
HAWKEYE – Recovering Symmetric Cryptography
From Hardware Circuits

Gregor Leander1 , Christof Paar2 , Julian Speith2 , and Lukas Stennes1

1 Ruhr University Bochum, Bochum, Germany
{gregor.leander,lukas.stennes}@rub.de

2 Max Planck Institute for Security and Privacy (MPI-SP), Bochum, Germany
{christof.paar,julian.speith}@mpi-sp.org

Abstract. We present the first comprehensive approach for detecting
and analyzing symmetric cryptographic primitives in gate-level descrip-
tions of hardware. To capture both ASICs and FPGAs, we model the
hardware as a directed graph, where gates become nodes and wires be-
come edges. For modern chips, those graphs can easily consist of hundreds
of thousands of nodes. More abstractly, we find subgraphs corresponding
to cryptographic primitives in a potentially huge graph, the sea-of-gates,
describing an entire chip. As we are particularly interested in unknown
cryptographic algorithms, we cannot rely on searching for known parts
such as S-boxes or round constants. Instead, we are looking for parts
of the chip that perform highly local computations. A major result of
our work is that many symmetric algorithms can be reliably located
and sometimes even identified by our approach, which we call HAWKEYE.
Our findings are verified by extensive experimental results, which involve
SPN, ARX, Feistel, and LFSR-based ciphers implemented for both FP-
GAs and ASICs. We demonstrate the real-world applicability of HAWKEYE
by evaluating it on OpenTitan’s Earl Grey chip, an open-source secure
micro-controller design. HAWKEYE locates all major cryptographic primi-
tives present in the netlist comprising 424 341 gates in 44.3 seconds.

Keywords: Hardware Reverse Engineering · Symmetric Cryptography

1 Introduction

Proprietary and non-public cryptography is both more common than one would
expect and as harmful as expected in almost all cases. Recent examples of dis-
closed and afterward broken non-public cryptography include GEA-1, an inten-
tionally weakened cipher for mobile communication [9], and the TETRA ciphers,
some of which are again backdoored [46]. A certainly not exhaustive list of other
examples includes the attacks on DST40 [19], KEELOQ [32], the Mifare Crypto-
1 cipher [56], and the SimonsVoss digital locking system [64].

Uncovering such secret or proprietary cryptography in an application, how-
ever, is a difficult task. In fact, many of the aforementioned insecure ciphers
had been used for decades before the algorithms and their weaknesses were dis-
covered. This exposes the public to many threats by, e.g., intelligence agencies.

https://orcid.org/0000-0002-2579-8587
https://orcid.org/0000-0001-8681-2277
https://orcid.org/0000-0002-8408-8518
https://orcid.org/0000-0002-6703-6476

2 G. Leander, C. Paar, J. Speith, and L. Stennes

To counter such threats, tools to automate the task of finding cryptography in
software have recently been proposed. For instance, the work of Meijer et al. [47]
assists during the software reverse engineering process and allows locating known
and unknown cryptographic primitives in software binaries. For hardware, the
situation is very different. In their work uncovering the TETRA ciphers [46], Mei-
jer et al. state that, although they were confident that the integrated circuit (IC)
they identified contained TETRA in hardware, they deliberately decided against
hardware reverse engineering as it «is considerably more time and resource in-
tensive» than software reverse engineering. For TETRA, they got lucky as soft-
ware implementations of the cipher existed, hence, they could simply resort to
software reverse engineering instead. However, particularly for special-purpose,
proprietary ciphers, this is usually not the case. That is, there are cases where
hardware reverse engineering is the only available option.

“Hardware” today exists in two principal forms: application-specific inte-
grated circuits (ASICs) and field-programmable gate arrays (FPGAs). While
the functionality of an ASIC is fixed during manufacturing, FPGAs can be pro-
grammed to implement almost any function using a configuration file, i.e., the
bitstream, even after manufacturing. An application domain where (i) proprietary
ciphers that are (ii) implemented in hardware are very common is in defense sys-
tems. In defense systems, FPGAs are often used as they are more cost-efficient
in low-volume applications. The ongoing conflict in Ukraine gives two striking
examples of such uses of FPGAs: An automatic targeting system recovered from
a downed Russian SU-24M fighter jet [52] and the Russian R-187P1 Azart hand-
held radio transceivers [27]. Inside of both systems, Xilinx FPGAs were found.
In the case of the radio, the FPGA supposedly contains (proprietary) ciphers. It
is quite obvious that understanding such ciphers is of major interest, not only to
the parties involved in the conflict but also to academics scrutinizing real-world
deployments of cryptography.

Besides defense systems, other reasons are at least as important from a so-
cietal point of view. A general motivation is digital sovereignty, i.e., the desire
of nation-states to minimize their dependency on foreign, untrusted hardware,
e.g., in critical infrastructure components. A recent example with major politi-
cal ramifications is the ban of certain suppliers of 5G infrastructure hardware by
the UK and the USA over the fear of hidden hardware backdoors. Such mistrust
is not entirely unfounded, considering, e.g., the case of the Crypto AG [48] or
the allegedly «SIGINT enabled» CPU vendor Cavium [4]. The massive political
and economic implications of digital sovereignty become evident when looking
at the EU Chips Act and the US CHIPS and Science Act, both of which plan to
invest 10s of billions of Dollars in order to reduce the reliance on foreign hard-
ware manufacturers. In fact, the former is one of the largest subsidizing projects
in the history of the European Union. Against this background and given the
numerous examples of weak or even backdoored cryptographic algorithms, we
argue that locating and analyzing cryptographic primitives in hardware is an
important desideratum for the scientific community.

HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits 3

An early example of this line of work comes from Nohl et al. [56], who recov-
ered and attacked the cipher implemented on the Mifare Classic RFID tag by
reverse engineering the respective chip. Hardware reverse engineering consists of
two main stages: (i) netlist extraction and (ii) netlist analysis [5]. For the former,
Nohl et al. used a mixed chemical-mechanical method to recover the chip layers.
This step was followed by optical imaging and image processing, resulting in the
chip’s netlist, a collection of logic gates and memory elements and their intercon-
nections. Since the netlist consisted of only 400 gates, the second phase—netlist
analysis—could be performed manually.

Today’s digital ICs commonly consist of at least a few 100,000 gates and
chips in high-end products such as smartphones and laptops often contain 100s
of millions of gates. Hence, manual approaches as used for the Mifare Classic
have become infeasible. For ASICs, the netlist extraction process is laborious
due to shrinking transistor sizes [41,61,71], but well understood. In fact, besides
specialized agencies of nation-states, several commercial service providers offer
netlist recovery [68,69]. For FPGAs, netlist extraction is even easier to achieve
and can be done with moderate resources, e.g., by academics. Here, recovering
a netlist merely requires reverse engineering the proprietary file format of the
bitstream, which is then converted into a gate-level netlist. This process is well
understood and documented [36,73,57,12,28,59,3]. However, we would like to
stress that in both the ASIC and FPGA case, a reverse engineer who has recov-
ered the netlist is faced with a large sea of gates that lacks any hierarchy, module
boundaries, or even just labels, data types, or meaningful strings often found in
software binaries [40]. Given that modern hardware implementations can fea-
ture many millions of logic gates, analyzing such a netlist is extremely difficult
without automation. Some specialized approaches towards automatic gate-level
netlist analysis have been proposed so far [45,62,21,5,2]. Surprisingly, despite
initial experiments [72,2,65], no approach toward the automated detection and
identification of cryptography in gate-level netlists exists.

Our Contribution. The work at hand aims to address this research gap by
proposing a set of algorithms to locate and analyze symmetric cryptographic
primitives within gate-level netlists, see Fig. 1. We refer to this collection of
algorithms as HAWKEYE.3 Our approach allows us to automatically detect sym-
metric primitives such as block ciphers, hash functions, or permutation-based
cryptography. Most importantly, our techniques allow us to recover known algo-
rithms and unknown—potentially secret or proprietary primitives—from hard-
ware circuits. To this end, we leverage the observation that implementations of
such algorithms result in structural properties that are inherent in symmetric
ciphers. More specifically, symmetric ciphers operate very locally, i.e., repeatedly
applying the same round function to their state.

3 HAWKEYE—Hardware recovery of unknown symmetric cryptographic
implementations. Metaphorically speaking, HAWKEYE circles over the sea of
gates and dead on target finds its prey: symmetric cryptography.

4 G. Leander, C. Paar, J. Speith, and L. Stennes

HAWKEYE comprises three steps that can be executed independently of each
other. First, (i) it interprets the sea of gates as a graph and traverses this graph
to identify gates likely belonging to a cryptographic implementation. Second, (ii)
HAWKEYE extracts a description of the cryptographic primitive’s round function
and annotates external inputs such as state, plaintext, round key, and control.
Finally, (iii) it analyzes the round function. For substitution-permutation net-
work (SPN) ciphers, we attempt to automatically extract S-boxes and match
them against a database of known S-boxes. The extracted S-boxes can also be
exported for further analysis using tools such as sagemath [70] or SboxU [8].

crypto

Fig. 1: Illustration of HAWKEYE locating cryptography in the sea-of-gates.

For the evaluation of HAWKEYE, we rely on open-source hardware designs. We
synthesized these designs for FPGAs and some also for ASICs to obtain gate-
level netlists. In our first experiment, which is close to a real-world setting, we
executed HAWKEYE on an FPGA netlist implementing OpenTitan’s Early Grey
secure micro-controller that comprises 424 341 gates. HAWKEYE reliably located all
major cryptographic primitives implemented on Early Grey, including AES [26],
Keccak [14], and SHA-256 [55] in 44.3 seconds. Furthermore, it correctly ex-
tracted and identified the AES S-boxes. Given the circuit size, we assume manual
approaches for finding the ciphers would have been extremely time-consuming.

In order to evaluate HAWKEYE with a large number of symmetric algorithms,
we used a relatively small system-on-chip (SoC) synthesized with varying crypto-
graphic co-processors. We simulated a realistic detection setting by surrounding
the cipher with non-cryptographic circuitry. A main finding of these evalua-
tions is that the structural properties HAWKEYE exploits for detection are actu-
ally present across different ciphers and independent of surrounding circuitry. We
correctly recovered the state and/or (round-)key registers of 17 out of 18 FPGA
benchmarks and all 18 ASIC benchmarks, often in a fraction of a second. As a
cryptographic implementation usually revolves around its state register(s), this
gives us the location of the respective cipher on the chip. As there are, by nature,
no public hardware designs of non-public cryptographic algorithms, we relied on
open-source implementations of known ciphers for this evaluation. Given that we
detected all tested public algorithms, we are confident that proprietary ciphers
would also be identified by HAWKEYE.

HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits 5

As a final set of experiments, we examined the false positive rate of HAWKEYE.
We applied it to six non-cryptographic implementations, where only between zero
and three false candidates were reported. A surprising result is that HAWKEYE also
identified some LFSR-based PRNGs, even though it has been primarily designed
to locate SPN, Feistel, and add-rotate-XOR (ARX) ciphers.

HAWKEYE is implemented as a plugin for the open-source hardware analyzer
HAL [33,37] and is available as part of the HAL GitHub repository.4 It is designed
to be easy to use as it only requires a few straightforward function calls and does
not rely on fine-tuning any parameters to make it work. Still, if known, a user
can specify, e.g., a block size or S-box entries that they suspect to find.

Finally, we want to note that our approach is not designed to deal with imple-
mentations protected against side-channel or fault attacks. Of course, tackling
protected implementations is appealing for future work. As HAWKEYE is built in
a modular way, we hope that future techniques will be integrated into our tool.

Related Work. For a general overview of hardware reverse engineering and
netlist analysis in particular, we refer to the work of Azriel et al. [5]. Experi-
ments of Werner et al. [72] discuss graph partitioning in the context of reverse
engineering cryptographic cores. Their approach produces a fuzzy partition and
requires manual interpretation of the resulting partitions based on known pat-
terns. Albartus et al. introduced DANA [2] as a plugin for HAL that attempts
to recover high-level registers from a gate-level netlist. One of their case stud-
ies examines an early version of the OpenTitan chip and reveals its registers,
including those of an AES and SHA-256. Still, locating and identifying the im-
plemented ciphers requires manual inspection of the resulting register graph.
Furthermore, Swierczynski et al. [65] induce permanent faults into AES and DES
implementations on FPGAs, particularly their S-boxes, with the goal to recover
key material. They argue that the parts of the FPGA configuration exhibiting
high non-linearity are likely to implement an S-box. These initial studies provide
some insights into detection strategies for cryptographic implementations, but
none of them presents a comprehensive solution.

For software, Meijer et al. presented Where’s Crypto? [47] at USENIX 2021.
The goals of our work are aligned with theirs, but while they presented solutions
to find and identify cryptography in software, we are concerned with hardware
implementations instead. Their tool relies on predefined signatures of the cryp-
tographic implementations and then on solving graph isomorphism problems to
identify those signatures in binaries. As the challenges associated with hardware
reverse engineering are fundamentally different from software reverse engineer-
ing, their approaches cannot simply be transferred to the hardware domain.

In case we detect an S-box in the sea-of-gates, we make use of a technique
proposed by Biryukov et al. [15] to efficiently check whether the S-box is present
(up to affine equivalence) in a database of well-known S-boxes. Of course, in case
HAWKEYE comes across unknown cryptographic building blocks, further analysis
4 See https://github.com/emsec/hal/tree/8f6c18d4473ef2bdc80f0128b78bab16a4b99fea/

plugins/hawkeye.

https://github.com/emsec/hal/tree/8f6c18d4473ef2bdc80f0128b78bab16a4b99fea/plugins/hawkeye
https://github.com/emsec/hal/tree/8f6c18d4473ef2bdc80f0128b78bab16a4b99fea/plugins/hawkeye

6 G. Leander, C. Paar, J. Speith, and L. Stennes

is needed. While not in the scope of our work, we also want to mention further
works of Biryukov et al. [16] and Beierle et al. [10], who reverse engineered
S-boxes and linear layers to uncover hidden structures.

