier. The verifier first queries ĝ at point (0, · · · , 0)
and rejects if it is not 1, then checks that f ◦ g = g𝜎 , where ◦ is the pair-wise product of two vectors. We can
use ZeroCheck protocol to verify this relationship, as f ◦ g = g𝜎 if and only if f̂ (v) · ĝ(v) − ĝ𝜎 (v) = 0 for all
v ∈ {0, 1}𝑛. More importantly, constructing streams S(g) and S(g𝜎) from stream f is straightforward, and
one pass over S(g) or S(g𝜎) only requires one pass over S(f). Therefore, the time complexity of the prover
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is 𝑂 (𝑁 log 𝑁) and the space complexity is the same as ZeroCheck protocol, which is 𝑂 (log 𝑁). See Section
4.4 for the details of product check protocol, note that this protocol also requires the verifier to ensure that
g𝜎 is a cyclic shift left vector of g.

Cyclic shift left check in the streaming model. Let b and b𝜎 be two vectors with length 𝑁 = 2𝑛, the main
goal of cyclic shift left protocol is for the prover to convince the verifier that g𝜎 is a cyclic shift left vector
of g. In [28], they treat these polynomial oracles as univariate polynomial oracles, i.e., the vector g and g𝜎

corresponds to the following polynomials:

𝐺 (𝑋) = g(0) + g(1)𝑋 + g(2)𝑋2 + · · · + g(𝑁 − 1)𝑋𝑁−1,

𝐺𝜎 (𝑋) = g𝜎 (0) + g𝜎 (1)𝑋 + g𝜎 (2)𝑋2 + · · · + g𝜎 (𝑁 − 1)𝑋𝑁−1.
(9)

It is not hard to show that g𝜎 is a cyclic shift left vector of g if and only if𝐺 (𝑋)−𝑋 ·𝐺𝜎 (𝑋) = g(0) · (1−𝑋𝑛).
The verifier can query𝐺 (𝑋) and𝐺𝜎 (𝑋) at a random point 𝑟 ∈ F and check𝐺 (𝑟)−𝑟 ·𝐺𝜎 (𝑟) = g(0) · (1−𝑟𝑛).
However, in HyperPlonk, all the polynomial oracles are multilinear extensions of some vectors, we cannot
use a similar method for verification. We use a different approach to perform the cyclic shift left check.

Let cnext : {0, 1}𝑛 × {0, 1}𝑛 → {0, 1} be a function such that cnext(i, j) = 1 if and only if j = i + 1
mod 𝑁 , where both i and j are represented in binary. It is easy to show that g𝜎 is a cyclic shift left vector of
g if and only if for all i ∈ {0, 1}𝑛,

g𝜎 (i) =
∑

j∈{0,1}𝑛
cnext(i, j)g(j). (10)

This is equivalent to
ĝ𝜎 (X) =

∑
j∈{0,1}𝑛

�cnext(X, j)ĝ(j), (11)

where ĝ𝜎 , ĝ, �cnext are multiliear extensions of g𝜎 , g and cnext. The verifier first samples a random vector
𝝆 ∈ F𝑛 and queries ĝ𝜎 at 𝝆. Suppose ĝ𝜎 (𝝆) = 𝛾, the prover and verifier then run a SumCheck protocol
to ensure that 𝛾 =

∑
j∈{0,1}𝑛 �cnext(𝝆, j)ĝ(j). At the end of the SumCheck protocol, the verifier needs to

compute the values ĝ(r) and �cnext(𝝆, r) at a random point r = (𝑟1, · · · , 𝑟𝑛) ∈ F𝑛. The value of ĝ(r) can be
obtained by querying the polynomial oracle ĝ, but �cnext(𝝆, r) must be calculated by the verifier. Fortunately,
Setty et al. [21] provided an explicit expression similar to the �cnext function, which can be computed in
𝑂 (log 𝑁) time. With a slight modification to their expression, we obtain an explicit expression for �cnext,
which can also be computed in 𝑂 (log 𝑁) time. Based on this fact, the verifier can complete the verification
in 𝑂 (log 𝑁) time, while the time complexity for the prover in the streaming model is 𝑂 (𝑁 log 𝑁) and the
space complexity is 𝑂 (log 𝑁). See Section 4.3 for the details of cyclic shift left check protocol.

Proving wiring indentity constraints. In HyperPlonk, the wiring identity constraints are captured by a
permutation 𝝉 : {0, 1}2+𝑛 → {0, 1}2+𝑛. Let w = l| |r| |o| |0 ∈ F4𝑁 be the computation trace of a circuit, for
checking the wiring indentity constraints, it is suffice to check that for all v′ ∈ {0, 1}2+𝑛, w(v′) = w(𝝉(v′)).
We refer to this type of check as prescribed permutation check. This protocol is essentially the same as
HyperPlonk (the original Plonk protocol also uses the same idea) and is suitable for implementation in the
streaming model. See Section 4.5 and 4.6 for the details of prescribed permutation protocol.

Multilinear KZG scheme in the streaming model. We use multiliear KZG scheme [14] to construct our
SNARK. Let f be a vector with length 𝑁 = 2𝑛 and f̂ be its multilinear extension. The prover sends a
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commitment 𝐶 about the polynomial f̂. The verifier selects a point z ∈ F𝑛 and sends it to the prover, who
then returns a value 𝜇 along with a proof 𝜋 to demonstrate that 𝜇 = f̂ (z). Note that the KZG scheme
required a trusted setup to generate the structured reference strings (SRS). The setup algorithm first samples
a bilinear group (G1,G2,G𝑇 , 𝑝, 𝑔, ℎ, 𝑒), where |G1 | = |G2 | = |G𝑇 | = 𝑝, 𝑔 generates G1, ℎ generates G2, and
𝑒 : G1 × G2 → G𝑇 is a non-degenerate bilinear map, then constructs SRS as follows:

• samples a random vector 𝝉 = (𝜏1, · · · , 𝜏𝑛) ∈ F𝑛.
• constructs a vector T𝝉 ∈ F𝑁 (𝑁 = 2𝑛) such that for all v ∈ {0, 1}𝑛, T𝝉 (v) = êq(𝝉, v).
• outputs the commitment key ck = 𝚺 =

(
𝑔T𝝉 (0) , 𝑔T𝝉 (1) , · · · , 𝑔T𝝉 (𝑁−1) ) , receiver key rk = 𝚺′ =

(ℎ𝜏1 , · · · , ℎ𝜏𝑛).
The commitment to f̂ is computed as𝐶 =

∏
0≤ 𝑗≤𝑁−1

(
𝑔T𝝉 ( 𝑗 ) ) f ( 𝑗 )

= 𝑔f̂ (𝝉) . Suppose the verifer wants to know
the evaluation of the polynomial at a point z ∈ F𝑛, the opening algorithm is based on the following theorem.

Theorem 2.2. Suppose f ∈ F𝑁 is a vector of length 𝑁 = 2𝑛, f̂ is the multilinear extension of f, then for
any z = (𝑧1, · · · , 𝑧𝑛) ∈ F𝑛, f̂ (z) = 𝜇 if and only if there exists a unique set of 𝑛 vectors f1 ∈ F𝑁/2, · · · , f𝑖 ∈
F𝑁/2

𝑖
, · · · , f𝑛 ∈ F such that

f̂ (𝑋1, · · · , 𝑋𝑛) − 𝜇 =
𝑛∑
𝑖=1
(𝑋𝑛−𝑖+1 − 𝑧𝑛−𝑖+1) · f̂𝑖 (𝑋1, · · · , 𝑋𝑛−𝑖), (12)

where f̂𝑖 is the multilinear extension of f𝑖 , and f̂𝑛 is a constant function with no variable.

Define f (𝑖) ∈ F𝑁/2𝑖 such that for all v = (𝑣1, · · · , 𝑣𝑛−𝑖) ∈ {0, 1}𝑛−𝑖 ,

f (𝑖) (v) = f̂ (𝑣1, · · · , 𝑣𝑛−𝑖 , 𝑧𝑛−𝑖+1, · · · , 𝑧𝑛),

note that f (0) = f and f (𝑛) = f̂ (z). It is not hard to show that for all v ∈ (𝑣1, · · · , 𝑣𝑛−𝑖),

f𝑖 (𝑣1, · · · , 𝑣𝑛−𝑖) = f (𝑖−1) (𝑣1, · · · , 𝑣𝑛−𝑖 , 1) − f (𝑖−1) (𝑣1, · · · , 𝑣𝑛−𝑖 , 0). (13)

Therefore, the prover first computes f1, · · · , f𝑛 based on Theorem 2.2 and then computes 𝑦𝑖 = 𝑔f̂𝑖 (𝝉) for all
1 ≤ 𝑖 ≤ 𝑛 using commitment key Σ. The prover sends 𝜋 = (𝑦1, · · · , 𝑦𝑛) and 𝜇 = f̂ (z) to the verifier. The
verifer checks that

𝑒(𝐶 · 𝑔−𝜇, ℎ) =
𝑛∏
𝑖=1

𝑒(𝑦𝑖 , ℎ𝜏𝑛−𝑖+1 · ℎ−𝑧𝑛−𝑖+1)

using receiver key Σ′.

Implementing the commitment and opening algorithm with low space complexity is not difficult. In
the streaming model, we assume that the prover receives the streams S(𝚺) and S(f) as inputs. Computing
the commitment 𝐶 =

∏
0≤ 𝑗≤𝑁−1

(
𝑔T𝝉 ( 𝑗 ) ) f ( 𝑗 )

= 𝑔f̂ (𝝉) only requires making one pass over streams S(𝚺) and
S(f). Equation (13) shows that the stream S(f𝑖) can be obtained from the stream S

(
f (𝑖−1) ) because each

element in f𝑖 is the difference of adjacent elements in f (𝑖−1) . As discussed earlier in the SumCheck protocol,
the streamS

(
f (𝑖−1) ) can be generated from the input streamS(f). Therefore, each streamS(f𝑖) for 1 ≤ 𝑖 ≤ 𝑛

can be computed from the stream S(f). It follows that the proof 𝜋 = (𝑦1, · · · , 𝑦𝑛) can be computed with low
space complexity in the streaming model. See Section 6 for the details of multilinear KZG scheme.

Comparison with Gemini. Gemini constructs a SNARK for R1CS in the streaming model. An R1CS
instance consists of three sparse matrices 𝐴, 𝐵, 𝐶 ∈ F𝑁×𝑁 and it is satisfiable if there exists a vector z ∈ F𝑁
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such that 𝐴z ◦ 𝐵z = 𝐶z. Let z𝐴 = 𝐴z, z𝐵 = 𝐵z, z𝐶 = 𝐶z. To verify that an R1CS instance is satisfiable, two
checks need to be performed:

• RowCheck: check that z𝐴 ◦ z𝐵 = z𝐶 ;
• LinCheck: check that z𝑀 = 𝑀z for all 𝑀 ∈ {𝐴, 𝐵, 𝐶}.

Note that z𝐴◦z𝐵 = z𝐶 if and only if ẑ𝐴(v) · ẑ𝐵 (v) − ẑ𝐶 (v) = 0 for all v ∈ {0, 1}𝑛, which can be checked from
ZeroCheck. For checking z𝑀 = 𝑀z for all 𝑀 ∈ {𝐴, 𝐵, 𝐶}, it is suffice to check that ⟨y, z𝑀⟩ = ⟨y, 𝑀z⟩ for a
random vector y. We can set y = T𝝆, where T𝝆 (v) = êq(𝝆, v) for all v ∈ {0, 1}𝑛. The verifier first queries
ẑ𝑀 at point 𝝆 and suppose the returned value is 𝛾 = ẑ𝑀 (𝝆) =

〈
T𝝆, z𝑀

〉
. Let 𝝆𝑀 = 𝑀𝑇T𝝆, then ⟨𝝆𝑀 , z⟩ =〈

T𝝆, 𝑀z
〉
. The verifier then invokes the SumCheck protocol to ensure that 𝛾 =

∑
𝑣∈{0,1}𝑛 𝝆𝑀 (v) · z(v). The

vector T𝝆 can be constructed in 𝑂 (𝑁) time. Since 𝑀 is a sparse matrix (with 𝑂 (𝑁) non-zero entries), the
vector 𝝆𝑀 can also be constructed in 𝑂 (𝑁) time. It follows that in the time-efficient model, the prover’s time
complexity is 𝑂 (𝑁).

In the streaming model, the input streams include witness stream S(z), matrix streams Srmaj(𝑀),
Scmaj(𝑀) ¹ for all 𝑀 ∈ {𝐴, 𝐵, 𝐶}, computation trace streams S(z𝐴), S(z𝐵) and S(z𝐶). However, in the
streaming model, the prover can’t store the vector 𝝆𝑀 in memory. Instead, the prover can construct the stream
S(𝝆𝑀 ) from Srmaj(𝑀), Scmaj(𝑀) and T𝝆. Since each element of the vectors in T𝝆 requires 𝑂 (log 𝑁) time
to construct and 𝑀 is sparse, one pass over the stream S(𝝆𝑀 ) requires 𝑂 (𝑁 log 𝑁) time. As we discussed
in the SumCheck protocol, the prover makes 𝑂 (log 𝑁) passes over the stream S(𝝆𝑀 ). Therefore, the total
run time of the LinCheck is 𝑂 (𝑁 log2 𝑁) in the streaming model.

3 Preliminaries

3.1 Notations

We use the notation [𝑛] to denote the set {1, 2, · · · , 𝑛} and {0, 1}𝑛 to denote the set of binary strings with
length 𝑛. We use bold letters (e.g., f) to represent a vector. For a vector f over Fwith length 𝑁 , let 𝑓𝑖 denote the
𝑖-th entry of f. If 𝑁 = 2𝑛 for some integer 𝑛, we can also view f as a function f : {0, 1}𝑛 → F. Let 0 ≤ 𝑣 < 𝑁 ,
v = (𝑣1, · · · , 𝑣𝑛) = toBinary(𝑣) is the binary representation of 𝑣, where 𝑣1 is the most significant bit and
𝑣𝑛 is the least significant bit, then the 𝑣-th element of f can be expressed as f (v) = f (𝑣1, · · · , 𝑣𝑛) = 𝑓𝑣 .
Similarly, if (𝑣1, · · · , 𝑣𝑛) ∈ {0, 1}𝑛, let toDecimal(v) = toDecimal(𝑣1, · · · , 𝑣𝑛) =

∑𝑛
𝑖=1 2𝑛−𝑖 · 𝑣𝑖 be its

decimal represention. We will ignore the function toBinary and toDecimal when it is clear from the context,
and we use the bold letter v to denote the binary representation (since it is a vector) and the regular letter 𝑣
to denote the decimal representation. Note that we have two different ways to represent the 𝑣-th element of
f, 𝑓𝑣 and f (v).

We use 𝜆 ∈ N to denote the security parameter. We use negl(𝜆) to represent the negligible function
with respect to 𝜆, where negl(𝜆) ≤ 𝜆−𝜔 (1) . Given a field, we use the standard big 𝑂 (·) notation to represent
the asymptotic arithmetic complexity. where a single operation in the field constitutes one atomic operation.

¹Srmaj (𝑀) (Scmaj (𝑀)) denotes the sequence of elements in the matrix 𝑀 ordered in row (column) major.
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Suppose 𝑡 (𝑛) is a function of 𝑛, we use the notation 𝑂𝜆(𝑡 (𝑛)) to denote 𝑂 (𝑡 (𝑛) ·𝜆𝑐) for some constant 𝑐, this
will be useful when we describe the cryptographic operations.

3.2 Relations and Languages

A relation R is a set of tuples (x,w) where x is the instance, w is the witness. Let L(R) be the
corresponding language, i.e., L(R) = {x : ∃w, such that (x,w) ∈ R}.

An indexed relation R is a set of triples (i,x,w) where i is the index, x is the instance, w is the
witness. For example, the indexed Boolean circuit satisfiability relation R consists of triples (i,x,w), where
i is the description of a Boolean circuit, x is the partial assignment of the input and w is the remaining
assignment such that the output of the circuit is 1. Let L(R) be the corresponding language, i.e., L(R) =
{(i,x) : ∃w, such that (i,x,w) ∈ R}.

3.3 Multilinear Extension

Definition 3.1. Let F be a finite field, a multivariate polynomial 𝑔 ∈ F[𝑋1, · · · , 𝑋𝑛] with 𝑛 variables is
multilinear if the degree of each variable in the polynomial is at most 1.

Definition 3.2. Let F be a finite field and let g : {0, 1}𝑛 → F be a function defined on the 𝑛-dimensional
Boolean hypercube, the multilinear extension of g is a multilinear polynomial in F[𝑋1, · · · , 𝑋𝑛], which we
denote as ĝ, such that for all v ∈ {0, 1}𝑛, ĝ(v) = g(v).

Lemma 3.1. Let F be a finite field and let g : {0, 1}𝑛 → F, then the multilinear extension of g is unique.
Futhermore, the following multilinear polynomial ĝ is the multilinear extension of g:

ĝ(X) =
∑

v∈{0,1}𝑛
g(v) · êq(X, v), (14)

where X = (𝑋1, · · · , 𝑋𝑛) and êq(X, v) =
∏
𝑖∈[𝑛] ((1 − 𝑋𝑖) · (1 − 𝑣𝑖) + 𝑋𝑖 · 𝑣𝑖)

Let eq : {0, 1}𝑛 × {0, 1}𝑛 → F be a function such that for all x, y ∈ {0, 1}𝑛, eq(x, y) = 1 if and only if
x = y. It is easy to check that êq(X,Y) =

∏
𝑖∈[𝑛] ((1 − 𝑋𝑖) · (1 − 𝑌𝑖) + 𝑋𝑖 · 𝑌𝑖) is the multilinear extension of

eq. Let r = (𝑟1, · · · , 𝑟𝑛) and 𝑁 = 2𝑛, we define a vector Tr ∈ F𝑁 with length 𝑁 such that for all v ∈ {0, 1}𝑛

(the index of the vector is specified by a binary number):

Tr(v) = êq(r, v) =
∏
𝑖∈[𝑛]

((1 − 𝑟𝑖) · (1 − 𝑣𝑖) + 𝑟𝑖 · 𝑣𝑖) .

It is also easy to check that êq(r,X) is the multilinear extension of Tr. The evaluation of the polynomial ĝ
at a point r = (𝑟1, · · · , 𝑟𝑛) can be viewed as the dot product of the two vectors g and Tr, since

ĝ(r) =
∑

v∈{0,1}𝑛
g(v) · êq(r, v) =

∑
v∈{0,1}𝑛

g(v) · Tr(v) = ⟨g,Tr⟩

Furthermore, the vector Tr has very nice algebraic tensor structure.

