
Novel approximations of elementary functions in
zero-knowledge proofs∗

Kaarel August Kurik

Cybernetica AS

Tartu, Estonia

kaarel.august.kurik@cyber.ee

Peeter Laud

Cybernetica AS

Tartu, Estonia

peeter.laud@cyber.ee

ABSTRACT
In this paper, we study the computation of complex mathemat-

ical functions in statements executed on top of zero-knowledge

proofs (ZKP); these functions may include roots, exponentials and

logarithms, trigonometry etc. While existing approaches to these

functions in privacy-preserving computations (and sometimes also

in general-purpose processors) have relied on polynomial approxi-

mation, more powerful methods are available for ZKP. In this paper,

we note that in ZKP, all algebraic functions are exactly computable.

Recognizing that, we proceed to the approximation of transcen-

dental functions with algebraic functions. We develop methods of

approximation, instantiate them on a number of common transcen-

dental functions, and benchmark their precision and efficiency in

comparison with best polynomial approximations.

1 INTRODUCTION
Zero-knowledge proofs (ZKP) [19] are a cryptographic technique

that allow Prover to convince Verifier that a certain statement holds,

without disclosing why it holds. They are used in the construction

of other cryptographic primitives, including signatures [5] or secure

multiparty computation protocols [18], but as the technology ma-

tures, they are expected to find use, including independent use, in a

larger variety of applications. Indeed, ZKP already have blockchain-

based applications in privacy-preserving validation of the transac-

tions [6]. As part of their “business logic”, the transaction-validating

statements mainly use integer arithmetic and comparisons as their

computational subroutines. But with emerging or future applica-

tions of ZKP, we can expect many more kinds of computational

operations to be relevant.

Privacy-preserving machine learning (PPML) [31] is expected

to become a significant application area for ZKP, where Prover

would convince the Verifier that the result of executing the model

corresponds to the inputs of the model, while not revealing the

inputs or any intermediate computations. If the model is a neural

network, then this involves the execution of various network layers

under ZKP, including the non-linear activation functions. These
activation functions are often transcendental, having been built

from exponential functions.

ZKP has been proposed as a tool to verify the claimed mileage

of a vehicle in a certain territory in privacy-preserving manner [2].

This task requires the computation of the length of the vehicle

trajectory from the sequence of coordinates the vehicles has been

found on. Computing the lengths of lines requires the computation

∗
Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited).

This research has been funded by the Defense Advanced Research Projects Agency

(DARPA) under contract HR0011-20-C-0083. The views, opinions, and/or findings

expressed are those of the author(s) and should not be interpreted as representing the

official views or policies of the Department of Defense or the U.S. Government.

of square roots (if the lengths of several segments have to be added

up), or, in case of larger areas where the curvature of Earth has to

be taken into account, the computation of trigonometric functions.

As the input to the statment proven on top of ZKP is the list of

coordinates, the computation of these functions has to be happen

on top of ZKP, too.

ZKP has also been proposed to assist in court cases involving

copyright claims [26]. In these cases, the information content of

one document with respect to another one has to be computed

on top of ZKP. The definitions of these entropy- and Kolmogorov

complexity-related notions often include logarithms.

We can imagine further possible cases, where complex mathe-

matical functions have to be computed on top of ZKP. E.g. one may

want to prove properties of hypothetical physical systems: prove

that it is possible to build a system within the given constraints.

Similarly, one may want to prove the existence of some financial

set-up satisfying given constraints. In both cases, one may expect

that exponentials have to be evaluated.

In this paper, we study how various non-polynomial functions

may be evaluated or approximated in computations running on top

of some ZKP protocol. We see that algebraic functions (e.g. square

root) may be computed “exactly”, i.e. up to the precision limit in

representing fractional numbers (indeed, all the examples above re-

quire fractional numbers to be represented in some form). We then

study methods of approximating transcendental functions. While

these approximations have previously been based on piecewise

polynomials, either evaluating them directly or optimizing their

evaluation based on the shape of their coefficients, we are able to

base our approximations on arbitrary algebraic functions. However,

we find that there exist almost no methods for this approximation,

i.e. for the derivation of the coefficients of the approximating func-

tion based on the approximated function and the upper bounds

on the degrees of variables. Hence we use ad hoc adaptations of

general optimization methods to come up with the coefficients.

Comparing the computation costs and precision, we see that the

approximating algebraic functions found by our method still beat

the best polynomial approximations.

2 RELATEDWORK
Numeric computations under zero-knowledge have been consid-

ered in the context of privacy-preserving execution of neural net-

works. Weng et al. [29] describe a system for this purpose; they

report having implemented the representations of fractional num-

bers as fixed- or floating-point values, and transcendental functions

(sigmoid, SoftMax) operating on them. The values are encoded

as vectors of bits, and the implementations of functions conform

1

to the IEEE-754 standard. Other ZK neural network implementa-

tions (e.g. [24, 17]) only support piecewise polynomial activation

functions, for example ReLU: 𝑥 ↦→ (𝑥 + |𝑥 |)/2.
Angel et al. [1] consider zero-knowledge certificates of optimality

for the solutions of numeric optimization problems. This is an

interesting example of applying the compute-and-check paradigm

(see Sec. 3.1 below) to numeric computations, making use of the

primal-dual structure of such optimization problems. In this paper,

we use the same paradigm to evaluate algebraic functions.

There exists a significant body ofwork for representing fractional

numbers and approximating algebraic and transcendental functions

in secure multiparty computations. Catrina et al. [12, 13] were

perhaps the first to systematically represent fixed-point numbers in

secret-sharing based secure MPC, and give protocols that perform

arithmetic operations (including division) with them. Krips and

Willemson [22] studied the combination of fixed- and floating-point

operations in order to obtain the best performance for the latter,

and also [23] proposed a Monte-Carlo like method for evaluating

inverses of polynomial functions (e.g. square root). Kamm and

Willemson [21] investigated the use of piecewise polynomials for

the approximation of algebraic and transcendental functions. The

polynomials were picked asChebyshev interpolations [28, Chap. 2] of
the functions being approximated. Dimitrov et al. [16] investigated

the representation of fractional numbers as elements of a quadratic

field, and implemented the arithmetic operations working with

them. More recently, Catrina [11] has evaluated the performance of

various protocols for evaluating polynomials over representations

of fixed- and floating-point numbers.

Low-degree algebraic approximations of trigonometric and hy-

perbolic functions have been considered [3, 30] for obtaining an-

alytical approximate solutions to transcendental equations from

theoretical physics (quantum mechanics, electromagnetism, eal-

sticity), such that a useful explicit description of the solution in

terms of the parameters of the equation is preserved. Finally, let

us mention that a rational approximation of the sine function has

been known since at least the 7th century [20].

3 COMPUTATION IN STATEMENTS PROVED
IN ZK

In this paper, we consider computations via arithmetic circuits over

a field Z𝑁 for a sufficiently large prime 𝑁 . The instance and the

witness are given as inputs to that circuit (both of them occupying

multiple input wires); the computation is deemed to accept if all
outputs of the circuit are 0. The operations supported by the circuit

are binary addition and multiplication, as well as unary addition

and multiplication with constants.

The arithmetic circuit will serve as one of the inputs to a cryp-

tographic protocol that executes this circuit in zero-knowledge

manner. Our results do not depend on the choice of this protocol,

although the support for some extra features may improve the size

of the circuit.

3.1 Compute and check
An ubiquituous paradigm in the design of statements proved under

ZK is compute-and-check. This paradigm applies to sub-computations

that are inefficient or perhaps even impossible to express using only

additions and multiplications, but whose outcome is simple and effi-

cient to verify as correct with the help of these operations; perhaps

with some extra evidence on the side. A folk example is division
modulo 𝑁 : instead of computing 𝑧 ← 𝑥 · 𝑦−1 (mod 𝑁) in the cir-

cuit, we let Prover to provide an extra input 𝑧 to the circuit. The

circuit will compute and output 𝑦 ·𝑧−𝑥 , i.e. the computation accepts

only if 𝑧 is indeed the ratio between 𝑥 and 𝑦. We say that the circuit

verifies that 𝑥 = 𝑦 · 𝑧.
Another folk example is bit extraction: given 𝑥 ∈ Z𝑁 , find the

values 𝑥0, . . . , 𝑥𝑘−1 ∈ {0, 1} ⊂ Z𝑁 (for a suitable 𝑘) so, that 𝑥 =∑𝑘−1
𝑖=0 2

𝑖 · 𝑥𝑖 . Using the compute-and-check paradigm, Prover will

give 𝑥0, . . . , 𝑥𝑘−1 as extra inputs to the circuit, which then verifies

that 𝑥 is equal to their linear combination with powers of two, and

each 𝑥𝑖 satisfies 𝑥𝑖 = 𝑥
2

𝑖
. Given that 𝑁 is a prime number (or even

just prime power), the latter implies that 𝑥𝑖 is a bit. Bit extraction is

often used to compare two numbers: in order to evaluate whether

𝑥 < 𝑦, we compute the bitwise representations of both, and then

execute a sub-circuit for comparison.

Third example of compute-and-check is making sure whether

a value is 0: given 𝑥 ∈ Z𝑁 , we want to find 𝑏 ∈ {0, 1} ⊂ Z𝑁 , such
that 𝑏 = 0 iff 𝑥 = 0. While we could extract the bits of 𝑥 and then

run a circuit for 𝑘-wise OR, or compute 𝑏 ← 𝑥𝑁−1, there exists a
more efficient method [27]. Namely, Prover will give 𝑏 as an extra

input to the circuit, and also a value𝑤 ∈ Z𝑁 , satisfying𝑤−1 · 𝑥 = 1

if 𝑥 ≠ 0. Circuit verifies that 𝑥 · 𝑏 = 𝑥 and 𝑤 · 𝑥 · 𝑏 = 𝑏. Here we

see an example of providing also some extra evidence besides the

result of the computation.

3.2 Fractional numbers in ZK
The arguments and values of the functions that we evaluate are

elements of the set of real numbers R. These values have to be

represented by (one or more) elements of Z𝑁 . In this paper, we

consider fixed point representation, where an element 𝑎 ∈ Z𝑁 ,
interpreted as an integer between −⌊𝑁 /2⌋ and ⌊𝑁 /2⌋, corresponds
to the number 𝑎/2pp ∈ R for some pp ∈ N. Any real number

𝑥 ∈ [−𝑁 /2pp+1, 𝑁 /2pp+1] is thus represented by an element of Z𝑁
that is closest to 𝑥 · 2pp.

The addition of fixed point representations, and the multipli-

cation of them with constant integers is straightforward, corre-

sponding to the same operations in Z𝑁 . The multiplication of fixed

point representations is slightly more complex, requiring the re-

sult to be rescaled. Compute-and-check is helpful here: given two

representations 𝑎, 𝑏 ∈ Z𝑁 , we are looking for 𝑐 ∈ 𝑁 , such that

𝑎 · 𝑏 ≈ 𝑐 · 2pp. If we round down (i.e. towards −∞), then Prover can

simply provide 𝑐 as an additional input to the circuit, which checks

that 𝑎 · 𝑏 ≥ 𝑐 · 2pp and 𝑎 · 𝑏 < (𝑐 + 1) · 2pp. These two checks are

equivalent to 𝑇 := 𝑎 · 𝑏 − 𝑐 · 2pp ∈ [0, 2pp − 1], which amounts to

the check that the extraction of 𝑇 into pp bits is successful.

These computations show another important limit on the sizes

of values that can be represented: the results of the multiplications

𝑎 · 𝑏 and 𝑐 · 2pp must still be integers between −⌊𝑁 /2⌋ and ⌊𝑁 /2⌋;
rollovers modulo 𝑁 invalidate their soundness. Hence we require

all these values to be between −
√︁
𝑁 /2 and

√︁
𝑁 /2. Checking that

the values actually fall into this range is application-specific: it may

be necessary to introduce explicit checks; it may also turn out that

due to the nature of computations, all (or some) intermediate values

2

Input: End-points 𝑙, 𝑢 ∈ R of search interval with 𝑙 ≤ 𝑢
Input: Invariant Inv : R × R→ Bool
Assumption: Inv(𝑙, 𝑢) ∧ ∀𝑑 ∈ [𝑙, 𝑢] : (Inv(𝑙, 𝑑) ∨ Inv(𝑑,𝑢))
Input: Termination condition TC : R × R→ Bool
Output: 𝑎, 𝑏 ∈ R, s.t. 𝑙 ≤ 𝑎 ≤ 𝑏 ≤ 𝑢 and TC (𝑎, 𝑏)

1 𝑎, 𝑏 ← 𝑙, 𝑢;

2 while ¬TC (𝑎, 𝑏) do
3 𝑑 ← (𝑎 + 𝑏)/2;
4 if Inv(𝑎, 𝑑) then 𝑏 := 𝑑 else 𝑎 := 𝑑 ;

5 return 𝑎, 𝑏
Algorithm 1: Binary search: BinarySearch

are guaranteed to be sufficiently small. For example, the size of the

output of the ReLU function is never bigger than the size of the

input.