Outline. We recall relevant preliminaries in Section 2. In Section 3, we explain
our techniques to locate and analyze cryptographic implementations in netlists.
After that, in Section 4, we evaluate the resulting tool on OpenTitan’s Earl Grey
secure micro-controller, on a smaller SoC with cryptographic accelerators, and
numerous standalone implementations of symmetric cryptographic algorithms.
We conclude our work in Section 5.

2 Preliminaries

While symmetric cryptography can, in a top-down approach, be categorized
into different groups like encryption, hash function, and message authentication
codes which again can be divided into block ciphers, stream ciphers, and so on,
virtually all of them follow the same principle: Update some state repeatedly
with an efficient round function to derive a random-looking state. For security,
it is crucial that the round function features non-linearity. The most common
building blocks to achieve this are S-boxes as the heart of SPNs, non-linear
filter or update functions for (non-)linear-feedback shift registers, and modular
additions in ARX designs.

2.1 Hardware Implementations of Symmetric Ciphers

Generally, cryptographic algorithms are implemented in hardware, i.e., FPGAs
or ASICs, using sequential and combinational logic. Sequential logic such as flip-
flops holds the current state of the circuit and is updated on a clock signal’s
positive (or negative) edge. Hence, it synchronizes the circuit. Such flip-flops
may be controlled by inputs such as enable, reset, or set. Combinational logic
comprises logic gates that compute a Boolean function on their inputs and im-
mediately (or with minimal delay) output the result. Computations such as a
round function of a symmetric cipher are implemented in combinational logic,
while sequential logic stores (and synchronizes) intermediate states.

Different approaches can be pursued when implementing symmetric cryptog-
raphy. Here, we focus on typical implementation approaches for SPN, Feistel,
and ARX-based ciphers. Round-based implementations as depicted in Fig. 2a
compute one round of a cipher per clock cycle and store the intermediate state
after this round in the state register that consists of flip-flops. In our example, the
state register input is connected to a multiplexer that selects the plaintext upon
initialization and the current state while the later rounds are computed. Hence,
round-based implementations are compact because the round function needs to
be implemented only once, but they lack throughput as multiple clock cycles are
required to compute a single ciphertext block. The complex inner workings of
such an implementation are typically steered by a finite state machine (FSM).

HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits 7

state
register

round
function

key schedule

FSM

P

C

K

(a) Round-based implementation.

state
register

round
function

key schedule

FSM
state

register

round
function

round
function

P C

K

(b) Pipelined implementation.

Fig. 2: Common implementation techniques for symmetric ciphers.

Pipelined implementations such as shown in Fig. 2b present the other ex-
treme. Here, the implementation is unrolled, i.e., every round of the cipher is
implemented separately using combinational logic, interrupted only by state reg-
isters. The state registers are placed between the rounds to reduce the critical
path length, which is required to achieve high clock frequencies. Generally, this
setup allows multiple different plaintexts to be at different stages of the encryp-
tion at the same time. If fully utilized, one ciphertext is output every clock cycle,
drastically improving throughput at the cost of more logic area being required
for the implementation.

While these two approaches are most common, other implementation tech-
niques exist. For instance, the cipher PRINCE is built in a way that allows it to
be implemented fully unrolled [20], without any state register between the in-
dividual rounds. Furthermore, highly area-optimized implementations may also
deviate from these patterns. Fig. 2 shows examples of round-based and pipelined
implementations, but different flavors of them exist. The state register of a round-
based implementation may also be placed behind the round function so that the
combinational logic of the multiplexer and the round function can be merged. For
pipelined implementations, more than one round may be implemented between
two state registers to reduce latency. Finally, additional plaintext, ciphertext, and
key registers may be present at the inputs and outputs of such implementations.
Even such slight deviations already present challenges to a generic detection
algorithm.

2.2 Hardware (Reverse) Engineering

Hardware is built by first describing the desired components in a hardware de-
scription languages such as Verilog. This description is then fed into a synthesizer
to obtain a gate-level netlist. Such a netlist comprises the combinational gates
and sequential elements such as flip-flops of a hardware implementation, as well
as their interconnections, i.e., the nets connecting the gates. The primary dif-
ference between ASIC and FPGA netlists is that combinational logic is realized
using look-up tables (LUTs) on FPGAs while ASICs rely on regular Boolean

8 G. Leander, C. Paar, J. Speith, and L. Stennes

gates. For ASICs, the netlist is then implemented as a layout file describing the
physical properties of the final chip. Afterward, the layout file is passed on to a
manufacturing facility that actually produces the chip. In contrast, FPGAs fea-
ture an already manufactured (and hence fixed) fabric that can be programmed
to implement arbitrary, user-defined circuits by using a configuration file also re-
ferred to as a bitstream. To obtain this bitstream, the gate-level netlist is placed
and routed on the existing fabric using an electronic design automation tool
provided by the FPGA vendor. Afterward, it is converted into the proprietary
bitstream format of the respective FPGA.

For simplification and in line with previous work [5], we consider hardware
reverse engineering to be a two-stage process. First, during netlist extraction, a
gate-level netlist is recovered from a target, either an FPGA or an ASIC. For
ASICs, this requires skilled personnel, expensive equipment, weeks or months to
complete, and is prone to errors [41,61,71]. However, for FPGAs, netlist extrac-
tion merely involved reverse engineering the format of their bitstream file, which
is a well-understood process [36,73,57,12,28,59,3]. While bitstream protections
such as encryption exist, they have repeatedly been shown to be susceptible
to protocol [35,34] and side-channel attacks [49,50,51,66,67]. On top of this, re-
covery of an error-free netlist is achievable given a sound understanding of the
bitstream format. Recent studies have shown reverse engineering of an entire
real-world FPGA for the purpose of intellectual property theft to be feasible [40].

Second, having recovered a gate-level netlist, netlist analysis is performed to
achieve a high-level understanding of the implementation. The exact meaning of
this depends on the goals of the reverse engineer. The work at hand deals only
with this second stage of hardware reverse engineering in the context of locating
and analyzing implementations of arbitrary symmetric ciphers in unknown gate-
level netlists implemented on FPGAs or ASICs. To this end, we are confronted
with a sea-of-gates that lacks obvious structure such as hierarchy and module
boundaries, or even just interpretable labels or word-level information such as
data types and bit orders often used for software reverse engineering [40].

(a) A small gate-level
netlist in HAL.

g0
i0

i1

i2

i3
g1

g2

(b) The same netlist as a
circuit diagram.

i0

i1

i2

i3

g0

g2

g1

(c) The same netlist inter-
preted as a graph.

Fig. 3: An excerpt from a ASIC netlist comprising three combinational gates
shown in different forms of representation.

HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits 9

Fig. 3 depicts a small excerpt from a gate-level netlist extracted from an
ASIC in the netlist analysis framework HAL [33,37] (Fig. 3a) and as a circuit
diagram (Fig. 3b). In our work, we interpret the netlist as a graph G = (V,E),
see Fig. 3c. To this end, we treat the gates in the netlist as vertices V and the
nets as directed edges E. For some vertices v0, v1, v2, . . . , vn ∈ V , we say that
p = (v0, v1, . . . , vn) is a path of length |p| = n if (vi, vi+1) ∈ E for all 0 ≤ i < n.
Notice that we do not require that the vi are distinct. In case we do not care
about the inner vertices, we simply write v0

p
⇝ vn. The set of all paths connecting

v0 and vn is denoted by P (v0, vn).
To conduct netlist analysis, both structural and functional methods can be

applied. Here, structural means that we ignore the Boolean functions imple-
mented by the combinational gates. For functional analysis, these Boolean func-
tions are considered by labeling nodes representing combinational gates with
the Boolean function they implement. We split gates with multiple outputs into
single-output gates. Based on these labels, we evaluate subgraphs to learn the
combined Boolean functions of multiple gates. For instance, in Fig. 3, the output
of vertex g2 as a function of the inputs of vertices g0 and g1 is

f(i0, i1, i2, i3) = ¬(¬(i0 ∨ i1) ∧ ¬(i2 ∨ i3)) = i0 ∨ i1 ∨ i2 ∨ i3.

For performance reasons, structural analysis is preferable over functional anal-
ysis, as the traversal of the netlist graph is usually faster than operating on
complex Boolean functions comprising dozens of input variables.

3 Our Techniques

In this section, we explain the technical details and design choices of HAWKEYE.
For illustration, we use a round-based AES hardware implementation on a Xilinx
7-series FPGA as a running example. We deliberately omit non-instructive de-
tails and use a rather theoretical perspective, s.t. no deep knowledge of hardware
implementations is needed to follow our description. Of course, the interested
reader is invited to consult our implementation of HAWKEYE for details.

On a high level, HAWKEYE comprises three independent steps: (i) locating
candidates of cryptographic implementations, (ii) extracting and dissecting the
round function, and (iii) analyzing the round function. Step (i) takes the netlist
graph G as input and outputs candidates that HAWKEYE suspects to be state
registers of a cryptographic implementation. More formally, this step outputs a
set {C1, C2, . . . } of candidates Ci = (Ri,in, Ri,out). Each Ci comprises two sets
of flip-flops where one set of flip-flops represents the input register Ri,in and
the other the output register Ri,out. Steps (ii) and (iii) are then executed on all
candidates separately.

Step (ii) takes one candidate Ci from Step (i) as input and then outputs a
graph representing only the round function which exactly contains the previously
identified input and output registers, the combinational logic in between these
two registers, and additional inputs like round keys. While appearing superfluous

10 G. Leander, C. Paar, J. Speith, and L. Stennes

at first, this step acts as a layer of normalization and enables us to prepare the
round function for further analysis.

In Step (iii), HAWKEYE analyses the extracted round function graph and, for
SPNs, tries to recover S-boxes through structural and functional analysis. Fur-
thermore, HAWKEYE attempts to identify these S-boxes by comparing them against
a database of known S-boxes using the affine equivalence algorithm from [15].

3.1 Locating Cryptographic Candidates

The most important step of our analysis is the detection of (candidates of)
cryptographic state registers. As this step is executed on the entire gate-level
netlist, which can contain thousands if not millions of gates, we rely solely on
structural techniques. That is, we only work on the graph induced by the netlist
but do not evaluate any Boolean functions. Conveniently, the fact that symmetric
primitives work extremely locally translates well to such a structural check.

To be more specific, consider round-based and pipelined implementations
as described in Fig. 2. As stated before, we interpret the netlist as a directed
graph G = (V,E). Now, to locate cryptographic implementations, we consider
only the flip-flop connectivity graph GFF = (VFF, EFF) implied by replacing all
combinational gates with nets. That is, VFF ⊂ V is the set of all flip-flops in V
and EFF is such that there is an edge (u, v) if there is a path from flip-flop u to v
which passes only through combinational logic but not through other flip-flops.

For a moment, assume that no ciphertext register exists in GFF. While this is
not realistic in practice, it helps to understand our approach and we later show
how to deal with this issue. If there is no ciphertext register, then every flip-flop
in the state is followed only by other state flip-flops. In other words, there is no
branching out of the state data path; therefore, the state register forms a sink.
This observation is quite intuitive as it would be a security disaster if the state
would influence anything but itself and the ciphertext. As this observation does
not hold for most flip-flops that do not belong to a cryptographic implementa-
tion, it enables us to locate candidates of state registers within the sea-of-gates
using only structural techniques.

More formally, the k-th neighborhood Nk(v) of a state flip-flop v in GFF,

Nk(v) = {u ∈ VFF | ∃p s.t. v p
⇝ u and |p| = k},

consists only of state flip-flops. Moreover, for strong symmetric primitives, the
avalanche effect ensures that the process of considering Nk(v) for increasing k
quickly obtains a complete state register. That is, there is a small k′ s.t. the k′-th
neighborhood constitutes a complete state register and for k′ +1 we again get a
complete state register. We depict this for a toy example in Fig. 4a using a state
size of four. For our running example, i.e., the round-based implementation of
AES, we have k′ = 2 as two rounds of AES provide full diffusion.

Based on this idea, we assemble Algorithm 1. It takes the flip-flop connec-
tivity graph GFF derived as described above as input. Then, for all flip-flops,
we compute the k-th neighborhoods where k = 1, 2, . . . , kmax. As we expect to

HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits 11

identify state registers with a small k, we choose kmax := 10. If we encounter a
flip-flop v for which the size of the neighborhoods quickly saturates and is larger
than a heuristically predefined minimal register size of cmin = 10, we stop and
store the two last neighborhoods as the two registers Rin and Rout of a candidate
C. We might encounter this candidate multiple times for different start flip-flops
v, but we only output it once. Also, we might detect a candidate C = (Rin, Rout)
which is a superset of another candidate C ′ = (R′

in, R
′
out), in the sense that both

R′
in ⊊ Rin and R′

out ⊊ Rout. For instance, this might happen if we additionally
start in a key schedule flip-flop and thereby find a candidate that consists of the
round key register and the state register. If C is a superset of C ′, we discard
C and output only C ′. Finally, we only consider candidates containing at least
smin = 40 flip-flops in their output register to be state register candidates.

Algorithm 1 Identify state registers.
Require: flip-flop connectivity graph GFF

Ensure: state-register candidates
kmax := 10 ▷ maximal number of forward steps
cmin := 10 ▷ minimal candidate size
smin := 40 ▷ minimal state register size
for each v ∈ VFF do ▷ for all flip-flops

for k = 1 to kmax do
Compute k-th neighborhood Nk(v) ▷ using breadth-first search
if cmin ≤ |Nk−1(v)| = |Nk(v)| then

Store (Nk−1(v), Nk(v)) as a candidate for input and output register
break

end if
end for

end for
return candidates that are larger than smin and not a superset of another candidate

As Algorithm 1 relies on the heuristics described above, claiming any theo-
retical correctness is inappropriate. Of course, if a cryptographic implementation
is not covered by our heuristic, Algorithm 1 can not detect it. Hence, we instead
give practical results in Section 4 for detection rates and runtime complexity.
Regarding runtime, the most expensive step is the breadth-first search to com-
pute the neighborhoods, which we execute for at most kmax = 10 steps for every
flip-flop in the netlist.