Definition 3.3. Suppose x = (𝑥0, 𝑥1, · · · 𝑥𝑁−1) ∈ F𝑁 and y = (𝑦0, 𝑦1, · · · , 𝑦𝑀−1) ∈ F𝑀 , then the tensor
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product of these two vecors x ⊗ y ∈ F𝑁𝑀 is defined as:

x ⊗ y = (𝑥0 · y, 𝑥1 · y, · · · , 𝑥𝑁−1 · y)
= (𝑥0𝑦0, 𝑥0𝑦1, · · · , 𝑥0𝑦𝑀−1, 𝑥1𝑦0, 𝑥1𝑦1, · · · , 𝑥1𝑦𝑀−1, · · · , 𝑥𝑁−1𝑦0, 𝑥𝑁−1𝑦1, · · · , 𝑥𝑁−1𝑦𝑀−1).

The following lemma follows immediately from the definition of the polynomial êq(X,Y) and the def-
inition of tensor product.

Lemma 3.2. Let r = (𝑟1, 𝑟2, · · · , 𝑟𝑛) and 𝑁 = 2𝑛, define a vector Tr ∈ F𝑁 such that for all v ∈ {0, 1}𝑛,
Tr(v) = êq(r, v), then Tr = (1 − 𝑟1, 𝑟1) ⊗ (1 − 𝑟2, 𝑟2) ⊗ · · · ⊗ (1 − 𝑟𝑛, 𝑟𝑛). The vector Tr can be constructed
with 𝑂 (𝑁) field operations and 𝑂 (𝑁) space complexity from r.

3.4 Schwartz-Zippel Lemma

Lemma 3.3 (Schwartz-Zippel Lemma). Let F be a field, and 𝑓 : F𝑛 → F is a non-zero 𝑛-variate polynomial
with total degree at most 𝑑. Then for any finite set 𝑆 ⊆ F,

Pr
r←𝑆𝑛

[ 𝑓 (r) = 0] ≤ 𝑑

|𝑆 | .

The following corollary follows from the Schwartz-Zippel Lemma, which will be useful for proving the
soundness of our protocol.

Corollary 3.4. Let F be a finite field and a ∈ F𝑁 is a non-zero vector with length 𝑁 = 2𝑛 for some integer 𝑛.
For any r = (𝑟1, · · · , 𝑟𝑛) ∈ F𝑛, define Tr = (1 − 𝑟1, 𝑟1) ⊗ (1 − 𝑟2, 𝑟2) ⊗ · · · ⊗ (1 − 𝑟𝑛, 𝑟𝑛) ∈ F𝑁 , then

Pr
r←F𝑛

[⟨a,Tr⟩ = 0] ≤ log 𝑁

|F| . (15)

3.5 Polynomial IOP

An IOP (Interactive Oracle Proof) [9] is a proof system that combines the features of PCP (Probabilisti-
cally Checkable Proof) [24, 25] and IP (Interactive Proof) [40, 41]. In the IOP model, the prover and verifier
engage in an interactive protocol, and the prover provides some proofs in each round. The verifier can query
these proofs at any location through oracle access. Polynomial IOP [10, 11] means that the proofs provided
by the prover are polynomial oracles, which is defined below, and the verifer can query these polynomial
oracles at any location.

Definition 3.4. Let 𝑛, 𝑑 ∈ N, an (𝑛, 𝑑)-polynomial oracle is an oracle that computes a polynomial with 𝑛

variables and a maximal degree bound of 𝑑 in each variable.

If 𝑝 is a polynomial, we use the notation [[𝑝]] denote the corresponding polynomial oracle. In partic-
ular, if f ∈ F𝑁 is a vector over some field F and 𝑁 = 2𝑛 for some integer 𝑛, if f̂ is the multiliear extension of
f, we use the notation [ [̂f]] to denote the multiliear polynomial oracle (i.e., the (𝑛, 1)-polynomial oracle).

We adapt the definition of polynomial IOP from Marlin [10] and HyperPlonk [6].
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Let 𝑛, 𝑑 ∈ N, a polynomial IOP for an indexed relation R with parameter 𝑛, 𝑑 is a protocol between
indexer I, prover P and verifier V. The relation is an oracle relation, which means that i and x may contain
some (𝑛, 𝑑)-polynomial oracles. The protocol consists of two phases: an offline phase and an online phase.

In the offline phase, the indexer I receives the index i as input, and output some (𝑛, 𝑑)-polynomial
oracles. The implementation of indexer is deterministic and does not depend on any particular instance or
witness.

In the online phase, the prover P aims to convince the verifier V that (i,x,w) ∈ R, where the prover’s
input is (i,x,w) and the verifier’s input is x along with oracle access to the polynomial oracles provided by
the indexer. The prover and verifier interact over many rounds. In each round, the verifier sends some random
elements to the prover, the prover replies with several polynomial oracles or some non-oracle messages. The
verifier can query the polynomial oracles at any desired locations. After the interaction, the verifier accepts or
rejects. We say a prover is admissible if all polynomal oracles provided by the prover are (𝑛, 𝑑)-polynomial
oracles. The honest prover is required to be admissible under this definition.

Let L(R) be the corresponding language defined by R. We say that the polynomial IOP has perfect
completeness and soundness error 𝜖 if the following conditions hold:

• Completeness. For any (i,x,w) ∈ R, the prover P convinces the verifier V to accept with probability
1.

• Soundness. For any (i,x) ∉ L(R), for any admissible prover P∗, the prover P∗ convinces the verifier
V to accept with probability at most 𝜖 .

Futhermore, in order to construct SNARK, we require the polynomial IOP achieves the stronger property
of knowledge soundness (against admissible prover).

• Knowledge soundenss. We say a polynomial IOP has knowledge soundenss error 𝜖 if there exists a
polyomial-time extractor E such that for all index i, instance x and admissible prover P∗,

Pr
[
(i,x,w) ∈ R

��w← EP∗ (i,x, 1𝑑𝑛)
]
≥ Pr [Verifier accept] − 𝜖 .

The notation EP∗ means that the extractor has black box access to the next message functions of prover
P and E can rewind the prover P. Also note that the extractor receives 𝑑𝑛 in unary as input, since an
𝑛-variate polynomal with maximal individual degree 𝑑 requires 𝑂 (𝑑𝑛) elements to specify.

For an indexd relation R = (i,x,w), it is not hard to show that if w consists only polynomials (which
can be specified by some vectors) and x contains oracles to these polynomials, then a polynomial IOP with
soundness error 𝜖 for R also has a knowledge soundenss error 𝜖 . The proof of this fact can be found in
HyperPlonk.

The measures of the efficiency for the polynomial IOP include:

• Round complexity. The number of rounds between the prover and verifier.
• Message complexity. The size of the non-oracle messages sent by the prover and verifier.
• Query complexity. The number of queries made by the verifier to the polynomial oracles.
• Prover’s time. The runtime of the prover.
• Prover’s space. The space complexity of the prover.

15



• Verifier’s time. The runtime of the verifier.
• Verifier’s space. The space complexity of the verifier.

Additionally, a polynomial IOP is called a public coin protocol if the randomness used by the verifier is
made public, meaning that the verifier’s random coins are visible to the prover. It is worth noting that a public
coin interactive proof system can be transformed into a non-interactive one using the Fiat-Shamir transform
in the random oracle model. In our work, all of the protocols described adhere to the public coin paradigm.

3.6 Streaming Model

This section provides a brief overview of the basic definitions of the streaming model. For more details
on the streaming model, we recommend readers refer to Gemini [8].

Let f ∈ F𝑁 be a vector with length 𝑁 , in the random access model, an algorithm can access f at any
location 𝑖 ∈ {0, · · · , 𝑁 − 1} to get 𝑓𝑖 , i.e., the algorithm loads all elements of f into the memory. Conversely,
in the streaming model, an algorithm can only scan the vector in the given order, i.e., the algorithm loads
the elements of the vector into memory one by one.

Definition 3.5. Let f = ( 𝑓0, · · · , 𝑓𝑁−1) ∈ F𝑁 be a vector with length 𝑁 , we use the notation S(f) to denote
the stream of vector f. A streaming algorithm 𝑃 can perform the following two operations on a stream S(f):

• init: the stream S(f) creates or resets a counter 𝑖 = 0.
• next: the stream S(f) returns 𝑓𝑖 (returns ⊥ if 𝑖 = ⊥) and sets 𝑖 = 𝑖 + 1 (𝑖 = ⊥ if 𝑖 = 𝑁 − 1).

We define the number of passes as the count of init operations that the streaming algorithm performs on its
input streams. In other words, the number of passes represents the number of times the algorithm scans the
stream.

A stream can be accessed by multiple streaming algorithms simultaneously. However, to ensure the
space efficiency of the algorithm, we assume that the number of sessions for a stream is at most 𝑂 (log 𝑁).
An algorithm 𝑃 may has access to many streams S(f1), · · · ,S(f𝑘) and the output of 𝑃 can also be some
streams.

Definition 3.6. Suppose 𝑃 and 𝑃′ are streaming algorithms, 𝑃 receives streams S(f1), · · · ,S(f𝑘) as input
and the output of 𝑃 is also a stream, when 𝑃′ interacts with 𝑃, then 𝑃′ can do the following operation:

• 𝑃′ performs init to 𝑃, then the execution of 𝑃 is reset and 𝑃 also performs init to all S(f1), · · · ,S(f𝑘).
• 𝑃′ performs next to 𝑃, then 𝑃 yields next output and returns it to 𝑃′.
• when 𝑃 receives an operation (init or next) from 𝑃′ for accessing some streams S(f1), · · · ,S(f𝑘), 𝑃

performs the same operation to the corresponding stream and return the correct answer to 𝑃′.

Lemma 3.5. If the streaming algorithm 𝑃 has time complexity 𝑡𝑃, space complexity 𝑠𝑃, input passes 𝑘𝑃,
and the streaming algorithm 𝑃′ has time complexity 𝑡𝑃′ , space complexity 𝑠𝑃′ , input passes 𝑘𝑃′ , then when
𝑃′ interacts with 𝑃, the whole streaming algorithm has complexity 𝑘𝑃′ · 𝑡𝑃 + 𝑡𝑃′ , space complexity 𝑠𝑃 + 𝑠𝑃′ ,
input passes 𝑘𝑃 · 𝑘𝑃′ .
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4 A Toolbox for Multivariate Polynomials with Elastic Prover

4.1 SumCheck PIOP

Definition 4.1. The SumCheck relation R𝑆𝑈𝑀 is the set of tuples

(x,w) =
( (
F, 𝑁, 𝑡, 𝑑, 𝐹, [ [̂a1]], · · · , [ [̂a𝑡 ]], 𝛾

)
, (a1, · · · , a𝑡 )

)
,

where

• 𝑁, 𝑡, 𝑑 ∈ N, 𝑁 = 2𝑛 for some integer 𝑛, and 𝑡, 𝑑 are constants.
• 𝐹 (X) ∈ F[𝑋1, · · · , 𝑋𝑡 ] is a multivariate polynomials with 𝑡 variables and total degree at most 𝑑.
• a1, · · · , a𝑡 ∈ F𝑁 are 𝑡 vectors with length 𝑁 ,
• [ [̂a1]], · · · , [ [̂a𝑡 ]] are polynomial oracles which compute â1, · · · , â𝑡 , the multilinear extensions of

a1, · · · , a𝑡 .
•
∑

v∈{0,1}𝑛 𝐹
(̂
a1(v), · · · , â𝑡 (v)

)
= 𝛾.

Theorem 4.1. There is a polynomial IOP for relation R𝑆𝑈𝑀 with the following properties:

Table 2: Properties of SumCheck protocol

round message query soundness verifier’s
complexity complexity complexity error time

𝑂 (log 𝑁) 𝑂 (log 𝑁) 𝑂 (1) 𝑂
(

log 𝑁
|F |

)
𝑂 (log 𝑁)

Moreover,

• in the random access model, the prover has arithmetic complexity 𝑂 (𝑁) and space complexity 𝑂 (𝑁),
• in the streaming model, the prover has arithmetic complexity 𝑂 (𝑁 log 𝑁), space complexity 𝑂 (log 𝑁)

and makes 𝑂 (log 𝑁) passes over all input streams.

Protocol 1. SumCheck protocol:
Inputs.

• Prover’s input:
– instance x =

(
F, 𝑁, 𝑡, 𝑑, 𝐹, [ [̂a1]], · · · , [ [̂a𝑡 ]], 𝛾

)
,

– witness w = (a1, · · · , a𝑡 ).
• Verifier’s input:

– instance x =
(
F, 𝑁, 𝑡, 𝑑, 𝐹, [ [̂a1]], · · · , [ [̂a𝑡 ]], 𝛾

)
.

Goal.

• The prover convinces the verifer that
∑

v∈{0,1}𝑛 𝐹
(̂
a1(v), · · · , â𝑡 (v)

)
= 𝛾.

The protocol:

1. Let 𝑛 = log 𝑁 , the prover constructs a polynomial

𝑔(X) = 𝐹
(̂
a1(X), · · · , â𝑡 (X)

)
,

where X = (𝑋1, · · · , 𝑋𝑛).
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2. In the first (1-st) round, the prover constructs and sends a univariate polynomial 𝑔𝑛 (𝑋) ∈ F[𝑋], which
is defined as:

𝑔𝑛 (𝑋𝑛) =
∑

𝑣1, · · · ,𝑣𝑛−1∈{0,1}
𝑔(𝑣1, · · · , 𝑣𝑛−1, 𝑋𝑛).

The verifer first checks that 𝑔𝑛 (0) + 𝑔𝑛 (1) = 𝛾 and reject if this equation does not hold. Then, the
verifier samples a uniformly random element 𝑟𝑛 ← F and sends it to the prover.

3. In the 𝑙-th round (1 < 𝑙 < 𝑛), the prover constructs and sends a univariate polynomial 𝑔𝑛+1−𝑙 (𝑋𝑛+1−𝑙) ∈
F[𝑋], which is defined as:

𝑔𝑛+1−𝑙 (𝑋𝑛+1−𝑙) =
∑

𝑣1, · · · ,𝑣𝑛−𝑙∈{0,1}
𝑔(𝑣1, · · · , 𝑣𝑛−𝑙, 𝑋𝑛+1−𝑙, 𝑟𝑛+2−𝑙, · · · , 𝑟𝑛).

The verifer first checks that 𝑔𝑛+1−𝑙 (0) + 𝑔𝑛+1−𝑙 (1) = 𝑔𝑛+2−𝑙 (𝑟𝑛+2−𝑙), where 𝑔𝑛+2−𝑙 is sent in the 𝑙 − 1
round by the prover and 𝑟𝑛+2−𝑙 is sampled in the 𝑙 − 1 round by the verifier. The verifier rejects if this
equation does not hold. Then, the verifier samples a uniformly random element 𝑟𝑛+1−𝑙 ← F and sends
it to the prover.

4. In the final (𝑛-th) round, the prover constructs and sends a univariate polynomial 𝑔1(𝑋) ∈ F[𝑋], which
is defined as:

𝑔1(𝑋1) = 𝑔(𝑋1, 𝑟2, · · · , 𝑟𝑛−1, 𝑟𝑛).

The verifer first checks that 𝑔1(0) + 𝑔1(1) = 𝑔2(𝑟2), where 𝑔2 is sent in the 𝑛 − 1 round by the prover
and 𝑟2 is sampled in the 𝑛 − 1 round by the verifier. The verifier rejects if this equation does not hold.
Next, the verifier samples a uniformly random element 𝑟1 ← F and computes 𝑔1(𝑟1). Then the verifier
queries [ [̂a1]], · · · , [ [̂a𝑡 ]] at r = (𝑟1, · · · , 𝑟𝑛), suppose the returned values are 𝛾1, · · · , 𝛾𝑡 , the verifier
checks that 𝑔1(𝑟1) = 𝐹 (𝛾1, · · · , 𝛾𝑡 ).

Lemma 4.2. The Protocol 1 has perfect completeness.

Proof. The completness follows from the description of the protocol. □

Lemma 4.3. The Protocol 1 has soundness error 1 −
(
1 − 𝑑

|F |

)𝑛
≤ 𝑂

(
log 𝑁
|F |

)
.

Proof. Suppose that
∑

v∈{0,1}𝑛 𝐹
(̂
a1(v), · · · , â𝑡 (v)

)
≠ 𝛾, then it holds that∑

v∈{0,1}𝑛
𝑔(v) ≠ 𝛾.

since 𝐹 is a multivariate polynomial with total degree at most 𝑑 and â1, · · · , â𝑡 are multilinear, it follows that
the individual degree of each variable of 𝑔 is at most 𝑑. Suppose in each round, the malicious prover sends
a polynomial 𝑔∗𝑛+1−𝑙 (𝑋) ∈ F[𝑋] with degree at most 𝑑. (If the degree of 𝑔∗𝑛+1−𝑙 is greater than 𝑑 (more that
𝑑 + 1 coefficients), the verifier will reject immediately.) We prove the soundness error by induction on 𝑛.

• The base case is when 𝑛 = 1. In this case the prover sends a polynomial 𝑔∗1(𝑋) which is claimed to be
equal to 𝑔(𝑋). If 𝑔∗1(𝑋) is actually equal to 𝑔(𝑋), then the verifier will reject, since

𝑔∗1(0) + 𝑔∗1(1) = 𝑔(0) + 𝑔(1) ≠ 𝛾.
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If 𝑔∗1(𝑋) is not equal to 𝑔(𝑋), then from Schwartz-Zipple Lemma, for a uniformly random element 𝑟 ,
the test 𝑔∗1(𝑟) = 𝑔(𝑟) will pass with probability at most 𝑑

|F | = 1 −
(
1 − 𝑑

|F |

)
.

• The inductive step is when 𝑛 > 1, we assume that the soundness error holds for 𝑛 − 1. Suppose the
verifer accepts in the first round (otherwise we are done), then the polynomial 𝑔∗𝑛 (𝑋) sent by the prover
is not equal to 𝑔𝑛 (𝑋), otherwise

𝑔∗𝑛 (0) + 𝑔∗𝑛 (1) = 𝑔𝑛 (0) + 𝑔𝑛 (1) =
∑

v∈{0,1}𝑛
𝑔(v) ≠ 𝛾,

the verifier will reject in the first round. Let 𝐸1 be the event that 𝑔∗𝑛 (𝑟𝑛) ≠ 𝑔𝑛 (𝑟𝑛), then from the
Schwartz-Zipple Lemma, Pr[𝐸1] ≥ 1 − 𝑑

|F | . Let 𝐸2 be the event that the verifier rejects in 𝑖 ≥ 2

round. By induction hypothesis, we know that Pr[𝐸2 |𝐸1] ≥
(
1 − 𝑑

|F |

)𝑛−1
, since 𝑔∗𝑛 (𝑟𝑛) ≠ 𝑔𝑛 (𝑟𝑛) =∑

𝑣1, · · · ,𝑣𝑛−1∈{0,1} 𝑔(𝑣1, 𝑣2, · · · , 𝑣𝑛−1, 𝑟𝑛). Therefore,

Pr[Verifier accepts] = 1 − Pr[Verifier rejects]
= 1 − Pr[𝐸2]
≤ 1 − Pr[𝐸2 |𝐸1] · Pr[𝐸1]

≤ 1 −
(
1 − 𝑑

|F|

)𝑛
.

The second equation holds since we assume that the verifier always accepts in the first round.