Division of fixed point representations is almost as simple as

multiplication: given 𝑎, 𝑐 ∈ Z𝑁 , we are looking for 𝑏 ∈ Z𝑁 , such
that we again have 𝑎 · 𝑏 ≈ 𝑐 · 2pp. With Prover providing 𝑏 as

an extra input to the circuit, we verify that 𝑇 := 𝑐 · 2pp − 𝑎 · 𝑏
has the same sign as 𝑎, and |𝑇 | < |𝑎 |. Interestingly, the square
root can be similarly computed: given a fixed point representation

𝑐 ∈ Z𝑁 of some number (assuming 𝑐 ≥ 0), the representation of its

square root is an element 𝑎 ∈ Z𝑁 that is non-negative and satisfies

0 ≤ 𝑐 · 2pp − 𝑎2 < 2𝑎 + 1. Given 𝑎, these checks can be performed

by the circuit.

The technique of evaluating square roots may be extended to

the evaluation of arbitrary algebraic functions. Recall the definition:

Definition 3.1. A continuous function 𝑦 : 𝐼 → R (where 𝐼 is an

interval in R) is an algebraic function if there is some 𝑃 ∈ R[𝑋,𝑌]
such that 𝑃 ≠ 0 and 𝑃 (𝑥,𝑦 (𝑥)) = 0 for all 𝑥 ∈ 𝐼 . For such 𝑦 and 𝑃 ,

we say that 𝑦 is carved by 𝑃 .

Here R[𝑋,𝑌] is the set of two-variable (denoted 𝑋 and 𝑌) poly-

nomials with coefficients in R. Multiple distinct definitions of the

term “algebraic function” are found in the literature, commonly

omitting the requirement of continuity, requiring 𝑃 to be irreducible,

or allowing the “function” to be an arbitrary element of a suitable

field extension. [15, p. 45] An algebraic function in our sense is a

piecewise algebraic function in the continuous irreducible sense.

The evaluation of 𝑃 (𝑥,𝑦) in compute-and-check fashion is given

in Alg. 3, with subroutines in Alg. 1 and Alg. 2. In these algo-

rithms, we are introducing a convention for denoting the values

and operations in compute-and-check procedures, similarly to the

existing conventions for privacy-preserving computations, where

it is typical to denote private values (i.e. values managed by the

cryptographic protocol for preserving the privacy during the com-

putation) by putting them in (single or) double square (or angle)

brackets. In our convention, the values managed by the ZK pro-

tocol are put in double square brackets. The visibility of values is

indicated by colors, with red being visible to Prover only, green

being visible to both Prover and Verifier at the time of computation,

blue being constants available at the time of preparing the compu-

tation, and black denoting either basic constants or unknown (or

irrelevant) visibility.

Alg. 3 (lines 1–4) shows that given 𝑥 , Prover first finds 𝑦, such

that either 𝑃 (𝑥,𝑦) = 0, or 𝑃 (𝑥,𝑦) and 𝑃 (𝑥,𝑦 + 2−pp) have opposite

Input: Degree 𝑑 ∈ N, coefficients J®𝑐K ∈ R𝑑+1 of 𝑃 ∈ R[𝑋]
Input: Argument J𝑥K ∈ R
Output: The value J𝑦K, where 𝑦 = 𝑃 (𝑥)

1 J𝑦K← J𝑐𝑑+1K;
2 for 𝑖 = 1 to 𝑑 do J𝑦K := J𝑥K · J𝑦K + J𝑐𝑑−𝑖+1K ;
3 return J𝑦K
Algorithm 2: Evaluating a one-variable polynomial: EvalP

Input: Degrees xd, yd ∈ N of 𝑃 ∈ R[𝑋,𝑌]
Input: Coefficients A ∈ R(xd+1)×(yd+1) of 𝑃
Input: Argument J𝑥K ∈ R
Input: End-points 𝑙, 𝑢 ∈ R of search interval with 𝑙 ≤ 𝑢
Assumption: 𝑃 (𝑥, 𝑙) · 𝑃 (𝑥,𝑢) ≤ 0

Input: Precision (number of fractional bits) pp ∈ N
Output: J𝑦K, s.t. 𝑙 ≤ 𝑦 ≤ 𝑢 and 𝑃 (𝑥,𝑦) ≈ 0

1 Inv ← (𝑠, 𝑡) ↦→ 𝑃 (𝑥, 𝑠) · 𝑃 (𝑥, 𝑡) ≤ 0;

2 TC ← (𝑠, 𝑡) ↦→ 𝑃 (𝑥, 𝑠) = 0 ∨ 𝑃 (𝑥, 𝑡) = 0 ∨ |𝑡 − 𝑠 | ≤ 2
−pp

;

3 𝑎, 𝑏 ← BinarySearch(𝑙, 𝑢, Inv, TC);
4 if 𝑃 (𝑥, 𝑎) = 0 then 𝑦 ← 𝑎 else 𝑦 ← 𝑏 − 2−pp;
5 J𝑦K← wire(𝑦);
6 J𝑥0K, J𝑥1K← 1, J𝑥K;
7 for 𝑖 = 2 to xd do J𝑥𝑖K← J𝑥K · J𝑥𝑖−1K;
8 for 𝑖 = 0 to yd do J𝑐𝑖K←

∑xd
𝑗=0 A𝑗,𝑖 · J𝑥 𝑗 K;

9 J𝑧K← EvalP(yd, J®𝑐K, J𝑦K);
10 J𝑧′K← EvalP(yd, J®𝑐K, J𝑦K + J2−ppK);
11 assert(J𝑧K · J𝑧′K ≤ 0);
12 return J𝑦K
Algorithm 3: Compute-and-check for an algebraic function

signs, where pp gives the desired precision of the result. Alg. 3

proposes a particular computation for Prover to find such 𝑦, but

any other method for finding an approximate root of the polynomial

𝑃 (𝑥, ·) may be used. Next (line 5), Prover lets 𝑦 be another input to

the circuit. Alg. 3 continues by checking that 𝑦 is a good output. In

lines 6–7, we compute the powers of 𝑥 , and in line 8, the coefficients

of the polynomial 𝑃 (𝑥, ·). We evaluate (lines 9–10) 𝑃 (𝑥, ·) at points
𝑦 and 𝑦 + 2−pp, and verify (line 11) that the results do not have the

same sign. Algorithm for polynomial evaluation using the Horner

scheme is given in Alg. 2.

In Alg. 2 and 3, the values J𝑥K ∈ R on the circuit are meant to

be represented as fixed-point numbers, presumably with pp binary

digits after the point. In this representation, the costly operations

are multiplications and linear combinations of fixed-point numbers

(even with public constants), requiring a range check. We perform

(xd − 1) such operations in line 7, and (yd + 1) such operations in

line 7 of Alg. 3. We also perform yd such operations in each of the

two calls to Alg. 2. The multiplication in line 11 of Alg. 3 does not

require a range check, because its outcome is not used in further

computations (although the sign check may have similar costs).

In comparison, evaluating a polynomial with fixed-point coeffi-

cients and argument requires 𝑑 costly operations (multiplications

of fixed-point numbers), where 𝑑 is the degree of the polynomial.

3

Hence, when we want to meaningfully compare the cost of evalu-

ating a polynomial vs. the cost of evaluating an algebraic function,

we assign 𝑑 as to the polynomial, and xd + 3yd to the algebraic

function.

4 APPROXIMATIONS OF TRANSCENDENTAL
FUNCTIONS

The functions that we may want to compute, but are unable to com-

pute exactly, have to be approximated. Established approximation

theory provides a number of results regarding the approximation

of continuous functions by polynomial or rational approximations.

Among these are theorems characterising optimal approximations,

algorithms for finding optimal approximations, efficiently calcu-

lable alternatives to optimal approximations, etc. As we saw in

the last section, we are able to exactly compute a larger class of

functions, thus we study the ways to approximate transcendental

functions with algebraic functions.

A function 𝑓 : R→ R is always approximated in some interval
𝐼 ⊂ R. Given a function 𝑓 and an approximation 𝑦 of 𝑓 , we will

consider the infinity norm ∥ 𝑓 − 𝑦∥ B sup𝑥∈𝐼 |𝑓 (𝑥) − 𝑦 (𝑥) | as the
measure of approximation error which we desire to minimize.

Definition 4.1. A function 𝑦 ∈ C is an optimal approximation
to 𝑓 in the class C of functions if for all functions 𝑧 ∈ C, we have
∥𝑦 − 𝑓 ∥ ≤ ∥𝑧 − 𝑓 ∥.

In the rest of the paper, C is typically either the class of algebraic

functions of total degree (the largest sum of powers over all the

mononomials occurring in 𝑃) at most 𝑑 , or the class of algebraic

functions of degree at most xd in 𝑋 and at most yd in 𝑌 .

One concept that arises in the characterisation of optimal ap-

proximations is equioscillation.

Definition 4.2. A function 𝑓 : 𝐼 → R is said to equioscillate𝑛 times
about the function 𝑔 : 𝐼 → R if there exist 𝑛 points 𝑥1 < · · · < 𝑥𝑛 in

𝐼 and 𝜎 ∈ {−1, 1} such that 𝑓 (𝑥𝑖) −𝑔(𝑥𝑖) = 𝜎 (−1)𝑖 ∥ 𝑓 − 𝑔∥∞ for all

𝑖 ∈ {1, · · · , 𝑛}.

Theorems exist for polynomial and rational approximations stat-

ing that being an optimal approximation with given degree bounds

is equivalent to equioscillating a minimum number of times about

the approximant, where the number of equioscillations depends

only on the degree bounds and not on the approximant. We in-

vestigate analogous statements for algebraic approximations and

find results suggesting, but not wholly confirming, that no such

equivalence holds for algebraic functions.

A notable early result in approximation theory is Chebyshev’s

equioscillation theorem (attributed to Chebyshev but first systemati-

cally handled by others[28, p. 92-93]), which states that a polynomial

𝑝 : [𝑎, 𝑏] → R is an optimal approximation to 𝑓 : [𝑎, 𝑏] → R among

polynomials of degree at most 𝑑 if and only if 𝑝 equioscillates about

𝑓 at least 𝑑 + 2 times.

4.1 Algebraic approximations
Definition 4.3. The algebraic function 𝑦 : 𝐼 → R is of degree 𝑑 if

the smallest total degree of a polynomial 𝑃 ∈ R[𝑋,𝑌] that carves 𝑦
is 𝑑 .

We define 𝑃 : Poly(xd, yd) to mean that 𝑃 ∈ R[𝑋,𝑌] has degree
at most xd in 𝑋 and yd in 𝑌 . We define 𝑃 : Poly(𝑑) to mean that 𝑃

has total degree at most 𝑑 .
Analogously, we denote the fact that 𝑦 is carved by a polynomial

𝑃 : Poly(xd, yd) as 𝑦 : Alg(xd, yd), and the fact that 𝑦 is of degree

at most 𝑑 by 𝑦 : Alg(𝑑).

Theorem 4.4. Given a continuous function 𝑓 : 𝐼 → R (where 𝐼 is
a closed interval) and a fixed 𝑑 ∈ N, 𝑓 has an optimal approximation
in the class Alg(𝑑).

Proof. First note that the set of algebraic approximations of

degree at most 𝑑 is nonempty, since it contains the constant func-

tions.

We may therefore choose a sequence𝑦𝑖 : Alg(𝑑) such that the se-
quence of approximation errors ∥𝑦𝑖 − 𝑓 ∥ approaches𝑚 B inf{∥𝑦 − 𝑓 ∥ |
𝑦 : Alg(𝑑)}.