Recall that we have assumed that no ciphertext register exists in GFF at the
beginning of this section and that every state flip-flop would only be followed by
other state flip-flops. This is true for pipelined implementations for all but the
last round, since every state register is only followed by another state register.
However, as is, Algorithm 1 fails for round-based implementations as the one
existing state register does not only feed back into itself but also into the cipher-
text register. Hence, when traversing GFF starting from a state flip-flop, we need
to ensure to exclude ciphertext flip-flops to prevent “exiting” the state logic. We

12 G. Leander, C. Paar, J. Speith, and L. Stennes

present two complementary methods to deal with this issue. As HAWKEYE is built
in a modular way, further methods could easily be added over time if the need
arises. Both presented methods can also be combined to refine results.

S
S

S

S

S

S

S

S

S

S

S

1 2 3

(a) Candidate search with Method 1.

S
S

C

C

S SCC
S

S

C

CC

O

S

S

C

...

SCC
S

S

C

CC

O

S

S

C

...

1 2 3

(b) Candidate search with Method 2.

Fig. 4: Different approaches to locate the state register of an implemented cipher
based on forward propagation. State flip-flops are denoted as S , ciphertext flip-
flops as C , and other flip-flops as O .

Method 1: Flip-Flop Filtering. On FPGAs, we observed that the state
and ciphertext registers are often controlled by distinct control inputs directly
applied to the flip-flops. We utilize this observation to refine our candidate search
by applying an approach we refer to as flip-flop filtering. In case VFF contains
flip-flops with different control inputs, we consider Gf

FF = (VFF, E
f
FF) with Ef

FF
containing (u, v) ∈ EFF only if both u and v are controlled by the same control
inputs. We then execute Algorithm 1 on Gf

FF instead of GFF. Our experimental
evaluation in Section 4 demonstrates that this usually produces good results for
FPGAs, but not so much for ASICs.

Example 1 (Round-based AES). To illustrate our techniques, we apply them to
a round-based implementation of AES on a Xilinx 7-series FPGA and report
not only the results but also describe the inner workings. We choose AES as
it is the best-known symmetric cipher and its implementation, especially on
FPGAs, is an exceptionally instructive example. Apart from implementing AES,
the netlist under scrutiny also comes with a Universal Asynchronous Receiver
Transmitter (UART) interface. This allows us to communicate with an FPGA
board configured with the netlist so that we can actually encrypt plaintexts and
obtain ciphertexts using our implementation. The sole purpose is to demonstrate
that our AES implementation is indeed correct.

Executing HAWKEYE on the netlist consisting of 3458 gates takes only a fraction
of a second and produces one candidate. Indeed, the candidate consists of two
identical registers comprising the same 128 flip-flops each and corresponds to the

HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits 13

AES state register. To better understand how HAWKEYE behaves during candidate
search, we dissect its inner working for several start flip-flops from our example: A
state flip-flop, flip-flops from the key schedule, the plaintext, the FSM steering
the AES implementation, and several flip-flops from the UART interface. For
each of them, we give the sizes of the neighborhoods Nk(v) in Table 1.

Table 1: Exemplary traces of our candidate search for different start flip-flops.
i Register of vi (|Nk(vi)| for k = 1,2, . . .) Candidate Comment

1 state (32, 128, 128) ✓

2 round key (36, 164, 196, 228, 256, 256) (✓) superset of 1
3 plaintext (0) ✗ different control
4 AES state machine (4, 4) ✗

5 UART state machine (2, 2) ✗

6 UART clock counter (10, 10) ✗

7 UART transmitter (0) ✗ different control
8 UART receiver (0) ✗ different control

For the state flip-flop v1, we get |N1(v1)| = 32, i.e., v1 influences 32 other
flip-flops. With AES in mind, this is the expected behavior since the signal passes
through one 8-bit S-box and MixColumns. Next, we have |N2(v1)| = 128. Again,
with the diffusion properties of AES in mind, this is expected as ShiftRows
ensures that the flip-flops in N1(v1) cover all four columns of the state and
hence we collect all state flip-flops in N2(v1). Now, we have |N3(v1)| = 128,
simply because the complete state influences all of the state again. This also
implies that |Nk(v1)| = 128 for all k ≥ 2. Hence, we stop, and the state register
is correctly identified as a candidate.

For most other flip-flops, we can also stop the search after only a few steps.
This is either because the respective flip-flop has no successors in Gf

FF due to
differing control inputs or because we quickly saturate at a neighborhood smaller
than cmin. Note that for v6, a candidate containing 10 flip-flops is created, but
not considered a state register candidate as it is smaller than smin. One exception
is the round-key register, for which we end up with a candidate containing both
the state and the round-key register. This candidate constitutes a superset of
the identified state candidate and is discarded.

Method 2: SCC Detection. For round-based implementations on ASICs, we
observed that distinguishing state and ciphertext registers based on their control
inputs is not always possible. Some control inputs are not directly applied to the
flip-flops but merged into the combinational logic preceding a flip-flop’s data
input. Here, recovering the control inputs feeding into the combinational logic
is sometimes impossible without making assumptions about the surrounding
circuitry. However, due to the nature of symmetric cryptography, the state reg-
ister flip-flops in GFF of such round-based implementations are usually strongly

14 G. Leander, C. Paar, J. Speith, and L. Stennes

connected. That is, eventually, every state flip-flop influences every other state
flip-flop. In anticipation of the strongly connected components (SCCs) within
GFF being rather large and containing way more than just the state register,
we implement a local SCC search within Algorithm 1 that only tries to find
SCCs within the neighborhoods Nk(v). Furthermore, we modify Algorithm 1 to
only stop if the size of the SCCs found in Nk(v) and Nk+1(v) is equal. Only the
flip-flops contained in the SCC are then considered to be the candidate. This
method is depicted in Fig. 4b. As ciphertext flip-flops can no longer be differen-
tiated from the state flip-flops, they are added to the set of currently considered
flip-flops through graph traversal. Furthermore, other flip-flops may be added to
this set in subsequent iterations by following the ciphertext flip-flops. However,
as they are not part of the SCC, they will not be considered for the final candi-
date. We stress that this approach is not useful to find pipelined cryptographic
implementations, because these do not form an SCC.

3.2 Extracting and Dissecting the Round Function

Once a candidate C = (Rin, Rout) has been found, HAWKEYE attempts to extract
the round function implemented in combinational logic between Rin and Rout.
For this, we again consider the complete netlist graph G. If Rin = Rout, we copy
Rin and replace Rout with this copy s.t. we always end up with a directed acyclic
graph. While cutting out the combinational subgraph between two registers ap-
pears straightforward, there are intricate details to consider in practice.

First, there likely are additional inputs to the round function other than the
previous state. Those typically include the plaintext, round keys/constants, and
control signals coming from an FSM. Labeling those as accurately as possible
is important since we need to brute force the control inputs later on. Luckily,
control inputs can often be easily identified as they connect to many gates in the
round function. For instance, in our AES example, a control signal determines
whether the MixColumns step takes place (it is omitted in the last round of AES).
This control signal feeds into 128 combinational gates as it must influence the
computation of every state bit. In contrast, a plaintext or round key flip-flop
usually only feeds into a single combinational gate. Hence, heuristically, we label
an additional input as control if the number of gates it is connected to is larger
than half the state size.

Second, we check for special structures like Feistel. For Feistel networks,
parts of the current state are just forwarded to the next state, without any
computations being performed. In the netlists, this translates to some flip-flops
in the input register Rin being directly connected to flip-flops in Rout, without
any combinational logic in between.

Finally, dissecting the round function into independent parts might be pos-
sible. By considering the connected components of the undirected version of the
flip-flop graph GFF, i.e. the graph G′

FF = (V ′
FF, E

′
FF) with

V ′
FF = VFF and E′

FF = {{u, v} | (u, v) ∈ EFF},

HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits 15

we identify independent parts of the round functions. Of course, it might be the
case that the entire round function is just a single large component. However,
considering one round of AES, we end up with four independent components that
correspond to the four columns of the AES state. We note that AES influenced
the design of many modern ciphers, which hence incorporate a similar structure.
Furthermore, the quarter-round pattern of ChaCha [13] also matches this struc-
ture. In case HAWKEYE detects such a structure, the subgraph implementing the
round function is divided accordingly.

Example 2 (Round-based AES). In the round function extraction step, we start
at every flip-flop of the output register and propagate backward until we en-
counter the flip-flops of the input register or a gate that is not influenced by the
input register anymore, i.e., an additional input. As we deal with a round-based
implementation, we replicate the state register to have separate input and out-
put registers. Recall that the complete netlist consists of 3458 gates in total. The
extracted round function consists of 128 state flip-flops (another 128 duplicated
state flip-flops), 258 additional inputs, and 1328 LUTs.

First, we investigate the additional inputs. Using our heuristic from above,
HAWKEYE identifies two of them as control inputs. Indeed, those two control
whether a plaintext is loaded into the state and whether the MixColumns oper-
ation takes place. The other 256 inputs form the plaintext and the round key
inputs. Finally, we detect the four independent columns, as discussed before.

3.3 Analyzing Substitution–Permutation Networks

Arguably, SPNs are the most common design strategy for symmetric primitives.
In recent years, many hardware-friendly SPNs were proposed [11,18,20,38,30,14].
For SPNs, we are interested in their S-boxes. Hence, HAWKEYE attempts to au-
tomatically extract S-boxes from the round function and compare them to a
database of widely known S-boxes. For efficiency, our analysis is again mostly
structural and minimizes the number of required Boolean function evaluations.

For completeness, we want to mention another approach: the techniques used
to break SASAS [17]. Biryukov et al. treated the round function as a black box
oracle to find the S-box by evaluating carefully crafted inputs. As this contra-
dicts our goal of minimizing the number of evaluations, we did not study such
techniques further.

Locating S-box Candidates. For a moment, assume that the round function
starts with the S-box layer, i.e., the state input flip-flops Rin are indeed the inputs
of the S-boxes. Still, a priori it is unclear which input is connected to which
S-box. To group the flip-flops, we use a similar approach as before to identify
independent components. Hence, we investigate connected components of the
underlying undirected graph, but this time we also consider the combinational
logic. Furthermore, instead of considering the entire graph at once, we step-by-
step consider the subgraphs induced by taking k steps forward from the input

16 G. Leander, C. Paar, J. Speith, and L. Stennes

flip-flops Rin through the combinational logic. Assume that the round function
L ◦ S consists of an S-box layer S and a linear layer L. If we cut the graph
such that the first part implements S, then the connected components of the
undirected version of the graph correspond to the S-boxes.

More formally, for two nodes u, v ∈ V , we denote the set of all paths from
u to v as P (u ⇝ v). Then, we define lcp(v) as the length of the critical (i.e.
longest) path from any input flip-flop u ∈ Rin in the subgraph to v, i.e.,

lcp(v) = max
u∈Rin

max
p∈P (u⇝v)

|p|.

Then, in iteration k, we consider the graph induced by Ṽ = {v ∈ V | lcp(v) ≤
k}. If this graph nicely partitions into independent components, we have identi-
fied the S-box inputs. Here, of course, nicely conceals our heuristic, which is as
follows: We check if there are m ≥ 1 components, each containing exactly n ≥ 1
input flip-flops such that m · n = |Rin| is the number of all input flip-flops.

Given the inputs of each S-box, we still have to determine the outputs. To
this end, we first consider all gates that only depend on a non-strict subset of the
inputs. Thereby, we are left with the gates that correspond to the computation
of the S-box and potentially some linear operations after the S-box (think of
multiplication with 0x03 in the MixColumns operation in the AES). We identify
output gates by considering only the gates for which the successors also depend
on inputs of other S-boxes. If we are left with the same number of outputs as
inputs, we store the S-box candidate for further analysis. If we find fewer outputs
than inputs, we discard the S-box candidate and continue with the next set of
inputs or the next step. Of course, thereby we miss, e.g., the DES S-boxes. If we
are left with more outputs than inputs, we assume this is due to optimizations
of the linear layer that comes after the S-box. That is, in hardware, it might be
beneficial to, e.g., compute an output bit of 0x3S(x) directly without using the
outputs of S(x). To address this, we check if there are outputs that depend only
linearly on other outputs and, if so, eliminate them. Thereby we might obtain
linear transformations of the S-box, but this is not a problem for HAWKEYE as
both our identification of known S-boxes, as well as cryptographic properties of
S-boxes are quite robust, i.e., invariant under affine equivalence.

Notice that so far we assumed that the round function is implemented as
L ◦ S. If it is S ◦ L instead, the inputs of a single S-box depend on more input
flip-flops, and our technique as described above fails. However, we can apply the
same idea backward. We start with the output flip-flops and walk, step-by-step,
backward to find the S-boxes.

Example 3 (Round-based AES). Due to the nature of 7-series Xilinx FPGAs,
every AES S-box is typically implemented the same way. To be more specific, 7-
series FPGAs are organized in a grid of similar building blocks. Combinational
and sequential logic are implemented in CLBs that are part of this grid and
again split into two Slices each. Each Slice can implement any 8-input Boolean
function from four 6-input LUTs whose outputs are connected by two layers of
multiplexers. The resulting circuit for a single output bit is depicted in Fig. 5.

HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits 17

Returning to our S-box extraction, recall that we investigate each of the four
identified components separately, i.e., the four columns of the AES state. For
one, two, or three steps, our graph does not decompose nicely as there are input
flip-flops that are not connected to anything else. These are the flip-flops that
are directly connected to the last multiplexer in Fig. 5. When we go four steps
forward, our graph decomposes into four components each consisting of eight
input flip-flops followed by eight XORs for key addition and then eight instances
of the subgraph shown in Fig. 5. For more than four steps, we find only a single
component comprising all 32 flip-flops. In other words, we correctly located all
input and output pairs of the S-boxes and there are no false positives.

(a) Implementation of one bit of the
AES S-box in HAL.

i0

LUT6

LUT6

LUT6

LUT6

i6

i6

i7

i1
i2
i3
i4
i5

i0
i1
i2
i3
i4
i5

i0
i1
i2
i3
i4
i5

i0
i1
i2
i3
i4
i5

(b) A circuit diagram of the
same subcircuit.