□

Lemma 4.4. In the Protocol 1, the round complexity is 𝑂 (log 𝑁), message complexity is 𝑂 (log 𝑁), query
complexity is 𝑂 (1) and the verifier has arithmetic complexity 𝑂 (log 𝑁).

Proof. The round complexity is immediately from the protocol and 𝑛 = log 𝑁 . In each round, the prover
sends an univariate polynomial with degree at most 𝑑, which can be specified by at most 𝑑 + 1 elements.
The verifier sends a random element in each round, Therefore, the total message complexity is (𝑑 + 1) ·
log 𝑁 = 𝑂 (log 𝑁) since we assume 𝑑 is a constant. At the end of the protocol, the verifier should query the
𝑡 polynomial oracles [ [̂a1]], · · · , [ [̂a𝑡 ]] at a random point r = (𝑟1, · · · , 𝑟𝑛), therefore the query complexity
is 𝑂 (1) since we assume 𝑡 is a constant.

In each round, the verifier receives a polynomial 𝑔𝑛+1−𝑙 (𝑋𝑛+1−𝑙), the verifier will sample a random
element and computes 𝑔𝑛+1−𝑙 (𝑟𝑛+1−𝑙), this can be done using 𝑂 (1) field operations. In the last step, the
verifier checks 𝑔1(𝑟1) = 𝐹 (𝛾1, · · · , 𝛾𝑡 ) using 𝑂 (1) field operations. Totally, the arithmetic complexity for
the verifier is 𝑂 (log 𝑁). □

We show how to implement the prover in both random access model and streaming model. In each
round, the prover sends a univariate polynomial 𝑔𝑛+1−𝑙 (𝑋𝑛+1−𝑙) with degree at most 𝑑. The polynomial
𝑔𝑛+1−𝑙 (𝑋𝑛+1−𝑙) is defined as follows:

𝑔𝑛+1−𝑙 (𝑋𝑛+1−𝑙) =
∑

v∈{0,1}𝑛−𝑙
𝐹

(̂
a1(v, 𝑋𝑛+1−𝑙, r), · · · , â𝑡 (v, 𝑋𝑛+1−𝑙, r)

)
. (16)

where v = (𝑣1, · · · , 𝑣𝑛−𝑙) and r = (𝑟𝑛+2−𝑙, · · · , 𝑟𝑛).
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Definition 4.2. Let a ∈ F𝑁 and 𝑁 = 2𝑛 for some integer 𝑛, r = (𝑟1, · · · , 𝑟𝑛) ∈ F𝑛, suppose â is the multilinear
extension of a, for all 0 ≤ 𝑙 ≤ 𝑛, define a vector a(𝑙) ∈ F𝑁/2𝑙 such that for all v ∈ {0, 1}𝑛−𝑙,

a(𝑙) (v) = â(𝑣1, · · · , 𝑣𝑛−𝑙, 𝑟𝑛−𝑙+1, · · · , 𝑟𝑛),

note that a(0) = a and a(𝑛) = â(𝑟1, · · · , 𝑟𝑛).

Lemma 4.5. Let a(𝑙) ∈ F𝑁/2𝑙 and a(𝑙−1) ∈ F𝑁/2(𝑙−1) be two vectors defined from Definition 4.2, then for all
v ∈ {0, 1}𝑛−𝑙:

a(𝑙) (v) = (1 − 𝑟𝑛+1−𝑙) · a(𝑙−1) (𝑣1, · · · , 𝑣𝑛−𝑙, 0) + 𝑟𝑛+1−𝑙 · a(𝑙−1) (𝑣1, · · · , 𝑣𝑛−𝑙, 1)

Proof.
a(𝑙) (v) = â(𝑣1, · · · , 𝑣𝑛−𝑙, 𝑟𝑛−𝑙+1, · · · , 𝑟𝑛)

= (1 − 𝑟𝑛+1−𝑙) · â(𝑣1, · · · , 𝑣𝑛−𝑙, 0, 𝑟𝑛−𝑙+2, · · · , 𝑟𝑛) + 𝑟𝑛+1−𝑙 · â(𝑣1, · · · , 𝑣𝑛−𝑙, 1, 𝑟𝑛−𝑙+2, · · · , 𝑟𝑛)
= (1 − 𝑟𝑛+1−𝑙) · a(𝑙−1) (𝑣1, · · · , 𝑣𝑛−𝑙, 0) + 𝑟𝑛+1−𝑙 · a(𝑙−1) (𝑣1, · · · , 𝑣𝑛−𝑙, 1).

The second equality holds because â is multilinear. □

Lemma 4.6. In the Protocol 1, the prover has arithmetic complexity 𝑂 (𝑁) and space complexity 𝑂 (𝑁) in
the random access model.

Proof. The prover uses the Algorithm 1 to compute 𝑔𝑛+1−𝑙 (𝑋) in each round. In the 𝑙-th round, the prover
first constructs 𝑡 vectors a(𝑙−1)

𝑗 ∈ F𝑁/2𝑙−1 from a(𝑙−2)
𝑗 for all 𝑗 ∈ [𝑡] (lines 9 - 10). Remark that a(0)𝑗 = a 𝑗 ,

so there is no need to construct a(0)𝑗 in the first round. In line 12, the prover computes a linear polynomial
ℎ 𝑗 (𝑋), which is

ℎ 𝑗 (𝑋) = (1 − 𝑋) · a(𝑙−1)
𝑗 (𝑣1, · · · , 𝑣𝑛−𝑙, 0) + 𝑋 · a(𝑙−1)

𝑗 (𝑣1, · · · , 𝑣𝑛−𝑙, 1)

= (1 − 𝑋) · â 𝑗 (𝑣1, · · · , 𝑣𝑛−𝑙, 0, 𝑟𝑛−𝑙+2, · · · , 𝑟𝑛) + 𝑋 · â 𝑗 (𝑣1, · · · , 𝑣𝑛−𝑙, 1, 𝑟𝑛−𝑙+2, · · · , 𝑟𝑛)
= â 𝑗 (𝑣1, · · · , 𝑣𝑛−𝑙, 𝑋, 𝑟𝑛−𝑙+2, · · · , 𝑟𝑛).

From line 14, it can be observed that after iterating 𝑁/2𝑙 times, the final result of 𝑔𝑛+1−𝑙 (𝑋) is∑
𝑣1,...,𝑣𝑛−𝑙∈{0,1}

𝐹
(̂
a1(𝑣1, · · · , 𝑣𝑛−𝑙, 𝑋, 𝑟𝑛−𝑙+2, · · · , 𝑟𝑛), · · · , â𝑡 (𝑣1, · · · , 𝑣𝑛−𝑙, 𝑋, 𝑟𝑛−𝑙+2, · · · , 𝑟𝑛)

)
,

which is the same as Equation 16. Therefore, the output of the prover in each round is correct from Algorithm
1.

In the 𝑙-th round, the arithmetic complexity of prover is 𝑂 (2𝑛−𝑙), since we assume 𝑡 and 𝑑 are con-
stant, the arithmetic complexity of computing 𝐹 (ℎ1(𝑋), · · · , ℎ𝑡 (𝑋)) is 𝑂 (1). Therefore, the total arithmetic
complexity of prover is

∑𝑛
𝑙=1 𝑂 (2𝑛−𝑙) = 𝑂 (2𝑛) = 𝑂 (𝑁).

The space complexity of the prover is 𝑂 (𝑁), as in each round, the prover needs to compute 𝑡 vectors
with a length of 2𝑛−𝑙+1 and store them in memory. □

Lemma 4.7. In the Protocol 1, the prover has arithmetic complexity𝑂 (𝑁 log 𝑁), space complexity𝑂 (log 𝑁)
and makes 𝑂 (log 𝑁) passes over all input streams S(a1), · · · ,S(a𝑡 ) in the streaming model.

20



Algorithm 1: Prover’s algorithm of Protocol 1 in random access model
Input: An instance-witness pair (x,w), all the data is stored in memory.

• instance x =
(
F, 𝑁, 𝑡, 𝑑, 𝐹, [ [̂a1]], · · · , [ [̂a𝑡 ]], 𝛾

)
,

• witness w = (a1, · · · , a𝑡 ).
Output: 𝑔𝑛+1−𝑙 (𝑋) in each (1 ≤ 𝑙 ≤ 𝑛) round.

1 for 𝑙 ← 1 to 𝑛 do
2 if 𝑙 ≠ 1 then
3 Init 𝑡 vectors a(𝑙−1)

𝑗 with length 𝑁/2𝑙−1 = 2𝑛−𝑙+1 for each 𝑗 ∈ [𝑡];
4 end
5 𝑔𝑛+1−𝑙 (𝑋) ← 0 ; // Init the polynomial with degree 𝑑.
6 for 𝑣 ← 0 to 𝑁/2𝑙 − 1 do

// Suppose (𝑣1, · · · , 𝑣𝑛−𝑙) is the binary representation of 𝑣.
7 for 𝑗 ← 1 to 𝑡 do
8 if 𝑙 ≠ 1 then
9 a(𝑙−1)

𝑗 (𝑣1, · · · , 𝑣𝑛−𝑙, 0) ←
(1 − 𝑟𝑛+2−𝑙) · a(𝑙−2)

𝑗 (𝑣1, · · · , 𝑣𝑛−𝑙, 0, 0) + 𝑟𝑛+2−𝑙 · a(𝑙−2)
𝑗 (𝑣1, · · · , 𝑣𝑛−𝑙, 0, 1);

10 a(𝑙−1)
𝑗 (𝑣1, · · · , 𝑣𝑛−𝑙, 1) ←
(1 − 𝑟𝑛+2−𝑙) · a(𝑙−2)

𝑗 (𝑣1, · · · , 𝑣𝑛−𝑙, 1, 0) + 𝑟𝑛+2−𝑙 · a(𝑙−2)
𝑗 (𝑣1, · · · , 𝑣𝑛−𝑙, 1, 1);

// 𝑟𝑛+2−𝑙 is sent by the verifier in (𝑙 − 1)-th round, a(𝑙−2)
𝑗 is constructed by

the prover in (𝑙 − 1)-th round and a(0)𝑗 = a 𝑗 .
11 end
12 ℎ 𝑗 (𝑋) ← (1 − 𝑋) · a(𝑙−1)

𝑗 (𝑣1, · · · , 𝑣𝑛−𝑙, 0) + 𝑋 · a(𝑙−1)
𝑗 (𝑣1, · · · , 𝑣𝑛−𝑙, 1);

// ℎ 𝑗 (𝑋) is a linear polynomial, which can be specified with two field elements
13 end
14 𝑔𝑛+1−𝑙 (𝑋) ← 𝑔𝑛+1−𝑙 (𝑋) + 𝐹 (ℎ1(𝑋), · · · , ℎ𝑡 (𝑋));
15 end
16 Send 𝑔𝑛+1−𝑙 (𝑋) to the verifier;

17 Receive a random element 𝑟𝑛+1−𝑙 from the verifier;

18 end
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Algorithm 2: Streaming algorithm for constructing S(a(𝑙−1)
𝑗 )

Input: Stream S(a 𝑗), field elements 𝑟𝑛, · · · , 𝑟𝑛+2−𝑙.
Output: Stream S(a(𝑙−1)

𝑗 ).
1 init:
2 Init a stack 𝑠 ; // the elements of the stack 𝑠 are pairs (𝑒𝑙𝑒𝑚, 𝑘), where 𝑒𝑙𝑒𝑚 ∈ F and

0 ≤ 𝑘 ≤ 𝑙, 𝑒𝑙𝑒𝑚 is in the vector 𝑎 (𝑘 ) .
3 S(a 𝑗).𝑖𝑛𝑖𝑡 () ; // init the input stream.
4 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0;
5 end
6 next:
7 while 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 2𝑛−𝑙+1 do
8 if 𝑠.𝑠𝑖𝑧𝑒() < 2 then
9 𝑒𝑙𝑒𝑚 ← S(a 𝑗).𝑛𝑒𝑥𝑡 ();

10 𝑠.𝑝𝑢𝑠ℎ(𝑒𝑙𝑒𝑚, 0) ; // If the stack has at most 1 element, push a new element
from S(a 𝑗) into stack.

11 else
12 (𝑒𝑙𝑒𝑚1, 𝑘1) ← 𝑠.𝑝𝑜𝑝();
13 (𝑒𝑙𝑒𝑚2, 𝑘2) ← 𝑠.𝑝𝑜𝑝() ; // Pop two elements from the stack.
14 if 𝑘1 = 𝑘2 then
15 𝑒𝑙𝑒𝑚 ← (1 − 𝑟𝑛−𝑘1) · 𝑒𝑙𝑒𝑚2 + 𝑟𝑛−𝑘1 · 𝑒𝑙𝑒𝑚1;

// If two elements from the same vector a(𝑘1 )
𝑗 , merge them and get a

element in a(𝑘1+1)
𝑗

16 if 𝑘1 == 𝑙 − 2 then
17 yield 𝑒𝑙𝑒𝑚 ; // If the merged element is in a(𝑙−1)

𝑗 , yield it.
18 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + +;
19 end
20 𝑠.𝑝𝑢𝑠ℎ(𝑒𝑙𝑒𝑚, 𝑘1 + 1) ; // Push the new element into stack.
21 else
22 𝑠.𝑝𝑢𝑠ℎ(𝑒𝑙𝑒𝑚2, 𝑘2);
23 𝑠.𝑝𝑢𝑠ℎ(𝑒𝑙𝑒𝑚1, 𝑘1);
24 𝑒𝑙𝑒𝑚 ← S(a 𝑗).𝑛𝑒𝑥𝑡 ();
25 𝑠.𝑝𝑢𝑠ℎ(𝑒𝑙𝑒𝑚, 0) ; // If 𝑒𝑙𝑒𝑚1 and 𝑒𝑙𝑒𝑚2 come from different vectors, push

them back to the stack and push a new element from S(a 𝑗) into stack.
26 end
27 end
28 end
29 end
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Algorithm 3: Prover’s algorithm of Protocol 1 in streaming model
Input: An instance-witness pair (x,w):

• instance x =
(
F, 𝑁, 𝑡, 𝑑, 𝐹, [ [̂a1]], · · · , [ [̂a𝑡 ]], 𝛾

)
, these data is stored in memory,

• witness w = (a1, · · · , a𝑡 ), these vectors are all input in the form of streams S(a1), · · · ,S(a𝑡 ).
Output: 𝑔𝑛+1−𝑙 (𝑋) in each (1 ≤ 𝑙 ≤ 𝑛) round.

1 for 𝑙 ← 1 to 𝑛 do
2 if 𝑙 ≠ 1 then
3 for 𝑗 ← 1 to 𝑡 do
4 S(a(𝑙−1)

𝑗 ).𝑖𝑛𝑖𝑡 () ; // Init 𝑡 streams S(a(𝑙−1)
𝑗 )

5 end
6 end
7 𝑔𝑛+1−𝑙 (𝑋) ← 0 ; // Init the polynomial with degree 𝑑.
8 for 𝑣 ← 0 to 𝑁/2𝑙 − 1 do

// Suppose (𝑣1, · · · , 𝑣𝑛−𝑙) is the binary representation of 𝑣.
9 for 𝑗 ← 1 to 𝑡 do

10 if 𝑙 ≠ 1 then
11 a(𝑙−1)

𝑗 (𝑣1, · · · , 𝑣𝑛−𝑙, 0) ← S(a(𝑙−1)
𝑗 ).𝑛𝑒𝑥𝑡 () ;

12 a(𝑙−1)
𝑗 (𝑣1, · · · , 𝑣𝑛−𝑙, 1) ← S(a(𝑙−1)

𝑗 ).𝑛𝑒𝑥𝑡 () ;

// 𝑟𝑛+2−𝑙 is sent by the verifier in (𝑙 − 1)-th round, S(a(𝑙−1)
𝑗 ) is constructed

using Algorithm 2.
13 end
14 ℎ 𝑗 (𝑋) ← (1 − 𝑋) · a(𝑙−1)

𝑗 (𝑣1, · · · , 𝑣𝑛−𝑙, 0) + 𝑋 · a(𝑙−1)
𝑗 (𝑣1, · · · , 𝑣𝑛−𝑙, 1);

// ℎ 𝑗 (𝑋) is a linear polynomial, which can be specified with two field elements
15 end
16 𝑔𝑛+1−𝑙 (𝑋) ← 𝑔𝑛+1−𝑙 (𝑋) + 𝐹 (ℎ1(𝑋), · · · , ℎ𝑡 (𝑋));
17 end
18 Send 𝑔𝑛+1−𝑙 (𝑋) to the verifier;
19 𝑟𝑛+1−𝑙 ← 𝑉 ; // Receive a random element from verifier.
20 end
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Proof. In the streaming model, the vector a1, · · · , a𝑡 are provided as 𝑡 streams S(a1), · · · ,S(a𝑡 ) to the
prover. In Algorithm 1, the prover constructs a new vector a(𝑙−1)

𝑗 in the 𝑙-th round. In the streaming model,
we can view the process of constructing this vector as building a stream S(a(𝑙−1)

𝑗 ). The prover can use this
stream to compute the polynomial ℎ 𝑗 (𝑋), as the polynomial ℎ 𝑗 (𝑋) is constructed from adjacent elements
in this stream. In the 𝑙-th round, the prover should constructs a new vector a(𝑙−1)

𝑗 from a(𝑙−2)
𝑗 . However, the

vector a(𝑙−2)
𝑗 is no longer stored in memory, therefore, the prover should constructs the streamS(a(𝑙−1)

𝑗 ) from
the input stream S(a 𝑗). We present the streaming algorithm for constructing stream a(𝑙−1)

𝑗 in Algorithm 2
(remenber that a stream supports two operations: init and next). We use the keyword yield (from Python)
to output the next element of a stream.

We initialize a stack 𝑠 to store the “rightmost” two elements of each vector. If 𝑠 has at most one element,
then we read a element from S(a 𝑗) and push it to 𝑠. If 𝑠 has more than one element, we pop two elements
from 𝑠. If this two elements 𝑒𝑙𝑒𝑚1 and 𝑒𝑙𝑒𝑚2 are in the same vector, say a(𝑘1 )

𝑗 , then they must be adjacent.
Suppose

• 𝑒𝑙𝑒𝑚1 = a(𝑘1 )
𝑗 (𝑣1, · · · , 𝑣𝑛−𝑘1−1, 1) = â 𝑗 (𝑣1, · · · , 𝑣𝑛−𝑘1−1, 1, 𝑟𝑛−𝑘1+1, · · · , 𝑟𝑛),

• 𝑒𝑙𝑒𝑚2 = a(𝑘1 )
𝑗 (𝑣1, · · · , 𝑣𝑛−𝑘1−1, 0) = â 𝑗 (𝑣1, · · · , 𝑣𝑛−𝑘1−1, 0, 𝑟𝑛−𝑘1+1, · · · , 𝑟𝑛),

for some 𝑣1, · · · , 𝑣𝑛−𝑘1 ∈ F (since 𝑒𝑙𝑒𝑚1 is popped before 𝑒𝑙𝑒𝑚2, 𝑒𝑙𝑒𝑚1 is in the “right” side of 𝑒𝑙𝑒𝑚2).
Then in line 15, the prover computes a new element:

𝑒𝑙𝑒𝑚 = (1 − 𝑟𝑛−𝑘1) · 𝑒𝑙𝑒𝑚2 + 𝑟𝑛−𝑘1 · 𝑒𝑙𝑒𝑚1

= (1 − 𝑟𝑛−𝑘1) · â 𝑗 (𝑣1, · · · , 𝑣𝑛−𝑘1−1, 0, 𝑟𝑛−𝑘1+1, · · · , 𝑟𝑛) + 𝑟𝑛−𝑘1 · â 𝑗 (𝑣1, · · · , 𝑣𝑛−𝑘1−1, 1, 𝑟𝑛−𝑘1+1, · · · , 𝑟𝑛)
= â 𝑗 (𝑣1, · · · , 𝑣𝑛−𝑘1−1, 𝑟𝑛−𝑘1 , 𝑟𝑛−𝑘1+1, · · · , 𝑟𝑛)
= a(𝑘1+1)

𝑗 (𝑣1, · · · , 𝑣𝑛−𝑘1−1).