For each 𝑦𝑖 we choose a corresponding 𝑃𝑖 ∈ R[𝑥,𝑦] such that

the 2-norm of the coefficients of 𝑃𝑖 is 1. By compactness of the

𝑛-ball, we can find a subsequence of 𝑃𝑖 converging to a polynomial

𝑃 ∈ R[𝑋,𝑌]. Moreover, any such convergent subsequence con-

verges uniformly over any compact subset of R2. Going forward we
assume without loss of generality (WLOG) that the whole sequence

𝑃𝑖 converges to 𝑃 .

Let 𝑆 = {(𝑥,𝑦) ∈ R2 | 𝑥 ∈ 𝐼 , |𝑦 − 𝑓 (𝑥) | ≤ 2𝑚}. We know that

the graphs of the functions𝑦𝑖 eventually lie in 𝑆 . We assumeWLOG

that they all do.

Since 𝑓 is continuous and 𝐼 is closed, we have that 𝑆 is compact.

It’s known that the lengths of segments of real algebraic curves

passing through a fixed compact set are uniformly bounded by a

function of the curve’s degree. Fix an upper bound 𝐿 on the lengths

of segments of degree at most 𝑑 algebraic curves intersecting 𝑆 .

We define 𝑠𝑖 : [0, 𝐿𝑖] → 𝑆 to be the unit speed parameterization

of the graph of𝑦𝑖 such that 𝜋𝑥 ◦𝑠𝑖 is monotonically increasing. Such

a parameterization exists for 𝑦𝑖 since the graph of 𝑦𝑖 is piecewise

smooth with finitely many pieces.

Since 𝐿𝑖 ≤ 𝐿 for each 𝑖 ∈ N we may define extensions of 𝑠𝑖 in the

form 𝑠′
𝑖
: [0, 𝐿] → 𝑆 which traverse the graph of 𝑦𝑖 at unit speed

and then stand still at the point 𝑠𝑖 (𝐿𝑖) for the remainder of [0, 𝐿].
Since the sequence 𝑠′

𝑖
consists of 1-Lipschitz functions, then

by a corollary of Arzelà–Ascoli, it has a uniformly convergent

subsequence. We assume WLOG that 𝑠′
𝑖
converges to 𝑠′.

Since 𝑃𝑖 (𝑠′𝑖 (𝑡)) = 0 for 𝑡 ∈ [0, 𝐿], and 𝑃𝑖 converges uniformly,

we have that 𝑃 (𝑠′ (𝑡)) = 0 for 𝑡 ∈ [0, 𝐿]. This means that 𝑠′ traces
out a segment of a zero-curve of 𝑃 .

We can define the approximation error for a curve 𝑔 : [0, 𝐿] → 𝑆

as 𝜖 (𝑔) B sup{|𝑦 − 𝑓 (𝑥) | | ∃𝑡 ∈ [0, 𝐿], 𝑔(𝑡) = (𝑥,𝑦)}. If 𝑔 traces

the graph of a function, then the approximation error of 𝑔 coincides

with that of the function. Moreover, if 𝑔 is the limit of a sequence of

curves, then the error 𝜖 (𝑔) is the limit of the errors of the sequence.

We thus have that 𝜖 (𝑠′) = lim𝑖→∞ 𝜖 (𝑠′𝑖) =𝑚.

If𝑚 = 0, then the graph of 𝑓 must coincide with the image of

𝑠′, implying that 𝑓 is an algebraic function and is its own optimal

approximation. Going forward we assume that𝑚 > 0.

Since 𝜋𝑥 ◦ 𝑠′𝑖 is non-strictly increasing for all 𝑠′
𝑖
, we have that

𝜋𝑥 ◦ 𝑠′ is also non-strictly increasing. Note that if 𝜋𝑥 ◦ 𝑠′ were
strictly increasing, then the image of 𝑠′ would coincide with the

4

graph of an optimal algebraic approximation given by the map

𝜋𝑥 (𝑠′ (𝑡)) ↦→ 𝜋𝑦 (𝑠′ (𝑡)).
It thus suffices to show that we may perturb (𝑃, 𝑠′) to (𝑄, 𝑟) such

that 𝜋𝑥 ◦ 𝑟 is strictly increasing and 𝜖 (𝑟) ≤ 𝜖 (𝑠′).
We first note that there are two kinds of obstacles to 𝜋𝑥 ◦𝑠′ being

strictly increasing: either 𝑠′ stands still at a point for some interval,

or 𝑠′ moves along a vertical line 𝑥 − 𝑘 = 0. The first case can be

removed by reparameterization: we can thus assume WLOG that

the first case does not occur, and having made this modification, 𝑠′

is also a simple curve.

The second case can occur for finitely many distinct lines 𝑥 −𝑘 =

0, such that 𝑥 − 𝑘 is a factor of 𝑃 for each such line. The main

idea for defining (𝑄, 𝑟) is to slightly rotate all of these lines around

appropriately chosen points, such that the resulting polynomial

𝑄 has a zero set that can be traversed by a curve 𝑟 , which agrees

with 𝑠′ everywhere except in small neighborhoods of intervals on

which 𝑠′ traverses a vertical line, and for which 𝜋𝑥 ◦ 𝑟 is a strictly
increasing function, from which the well-definedness of the map

𝜋𝑥 (𝑟 (𝑡)) ↦→ 𝜋𝑦 (𝑟 (𝑡)) is immediate. The rotations can be chosen so

as to ensure that 𝜖 (𝑟) ≤ 𝜖 (𝑠′), which guarantees the optimality of

the algebraic approximation induced by 𝑟 .

We examine the construction for a single line 𝑥 − 𝑘 = 0. Let

[𝑎, 𝑏] ⊆ [0, 𝐿] be the interval over which 𝜋𝑥 ◦ 𝑠′ ≡ 𝑘 and WLOG

let 𝑢 = 𝜋𝑦 (𝑠′ (𝑎)) < 𝜋𝑦 (𝑠′ (𝑏)) = 𝑣 (equality is excluded since 𝑠′ is
a simple curve). The cases 𝑎 = 0, 𝑏 = 𝐿 are handled by removing a

terminal segment of the curve, so we may assume [𝑎, 𝑏] ⊆ (0, 𝐿).
Suppose first that 𝑓 (𝑘) ≥ 𝑣 . Fix some 𝛿 > 0 such that |𝑥 − 𝑘 | ≤

𝛿 ⇒ |𝑓 (𝑥) − 𝑓 (𝑘) | ≤ 𝑚
2
. Choose any𝑤 ∈ (0, 𝑎) such that𝜋𝑥 (𝑠′ (𝑤)) >

𝑘 − 𝛿 and define 𝑇 : R→ R as the affine function passing through

𝑠′ (𝑤) = (𝑥𝑤 , 𝑦𝑤) and (𝑘, 𝑣). We may interpret 𝑇 as a clockwise

rotation of the line 𝑥 − 𝑘 = 0 about the point (𝑘, 𝑣).
Let 𝑡 ′ be the largest value of 𝑡 ∈ [𝑤, 𝑎) for which 𝜋𝑦 (𝑠′ (𝑡)) ≥

𝑇 (𝜋𝑥 (𝑠′ (𝑡))) and let 𝑥 ′ = 𝜋𝑥 (𝑠′ (𝑡 ′)). We then define 𝑟 in the region

[𝑡 ′, 𝑏] by 𝜋𝑥 (𝑟 (𝑡)) = 𝑏−𝑡
𝑏−𝑡 ′ 𝑥

′ + 𝑡−𝑡 ′
𝑏−𝑡 ′ 𝑘 and 𝜋𝑦 (𝑟 (𝑡)) = 𝑇 (𝜋𝑥 (𝑟 (𝑡))).

(In other words, as soon as the graph of 𝑇 overtakes 𝑠′ for good, 𝑟
stops following 𝑠′ and starts moving along 𝑇 at an even pace until

it meets up with 𝑠′ again at 𝑡 = 𝑏.)

Now consider any 𝑥 ∈ [𝑥 ′, 𝑘] and examine the errors of 𝑠′, 𝑟 at 𝑥 .
In case we have that𝑇 (𝑥) ≤ 𝑓 (𝑘) − 𝑚

2
, then we have that 𝜋𝑦 (𝑠′) ≤

𝑇 (𝑥) = 𝜋𝑦 (𝑟) ≤ 𝑓 (𝑘) − 𝑚
2
≤ 𝑓 (𝑥), from which

��𝑓 (𝑥) − 𝜋𝑦 (𝑟)�� ≤��𝑓 (𝑥) − 𝜋𝑦 (𝑠′)�� ≤ 𝑚 (leaving the curve time parameters implicit).

If instead we have that 𝑇 (𝑥) > 𝑓 (𝑘) − 𝑚
2
, then 𝑓 (𝑥) − 𝑚 ≤

𝑓 (𝑘) − 𝑚
2

< 𝑇 (𝑥) = 𝜋𝑦 (𝑟) ≤ 𝑣 ≤ 𝑓 (𝑘) ≤ 𝑓 (𝑥) + 𝑚
2
, from which��𝑓 (𝑥) − 𝜋𝑦 (𝑟)�� ≤ 𝑚. We thus have that

��𝑓 (𝑥) − 𝜋𝑦 (𝑟)�� ≤ 𝑚 in gen-

eral at those 𝑥 where 𝜋𝑦 (𝑟) disagrees with 𝜋𝑦 (𝑠′), from which

𝜖 (𝑟) ≤ 𝜖 (𝑠′).
The cases 𝑓 (𝑘) ≤ 𝑢 and 𝑢 < 𝑓 (𝑘) < 𝑣 are analogous, with

rotations around the points (𝑘,𝑢) and (𝑘, 𝑓 (𝑘)) respectively.
□

It’s worth noting that the simplest analogue of Theorem 4.4 is

not true for the alternative notion of algebraic functions where the

polynomial is required to be irreducible. A simple counterexample

is the case 𝑓 = |·|, 𝑑 = 2, 𝐼 = [−1, 1], where the family (𝑥 − 𝑦) (𝑥 +
𝑦) − 10−𝑛 (𝑥2 + 𝑦2 − 1) = 0 has arbitrarily small error as 𝑛 goes to

infinity, but 0 error is not achievable.

The existence of results connecting equioscillation with opti-

mality of approximation in the case of polynomial and rational ap-

proximations raises the question of whether there exist analogous

results for algebraic approximations. We find results suggesting

that the simplest analogues of equioscillation results cannot hold

for algebraic approximations.

Theorem 4.5. An algebraic function 𝑦 : Alg(𝑑) that equioscillates
at least 𝑑2 + 2 times about a continuous function 𝑓 : 𝐼 → R is an
optimal approximation to 𝑓 .

Proof. Assume to the contrary that 𝑧 was a better approxima-

tion. Then |𝑧 − 𝑓 | < |𝑦 − 𝑓 | at all points 𝑥 ∈ 𝐼 where |𝑦 − 𝑓 | (𝑥) =
∥𝑦 − 𝑓 ∥, of which there are at least 𝑑2 + 2 such that 𝑦 − 𝑓 alternates
in sign for every pair of consecutive points. By IVT this implies

that 𝑦 intersects 𝑧 in at least 𝑑2 + 1 points. This is impossible by

Bézout’s theorem applied to algebraic curves of degree 𝑑 . □

Theorem 4.6. For each 𝑑 ∈ N there is a continuous 𝑓 : 𝐼 → R
such that there is a strictly suboptimal degree 𝑑 approximation to 𝑓
that equioscillates 𝑑2 + 1 times.

This shows that 𝑑2 + 2 is a tight lower bound for how much

equioscillation is needed to show optimality in the absence of extra

info about 𝑓 .

Theorem 4.7. For each 𝑑 ∈ N there is a continuous 𝑓 : 𝐼 → Rwith
an optimal non-critical degree 𝑑 approximation 𝑦 that equioscillates
exactly 𝑑 (𝑑+3)

2
times. 𝑓 can be chosen so that if 𝑦 is not an optimal

approximation, then any optimal approximation has (𝑑−1) (𝑑−2)
2

node
singularities.

Conjecture 4.8. For each 𝑑 ∈ N, there is a continuous 𝑓 : 𝐼 → R
with an optimal degree 𝑑 approximation that equioscillates exactly
𝑑 (𝑑+3)

2
times.