Fig. 5: Implementation of one AES S-box output on a Xilinx 7-series FPGA.

Identifying S-Boxes. Once we locate candidates for the inputs and outputs
of an S-box, it is simple to check whether the subcircuit in between them repre-
sents a known cryptographic S-box. First, we extract the Boolean functions for
all output wires and combine them into a lookup table for the S-box. In case
additional inputs contribute to the Boolean functions, we also have to assign
values to them. To this end, we simply brute-force control inputs and execute
all subsequent steps once for every possible control assignment. Furthermore, we
fix all other non-state inputs (e.g., plaintext and round key) to zero.

Given the resulting lookup table, we apply a slight modification of the affine
equivalence algorithm proposed by Biryukov et al. [15] to check whether the

18 G. Leander, C. Paar, J. Speith, and L. Stennes

S-box candidate is contained in a database of known S-boxes, see Algorithm 2.
HAWKEYE incorporates such a database that can be extended by the user. For com-
pleteness, we point out that the work of Dinur [29] improves the affine equivalence
algorithm in the case of random functions. Essentially, for the improvement to
work, the investigated functions must be of a high degree. This is not always the
case for S-boxes (e.g., consider the ASCON S-box of degree 2). Hence, we opted
for the algorithm by Biryukov et al. [15], which is fast enough in our applica-
tion. By relying on the affine equivalence algorithm, we ensure that our S-box
extraction is rather robust. That is, the order of the inputs and outputs does
not matter, nor does the addition of constants before or after the S-box. Even
if the S-box and the linear layer are interwoven (think of the aforementioned
multiplication of 0x3 with the AES S-box output), we identify the S-box cor-
rectly. Of course, this robustness also implies that we cannot distinguish affine
equivalent S-boxes. Further, if the S-box is unknown, there are many equivalent
solutions for decomposing the round function into S-box and linear layer, i.e., it
is impossible to decide which part of the linear layer goes in the S-box.

Originally, the affine equivalence algorithm of Biryukov et al. [15] takes two
S-boxes S and S′ with S, S′ : Fn

2 → Fn
2 as input and then decides whether those

two S-boxes are affine equivalent, i.e., whether there exist affine and bijective
maps A,B : Fn

2 → Fn
2 s.t. S = A ◦ S′ ◦ B. Internally, for all choices of α and β,

the affine equivalence algorithm computes and stores the linear representatives
of S(x)⊕β and S′(x⊕α), i.e., the lexicographical smallest S-boxes that are linear
equivalent to S(x)⊕β and S′(x⊕α) respectively. To check for affine equivalence,
the algorithm computes the intersection of the linear representatives of S and
S′. If there is a pair (α, β) such that the linear representatives match, then S and
S′ are affine equivalents. If we want to learn the name of an extracted S-box S,
a trivial approach would be to run this algorithm repeatedly for a list of known
S-boxes S′

i. For instance, we could first check whether an extracted 4-bit S-box
is equivalent to the PRESENT S-box. If not, we check whether it is equivalent
to the SKINNY S-box and so on. Hence, the algorithm would again and again
compute the linear representatives for the known S-boxes. To avoid this, we
slightly adapt the algorithm of Biryukov et al., see Algorithm 2. In an offline
phase, we pre-compute the linear representative for our known S-boxes (for all
choices of α) and store them in a database. In the online phase, we compute the
linear representative of the unknown S-box S for all β and check whether it is
contained in our database. In other words, this time-memory trade-off allows us
to check against all known S-boxes in parallel instead of one by one.

The correctness and complexity of our algorithm follow from the original al-
gorithm [15]. However, Biryukov et al. suggest that the linear_representative
subroutine has a complexity of O(n32n), which is not in line with our experi-
ments. For example, for the AES S-box we obtain a worse complexity. But since
we are only interested in rather small n (usually n ≤ 8) and our implementation
can handle those cases in fractions of a second, we did not investigate this incon-

HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits 19

sistency any further.5 Our implementation is optimized by using large registers
(AVX on x86 and NEON on ARM) to represent small sets frequently used in
the the linear_representative subroutine. As we believe that our approach
might also be interesting for other applications (e.g. software reverse engineer-
ing of cryptography), we will contribute our implementation of Algorithm 2 to
SboxU [8].

Algorithm 2 Affine equivalence against database.
Require: List L of S-boxes and their names ▷ offline
Ensure: S-box database D

for each S′ ∈ L do ▷ S′ : Fn
2 → Fn

2

for each α ∈ Fn
2 do

R← linear_representative(S′(x⊕ α)) ▷ lin. repr. algorithm from [15]
D[R]← name of S′ ▷ add to set of names if already defined

end for
end for
return D

Require: S-box S : Fn
2 → Fn

2 and database D ▷ online
Ensure: Name of S-box S or ⊥

for each β ∈ Fn
2 do

R← linear_representative(S(x)⊕ β)) ▷ lin. repr. algorithm from [15]
if D[R] is defined then

return D[R] ▷ return the name(s) of the S-box
end if

end for
return ⊥ ▷ S is not in the database

In case Algorithm 2 fails, i.e., if the extracted S-box S is not contained in
the database, we could apply standard analysis such as computing the differen-
tial uniformity, linearity, or algebraic degree. However, as these and many other
properties of S-boxes are well-known, we argue that it is more reasonable to sim-
ply output such S-boxes and then rely on established tools such as sagemath [70]
or SboxU [8] for further analysis.

Example 4 (Round-based AES). As established before, we correctly extracted all
inputs and outputs of the sixteen AES S-boxes. Now, we compute the Boolean
function for each output bit. For this, we actually need to assign a value to the
eight round key bits that are xored to the inputs of the S-box. As we identified
the key bits as additional non-control inputs, we simply set them to zero. In

5 For the interested reader, we want to state that the reason here seems to be that
the subroutine has to guess more than one image of the linear transformations that
map S to its linear representative. Intuitively, it is clear that we need more guesses
if there are self-equivalences.

20 G. Leander, C. Paar, J. Speith, and L. Stennes

fact, since we rely on affine equivalence, the value of those bits does not matter.
The two identified control inputs do not influence the computation of the S-box;
hence, we do not have to consider them here.

Once the Boolean functions have been extracted, we run Algorithm 2. Cru-
cially, our S-box database contains the AES S-box. Consequently, our imple-
mentation of Algorithm 2 correctly identifies the extracted AES S-box as such
in a fraction of a second on a consumer-grade laptop. As the details of the
linear_representation algorithm and our implementation of it are rather un-
related to the topic of this work, we do not go into the details but refer the
interested reader to [15] and our source code.6

Extracting the Linear Layer. If we only want to know whether our candidate
implements a cryptographic algorithm, we can stop as soon as we identify the
first S-box. Still, if we want to restore the linear layer, we need to identify all
of its input and output gates again. Hence, in the case of L ◦ S, the first step
of extracting the linear layer is actually to restore all the S-boxes because the
outputs of the S-boxes are the inputs to the linear layer. Obviously, recovering all
S-boxes might be harder than recovering only a single one. For instance, consider
SKINNY which features a structure similar to AES, but the 4 × 4 MixColumn
matrix is binary, i.e., no finite field multiplications take place. Therefore, the
outputs of its lightweight S-boxes are directly xored with each other, which can
lead to circuit optimizations that make it hard to extract the SKINNY S-boxes
from the netlist. However, in SKINNY the first row of the state is just moved to
the second row. Here, the four corresponding S-boxes are easier to extract than
all the others.

If the extraction of all S-boxes succeeds, extracting the linear function be-
tween the outputs of all S-boxes and the output register is straightforward. We
simply evaluate the Boolean functions of the linear layer on all unit vectors and
use the results to build a matrix. If the function is affine and not linear, we
simply evaluate the all-zero input to learn the constant. To double-check that
the function is indeed linear (or affine), we can evaluate it on random inputs
and compare the results to those that we get using the recovered matrix (and
constant). Of course, the same caveats about additional inputs apply again.

There is, however, another caveat, namely the ordering of the inputs and
outputs. Given that we do not know the order of the flip-flops within our re-
covered state registers, they are equal to the actual state registers only up to
a permutation of the bits. Consider the block cipher PRESENT, for which the
linear layer is just a bit permutation. In other words, bit permutations can be
sufficient to build linear layers and therefore a truly solid linear layer extraction
would need to recover the exact linear layer and not only the linear layer up to
a permutation of the input and outputs. Of course, if we detect a known S-box,
we could try to find the linear layer of the matching cipher. But as soon as the
S-box is unknown, this is not possible anymore and hence we believe that the
most reasonable approach then is to fall back to a semi-automated approach.
6 See Footnote 4.

HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits 21

Example 5 (Round-based AES). Our running example illustrates one of the in-
conveniences we have to deal with: it features control inputs that change the
functionality of the linear layer. However, there are only two control inputs;
hence, we can simply restore the linear layer for all four possible control states.
If we do so, we get a zero matrix twice, a permutation matrix, and then a more
complex matrix M . We consider the linear layer for each component separately,
i.e., all matrices are 32 × 32 binary matrices. As discussed before, those ma-
trices represent the linear layer only up to a permutation of the inputs and
outputs. Since we already know that we are examining the AES by identifying
its S-boxes, reordering the inputs and outputs is straightforward. If we do so,
the permutation matrix becomes the identity and M becomes the MixColumn
matrix. Against this background, it becomes apparent that the two control in-
puts determine whether the plaintext (additional input set to zero) is loaded and
whether MixColumns takes place.

3.4 Analyzing ARX and Shift Registers

Certainly, SPNs are not the only strategy to design modern symmetric ciphers.
Two other approaches are ARX constructions and shift register-based ciphers.
Well-known examples for ARX, i.e., ciphers based on modular addition, rotation
and XOR, are ChaCha and SHA-2. Arguably, a cipher like ChaCha was built
to be efficient in software and hence searching for it in hardware is only of low
interest. SHA-2, however, which is implemented in innumerable Bitcoin min-
ing accelerators, surely demonstrates that ARX primitives are also implemented
in hardware. Admittedly, we did not investigate ARX in detail. Still, since the
overall structure for such ARX ciphers is also based on iterated rounds, we can
actually make use of the modularity of our tool and use prior work on detect-
ing additions in hardware [40,53] to check whether detected round functions
incorporate additions. We believe this to be a good indicator for ARX ciphers.

In recent years, symmetric cryptography based on shift registers got a lot
of attention in the context of backdoors. That is, it was discovered that the
secret cipher suites GEA [9] and TEA [46], both standardized by the European
Telecommunications Standards Institute (ETSI), contain deliberate weaknesses.
As already mentioned in the introduction, uncovering such proprietary or secret
ciphers was a clear motivation for developing HAWKEYE. Although we did not aim
to detect shift-register-based ciphers, depending on the specific implementation,
HAWKEYE can already detect some of them in gate-level netlists, see Section 4.4.
The reason for this is that partially unrolled implementations of, e.g., Trivium
look similar to implementations of block ciphers.

4 Evaluation

4.1 Methodology

To evaluate our approach, we implemented HAWKEYE as a plugin to the open-
source netlist analysis framework HAL [33,37]. The core of the plugin is written

22 G. Leander, C. Paar, J. Speith, and L. Stennes

in C++, but can be interacted with using Python. This plugin is available in
the HAL GitHub repository.7 All benchmark netlists discussed in the following
will be made available in the artifacts associated with this paper.8 The runtimes
given in this section were derived using an Apple Macbook Pro with an M2 Max
processor.

Access to real-world devices containing secret or proprietary ciphers is limited
and the engineering overhead of netlist extraction from them would far exceed
the scope of this work, cf. Section 2.2. However, gate-level netlists are not only
encountered during reverse engineering, but also as part of the hardware design
flow. Hence, we can simply synthesize ciphers on our own to generate the respec-
tive gate-level netlists and then use them to evaluate our approach. To generate
these benchmarks, we searched for public hardware implementations of (pri-
marily) symmetric ciphers. We tested on third-party designs to reduce the bias
of trying to detect something that we ourselves created. We leveraged Xilinx
Vivado to synthesize the benchmarks for Xilinx 7-Series FPGAs and Synop-
sys Design Compiler with the Synopsys LSI_10k technology library to generate
ASIC benchmarks. We chose these tools since Xilinx is the world’s largest FPGA
vendor and Synopsys dominates the electronic design automation tool market.
This way, we demonstrate that our approach is technology agnostic and even
works across platforms. The aforementioned design tools retain meaningful la-
bels in the gate-level netlists after synthesis that allow us to manually identify
state registers based on flip-flop names and thereby generate a ground truth for
evaluation. Of course, HAWKEYE does not interpret these labels during analysis.

Based on our findings, we discuss key differences between FPGA and ASIC
implementations, the challenges that arise therefrom, and how to address them.
In Section 4.2, we demonstrate the effectiveness of our approach on OpenTi-
tan, an industry-grade open-source hardware design of a root of trust security
SoC. Thereby, we show that HAWKEYE is effective in detecting implementations of
symmetric ciphers even in large gate-level netlists comprising many components
other than cryptography. Based on our findings on a smaller SoC in Section 4.3,
we argue that cryptographic and non-cryptographic components of a larger de-
sign can be analyzed separately when evaluating our approach. This allows us
to run HAWKEYE on a vast number of small benchmark designs in Section 4.4.

4.2 OpenTitan – Case Study on a Secure Micro-Controller

OpenTitan is «the first open source project building a transparent, high-quality
reference design and integration guidelines for silicon root of trust chips» [43].
Within this ecosystem, Earl Grey is a standalone secure micro-controller design
that implements a RISC-V CPU, a big-number accelerator, cryptographic ac-
celerators, interfaces, and some periphery, see Fig. 6. Earl Grey is one of only
a few industry-grade open-source hardware implementations. To the best of our

7 See Footnote 4.
8 See https://artifacts.iacr.org/.

https://artifacts.iacr.org/

HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits 23

knowledge, it is the only such design of a secure microcontroller featuring im-
plementations of cryptographic algorithms. Namely, it implements AES with
128, 192, and 256-bit key sizes, an HMAC based on SHA-256, a KMAC, a
Xoshiro256++ PRNG, and memory scramblers based on round-reduced vari-
ants of PRINCE and PRESENT. The OpenTitan project is administered by the
lowRISC initiative [42] and supported by industry partners such as Google.