If 𝑘1 + 1 = 𝑙 − 1, then yield 𝑒𝑙𝑒𝑚 since it is in the target vector a(𝑙−1)
𝑗 . If 𝑘1 + 1 ≠ 𝑙 − 1, push it into the stack

as it is the “rightmost” element of vector a(𝑘1+1)
𝑗 at this moment. If 𝑒𝑙𝑒𝑚1 and 𝑒𝑙𝑒𝑚2 are in different vectors,

then we push them back to the stack and push a new element from S(a 𝑗) into stack.

The space cost of Algorithm 2 is primarily from the stack. Since each vector has at most two elements
in the stack (in fact, most vectors have only one element in the stack), the space complexity of the algorithm
is 𝑂 (𝑙). Each element in the vector a(𝑙−1)

𝑗 requires 𝑂 (1 + 2 + 4 + · · · + 2𝑙−2) = 𝑂 (2𝑙−1) field operations for
construction. As a result, the overall arithmetic complexity is 𝑂 (2𝑙−1) · 𝑂 (𝑁/2𝑙−1) = 𝑂 (𝑁). Furthermore,
the Algorithm 2 just makes one pass to the input stream S(a 𝑗).

In the streaming model, the prover invokes Algorithm 2 to generate the polynomial 𝑔𝑛+1−𝑙 (𝑋) in Protocol
1. The prover uses the Algorithm 3 to compute 𝑔𝑛+1−𝑙 (𝑋) in each round. Except for the 𝑡 vectors a1, · · · , a𝑡 ,
all other data is stored in memory, as the space occupied by these data is relatively small. The processes
of Algorithm 3 and Algorithm 1 are essentially the same, except that each element in vector a is derived
from the stream generated by Algorithm 2. We use a yellow background to distinguish it from Algorithm 1.
Therefore, the correctness of Algorithm 3 comes from the correctness of Algorithms 1 and 2.

Based on the previous analysis, the space complexity of the algorithm generating stream S(a(𝑙−1)
𝑗 )

in the 𝑙-th round is 𝑂 (𝑙). Therefore, the overall space complexity is 𝑂 (log 𝑁). We have showed that
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S(a(𝑙−1)
𝑗 ).𝑛𝑒𝑥𝑡 () takes 𝑂 (2𝑙−1) field operations to yield an element, it follows that arithmetic complexity

in each round is 𝑂 (2𝑛−𝑙 ·2 ·2𝑙−1) = 𝑂 (2𝑛) = 𝑂 (𝑁). Therefore, the total arithmetic complexity for the prover
is
∑𝑛
𝑙=1 𝑂 (𝑁) = 𝑂 (𝑁 · log 𝑁). In each round, Algorithm 2 makes one pass over each streams. Therefore, in

total, the prover makes 𝑂 (log 𝑁) passes over each streams S(a1), · · · ,S(a𝑡 ). □

4.2 ZeroCheck PIOP

Definition 4.3. The ZeroCheck relation R𝑍𝐸𝑅𝑂 is the set of tuples

(x,w) =
( (
F, 𝑁, 𝑡, 𝑑, 𝐹, [ [̂a1]], · · · , [ [̂a𝑡 ]]

)
, (a1, · · · , a𝑡 )

)
,

where

• 𝑁, 𝑡, 𝑑 ∈ N, 𝑁 = 2𝑛 for some integer 𝑛 and 𝑡, 𝑑 are constants.
• 𝐹 (X) ∈ F[𝑋1, · · · , 𝑋𝑡 ] is a multivariate polynomials with 𝑡 variables and total degree at most 𝑑.
• a1, · · · , a𝑡 ∈ F𝑁 are 𝑡 vectors with length 𝑁 ,
• [ [̂a1]], · · · , [ [̂a𝑡 ]] are polynomial oracles which compute â1, · · · , â𝑡 , the multilinear extensions of

a1, · · · , a𝑡 .
• 𝐹

(̂
a1(v), · · · , â𝑡 (v)

)
= 0 for all v ∈ {0, 1}𝑛.

Theorem 4.8. There is a polynomial IOP for relation R𝑍𝐸𝑅𝑂 with the following properties:

Table 3: Properties of ZeroCheck protocol

round message query soundness verifier’s
complexity complexity complexity error time

𝑂 (log 𝑁) 𝑂 (log 𝑁) 𝑂 (1) 𝑂
(

log 𝑁
|F |

)
𝑂 (log 𝑁)

Moreover,

• in the random access model, the prover has arithmetic complexity 𝑂 (𝑁) and space complexity 𝑂 (𝑁),
• in the streaming model, the prover has arithmetic complexity 𝑂 (𝑁 log 𝑁), space complexity 𝑂 (log 𝑁)

and makes 𝑂 (log 𝑁) passes over all input streams.

Protocol 2. ZeroCheck protocol:
Inputs.

• Prover’s input:
– instance x =

(
F, 𝑁, 𝑡, 𝑑, 𝐹, [ [̂a1]], · · · , [ [̂a𝑡 ]]

)
,

– witness w = (a1, · · · , a𝑡 ).
• Verifier’s input:

– instance x =
(
F, 𝑁, 𝑡, 𝑑, 𝐹, [ [̂a1]], · · · , [ [̂a𝑡 ]]

)
.

Goal.

• The prover convinces the verifer that 𝐹
(̂
a1(v), · · · , â𝑡 (v)

)
= 0 for all v ∈ {0, 1}𝑛.

The protocol:
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1. Let 𝑛 = log 𝑁 , the verifier randomly samples 𝝆 = (𝜌1, 𝜌2, · · · , 𝜌𝑛) ∈ F𝑛, sends to the prover.
2. The prover constructs a vector T𝝆 ∈ F𝑁 :

T𝝆 = (1 − 𝜌1, 𝜌1) ⊗ (1 − 𝜌2, 𝜌2) ⊗ · · · ⊗ (1 − 𝜌𝑛, 𝜌𝑛).

3. Let
• x
′ =

(
F, 𝑁, 𝑡 + 1, 𝑑 + 1, 𝐹′, [ [̂a1]], · · · , [ [̂a𝑡 ]], [ [̂a𝑡+1]], 0

)
,

• w
′ = (a1, · · · , a𝑡 , a𝑡+1),

where 𝐹′(𝑋1, · · · , 𝑋𝑡 , 𝑋𝑡+1) = 𝐹 (𝑋1, · · · , 𝑋𝑡 ) · 𝑋𝑡+1 and a𝑡+1 = T𝝆. The prover and verifier invoke
SumCheck protocol for checking that (x′,w′) ∈ R𝑆𝑈𝑀 .

Note that the verifer has virtual oracle access to [ [̂a𝑡+1]] = [[T̂𝝆]], since T̂𝝆 (X) = êq(𝝆,X).

Lemma 4.9. The Protocol 2 has perfect completeness.

Proof. Suppose that 𝐹
(̂
a1(v), · · · , â𝑡 (v)

)
= 0 for all v ∈ {0, 1}𝑛, then∑

v∈{0,1}𝑛
𝐹′

(̂
a1(v), · · · , â𝑡 (v), â𝑡+1(v)

)
=

∑
v∈{0,1}𝑛

𝐹
(̂
a1(v), · · · , â𝑡 (v)

)
· â𝑡+1(v)

=
∑

v∈{0,1}𝑛
𝐹

(̂
a1(v), · · · , â𝑡 (v)

)
· êq(𝝆, v)

= 0.
It follows that (x′,w′) ∈ R𝑆𝑈𝑀 . The completness of this protocol then follows from the completeness of
SumCheck protocol. □

Lemma 4.10. The Protocol 2 has soundness error 𝑂
(

log 𝑁
|F |

)
.

Proof. Let a ∈ F𝑁 such that for all v ∈ {0, 1}𝑛, a(v) = 𝐹
(̂
a1(v), · · · , â𝑡 (v)

)
, suppose that a ≠ 0, then from

Corollary 3.4, it holds that

Pr𝝆←F𝑛
[〈

a,T𝝆

〉
= 0

]
≤ 𝑛

|F| =
log 𝑁

F
.

Suppose that
〈
a,T𝝆

〉
≠ 0, then∑

v∈{0,1}𝑛
𝐹′

(̂
a1(v), · · · , â𝑡 (v), â𝑡+1(v)

)
=

∑
v∈{0,1}𝑛

𝐹
(̂
a1(v), · · · , â𝑡 (v)

)
· â𝑡+1(v)

=
∑

v∈{0,1}𝑛
a(v) · êq(𝝆, v)

=
〈
a,T𝝆

〉
≠ 0.

It follows that (x′,w′) ∉ R𝑆𝑈𝑀 . From the soundness of SumCheck protocol, the verifier will accept with
probability at most 𝑂

(
log 𝑁
|F |

)
. Therefore,

Pr [Verifier accepts] ≤ Pr
[
Verifier accepts

�� 〈a,T𝝆

〉
≠ 0

]
+ Pr

[〈
a,T𝝆

〉
= 0

]
≤ 𝑂

(
log 𝑁

|F|

)
.

□
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Lemma 4.11. In the Protocol 2, the round complexity is 𝑂 (log 𝑁), message complexity is 𝑂 (log 𝑁), query
complexity is 𝑂 (1) and the verifier has arithmetic complexity 𝑂 (log 𝑁).

Proof. In the step 1 of this protocol, the verifier sends log 𝑁 random elements to the prover. The overhead
in the latter part of the protocol is all due to the SumCheck protocol. This lemma follows from Theorem 4.1.
Note that â𝑡+1(X) = êq(𝝆,X), the verifier can computes â𝑡+1(X) at any points by himself using 𝑂 (log 𝑁)
field operations. □

Lemma 4.12. In the Protocol 2, the prover has arithmetic complexity 𝑂 (𝑁) and space complexity 𝑂 (𝑁) in
the random access model.

Proof. The vector T𝝆 can be constructed using 𝑂 (𝑁) field operations and 𝑂 (𝑁) space, the lemma then
follows from Theorem 4.1. □

Lemma 4.13. In the Protocol 2, the prover has arithmetic complexity𝑂 (𝑁 log 𝑁), space complexity𝑂 (log 𝑁)
and makes 𝑂 (log 𝑁) passes over all input streams S(a1), · · · ,S(a𝑡 ) in the streaming model.

Proof. In the streaming model, the prover can’t construct the vector a𝑡+1 = T𝝆 explicitly, since it takes large
space to store. Recall that in 𝑙-th round of the SumCheck protocol, the prover should compute a(𝑙−1)

𝑡+1 (v) for
all v ∈ {0, 1}𝑛−𝑙+1, each element takes 𝑂 (log 𝑁) field operations to construct since

a(𝑙−1)
𝑡+1 (v) = êq(𝝆, 𝑣1, · · · , 𝑣𝑛−𝑙+1, 𝑟𝑛−𝑙+2, · · · , 𝑟𝑛). (17)

We have showed that a(𝑙−1)
𝑗 (v) takes 𝑂 (2𝑙−1) field operations to construct for 𝑗 ∈ [𝑡] from the input stream

S(a 𝑗). It follows that in each round of the SumCheck protocol, the arithmetic complexity is 2𝑛−𝑙 ·𝑂 (log 𝑁 +
2𝑙−1) = 𝑂 (𝑁 · log 𝑁/2𝑙 + 𝑁). Therefore, the total arithmetic complexity is

∑𝑛
𝑙=1 𝑂 (𝑁 · log 𝑁/2𝑙 + 𝑁) =

𝑂 (𝑁 log 𝑁). The space complexity remains 𝑂 (log 𝑁). □

4.3 Cyclic Shift Left Check PIOP

Definition 4.4. The cyclic shift left relation R𝐶𝑆𝐿 is the set of tuples

(x,w) =
( (
F, 𝑁, [ [̂z]], [ [̂z𝜎]]

)
, (z, z𝜎)

)
,

where

• 𝑁 = 2𝑛 for some integer 𝑛,
• z, z𝜎 ∈ F𝑁 .
• [ [̂z]], [ [̂z𝜎]] are polynomial oracles which compute ẑ, ẑ𝜎 the multilinear extensions of z, z𝜎 .
• z𝜎 is the cyclic shift left of z, i.e.,

z𝜎 = (𝑧1, 𝑧2, · · · , 𝑧𝑁−1, 𝑧0) .

Theorem 4.14. There is a polynomial IOP for relation R𝐶𝑆𝐿 with the following properties:

Moreover,

• in the random access model, the prover has arithmetic complexity 𝑂 (𝑁) and space complexity 𝑂 (𝑁),
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Table 4: Properties of cyclic shift left protocol

round message query soundness verifier’s
complexity complexity complexity error time

𝑂 (log 𝑁) 𝑂 (log 𝑁) 𝑂 (1) 𝑂
(

log 𝑁
|F |

)
𝑂 (log 𝑁)

• in the streaming model, the prover has arithmetic complexity 𝑂 (𝑁 log 𝑁), space complexity 𝑂 (log 𝑁)
and makes 𝑂 (log 𝑁) passes over all input streams.

Definition 4.5. Let 𝑁 be a positive integer and 𝑁 = 2𝑛 for some integer 𝑛, define cnext : {0, 1}𝑛×{0, 1}𝑛 →
{0, 1} be a function such that for all i, j ∈ {0, 1}𝑛, cnext(i, j) = 1 if and only if 𝑗 = (𝑖 + 1) mod 𝑁 , where
𝑖 = toDecimal(i) and 𝑗 = toDecimal(j).

Lemma 4.15. Let z, z𝜎 ∈ F𝑁 , 𝑁 = 2𝑛 for some integer 𝑛, z𝜎 is the cyclic shift left of z if and only if for any
i ∈ {0, 1}𝑛,

z𝜎 (i) =
∑

j∈{0,1}𝑛
cnext(i, j) · z(j). (18)

Moreover, Let ẑ, ẑ𝜎 : F𝑛 → F and �cnext : F𝑛 × F𝑛 → F be the multilinear extension of z, z𝜎 , cnext, then z𝜎

is the cyclic shift left of z if and only if

ẑ𝜎 (X) =
∑

j∈{0,1}𝑛
�cnext(X, j) · ẑ(j). (19)

Proof. For any 0 ≤ 𝑖, 𝑗 < 𝑁 , let i = toBinary(𝑖) and j = toBinary( 𝑗). We have∑
j∈{0,1}𝑛

cnext(i, j) · z(j) = cnext(i, toBinary((𝑖 + 1) mod 𝑁)) · z(toBinary((𝑖 + 1) mod 𝑁))

= z(toBinary((𝑖 + 1) mod 𝑁)) = 𝑧 (𝑖+1) mod 𝑁 .

If z𝜎 is the cyclic shift left of z, then

z𝜎 (i) = 𝑧𝜎𝑖 = 𝑧 (𝑖+1) mod 𝑁 =
∑

j∈{0,1}𝑛
cnext(i, j) · z(j),

the Equation 18 holds. Similarly, if the Equation 18 holds, then

𝑧𝜎𝑖 = z𝜎 (i) =
∑

j∈{0,1}𝑛
cnext(i, j) · z(j) = 𝑧 (𝑖+1) mod 𝑁 ,

z𝜎 is the cyclic shift left of z.

The sencond part of the lemma holds because the left side and right side of Equation 19 are multilinear
polynomials and the multilinear extension is unique. □

Lemma 4.16. Let �cnext : F𝑛 × F𝑛 → F be the multilinear extension of cnext, then for any (r, r′) ∈ F𝑛 × F𝑛,�cnext(r, r′) can be computed with 𝑂 (𝑛) = 𝑂 (log 𝑁) field operations.

Proof. Let next : {0, 1}𝑛 × {0, 1}𝑛 → {0, 1} be a function with the same functionality as next, except that
next(1, j) = 0 for any j ∈ {0, 1}𝑛. Let n̂ext be the multilinear extension of next, Setty et al. [21] provides the
explicit expression for the function n̂ext.

n̂ext(𝑋1, · · · , 𝑋𝑛, 𝑌1, · · · , 𝑌𝑛) = ℎ(𝑋1, · · · , 𝑋𝑛, 𝑌1, · · · , 𝑌𝑛) + 𝑔(𝑋1, · · · , 𝑋𝑛, 𝑌1, · · · , 𝑌𝑛),
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where
ℎ(𝑋1, · · · , 𝑋𝑛, 𝑌1, · · · , 𝑌𝑛) = (1 − 𝑋𝑛) · 𝑌𝑛 · êq(𝑋1, · · · , 𝑋𝑛−1, 𝑌1, · · · , 𝑌𝑛−1)

and
𝑔(𝑋1, · · · , 𝑋𝑛, 𝑌1, · · · , 𝑌𝑛)

equals
𝑛−1∑
𝑘=1

(
𝑘−1∏
𝑖=0

𝑋𝑛−𝑖 (1 − 𝑌𝑛−𝑖)
)
· (1 − 𝑋𝑛−𝑘) · 𝑌𝑛−𝑘 · êq(𝑋1, · · · , 𝑋𝑛−𝑘−1, 𝑌1, · · · , 𝑌𝑛−𝑘−1).

From n̂ext, it is easy to construct the multiliear polynomial �cnext,�cnext(X,Y) = n̂ext(X,Y) + 𝑋1 · 𝑋2 · · · 𝑋𝑛 · (1 − 𝑌1) · (1 − 𝑌2) · · · (1 − 𝑌𝑛).

For any i, j ∈ {0, 1}𝑛, if i ≠ 1, then 𝑖1 · 𝑖2 · · · 𝑖𝑛 = 0 and �cnext(i, j) = n̂ext(i, j). If i = 1, then next(1, j) = 0
for any j, �cnext(1, j) = 1 if and only if (1 − 𝑗1) · · · (1 − 𝑗𝑛) = 1, which means that j = 0. Since n̂ext(r, r′)
can be evaluated in 𝑂 (𝑛) = 𝑂 (log 𝑁) field operations, the same fact also holds for �cnext(r, r′) □

Protocol 3. Cyclic shift left protocol:
Inputs.

• Prover’s input:
– instance x =

(
F, 𝑁, [ [̂z]], [ [̂z𝜎]]

)
,

– witness w = (z, z𝜎).
• Verifier’s input:

– instance x =
(
F, 𝑁, [ [̂z]], [ [̂z𝜎]]

)
.

Goal.

• The prover convinces the verifer that z𝜎 is the cyclic shift left vector of z.

The protocol:

1. Let 𝑛 = log 𝑁 , the verifier samples 𝝆 = (𝜌1, · · · , 𝜌𝑛) ∈ F𝑛 and queries [ [̂z𝜎]] at 𝝆, suppose the
returned value is 𝛾. The verifier then sends 𝝆 to the prover.

2. The prover constructs a vector 𝒂𝝆 ∈ F𝑁 , for all v ∈ {0, 1}𝑛:

𝒂𝝆 (v) = �cnext(𝝆, v).

3. Let
• x
′ =

(
F, 𝑁, 𝑡, 𝑑, 𝐹, [[ 𝒂̂𝝆]], [ [̂z]], 𝛾

)
,

• w
′ =

(
𝒂𝝆, z

)
,

where 𝑡 = 2, 𝑑 = 2 and 𝐹 (𝑋1, 𝑋2) = 𝑋1 · 𝑋2. The prover and verifier invoke the SumCheck protocol
for checking that (x′,w′) ∈ R𝑆𝑈𝑀 .

Note that the verifer has virtual oracle access to [ [̂a𝝆]], since â𝝆 (X) = �cnext(𝝆,X).

Lemma 4.17. The Protocol 3 has perfect completeness.
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Proof. Suppose that ẑ𝜎 is the shift left vector of z, then from Lemma 4.15, it follows that

ẑ𝜎 (X) =
∑

j∈{0,1}𝑛
�cnext(X, j) · ẑ(j).

Suppose the verifier queries the oracle [ [̂z𝜎]] with 𝝆 and the returned value is 𝛾 then ẑ𝜎 (𝝆) = 𝛾. Suppose
𝒂𝝆 ∈ F𝑁 is a vector such that for all v ∈ {0, 1}𝑛, 𝒂𝝆 (v) = �cnext(𝝆, v), then∑

j∈{0,1}𝑛
𝐹

(̂
a𝝆 (j), ẑ(j)

)
=

∑
j∈{0,1}𝑛

â𝝆 (j) · ẑ(j)

=
∑

j∈{0,1}𝑛
�cnext(𝝆, j) · ẑ(j)

= ẑ𝜎 (𝜌) = 𝛾.

It follows that (x′,w′) ∈ R𝑆𝑈𝑀 . The completness of this protocol then follows from the completeness of
SumCheck protocol. □

Lemma 4.18. The Protocol 3 has soundness error 𝑂
(

log 𝑁
|F |

)
.

Proof. Suppose that z𝜎 is not the shift left vector of z, then from Lemma 4.15, it follows that

ẑ𝜎 (X) ≠
∑

j∈{0,1}𝑛
�cnext(X, j) · ẑ(j).

For a vector 𝝆 ∈ F𝑛, define a event 𝐸 such that

ẑ𝜎 (𝝆) =
∑

j∈{0,1}𝑛
�cnext(𝝆, j) · ẑ(j),

then from Schwartz-Zipple lemma, Pr𝝆←F𝑛 [𝐸] ≤ 𝑛
|F | =

log 𝑁
|F | . Suppose the verifier queries the oracle [ [̂z𝜎]]

and the returned value is 𝛾 then ẑ𝜎 (𝝆) = 𝛾, if the event 𝐸 does not happen, it follows that∑
j∈{0,1}𝑛

𝐹
(̂
a𝝆 (j), ẑ(j)

)
=

∑
j∈{0,1}𝑛

�cnext(𝝆, j) · ẑ(j) ≠ ẑ𝜎 (𝝆) = 𝛾.

It follows that (x′,w′) ∉ R𝐺𝑆𝑃 . From the soundness of SumCheck protocol, the verifier will accept
with probability at most 𝑂

(
log 𝑁
|F |

)
if the event 𝐸 does not happen. Therefore,

Pr [Verifier accepts] ≤ Pr
[
Verifier accepts

��𝐸 ]
+ Pr [𝐸]

≤ 𝑂

(
log 𝑁

|F|

)
.

□

Lemma 4.19. In the Protocol 3, the round complexity is 𝑂 (log 𝑁), message complexity is 𝑂 (log 𝑁), query
complexity is 𝑂 (1) and the verifier has arithmetic complexity 𝑂 (log 𝑁).

Proof. The verifier first sends log 𝑁 random elements to the prover. The overhead in the latter part of the
protocol is all due to the SumCheck protocol. This lemma follows from Theorem 4.1. The verifier can
computes 𝒂̂𝝆 (r) = �cnext(𝝆, r) using 𝑂 (log 𝑁) field operations from Lemma 4.16. □

Lemma 4.20. In the Protocol 3, the prover has arithmetic complexity 𝑂 (𝑁) and space complexity 𝑂 (𝑁) in
the random access model.
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Proof. Let 𝑻𝝆 = (1 − 𝜌1, 𝜌1) ⊗ (1 − 𝜌2, 𝜌2) ⊗ · · · ⊗ (1 − 𝜌𝑛, 𝜌𝑛), it is not hard to check that the vector 𝒂𝝆 is
the cyclic shift right of 𝑻𝝆. For any 0 ≤ 𝑣 < 𝑁 , let v = toBinary(𝑣),

𝑎𝜌,𝑣 = 𝒂𝝆 (v) = �cnext(𝝆, v) =
∑

i,j∈{0,1}𝑛
cnext(i, j) · êq(i, 𝝆) · êq(j, v)

=
∑

i∈{0,1}𝑛
cnext(i, v) · êq(i, 𝝆)

= êq(toBinary(𝑣 − 1), 𝝆) = 𝑻𝝆 (toBinary(𝑣 − 1))
= 𝑇𝜌,𝑣−1,

we assume that 𝑇𝜌,−1 = 𝑇𝜌,𝑁−1, it follows that 𝒂𝝆 = (𝑇𝜌,𝑁−1, 𝑇𝜌,0, · · · , 𝑇𝜌,𝑁−2). Since 𝑻𝝆 can be constructed
using 𝑂 (𝑁) field operation and 𝑂 (𝑁) space, the vector 𝒂𝝆 can also be constructed using 𝑂 (𝑁) field opera-
tions and 𝑂 (𝑁) space. From Theorem 4.1, the prover has aritmetic complexity 𝑂 (𝑁) and space complexity
𝑂 (𝑁). □

Lemma 4.21. In the Protocol 3, the prover has arithmetic complexity𝑂 (𝑁 log 𝑁), space complexity𝑂 (log 𝑁)
and makes 𝑂 (log 𝑁) passes over all input streams in the streaming model.

Proof. In the streaming model, the prover can’t construct the vector 𝒂𝝆 explicitly, since it takes large space
to store. Recall that in 𝑙-th round of the SumCheck protocol, the prover should compute 𝒂𝝆

(𝑙−1) (v) for all
v ∈ {0, 1}𝑛−𝑙+1, each element takes 𝑂 (log 𝑁) field operations to construct since

𝒂𝝆
(𝑙−1) (v) = �cnext(𝝆, 𝑣1, · · · , 𝑣𝑛−𝑙+1, 𝑟𝑛−𝑙+2, · · · , 𝑟𝑛). (20)

The element z(𝑙−1) (v) takes 𝑂 (2𝑙−1) field operations to construct from the input stream S(z). It follows
that in each round of the SumCheck protocol, the arithmetic complexity is 2𝑛−𝑙 · 𝑂 (log 𝑁 + 2𝑙−1) = 𝑂 (𝑁 ·
log 𝑁/2𝑙 + 𝑁). Therefore, the total arithmetic complexity is

∑𝑛
𝑙=1 𝑂 (𝑁 · log 𝑁/2𝑙 + 𝑁) = 𝑂 (𝑁 log 𝑁). The

space complexity remains 𝑂 (log 𝑁). □

4.4 Product Check PIOP

Definition 4.6. The rational product relation R𝑅𝑃𝑅𝑂𝐷 is the set of tuples

(x,w) =
( (
F, 𝑁, [ [̂z1]], [ [̂z2]]

)
, (z1, z2)

)
,

where

• 𝑁 = 2𝑛 for some integer 𝑛,
• z1, z2 ∈ F𝑁 ,
• [ [̂z1]] and [ [̂z2]] are a polynomial oracles which compute ẑ1 and ẑ2, the multilinear extensions of z1

and z2.
•
∏

v∈{0,1}𝑛
z1 (v)
z2 (v) = 1.

Theorem 4.22. There is a polynomial IOP for relation R𝑃𝑅𝑂𝐷 with the following properties:

Moreover,

• in the random access model, the prover has arithmetic complexity 𝑂 (𝑁) and space complexity 𝑂 (𝑁),
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Table 5: Properties of product check protocol

round message query soundness verifier’s
complexity complexity complexity error time

𝑂 (log 𝑁) 𝑂 (log 𝑁) 𝑂 (1) 𝑂
(

log 𝑁
|F |

)
𝑂 (log 𝑁)

• in the streaming model, the prover has arithmetic complexity 𝑂 (𝑁 log 𝑁), space complexity 𝑂 (log 𝑁)
and makes 𝑂 (log 𝑁) passes over the input streams.

Protocol 4. Product Check protocol:
Inputs.

• Prover’s input:
– instance x =

(
F, 𝑁, [ [̂z1]], [ [̂z2]]

)
,

– witness w = (z1, z2).
• Verifier’s input:

– instance x =
(
F, 𝑁, [ [̂z1]], [ [̂z2]]

)
.

Goal.

• The prover convinces the verifer that
∏

v∈{0,1}𝑛
z1 (v)
z2 (v) = 1.

The protocol:

1. Let 𝑛 = log 𝑁 , the prover constructs a vector z ∈ F𝑁 , such that for all v ∈ {0, 1}𝑛,

z(v) = z1(v)
z2(v)

.

The prover sends the polynomial oracle [ [̂z]] to the verifier.
2. Let 𝑛 = log 𝑁 , the prover constructs a vector a ∈ F𝑁 , such that 𝑎0 = 1 and for all 0 < 𝑣 < 𝑁 ,

𝑎𝑣 =
𝑣−1∏
𝑗=0

𝑧 𝑗 ,

i.e., a =
(
1, 𝑧0, 𝑧0 · 𝑧1, · · · ,

∏𝑁−2
𝑗=0 𝑧 𝑗

)
. Let a𝜎 be the cyclic shift left of a. The prover sends the

polynomial oracles [ [̂a]] and [ [̂a𝜎]] to the verifier.
3. The verifer queries [ [̂a]] at (0, · · · 0), and rejects if the returned value is not 1.
4. Let

• x1 =
(
F, 𝑁, [ [̂a]], [ [̂a𝜎]]

)
,

• w1 = (a, a𝜎).
The prover and verifier invoke the cyclic shift left protocol for checking that (x1,w1) ∈ R𝐶𝑆𝐿 .

5. Let a1 = z| |z, a2 = z2 | |a, a3 = z1 | |a𝜎 , and let
• x2 =

(
F, 2𝑁, 𝑡, 𝑑, 𝐹, [ [̂a1]], [ [̂a2]], [ [̂a3]]

)
,

• w2 = (a1, a2, a3),
where 𝑡 = 3, 𝑑 = 2 and 𝐹 (𝑋1, 𝑋2, 𝑋3) = 𝑋1 · 𝑋2 − 𝑋3. The prover and verifier invoke the ZeroCheck
protocol for checking that (x2,w2) ∈ R𝑍𝐸𝑅𝑂.
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Note that the verifer has virtual oracle access to [ [̂a1]], [ [̂a2]], [ [̂a3]], since if a = b| |c, then

â(𝑋1, 𝑋2, · · · , 𝑋𝑛+1) = (1 − 𝑋1) · b̂(𝑋2, · · · , 𝑋𝑛+1) + 𝑋1 · ĉ(𝑋2, · · · , 𝑋𝑛+1).

Lemma 4.23. The Protocol 4 has perfect completeness.

Proof. Suppose that
∏

v∈{0,1}𝑛
z1 (v)
z2 (v) = 1, if z, a and a𝜎 are generated honestly, then

a = ©­«1, 𝑧0, 𝑧0 · 𝑧1, · · · ,
𝑁−2∏
𝑗=0

𝑧 𝑗
ª®¬ ,

a𝜎 = ©­«𝑧0, 𝑧0 · 𝑧1, · · · ,
𝑁−2∏
𝑗=0

𝑧 𝑗 , 1
ª®¬ .

It follows that z◦z2 = z1, z◦a = a𝜎 and a1◦a2−a3 = 0, therefore, (x1,w1) ∈ R𝐶𝑆𝐿 and (x2,w2) ∈ R𝑍𝐸𝑅𝑂.
The completeness follows from the completeness of cyclic shift left protocol and ZeroCheck protocol. □

Lemma 4.24. The Protocol 4 has soundness error 𝑂
(

log 𝑁
|F |

)
.

Proof. Assuming verifier receives polynomial oracles [ [̂z∗]], [ [̂a∗]] and [ [̂a𝜎∗]] in step 1 and 2, where

z∗ =
(
𝑧∗0, 𝑧

∗
1, · · · , 𝑧∗𝑁−1

)
a∗ =

(
1, 𝑎∗1, · · · , 𝑎∗𝑁−1

)
a𝜎

∗
=

(
𝑎𝜎

∗
0 , 𝑎𝜎

∗
1 , · · · , 𝑎𝜎∗𝑁−1

)
are generated arbitray by the prover (the first element of 𝑎∗ is always 1, otherwise the verifier will reject in
step 3). We will prove that if the following conditions hold, then

∏
v∈{0,1}𝑛

z1 (v)
z2 (v) = 1:

• z∗ ◦ z2 = z1,
• z∗ ◦ a∗ = a𝜎∗ ,
• a𝜎∗ is the cyclic shift left vector of a∗.

From z∗ ◦ a∗ = a𝜎∗ , we can deduce that

a𝜎
∗
=

(
𝑧∗0, 𝑧

∗
1 · 𝑎∗1, · · · , 𝑧∗𝑁−1 · 𝑎∗𝑁−1

)
.

From a𝜎∗ is the cyclic shift left vector of a∗, we can deduce that

a𝜎
∗
=

(
𝑎∗1, 𝑎

∗
2 · · · , 𝑎∗𝑁−1, 1

)
.

It follows that 𝑧∗0 = 𝑎∗1 and for all 0 < 𝑗 < 𝑁 − 1, 𝑧∗𝑗 · 𝑎∗𝑗 = 𝑎∗𝑗+1 and 𝑧∗𝑁−1 · 𝑎∗𝑁−1 = 1, we can deduce that∏
v∈{0,1}𝑛 z∗(v) = 1. Finally, from z∗ ◦ z2 = z1, we know that for all v ∈ {0, 1}𝑛, z∗(v) = z1 (v)

z2 (v) , it follows
that

∏
v∈{0,1}𝑛

z1 (v)
z2 (v) = 1.

In order to analyze the soundness error, we assume that
∏

v∈{0,1}𝑛
z1 (v)
z2 (v) ≠ 1. From the above arguments,

we know one of the following conditions must be violated:

• a1 ◦ a2 ≠ a3, where a1 = z∗ | |z∗, a2 = z2 | |a∗, a3 = z1 | |a𝜎
∗ , in this case (x2,w2) ∉ R𝑍𝐸𝑅𝑂.

• a𝜎∗ is not the cyclic shift left vector of a∗, in this case (x1,w1) ∉ R𝐶𝑆𝐿 .

In both case the verifier will accept with probability at most 𝑂
(

log 𝑁
|F |

)
. □
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Lemma 4.25. In the Protocol 4, the round complexity is 𝑂 (log 𝑁), message complexity is 𝑂 (log 𝑁), query
complexity is 𝑂 (1) and the verifier has arithmetic complexity 𝑂 (log 𝑁).

Proof. This lemma follows from Theorem 4.8 and Theorem 4.14. □

Lemma 4.26. In the Protocol 4, the prover has arithmetic complexity 𝑂 (𝑁) and space complexity 𝑂 (𝑁) in
the random access model.

Proof. The vector z and vector a =
(
1, 𝑧0, 𝑧0 · 𝑧1, · · · ,

∏𝑁−2
𝑗=0 𝑧 𝑗

)
can be constructed using 𝑂 (𝑁) field oper-

ation. Once vector a is constructed, vectors a𝜎 is also constructed. From Theorem 4.8 and Theorem 4.14,
the arithmetic complexity of prover is 𝑂 (𝑁) and space complexity is 𝑂 (𝑁). □

Lemma 4.27. In the Protocol 4, the prover has aritmetic complexity𝑂 (𝑁 log 𝑁), space complexity𝑂 (log 𝑁)
and makes 𝑂 (log 𝑁) passes over the input streams in the streaming model.

Proof. The streams S(z), S(a), S(a𝜎), S(a1), S(a2) and S(a3) can all be constructed directly from the
input streams S(z1) and S(z2) with only constant passes to the input streams. The prover for ZeroCheck
protocol and cyclic shift left protocol can use these stream to complete the task. Note that the input streams
can be accessed through more than one session (but no more than a logarithmic number of sessions).

From Theorem 4.14, the prover makes 𝑂 (log 𝑁) passes over the stream S(a) and S(a𝜎) and one pass
over these streams only requires one pass over S(z1) and S(z2), so in step 4, the prover has arithmetic
complexity𝑂 (𝑁 log 𝑁), space complexity𝑂 (log 𝑁) and makes𝑂 (log 𝑁) passes over the input streamsS(z1)
and S(z2).

Similarly, from Theorem 4.8, the prover makes 𝑂 (log 𝑁) passes over the streams S(a1), S(a2), S(a3)
and one pass over these streams only requires a constant passes over S(z1) and S(z2), so in step 5, the prover
has arithmetic complexity 𝑂 (𝑁 log 𝑁), space complexity 𝑂 (log 𝑁) and makes 𝑂 (log 𝑁) passes over the
input streams S(z1) and S(z2).

Therefore, in total, the prover has arithmetic complexity 𝑂 (𝑁 log 𝑁), space complexity 𝑂 (log 𝑁) and
makes 𝑂 (log 𝑁) passes over the input streams in the streaming model. □

4.5 Permutation Check PIOP

Definition 4.7. The permutation relation R𝑃𝐸𝑅𝑀 is the set of tuples

(x,w) =
( (
F, 𝑁, [ [̂z1]], [ [̂z2]]

)
, (z1, z2)

)
,

where

• 𝑁 = 2𝑛 for some integer 𝑛,
• z1, z2 ∈ F𝑁 ,
• [ [̂z1]], [ [̂z2]] are polynomial oracles which compute ẑ1 and ẑ2, the multilinear extensions of z1 and

z2.
• there exists a permutation 𝝉 : {0, 1}𝑛 → {0, 1}𝑛 such that for all v ∈ {0, 1}𝑛, z2(v) = z1(𝝉(v)).
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Theorem 4.28. There is a polynomial IOP for relation R𝑃𝐸𝑅𝑀 with the following properties:

Table 6: Properties of permutation check protocol

round message query soundness verifier’s
complexity complexity complexity error time

𝑂 (log 𝑁) 𝑂 (log 𝑁) 𝑂 (1) 𝑂
(
𝑁
|F |

)
𝑂 (log 𝑁)

Moreover,

• in the random access model, the prover has arithmetic complexity 𝑂 (𝑁) and space complexity 𝑂 (𝑁),
• in the streaming model, the prover has arithmetic complexity 𝑂 (𝑁 log 𝑁), space complexity 𝑂 (log 𝑁)

and makes 𝑂 (log 𝑁) passes over the input streams S(z1) and S(z2).

If two vectors are the same under some permutations, then the two monic polynomials with elements
from these two vectors as roots must also be equal.

Lemma 4.29. Suppose 𝑁 = 2𝑛, let z1, z2 ∈ F𝑁 , if there exists a permutation 𝝉 : {0, 1}𝑛 → {0, 1}𝑛 such that
for all v ∈ {0, 1}𝑛, z2(v) = z1(𝝉(v)), then∏

v∈{0,1}𝑛
(𝑋 − z1(v)) =

∏
v∈{0,1}𝑛

(𝑋 − z2(v)) . (21)

Protocol 5. Permutation Check protocol:
Inputs.

• Prover’s input:
– instance x =

(
F, 𝑁, [ [̂z1]], [ [̂z2]]

)
,

– witness w = (z1, z2).
• Verifier’s input:

– instance x =
(
F, 𝑁, [ [̂z1]], [ [̂z2]]

)
.

Goal.

• The prover convinces the verifer that there exists a permutation 𝝉 : {0, 1}𝑛 → {0, 1}𝑛 such that for all
v ∈ {0, 1}𝑛, z2(v) = z1(𝝉(v)).

The protocol:

1. The verifier samples a random element 𝛼← F and sends it to the prover.
2. Let z′1 = 𝛼 · 1 − z1, z′2 = 𝛼 · 1 − z2, and let

• instance x′ =
(
F, 𝑁, [ [̂z′1]], [ [̂z′2]]

)
,

• witness w′ = (z′1, z′2).
The prover and verifier invoke the product check protocol for checking that (x′,w′) ∈ R𝑃𝑅𝑂𝐷 .

Note that the verifer has virtual oracle access to [ [̂z′1]], [ [̂z′2]], since ẑ′1(X) = 𝛼 − ẑ1(X) and ẑ′2(X) =
𝛼 − ẑ2(X).

Lemma 4.30. The Protocol 5 has perfect completeness.
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Proof. Directly follows from Lemma 4.29 and the completeness of product check protocol. □

Lemma 4.31. The Protocol 5 has soundness error 𝑂
(
𝑁
|F |

)
.

Proof. From Lemma 4.29, if the vector z2 is not the permutation of z1, then the Equation 21 does not hold.
From Schwartz-Zippel Lemma, for a uniformly random element 𝛼 ∈ F, the following equation holds with
probability at most 𝑁

|F | : ∏
v∈{0,1}𝑛

(𝛼 − z1(v)) =
∏

v∈{0,1}𝑛
(𝛼 − z2(v)) . (22)

Let 𝐸 be the event that Equation 22 holds, then from the soundess of product check protocol, it follows that

Pr[Verifier accept] ≤ Pr[Verifier accept|𝐸] + Pr[𝐸]

≤ 𝑂

(
log 𝑁

|F|

)
+ 𝑁

|F|

= 𝑂

(
𝑁

|F|

)
.

(23)

□

Lemma 4.32. In the Protocol 5, the round complexity is 𝑂 (log 𝑁), message complexity is 𝑂 (log 𝑁), query
complexity is 𝑂 (1) and the verifier has arithmetic complexity 𝑂 (log 𝑁).

Proof. This lemma follows from Theorem 4.22. □

Lemma 4.33. In the Protocol 5, the prover has arithmetic complexity 𝑂 (𝑁) and space complexity 𝑂 (𝑁) in
the random access model.

Proof. This lemma follows from Theorem 4.22. □

Lemma 4.34. In the Protocol 5, the prover has aritmetic complexity𝑂 (𝑁 log 𝑁), space complexity𝑂 (log 𝑁)
and makes 𝑂 (log 𝑁) passes over the input streams S(z1) and S(z2) in the streaming model.

Proof. This lemma follows from Theorem 4.22 since the streams S(z′1) and S(z′2) can be easily constructed
from the streams S(z1) and S(z2) with a single pass. □

4.6 Prescribed Permutation Check PIOP

Definition 4.8. The indexed prescribed permutation relation R𝑃𝑅𝐸𝑃 is the set of tuples

(i,x,w) =
(
(F, 𝑁, 𝝓, 𝝉) ,

(
[ [̂z1]], [ [̂z2]]

)
, (z1, z2)

)
,

where

• 𝑁 = 2𝑛 for some integer 𝑛,
• 𝝓 : {0, 1}𝑛 → F is a canonical injection from {0, 1}𝑛 to F. E.g., 𝝓 = toDecimal and 𝝓−1 = toBinary

if F = F𝑝 for some 𝑝 ≥ 𝑁 .
• z1, z2 ∈ F𝑁 .
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• 𝝉 : {0, 1}𝑛 → {0, 1}𝑛 is the permutation on the Boolean hypercube.
• [ [̂z1]], [ [̂z2]] are polynomial oracles which compute ẑ1, ẑ2, the multilinear extensions of z1, z2.
• for every v ∈ {0, 1}𝑛, z2 (v) = z1 (𝝉(v)).

Theorem 4.35. There is a polynomial holographic IOP for relation R𝑃𝑅𝐸𝑃 with the following properties:

Table 7: Properties of prescribed permutation check protocol

round message query soundness verifier’s
complexity complexity complexity error time

𝑂 (log 𝑁) 𝑂 (log 𝑁) 𝑂 (1) 𝑂
(

log 𝑁
|F |

)
𝑂 (log 𝑁)

Moreover,

• in the random access model, the prover has arithmetic complexity 𝑂 (𝑁) and space complexity 𝑂 (𝑁),
• in the streaming model, the prover has arithmetic complexity 𝑂 (𝑁 log 𝑁), space complexity 𝑂 (log 𝑁)

and makes 𝑂 (log 𝑁) passes over all input streams.

Lemma 4.36. Suppose 𝑁 = 2𝑛, fix a canonical injection 𝝓 : {0, 1}𝑛 → F, let z1, z2 ∈ F𝑁 and 𝝉 : {0, 1}𝑛 →
{0, 1}𝑛 is a permutation on the Boolean hypercube. Let 𝝉′ ∈ F𝑁 such that for all v ∈ {0, 1}𝑛, 𝝉′(v) =
𝝓 (𝝉(v)). For a uniformly random chosen element 𝛽← F, define two vectors z′1, z

′
2 ∈ F𝑁 :

• z′1 = z1 + 𝛽 · 𝝓,
• z′2 = z2 + 𝛽 · 𝝉′.

If for every v ∈ {0, 1}𝑛, z2(v) = z1 (𝝉(v)), then z′2 is a permutation of z′1 with probability 1. If there exists a
v ∈ {0, 1}𝑛 such that z2(v) ≠ z1 (𝝉(v)), then z′2 is a permutation of z′1 with probability at most 𝑁

|F | .

Proof. For any 𝛽← F, suppose for every v ∈ {0, 1}𝑛, z2(v) = z1 (𝝉(v)), then

z′1 (𝝉(v)) = z1 (𝝉(v)) + 𝛽 · 𝝓 (𝝉 (v)) = z2(v) + 𝛽 · 𝝉′(v) = z′2(v). (24)

Suppose there exists a v ∈ {0, 1}𝑛 such that z2(v) ≠ z1 (𝝉(v)), then for any particular u ∈ {0, 1}𝑛, there is at
most one 𝛽 such that

z1 (u) + 𝛽 · 𝝓 (u) = z2(v) + 𝛽 · 𝝉′(v). (25)

In other words, the probability that z′1 (u) = z′2 (v) is at most 1
|F | . By a union bound, the probability that

there exists a u ∈ {0, 1}𝑛 such that z′1 (u) = z′2 (v) is at most 𝑁
|F | . It follows that the probability that z′2 is a

permutation of z′1 is at most 𝑁
|F | .

□

Protocol 6. Prescribed Permutation Check protocol:
Inputs.

• Indexer’s input:
– index i = (F, 𝑁, 𝝓, 𝝉).

• Prover’s input:
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– instance x =
(
[ [̂z1]], [ [̂z2]]

)
,

– witness w = (z1, z2).
• Verifier’s input:

– instance x =
(
[ [̂z1]], [ [̂z2]]

)
.

Goal.

• The prover convinces the verifer that for all v ∈ {0, 1}𝑛, z2(v) = z1(𝝉(v)).
The protocol:

• Offline phase:
1. The indexer constructs a vector 𝝉′ ∈ F𝑁 such that for all v ∈ {0, 1}𝑛, 𝝉′ (v) = 𝝓 (𝝉(v)).
2. The indexer sends F, 𝑁 , 𝝓 and 𝝉′ to the prover.
3. The indexer sends F, 𝑁 , [[𝝓̂]] and [[𝝉̂′]] to the verifier.

• Online phase:
1. The verifier samples a random element 𝛽← F and sends it to the prover.
2. Let z′1 = z1 + 𝛽 · 𝝓, z′2 = z2 + 𝛽 · 𝝉′, and let

– instance x′ =
(
F, 𝑁, [ [̂z′1]], [ [̂z′2]]

)
,

– witness w′ = (z′1, z′2).
The prover and verifier invoke the permutation check protocol for checking that (x′,w′) ∈
R𝑃𝐸𝑅𝑀 .

Note that the verifer has virtual oracle access to [ [̂z′1]], [ [̂z′2]], since ẑ′1(X) = ẑ1(X) + 𝛽 · 𝝓̂(X), ẑ′2(X) =
ẑ2(X) + 𝛽 · 𝝉̂′(X).

Lemma 4.37. The Protocol 6 has perfect completeness.

Proof. Directly follows from Lemma 4.36 and the completeness of the permutation check protocol. □

Lemma 4.38. The Protocol 6 has soundness error 𝑂
(
𝑁
|F |

)
.

Proof. From Lemma 4.36, if there exists a v ∈ {0, 1}𝑛 such that z2(v) ≠ z1 (𝝉(v)), then z′2 is a permutation
of z′1 with probability at most 𝑁

|F | . Let 𝐸 be the event that z′2 is a permutation of z′1, then from the soundess
of permutation check protocol, it follows that

Pr[Verifier accept] ≤ Pr[Verifier accept|𝐸] + Pr[𝐸]

≤ 𝑂

(
𝑁

|F|

)
+ 𝑁

|F|

= 𝑂

(
𝑁

|F|

)
.

(26)

□

Lemma 4.39. In the Protocol 6, the round complexity is 𝑂 (log 𝑁), message complexity is 𝑂 (log 𝑁), query
complexity is 𝑂 (1) and the verifier has arithmetic complexity 𝑂 (log 𝑁).

Proof. This lemma follows from Theorem 4.28. □
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Lemma 4.40. In the Protocol 6, the prover has arithmetic complexity 𝑂 (𝑁) and space complexity 𝑂 (𝑁) in
the random access model.

Proof. This lemma follows from Theorem 4.28. □

Lemma 4.41. In the Protocol 6, the prover has aritmetic complexity𝑂 (𝑁 log 𝑁), space complexity𝑂 (log 𝑁)
and makes 𝑂 (log 𝑁) passes over the input streams S(z1) and S(z2) in the streaming model.

Proof. In the streaming model, the prover receives the streams S(𝝓), S(𝝉′) as inputs. This lemma follows
from Theorem 4.28 since the streams S(z′1) and S(z′2) can be easily constructed from the streams S(z1),
S(z2), S(𝝓) and S(𝝉′) with a single pass. □

5 Elastic PIOP for Plonk Constraint System

5.1 Streaming Plonk Constraint System

We introduce the streaming Plonk constraint system. We begin by recalling the indexed Plonk constraint
system relation R𝑃𝐿𝑂𝑁𝐾 .

Definition 5.1. The indexed relation R𝑃𝐿𝑂𝑁𝐾 is the set of all triples

(i,x,w) = ((F, 𝑁, 𝑁𝑖𝑛, 𝑑, 𝐺, 𝝓, s1, s2, s3, 𝝉) , (x) , (l, r, o)) ,

where

• 𝑁 = 2𝑛, 𝑁𝑖𝑛 = 2𝑛𝑖𝑛 for some integer 𝑛, 𝑛𝑖𝑛, 𝑑 is a constant.
• 𝐺 ∈ F[𝑋1, 𝑋2] is a custom gate with degree at most 𝑑.
• 𝝓 : {0, 1}2𝑛 → F is a canonical injection from {0, 1}2𝑛 to F. E.g., 𝝓 = toDecimal and 𝝓−1 = toBinary

if F = F𝑝 for some 𝑝 ≥ 4𝑁 .
• s1, s2, l, r, o ∈ F𝑁 , x ∈ F𝑁𝑖𝑛 ,
• 𝝉 : {0, 1}𝑛+2 → {0, 1}𝑛+2 is a permutation on the Boolean hypercube,

such that

• for all v ∈ {0, 1}𝑛,

s1(v) · (l(v) + r(v)) + s2(v) · l(v) · r(v) + s3(v) · 𝐺 (l(v), r(v)) − o(v) + x′(v) = 0, (27)

where x′ = x| |0 ∈ F𝑁 (padding x with 𝑁 − 𝑁𝑖𝑛 zeros),
• for all v′ ∈ {0, 1}𝑛+2, w(v′) = w(𝝉(v′)), where w = l| |r| |o| |0 ∈ F4𝑁 .

The relation R𝑃𝐿𝑂𝑁𝐾 captures the fan-in two arithmetic ciruit computations. Every gates in the circuit
is indexed by the Boolean hypercube {0, 1}𝑛, the public input/output gates is indexed by the Boolean hyper-
cube {0, 1}𝑛𝑖𝑛 (we assume the input of the circuit is the “ouput” of the input gates and we ignore the “input”
of the input gate). For all v ∈ {0, 1}𝑛, l(v) denotes the value on the left input wire of the v-th gate, r(v)
denotes the value on the right input wire of the v-th gate and o(v) denotes the value on the output wire of
the v-th gate. For all v ∈ {0, 1}𝑛𝑖𝑛 , x(v) denotes the value on the output wire of the v-th public input/output
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gate (i.e., the vector x denotes the public input/output values). The polynomial 𝐺 represents the custom gate.
The vectors s1, s2 and s3 is the selector vectors and defined as follows:

• for an addition gate: s1(v) = 1, s2(v) = 0, s3(v) = 0,
• for a multiplication gate: s1(v) = 0, s2(v) = 1, s3(v) = 0,
• for a custom gate: s1(v) = 0, s2(v) = 0, s3(v) = 1,
• for an input gate: s1(v) = 0, s2(v) = 0, s3(v) = 0.

It is not hard to check that if all gates were evaluated correctly, then for all v ∈ {0, 1}𝑛, the Equation 27 holds.
Another additional thing need to check is that some values in l, r, o are equal, the so-called copy constraint
(the output of one gate is the input of another gate). The copy constraint is determined by the permutation
𝝉, let w = l| |r| |o| |0 be the all wire values of the circuit (we pad w with 𝑁 zeros such that the length of w is a
power of 2), then the copy constraint is satisfied if for all v′ ∈ {0, 1}𝑛+2, w(v′) = w(𝝉(v′)).

For streaming Plonk constraint system, all vectors in the R𝑃𝐿𝑂𝑁𝐾 need to be provided in the form of
streams, we defined as follows:

Definition 5.2. The streams associated with (i,x,w) = ((F, 𝑁, 𝑁𝑖𝑛, 𝑑, 𝐺, 𝝓, s1, s2, s3, 𝝉) , (x) , (l, r, o)) con-
sists of:

• index stream: stream of the vectors S (𝝓) ,S (s1) ,S (s2) ,S (s3) ,S (𝝉),
• instance stream: stream of the vector S (x),
• witness stream: stream of the vectors S (l), S (r), S (o).

Remark. Because 𝝓 is a canonical injection, we assume that 𝝓 can be computed with a constant number
of field operations. But for convenience, we also assume that 𝝓 is given as a stream input S (𝝓). The
permutation 𝝉 can also be viewed as a vector 𝝉 ∈

(
{0, 1}𝑛+2

)4𝑁 . We can assume 𝝉 is given as a stream S (𝝉)
in the streaming model.

5.2 Construction

Theorem 5.1. There is a polynomial holographic IOP for relation R𝑃𝐿𝑂𝑁𝐾 with the following properties:

Table 8: Properties of protocol for Plonk constraint system

round message query soundness verifier’s
complexity complexity complexity error time

𝑂 (log 𝑁) 𝑂 (log 𝑁) 𝑂 (1) 𝑂
(
𝑁
|F |

)
𝑂 ( |x| + log 𝑁)

Moreover,

• in the random access model, the prover has arithmetic complexity 𝑂 (𝑁) and space complexity 𝑂 (𝑁),
• in the streaming model, the prover has arithmetic complexity 𝑂 (𝑁 log 𝑁), space complexity 𝑂 (log 𝑁)

and makes 𝑂 (log 𝑁) passes over all input streams.

Protocol 7. Protocol for Plonk constraint system:
Inputs.
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• Indexer’s input:
– index i = (F, 𝑁, 𝑁𝑖𝑛, 𝑑, 𝐺, s1, s2, s3, 𝝉).

• Prover’s input:
– instance x = (x),
– witness w = (l, r, o).

• Verifier’s input:
– instance x = (x).

Goal.

• The prover convinces the verifer that (i,x,w) ∈ R𝑃𝐿𝑂𝑁𝐾 .

The protocol:

• Offline phase:
1. The indexer construct a multivariate polynomial 𝐹 ∈ F[𝑋1, · · · 𝑋7]:

𝐹 (𝑋1, · · · , 𝑋7) = 𝑋1 · (𝑋4 + 𝑋5) + 𝑋2 · 𝑋4 · 𝑋5 + 𝑋3 · 𝐺 (𝑋4, 𝑋5) − 𝑋6 + 𝑋7, (28)

note that the total degree of the polynomial 𝐹 is at most 𝑑 + 1.
2. The indexer constructs a vector 𝝉′ ∈ F4𝑁 such that for all v ∈ {0, 1}𝑛+2, 𝝉′ (v) = 𝝓 (𝝉(v)).
3. The indexer sends F, 𝑁 , 𝑁𝑖𝑛, 𝝓, 𝝉′, s1, s2, s3 to the prover.
4. The indexer sends F, 𝑁 , 𝑁𝑖𝑛, [[𝝓̂]], [[𝝉̂′]], [ [̂s1]], [ [̂s2]], [ [̂s3]] to the verifier.

• Online phase:
1. The prover sends polynomial oracles [ [̂l]], [ [̂r]], [ [̂o]] to the verifier.
2. Let

– instance x1 =
(
F, 𝑁, 7, 𝑑 + 1, 𝐹, [ [̂s1]], [ [̂s2]], [ [̂s3]], [ [̂l]], [ [̂r]], [ [̂o]], [ [̂x′]]

)
,

– witness w1 = (s1, s2, s3, l, r, o, x′),
where x′ = x| |0 ∈ F𝑁 . The prover and verifier invoke the ZeroCheck protocol for checking that
(x1,w1) ∈ R𝑍𝐸𝑅𝑂.

3. Let w = l| |r| |o| |0 ∈ F4𝑁 , where 0 is the all zero vector. Let
– index i2 = (F, 4𝑁, 𝝓, 𝝉)
– instance x2 =

(
F, 4𝑁, [[ŵ]], [[ŵ]]

)
,

– witness w2 = (w,w).
The prover and verifier invoke the online phase of prescribed permutation check protocol for
checking that (i2,x2,w2) ∈ R𝑃𝑅𝐸𝑃 .

Note that the verifer has virtual oracle access to [ [̂x′]] and [[ŵ]], since

x̂′ (𝑋1, · · · , 𝑋𝑛) = x̂(𝑋𝑛−𝑛𝑖𝑛+1, · · · , 𝑋𝑛) · (1 − 𝑋1) · · · (1 − 𝑋𝑛−𝑛𝑖𝑛), (29)

and
ŵ (𝑋1, 𝑋2,X) = (1 − 𝑋1) · (1 − 𝑋2) · l̂ (X) + (1 − 𝑋1) · 𝑋2 · r̂ (X) + 𝑋1 · (1 − 𝑋2) · ô (X) , (30)

where X = (𝑋3, · · · , 𝑋𝑛+2).

Lemma 5.2. The Protocol 7 has perfect completeness.
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Proof. From the construction of the polynomial 𝐹 (Equation 28), we can get for all v ∈ {0, 1}𝑛,
𝐹

(̂
s1 (v) , ŝ2 (v) , ŝ3 (v) , l̂ (v) , r̂ (v) , ô (v) , x̂′ (v)

)
= ŝ1(v) ·

(̂
l(v) + r̂(v)

)
+ ŝ2(v) · l̂(v) · r̂(v) + ŝ3(v) · 𝐺

(̂
l(v), r̂(v)

)
− ô(v) + x̂′(v)

= s1(v) · (l(v) + r(v)) + s2(v) · l(v) · r(v) + s3(v) · 𝐺 (l(v), r(v)) − o(v) + x′(v) = 0.

(31)

Therefore, (i1,w2) ∈ R𝑍𝐸𝑅𝑂. Since for all v′ ∈ {0, 1}𝑛+2, w(v′) = w(𝝉(v′)), it follows that (i2,x2,w2) ∈
R𝑃𝑅𝐸𝑃. The completeness follows from the completeness of ZeroCheck and prescribed permutation check
protocol. □

Lemma 5.3. The Protocol 7 has soundness error 𝑂
(
𝑁
|F |

)
.

Proof. If (i,x,w) ∉ R𝑃𝐿𝑂𝑁𝐾 , then one of the following conditions must be violated:

• (x1,w1) ∉ R𝑍𝐸𝑅𝑂,
• (i2,x2,w2) ∉ R𝑃𝑅𝐸𝑃.

In the first case, from the soundenss of ZeroCheck protocol, the verifier will accept with probability at most
𝑂

(
log 𝑁
|F |

)
. In the second case, from the soundenss of prescribed permutation check protocol, the verifier will

accept with probability at most 𝑂
(
𝑁
|F |

)
. In summary, for any (i,x,w) ∉ R𝑃𝐿𝑂𝑁𝐾 , the verifier will accept

with probability at most max
{
𝑂

(
log 𝑁
|F |

)
, 𝑂

(
𝑁
|F |

)}
= 𝑂

(
𝑁
|F |

)
. □

Lemma 5.4. In the Protocol 7, the round complexity is 𝑂 (log 𝑁), message complexity is 𝑂 (log 𝑁), query
complexity is 𝑂 (1) and the verifier has arithmetic complexity 𝑂 (|x| + log 𝑁).

Proof. The verifier can evaluates x̂ at any points with 𝑂 (|x|) field operations. This lemma then follows from
Theorem 4.8 and Theorem 4.35. □

Lemma 5.5. In the Protocol 6, the prover has arithmetic complexity 𝑂 (𝑁) and space complexity 𝑂 (𝑁) in
the random access model.

Proof. This lemma follows from Theorem 4.8 and Theorem 4.35. □

Lemma 5.6. In the Protocol 6, the prover has aritmetic complexity 𝑂 (𝑁 log 𝑁), space complexity 𝑂 (log 𝑁)
and makes 𝑂 (log 𝑁) passes over the input streams in the streaming model.

Proof. In the streaming model, the prover receives the streams S(𝝓), S(𝝉′), S(s1), S(s2), S(s3) as inputs.
This lemma follows from Theorem 4.8 and Theorem 4.35, since all the streams for the ZeroCheck protocol
and prescribed permutation check protocol can be constructed from the input streams with a constant number
of passes. □
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6 Elastic KZG Scheme for Multilinear Polynomials

Similar to the construction of most succinct arguments, we utilize a polynomial commitment scheme
to compile our polynomial IOP into a succinct argument. To achieve elastic arguments, we also require the
polynomial commitment scheme to be elastic. Gemini proposed an elastic univariate polynomial commit-
ment scheme based on the KZG scheme [12]. Based on their construction, we found that the multilinear
KZG scheme [14] can also be made elastic.

Theorem 6.1. Let 𝑁 = 2𝑛 and 𝜆 be a security parameter, there exists an elastic polynomal commitment
scheme for multiliear polynomials with at most 𝑛 variables with the following properties:

Table 9: Properties of elastic multilinear KZG scheme

setup time check time commitment size proof size

𝑂𝜆 (𝑁) G-ops 𝑂𝜆 (log 𝑁) G-ops 𝑂 (1) 𝑂 (log 𝑁)

where G-ops denotes the number of group operations and F-ops denotes the number of field operations.
Moreover,

• in the random access model, the commitment algorithm takes 𝑂𝜆(𝑁/log 𝑁) G-ops with space com-
plexty𝑂 (𝑁), the opening algorithm takes𝑂 (𝑁) F-ops and𝑂𝜆(𝑁) G-ops with space complexity𝑂 (𝑁).

• in the streaming model, the commitment algorithm takes 𝑂𝜆(𝑁) G-ops with space complexity 𝑂 (1),
the opening algorithm takes 𝑂 (𝑁) F-ops and 𝑂𝜆(𝑁) G-ops with space complexity 𝑂 (log 𝑁). Both
commitment and opening algorithms make one pass to the input streams.

6.1 Definition

Definition 6.1. A bilinear group is a tuple (G1,G2,G𝑇 , 𝑝, 𝑔, ℎ, 𝑒), where G1,G2,G𝑇 are groups of a prime
order 𝑝 ∈ N, 𝑔 is the generator of G1, ℎ is the generator of G2 and 𝑒 : G1 × G2 → G𝑇 is a bilinear map
satisfying the following properties:

• bilinear: for any 𝑎, 𝑏 ∈ Z𝑝, 𝑒(𝑔𝑎, ℎ𝑏) = 𝑒(𝑔, ℎ)𝑎𝑏,
• non-degenerate: 𝑒(𝑔, ℎ) ≠ 1.

Furthermore, the map 𝑒 is efficiently computable.

Definition 6.2. Let G be a group with order 𝑝, and let g = (𝑔1, · · · , 𝑔𝑁 ) ∈ G𝑁 and f = ( 𝑓1, · · · , 𝑓𝑁 ) ∈ Z𝑁𝑝 .
The multi-scalar exponentiation of 𝑔 and 𝑓 is given by

∏𝑁
𝑖=1 𝑔

𝑓𝑖
𝑖 . We denote the number of group operations

required for performing an 𝑂 (𝑁)-sized multi-scalar exponentiation as MSE(𝑁).

Let 𝜆 be a security parameter,G be a group with order 𝑝 ≈ 2𝜆. Performing one exponentiation operation
in the group typically requires about 𝑂 (𝜆) = 𝑂𝜆(1) group operations by the repeated squaring method.
Pipenger proposed an algorithm for performing an 𝑂 (𝑁)-sized multi-scalar exponentiation with MSE(𝑁) =
𝑂 (𝑁 · 𝜆/log(𝑁 · 𝜆)) = 𝑂𝜆(𝑁/log 𝑁) group operations.
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We present the syntax of the polynomial commitment scheme, noting that in our definition, the input
to the algorithms is a vector f rather than a polynomial, as there is a one-to-one correspondence between a
vector and its multilinear extension.

Definition 6.3. A multilinear polynomial commitment scheme over F is a tuple PC = (Setup,Commit,
Open,Check) with the following syntax:

• PC.Setup
(
1𝜆, 𝑛

)
→ (ck, rk). On input a security parameter 𝜆 (in unary) and a natural number 𝑛, where

𝑛 represents the maximum number of polynomial variables, PC.Setup samples a key pair (ck, rk).
• PC.Commit (ck, f) → 𝐶. On input ck and a vector f ∈ F𝑁 where 𝑁 = 2𝑛, PC.Commit outputs

commitment 𝐶 to the vector f (actually, 𝐶 is a commitment to the multilinear polynomial f̂).
• PC.Open (ck, f, 𝑧) → (𝜇, 𝜋). On input ck, a vector f ∈ F𝑁 and a query point 𝑧 ∈ F𝑛, PC.Open outputs

a evaluation 𝜇 = f̂ (𝑧) and a proof 𝜋.
• PC.Check (rk, 𝐶, 𝑧, 𝜇, 𝜋) → 0/1. On input rk, the commitment 𝐶, query point 𝑧 ∈ F𝑛, alleged evalu-

ation 𝜇, and an evaluation proof 𝜋, PC.Check outputs 1 if and only if 𝜋 attests that 𝜇 = f̂ (𝑧).

6.2 Construction

Theorem 6.2. Suppose f ∈ F𝑁 is a vector of length 𝑁 = 2𝑛, f̂ is the multilinear extension of f, then for
any z = (𝑧1, · · · , 𝑧𝑛) ∈ F𝑛, f̂ (z) = 𝜇 if and only if there exists a unique set of 𝑛 vectors f1 ∈ F𝑁/2, · · · , f𝑖 ∈
F𝑁/2

𝑖
, · · · , f𝑛 ∈ F such that

f̂ (𝑋1, · · · , 𝑋𝑛) − 𝜇 =
𝑛∑
𝑖=1
(𝑋𝑛−𝑖+1 − 𝑧𝑛−𝑖+1) · f̂𝑖 (𝑋1, · · · , 𝑋𝑛−𝑖), (32)

where f̂𝑖 is the multilinear extension of f𝑖 , and f̂𝑛 is a constant function with no variable.

We prove Theorem 6.2 from the following lemma. Note that Lemma 6.3 not only implies Theorem 6.2
but also provides a construction method for vectors f1, · · · , f𝑛. This is crucial in our design of the streaming
algorithm.

Lemma 6.3. Suppose 𝑁 = 2𝑛, f ∈ F𝑁 and z = (𝑧1, · · · , 𝑧𝑛) ∈ F𝑛, for all 1 ≤ 𝑖 ≤ 𝑛, define vector f (𝑖) ∈ F𝑁/2𝑖

such that for all v ∈ {0, 1}𝑛−𝑖 (see also Definition 4.2, we assume that f (0) = f),

f (𝑖) (𝑣1, · · · , 𝑣𝑛−𝑖) = f̂ (𝑣1, · · · , 𝑣𝑛−𝑖 , 𝑧𝑛−𝑖+1, · · · , 𝑧𝑛). (33)

Define vector f𝑖 ∈ F𝑁/2
𝑖 such that for all v ∈ {0, 1}𝑛−𝑖 ,

f𝑖 (𝑣1, · · · , 𝑣𝑛−𝑖) = f (𝑖−1) (𝑣1, · · · , 𝑣𝑛−𝑖 , 1) − f (𝑖−1) (𝑣1, · · · , 𝑣𝑛−𝑖 , 0). (34)

Then for all 1 ≤ 𝑖 ≤ 𝑛,

f̂ (𝑖−1) (𝑋1, · · · , 𝑋𝑛−𝑖+1) = f̂ (𝑖) (𝑋1, · · · , 𝑋𝑛−𝑖) + (𝑋𝑛−𝑖+1 − 𝑧𝑛−𝑖+1) · f̂𝑖 (𝑋1, · · · , 𝑋𝑛−𝑖). (35)

Proof. Since f̂ (𝑖−1) is multilinear, we have
f̂ (𝑖−1) (𝑋1, · · · , 𝑋𝑛−𝑖 , 𝑋𝑛−𝑖+1)

= (1 − 𝑋𝑛−𝑖+1) · f̂ (𝑖−1) (𝑋1, · · · , 𝑋𝑛−𝑖 , 0) + 𝑋𝑛−𝑖+1 · f̂ (𝑖−1) (𝑋1, · · · , 𝑋𝑛−𝑖 , 1),
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and
f̂ (𝑖) (𝑋1, · · · , 𝑋𝑛−𝑖) = f̂ (𝑖−1) (𝑋1, · · · , 𝑋𝑛−𝑖 , 𝑧𝑛−𝑖+1)

= (1 − 𝑧𝑛−𝑖+1) · f̂ (𝑖−1) (𝑋1, · · · , 𝑋𝑛−𝑖 , 0) + 𝑧𝑛−𝑖+1 · f̂ (𝑖−1) (𝑋1, · · · , 𝑋𝑛−𝑖 , 1),
By subtracting these two polynomials, we get

f̂ (𝑖−1) (𝑋1, · · · , 𝑋𝑛−𝑖 , 𝑋𝑛−𝑖+1) − f̂ (𝑖) (𝑋1, · · · , 𝑋𝑛−𝑖)

= (𝑋𝑛−𝑖+1 − 𝑧𝑛−𝑖+1) ·
(̂
f (𝑖−1) (𝑋1, · · · , 𝑋𝑛−𝑖 , 1) − f̂ (𝑖−1) (𝑋1, · · · , 𝑋𝑛−𝑖 , 0)

)
= (𝑋𝑛−𝑖+1 − 𝑧𝑛−𝑖+1) · f̂𝑖 (𝑋1, · · · , 𝑋𝑛−𝑖),

the second equality holds from the definition of f𝑖 and from the fact that multilinear extension is unique. □

Since f (0) = f and f (𝑛) = f̂ (𝑧1, · · · , 𝑧𝑛) = 𝜇, Theorem 6.2 follows from Lemma 6.3 by a simple inductive
argument.

The KZG polynomial scheme for multilinear polynomials consists of the following algorithms.

• PC.Setup
(
1𝜆, 𝑛

)
→ (ck, rk). On input a security parameter 𝜆 (in unary), and a maximum number of

polynomial variables 𝑛, PC.Setup samples a key pair (ck, rk) as follows:
– samples a bilinear group (G1,G2,G𝑇 , 𝑝, 𝑔, ℎ, 𝑒), where 𝑝 ≈ 2𝜆.
– samples 𝝉 = (𝜏1, · · · 𝜏𝑛) ∈ F𝑛,
– for all 0 ≤ 𝑖 < 𝑛, computes

T(𝑖)𝝉 = (1 − 𝜏1, 𝜏1) ⊗ · · · ⊗ (1 − 𝜏𝑛−𝑖 , 𝜏𝑛−𝑖) ∈ F𝑁/2
𝑖
,

constructs
𝚺𝑖 =

(
𝑔𝑇
(𝑖)
𝝉,0 , 𝑔𝑇

(𝑖)
𝝉,1 , · · · , 𝑔𝑇

(𝑖)
𝝉,𝑁/2𝑖−1

)
∈ G𝑁/2

𝑖

1 ,

where 𝑁 = 2𝑛 and sets T(𝑛)𝝉 = (1), 𝚺𝑛 = (𝑔). Note that 𝑇 (𝑖)𝝉, 𝑗 denotes 𝑗-th element of vetcor T(𝑖)𝝉 ,
which can also be represented as T(𝑖)𝝉 (j) where j = toBinary( 𝑗).

– computes
𝚺′ = (ℎ𝜏1 , ℎ𝜏2 , · · · , ℎ𝜏𝑛) ∈ G𝑛2 .

– outputs ck = ((𝑝, 𝑔, ℎ, 𝑒) ,𝚺0, · · · ,𝚺𝑛−1,𝚺𝑛) and rk = ((𝑝, 𝑔, ℎ, 𝑒) ,𝚺′).
• PC.Commit (ck, f) → 𝐶. On input ck and a vector f ∈ F𝑁 with length 𝑁 = 2𝑛, PC.Commit outputs

commitment 𝐶 to f as follows:
– outputs 𝐶 = 𝑔f̂ (𝝉) =

∏
j∈{0,1}𝑛

(
𝑔T(0)𝝉 (j)

) f (j)
∈ G1.

• PC.Open (ck, f, z) → (𝜇, 𝜋). On input ck, a vector f ∈ F𝑁 with length 𝑁 = 2𝑛 and a query point
z ∈ F𝑛, PC.Open outputs the evaluation 𝑣 and proof 𝜋 as follows:

– computes 𝜇 = f̂ (z).
– computes 𝑛 vectors f1 ∈ F𝑁/2, · · · , f𝑖 ∈ F𝑁/2

𝑖
, · · · , f𝑛 ∈ F as described in Theorem 6.2.

– computes 𝑦𝑖 = 𝑔f̂𝑖 (𝝉) =
∏

𝒋∈{0,1}𝑛−𝑖
(
𝑔T(𝑖)𝝉 (j)

) f𝑖 (j)
for all 0 < 𝑖 ≤ 𝑛.

– outputs (𝜇, 𝜋), where 𝜋 = (𝑦1, · · · , 𝑦𝑛) ∈ G𝑛1 .
• PC.Check (rk, 𝐶, z, 𝜇, 𝜋) → 0/1. On input rk, the commitment 𝐶, query point z ∈ F𝑛, alleged evalu-

ation 𝜇, and an evaluation proof 𝜋, PC.Check checks the proof as follows:
– parses 𝜋 = (𝑦1, · · · , 𝑦𝑛),
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– checks that 𝑒(𝐶 · 𝑔−𝜇, ℎ) =
∏𝑛
𝑖=1 𝑒(𝑦𝑖 , ℎ𝜏𝑛−𝑖+1 · ℎ−𝑧𝑛−𝑖+1).

Lemma 6.4. In the KZG scheme for multilinear polynomials, PC.Setup takes 𝑂𝜆(𝑁) group operations,
PC.Check takes 𝑂𝜆(log 𝑁) group operations and 𝑂 (log 𝑁) pairings. Futhermore, the commit size is 1 and
the proof contains 𝑂 (log 𝑁) group elements.

Proof. PC.Setup does not need to compute T(𝑖)𝝉 explicitly, instead, the PC.Setup can construct 𝚺𝑖 from 𝚺𝑖+1.
When 𝑖 = 𝑛 − 1, 𝚺𝑛−1 =

(
𝑔𝑇
(𝑛−1)
𝝉,0 , 𝑔𝑇

(𝑛−1)
𝝉,1

)
=

(
𝑔1−𝜏1 , 𝑔𝜏1

)
. Assume PC.Setup has

𝚺𝑖+1 =

(
𝑔𝑇
(𝑖+1)
𝝉,0 , · · · , 𝑔𝑇

(𝑖+1)
𝝉,𝑁/2𝑖+1−1

)
∈ G𝑁/2

𝑖+1

1 ,

in hand, PC.Setup can construct 𝚺𝑖 as follows:

𝚺𝑖 =

(
𝑔𝑇
(𝑖+1)
𝝉,0 · (1−𝜏𝑛−𝑖 ) , 𝑔𝑇

(𝑖+1)
𝝉,0 ·𝜏𝑛−𝑖 , · · · , 𝑔𝑇

(𝑖+1)
𝝉,𝑁/2𝑖+1−1

· (1−𝜏𝑛−𝑖 )
, 𝑔
𝑇
(𝑖+1)
𝝉,𝑁/2𝑖+1−1

·𝜏𝑛−𝑖
)
∈ G𝑁/2

𝑖

1 .

The correctness of the algorithm follows from the tensor structure of T(𝑖)𝝉 , since

T(𝑖)𝝉 = T(𝑖+1)𝝉 ⊗ (1 − 𝜏𝑛−𝑖 , 𝜏𝑛−𝑖).

Therefore, PC.Setup takes 2+4+· · ·+𝑁+log 𝑁 = 𝑂 (𝑁) group exponentiations (thus𝑂𝜆(𝑁) group operations)
to construct pk and ck.

In order to check 𝑒(𝐶 · 𝑔−𝜇, ℎ) =
∏𝑛
𝑖=1 𝑒(𝑦𝑖 , ℎ𝜏𝑛−𝑖+1 · ℎ−𝑧𝑛−𝑖+1), PC.Check first computes ℎ−𝑧𝑖 for all

1 ≤ 𝑖 ≤ 𝑛, which takes 𝑂 (𝑛) = 𝑂 (log 𝑁) group exponentiations (thus 𝑂𝜆(log 𝑁) group operations) in G2.
Then computes 𝑒(𝑦𝑖 , ℎ𝜏𝑛−𝑖+1 · ℎ−𝑧𝑛−𝑖+1) for all 1 ≤ 𝑖 ≤ 𝑛 and 𝑒(𝐶 · 𝑔−𝜇, ℎ), which takes 𝑂 (𝑛) = 𝑂 (log 𝑁)
pairings. The commit is only one group element 𝐶 in G1 and the proof contains 𝑂 (𝑛) = 𝑂 (log 𝑁) group
elements (𝑦1, · · · , 𝑦𝑛) ∈ G𝑛. □

Lemma 6.5. In the random access model, PC.Commit takes MSE(𝑁) = 𝑂𝜆(𝑁/log 𝑁) group operations,
PC.Open takes 𝑂 (𝑁) field operations and

∑𝑛−1
𝑖=0 MSE(2𝑖) = 𝑂𝜆(𝑁) group operations.

Proof. The complexity of PC.Commit is directly from the description of the scheme, which takes MSE(𝑁)
group operations and 𝑂 (𝑁) space complexity, since we assume ck and f are stored in the memory. For
PC.Open, the prover uses Algorithm 4 for generating the evaluation 𝜇 and proof 𝜋 = (𝑦1, · · · , 𝑦𝑛). The
correctness of Algorithm 4 follows from Lemma 4.5 and Lemma 6.3. By the definition of multi-scalar

exponentiation, 𝑦𝑖 =
∏

j∈{0,1}𝑛−𝑖
(
𝑔T(𝑖)𝝉 (j)

) f𝑖 (j)
= 𝑔f̂𝑖 (𝝉) .

In the 𝑖-th round, PC.Open takes 𝑂 (2𝑛−𝑖) field operations to construct f𝑖 and f (𝑖) and MSE(2𝑛−𝑖)
group operations to construct 𝑦𝑖 . Totally, PC.Open takes

∑𝑛
𝑖=1 𝑂 (2𝑛−𝑖) = 𝑂 (𝑁) field operations and∑𝑛−1

𝑖=0 MSE(2𝑖) = 𝑂𝜆(𝑁) group operations. □

Lemma 6.6. In the streaming model, PC.Commit takes 𝑂𝜆(𝑁) group operations with space complexity
𝑂 (1), PC.Open takes 𝑂 (𝑁) field operations and 𝑂𝜆(𝑁) group operations with space complexity 𝑂 (log 𝑁).
Both PC.Commit and PC.Open make one pass to the input streams.
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Algorithm 4: PC.Open in random access model
Input: (ck, f, z),

• commit key ck = ((𝑝, 𝑔, ℎ, 𝑒),𝚺0, · · · ,𝚺𝑛), all inputs are stored in the memory.
• vector f ∈ F𝑁 , which is stored in the memory.
• query point z = (𝑧1, · · · , 𝑧𝑛) ∈ F𝑛.

Output: Evaluation 𝜇 = f̂ (𝑧), proof 𝜋 = (𝑦1, · · · , 𝑦𝑛).
1 for 𝑖 ← 1 to 𝑛 do
2 Initialize two vectors f𝑖 , f (𝑖) ∈ F𝑁/2

𝑖 ;
3 for 𝑣 ← 0 to 𝑁/2𝑖 − 1 do
4 f𝑖 (𝑣1, · · · , 𝑣𝑛−𝑖) ← f (𝑖−1) (𝑣1, · · · , 𝑣𝑛−𝑖 , 1) − f (𝑖−1) (𝑣1, · · · , 𝑣𝑛−𝑖 , 0);

// (𝑣1, · · · , 𝑣𝑛−𝑖) is the binary representation of 𝑣.
5 f (𝑖) (𝑣1, · · · , 𝑣𝑛−𝑖) ← (1− 𝑧𝑛−𝑖+1) · f (𝑖−1) (𝑣1, · · · , 𝑣𝑛−𝑖 , 0) + 𝑧𝑛−𝑖+1 · f (𝑖−1) (𝑣1, · · · , 𝑣𝑛−𝑖 , 1);
6 end
7 𝑦𝑖 ← multi-scalar exponentiation of 𝚺𝑖 and f𝑖;
8 end
9 𝜇← f (𝑛) ;

10 output 𝜇, 𝑦1, · · · , 𝑦𝑛;

Proof. In the streaming model, we assume that 𝚺0, · · · ,𝚺𝑛, f are provided to PC.Open as streams. The
complexity of PC.Commit is directly from the description of the scheme, which takes 𝑂 (𝑁) group exponen-
tiations (thus 𝑂𝜆(𝑁) group operations) and 𝑂 (1) space complexity.

The main challenge of PC.Open lies in the need to generate vectors f1, · · · , f𝑛 within a relatively small
space overhead. The streaming algorithm for PC.Open is given in Algorithm 5. In lines 12-13, we pop
two elements from the stack, suppose that 𝑘1 = 𝑘2 = 𝑖 − 1 for some 𝑖, then both 𝑒𝑙𝑒𝑚1 and 𝑒𝑙𝑒𝑚2 are
from the vector f (𝑖−1) . In particular, 𝑒𝑙𝑒𝑚1 and 𝑒𝑙𝑒𝑚2 are two adjacent elements in f (𝑖−1) . Assume that
𝑒𝑙𝑒𝑚1 = f (𝑖−1) (𝑣1, · · · , 𝑣𝑛−𝑖 , 1) and 𝑒𝑙𝑒𝑚2 = f (𝑖−1) (𝑣1, · · · , 𝑣𝑛−𝑖 , 0) (since 𝑒𝑙𝑒𝑚1 is popped first, 𝑒𝑙𝑒𝑚1 is
in the “right” side of 𝑒𝑙𝑒𝑚2), then

𝑒𝑙𝑒𝑚 = (1 − 𝑧𝑛−𝑘1) · 𝑒𝑙𝑒𝑚2 + 𝑧𝑛−𝑘1 · 𝑒𝑙𝑒𝑚1

= (1 − 𝑧𝑛−𝑖+1) · f (𝑖−1) (𝑣1, · · · , 𝑣𝑛−𝑖 , 0) + 𝑧𝑛−𝑖+1 · f (𝑖−1) (𝑣1, · · · , 𝑣𝑛−𝑖 , 1)
= f̂ (𝑖−1) (𝑣1, · · · , 𝑣𝑛−𝑖 , 𝑧𝑛−𝑖+1)
= f (𝑖) (𝑣1, · · · , 𝑣𝑛−𝑖)

(36)

Therefore, we push (𝑒𝑙𝑒𝑚, 𝑘1 + 1) = (f (𝑖) (𝑣1, · · · , 𝑣𝑛−𝑖), 𝑖) back to the stack. When 𝑒𝑙𝑒𝑚1 and 𝑒𝑙𝑒𝑚2

are popped, lines 15 - 21 have executed 𝑣 times under the condition 𝑘1 = 𝑘2 = 𝑖 − 1, where 𝑣 is the
decimal representation of (𝑣1, · · · , 𝑣𝑛−𝑖). Therefore, S(𝚺𝑘1+1).𝑛𝑒𝑥𝑡 () will yield the 𝑣 + 1-th element of
𝚺𝑘1+1, which is 𝑔T(𝑖)𝝉 (𝑣) , note that the index of 𝚺𝑘1+1 starts from 0. From the definition of vector f𝑖 , we
know that 𝑒𝑙𝑒𝑚1 − 𝑒𝑙𝑒𝑚2 = f𝑖 (𝑣1, · · · , 𝑣𝑛−𝑖) = f𝑖 (v). It follows that at the end of the algorithm, 𝑦𝑖 =∏

v∈{0,1}𝑛−𝑖
(
𝑔T(𝑖)𝝉 (v)

) f𝑖 (v)
= 𝑔f̂𝑖 (𝝉) . When 𝑘1 = 𝑘2 = 𝑛 − 1, 𝑒𝑙𝑒𝑚1 = f (𝑛−1) (1) and 𝑒𝑙𝑒𝑚2 = f (𝑛−1) (0), so

𝑒𝑙𝑒𝑚 = (1 − 𝑧1) · f (𝑛−1) (0) + 𝑧1 · f (𝑛−1) (0) = f (𝑛) = 𝜇.
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Algorithm 5: PC.Open in streaming model
Input: (ck, f, z),

• commit key ck = ((𝑝, 𝑔, ℎ, 𝑒),𝚺0, · · · ,𝚺𝑛), where 𝚺0, · · · ,𝚺𝑛 are all input in the form of streams
S(𝚺0), · · · ,S(𝚺𝑛),

• vector f ∈ F𝑁 , which is input in the form of stream S(f),
• query point z = (𝑧1, · · · , 𝑧𝑛) ∈ F𝑛.

Output: evaluation 𝜇 = f̂ (z), proof 𝜋 = (𝑦1, · · · , 𝑦𝑛).
1 Init a stack 𝑠 ; // The elements of the stack 𝑠 are pairs (𝑒𝑙𝑒𝑚, 𝑘), where 𝑒𝑙𝑒𝑚 ∈ F and

0 ≤ 𝑘 ≤ 𝑛, 𝑒𝑙𝑒𝑚 is in the vector f (𝑘 ) .
2 for 𝑖 ← 0 to 𝑛 do
3 S(𝚺𝑖).𝑖𝑛𝑖𝑡 ();
4 𝑦𝑖 ← 1;
5 end
6 S(f).𝑖𝑛𝑖𝑡 ();
7 while (true) do
8 if 𝑠.𝑠𝑖𝑧𝑒() < 2 then
9 𝑒𝑙𝑒𝑚 ← S(f).𝑛𝑒𝑥𝑡 ();

10 𝑠.𝑝𝑢𝑠ℎ(𝑒𝑙𝑒𝑚, 0) ; // If the stack has at most 1 element, push a new element from
S(f) into stack.

11 else
12 (𝑒𝑙𝑒𝑚1, 𝑘1) ← 𝑠.𝑝𝑜𝑝();
13 (𝑒𝑙𝑒𝑚2, 𝑘2) ← 𝑠.𝑝𝑜𝑝();
14 if 𝑘1 = 𝑘2 then
15 𝑒𝑙𝑒𝑚 ← (1 − 𝑧𝑛−𝑘1) · 𝑒𝑙𝑒𝑚2 + 𝑧𝑛−𝑘1 · 𝑒𝑙𝑒𝑚1;
16 𝑠.𝑝𝑢𝑠ℎ(𝑒𝑙𝑒𝑚, 𝑘1 + 1) ;
17 𝑤 ← S(𝚺𝑘1+1).𝑛𝑒𝑥𝑡 ();
18 𝑦𝑘1+1 ← 𝑦𝑘1+1 · 𝑤𝑒𝑙𝑒𝑚1−𝑒𝑙𝑒𝑚2 ;
19 if 𝑘1 == 𝑛 − 1 then
20 output 𝜇 = 𝑒𝑙𝑒𝑚, 𝑦1, · · · , 𝑦𝑛 and stop ; // Output proof and stop running
21 end
22 else
23 𝑠.𝑝𝑢𝑠ℎ(𝑒𝑙𝑒𝑚2, 𝑘2);
24 𝑠.𝑝𝑢𝑠ℎ(𝑒𝑙𝑒𝑚1, 𝑘1);
25 𝑒𝑙𝑒𝑚 ← S(f).𝑛𝑒𝑥𝑡 ();
26 𝑠.𝑝𝑢𝑠ℎ(𝑒𝑙𝑒𝑚, 0);
27 end
28 end
29 end
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The space cost of Algorithm 5 is primarily from the stack and the storage of 𝑦1, · · · , 𝑦𝑛. Each vector
(f (0) , · · · , f (𝑛) ) has at most two elements in the stack, otherwise the algorithm will pop them and merge them
into a new element (line 15). Therefore the space complexity of the algorithm is 𝑂 (𝑛) = 𝑂 (log 𝑁). Algo-
rithm 5 makes one pass to each input streamsS(𝚺0), · · · ,S(𝚺𝑛),S(f). PC.Open takes𝑂 (𝑁) field operations
for constructing f (1) , · · · , f (𝑛) , since there are 𝑁/2𝑖 = 2𝑛−𝑖 elements in f (𝑖) and every element takes constant

time to construct (line 15). Line 18 will be executed 𝑁/2𝑖 times since 𝑦𝑖 =
∏

v∈{0,1}𝑛−𝑖
(
𝑔T(𝑖)𝝉 (v)

) f𝑖 (v)
, so

PC.Open takes 𝑂 (𝑁/2𝑖) group exponentiations for computing 𝑦𝑖 . Totally, PC.Open takes
∑𝑛
𝑖=1 𝑂 (𝑁/2𝑖) =

𝑂 (𝑁) group exponentiations (thus 𝑂𝜆(𝑁) group operations) for generating 𝑦1, · · · , 𝑦𝑛. □

7 Implementation and Evaluation

We implemented Epistle in Rust by leveraging open-source libraries such as arkworks¹ and hyperplonk².
Our implementation includes the elastic PIOP from Section 4 (which comprises the SumCheck, ZeroCheck,
Cyclic Shift Left check, Product check, and Permutation check subprotocols) and the elastic multilinear KZG
polynomial commitment scheme from Section 6.

7.1 Stream infrastructure

Similar to Gemini, we also utilized a wrapper over iter::Iterator to express stream, which can be restarted
and iterated over multiple times. The item generated by the stream implemented the borrow trait so that we
can avoid copying elements through rust’s borrow abstraction.

7.2 Optimaztions

Elastic prover. Epistle also supports switching from the space-efficient implementation to the time-efficient
implementation with specified memory threshold like Gemini. In SumCheck PIOP, if the elastic prover has
enough memory to proving current round, then it can switch the space-efficient prover state to time-efficient
prover state. This allows the elastic prover to speed up last few rounds of proving by time-efficient function
and Since the prover’s messages are the same in both modes, the final proof is identical.

Batch elastic multilinear KZG. HyperPlonk proposed a batch opening protocol to batch evaluation proofs
for a set of evaluation points over different multivariate polynomials. We implement these to our elastic multi-
linear KZG polynomial commitment scheme for batch opening, resulting in reduced opening and verification
time.

¹https://github.com/arkworks-rs

²https://github.com/EspressoSystems/hyperplonk
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7.3 Evaluation

We run benchmarks for Epistle over a 2023 Apple MacBook Pro with M3 Max chip, 14 cores and
36GB RAM. We use vanilla plonk gate for mock circuit with BLS12-381 elliptic curve. Benchmarking was
performed with instance sizes ranging from 218 to 226.

(a) Memory vs. Instance size

(b) Preprocess time vs. Instance size

(c) Prove time vs. Instance size
Figure 1: (a) memory usage, (b) preprocess time and (c) prove time for the elastic prover(blue) and time-efficient
prover(red) for different instance sizes.

Proving space. The memory usage is obtained by DHAT, a memory profiler for Rust program. As shown
in Figure 1: (a), the elastic prover memory usage remains constant at approximately 1.5GB as instance size
increases, while the time-efficient prover will trigger out of memory(OOM) at instance size 225 in our 36GB
RAM. Two main parameters affect memory usage:
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• Multi-scalar multiplication (MSM) buffer. MSM algorithms (e.g., Pippenger’s algorithm) improve
time efficiency by allocating memory buffer for data. In our implementation, we use one MSM buffer
for commit phase and log 𝑁 MSM buffers for open phase. To avoid impacting peak memory usage,
we set the commit phase buffer size to 220 and the open phase buffer size to 217.

• Sumcheck round threshold. In our implementation, we set the threshold to 20, meaning that the time-
efficient prover is adopted in the last 20 rounds. According to our experimental results, for instance
sizes greater than 220, the peak memory usage was caused by the sumcheck round threshold of 20.

HyperPlonk provides benchmarks for sizes up to 220 and our benchmark for time-efficient snark stop at 224

due to out of memory crashes. Pianist benchmarks instance sizes up to 225 in the Plonk constraint system,
consuming over 100GB of memory on a single machine and 5GB of memory per machine in a 32-machine
distributed setup. We benchmark Epistle and increase instance size to 226 while consuming only 1.5GB of
memory, but the instance upper limit in our benchmarks is arbitrary as long as it can generate input streams
for proving.

Preprocessing time. The preprocessing phase before proving involves building oracles and committing to
them. As shown in Figure 1: (b), we can observe that the results in both modes are linear and very close to
each other.

Proving time. The elastic prover can switch to time-efficient prover, and if the instance size is less than 220,
elastic prover will switch to time-efficient mode in the initial phase. Note that the transition from space-
efficient to time-efficient will take some time. In Figure 1: (c), We show the proving time in elastic and
time-efficient for different instance sizes respectively and we observe that the proving time is almost linear
in both modes. As the instance size increases from 218 to 224, the time difference between the two modes is
about 2-8x.

Proof size and verification time. For instance sizes ranging from 218 to 226, the proof size is about 14 - 19
KB and the verification time is about 10 - 15 ms.
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