Theorem 4.9. The error map is locally quasiconvex at its points
of continuity.

4.2 Approximating concrete functions
We have seen that algebraic approximations are possible. To com-

pare their use in ZK statements with the use of polynomial ap-

proximations common in other privacy-preserving computation

techniques, we have picked a number of useful functions, approxi-

mated them over polynomials and algebraic functions of various

degrees, and determined the achievable precision for variously sized

fixed-point representations of real numbers.

We have chosen to consider the following transcendental func-

tions:

• the trigonometric functions sin(𝑥), cos(𝑥), sin
(
𝜋
2
𝑥
)
, cos

(
𝜋
2
𝑥
)
;

• the inverse trigonometric functions arcsin, arccos;

• the exponential functions exp2 (i.e. 𝑥 ↦→ 2
𝑥
), exp;

• the logarithms log
2
, ln;

• the complementary error function erfc;

– the function
1

64
log

2
(erfc(8𝑥)), also referred to as

log2_erfc_scaled (see discussion below).

Our approach to approximating them splits this set of functions

into primitive and composite functions. Composite functions are

implemented through the composition of primitive functions with

5

simple affine transforms (e.g. the exponential function exp is im-

plemented as exp(𝑥) B exp2(log
2
(𝑒)𝑥)). Primitive functions are

implemented as the composition of an algebraic approximation on

a subinterval of the domain of the function, composed with some

range reduction based on the special properties of the function.

The following functions are primitive, with following range

reductions:

• exp2 is implemented as exp2(𝑥) = exp2(⌊𝑥⌋) · exp2({𝑥}),
where exp2(⌊𝑥⌋) is calculated via integer arithmetic and

exp2({𝑥}) via algebraic approximation on [0,1].

• sin

(
𝜋
2
𝑥
)
is implemented by approximation on the interval

[0, 1]. Elsewhere, it is implemented as

sin

(𝜋
2

𝑥

)
=


sin

(
𝜋
2
{𝑥}

)
(⌊𝑥⌋ mod 4) = 0

sin

(
𝜋
2
(1 − {𝑥})

)
(⌊𝑥⌋ mod 4) = 1

− sin
(
𝜋
2
{𝑥}

)
(⌊𝑥⌋ mod 4) = 2

− sin
(
𝜋
2
(1 − {𝑥})

)
(⌊𝑥⌋ mod 4) = 3 .

• log
2
(𝑥) is defined as log

2
(𝑥) = 𝑘 + log

2
(𝑦) where 𝑥 = 2

𝑘 ·𝑦
and 𝑦 ∈ [1, 2], where log

2
(𝑦) is calculated via approxima-

tion.

• arcsin(𝑥) is calculated via approximation on [0,
√
2

2
], via

arcsin(𝑥) = 𝜋
2
−arcsin

(√
1 − 𝑥2

)
on [

√
2

2
, 1] and via arcsin(𝑥) =

− arcsin(−𝑥) on [−1, 0].
Also, the function 𝑠 (𝑥) B 1

64
log

2
(erfc(8𝑥)) is primitive; we

approximate it on the segment [0, 3
4
]. We implement the comple-

mentary error function erfc as

erfc(𝑥) =


0 𝑥 > 6

(exp2(𝑠 (𝑥
8
)))64 0 ≤ 𝑥 ≤ 6

2 − erfc(−𝑥) 𝑥 < 0 .

The function 𝑠 (𝑥) was chosen over erfc to reduce issues with branch
isolation (see Sec. 5). Scaling the input by 8 and the output by

1

64

was motivated by the desire to ensure that the absolute values

of 𝑥,𝑦 over the approximation region would be bounded by 1, to

ensure that no overflows occur while evaluating the approximation

polynomial.

In the rest of the paper, the functions sin

(
𝜋
2
𝑥
)
and 𝑠 (𝑥) may also

be called sin_quarter and log2_erfc_scaled, respectively.

4.3 Finding approximations
4.3.1 Polynomial approximations. Wehave used the Sollya tool [14]

to compute the polynomial approximations of degree𝑑 ∈ {1, . . . , 35}
for each primitive function. The exception is log2_erfc_scaled,
where we only went up to degree 8 due to Sollya computing its

approximations significantly slower compared to the remaining

functions. Sollya implements the Remez algorithm [28, Chap. 10]

for finding polynomial approximations of a given degree that are

arbitrarily close to optimal, and outputs intervals which provably

contain the absolute error of the output approximation.

The precision of each polynomial approximation was measured

both by the Sollya software tool, which outputs bounds on the true

error of the approximation evaluated with exact arithmetic, and by

emulating the fixed-point arithmetic of ZK-SecreC (see Sec. 6) in

a Julia program at various fixed-point precisions. The fixed-point

Figure 1: Absolute error of polynomial approximation of
given degree computed by Sollya. Domains are the same as
the base domains of the respective range reductions.

error was estimated by evaluation on 20000 evenly spaced points

on the range reduction domain of each function. The estimations

of precision for polynomial approximation are depicted in Fig. 1.

4.3.2 Algebraic approximations. For each primitive function, we

computed algebraic approximations for all pairs of degrees (xd, yd),
where xd + 3yd ≤ 35. Algebraic approximations were computed

through a zeroth-order line search procedure [7, Sec. 5.2.1] on the

space of polynomials R[𝑋,𝑌]. The procedure is implemented with

ad hoc optimizations which are expected to prevent convergence

to a local optimum as the number of iterations goes to infinity, but

which empirically aid convergence for low iteration counts. The

procedure is detailed in Alg. 5, with the subroutine for finding the

direction of improvement given in Alg. 4.

The precision of each algebraic approximation was similarly

measured by evaluating it on 1600 evenly spaced points on the

range reduction domain of each function, using 256-bit floating-

point numbers. The results of measurement are depicted in Fig. 2.

The essential reasoning behind the line search procedure pro-

ceeds as follows. Let 𝑓 be a differentiable function that is to be

approximated on the interval 𝐼 , and let 𝑃 (𝑐) ∈ R[𝑋,𝑌] be a poly-
nomial parameterized by its vector of coefficients ®𝑐 , with the corre-

sponding algebraic approximation 𝑎(®𝑐, 𝑥). We wish to decrease

the error sup𝑥∈𝐼 |𝑎(®𝑐, 𝑥) − 𝑓 (𝑥) | by varying ®𝑐 . Any decrease in

this error must correspond to a decrease in the global maxima

of 𝐸®𝑐 (𝑥) := |𝑎(®𝑐, 𝑥) − 𝑓 (𝑥) |. If such a decrease is achieved by con-

tinuous variation in ®𝑐 , then the global maxima of the error function

𝐸®𝑐 move continuously in the plane with decreasing value in the

𝑦-coordinate, and 𝐸®𝑐 has vanishing derivative in 𝑥 at these max-

ima with the possible exception of the domain boundary. Let some

continuously varying global extremum of 𝐸®𝑐 (𝑥) = 𝑎(®𝑐, 𝑥) − 𝑓 (𝑥)
be given as (𝑢 (®𝑐), 𝑣 (®𝑐)). Any suitable descent direction ®𝑞 should

satisfy the constraint (®𝑞 · 𝜕®𝑐𝑣 (®𝑐)) sign(𝑣 (®𝑐)) < 0 to ensure that the

|𝑣 (®𝑐) | decreases in the direction of ®𝑞 — in other words, ®𝑞 should be a
descent direction relative to the gradients of all the global maxima

of the error function.

6

xd
yd

lo
g

10
(e

rr
o
r)

0
5

10
15

20
25

30
35

0
2

4
6

8
10

12

−40

−30

−20

−10

0

xd
yd

lo
g

10
(e

rr
o
r)

0
5

10
15

20
25

30
35

0
2

4
6

8
10

12

−50

−40

−30

−20

−10

0

xd
yd

lo
g

10
(e

rr
o
r)

0
5

10
15

20
25

30
35

0
2

4
6

8
10

12

−30

−20

−10

0

xd
yd

lo
g

10
(e

rr
o
r)

0
5

10
15

20
25

30
35

0
2

4
6

8
10

12

−40

−30

−20

−10

0

xd
yd

lo
g

10
(e

rr
o
r)

0
5

10
15

20
25

30
35

0
2

4
6

8
10

12

−40

−30

−20

−10

0

arcsin exp2 log2_erfc_scaled log2 sin_quarter

Figure 2: Absolute error of algebraic approximation of given degrees xd and yd on the base domains of range reductions.

Input: A vector of polynomial coefficients 𝑐 determining

the polynomial 𝑃 and the algebraic approximation

𝑎(𝑐), a function to approximate 𝑓 , a test set of

domain points xs
Data: A regularization parameter 𝜌 ∈ (0, 1]
Output: A good descent direction −𝑔 for the approximation

error ∥ 𝑓 − 𝑎(𝑐)∥ B sup𝑥∈xs |𝑓 (𝑥) − 𝑎(𝑐, 𝑥) | at the
point 𝑐 , a scalar tracking the scale of expected

improvement 𝛼

1 Set 𝑦 ← 𝑎(𝑐, xs) (interpreted as a vector with

𝑦 [𝑖] = 𝑎(𝑐, xs[𝑖])).
2 Set 𝑣 ← 𝑓 (xs).
3 Set 𝜖 ← 𝑦 − 𝑣 .
4 Find all local maxima in |𝜖 |, meaning indices 𝑖 such that

|𝜖 [𝑖] | ≥ |𝜖 [𝑖 − 1] |, |𝜖 [𝑖 + 1] | and
|𝜖 [𝑖] | > min(|𝜖 [𝑖 − 1] |, |𝜖 [𝑖 + 1] |). Save these to an array 𝐼 .

5 Set 𝑛 ← max(|𝜖 |).
6 Find all 𝑖 ∈ 𝐼 such that |𝜖 [𝑖] | ≥ 𝜌𝑛. Save these indices to 𝐹 .
7 Define 𝑄 [𝑖] B sign(𝜖 [𝐹 [𝑖]]) −𝜕𝑐𝑃 (xs[𝐹 [𝑖]],𝑦 [𝐹 [𝑖]])

𝜕𝑦𝑃 (xs[𝐹 [𝑖]],𝑦 [𝐹 [𝑖]]) for

𝑖 = 0, . . . , len(𝐹) − 1. (Note that 𝑄 [𝑖] is a vector of length
len(𝑐) for each 𝑖 .)

8 Define 𝑟 [𝑖] B |𝜖 | [𝐹 [𝑖]] − 𝑛/2 for 𝑖 = 0, . . . , len(𝐹) − 1.
9 Set 𝛼 ← ∥𝑟 ∥

2
.

10 Find a least-squares solution 𝑔 to the equation 𝑄𝑔 = 𝑟 .

11 Return −𝑔, 𝛼 .
Algorithm 4: Finding the descent direction

Our line search procedure operates by fixing a parameter 𝜏 ∈
[0, 1], finding all the local maxima of the error function, picking out

those local maxima which are at least 𝜏 times the error norm, and

constraining the descent direction ®𝑞 to be a descent direction rela-

tive to the gradients of all these local maxima. Here the parameter

𝜏 may be interpreted as a regularization parameter: convergence

far from a local optimum is easier to achieve for smaller values of

𝜏 , but reaching the optimum is prevented unless the value of 𝜏 is

allowed to grow to 1 as the search progresses. Heuristically, the

limited equioscillation that is required of the best approximation of

a given pair of degrees can only be achieved when local maxima

grow to meet shrinking global maxima in the course of descent.

Note first that 𝑣 (®𝑐) = 𝑎(®𝑐,𝑢 (®𝑐)) − 𝑓 (𝑢 (®𝑐)). From this, we get

𝜕®𝑐𝑣 (®𝑐) = 𝜕®𝑐𝑎(®𝑐,𝑢 (®𝑐)) + 𝜕𝑥𝑎(®𝑐,𝑢 (®𝑐))𝜕®𝑐𝑢 (®𝑐) − 𝑓 ′ (𝑢 (®𝑐))𝜕®𝑐𝑢 (®𝑐)
= 𝜕®𝑐𝑎(®𝑐,𝑢 (®𝑐)) + (𝜕𝑥𝑎(®𝑐,𝑢 (®𝑐)) − 𝑓 ′ (𝑢 (®𝑐)))𝜕®𝑐𝑢 (®𝑐) .

If (𝑢 (®𝑐), 𝑣 (®𝑐)) is a local maximum of 𝐸®𝑐 (𝑥) = 𝑎(®𝑐, 𝑥) − 𝑓 (𝑥) in
the interior of the domain, we have that 𝜕𝑥𝑎(®𝑐,𝑢 (®𝑐)) − 𝑓 ′ (𝑢 (®𝑐)) =
0. The previous two identities show that 𝜕®𝑐𝑣 (®𝑐) = 𝜕®𝑐𝑎(®𝑐,𝑢 (®𝑐)).
Given that 𝑃 (®𝑐) (𝑥, 𝑎(®𝑐, 𝑥)) = 0, we have that 𝜕𝑥𝑃 + 𝜕𝑦𝑃𝜕𝑥𝑎 = 0.

From 𝑃 (®𝑐) (𝑢 (®𝑐), 𝑎(𝑐®,𝑢 (®𝑐))) = 0 we have 𝜕®𝑐𝑃 + 𝜕𝑥𝑃𝜕®𝑐𝑢 + 𝜕𝑦𝑃 (𝜕®𝑐𝑎 +
𝜕𝑥𝑎𝜕®𝑐𝑢) = 𝜕®𝑐𝑃 + 𝜕𝑦𝑃𝜕®𝑐𝑎 + (𝜕𝑥𝑃 + 𝜕𝑦𝑃𝜕𝑥𝑎)𝜕®𝑐𝑢 = 𝜕®𝑐𝑃 + 𝜕𝑦𝑃𝜕®𝑐𝑎 = 0.

We thus have that 𝜕®𝑐𝑣 = 𝜕®𝑐𝑎 = − 𝜕®𝑐𝑃
𝜕𝑦𝑃

.

A similar analysis must also be carried out for the boundary of

the domain, where 𝜕𝑥𝑎(®𝑐, 𝑥)− 𝑓 ′ (𝑥) = 0may fail to hold. In this case

we note that 𝜕®𝑐𝑢 = 0, from which 𝜕®𝑐𝑣 = 𝜕𝑐𝑎 and 𝜕®𝑐𝑃 + 𝜕𝑦𝑃𝜕®𝑐𝑎 = 0,

hence 𝜕®𝑐𝑣 = −
𝜕®𝑐𝑃
𝜕𝑦𝑃

exactly as in the first case.

5 BOUNDING APPROXIMATION ERRORS
When evaluating an algebraic function 𝑓 , satisfying 𝑃 (𝑥, 𝑓 (𝑥)) = 0

for some polynomial 𝑃 , one has to be careful of spurious branches.
Indeed, while 𝑟 = 𝑓 (𝑎) implies 𝑃 (𝑎, 𝑟) = 0, the opposite is not true,

because 𝑃 (𝑎,𝑌) ∈ R[𝑌] may have several roots. The avoidance

of spurious branches requires extra checks, and will be specific to

the function 𝑓 . E.g. in case of computing square roots we checked

that the result is non-negative. Similarly restricting the position of

points (𝑎, 𝑟) works for other functions of interest.
A simple way to isolate the correct branch for evaluation is to

find a rectangular region of the plane that covers the graph of the

correct branch and is disjoint from other branches of the underly-

ing polynomial – however, it may happen that no such rectangle

exists. In such cases we may choose a cover of the correct branch

consisting of rectangles, such that the cover is disjoint from other

branches. This introduces additional steps to the evaluation of the

approximation of the function 𝑓 ; these steps consist of obliviously

selecting a rectangle (from the set of rectangles with public coordi-

nates), and two range checks making sure that the point (𝑎, 𝑟) is
within that rectangle. Care must be taken to ensure that the bounds

of the component rectangles require few bits to represent in fixed-

point format, so that correctness would not require the use of a

large number of fractional bits, creating a needless performance

cost.

There is a second source for spurious evaluations of algebraic

functions. Aside from spurious branches that exist in the underlying

approximation, computations done with few fractional bits may

7

Input: An initial vector of polynomial coefficients 𝑐0, a

function to approximate 𝑓 , a test set of domain

points xs, the maximum number of iterations 𝑘 , an

initial gradient multiplier 𝛿0
Data: A termination tolerance 𝜏 , a perturbation parameter

𝜖 , a line-search parameter 𝑑 , a bound on iterations

without sufficient impovement 𝑛𝑓

1 Initialize 𝑐, 𝛿 ← 𝑐0, 𝛿0.

2 Initialize 𝑒𝑝 ← ∥𝑎(𝑐0) − 𝑓 ∥ B sup𝑥∈xs |𝑎(𝑐0, 𝑥) − 𝑓 (𝑥) |.
3 Initialize 𝑐𝑏 , 𝑒𝑏 ← 𝑐0, 𝑒𝑝 .

4 Initialize the number of steps since the last significant

improvement 𝑛 ← 0.

5 foreach 𝑖 = 1, . . . , 𝑘 do
6 Initialize 𝑙 ← 0.

7 Set 𝑣 to the descent direction calculated by Alg. 4 and 𝛼

to the error scale.

8 Set 𝛿𝑓 , 𝛿𝑛 ← 𝛿, 𝛿 .

9 Set 𝑐 𝑓 , 𝑐𝑛 ← 𝑐 + 𝛿𝑓 𝑣, 𝑐 + 𝛿𝑛𝑣 .
10 Set 𝑒 𝑗 ←

𝑎(𝑐 𝑗) − 𝑓

 for 𝑗 ∈ {𝑓 , 𝑛}.
11 if 𝑒𝑓 < 𝑒𝑝 then
12 while 𝑒𝑛 ≥ 𝑒𝑓 and 𝑙 ≤ 2 do
13 𝛿𝑛, 𝑒𝑛, 𝑐𝑛 ← 𝛿𝑓 , 𝑒𝑓 , 𝑐 𝑓

14 𝛿𝑓 ← 𝛿𝑓 /𝑑
15 𝑐 𝑓 ← 𝑐 + 𝛿𝑓 𝑣
16 𝑒𝑓 ←

𝑎(𝑐 𝑓) − 𝑓

17 if

��𝑒𝑝 − 𝑒𝑓 ��/𝛼 < 𝜏 or
��𝑒𝑛 − 𝑒𝑓 ��/𝛼 < 𝜏 then

18 𝑙 ← 𝑙 + 1
19 else
20 while (𝑒𝑛 ≤ 𝑒𝑓 or 𝑒𝑛 ≥ 𝑒𝑝) and 𝑙 ≤ 2 do
21 𝛿𝑓 , 𝑒𝑓 , 𝑐 𝑓 ← 𝛿𝑛, 𝑒𝑛, 𝑐𝑛

22 𝛿𝑛 ← 𝑑 · 𝛿𝑛
23 𝑐𝑛 ← 𝑐 + 𝛿𝑛𝑣
24 𝑒𝑛 ← ∥𝑎(𝑐𝑛) − 𝑓 ∥
25 if

��𝑒𝑝 − 𝑒𝑛 ��/𝛼 < 𝜏 or
��𝑒𝑓 − 𝑒𝑛 ��/𝛼 < 𝜏 then

26 𝑙 ← 𝑙 + 1
27 if 𝑒𝑛 < 𝑒𝑓 then
28 𝛿, 𝑒𝑝 , 𝑐 ← 𝛿𝑛, 𝑒𝑛, 𝑐𝑛

29 else
30 𝛿, 𝑒𝑝 , 𝑐 ← 𝛿𝑓 , 𝑒𝑓 , 𝑐 𝑓

31 if 𝑒𝑝 < 𝑒𝑏 then
32 𝑐𝑏 , 𝑒𝑏 , 𝑛 ← 𝑐, 𝑒𝑝 , 0

33 if 𝑙 ≥ 2 then
34 Set 𝑞 ← 𝜖 and perturb 𝑐 by a random vector of

length 𝑞. If the new error 𝑒′ is at most 4𝑒𝑏 , set

𝑒𝑝 , 𝛿, 𝑙 ← 𝑒′, 𝛿0, 0. If not, then repeat the process

with 𝑞 ← 𝑞/2 each time until the condition is

satisfied. If 𝑞 < 𝜏 at any point, terminate algorithm.

35 If 𝑛 > 𝑛𝑓 , terminate algorithm.

36 Set 𝑐 ← 𝑐/∥𝑐 ∥
2
.

37 Return 𝑐𝑏 , 𝑒𝑏 .

Algorithm 5: Finding the algebraic approximation of a func-

tion

introduce novel spurious results arising from numerical errors.

If there are points (𝑥,𝑦) far from the desired branch, but where

|𝑃 (𝑥,𝑦) | < 𝜖 for some small 𝜖 , then a numerical error that exceeds 𝜖

(while evaluating 𝑃) may introduce a spurious root of 𝑃 near (𝑥,𝑦).
To allow the end user of our algebraic approximations to avoid

such issues, we have implemented a procedure which calculates an

upper bound on the number of fractional bits required to ensure

a given bound on the approximation error. The calculation of this

bound accounts both for numerical spurious branches as well as

numerical errors near the true branch.

We discuss the avoidance of these two kinds of spurious results

in Sec. 5.1 and Sec. 5.2 below.

5.1 Isolating the branches of an algebraic
function

Let 𝑆 ⊆ R2 be a compact subset of the plane such that graph(𝑦) =
{(𝑥,𝑦 (𝑥)) : 𝑥 ∈ 𝐼 } ⊆ 𝑆 .

We define the functions𝛿 (𝜀) B sup(𝑥,𝑧) ∈𝑆 {|𝑧 − 𝑦 (𝑥) | : |𝑃 (𝑥, 𝑧) | ≤
𝜀} and 𝐿(𝑑) B sup𝑟 ∈R{𝑟 : 𝛿 (𝑟) ≤ 𝑑}.

To give a verbal interpretation, 𝛿 (𝜀) is the largest possible error
in our approximation of 𝑦 given an error of at most 𝜀 in our approx-

imation of 𝑃 . In a dual fashion, 𝐿(𝑑) is the least upper bound on

the allowable errors in our approximation of 𝑃 that guarantee an

error of at most 𝑑 in our approximation of 𝑦. (An error bound of

exactly 𝐿(𝑑) is insufficient for topological reasons.)

Let 𝐾,𝑀 ∈ R be reals and 𝐶, 𝐸 (𝐶 for center, 𝐸 for exterior) be a
cover of 𝑆 (i.e. 𝑆 ⊆ 𝐶 ∪ 𝐸) satisfying the following conditions:

• (𝑥, 𝑧) ∈ 𝐶 ⇒ |𝑃 (𝑥, 𝑧) | ≥ 𝐾 |𝑧 − 𝑦 (𝑥) |

• (𝑥, 𝑧) ∈ 𝐸 ⇒ |𝑃 (𝑥, 𝑧) | ≥ 𝑀 .

These sets are not guaranteed to exist for arbitrary 𝑃,𝑦. It is suffi-

cient that𝑦 be an isolated branch of 𝑃 with∀𝑥 ∈ 𝐼 , 𝜕𝑦𝑃 (𝑥,𝑦 (𝑥)) ≠ 0,

and that 𝑆 be sufficiently narrow around graph(𝑦). Typically 𝐶
will be a narrow band around graph(𝑦) where we can choose

𝐾 = inf{
��𝜕𝑦𝑃 (𝑥, 𝑧)�� : (𝑥, 𝑧) ∈ 𝐶}, and 𝐸 will be the complement of

𝐶 in 𝑆 .

Now take any 𝑟 < 𝑀 and let (𝑥, 𝑧) ∈ 𝑆 . We have that |𝑃 (𝑥, 𝑧) | ≤
𝑟 ⇒ |𝑃 (𝑥, 𝑧) | < 𝑀 , from which (𝑥, 𝑧) ∉ 𝐸, so (𝑥, 𝑧) ∈ 𝐶 . From this,

|𝑧 − 𝑦 (𝑥) | ≤ |𝑃 (𝑥,𝑧) |
𝐾

≤ 𝑟
𝐾
.

We derived that for 𝑟 < 𝑀 and (𝑥, 𝑧) ∈ 𝑆 that |𝑃 (𝑥, 𝑧) | ≤ 𝑟 ⇒
|𝑧 − 𝑦 (𝑥) | ≤ 𝑟

𝐾
, so by the definition of 𝛿 , we have that 𝛿 (𝑟) ≤ 𝑟

𝐾
.

We thus have that 𝑟 < 𝑀 ⇒ 𝛿 (𝑟) ≤ 𝑟
𝐾
.

Fix any 𝑑 ∈ R. We have that (𝑟 < 𝑀) ∧ (𝑟 ≤ 𝐾𝑑) ⇒ 𝛿 (𝑟) ≤ 𝑑 .
From the definition of 𝐿 we now have that 𝐿(𝑑) ≥ min(𝑀,𝐾𝑑).

We thus know that if we want our approximation of 𝑦 to have

error at most 𝑑 , then all we need is our approximation error for

𝑃 to be strictly less than min(𝑀,𝐾𝑑). The bound enforced by 𝑀

accounts for spurious branches, while the bound of 𝐾𝑑 accounts

for errors near the true branch.

Suppose now that we have an approximation 𝐻 of 𝑃 . While

the true roots of 𝐻 (𝑥, ·) are approximations of the roots of 𝑃 (𝑥, ·),
and hence of 𝑦 (𝑥), we may not have access to the true roots of 𝐻 ,

and so must find approximate roots of an approximation, possibly

compounding the error.

First let 𝜀 be an upper bound on the error ∥𝐻 − 𝑃 ∥∞. We shall try

to approximate𝑦 (𝑥) by finding values𝑦𝑎 < 𝑦𝑏 such that𝐻 (𝑥,𝑦𝑎) ≤
8

Input: An approximation polynomial 𝑃

Input: A rectangle 𝑅 = [𝑎, 𝑏] × [𝑐, 𝑑] that intersects a
desired branch

Input: An interval 𝐿 = [𝑙0, 𝑙1] ⊆ 𝜋𝑦 (𝑅) determining the

desired branch

Assumption: 𝑃 (𝑎,𝑦) = 0 for exactly one 𝑦 ∈ 𝐿
Output: A pair (𝑅′, 𝐿′), where 𝑅′ is the rectangle 𝑅,

possibly shifted up or down by half the length of

𝜋𝑦 (𝑅), and 𝐿′ is a subinterval of the middle two

quarters of 𝜋𝑦 (𝑅′), such that 𝑃 (𝑎,𝑦) = 0 for

exactly one 𝑦 ∈ 𝐿′
1 𝑞1, 𝑞3 ← 0.75𝑐 + 0.25𝑑, 0.25𝑐 + 0.75𝑑 ;
2 𝑙 ′

0
, 𝑙 ′
1
← 𝑙0, 𝑙1;

3 if 𝑞3 < 𝑙 ′
1
then

4 𝑛 ← max(𝑞3, 𝑙 ′
0
);

5 if [𝑛, 𝑙 ′
1
] straddles the branch then

6 return 𝑅 shifted upward, [𝑛, 𝑙 ′
1
]

7 𝑙 ′
1
← 𝑞3;

8 if 𝑙 ′
0
< 𝑞1 then

9 𝑛 ← min(𝑞1, 𝑙 ′
1
);

10 if [𝑙 ′
0
, 𝑛] straddles the branch then

11 return 𝑅 shifted downward, [𝑙 ′
0
, 𝑛]

12 𝑙 ′
0
← 𝑞1

13 return 𝑅, [𝑙 ′
0
, 𝑙 ′
1
]

Algorithm 6: Fixing an invariant for the cover finding algo-

rithm: FixInvariant

0 ≤ 𝐻 (𝑥,𝑦𝑏) and |𝑦𝑏 − 𝑦𝑎 | is small. (This assumes a certain sign

convention for 𝑃 , which may be chosen freely.)

Note that |𝑃 (𝑥,𝑦𝑏) − 𝑃 (𝑥,𝑦𝑎) | ≤ sup(𝑥,𝑦) ∈𝑆 {
��𝜕𝑦𝑃 (𝑥,𝑦)�� : 𝑦 ∈

[𝑦𝑎, 𝑦𝑏]} · |𝑦𝑏 − 𝑦𝑎 |. Define 𝐺 B sup(𝑥,𝑦) ∈𝑆
��𝜕𝑦𝑃 (𝑥,𝑦)�� and Δ B

|𝑦𝑏 − 𝑦𝑎 |. Then |𝑃 (𝑥,𝑦𝑏) − 𝑃 (𝑥,𝑦𝑎) | ≤ 𝐺Δ.
We also have that 𝑃 (𝑥,𝑦𝑎) ≤ 𝜀, and 𝑃 (𝑥,𝑦𝑏) ≥ −𝜀. We can

conclude from this that |𝑃 (𝑥,𝑦𝑎) | ≤ 𝜀 +𝐺Δ.
If we take 𝑦𝑎 to be our approximation of 𝑦 (𝑥), then we have

|𝑦𝑎 − 𝑦 (𝑥) | ≤ 𝛿 (𝜀 +𝐺Δ), from which 𝜀 +𝐺Δ < 𝐿(𝑑) is enough to

guarantee an error of at most 𝑑 . Since 𝐿(𝑑) ≥ min(𝑀,𝐾𝑑), this
means all we need is 𝜀 +𝐺Δ < min(𝑀,𝐾𝑑).

In the fixed-point setting, we ordinarily have that Δ = 2
−pp

. For

a given algebraic approximation, the region 𝑆 is chosen by Alg. 7

to be a suitable union of rectangles, and the constants 𝐺,𝑀,𝐾 are

computed via interval arithmetic in Julia, with the regions 𝐶, 𝐸

being found automatically.

Note that for these error bounds to be sound, 𝑀,𝐾 may be re-

placed with underestimates, while𝐺 may be replaced with an over-

estimate.

5.2 Avoiding spurious roots from numeric
errors

Suppose that we have two polynomials 𝑃, 𝑃 ′ ∈ R[𝑋], such that

deg(𝑃), deg(𝑃 ′) ≤ 𝑑 , such that 𝑃 (𝑥) represents exact polynomial

evaluation at the point 𝑥 and 𝑃 ′ (𝑥) represents an approximate

evaluation of 𝑃 ′ at 𝑥 via Horner’s scheme using an approximate

Input: An approximation polynomial 𝑃

Input: A rectangle [𝑖0, 𝑖1] × [𝑗0, 𝑗1] = 𝐼 × 𝐽 ⊆ R2
determining the isolation region

Input: An interval 𝐿 ⊆ 𝐽 determining the desired branch

Assumption: 𝑃 (𝑖0, 𝑦) = 0 for exactly one 𝑦 ∈ 𝐿
Assumption: The desired branch has empty intersection

with {𝑖0, 𝑖1} × 𝐽
Output: A list of rectangles 𝑅𝑘 ⊆ 𝐼 × 𝐽 covering the

intersection of the desired branch with 𝐼 × 𝐽 and
intersecting no other branch

1 Define the partial derivative invariant function

𝑃𝐼 (𝑅) B 0 ∉ 𝜕𝑦𝑃 (𝑅);
2 Define the branch straddling invariant function 𝑆𝐼 (𝑅) B

𝑃 (𝜋𝑥 (𝑅) ×min𝜋𝑦 (𝑅)) · 𝑃 (𝜋𝑥 (𝑅) ×max𝜋𝑦 (𝑅)) ⊆ (−∞, 0);
3 𝑘 ← 0;

4 Define 𝑆 (𝜆, 𝑅) as the uniform scaling of the rectangle 𝑅 by a

factor of 𝜆 about the center of its left edge;

5 Define𝑇 (𝜆, 𝑅) as the scaling of the rectangle 𝑅 by a factor of

𝜆 along the 𝑥-axis, keeping the left edge fixed;

6 Define 𝑆 ′ (𝜆, 𝑅, 𝐿) as FixInvariant(𝑃, 𝑆 (𝜆, 𝑅), 𝐿), but with the

rectangle intersected with 𝐼 × 𝐽 ;
7 Initialize 𝑅0, 𝐿0 ← 𝐼 × 𝐽 , 𝐿;
8 while min𝜋𝑥 (𝑅𝑘) < 𝑖1 do
9 if ¬(𝑃𝐼 (𝑅𝑘) ∧ 𝑆𝐼 (𝑅𝑘)) then
10 while ¬𝑃𝐼 (𝑅𝑘) do
11 𝑅𝑘 , 𝐿𝑘 ← 𝑆 ′ (0.5, 𝑅𝑘 , 𝐿𝑗)
12 while ¬𝑆𝐼 (𝑅𝑘) do
13 𝑅𝑘 ← 𝑇 (0.5, 𝑅𝑘)
14 else
15 𝑅′, 𝐿′ ← 𝑆 ′ (2, 𝑅𝑘 , 𝐿𝑘);
16 while 𝑃𝐼 (𝑅′) ∧ 𝑆𝐼 (𝑅′) ∧ 𝑅′ ≠ 𝑅𝑘 do
17 𝑅𝑘 , 𝐿𝑘 ← 𝑅′, 𝐿′;
18 𝑅′, 𝐿′ ← 𝑆 ′ (2, 𝑅′, 𝐿′);
19 𝑅′ ← 𝑇 (2, 𝑅𝑘);
20 while 𝑃𝐼 (𝑅′) ∧ 𝑆𝐼 (𝑅′) ∧ 𝑅′ ≠ 𝑅𝑘 do
21 𝑅𝑘 ← 𝑅′;
22 𝑅′ ← 𝑇 (2, 𝑅′);
23 𝑘 ← 𝑘 + 1;
24 𝑅𝑘 , 𝐿𝑘 ← (𝜋𝑥 (𝑅𝑘) + diam(𝜋𝑥 (𝑅𝑘))) × 𝜋𝑦 (𝑅𝑘), 𝜋𝑦 (𝑅𝑘);
25 𝑅𝑘 , 𝐿𝑘 ← FixInvariant(𝑃, 𝑅𝑘 , 𝐿);
26 return [𝑅𝑞 : 𝑞 ∈ 0 . . . 𝑘]
Algorithm 7: Finding a union of rectangles isolating a

branch: BoxFinder

multiplication (such as fixed-point multiplication) with a constant

error bound of 𝛼 .

Let the coefficients of 𝑃 − 𝑃 ′ be bounded in size by some 𝛽 > 0.

Then |𝑃 (𝑥) − 𝑃 ′ (𝑥) | ≤ 𝛽 |𝑥 |𝑑 + (𝛼 + 𝛽)∑𝑑−1
𝑘=0
|𝑥 |𝑘 . (This can be

seen by noting that the error accumulation in one step of Horner’s

scheme is given by the function 𝑓err (𝐸) = 𝐸 |𝑥 | + 𝛼 + 𝛽 , where 𝐸 is

the error at the current step and 𝑓err (𝐸) the error at the next. The
bound given is equivalent to 𝑓 𝑛

err
(𝛽).)

9

Applying the same reasoning for two-variable polynomials𝑄,𝑄 ′ ∈
R[𝑋,𝑌] with deg𝑥 (𝑄), deg𝑥 (𝑄 ′) ≤ 𝑚 and deg𝑦 (𝑄), deg𝑦 (𝑄 ′) ≤ 𝑛,
first applying Horner’s scheme along 𝑥 and then along𝑦, we find the

error bound |𝑄 (𝑥,𝑦) −𝑄 ′ (𝑥,𝑦) | ≤ (𝛽∑𝑚
𝑘=0
|𝑥 |𝑘 + 𝛼 ∑𝑚−1

𝑘=0
|𝑥 |𝑘) ·∑𝑛

𝑘=0
|𝑦 |𝑘 + 𝛼 ∑𝑛−1

𝑘=0
|𝑦 |𝑘 .

If we are evaluating𝑄 and𝑄 ′ on 𝑆 , we have bounds on the coordi-
nates of the input point 𝑥 ′ = sup(𝑥,𝑦) ∈𝑆 |𝑥 | and 𝑦′ = sup(𝑥,𝑦) ∈𝑆 |𝑦 |.
According to the logic of 5.1, we now have 𝜀 ≤ (𝛽∑𝑚

𝑘=0
𝑥 ′𝑘 +

𝛼
∑𝑚−1
𝑘=0

𝑥 ′𝑘)∑𝑛
𝑘=0

𝑦′𝑘 + 𝛼 ∑𝑛−1
𝑘=0

𝑦′𝑘 , with values 𝛼 = 2
−pp, 𝛽 ≤

2
−pp

(with the latter bound coming from the truncation of the coef-

ficients of𝑄). This allows us to explicitly confirm that the condition

𝜀 +𝐺Δ < min(𝑀,𝐾𝑑) holds for a given 𝑑 .

6 BENCHMARKING
In order to benchmark and compare them, we have implemented the

approximations for the transcendental functions listed in Sec. 4.2.

The implementation consists of the following components.

• evaluator of algebraic functions, as specified in Alg. 3, and

the range checker for isolating a single branch;

• preprocessor of arguments, and postprocessor of function

values, as described in Sec. 4.2;

• The lists of coefficients of all approximations of all our

primitive transcendental functions;

• The lists of rectangles for isolating the correct branch for

each approximation.

We have used the domain-specific language ZK-SecreC [8, 9] for the

implementation. We have chosen ZK-SecreC, because it provides us

high-level means to express the computations we described in Sec. 3.

In ZK-SecreC, both the computations performed by the circuit, and

the computations performed locally by the parties (in particular,

Prover) can be conveniently described. In fact, the standard library

of ZK-SecreC contains the implementation of fixed-point numbers

as described in Sec. 3: both the data structure, and the functions

realizing the arithmetic operations.

ZK-SecreC compiler translates the programs into arithmetic cir-

cuits, and either expresses them SIEVE Intermediate Representation

(IR) [10], or interfaces directly with a number of ZK protocol im-

plementations. It allows the programs to be polymorphic over a

number of parameters; our implementations are polymorphic over

the modulus 𝑁 that is used in the operations of the arithmetic cir-

cuit. Our implementation is also parametrized over the number of

all bits (len) and fractional part bits (pp) in the representation of the

fixed point number given as input, although a minimum number of

bits are required for the integer part to avoid overflow in interme-

diate computations, where the minimum number of bits varies by

function. A utility function is provided which allows the end user to

compute an upper bound on the number of fractional bits required

to achieve a desired absolute upper bound on the function’s error

in the main approximation region. The choice of field modulus 𝑁

constrains the number of bits in the fixed point representation by

the relation ⌊log
2
(𝑁)⌋ + 1 > 2 · len to ensure that no overflows

occur in fixed point multiplication. This is the only constraint on

the field modulus aside from those imposed by the ZKP backend.

The translation allows us to count the various kinds of operations

that our implementations perform, and compare them on this basis.

The interface with either Mac’n’Cheese [4] or EMP [32] allow us to

measure the time that our approximations require. The generated

IR, or the description of the circuit given to the interfaced back-

ends may depend on the operations the latter support; e.g. in case

the inequality checks, or permutations, or Verifier’s challenges are
directly supported by the back-end, our implementation may take

advantage of them and reduce the effort spent on range checks. ZK-

SecreC compiler produces the runtime(s) for Prover (and Verifier)

that perform the local computations described in Sec. 3 while the

protocol runs.

6.1 Precision
Figures 3–7 depict the achievable level of precision of the poly-

nomial and algebraic approximations of the primitive functions
(discussed in Sec. 4.2) on their intervals of approximation. The ap-

proximating polynomials and algebraic functions have been found

in the way described in Sec. 4.3. Recall that the precision was de-

fined as the maximum absolute error of the function value in this

range.

The figures describe the obtainable approximation errors for

different numbers of binary digits (pp) after the point, ranging

from 20 to 60. Obviously, we cannot expect the absolute error to be

smaller than 2
−pp

, the decimal logarithm of which ranges from ca.

−6 to ca. −18.
The horizontal axis in these figures corresponds to the “com-

plexity” of evaluating the polynomial or the algebraic function in a

ZKP protocol. Recall (Sec. 3.2) that for polynomials, the appropriate

measure of “complexity” is their degree, while for algebraic func-

tions defined by a two-variable polynomial 𝑃 (𝑥,𝑦), the measure is

xd + 3yd where xd and yd are the degrees of 𝑥 and 𝑦 in 𝑃 .

Figures 3–7 show that as pp increases, polynomial approxima-

tions require increasing complexity to achieve the best possible

precision. Moreover, different functions approach the maximum

precision at very different speeds. In general, more “polynomial-

like” functions (the ones where the coefficients of monomials in

that function’s Maclaurin series rapidly approach 0) converge faster.

Similarly, algebraic functions require greater complexity to achieve

the maximum possible precision for higher pp, but the convergence
happens faster and with less variation for different functions.

The approximation errors have been estimated via 256-bit float-

ing point arithmetic on 1600 evenly spaced points on the interval

of approximation. While such estimations are not a guarantee of

precision, they give us sufficient confidence that the behaviour of

the approximation would not overly differ from the actual function.

6.2 Performance
We do not think that measuring the running time of our implemen-

tations of algebraic functions (together with pre- and postprocess-

ing for the functions in Sec. 4.2) is the appropriate way to obtain

empirical evidence on their execution performance. Indeed, these

mathematical functions are low-level subroutines, not complete

applications. The running time of an application that only invokes

these functions is meaningfully compared only against itself, where

the implementation of the functions is changed.

10

Figure 3: Absolute error of fixed point polynomial (left) and algebraic (right) approximation on base domain with pp = 20.

Figure 4: Absolute error of fixed point polynomial (left) and algebraic (right) approximation on base domain with pp = 30.

Figure 5: Absolute error of fixed point polynomial (left) and algebraic (right) approximation on base domain with pp = 40.

11

Figure 6: Absolute error of fixed point polynomial (left) and algebraic (right) approximation on base domain with pp = 50.

Figure 7: Absolute error of fixed point polynomial (left) and algebraic (right) approximation on base domain with pp = 60.

Instead, we will count the number of operations executed under

the ZKP protocol, when the implementation of one of our mathe-

matical functions is invoked by the statement that is to be proved.

This number could be converted to the running time by consider-

ing the performance benchmarks of ZKP protocol implementations.

The Mac’n’Cheese protocol is reported [4, Table 1] to be able to

execute ca. 600 thousand multiplications per second in the field

Z
2
61−1, when running in a WAN setting (93 ms latency, 31.5 Mb/s

bandwidth between Prover and Verifier), while EMP is reported [32,

Table 2] to perform up to 8.9 million multiplications per second

over the same field in a LAN-like setting. Our implementations also

require Prover to locally solve polynomial equations, but there exist

fast methods for doing it.

The number of arithmetic operations can be directly found from

the representation of the computation in SIEVE IR [10] that is pro-

duced by ZK-SecreC compiler. Obviously, the cost of evaluating an

algebraic function (Alg. 3) does not depend on the transcendental

function that it approximates, although the pre- and postprocess-

ing steps may depend on the function 𝑓 that we actually want

to evaluate. An arithmetic operation op in SIEVE IR is one of the

following:

add defines a wire, where the value is equal to the sum of the

values on the two input wires;

mul defines a wire, where the value is equal to the product

of the values on the two input wires;

addc defines a wire, where the value is equal to the sum of

the value on the input wire, and the constant that is part of

the operation;

mulc defines a wire, where the value is equal to the product

of the value on the input wire, and the constant that is part

of the operation;

assert_zero checks that the value on a wire is equal to 0.

There are also operations for inputting values as part of the instance

or part of the witness. Among these operations, add, addc, and
mulc are additive operations that do not contribute significantly to

the amount of resources necessary for evaluating the circuit on top

of some ZKP protocol. The amount of resources mostly depends

on the number of mul and assert_zero operations.

Counting the number of operations op in the SIEVE IR repre-

sentation of the computation tells us that their number is equal

12

to

#
op
A

= 𝐶
op
1
(pp+len) (xd+3yd)+𝐶op

2
xdyd+𝐶op

3
xd+𝐶op

4
yd+𝐶op

5
len+𝐶op

6
,

where the coefficients for each operation op are given in Table 1.

This count includes the final range checks for picking the correct

branch of the function (Sec. 5.1). We see that while the number of

coefficients of an algebraic function is ≈ xd · yd, the number of

costly operations does not depend on this quantity, being linear

(but not multilinear) in xd and yd.
We can similarly count the number of operations for evaluating

a polynomial (Alg. 2). We get

#
op
P

= 𝐶
op
1
𝑑 (pp + len) +𝐶op

2
𝑑 +𝐶op

3
,

where the coefficients for each operation op are given in Table 2.

op 𝐶
op
1

𝐶
op
2

𝐶
op
3

𝐶
op
4

𝐶
op
5

𝐶
op
6

addc 0 0 1 4 0 17

add 2 1 2 4 20 4

mulc 2 1 4 9 16 16

mul 1 0 1 2 10 11

assert_zero 1 0 2 6 6 17

Table 1: Coefficients for polynomial giving number of gates
in evaluation of an algebraic approximation of degree (xd, yd)
on a fixed-point value of type (len, pp).

Gate 𝐶
op
1

𝐶
op
2

𝐶
op
3

addc 0 2 0

add 2 1 0

mulc 2 2 1

mul 1 1 -1

assert_zero 1 2 0

Table 2: Coefficients for polynomial giving number of gates
in evaluation of an polynomial approximation of degree d
on a fixed-point value of type (len, pp).

The preprocessing and postprocessing steps do depend on the

function that we are approximating. On the other hand, they do not

depend on the method of approximation (polynomial or algebraic).

The cost of these steps for some of the functions is given in Table 3.

For exp2 function, 8len+pp+3max(pp, len−pp)+4mul-operations
are performed during pre- and postprocessing.

7 DISCUSSION
We have seen how to evaluate algebraic functions under ZK. We

have also seen that algebraic approximations to transcendental

functions is the way to go if the latter have to be evaluated under

ZK; and we have seen a few concrete examples of approximation.

The approximation methods have been described in Sec. 4.3 and

Sec. 5, the first of them containing the method of finding the co-

efficients of an algebraic function, and the second allowing us to

decide how good an approximation it is. In order to find a suitable

approximation for an arbitrary function 𝑦 = 𝑓 (𝑥), we would follow

Function name Delta coefficients

arcsin

coef

op

addc add mulc mul

len 0 30 26 15

pp 0 2 2 1

1 24 -1 19 11

sin_quarter

coef

op

addc add mulc mul

len 0 16 13 8

pp 0 0 1 0

1 14 1 10 6

log2

coef

op

addc add mulc mul

len 1 29 26 16

pp 0 0 0 0

1 12 5 18 6

Table 3: Coefficients for polynomial giving the number of
gates for pre- and postprocessing the function argument and
value, when working with fixed-point values of type (len, pp).

the same methods. We would first decide the value pp; this value
has likely been fixed by the rest of the computations. We would

then run the coefficient finding method for small xd and yd, and
find out the precision of approximation. If the precision is unsat-

isfactory, then we would increase xd and/or yd, and repeat. Note

that Alg. 5 requires an initial approximation as one of its inputs;

the coefficients found in previous iteration can serve as such input.

Finally, having found a satisfactory approximation, we will use

Alg. 7 for isolating the correct branch.

How useful are our approximations, or Alg. 3 for evaluating

algebraic functions, or even the fixed-point and floating-point rep-

resentations of real numbers in computations run on top of ZKP

protocols in general? When making a statement over reals, we al-

ways want to show that one value is smaller than another one (i.e.

we never want to show the equality; we may want to show that

some difference is less than some threshold, though). The errors

introduced by the representations and approximations may flip the

value of the statement. While for many kinds of statements over

reals, it is actually possible to compute them in the way that we can

be certain in the outcome [25], this greatly increases the complex-

ity of computations. Instead, we perform the computations as-is,

hoping that we are sufficiently precise to get the correct outcome.

The approximations we introduce in this paper support that hope,

because they can be very close to the real functions. In ZKP setting,

one additionally has to worry about Prover’s ability to introduce

errors. Our methods of approximating transcendental functions

and computing algebraic functions do not contain any points where

additional errors could be introduced.

REFERENCES
[1] Sebastian Angel, Andrew J. Blumberg, Eleftherios Ioannidis, and Jess Woods.

2022. Efficient representation of numerical optimization problems for snarks.

13

Kevin R. B. Butler and Kurt Thomas, (Eds.) (2022). https://www.usenix.org/con

ference/usenixsecurity22/presentation/angel.

[2] Joshua Baron. 2023. I was told there would be blockchain: 5 Years of Real World

Crypto at DARPA. Talk given at Real World Crypto Symposium. (2023).

[3] Victor Barsan. 2015. Algebraic approximations for transcendental equations

with applications in nanophysics. Philosophical Magazine, 95, 27, 3023–3038.
doi: 10.1080/14786435.2015.1081425.

[4] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. 2021.

Mac’n’Cheese: Zero-Knowledge Proofs for Boolean and Arithmetic Circuits

with Nested Disjunctions. In Advances in Cryptology - CRYPTO 2021 - 41st
Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August
16-20, 2021, Proceedings, Part IV (Lecture Notes in Computer Science). Tal

Malkin and Chris Peikert, (Eds.) Vol. 12828. Springer, 92–122. doi: 10.1007/978-

3-030-84259-8_4.

[5] Mihir Bellare and Shafi Goldwasser. 1989. New paradigms for digital signatures

and message authentication based on non-interative zero knowledge proofs.

In Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings
(Lecture Notes in Computer Science). Gilles Brassard, (Ed.) Vol. 435. Springer,

194–211. doi: 10.1007/0-387-34805-0_19.

[6] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian

Miers, Eran Tromer, and Madars Virza. 2014. Zerocash: decentralized anony-

mous payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy,
SP 2014, Berkeley, CA, USA, May 18-21, 2014. IEEE Computer Society, 459–474.

doi: 10.1109/SP.2014.36.

[7] Aharon Ben-Tal and Arkadi Nemirovski. 2023. Lecture notes: optimization iii.

https://www2.isye.gatech.edu/~nemirovs/OPTIIILN2023Spring.pdf. (2023).

[8] Dan Bogdanov, Joosep Jääger, Peeter Laud, Härmel Nestra, Martin Pettai, Jaak

Randmets, Ville Sokk, Kert Tali, and Sandhra-Mirella Valdma. 2022. ZK-SecreC:

a domain-specific language for zero knowledge proofs. CoRR, abs/2203.15448.
arXiv: 2203.15448. doi: 10.48550/arXiv.2203.15448.

[9] Dan Bogdanov et al. 2024. ZK-SecreC: a Domain-Specific Language for Zero-

Knowledge Proofs. In Proceedings of CSF 2024 - 37th IEEE Computer Security
Foundations Symposium. To appear.

[10] Paul Bunn et al. 2022. SIEVE Intermediate Representation. https://github.com

/sieve-zk/ir. (2022).

[11] Octavian Catrina. 2021. Complexity and performance of secure floating-point

polynomial evaluation protocols. In Computer Security - ESORICS 2021 - 26th
European Symposium on Research in Computer Security, Darmstadt, Germany,
October 4-8, 2021, Proceedings, Part II (Lecture Notes in Computer Science). Elisa

Bertino, Haya Schulmann, and Michael Waidner, (Eds.) Vol. 12973. Springer,

352–369. doi: 10.1007/978-3-030-88428-4_18.

[12] Octavian Catrina and Claudiu Dragulin. 2009. Multiparty computation of fixed-

point multiplication and reciprocal. InDatabase and Expert Systems Applications,
DEXA, International Workshops, Linz, Austria, August 31-September 4, 2009,
Proceedings. A Min Tjoa and Roland R. Wagner, (Eds.) IEEE Computer Society,

107–111. doi: 10.1109/DEXA.2009.84.

[13] Octavian Catrina and Amitabh Saxena. 2010. Secure computation with fixed-

point numbers. In Financial Cryptography and Data Security, 14th International
Conference, FC 2010, Tenerife, Canary Islands, Spain, January 25-28, 2010, Revised
Selected Papers (Lecture Notes in Computer Science). Radu Sion, (Ed.) Vol. 6052.

Springer, 35–50. doi: 10.1007/978-3-642-14577-3_6.

[14] S. Chevillard, M. Joldeş, and C. Lauter. 2010. Sollya: an environment for the

development of numerical codes. InMathematical Software - ICMS 2010 (Lecture
Notes in Computer Science). K. Fukuda, J. van der Hoeven, M. Joswig, and

N. Takayama, (Eds.) Vol. 6327. Springer, Heidelberg, Germany, (Sept. 2010),

28–31.

[15] Richard Dedekind and Heinrich Weber. 2012. Theory of Algebraic Functions of
One Variable. Trans. by John Stillwell.

[16] Vassil S. Dimitrov, Liisi Kerik, Toomas Krips, Jaak Randmets, and JanWillemson.

2016. Alternative implementations of secure real numbers. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016. Edgar R. Weippl, Stefan Katzenbeisser,

Christopher Kruegel, Andrew C. Myers, and Shai Halevi, (Eds.) ACM, 553–564.

doi: 10.1145/2976749.2978348.

[17] Boyuan Feng, Lianke Qin, Zhenfei Zhang, Yufei Ding, and Shumo Chu. 2021.

Zen: an optimizing compiler for verifiable, zero-knowledge neural network

inferences. Cryptology ePrint Archive, Paper 2021/087. https://eprint.iacr.org

/2021/087. (2021). https://eprint.iacr.org/2021/087.

[18] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to play any

mental game or A completeness theorem for protocols with honest majority.

In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
1987, New York, New York, USA. Alfred V. Aho, (Ed.) ACM, 218–229. isbn:

0-89791-221-7. doi: 10.1145/28395.28420.

[19] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1985. The Knowledge

Complexity of Interactive Proof-Systems (Extended Abstract). In Proceedings
of the 17th Annual ACM Symposium on Theory of Computing, May 6-8, 1985,

Providence, Rhode Island, USA. Robert Sedgewick, (Ed.) ACM, 291–304. doi:

10.1145/22145.22178.

[20] Takao Hayashi. 2019. Bhaskara I. Encyclopedia Britannica, https://www.britan

nica.com/biography/Bhaskara-I. (2019).

[21] Liina Kamm and Jan Willemson. 2015. Secure floating point arithmetic and

private satellite collision analysis. Int. J. Inf. Sec., 14, 6, 531–548. doi: 10.1007
/S10207-014-0271-8.

[22] Toomas Krips and Jan Willemson. 2014. Hybrid model of fixed and floating

point numbers in secure multiparty computations. In Information Security -
17th International Conference, ISC 2014, Hong Kong, China, October 12-14, 2014.
Proceedings (Lecture Notes in Computer Science). Sherman S. M. Chow, Jan

Camenisch, Lucas Chi Kwong Hui, and Siu-Ming Yiu, (Eds.) Vol. 8783. Springer,

179–197. doi: 10.1007/978-3-319-13257-0_11.

[23] Toomas Krips and Jan Willemson. 2015. Point-counting method for embarrass-

ingly parallel evaluation in secure computation. In Foundations and Practice
of Security - 8th International Symposium, FPS 2015, Clermont-Ferrand, France,
October 26-28, 2015, Revised Selected Papers (Lecture Notes in Computer Sci-

ence). Joaquín García-Alfaro, Evangelos Kranakis, and Guillaume Bonfante,

(Eds.) Vol. 9482. Springer, 66–82. doi: 10.1007/978-3-319-30303-1_5.

[24] Tianyi Liu, Xiang Xie, and Yupeng Zhang. 2021. Zkcnn: zero knowledge proofs

for convolutional neural network predictions and accuracy. In CCS ’21: 2021
ACM SIGSAC Conference on Computer and Communications Security, Virtual
Event, Republic of Korea, November 15 - 19, 2021. Yongdae Kim, Jong Kim,

Giovanni Vigna, and Elaine Shi, (Eds.) ACM, 2968–2985. doi: 10.1145/3460120

.3485379.

[25] Kurt Mehlhorn and Stefan Näher. 1999. LEDA: A Platform for Combinatorial
and Geometric Computing. Cambridge University Press.

[26] Sarah Scheffler, Eran Tromer, and Mayank Varia. 2022. Formalizing human

ingenuity: A quantitative framework for copyright law’s substantial similarity.

In Proceedings of the 2022 Symposium on Computer Science and Law, CSLAW 2022,
Washington DC, USA, November 1-2, 2022. Daniel J. Weitzner, Joan Feigenbaum,

and Christopher S. Yoo, (Eds.) ACM, 37–49. doi: 10.1145/3511265.3550444.

[27] Srinath T. V. Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J.

Blumberg, and Michael Walfish. 2012. Taking Proof-Based Verified Compu-

tation a Few Steps Closer to Practicality. In Proceedings of the 21th USENIX
Security Symposium, Bellevue, WA, USA, August 8-10, 2012. Tadayoshi Kohno,
(Ed.) USENIX Association, 253–268. https://www.usenix.org/conference/useni

xsecurity12/technical-sessions/presentation/setty.

[28] L.N. Trefethen. 2013. Approximation Theory and Approximation Practice. Other
Titles in Applied Mathematics. SIAM. isbn: 9781611972405. https://books.googl

e.ee/books?id=h80N5JHm-u4C.

[29] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. 2021.

Mystique: efficient conversions for zero-knowledge proofs with applications to

machine learning. In 30th USENIX Security Symposium, USENIX Security 2021,
August 11-13, 2021. Michael D. Bailey and Rachel Greenstadt, (Eds.) USENIX

Association, 501–518. https://www.usenix.org/conference/usenixsecurity21/pr

esentation/weng.

[30] Baisheng Wu, Weijia Liu, Zhijun Wang, and Xin Chen. 2018. Approximate

expressions for solutions to two kinds of transcendental equations with appli-

cations. J. Phys. Commun., 2, 055009. doi: 10.1088/2399-6528/aac0e8.
[31] Runhua Xu, Nathalie Baracaldo, and James Joshi. 2021. Privacy-preserving

machine learning: methods, challenges and directions. (2021). arXiv: 2108.04417

[cs.LG].
[32] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. 2021. Quicksilver:

efficient and affordable zero-knowledge proofs for circuits and polynomials

over any field. In CCS ’21: 2021 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, Republic of Korea, November 15 - 19,
2021. Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi, (Eds.) ACM,

2986–3001. doi: 10.1145/3460120.3484556.

14

https://www.usenix.org/conference/usenixsecurity22/presentation/angel
https://www.usenix.org/conference/usenixsecurity22/presentation/angel
https://doi.org/10.1080/14786435.2015.1081425
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/0-387-34805-0_19
https://doi.org/10.1109/SP.2014.36
https://www2.isye.gatech.edu/~nemirovs/OPTIIILN2023Spring.pdf
https://arxiv.org/abs/2203.15448
https://doi.org/10.48550/arXiv.2203.15448
https://github.com/sieve-zk/ir
https://github.com/sieve-zk/ir
https://doi.org/10.1007/978-3-030-88428-4_18
https://doi.org/10.1109/DEXA.2009.84
https://doi.org/10.1007/978-3-642-14577-3_6
https://doi.org/10.1145/2976749.2978348
https://eprint.iacr.org/2021/087
https://eprint.iacr.org/2021/087
https://eprint.iacr.org/2021/087
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/22145.22178
https://www.britannica.com/biography/Bhaskara-I
https://www.britannica.com/biography/Bhaskara-I
https://doi.org/10.1007/S10207-014-0271-8
https://doi.org/10.1007/S10207-014-0271-8
https://doi.org/10.1007/978-3-319-13257-0_11
https://doi.org/10.1007/978-3-319-30303-1_5
https://doi.org/10.1145/3460120.3485379
https://doi.org/10.1145/3460120.3485379
https://doi.org/10.1145/3511265.3550444
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/setty
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/setty
https://books.google.ee/books?id=h80N5JHm-u4C
https://books.google.ee/books?id=h80N5JHm-u4C
https://www.usenix.org/conference/usenixsecurity21/presentation/weng
https://www.usenix.org/conference/usenixsecurity21/presentation/weng
https://doi.org/10.1088/2399-6528/aac0e8
https://arxiv.org/abs/2108.04417
https://arxiv.org/abs/2108.04417
https://doi.org/10.1145/3460120.3484556

	Abstract
	1 Introduction
	2 Related work
	3 Computation in statements proved in ZK
	3.1 Compute and check
	3.2 Fractional numbers in ZK

	4 Approximations of transcendental functions
	4.1 Algebraic approximations
	4.2 Approximating concrete functions
	4.3 Finding approximations

	5 Bounding Approximation Errors
	5.1 Isolating the branches of an algebraic function
	5.2 Avoiding spurious roots from numeric errors

	6 Benchmarking
	6.1 Precision
	6.2 Performance

	7 Discussion