Fig. 6: Overview of the Earl Grey hardware architecture taken from [44].

We evaluated HAWKEYE on a self-synthesized FPGA implementation of Earl
Grey. While Earl Grey offers on-demand side-channel protections that can be
configured during design, we did not enable them as our work does not deal with
side-channel-protected cipher implementations. The resulting gate-level netlist
contains 424 341 gates. Running the state register identification (see Section 3.1)
of HAWKEYE takes 44.3 seconds when using Method 1, i.e., filtering flip-flops by
their control inputs. This produces the 25 candidates listed in Table 2. When ad-
ditionally using Method 2, i.e., SCC detection, the runtime slightly increases to
46.6 seconds, and 21 candidates are found (Candidates 1-21). Obviously, HAWKEYE
also identifies candidates not related to cryptographic implementations. Still, at
12 out of 25 (or 21) candidates actually implementing cryptography primitives,
it provides surprisingly accurate results in a matter of seconds, a task that would
otherwise take a human weeks if not months to complete. Employing SCC-based
detection reduces the number of false positives from 13 to 9 while detecting
the same cryptographic implementations as before, thereby lowering the man-
ual verification effort even further. Hence, we observe SCC detection generally
improving our results, at the cost of a higher runtime.

24 G. Leander, C. Paar, J. Speith, and L. Stennes

True Positives. Of the 1600-bit Keccak state register, HAWKEYE identifies 640
flip-flops. This is the case because some flip-flops of this register rely on different
enable signals. Given that the number of 640 flip-flops directly relates to the
message pipeline size of 10 × 64 bits, we assume that the synthesizer somehow
takes the state of the message pipeline into account when enabling 640 of the
Keccak state flip-flops. The state flip-flops of the AES round function, the AES
key schedule, SHA-2, and Xoshiro256++ are accurately found. For the candidate
that is the correct state register of the AES round function, HAWKEYE automat-
ically extracts and identifies its S-box. For PRNGs such as Xoshiro256++, we
consider them to be a true positive despite them not being cryptographically
secure because a priori it cannot be known whether such LFSRs are used in
a cryptographic setting. Both PRESENT and PRINCE are used for memory
scrambling and are implemented in round-reduced, unrolled variants to boost
performance. As HAWKEYE is not designed to detect unrolled implementations, we
assume that these candidates have been found because of surrounding registers
that have a size equal to the respective candidate’s output register. In addition
to all these cryptographic primitives, we find five PRNGs that are mostly used
for wiping secret keys or data in general. Many of these PRNGs are implemented
using LFSRs, detection of which was not among HAWKEYE’s initial design goals.
Still, these results hint at our approach also being (at least to some extent) useful
to find LFSR-based implementations.

We note that we cannot generate a fully accurate ground truth for Earl
Grey, as some of the primitives discovered during our evaluation are not even
mentioned in the official documentation. Exhaustive manual analysis of the entire
netlist to generate such a ground truth was also not feasible. Still, we know
that Earl Grey features additional PRINCE implementations at various memory
interfaces, which we did not detect due to them being fully unrolled.

False Positives. Two false-positive candidates identified by HAWKEYE (Candi-
dates 13 and 14) can be attributed to error-correcting codes that are sometimes
implemented using structural properties similar to those of symmetric cryptogra-
phy. Of these two, Candidate 14 additionally implements a multiply-accumulate
unit where the accumulator also forms a round-based structure. In addition, the
four discovered 40-bit counters are used to keep track of the LFSRs of Candi-
dates 11 and 12 in order to reset them once their maximum output length has
been reached. Counters feature a register for the current counter state and com-
binational logic to update the state based on the current counter value, which is
similar to a round-based cipher implementation. Another class of false-positives
can be attributed to FSMs that usually exhibit a structure similar to counters.
Particularly in the security-related components of Earl Grey, these are imple-
mented using sparse, one-hot encoding. This encoding choice results in large
state register sizes, especially when counters are implemented as part of such
an FSM. HAWKEYE also finds two candidates that are the input packers for the
HMAC and KMAC implementations, respectively. Although not completely un-
related to cryptography, we view them as utility circuitry and classify them as

HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits 25

false positives. Finally, we note that when additionally using Method 2, we get
refined results in that the false-positive candidates 22 to 25 are no longer found.

Table 2: Overview of the candidates that HAWKEYE found for OpenTitan’s Earl
Grey. For every candidate, we list the number of flip-flops it contains, indicate
whether it is indeed a cryptographic primitive, and provide a brief description.

No. #FFs Crypto? Description

1 640 ✓ partial Keccak state
2 128 ✓ AES state
3 256 ✓ AES round key
4 256 ✓ SHA-2 state
5 256 ✓ Xoshiro256++ state
6 192 ✓ PRESENT state and key
7 64 ✓ PRINCE output
8 64 ✓ LFSR of PRNG within analog sensors
9 64 ✓ key manager clearing PRNG
10 64 ✓ AES clearing PRNG
11 40 ✓ LFSR of PRNG in memory controller
12 40 ✓ LFSR of PRNG in memory controller

13 1153 ✗ error-correcting code output
14 312 ✗ bignum multiply-accumulate with error-correcting code
15 40 ✗ counter in memory controller
16 40 ✗ counter in memory controller
17 40 ✗ counter in memory controller
18 40 ✗ counter in memory controller
19 384 ✗ secured state machine
20 320 ✗ secured state machine
21 96 ✗ secured state machine

22 44 (✗) SPI Host 1 state machine
23 44 (✗) SPI Host 0 state machine
24 135 (✗) HMAC packer
25 88 (✗) KMAC packer

4.3 Cryptographic Accelerators in a Small SoC

Given the complexity of OpenTitan, we conduct additional experiments on a
smaller SoC that allows us to easily swap the implemented cryptographic prim-
itives. To this end, we chose the WBSoC benchmark provided by the CAD For
Assurance [22] project. In our configuration, it contains a PicoRV32 RISC-V
CPU, some memory, a UART interface, and a 32-bit Wishbone bus connecting
the individual components. In addition, we adapted the SoC design such that
a single cryptographic primitive is implemented at a time. For this purpose, we

26 G. Leander, C. Paar, J. Speith, and L. Stennes

synthesized the SoC once for each of three different cryptographic algorithms,
namely AES-128, ASCON [30], and SHA-256. As the SoC has been designed for
Xilinx FPGAs, we could not synthesize it for ASICs.

Table 3: Overview of our results for the three different WBSoC implementations.
We deem an experiment successful if one of our methods finds a cryptographic
state register or if no false-positive candidates are discovered for noise bench-
marks. TP and FP are the number of true and false positives, respectively.
Runtimes are given in columns t. S? denotes whether the S-box of the cipher
was identified.

Name Suc. Method 1 Method 2 S? Gates Src.
TP FP t TP FP t

AES-128 ✓ 1 4 0.08s 2 1 1.13s ✓ 4830 [1]
ASCON ✓ 0 4 0.18s 1 1 1.76s ✓ 4962 [60]
SHA-256 ✓ 1 4 0.27s 1 1 2.77s - 5655 [58]

We analyzed all three resulting gate-level netlists with HAWKEYE, the results
of these experiments are given in Table 3. To this end, we initially set smin = 32
and tested two different HAWKEYE configurations. First, we tested our candidate
search using Method 1, hence filtering by flip-flop types and control inputs before
assembling the neighborhoods. Second, we executed this search again while only
using Method 2, i.e., applying SCC detection on the neighborhoods.

HAWKEYE detects correct candidates for AES-128 and SHA-256 even without
additional SCC detection, although the number of false positives declines when
resorting to SCC detection instead. ASCON is not detected this way, because
in our implementation some flip-flops of the state are enabled by different in-
puts than others. Hence, HAWKEYE can only locate ASCON with SCC detection
enabled and flip-flop filtering disabled. The increased runtime of HAWKEYE with
SCC detection can mostly be attributed to the missing control input checks, as
this causes more flip-flops to be considered during analysis. We observe that the
runtime increases with the state size of the implemented algorithm. AES-128
features a 128-bit state, ASCON a 320-bit state, and SHA-2 a 256-bit state.

Regarding the false positives during candidate search, we find that HAWKEYE
always detects the very same candidates because the logic surrounding each of
the three cryptographic implementations does not change. When searching with-
out SCC detection, two false candidates of size 33 and two of size 32 are detected
independent of the implemented cipher. Hence, this indicates that increasing
smin to, e.g., 40 helps reduce false positives without affecting the identification
of correct candidates. Similarly, we determined that setting cmin = 10 reduces
the number of false positives even further compared to other values of cmin.

HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits 27

4.4 Isolated (Non-)Cryptographic Benchmarks

Based on our findings in Section 4.3, we argue that finding a cryptographic im-
plementation with HAWKEYE is independent of its surroundings in that the imple-
mentation of, e.g., the PicoRV32 CPU does not influence the detection of cryp-
tographic candidates. Hence, we evaluated HAWKEYE on a wide selection of stand-
alone open-source implementations of cryptographic primitives and “noise”, i.e.,
implementations of non-cryptographic hardware designs such as CPUs and sig-
nal processing modules. To show the applicability of HAWKEYE beyond FPGAs
netlists, we synthesized all benchmark netlists for both ASICs and FPGAs as
described in Section 4.1. We refer to Table 4 for our evaluation results on FPGA
and ASIC netlists. For this part of our evaluation, we only consider a candidate
a true positive if it contains the full state and/or round-key register. Partial hits
are considered a false positive and are discussed in more detail below. We do not
expect many other false positives as the benchmarks implement nothing but the
cipher and an additional UART interface for communication.

FPGA Benchmarks. HAWKEYE successfully locates the three DES state reg-
isters of 3DES, even without additional SCC detection. In general, we observe
that SCC detection is rarely needed to locate cryptographic implementations on
FPGA netlists. As we have seen in the two previous case studies, it can still
help reduce false positives. However, for pipelined implementations such as the
AES-128p and DES benchmarks, enabling SCC detection will actually prevent
HAWKEYE from locating these primitives, as pipelined implementations do not
form an SCC in the first place. For AES-128p, we do not find any candidates as
its S-boxes are implemented in memory, which we did not consider when design-
ing our algorithms. Extending HAWKEYE to deal with this issue is straightforward,
but we did not implement this to avoid over-fitting to our benchmarks. For the
pipelined DES, a Feistel cipher with 16 rounds, we find 13 state registers. This is
expected, as three iterations of our candidate search algorithm must be executed
before the state size does not grow anymore and the algorithm terminates.

AES-128r is a round-based AES implementation, for which HAWKEYE swiftly
finds the state register when applying flip-flop filtering and the state register and
round-key register when instead resorting to SCC detection. A similar behavior
can be observed for PRESENT-80 and PRESENT-128 [18]. Furthermore, when
using SCC detection we not only find the main 256-bit state of SHA-256, but
also another 256-bit intermediate register, resulting in a single 512-bit candidate.
For SIMON, we only find the round-key register and not the state register when
using Method 2, most likely because HAWKEYE times out before the rather slow
diffusion of SIMON causes the state size to saturate if SCCs are considered. For
many other ciphers, there is no difference in the number of results found when
using Method 2 compared to when Method 1 is used.

In addition to SPN, Feistel, and ARX ciphers, we also tested HAWKEYE on
benchmarks that it was not designed to handle. For the NLFSR-based KATAN
and KTANTAN [23] ciphers, it finds the key register and state register respec-
tively only when SCC detection is enabled and control input checks are disabled.

28 G. Leander, C. Paar, J. Speith, and L. Stennes

It does not find the state register for KATAN, but only its key register. Surpris-
ingly, for KTANTAN it only finds the state register, but not the key register.
PRINCE is implemented fully unrolled, i.e., without any registers in between
the individual rounds. HAWKEYE is not designed to detect such implementations,
which is why no candidate is identified. When running HAWKEYE on RSA-512,
we find candidates that correspond to the registers of the multiplication and
square units of the RSA implementation, but we do not consider them to be a
hit, despite them most likely being useful for further manual analysis.

We additionally experimented with the NLFSR-based cipher Trivium [24],
as it is designed especially with hardware implementations in mind. It allows
parallel computation of multiple NLFSR bits at once, which results in a structure
similar to a round-based cipher. Hence, we set out to explore whether HAWKEYE
can detect such implementations and how much parallelization is required for
reliable detection. Using Method 1, we find parts of the state register only for
Trivium64, i.e., an implementation where 64 bits of the next NLFSR state are
computed in parallel. When using Method 2, we can reliably detect the state
register starting at 32 bits of parallelization. Together with our observations
on KATAN and KTANTAN as well as in Section 4.2, this unintended finding
hints at HAWKEYE being partially applicable to ciphers based on shift registers on
FPGAs as well.

Regarding the S-box analysis, we find that HAWKEYE successfully extracts
and identifies ciphers with round functions essentially consisting only of a full
S-box layer and a linear layer. Exceptions are SHA-3 and Piccolo [63] because of
their dense linear layer in combination with lightweight S-boxes. For (3)DES [54]
and Magma [31], the expansion step and the modular key addition respectively,
each taking place before the S-box layer, introduce dependencies that prevent
successful S-box detection. As we found no candidate for PRINCE, we cannot
recover an S-box.

ASIC Benchmarks. In ASIC netlists, we observe that many of the syn-
chronous control inputs that were directly connected to flip-flops in FPGA
netlists and helped us to differentiate the state from the ciphertext register are
now implemented in the combinational fan-in of the flip-flop data inputs. Hence,
for round-based implementations, we cannot properly prevent HAWKEYE from es-
caping the state computation during candidate search, which is also reflected in
our low detection rates when using Method 1. To resolve this issue, we initially
experimented with identifying and tracing control inputs through the combina-
tional logic by computing intersections of inputs to the combinational fan-in of
connected flip-flops, but this did not produce reliable results and came with a
hefty runtime overhead. In the end, we opted to follow our SCC-based approach
known as Method 2, as it performed better across all of our benchmarks.

For pipelined implementations such as AES-128p and DES, this issue does
not persist since one state register is always only followed by another state reg-
ister but has no additional outputs. Because AES-128p is fully implemented in
combinational logic for ASICs—in contrast to FPGAs, where the S-boxes were

HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits 29

implemented in memory—, HAWKEYE now also reliably detects 7 of its state regis-
ters. Using Method 2 prevents HAWKEYE from finding pipelined implementations,
as previously observed for the FPGA benchmarks.

For most ASIC benchmarks, HAWKEYE produced results similar to the FPGA
benchmarks when using Method 2. Most notably, it only finds two out of three
state registers for 3DES in the ASIC case, which is still sufficient for further
analysis. For PRINCE, HAWKEYE finds 193 partially overlapping false positive
candidates. Surprisingly, for ASIC netlists, HAWKEYE is better in locating Trivium
with less parallelization, which is a contradictory finding to the FPGA case.

Generally, longer runtimes can be observed for ASIC netlists compared to
FPGA netlists, as they require more combinational gates to implement the same
functionality as LUTs in FPGAs. This also increases the size of the graph that
HAWKEYE needs to traverse to identify candidates. Regarding S-box detection, we
get slightly worse results compared to FPGAs. More specifically, we can no longer
identify the S-boxes of ASCON and Midori [6]. Furthermore, HAWKEYE correctly
isolates the S-boxes of GIFT [7] and PRESENT-128 but cannot restore them
due to some misclassified control inputs.

Noise Benchmarks. For both ASICs and FPGAs, we observe at most three
false positives when running HAWKEYE on non-cryptographic benchmarks. For
most of them, we actually only find no or one incorrect candidate. Upon closer
inspection, almost all identified candidates exhibit sizes that are atypical for
cryptographic implementations. Hence, we argue that such a low number of false
positives combined with straightforward manual verification can be tolerated.

30 G. Leander, C. Paar, J. Speith, and L. Stennes

T
ab

le
4:

O
ur

re
su

lt
s

fo
r

F
P

G
A

an
d

A
SI

C
.S

ee
T
ab

le
3

fo
r

ex
pl

an
at

io
n

of
th

e
co

lu
m

ns
.

F
P

G
A

A
S
IC

N
am

e
S
u
c.

M
et

h
od

1
M

et
h
od

2
S
?

G
at

es
S
u
c.

M
et

h
od

1
M

et
h
od

2
S
?

G
at

es
S
rc

.
T

P
F
P

t
T

P
F
P

t
T

P
F
P

t
T

P
F
P

t

3D
E

S
✓

3
0

0.
05

s
3

0
0.

30
s

✗
3

45
8

✓
0

1
0.

25
s

2
0

0.
08

s
✗

9
91

6
[5

8]
A

E
S-

12
8 r

✓
1

0
0.

06
s

2
0

0.
40

s
✓

3
45

8
✓

0
1

0.
79

s
2

0
0.

53
s

✓
12

80
4

[1
]

A
E

S-
12

8 p
✗

0
0

0.
02

s
0

0
0.

02
s

✗
8

06
4

✓
7

0
0.

62
s

0
0

1.
98

s
✗

15
4

47
7

[2
]

A
SC

O
N

✓
0

0
0.

11
s

1
0

1.
64

s
✓

5
32

3
✓

0
1

2.
44

s
1

0
2.

21
s

✗
11

78
6

[6
0]

C
R

A
F
T

✓
1

0
0.

01
s

1
0

0.
22

s
✓

1
54

7
✓

0
1

0.
25

s
1

0
0.

26
s

✓
3

50
3

[1
]

D
E

S
✓

13
0

0.
09

s
0

0
0.

14
s

✗
3

95
6

✓
13

0
0.

15
s

0
0

0.
20

s
✗

19
97

6
[2

]
G

IF
T

✓
1

0
0.

01
s

1
0

0.
08

s
✓

1
51

2
✓

0
1

0.
15

s
1

0
0.

12
s

(✓
)

2
96

9
[1

]
LE

D
-6

4
✓

1
0

0.
01

s
1

0
0.

06
s

✓
1

32
8

✓
0

1
0.

20
s

1
0

0.
09

s
✓

2
79

8
[1

]
LE

D
-1

28
✓

1
0

0.
01

s
1

0
0.

09
s

✓
1

54
1

✓
0

1
0.

30
s

1
0

0.
14

s
✓

2
98

9
[1

]
M

ag
m

a
✓

1
0

0.
02

s
1

0
0.

17
s

✗
1

80
8

✓
1

0
0.

56
s

1
0

0.
13

s
✗

4
89

4
[5

8]
M

id
or

i
✓

1
0

0.
01

s
1

0
0.

11
s

✓
1

48
9

✓
0

1
0.

28
s

1
0

0.
17

s
✗

2
82

4
[1

]
P

ic
co

lo
✓

1
0

0.
01

s
1

0
0.

10
s

✗
1

40
5

✓
0

1
0.

27
s

1
0

0.
14

s
✗

3
50

0
[1

]
P

R
E

SE
N

T
-8

0
✓

1
0

0.
02

s
2

0
0.

02
s

✓
1

30
2

✓
1

0
0.

05
s

2
0

0.
04

s
✓

2
93

7
[5

8]
P

R
E

SE
N

T
-1

28
✓

1
0

0.
02

s
2

0
0.

08
s

✓
1

53
8

✓
0

1
0.

17
s

2
0

0.
14

s
(✓

)
3

48
6

[1
]

SH
A

-2
56

✓
1

0
0.

27
s

1
0

1.
64

s
-

3
54

7
✓

0
2

0.
77

s
1

0
2.

94
s

-
7

15
2

[5
8]

SH
A

-3
✓

1
0

5.
50

s
1

0
16

.1
1s

✗
8

14
3

✓
0

1
9.

65
s

1
0

15
.8

7s
✗

22
41

4
[5

8]
SI

M
O

N
-1

28
✓

1
0

0.
01

s
1

0
0.

11
s

-
1

53
9

✓
0

1
0.

09
s

1
0

0.
16

s
-

3
62

0
[1

]
SK

IN
N

Y
-6

4
✓

1
0

0.
01

s
1

0
0.

07
s

✓
1

22
1

✓
0

1
0.

11
s

1
0

0.
11

s
✓

2
19

7
[1

]

HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits 31

T
ab

le
4:

(c
on

ti
nu

ed
).

F
P

G
A

A
S
IC

N
am

e
S
u
c.

M
et

h
od

1
M

et
h
od

2
S
?

G
at

es
S
u
c.

M
et

h
od

1
M

et
h
od

2
S
?

G
at

es
S
rc

.
T

P
F
P

t
T

P
F
P

t
T

P
F
P

t
T

P
F
P

t

K
A

T
A

N
-8

0
✓

0
0

0.
01

s
1

0
0.

03
s

-
1

24
6

✓
0

1
0.

06
s

1
0

0.
07

s
-

3
16

0
[1

]
K

T
A

N
T
A

N
-8

0
✓

0
0

0.
00

s
1

0
0.

03
s

-
1

11
8

✓
0

1
0.

06
s

1
0

0.
08

s
-

2
54

3
[1

]
P

R
IN

C
E

✗
0

1
0.

06
s

0
0

0.
15

s
✗

2
60

0
✗

0
19

3
0.

34
s

0
0

0.
42

s
✗

7
23

8
[3

9]
R

SA
-5

12
✗

0
4

8.
55

s
0

2
9.

96
s

-
20

90
8

✗
0

3
20

.5
6s

0
3

14
.3

5s
-

82
16

7
[2

]
T
ri

vi
um

8
✗

0
0

0.
01

s
0

1
0.

01
s

-
1

22
5

✓
0

0
0.

05
s

1
0

0.
05

s
-

3
02

2
[2

5]
T
ri

vi
um

3
2

✓
0

0
0.

01
s

1
0

0.
09

s
-

1
42

7
✗

0
1

0.
08

s
0

1
0.

19
s

-
2

86
7

[2
5]

T
ri

vi
um

6
4

✓
0

1
0.

02
s

1
0

0.
49

s
-

1
68

3
✗

0
1

0.
19

s
0

1
0.

35
s

-
3

53
2

[2
5]

E
th

er
ne

t
✓

-
0

0.
05

s
-

0
0.

27
s

-
5

67
6

✗
-

1
19

.8
3s

-
1

0.
47

s
-

42
16

1
[5

8]
C

IC
fil

te
r

✓
-

0
0.

01
s

-
0

0.
01

s
-

57
2

✓
-

0
0.

02
s

-
0

0.
05

s
-

1
22

1
[5

8]
H

ilb
er

t
tr

an
s.

✓
-

0
0.

02
s

-
0

0.
03

s
-

1
39

0
✓

-
1

0.
07

s
-

0
0.

06
s

-
3

00
4

[5
8]

C
P

U
E

dg
e

✗
-

0
0.

61
s

-
1

2.
23

s
-

11
14

4
✗

-
3

2.
71

s
-

3
2.

86
s

-
41

90
9

[2
]

C
P

U
Ib

ex
✗

-
1

0.
43

s
-

1
1.

21
s

-
6

34
0

✗
-

1
20

.0
6s

-
1

36
.2

3s
-

12
75

1
[2

]
C

P
U

op
en

8
✗

-
0

0.
02

s
-

1
0.

02
s

-
1

21
6

✗
-

0
0.

02
s

-
1

0.
02

s
-

1
88

8
[2

]

32 G. Leander, C. Paar, J. Speith, and L. Stennes

5 Conclusion

In this work, we presented the first comprehensive approach dedicated to the
recovery of implementations of symmetric cryptography from netlists, i.e., gate-
level descriptions of hardware. Overall, our evaluation proved our techniques to
be instrumental and efficient. Generally, despite one failing FPGA benchmark,
reliability, runtime, and accuracy of HAWKEYE are better for FPGA netlists than
for ASIC ones. Still, HAWKEYE generates convincing results in both cases. Of
the two methods we proposed for candidate detection, Method 1 performs best
for FPGA designs, while Method 2 is better suited for ASIC netlists. However,
to check for pipelined implementations on ASICs, Method 1 should always be
executed on them as well. Automated S-box extraction not only proved helpful
to identify known cryptographic algorithms but could also aid in pin-pointing
proprietary ciphers.

Limitations and Future Work. Certainly, there are interesting challenges left
that have not been addressed by our work. For instance, we saw that HAWKEYE
produces some typical false positives, especially for state machines, counters,
and error-correcting codes. Additional filters should be developed in the future
to refine results. Moreover, the extraction of S-boxes and linear layers can be
improved. In particular, HAWKEYE cannot restore S-boxes from memory and strug-
gles with lightweight S-boxes in combination with a dense linear layer or if there
are complex operations in front of the S-box. Incorporating the first is straight-
forward, but for the latter, improved heuristics are needed. The extraction of the
linear layer is only semi-automated. For full automation, it would be necessary
to study consecutive rounds instead of only a single isolated round function.
Furthermore, we mostly ignored unrolled implementations, feedback shift regis-
ters, and (side-channel) countermeasures. Those surely are interesting topics for
future work, as is applying HAWKEYE to proprietary real-world implementations.

Another line of future work is to study countermeasures against HAWKEYE
and how to overcome such protections again. That is, a designer aware of our
approach could defeat HAWKEYE. Similarly, once an attacker becomes aware of
additional protections, it is likely easy to adapt HAWKEYE to beat them. Hence,
we expect this to become a cat-and-mouse game. Putting S-boxes in memory
and using side-channel protections will significantly hamper HAWKEYE for now,
but only until it is adapted to tackle these challenges. Finally, we believe some of
our techniques could potentially be transferred to software reverse engineering.

Acknowledgments. We thank Armand Schinkel for his assistance in develop-
ing the first proofs-of-concept for HAWKEYE and Thorben Moos for synthesizing
the ASIC benchmarks. This work was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany´s Excellence
Strategy - EXC 2092 CASA – 390781972. This work has been funded in parts
by the ERC project 101097056 (SYMTRUST).

HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits 33

References

1. Aghaie, A., Moradi, A., Rasoolzadeh, S., Shahmirzadi, A.R., Schellenberg, F.,
Schneider, T.: Impeccable circuits. IEEE Trans. Computers 69(3), 361–376 (2020).
https://doi.org/10.1109/TC.2019.2948617

2. Albartus, N., Hoffmann, M., Temme, S., Azriel, L., Paar, C.: DANA universal
dataflow analysis for gate-level netlist reverse engineering. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020(4), 309–336 (2020). https://doi.org/10.13154/tches.
v2020.i4.309-336

3. Alliance, C.: Project X-Ray, https://github.com/f4pga/prjxray
4. Appelbaum, J.: Communication in a world of pervasive surveillance: Sources and

methods: Counter-strategies against pervasive surveillance architecture. Phd thesis
1 (research tu/e / graduation tu/e), Mathematics and Computer Science (Mar
2022), proefschrift.

5. Azriel, L., Speith, J., Albartus, N., Ginosar, R., Mendelson, A., Paar, C.: A survey
of algorithmic methods in IC reverse engineering. J. Cryptogr. Eng. 11(3), 299–315
(2021). https://doi.org/10.1007/s13389-021-00268-5

6. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: A block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) Advances in Cryptology - ASIACRYPT 2015 - 21st International Con-
ference on the Theory and Application of Cryptology and Information Security,
Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 9453, pp. 411–436. Springer (2015).
https://doi.org/10.1007/978-3-662-48800-3_17

7. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A
small present - towards reaching the limit of lightweight encryption. In: Fischer,
W., Homma, N. (eds.) Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Pro-
ceedings. Lecture Notes in Computer Science, vol. 10529, pp. 321–345. Springer
(2017). https://doi.org/10.1007/978-3-319-66787-4_16

8. Baudrin, J., Boeuf, A., Couvreur, A., Joly, M., Perrin, L.: SboxU (2023), https:
//github.com/lpp-crypto/sboxU/

9. Beierle, C., Derbez, P., Leander, G., Leurent, G., Raddum, H., Rotella, Y., Rup-
precht, D., Stennes, L.: Cryptanalysis of the GPRS encryption algorithms GEA-
1 and GEA-2. In: Canteaut, A., Standaert, F. (eds.) Advances in Cryptology -
EUROCRYPT 2021 - 40th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12697, pp. 155–183.
Springer (2021). https://doi.org/10.1007/978-3-030-77886-6_6

10. Beierle, C., Felke, P., Leander, G., Rønjom, S.: Decomposing linear layers. IACR
Trans. Symmetric Cryptol. 2022(4), 243–265 (2022). https://doi.org/10.46586/
tosc.v2022.i4.243-265

11. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 14-18, 2016, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 9815, pp. 123–153. Springer (2016). https://doi.org/10.1007/
978-3-662-53008-5_5

https://doi.org/10.1109/TC.2019.2948617
https://doi.org/10.1109/TC.2019.2948617
https://doi.org/10.13154/tches.v2020.i4.309-336
https://doi.org/10.13154/tches.v2020.i4.309-336
https://doi.org/10.13154/tches.v2020.i4.309-336
https://doi.org/10.13154/tches.v2020.i4.309-336
https://github.com/f4pga/prjxray
https://doi.org/10.1007/s13389-021-00268-5
https://doi.org/10.1007/s13389-021-00268-5
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-66787-4_16
https://github.com/lpp-crypto/sboxU/
https://github.com/lpp-crypto/sboxU/
https://doi.org/10.1007/978-3-030-77886-6_6
https://doi.org/10.1007/978-3-030-77886-6_6
https://doi.org/10.46586/tosc.v2022.i4.243-265
https://doi.org/10.46586/tosc.v2022.i4.243-265
https://doi.org/10.46586/tosc.v2022.i4.243-265
https://doi.org/10.46586/tosc.v2022.i4.243-265
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5

34 G. Leander, C. Paar, J. Speith, and L. Stennes

12. Benz, F., Seffrin, A., Huss, S.A.: Bil: A tool-chain for bitstream reverse-engineering.
In: Koch, D., Singh, S., Tørresen, J. (eds.) 22nd International Conference on Field
Programmable Logic and Applications (FPL), Oslo, Norway, August 29-31, 2012.
pp. 735–738. IEEE (2012). https://doi.org/10.1109/FPL.2012.6339165

13. Bernstein, D.J.: Chacha, a variant of salsa20 (2008), https://cr.yp.to/chacha/
chacha-20080128.pdf

14. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) Advances in Cryptology - EUROCRYPT 2013, 32nd Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Athens, Greece, May 26-30, 2013. Proceedings. Lecture Notes in Com-
puter Science, vol. 7881, pp. 313–314. Springer (2013). https://doi.org/10.1007/
978-3-642-38348-9_19

15. Biryukov, A., Cannière, C.D., Braeken, A., Preneel, B.: A toolbox for cryptanal-
ysis: Linear and affine equivalence algorithms. In: Biham, E. (ed.) Advances in
Cryptology - EUROCRYPT 2003, International Conference on the Theory and
Applications of Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003, Pro-
ceedings. Lecture Notes in Computer Science, vol. 2656, pp. 33–50. Springer (2003).
https://doi.org/10.1007/3-540-39200-9_3

16. Biryukov, A., Perrin, L., Udovenko, A.: Reverse-engineering the s-box of streebog,
kuznyechik and stribobr1. In: Fischlin, M., Coron, J. (eds.) Advances in Cryptol-
ogy - EUROCRYPT 2016 - 35th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 9665, pp. 372–402.
Springer (2016). https://doi.org/10.1007/978-3-662-49890-3_15

17. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. J. Cryptol. 23(4),
505–518 (2010). https://doi.org/10.1007/s00145-010-9062-1

18. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) Cryptographic Hardware and Embedded
Systems - CHES 2007, 9th International Workshop, Vienna, Austria, September
10-13, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4727, pp. 450–
466. Springer (2007). https://doi.org/10.1007/978-3-540-74735-2_31

19. Bono, S., Green, M., Stubblefield, A., Juels, A., Rubin, A.D., Szydlo, M.:
Security analysis of a cryptographically-enabled RFID device. In: Mc-
Daniel, P.D. (ed.) Proceedings of the 14th USENIX Security Symposium,
Baltimore, MD, USA, July 31 - August 5, 2005. USENIX Association
(2005), https://www.usenix.org/conference/14th-usenix-security-symposium/
security-analysis-cryptographically-enabled-rfid-device

20. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE - A low-latency block cipher for pervasive computing
applications - extended abstract. In: Wang, X., Sako, K. (eds.) Advances in Cryp-
tology - ASIACRYPT 2012 - 18th International Conference on the Theory and
Application of Cryptology and Information Security, Beijing, China, December 2-
6, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7658, pp. 208–225.
Springer (2012). https://doi.org/10.1007/978-3-642-34961-4_14

21. Brunner, M., Baehr, J., Sigl, G.: Improving on state register identification in se-
quential hardware reverse engineering. In: IEEE International Symposium on Hard-
ware Oriented Security and Trust, HOST 2019, McLean, VA, USA, May 5-10, 2019.
pp. 151–160. IEEE (2019). https://doi.org/10.1109/HST.2019.8740844

https://doi.org/10.1109/FPL.2012.6339165
https://doi.org/10.1109/FPL.2012.6339165
https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/3-540-39200-9_3
https://doi.org/10.1007/3-540-39200-9_3
https://doi.org/10.1007/978-3-662-49890-3_15
https://doi.org/10.1007/978-3-662-49890-3_15
https://doi.org/10.1007/s00145-010-9062-1
https://doi.org/10.1007/s00145-010-9062-1
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-74735-2_31
https://www.usenix.org/conference/14th-usenix-security-symposium/security-analysis-cryptographically-enabled-rfid-device
https://www.usenix.org/conference/14th-usenix-security-symposium/security-analysis-cryptographically-enabled-rfid-device
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1109/HST.2019.8740844
https://doi.org/10.1109/HST.2019.8740844

HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits 35

22. CADForAssurance: System on chip benchmarks (2020), https://cadforassurance.
org/soc-platform/soc-benign-benchmark/system-on-chip-benchmarks/

23. Cannière, C.D., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - A fam-
ily of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2009, 11th
International Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceed-
ings. Lecture Notes in Computer Science, vol. 5747, pp. 272–288. Springer (2009).
https://doi.org/10.1007/978-3-642-04138-9_20

24. Cannière, C.D., Preneel, B.: Trivium. In: Robshaw, M.J.B., Billet, O. (eds.)
New Stream Cipher Designs - The eSTREAM Finalists, Lecture Notes in Com-
puter Science, vol. 4986, pp. 244–266. Springer (2008). https://doi.org/10.1007/
978-3-540-68351-3_18

25. Cassiers, G., Masure, L., Momin, C., Moos, T., Moradi, A., Standaert, F.: Ran-
domness generation for secure hardware masking - unrolled trivium to the rescue.
IACR Cryptol. ePrint Arch. p. 1134 (2023), https://eprint.iacr.org/2023/1134

26. Daemen, J., Rijmen, V.: The Design of Rijndael - The Advanced Encryption Stan-
dard (AES), Second Edition. Information Security and Cryptography, Springer
(2020). https://doi.org/10.1007/978-3-662-60769-5

27. Defense Express Media & Consulting Company: Encryption microchip
from aliexpress found inside russian portable "azart" transceivers (2022),
https://en.defence-ua.com/weapon_and_tech/encryption_microchip_from_
aliexpress_found_inside_russian_portable_azart_transceivers-4907.html

28. Ding, Z., Wu, Q., Zhang, Y., Zhu, L.: Deriving an NCD file from an FPGA
bitstream: Methodology, architecture and evaluation. Microprocess. Microsystems
37(3), 299–312 (2013). https://doi.org/10.1016/j.micpro.2012.12.003

29. Dinur, I.: An improved affine equivalence algorithm for random permutations. In:
Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2018 -
37th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part
I. Lecture Notes in Computer Science, vol. 10820, pp. 413–442. Springer (2018).
https://doi.org/10.1007/978-3-319-78381-9_16

30. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: Lightweight
authenticated encryption and hashing. J. Cryptol. 34(3), 33 (2021). https://doi.
org/10.1007/s00145-021-09398-9

31. Dolmatov, V., Baryshkov, D.: Gost r 34.12-2015: Block cipher "magma". Tech.
Rep. RFC 8891 (September 2020), https://www.rfc-editor.org/rfc/rfc8891

32. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani,
M.T.M.: On the power of power analysis in the real world: A complete break
of the keeloqcode hopping scheme. In: Wagner, D.A. (ed.) Advances in Cryptol-
ogy - CRYPTO 2008, 28th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2008. Proceedings. Lecture Notes in Com-
puter Science, vol. 5157, pp. 203–220. Springer (2008). https://doi.org/10.1007/
978-3-540-85174-5_12

33. Embedded Security Group: HAL - The Hardware Analyzer. https://github.com/
emsec/hal (2019)

34. Ender, M., Leander, G., Moradi, A., Paar, C.: A cautionary note on protecting xil-
inx’ ultrascale(+) bitstream encryption and authentication engine. In: 30th IEEE
Annual International Symposium on Field-Programmable Custom Computing Ma-
chines, FCCM 2022, New York City, NY, USA, May 15-18, 2022. pp. 1–9. IEEE
(2022). https://doi.org/10.1109/FCCM53951.2022.9786118

https://cadforassurance.org/soc-platform/soc-benign-benchmark/system-on-chip-benchmarks/
https://cadforassurance.org/soc-platform/soc-benign-benchmark/system-on-chip-benchmarks/
https://doi.org/10.1007/978-3-642-04138-9_20
https://doi.org/10.1007/978-3-642-04138-9_20
https://doi.org/10.1007/978-3-540-68351-3_18
https://doi.org/10.1007/978-3-540-68351-3_18
https://doi.org/10.1007/978-3-540-68351-3_18
https://doi.org/10.1007/978-3-540-68351-3_18
https://eprint.iacr.org/2023/1134
https://doi.org/10.1007/978-3-662-60769-5
https://doi.org/10.1007/978-3-662-60769-5
https://en.defence-ua.com/weapon_and_tech/encryption_microchip_from_aliexpress_found_inside_russian_portable_azart_transceivers-4907.html
https://en.defence-ua.com/weapon_and_tech/encryption_microchip_from_aliexpress_found_inside_russian_portable_azart_transceivers-4907.html
https://doi.org/10.1016/j.micpro.2012.12.003
https://doi.org/10.1016/j.micpro.2012.12.003
https://doi.org/10.1007/978-3-319-78381-9_16
https://doi.org/10.1007/978-3-319-78381-9_16
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://www.rfc-editor.org/rfc/rfc8891
https://doi.org/10.1007/978-3-540-85174-5_12
https://doi.org/10.1007/978-3-540-85174-5_12
https://doi.org/10.1007/978-3-540-85174-5_12
https://doi.org/10.1007/978-3-540-85174-5_12
https://github.com/emsec/hal
https://github.com/emsec/hal
https://doi.org/10.1109/FCCM53951.2022.9786118
https://doi.org/10.1109/FCCM53951.2022.9786118

36 G. Leander, C. Paar, J. Speith, and L. Stennes

35. Ender, M., Moradi, A., Paar, C.: The unpatchable silicon: A full break of the
bitstream encryption of xilinx 7-series fpgas. In: Capkun, S., Roesner, F. (eds.)
29th USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020.
pp. 1803–1819. USENIX Association (2020), https://www.usenix.org/conference/
usenixsecurity20/presentation/ender

36. Ender, M., Swierczynski, P., Wallat, S., Wilhelm, M., Knopp, P.M., Paar, C.:
Insights into the mind of a trojan designer: the challenge to integrate a trojan
into the bitstream. In: Shibuya, T. (ed.) Proceedings of the 24th Asia and South
Pacific Design Automation Conference, ASPDAC 2019, Tokyo, Japan, January
21-24, 2019. pp. 112–119. ACM (2019). https://doi.org/10.1145/3287624.3288742

37. Fyrbiak, M., Wallat, S., Swierczynski, P., Hoffmann, M., Hoppach, S., Wilhelm,
M., Weidlich, T., Tessier, R., Paar, C.: HAL - the missing piece of the puzzle for
hardware reverse engineering, trojan detection and insertion. IEEE Trans. Depend-
able Secur. Comput. 16(3), 498–510 (2019). https://doi.org/10.1109/TDSC.2018.
2812183

38. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) Cryptographic Hardware and Embedded Systems -
CHES 2011 - 13th International Workshop, Nara, Japan, September 28 - October
1, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6917, pp. 326–341.
Springer (2011). https://doi.org/10.1007/978-3-642-23951-9_22

39. Harttung, J.: Prince block cipher - vhdl implementation (2021), https://github.
com/huljar/prince-vhdl/tree/master

40. Klix, S., Albartus, N., Speith, J., Staat, P., Verstege, A., Wilde, A., Lammers, D.,
Langheinrich, J., Kison, C., Sester, S., Holcomb, D.E., Paar, C.: Stealing maggie’s
secrets - on the challenges of IP theft through FPGA reverse engineering. CoRR
abs/2312.06195 (2023). https://doi.org/10.48550/arXiv.2312.06195

41. Lippmann, B., Werner, M., Unverricht, N., Singla, A., Egger, P., Dübotzky, A.,
Gieser, H.A., Rasche, M., Kellermann, O., Graeb, H.: Integrated flow for reverse
engineering of nanoscale technologies. In: Shibuya, T. (ed.) Proceedings of the 24th
Asia and South Pacific Design Automation Conference, ASPDAC 2019, Tokyo,
Japan, January 21-24, 2019. pp. 82–89. ACM (2019). https://doi.org/10.1145/
3287624.3288738

42. lowRISC Contributors: lowrisc: Collaborative open silicon engineering (2024),
https://lowrisc.org/

43. lowRISC contributors: Open source silicon root of trust - opentitan (2024), https:
//opentitan.org/

44. lowRISC contributors: Opentitan earl grey chip datasheet (2024), https://
opentitan.org/book/hw/top_earlgrey/doc/specification.html

45. Meade, T., Jin, Y., Tehranipoor, M.M., Zhang, S.: Gate-level netlist reverse engi-
neering for hardware security: Control logic register identification. In: IEEE Inter-
national Symposium on Circuits and Systems, ISCAS 2016, Montréal, QC, Canada,
May 22-25, 2016. pp. 1334–1337. IEEE (2016). https://doi.org/10.1109/ISCAS.
2016.7527495

46. Meijer, C., Bokslag, W., Wetzels, J.: All cops are broadcasting: TETRA un-
der scrutiny. In: Calandrino, J.A., Troncoso, C. (eds.) 32nd USENIX Security
Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023.
pp. 7463–7479. USENIX Association (2023), https://www.usenix.org/conference/
usenixsecurity23/presentation/meijer

47. Meijer, C., Moonsamy, V., Wetzels, J.: Where’s crypto?: Automated identification
and classification of proprietary cryptographic primitives in binary code. In: Bailey,

https://www.usenix.org/conference/usenixsecurity20/presentation/ender
https://www.usenix.org/conference/usenixsecurity20/presentation/ender
https://doi.org/10.1145/3287624.3288742
https://doi.org/10.1145/3287624.3288742
https://doi.org/10.1109/TDSC.2018.2812183
https://doi.org/10.1109/TDSC.2018.2812183
https://doi.org/10.1109/TDSC.2018.2812183
https://doi.org/10.1109/TDSC.2018.2812183
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-642-23951-9_22
https://github.com/huljar/prince-vhdl/tree/master
https://github.com/huljar/prince-vhdl/tree/master
https://doi.org/10.48550/arXiv.2312.06195
https://doi.org/10.48550/arXiv.2312.06195
https://doi.org/10.1145/3287624.3288738
https://doi.org/10.1145/3287624.3288738
https://doi.org/10.1145/3287624.3288738
https://doi.org/10.1145/3287624.3288738
https://lowrisc.org/
https://opentitan.org/
https://opentitan.org/
https://opentitan.org/book/hw/top_earlgrey/doc/specification.html
https://opentitan.org/book/hw/top_earlgrey/doc/specification.html
https://doi.org/10.1109/ISCAS.2016.7527495
https://doi.org/10.1109/ISCAS.2016.7527495
https://doi.org/10.1109/ISCAS.2016.7527495
https://doi.org/10.1109/ISCAS.2016.7527495
https://www.usenix.org/conference/usenixsecurity23/presentation/meijer
https://www.usenix.org/conference/usenixsecurity23/presentation/meijer

HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits 37

M.D., Greenstadt, R. (eds.) 30th USENIX Security Symposium, USENIX Security
2021, August 11-13, 2021. pp. 555–572. USENIX Association (2021), https://www.
usenix.org/conference/usenixsecurity21/presentation/meijer

48. Miller, G.: The intelligence coup of the century. The Washington Post (2020),
https://www.washingtonpost.com/graphics/2020/world/national-security/
cia-crypto-encryption-machines-espionage/

49. Moradi, A., Barenghi, A., Kasper, T., Paar, C.: On the vulnerability of FPGA
bitstream encryption against power analysis attacks: extracting keys from xilinx
virtex-ii fpgas. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) Proceedings of the
18th ACM Conference on Computer and Communications Security, CCS 2011,
Chicago, Illinois, USA, October 17-21, 2011. pp. 111–124. ACM (2011). https:
//doi.org/10.1145/2046707.2046722

50. Moradi, A., Kasper, M., Paar, C.: Black-box side-channel attacks highlight the
importance of countermeasures - an analysis of the xilinx virtex-4 and virtex-5
bitstream encryption mechanism. In: Dunkelman, O. (ed.) Topics in Cryptology
- CT-RSA 2012 - The Cryptographers’ Track at the RSA Conference 2012, San
Francisco, CA, USA, February 27 - March 2, 2012. Proceedings. Lecture Notes in
Computer Science, vol. 7178, pp. 1–18. Springer (2012). https://doi.org/10.1007/
978-3-642-27954-6_1

51. Moradi, A., Schneider, T.: Improved side-channel analysis attacks on xilinx bit-
stream encryption of 5, 6, and 7 series. In: Standaert, F., Oswald, E. (eds.)
Constructive Side-Channel Analysis and Secure Design - 7th International Work-
shop, COSADE 2016, Graz, Austria, April 14-15, 2016, Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 9689, pp. 71–87. Springer (2016).
https://doi.org/10.1007/978-3-319-43283-0_5

52. Mykhailo: Twitter post about microchips from a downed russian su-24m (2022),
https://twitter.com/mxpoliakov/status/1606650167129788417

53. Narayanan, R.V., Venkatesan, A.N., Pula, K., Muthukumaran, S., Vemuri, R.: Re-
verse engineering word-level models from look-up table netlists. In: 24th Interna-
tional Symposium on Quality Electronic Design, ISQED 2023, San Francisco, CA,
USA, April 5-7, 2023. pp. 1–8. IEEE (2023). https://doi.org/10.1109/ISQED57927.
2023.10129373

54. National Institute of Standards and Technology (NIST): Data encryption standard
(des). Tech. Rep. FIPS PUB 46-3, National Institute of Standards and Technol-
ogy (NIST) (October 1999), https://csrc.nist.gov/files/pubs/fips/46-3/final/docs/
fips46-3.pdf

55. National Institute of Standards and Technology (NIST): Secure hash standard
(shs). Tech. Rep. FIPS PUB 180-4, National Institute of Standards and Technology
(NIST) (August 2015). https://doi.org/10.6028/NIST.FIPS.180-4

56. Nohl, K., Evans, D., Starbug, Plötz, H.: Reverse-engineering a cryptographic RFID
tag. In: van Oorschot, P.C. (ed.) Proceedings of the 17th USENIX Security Sympo-
sium, July 28-August 1, 2008, San Jose, CA, USA. pp. 185–194. USENIX Associa-
tion (2008), http://www.usenix.org/events/sec08/tech/full_papers/nohl/nohl.pdf

57. Note, J., Rannaud, É.: From the bitstream to the netlist. In: Hutton, M., Chow,
P. (eds.) Proceedings of the ACM/SIGDA 16th International Symposium on Field
Programmable Gate Arrays, FPGA 2008, Monterey, California, USA, February
24-26, 2008. p. 264. ACM (2008). https://doi.org/10.1145/1344671.1344729

58. Oliscience: OpenCores, https://opencores.org
59. Pham, K.D., Horta, E.L., Koch, D.: BITMAN: A tool and API for FPGA bitstream

manipulations. In: Atienza, D., Natale, G.D. (eds.) Design, Automation & Test in

https://www.usenix.org/conference/usenixsecurity21/presentation/meijer
https://www.usenix.org/conference/usenixsecurity21/presentation/meijer
https://www.washingtonpost.com/graphics/2020/world/national-security/cia-crypto-encryption-machines-espionage/
https://www.washingtonpost.com/graphics/2020/world/national-security/cia-crypto-encryption-machines-espionage/
https://doi.org/10.1145/2046707.2046722
https://doi.org/10.1145/2046707.2046722
https://doi.org/10.1145/2046707.2046722
https://doi.org/10.1145/2046707.2046722
https://doi.org/10.1007/978-3-642-27954-6_1
https://doi.org/10.1007/978-3-642-27954-6_1
https://doi.org/10.1007/978-3-642-27954-6_1
https://doi.org/10.1007/978-3-642-27954-6_1
https://doi.org/10.1007/978-3-319-43283-0_5
https://doi.org/10.1007/978-3-319-43283-0_5
https://twitter.com/mxpoliakov/status/1606650167129788417
https://doi.org/10.1109/ISQED57927.2023.10129373
https://doi.org/10.1109/ISQED57927.2023.10129373
https://doi.org/10.1109/ISQED57927.2023.10129373
https://doi.org/10.1109/ISQED57927.2023.10129373
https://csrc.nist.gov/files/pubs/fips/46-3/final/docs/fips46-3.pdf
https://csrc.nist.gov/files/pubs/fips/46-3/final/docs/fips46-3.pdf
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
http://www.usenix.org/events/sec08/tech/full_papers/nohl/nohl.pdf
https://doi.org/10.1145/1344671.1344729
https://doi.org/10.1145/1344671.1344729
https://opencores.org

38 G. Leander, C. Paar, J. Speith, and L. Stennes

Europe Conference & Exhibition, DATE 2017, Lausanne, Switzerland, March 27-
31, 2017. pp. 894–897. IEEE (2017). https://doi.org/10.23919/DATE.2017.7927114

60. Primas, R.: Hardware design of ascon-128 and ascon-hash (v1.2) (2023), https:
//github.com/rprimas/ascon-verilog

61. Quadir, S.E., Chen, J., Forte, D., Asadizanjani, N., Shahbazmohamadi, S., Wang,
L., Chandy, J.A., Tehranipoor, M.M.: A survey on chip to system reverse engi-
neering. ACM J. Emerg. Technol. Comput. Syst. 13(1), 6:1–6:34 (2016). https:
//doi.org/10.1145/2755563

62. Shi, Y., Ting, C.W., Gwee, B., Ren, Y.: A highly efficient method for extracting
fsms from flattened gate-level netlist. In: International Symposium on Circuits and
Systems (ISCAS 2010), May 30 - June 2, 2010, Paris, France. pp. 2610–2613. IEEE
(2010). https://doi.org/10.1109/ISCAS.2010.5537093

63. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Pic-
colo: An ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) Cryp-
tographic Hardware and Embedded Systems - CHES 2011 - 13th International
Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings. Lec-
ture Notes in Computer Science, vol. 6917, pp. 342–357. Springer (2011). https:
//doi.org/10.1007/978-3-642-23951-9_23

64. Strobel, D., Driessen, B., Kasper, T., Leander, G., Oswald, D.F., Schellenberg,
F., Paar, C.: Fuming acid and cryptanalysis: Handy tools for overcoming a digital
locking and access control system. In: Canetti, R., Garay, J.A. (eds.) Advances in
Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 18-22, 2013. Proceedings, Part I. Lecture Notes in Com-
puter Science, vol. 8042, pp. 147–164. Springer (2013). https://doi.org/10.1007/
978-3-642-40041-4_9

65. Swierczynski, P., Fyrbiak, M., Koppe, P., Paar, C.: FPGA trojans through detect-
ing and weakening of cryptographic primitives. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 34(8), 1236–1249 (2015). https://doi.org/10.1109/TCAD.
2015.2399455

66. Swierczynski, P., Moradi, A., Oswald, D.F., Paar, C.: Physical security evaluation
of the bitstream encryption mechanism of altera stratix II and stratix III fpgas.
ACM Trans. Reconfigurable Technol. Syst. 7(4), 34:1–34:23 (2015). https://doi.
org/10.1145/2629462

67. Tajik, S., Lohrke, H., Seifert, J., Boit, C.: On the power of optical contactless
probing: Attacking bitstream encryption of fpgas. In: Thuraisingham, B., Evans,
D., Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017. pp. 1661–1674. ACM (2017). https://doi.org/10.1145/
3133956.3134039

68. TechInsights: TechInsights, https://www.techinsights.com
69. Texplained: Texplained, https://www.texplained.com
70. The Sage Developers: SageMath, the Sage Mathematics Software System (2024),

https://www.sagemath.org
71. Torrance, R., James, D.: The state-of-the-art in IC reverse engineering. In: Clavier,

C., Gaj, K. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2009,
11th International Workshop, Lausanne, Switzerland, September 6-9, 2009, Pro-
ceedings. Lecture Notes in Computer Science, vol. 5747, pp. 363–381. Springer
(2009). https://doi.org/10.1007/978-3-642-04138-9_26

72. Werner, M., Lippmann, B., Baehr, J., Gräb, H.: Reverse engineering of crypto-
graphic cores by structural interpretation through graph analysis. In: 3rd IEEE

https://doi.org/10.23919/DATE.2017.7927114
https://doi.org/10.23919/DATE.2017.7927114
https://github.com/rprimas/ascon-verilog
https://github.com/rprimas/ascon-verilog
https://doi.org/10.1145/2755563
https://doi.org/10.1145/2755563
https://doi.org/10.1145/2755563
https://doi.org/10.1145/2755563
https://doi.org/10.1109/ISCAS.2010.5537093
https://doi.org/10.1109/ISCAS.2010.5537093
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-642-40041-4_9
https://doi.org/10.1007/978-3-642-40041-4_9
https://doi.org/10.1007/978-3-642-40041-4_9
https://doi.org/10.1007/978-3-642-40041-4_9
https://doi.org/10.1109/TCAD.2015.2399455
https://doi.org/10.1109/TCAD.2015.2399455
https://doi.org/10.1109/TCAD.2015.2399455
https://doi.org/10.1109/TCAD.2015.2399455
https://doi.org/10.1145/2629462
https://doi.org/10.1145/2629462
https://doi.org/10.1145/2629462
https://doi.org/10.1145/2629462
https://doi.org/10.1145/3133956.3134039
https://doi.org/10.1145/3133956.3134039
https://doi.org/10.1145/3133956.3134039
https://doi.org/10.1145/3133956.3134039
https://www.techinsights.com
https://www.texplained.com
https://www.sagemath.org
https://doi.org/10.1007/978-3-642-04138-9_26
https://doi.org/10.1007/978-3-642-04138-9_26

HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits 39

International Verification and Security Workshop, IVSW 2018, Costa Brava, Spain,
July 2-4, 2018. pp. 13–18. IEEE (2018). https://doi.org/10.1109/IVSW.2018.
8494896

73. Ziener, D., Assmus, S., Teich, J.: Identifying FPGA ip-cores based on lookup table
content analysis. In: Proceedings of the 2006 International Conference on Field
Programmable Logic and Applications (FPL), Madrid, Spain, August 28-30, 2006.
pp. 1–6. IEEE (2006). https://doi.org/10.1109/FPL.2006.311255

https://doi.org/10.1109/IVSW.2018.8494896
https://doi.org/10.1109/IVSW.2018.8494896
https://doi.org/10.1109/IVSW.2018.8494896
https://doi.org/10.1109/IVSW.2018.8494896
https://doi.org/10.1109/FPL.2006.311255
https://doi.org/10.1109/FPL.2006.311255

	HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits

