
Practical q-IND-CPA-D-Secure
Approximate Homomorphic Encryption

Jean-Philippe Bossuat1,4 , Anamaria Costache2 , Christian Mouchet3 , Lea
Nürnberger2 , and Juan Ramón Troncoso-Pastoriza4

1 Independent
2 Norwegian University of Science and Technology (NTNU), Norway

3 Hasso Plattner Institut (HPI), Universität Potsdam, Germany
4 Tune Insight SA

jeanphilippe.bossuat@gmail.com, anamaria.costache@ntnu.no,
christian.mouchet@hpi.de, lea.nurnberger@ntnu.no,

juan@tuneinsight.com

Abstract. At Eurocrypt 2021, Li and Micciancio demonstrated that the
IND-CPA notion of security is not sufficient to cover the passive security
of approximate homomorphic encryption schemes, by outlining a key
recovery attack against the CKKS scheme (Cheon, Kim, Kim, Seong,
Asiacrypt 2017). They proposed the notion of q-IND-CPA-D security,
which allows an adversary to make q calls to a restricted decryption
oracle. Li and Micciancio left achieving q-IND-CPA-D security as an
open problem, but proposed two approaches: noise flooding and an exact
version of CKKS. The first approach was addressed by Li, Micciancio,
Schultz and Sorrell (Crypto 2022), but leads to substantial efficiency loss.
In this work, we look at the second approach. We define
(δ, r)-exact CKKS, a version of CKKS that returns exact results on all
except the least r significant bits with (high) probability δ, based on
bounds on the noise. We prove that the advantage of a q-IND-CPA-D at-
tacker against (δ, r)-exact CKKS is determined by the failure probability
of those bounds. We conduct a tight average-case and implementation-
specific noise analysis of all elementary operations in CKKS, as imple-
mented in the Lattigo library, including the bootstrapping operation. We
propose bounds that have small enough failure probability for the advan-
tage of a q-IND-CPA-D attacker against (δ, r)-exact CKKS to become
smaller than 2−128, while the parameter sets needed remain practical.
We furthermore present an estimator tool that combines the bounds on
basic operations and returns tight noise estimates, even for large circuits.
We validate our bounds by showcasing experimental results on different
iterative algorithms, homomorphic encoding, decoding and bootstrap-
ping.

1 Introduction

Fully Homomorphic Encryption (FHE) allows to perform meaningful computa-
tions on encrypted data. Following Gentry’s initial construction from standard

https://orcid.org/0000-0002-2020-0224
https://orcid.org/0000-0001-8793-6116
https://orcid.org/0000-0001-5686-9459
https://orcid.org/0000-0001-9074-1993
https://orcid.org/0000-0001-8764-5570

lattices assumptions, current constructions [7, 23, 24, 22, 15, 14] are based on
variants of the Learning-with-Error problem (LWE) [36], and improving their ef-
ficiency has been a significant endeavor of the field. The cornerstone of efficiency
is to manage noise: a small random deviation added for security purposes dur-
ing the encryption process which grows throughout the computation, and which
must be filtered out during decryption. Hence, the correctness of current FHE
schemes depends on successful message decoding and is therefore probabilistic.

One of the most efficient schemes to date for computing on approximate real
and complex numbers was introduced by Cheon et al. [14] and is dubbed CKKS.
Its efficiency stems from a simple noise management strategy: it considers the
error as part of the approximation error of its underlying plaintext, resulting
in an approximate scheme. For a ciphertext ct that encrypts a message m, the
CKKS decryption outputs Dec(ct) = m + e, without attempting to filter out
the noise e. On the other hand, exact FHE schemes [7, 23, 24, 22, 15] apply
more advanced encoding strategies, which enable exact decoding of m with high
probability, but can result in a performance loss compared to CKKS.

It was shown by Li and Micciancio at Eurocrypt 2021 [33] that knowledge
of the error term in CKKS can be used to mount a passive key recovery attack
on CKKS, even if CKKS is provably IND-CPA secure. This attack leverages
the approximate nature of CKKS, and assumes the attacker is able to obtain
decryptions of encrypted plaintexts that are known to them. We describe the at-
tack based on the secret key version of CKKS since this illustrates the key idea
of the attack more clearly, and note that the public-key version can be found
in [33]. Let ct = (−as + e, a) = (ct[0], ct[1]) be a secret key CKKS ciphertext
encrypting 0. Assume the attacker has knowledge of ct[0] and Dec(ct). Then it
calculates ct[0]−Dec(ct) = ct[0]−⟨ct, sk⟩ = as+ e− (as+ e−as) = as, which
is a linear equation in the secret key that can easily be solved by multiplying
with a−1, which is public. This inverse exists with high probability. If it does not,
the adversary can simply make new decryption queries until it recovers a sample
where the inverse does exist. Given the fact that CKKS is IND-CPA secure,
the above attack shows that this notion does not capture the passive security
of CKKS (or indeed of any approximate scheme) accurately. Li and Miccian-
cio therefore proposed the notion of q-IND-CPA-D security, that captures the
scenario of their attack. The q-IND-CPA-D game extends the capabilities of an
adversary, by also allowing it to call an evaluation oracle, and q times a restricted
decryption oracle. The decryption oracle can only be called on ciphertexts that
have been returned by the encryption or evaluation oracle upon querying for a
message pair (m0,m1), and only if m0 = m1, so as to not trivially leak infor-
mation about the challenge bit b. Provably achieving q-IND-CPA-D security for
CKKS was left as an open problem in [33], but two approaches were proposed:
noise flooding and converting CKKS into an exact scheme. The first approach
has been addressed by [34], where the authors show that noise exponential in the
security parameter needs to be added for the noise flooding to achieve provable
security, which has a significant negative impact on the efficiency of the scheme.

2

In this work, we explore the second approach, first formalised by [17]. We
show how to obtain a provably q-IND-CPA-D secure scheme, which returns all
except for the least r significant bits of the message, with probability δ, by using
an average-case noise analysis. This scheme, which we call (δ, r)-exact CKKS,
uses noise bounds to round off the r message bits that have been affected by
the noise. We show that the advantage of an attacker against the q-IND-CPA-D
security of (δ, r)-exact CKKS is determined by the failure probability 1−δ of the
bounds. We note that our results in particular validate two recent works [8, 10]. In
those works, the authors run a q-IND-CPA-D attack on exact schemes precisely
by exploiting the high decryption failure probability.

1.1 Our Contributions

We make the following contributions:

– Provably Secure q-IND-CPA-D secure CKKS. We construct a
(δ, r)-exact CKKS scheme that is provably q-IND-CPA-D secure. We
achieve this by rounding off the noise after the CKKS decryption, based on
probabilistic noise bounds.

– Composable Average-Case Noise Bounds. In order to achieve the above, we
extend the existing work on average-case noise analysis by (1) proposing a
novel component-wise noise approach to track the noise and (2) supporting
plaintext-ciphertext operations. Thanks to these extensions, we can derive
bounds on complex circuits such as iterative algorithms or bootstrapping,
which was left unaddressed by previous works.

– Open-Source Average-Case Noise Estimator. We provide a proof of concept
open-source estimator5 that calculates these noise bounds for any circuit.
This contribution can be of independent interest, as it provides a crucial
development tool to assess how FHE circuits behave, or fine tune parameters
in order to achieve a target precision for a given application. Our estimator
targets (and is implemented with) the Lattigo library [1].

– Empirical Validation of the Average-Case Noise Bounds. We perform sev-
eral experiments to show that the bounds computed with our estimator are
tight. For example, we show that the estimated noise standard deviation for
the bootstrapping circuit differs by only 0.01 bits from the experimentally
obtained one. As a by-product, we therefore provide the first tight noise
analysis for CKKS bootstrapping.

– Practical Instantiatiation of q-IND-CPA-D CKKS. We use the obtained es-
timates to demonstrate that there exist practical parameter sets that are
both IND-CPA and q-IND-CPA-D secure. In fact, we show that we only lose
few bits of precision when instantiating CKKS as a (δ, r)-exact q-IND-CPA-
D secure scheme, instead of as an IND-CPA secure scheme, for the same
parameter sets.

5 The code will be made available shortly.

3

1.2 Related Work

Costache et al. [18] provided the first average-case noise analysis for CKKS.
They provided noise estimates for encoding, encryption, addition, multiplica-
tion, relinearization and rescaling for both CKKS and RNS-CKKS. They also
formalized the approach of achieving exact CKKS through rounding off the noise
bits. We build our construction on top of this formalization. In addition to the
noise estimates given in [18], we also perform noise analysis for addition and
multiplication by plaintexts and constants, key switching in general, as well as
rotations and conjugations. We use a slightly different approach, by tracking
the component-wise noise (Definition 2), instead of the precision loss directly.
We furthermore demonstrate that our noise estimates can be combined into esti-
mates for deeper circuits such as bootstrapping and give experimental validation
for this claim.

In the work of [33], the authors proved that IND-CPA and q-IND-CPA-D
security are equivalent for exact schemes. It was therefore believed that q-IND-
CPA-D attacks are not an issue for schemes such as BGV, BFV, THFE or
FHEW. However, two recent works [8, 10] have called this into question. Indeed,
they point out that the initial proof of equivalence between IND-CPA and q-IND-
CPA-D for exact schemes does not take decryption failures into account. Hence,
they are vulnerable to q-IND-CPA-D attacks, where the success probability of
the attack depends on the probability of the noise bounds failing. By amplifying
this probability through correlated inputs, the authors (succesfully) mount a key
recovery attack on the BGV scheme. They also note that this attack applies to
most implementations of exact schemes. We confirm these results by providing
a formal security proof for CKKS that arrives at the same conclusions.

Recently, [25] showed that using average-case noise analysis for determining
the noise flooding noise can lead to an attack, if the noise estimates underestimate
the actual noise. However, their attack exploits the fact that the noise analysis
assumes independent inputs (hence can be tricked into outputting smaller values
by using correlated inputs). However our estimator correctly models operations
on correlated inputs, which prevents the scenario of the attack [25].

Lastly, [2] introduced the concept of application-aware FHE, a model which
aims to reflect how FHE schemes are used in real world applications. They show
that in such a model, where FHE schemes are only used for the class of circuits
they where originally parameterized for, IND-CPA and IND-CPA-D security
are equivalent and all previous attacks, such as the ones of [8, 10, 25], are
invalid since they would require to evaluate a class of circuit that the scheme
was not originally parameterized for. Instantiating their setting starts with an
offline procedure which requires to produce a tight noise estimate for the class
of circuits that can be run by the evaluator.

Although our work takes a different approach to secure approximate homo-
morphic encryption, it still nicely complements the one of [2]. This is since among
our contributions, we provide tight noise estimates for the CKKS scheme, and
our (δ, r)-exact CKKS scheme can be used within their framework to further
reduce the probability of information leakage.

4

1.3 Our techniques

In this work, we construct (δ, r)-exact CKKS, a CKKS variant that is secure in
the q-IND-CPA-D model. To do so, we need three building blocks: tight noise
bounds for arbitrary circuits in CKKS, a definition of (δ, r)-exact CKKS, and
a proof that such a CKKS variant is q-IND-CPA-D-secure. We now provide
an overview of the techniques for each building block, and informally state our
results for ease of exposition.

Average-case Noise Analysis (Section 3) We derive tight noise estimates for all
the elementary operations. Costache et al. have used the notion of precision loss
to capture what “noise” is in CKKS [18]. Precision loss describes the difference
between the decryption of a ciphertext and the plaintext the ciphertext should
encrypt.

We propose to track the noise in each ciphertext component instead (Defi-
nition 2), and denote the vector of the component-wise noises of ct as n(ct) =
(n(ct)[0], . . . , n(ct)[k]). We choose this notion over the notion of precision loss
in [18] because tracking the noise in each ciphertext component independently
is necessary to obtain precise noise estimates in complex circuits (notably, those
that rely on key-switching). We derive (in Section 3) the component-wise noise
update rules for each homomorphic operation and, by composition of the latter
operations, for arbitrary circuits. We translate the component-wise noise into
precision loss only at the end of the evaluation of a circuit as follows

[n(ct)[0] + n(ct)[1]s]Q = [⟨ct, sk⟩]Q − pt,

where sk = (1, s) is the secret key and Q is the ciphertext modulus. We can
obtain the standard deviation of the precision-loss in each coefficient of the

plaintext as
√
σ2
n(ct)[0] +Nσ2

n(ct)[1]σ
2
s , where N is the polynomial ring degree

and σ2
n(ct)[k] denotes the noise standard deviation in the k-th component of

ciphertext ct. Costache et al. [18] show that the operations in CKKS and the
RNS version of CKKS [13] can be well-approximated by a Gaussian distribution.
We therefore find that the infinity norm of the precision loss can be bounded as

||Decode([⟨ct, sk⟩]Q − pt)||∞ ≤ α
√
2n
√

σ2
n(ct)[0] +Nσ2

n(ct)[1]σ
2
s = B,

with probability δ = erf
(

α√
2

)2n
, where n ≤ N

2 is the number of plaintext slots,

erf() is the error function (see Definition 1), and Decode is the CKKS decoding
procedure defined in Section 2.3. In this work, α is a parameter that allows to
tune the tightness and failure probability of the bounds: the smaller α is, the
tighter the bounds are, but also the likelier they are to fail.

The authors of [35] have observed that the noise growth differs in different
implementations and conjectured that, in order for noise estimates to be tight,
they need to be implementation-specific. This conjecture was also made in [18].
The work of [20] confirmed the conjecture for BGV as implemented in HElib. It

5

follows that the implementation of a scheme affects the noise growth substan-
tially. Therefore, during our analysis of the noise in CKKS, we always refer to
the algorithms as implemented in Lattigo. We provide the implementation of an
estimator of the noise for arbitrary circuits in Lattigo in Section 4, and provide
experimental validation for our results. The tightness of these results confirms
the conjecture that noise estimates need to be implementation-specific. We note
in particular that our estimator allows to also give tight results on more complex
circuits such as bootstrapping, Goldschmidt division for 10 iterations, or binary
value cleaning as proposed in [21].

(δ, r)-exact CKKS (Section 5) The next building block we need is a definition
of (δ, r)-exact CKKS. While such a scheme was conceptualized in the works
of [18, 33], a rigorous definition was not provided.

Ideally, we would require the decryption result to be exact except for the least
r significant bits of the message, with probability 1. The motivation for this is
as follows. We cannot know the precise value of the noise term, since this would
break the IND-CPA-D security of CKKS immediately. Therefore, if we want to
make CKKS exact, we have to remove the r message bits that are polluted by
the noise.

However, to achieve this definition in practice, we would need deterministic
noise bounds that are guaranteed to hold with probability 1. These bounds ex-
ist but are very loose, and using them would substantially reduce the message
precision in our r-exact CKKS scheme. We therefore relax this requirement, and
define our (δ, r)-exact CKKS scheme as a CKKS scheme that is exact except on
the r least significant bits of the message, with (negligible) probability δ. This
allows us to use average-case bounds, which are much tighter and therefore have
a lesser impact on the scheme’s efficiency. In order to achieve such a definition
of (δ, r)-exact CKKS, we need to introduce a condition of correctability (Defini-
tion 8 in Section 5). This condition ensures that rounding the decryption output
will always output correct results. By admissible circuits we mean circuits that
can be evaluated in CKKS. We obtain the following definition.

Definition 9(δ, r)-exact CKKS (informal). Let E = (KeyGen, Enc, Decexact, Eval)
be a fully homomorphic encryption scheme, where KeyGen, Enc, and Eval are the
same as the algorithms with the same name in CKKS. The parameters of E are
the same as for CKKS. Let Dec′r be a (modified) decryption function. Let m be

any message, b = log2(m), r some parameter, and m =
∑b−1

i=0 mi2
i be its binary

representation. If

Dec′r(ct, sk) = m′ =

b∑
i=r

mi2
i

for any ciphertext ct encrypting m, with probability δ, then we call E an
(δ, r)-exact CKKS scheme.

6

q-IND-CPA-D Security of (δ, r)-exact CKKS We finally show (in Section 5)
that the following theorem holds, as long as the bound B holds with probability

δ = erf
(

α√
2

)2n
, for q the maximum number of calls permitted to the decryption

oracle and n the number of plaintext slots.

Theorem 1(Main theorem, informal) Let E be the (δ, r)-exact CKKS scheme,
and let A be an adversary against the IND-CPA security of CKKS. Let δ be
the probability that the noise bound holds. Let q be the maximum number of the
decryption oracle calls allowed. Then we get for the advantage of an adversary
B against the q-IND-CPA-D security of (δ, r)-exact CKKS.

Advq−IND−CPA−D
(δ,r)-exact CKKS(B) ≤ 1− δq + AdvIND−CPA

CKKS (A).

We show that there are parameter sets such that the advantage of an ad-
versary A against the IND-CPA-D security of (δ, r)-exact CKKS is negligible,
while retaining practical performance We suggest some concrete parameter sets
in Table 2.

2 Preliminaries

2.1 Algebraic Background

For a positive integer m, let Φm(X) be the m-th cyclotomic polynomial of degree
N = ϕ(m), where ϕ is the Euler totient function. We will assume m to be
a power of two. Then, we have N = m

2 , and Φm(X) = XN + 1. Let R :=
Z[X]/(Φm(X)) be the ring of integers of a number field Q[X]/(Φm(X)). We
denote by RQ = R/QR the residue ring of R modulo an integer Q. Elements of
RQ are polynomials of degree at most N . We refer to RQ as the plaintext space
and to (RQ)

k, k > 1 as the ciphertext space. We will mostly identify an element
p ∈ RQ by its coefficient vector. Any norm || · || on an element from RQ is to be
understood as a norm on its coefficient vector.

For CKKS, we define a chain of ciphertext moduli QL > QL−1 > . . . > Q0,
where Qi|Qj ∀i ≤ j. Let q0, . . . , qL be machine-word sized NTT-friendly primes

and choose Qℓ such that Qℓ =
∏ℓ

j=0 qj . Unless otherwise stated, we will consider
an element from RQℓ

in its unique RNS representation Rq0 × . . .×Rqℓ
∼= RQℓ

.

2.2 Notation

We denote a vector as v. For a polynomial f , we denote its ith coefficient by fi.
Let p be a polynomial randomly drawn from RQℓ

. Then we denote the standard
deviation of the i-th coefficient by σpi

. If it is clear that all the coefficients of
p are identically distributed, we drop the index i. Let P = (p(1), . . . , p(k)) be
a vector of random polynomials drawn from RQℓ

. Then we denote by σPi =
(σ

p
(1)
i
, . . . , σ

p
(k)
i

) the vector of the i−th coefficient standard deviations of the

polynomials in P. Let p be a polynomial. Then ⌈p⌋ refers to coefficient-wise

7

rounding to the nearest integer; ciphertexts in CKKS are tuples in Rk+1
Q , with

k ≥ 1, and we will write them as ct = (ct[0], ct[1], . . . , ct[k]). We denote the
secret key by sk = (1, s, s2, . . . , sk). Therefore, we can write the decryption as

[⟨ct, sk⟩]Q =
[∑k

i=0 ct[i] · si
]
Q
. Note that for fresh ciphertexts and after most

operations k = 1. We will therefore in this work assume ciphertexts of length 2
unless explicitly stated otherwise.

2.3 Messages and Plaintexts

For reasons of space, we delay the presentation of the CKKS scheme to Ap-
pendix A (Figures 4 and 5). However, we describe the encoding and decoding
between the message space Cn and the plaintext space RQ.

The encoding of a message m ∈ Cn is performed via the inverse canonical
map τ−1 : Cn → R[Y]/(Y 2n + 1) for Y = XN/2n. We refer to n as the the
number of plaintext slots.

Through scaling and rounding, the element τ−1(m) is discretized onto an
element pt in the ring RQℓ

; τ−1 is computed as follows. Let m ∈ Cn and
compute m′ = DFT−1

n (m) the inverse Discrete Fourier Transform (DFT) of m.
Extract the real and imaginary parts of m′ as m′

0 := 1
2 (m

′ + m′) = Re(m′)

and m′
1 := −i

2 (m′ −m′) = Im(m′) and set m′
0||m′

1 ∈ R2n. Then τ−1(m) is a

polynomial in R[Y]/(Y 2n + 1) for Y = XN/2n with coefficients m′
0||m′

1. Thus,
the first n coefficients of τ−1(m) are the real parts of DFT−1

n (m) and the second
n coefficients the imaginary part of DFT−1

n (m). To transform τ−1(m) into an
element in RQℓ

, calculate pt =
⌈
∆ · τ−1(m)

⌋
for a scaling factor ∆, and apply

the change of variable Y → XN/2n. In what follows, we will call elements in
the ring RQℓ

plaintexts, and elements in Cn messages. We will denote them by
pt =

⌈
∆ · τ−1(m)

⌋
and m respectively.

Remark 1. The structure of the polynomial τ−1(m) ∈ R[Y]/(Y 2n + 1) is
τ−1(Re(m))+ τ−1(Im(m)) ·Y n, were τ−1(Re(m)) and τ−1(Im(m)) are polyno-
mials of the subring R[Y +Y −1]/(Y 2n+1) ⊂ R[Y]/(Y 2n+1) ⊆ R[X]/(XN +1).

2.4 Products of Random Polynomials and Error Function

We give two results on the coefficient standard deviation of products of random
polynomials that we will need later on. From here on, we use the term “ran-
dom polynomial” to refer to a polynomial whose coefficients are identically and
independently drawn from a distribution D. The coefficient standard deviation
of these polynomials is then the standard deviation of D. We use the following
result from [20].

Lemma 1 (Products of Random Polynomials [20]). Let f, g ∈ R, f ̸= g be two
polynomials of degree N , whose coefficients are drawn identically and indepen-
dently from two distributions Df and Dg, with variance σ2

f and σ2
g respectively

and mean µf and µg respectively.

fi
i.i.d←−− Df , gi

i.i.d←−− Dg,

8

i ∈ {0, . . . , N−1}, where µj is the mean and σ2
j is the variance of Dj respectively.

Let E(Dj) denote the expectation of Dj , j ∈ {f, g}. Then the variance of the
distribution of the coefficients of f · g is:

σ2
(fg)i

= N(E(Df)
2σ2

g + E(Dg)
2σ2

f + σ2
gσ

2
f).

In the case that f = g we need to specialise the above result as follows. We
furthermore specialise to symmetric distributions centered around zero, since we
will only need the following lemma in this context.

Lemma 2 (Squaring of Random Polynomials). Let f ∈ R be a polynomial of
even degree N, whose coefficients are drawn identically and independently from
a symmetric distribution D with standard deviation σf and expectation 0. Then
we have for the standard deviation of (f2)i, i ∈ {0, . . . , N − 1}{

σ(f2)i = σ2
f

√
2N + 1 , for i even

σ(f2)i = σ2
f

√
2N , for i odd.

For large N , we can therefore approximate the standard deviation of (f2)i
for all i by

√
2Nσ2

f .

Proof. Deferred to Appendix B ⊓⊔

We will furthermore need the following definition and well-known lemmas,
for bounding the noise distributions.

Definition 1 (Error Function). The error function erf : R → (−1, 1) is the
function defined as

erf(z) =
2

π

z∫
0

e−t2dt.

Lemma 3 (Bounding Gaussian Distributions). Let X ∼ N (0, σ2) be a normally
distributed random variable with standard deviation σ. Then we have

Pr(−ασ ≤ X ≤ ασ) = erf

(
α√
2

)
.

For example, we have 1 − erf
(

6√
2

)
≈ 2−30, 1 − erf

(
10√
2

)
≈ 2−76, and 1 −

erf
(

14√
2

)
≈ 2−145.5.

2.5 Noise Definitions

Noise analysis in CKKS comes with two extra challenges: the encoding into the
plaintext domain is only approximately correct, and ciphertexts have a scaling
factor that can change during the evaluation of a circuit. Both, the approximate
encoding and the scale-change introduce noise. For a ciphertext ct encrypting

9

m, the decryption does not return m but a noisy term m+e that differs from the
original message. It is this difference that we consider as noise. The authors of [18]
calculate this as [⟨ct, sk⟩]Q − pt before decoding and as Decode([⟨ct, sk⟩]Q) −
m after decoding, for ct encrypting pt, and pt the encoding of m. The work
of [18] tracked the precision loss through a computation in CKKS by tracking
the variance of [⟨ct, sk⟩]Q − pt. We will follow a different approach and track
the coefficient standard deviation of the noise in each component, that then can
be combined in a coefficient standard deviation of the precision loss.

Definition 2. Let ct be a degree d > 0 CKKS encryption of a plaintext pt ∈ RQℓ
.

Then, ct = (pt+ a0 + e0, a1 + e1, . . . , ad + ed) for some a1, . . . , ad ∈ RQℓ
such

that a0 = −
∑d

i=1 ais
i, and we define the component-wise noise of the ciphertext

ct as n(ct) = (e0, e1, . . . , ed).

In other words, the component-wise noise captures all the terms introduced dur-
ing encryption and homomorphic evaluation which do not get cancelled out dur-
ing decryption. Note that this includes the error introduced by encoding, where
relevant. The precision loss ⟨ct, sk⟩ − pt can be obtained from the component-
wise noise as

∑
n(ct)[i] · si. We use the component-wise definition because the

noise coming from the key-switching operation does not depends on n(ct)[0] and
thus requires to be able to distinguish between the different components.

2.6 Average-case and Worst-case Noise Analysis

Two different approaches to track the noise in FHE schemes have been proposed:
worst-case noise analysis and average-case noise analysis. In a worst-case analy-
sis, the noise in the ciphertext is bounded at each step of the computation. These
bounds are derived by assuming that the random variable falls within a certain
number of standard deviations (this number is selected to be α = 6 for example
in [16]). Due to the bounding after each step in the circuit, worst-case bounds
are very loose for large circuits, since the approximation errors accumulate, as
observed in [19].

The average-case analysis has a different approach: instead of deriving a
bound at each step, we track the variance of the noise through every homo-
morphic computation, and only derive a bound at the very end. The resulting
bounds are tighter, but can have a larger probability failure than worst-case
bounds. The authors of [18] showed that the noise after each operation in CKKS
can be well approximated by a Gaussian distribution in each component, assum-
ing independent inputs. Why theoretically assuming independency is a stretch,
this assumption can be experimentally validated (see for example [20]). There-
fore, the infinity norm of a complex vector of length n can be shown to lie with

probability δ = erf
(

α√
2

)2n
in an interval of α standard deviations around 0 (we

consider a complex vector as a real vector of twice the size). Since the authors
take the approach of calculating the standard deviation of the whole circuit and
only bound the error at the very end, they do not incur a bounding error at

10

every step, but only once. This leads to much more precise error bounds and the
ability to tightly control the failure probability of the bounds. In this work, we
use the latter approach.

In Section 3, we calculate the standard deviation of the noise in all basic
operations in RNS-CKKS. These results can then be combined to obtain the
coefficient standard deviation of the noise after the evaluation of an arbitrary
circuit. From this standard deviation a bound on the precision loss can be ob-
tained as follows.

Lemma 4. Let ct be a CKKS ciphertext with component-wise noise
n(ct) and component-wise noise coefficient standard deviation σn(ct) =
(σn(ct)[0], σn(ct)[1], . . .) encrypting a plaintext pt that encodes a complex vector

of length n. Let sk = (1, s, s2, . . . , sk) be the secret key, and σsk its standard
deviation. Then we have

||Decode(⟨ct, sk⟩ − pt)||∞ ≤ α
√
2n

√
σ2
n(ct)[0] +

∑
i>0

Nσ2
n(ct)[i]σ

2
si ,

with probability δ = erf
(

α√
2

)2n
, α ∈ R.

2.7 Security Notions and Definitions

In this work we will need the following two security definitions. IND-CPA-D is
a security notion that has been proposed by Li and Micciancio [33] to capture
the scenario of their passive attack on CKKS.

Definition 3 (IND-CPA Security). Let E = (KeyGenE , EncE , DecE , EvalE) be a

fully homomorphic encryption scheme. We define an experiment ExprIND−CPA[A]
an efficient adversary A.

ExprIND−CPA[A](λ) :

b
$← {0, 1}

(sk, pk, evk)← KeyGen(λ)

S ← ∅
i← 0

b′ ← AEncpk(λ)

return b′ = b,

where Encpk is the encryption oracle defined in Figure 1. We say that E is IND-
CPA secure if

AdvIND−CPA
E (A) =

∣∣∣∣Pr (ExprIND−CPA[A](λ)⇒ 1
∣∣∣ExprIND−CPA[A](λ) ̸⇒⊥

)
− 1

2

∣∣∣∣
is negligible in λ.

11

Encbpk(m0,m1) :

ct← EncE(mb, pk)

return ct

Fig. 1: Oracle for the IND-CPA game.

Definition 4 (q-IND-CPA-D Security [33]). Let E =
(KeyGenE , EncE , DecE , EvalE) be a fully homomorphic encryption scheme.

We define an experiment Exprq−IND−CPA−D
b , parametrised by an efficient ad-

versary A, where the adversary can make at most q calls to the decryption
oracle.

Exprq−IND−CPA−D[A](λ) :

b
$← {0, 1} (sk, pk, evk)← KeyGen(λ)

S ← ∅
i← 0

q̃ ← 0

b′ ← AEncpk,Decsk,Evalevk(λ)

return b′ = b,

where Encpk,Decsk, and Evalevk are the encryption, decryption, and evaluation
oracle respectively as defined in Figure 2. Then E is said to be q-IND-CPA-D
secure if

Advq−IND−CPA−D
E (A)

=

∣∣∣∣Pr (Exprq−IND−CPA−D[A](λ)⇒ 1
∣∣∣Exprq−IND−CPA−D[A](λ) ̸⇒⊥

)
− 1

2

∣∣∣∣
is negligible in λ.

For the proof in Section 5 we will need the following definitions and lemmas.

Definition 5 (Advantage of Games). Let G0 and G1 be two games, and A an
adversary. We define their advantage as

Adv(GA0 ,GA1) := |Pr(GA0 ⇒ 1|GA0 ̸⇒⊥)− Pr(GA1 ⇒ 1|GA1 ̸⇒⊥)|.

Definition 6 (Identical-until-bad-games [3]). Two games G0 and G1 are called
identical-until-bad-games if they are syntactically equivalent until a flag BAD is
set to true.

Lemma 5 (Difference Lemma [3]). Let A be an adversary and let G0, G1 be
identical-until-bad-games. Then

Adv(GA0 ,GA1) ≤ Pr(BADG0
) = Pr(BADG1

).

12

Encbpk(m0,m1) :

ct← EncE(mb, pk)

S ← (m0,m1, ct)

i← i+ 1

return ct

Decbsk(i) :

If S[i].m0 = S[i].m1 and q̃ ≤ q :

tabstopq̃ ← q̃ + 1

tabstopreturn DecE(S[i].ct, sk)

Else:

tabstopreturn ⊥
Evalbevk(g, J = (j1, . . . , jℓ)) :

ct← EvalE(g, S[j1].ct, . . . , S[jℓ].ct, evk)

gm0 ← g(S[j1].m0, . . . , S[jℓ].m0)

gm1 ← g(S[j1].m1, . . . , S[jℓ].m1)

S[i]← (gm0 , gm1 , ct)

i← i+ 1

return ct

Fig. 2: Oracles for the q-IND-CPA-D game.

3 Average-case Noise Estimates for RNS-CKKS

In the following, we calculate the coefficient standard deviation of the
component-wise noise for the basic operations in RNS-CKKS. Lemmas 18 - 26
show how to combine the standard deviations of the basic operations into stan-
dard deviations of the bootstrapping circuit as an example for a complex circuit.
Due to space reasons, these Lemmas can be found in Appendix C. These noise
estimates will then be used in the estimator to allow for the automated calcula-
tion of the precision loss during the evaluation of a circuit, before this evaluation
has started.

We will use the following notation in this section. Let pt(0), pt(1), be two
plaintexts encoding m0,m1 ∈ Cn. Let ∆0 be the scaling factor of pt(0) and let
∆1 be the scaling factor of pt(1). Let n(pt(0)), n(pt(1)) denote the noise from
encoding the messages m0,m1 into pt0, pt1 respectively. Let ct(0), ct(1) be the
ciphertexts encrypting pt(0) + n(pt(0)), pt(1) + n(pt(1)) with respect to a ci-
phertext modulus Qℓ0 , Qℓ1 respectively. Let pt ∈ RQ be a plaintext with scaling
factor ∆, and with encoding noise standard deviation σn(pt)i . Whenever an oper-
ation is performed with a plaintext we assume that the plaintext modulus is the
same as the ciphertext modulus and that its scaling factor is chosen optimally
(e.g. to the be same in the case of addition or the next prime to be removed by
the rescaling in the case of multiplication).

3.1 Noise Estimates for Plaintext Encoding

Let m ∈ Cn be a message. Since DFTn and DFT−1
n and therefore τ(·) and τ−1(·)

are inverses of one another, we have τ(τ−1(m)) = m. However, since Encode(m)
additionally scales and rounds the result, we have instead Decode(Encode(m)) ≈
m. The difference between Decode(Encode(m)) and m is given by the rounding

13

error. The rounding error is deterministic, however it depends on the precise
operations that have been performed on the message. As is standard, we therefore
model it as uniformly random in the interval

[
− 1

2 ,
1
2

)
, with variance 1

12 [18]. We

denote the encoding error as n(pt), that is, we have pt+ n(pt) =
⌈
∆τ−1(m)

⌋
.

3.2 Noise Estimates for Encryption and Rescaling

For the encryption, the encoding noise is still separated from the ciphertext noise
coming from the encryption randomnesses. We therefore will here still track it
separately. After computations have been performed on fresh ciphertexts, the
encoding and the ciphertext noise get intertwined and both will contribute to
the component-wise noise n(ct). For example, during a multiplication, the ci-
phertext noise gets multiplied by both the plaintext and the plaintext noise. As
such, we will track this component-wise noise for all remaining operations in-
stead of the single-valued critical-quantity. As we will later see, this is notably
required to obtain accurate estimates for the key-switching noise. As described
above, the plaintext will impact the noise. It therefore becomes necessary to dis-
cuss how to model the plaintext. There are two scenarios for calculating noise
estimates: to determine the noise and the parameters for a general circuit, or
to determine them for a concrete calculation. In the latter, the messages and
therefore plaintexts on which the calculations will be run can be assumed to be
known. In the former, they cannot. The first case makes it necessary to assume
that the messages, and therefore the plaintexts, are drawn from a bounded dis-
tribution with standard deviation σpt, and to consider them a random variable
themselves. To make our results precise, the distribution will have to be taken
over a bounded interval, in our case we assume the interval [−1, 1]n∪[−i, i]n ∈ Cn

for the messages.
In the second case, the plaintexts can be considered deterministic and not a

random variable, and therefore do not have a standard deviation. In what follows,
we will give the noise estimates for the more general case, where the plaintext is
drawn from a distribution and is therefore modelled by its standard deviation.
The noise estimates can be adapted to the latter case as follows: Let X,Y be
two random vectors with 2n coefficients that are identically and independently
distributed, and pt(0), pt(1) ∈ RQℓ

two plaintexts.
If pt(0), pt(1) are two random variables independent of X,Y , then the coeffi-

cient variance of pt(0)X+pt(1)Y is given by Lemma 1 asNσ2

pt
(0)
i

σ2
Xi

+Nσ2

pt
(1)
i

σ2
Yi
.

If pt(0), pt(1) are not random variables, then we obtain (pt
(0)
i)2σ2

X +(pt
(1)
i)2σ2

Y ,

where (pt
(j)
i),∈ j{0, 1} is the i−th coefficient of the plaintext polynomial. Thus,

the noise estimates for a general circuit can easily be converted into the noise

estimates for a specific computation, by switching out Nσ2

pt
(j)
i

for (pt
(j)
i)2.

We begin by giving the noise estimates for rescaling, since they will be needed
in all subsequent noise estimates, including encryption.

Due to space reasons, we cannot give all proofs in this section. We sketch the
proofs of which we think they best illustrate our general proof techniques, and

14

fully include those that are sufficiently short. The full proofs of all Lemmas of
which a full proof is not stated in this section can be found in Appendix B.

Lemma 6 (Rescaling). Let {ct, Qℓ, ∆} be a ciphertext encrypting a plaintext pt
and let ct(1) = DropLevel({ct, Qℓ, ∆}, k) and ct(2) = Rescale({ct, Qℓ, ∆}),
both encrypting pt. Then we have for the standard deviation of the component-
wise noise

σn(ct(1))i = σn(ct)i

σn(ct(2))i =
(√

q−2
ℓ σ2

(n(ct)[0])i
+

1

12
,

√
q−2
ℓ σ2

(n(ct)[1])i
+

1

12

)
.

In particular, if ||σ(n(ct)[i])j)||∞ ≤
qℓ
2 , then σ(n(ct(2))[i])j) ≈

√
1
12 , for i ∈ {0, 1}.

We have dropped the index of the standard deviation, since all the coefficients
can be assumed to be independently and identically distributed.

Remark 2. Rescaling is called to make up for the exponential growth of the
scaling factor ∆. Therefore, ideally the rescaling of ∆2 should be done by a
factor ∆−1 instead of q−1

ℓ . However, because we can only divide the coefficients
by a factor of the modulus, which is Qℓ in the RNS-CKKS, the updated scaling
factor is not ∆2/∆ = ∆ but ∆2/qℓ. However, by keeping track of the exact
scaling factor and ensuring that additions are done between ciphertexts of the
same scaling factor, we can avoid the introduction of any new error. Additionally,
it is possible to write any circuit such that the scaling factor always eventually
falls back to ∆ by appropriately scaling its inputs.

We proceed by giving the noise estimates for fresh public-key ciphertexts and
plaintexts.

Lemma 7 (Fresh Encryption). Let m be a message with scaling factor ∆, and let
pt ∈ RQℓ

be the encoding of m. Let ctpk be a public-key RNS-CKKS ciphertext,
and let ctsk be a secret key RNS-CKKS ciphertext, both encrypting pt using
the respective Encrypt() function. Let σ0 be the standard deviation of the error
distribution.

Then we have for the coefficient standard deviation of component-wise noise

σn(pt) =

√
1

12
σn(ctpk) =

(√
1

6
,

√
1

12

)
σn(ctsk) =

(√
σ2
0 , 0

)
.

Proof. For reasons of space, we present a sketch of the proof. The full proof can
be found in Appendix B.

– The noise in the plaintext stems from the rounding after encoding. The
rounding noise can be modelled as a continous uniform random variable
over the interval

[
− 1

2 ,
1
2

)
. Thus it has standard deviation 1

12 .

15

– A public-key ciphertext is created as follows: first, an encryption of 0 is cre-
ated with respect to a ciphertext modulus QP. Here, there are two sources
of randomness: the randomness from the encryption, and the randomness of
the public key. Then, we apply a scaling by P−1 and a rounding operation.
This introduces a rounding noise. Since the encryption and public-key noise
are small, the scaling and rounding by P−1 operation makes them negligible
compared to the rounding noise. Finally, the plaintext is added. The final
noise of a fresh encryption therefore consists of the plaintext and the round-
ing noise in the first component, and only the rounding noise in the second
component.

– A secret-key ciphertext is created by simply drawing a
$← RQL

and e ← χ,
and computing (as+e, a). Thus, the noise of a secret-key ciphertext consists
of the encryption randomness in the first component, and is zero in the
second.

⊓⊔

3.3 Noise Estimates for Additions and Tensor Products

We next give the noise estimates for additions, additions by constants and mes-
sage vectors, as well as for tensor products, and multiplications by constants
and message vectors. The difference between constants and message vectors lies
in the shape of their respective encoded plaintext: encoded constants output
monomials while encoded vectors output full polynomials. In what follows we
will refer to encoded message vectors simply as plaintexts.

Lemma 8 (Addition by Plaintext). Let {ct(2), Qℓ0 , ∆0)} =
AddPlain({ct(0), Qℓ0 , ∆0}, {pt + n(pt), Qℓ0 , ∆0}) be the result of a plaintext-
ciphertext addition. Then we have for the standard deviation of the component-
wise noise of ct(2), and for the standard deviation of a plaintext-plaintext
addition

σn(pt(0)+pt(1))) =
√

σ2
n(pt(0))

+ σ2
n(pt(1))

σn(ct(2)) =
(√

σ2
n(ct(0))[0]

+ σ2
n(pt), σn(ct(0))[1]

)
.

Proof. Deferred to Appendix B ⊓⊔

Lemma 9 (Addition by Constant). Let const ∈ Cn be a constant. Let
{ct(2), Qℓ0 , ∆0} = AddConst({ct(0), Qℓ0 , ∆0}, const) the result of a constant-
ciphertext addition. Then we have for the standard deviation of the component-
wise noise

σn(ct(2))i=0,N/2
=

(√
σ2
n(ct(0))i=0,N/2[0]

+
1

12
, σn(ct(0))i=0,N/2[1]

)
σn(ct(2))i̸=0,N/2

=
(
σn(ct(0))i̸=0,N/2[0]

, σn(ct(0))i̸=0,N/2[1]

)
.

16

Proof. Deferred to Appendix B. ⊓⊔

Lemma 10 (Addition by Ciphertext). Let {ct(2),min(Qℓ0 , Qℓ1),
max(∆0, ∆1)} = Add({ct(0), Qℓ0 , ∆0}, {ct(1), Qℓ1 , ∆1}) be the result of a
ciphertext-ciphertext addition. Then we have for the standard deviation of the
component-wise noise

σn(ct(2)) =

(√(
max(∆0, ∆1)

∆0

)2

σ2
n(ct(0))[0]

+

(
max(∆0, ∆1)

∆1

)2

σ2
n(ct(1))[0]

,√(
max(∆0, ∆1)

∆0

)2

σ2
n(ct(0))[1]

+

(
max(∆0, ∆1)

∆1

)2

σ2
n(ct(1))[1]

)
.

Proof. The two ciphertexts ct(0) and ct(1) do not necessarily have the same scale
∆. Therefore, the first step is to align their scales. This is done by multiplying

ct(0) with max(∆0,∆1)
∆0

, and ct(1) by max∆0,∆1

∆1
respectively. We assume that this

fraction returns an integer, thus we do not need to round after the multiplication,
and therefore do not get a rounding error. Then the lemma follows quickly: the
component-wise noise that is already present in the ciphertexts gets multiplied
by the scaling factor and then added. The statement of the lemma follows. ⊓⊔

Lemma 11 (Multiplication by Plaintext). Let pt× = (pt(0) +

n(pt(0)))(pt(1) + n(pt(1)) be the plaintext product, and {ct(2), Qℓ0 , ∆0qℓ0} =
MultPlain({ct(0), Qℓ0 , ∆0}, {pt + n(pt), Q, qℓ0})). Then we have for the
coefficient standard deviation of the component-wise noise

σn(pt×) =

√
N
(
σ2
n(pt(0))

σ2
pt(1)

+ σ2
n(pt(1))

σ2
pt(0)

+ σ2
n(pt(0))

σ2
n(pt(1))

)
σn(ct(2)) =

(√
Nσ2

n(ct(1))[0]

(
σ2
pt + σ2

n(pt)

)
,

√
Nσ2

n(ct(1))[1]

(
σ2
pt + σ2

n(pt)

))
.

Proof. Deferred to Appendix B. ⊓⊔

Lemma 12 (Multiplication by constant). Let const = a+bi ∈ Cn be a constant.
Let {ct(2), Qℓ0 , ∆0qℓ0} = MultConst({ct(0), Qℓ0 , ∆0}, const, qℓ0). Then we have
for the coefficient standard deviation

σn(ct(2)) =

(√
σ2
n(ct(0))[0]

(
(a2 + b2)qℓ0 +

1

6

)
,

√
σ2
n(ct(0))[1]

(
(a2 + b2)qℓ0 +

1

6

))
.

Proof. Deferred to Appendix B. ⊓⊔

17

Lemma 13 (Tensor Product). Assume ct(0) ̸= ct(1). Let
{ct(2),min(Qℓ0 , Qℓ1), ∆0∆1} = Tensor({ct(0), Qℓ0 , ∆0}, {ct(1), Qℓ1 , ∆1}),
and let {ct(3), Qℓ0 , ∆

2
0} = Tensor({ct(0), Qℓ0 , ∆0}, {ct(0), Qℓ0 , ∆0}), the result

of a squaring. Then we have for the coefficient standard deviation of the
component-wise noise

σn(ct(2))

=

(√
N
(
σ2
pt(0)

σ2
n(ct(1))[0]

+ σ2
pt(1)

σ2
n(ct(0))[0]

+ σ2
n(ct(0))[0]

σ2
n(ct(1))[0]

)
,√

N
(
σ2
n(ct(0))[1]

(
σ2
pt(1)

+ σ2
n(ct(1))[1]

)
+ σ2

n(ct(1))[1]

(
σ2
pt(0)

+ σ2
n(ct(0))[1]

))
,

√
Nσn(ct(0))[1]σn(ct(1))[1]

)
.

σ2
n(ct(3))

=

(√
2N
(
2σ2

n(ct(0))[0]
σ2
pt(0)

+ σ4
n(ct(0))[0]

)
,

√
4N
(
σ2
n(ct(0))[1]

(
σ2
pt(0)

+ σ2
n(ct(0))[0]

))
,

√
2Nσ2

n(ct(0))[1]

)
.

Proof. For reasons of space, we present a sketch of the proof. The full proof can
be found in Appendix B.

The tensor product is calculated as ct⊗ = (ct0[0]ct1[0], ct0[1]ct1[0] +
ct0[0]ct1[1], ct0[1]ct1[1]). The noise of ctb[0], b ∈ {0, 1}, consists of the ci-
phertext noise (rounding noise, encryption randomness, key randomness), and
the plaintext noise. The noise in the second component ctb[1] consists in only
the ciphertext noise. Thus, the noise in the first component of the tensor product
is a product of those noise terms n(ct⊗)[0] = (n(ct0)[0] + n(pt0))(n(ct1)[0] +
n(pt1)) = n(ct0)[0]n(ct1)[0]+n(ct0)[0]n(pt1)+n(pt0)n(ct1)[0]+n(pt0)n(pt1).
The noise components n(ct⊗)[1] and n(ct⊗)[2] can be calculated similarly. The
standard deviation of the noise components can be obtained by repeatedly ap-
plying Lemma 1 and 7. ⊓⊔

3.4 Noise Estimates for Key Switching, Relinearization, Rotation, and
Conjugation

We now proceed to give a proof for the noise estimates after key switching. Our
noise estimates are based on the optimised version of the evaluation keys as
introduced by [5] and given in Table 4.

18

Lemma 14 (Key-Switch).
Let ct′ be a ciphertext and ct = ct′+KeySwitch(ct′[i], s) for some secret s.

Then we have for the component-wise noise of ct

n(ct) = n(ct′) +

n(ct′[i])s+ P−1

β−1∑
j=0

[ct′[i]]qγjn(evk[0])

+ τ (0), τ (1)

 ,

and for the coefficient standard deviation of n(ct)

σn(ct) =


√√√√√

σ2
n(ct′[0]) +Nσ2

n(ct′[i])σ
2
s +

N
β−1∑
j=0

q2γj
σ2
0

12P 2
+

1

12
,

√
σ2
n(ct′[1]) +

1

12

 .

To shorten notation later we will denote

nks−add(ct[i], s) =

n(ct[i])s+ P−1

β−1∑
j=0

[ct[i]]qγin(evk[0])

+ τ (0), τ (1)

 ,

and

σks−add(ct[i], s) =


√√√√√

Nσ2
n(ct)[i]σ

2
s +

N
β−1∑
i=0

q2γi
σ2
0

12P 2
+

1

12
,

√
1

12

 ,

the component-wise noise and the coefficient standard deviation of the
component-wise noise added to the first component of a ciphertext while key
switching.

Proof. For reasons of space, we present a sketch of the proof. The full proof can
be found in Appendix B.

During key switching, the (three-element) ciphertext is first scaled to a mod-
ulus QP . The third component is decomposed and multiplied with the relevant
evaluation key. The result is scaled by P−1, rounded and added to the first cipher-
text component. The second ciphertext component is simply scaled and rounded.
Therefore, the noise in the first component consists of the scaled and rounded
sum and product from the key-switching procedure. Additionally, we have the
rounding noise from the scaling operation, as well as the previous noise from
the first ciphertext component. In the second component, we simply have the
rounding noise. The standard deviations can be obtained by repeatedly apply-
ing Lemma 1, and by modelling the decomposition of the ciphertext as discrete
uniform random variables over RQi

. ⊓⊔

19

Lemma 15 (Relinearization). Let {ct, Qℓ, ∆} be a ciphertext resulting
from Tensor. Note that ct = (ct[0], ct[1], ct[2]). Let {ct, Qℓ, ∆} =
Relin({ct, Qℓ, ∆0}) = (ct[0], ct[1]) + KeySwitch(ct[2], s2).

σn(Relin(ct)) =

√(
σ2
n(ct[0]), σ

2
n(ct[1])

)
+ nks−add(ct[2], s2).

Proof. The proof can be trivially derived from the proof of Lemma 14. ⊓⊔

We base our noise estimates for the rotation on an improved version of the
rotation algorithm as proposed in Algorithm 4 in [5], where the rotation keys
for a rotation by k slots are given as evks→Φk−1 (s). The algorithm is stated in
Appendix D.

Lemma 16 (Rotation). Let {ct(0), Qℓ0 , ∆0} be a ciphertext encrypting
pt(0) with respect to a secret key sk = (1, s). Let {ct, Qℓ0 , ∆0} =
Rotate({ct(0), Qℓ0 , ∆0}, k) be a ciphertext encrypting Φk(mct) with respect to
Φk(sk) = (1, Φk−1(s)). Then we have for the coefficient standard deviation of the
component-wise noise

σrot(ct) =
√
σ2
n(ct) + σ2

ks−add(ct[1],Φk−1 (s))
.

Proof. Since Φ is a permutation that induces a sign change at most, the proof
can be trivially derived from the proof of Lemma 14. ⊓⊔

Lemma 17 (Conjugation). Let ct(0) be a ciphertext encrypting pt(0), which is
an encoding of m0 and let ct = Conjugation(ct(0)) be the ciphertext encrypting
pt, encoding m0. Then we have for the coefficient standard deviation of the
component-wise noise

σconj(ct) =
√
σ2
n(ct) + σ2

ks−add(ct[1],Φ−1(s)) .

Proof. Since Φ is a permutation that induces a sign change at most, the proof
can be trivially derived from the proof of Lemma 14. ⊓⊔

4 Estimator

We implement a functional noise estimator whose goals are twofold: (i) to val-
idate that our theoretical noise estimations of Section 3 are correct and that
they hold for a wide range of large depth circuits with high accuracy and (ii) to
experimentally, and independently of the theoretical analysis, find the minimum
amount of information that is necessary to accurately track the noise.

As a result and unlike previous noise estimations approaches, our estimator
does not track the variance of the message and noise through a single variable.
Although such an approach works in the average case for basic operations, it
breaks down in practice when we start to consider structured plaintexts or start

20

to compose basic operations. Instead, and similarly to how noise estimate are
derived in Section 3, we experimentally concluded that for an estimator to be
accurate, it needs to track each and every coefficient of the message and the noise
components. The estimator therefore not only models how the noise evolves dur-
ing homomorphic operations, but also what the expected plaintext result would
be. This enables users to verify the correctness and behavior of an encrypted
circuit, without having to perform computations in the encrypted domain.

4.1 Internal Workings

The estimator models its homomorphic operations, and how they are performed,
on the implementation provided by the Lattigo library [1]. It supports all the
elementary homomorphic operations, as well as some of the advanced ones,
such as linear transformations, homomorphic DFTs, polynomial evaluation and
bootstrapping.

Unlike previous approaches, which operate on messages characterized by their
distribution, our estimator requires the user to provide concrete messages. The
estimator then adds the expected encoding and encryption noise and operates
on the message as it would be done under encryption. Then, it updates the val-
ues throughout the user-defined circuit. The message and noise are stored in the
Canonical embedding for two reasons: (i) arithmetic can be carried out as point-
wise arithmetic over complex numbers and (ii) we do not need to evaluate DFTs
when multiplying elements. This approach enables all linear noise propagation
to be automatically and efficiently carried out, without requiring approxima-
tions (e.g. addition or tensoring). The noise approximation only starts to be
introduced when non-linear operations are called, such as the rescaling or key-
switching to ensure that they remain efficient. During these operations, only the
part that would modify the plaintext is exact, the rest, for example how the
noise is expected to evolve, is approximated. We perform these approximations
by sampling fresh noise according to the derivations of Section 3 and performing
an approximate mapping to the Canonical embedding by scaling it by 1/

√
N

(which avoids having to call a DFT).

4.2 Performance

The current implementation of our estimator should be viewed as a proof of con-
cept validating our approach, and not as a final product. It does not benefit from
an optimized implementation and in its current state it uses arbitrary precision
complex arithmetic to ensure that all computations are accurate, making it on
par with the time necessary to run the computation in the encrypted domain. We
however believe that an optimized and clever implementation could significantly
improve its efficiency:

– Most operations in the estimator are Hadamard products or additions

21

– The most time consuming operation under encryption, the key-switching, is
replaced in the estimator by a noise sampling

– Only ∆2 of precision is required, thus arbitrary precision complex arithmetic
is unnecessary since in the vast majority of applications ∆ ranges from 220

to 250. Thus replacing the arbitrary precision complex arithmetic by an im-
plementation based on the bivariate polynomial representation proposed by
Georgieva et al. [4] with the recently released spqlios-arithmetic back end6

should provide greatly improved performance.

Regardless, running the computation with the estimator requires a much lower
memory than running the computation in the encrypted domain since no evalu-
ation keys are needed and computations do not require to be carried out modulo
a large prime.

4.3 Experiments

We perform several experiments to assess the precision of our estimator. These
experiments are described in Paragraphs I to VIII below and their results are
summarized in Table 1. For each experiment, we report AVG and STG, the aver-
age and standard deviation of the precision across all slots respectively, for the
estimator (Est) and encrypted values (Enc). The precision is computed as the
negative base-2 logarithm of the L2-norm of the error in the canonical embed-
ding, i.e. − log2(

√
ee) (this enables to have a single statistic for both the real and

imaginary values). It can be interpreted as the number of matching bits after
the decimal. All experiments are carried out in a ring degree of N = 216. To
further validate our estimator, we conduct each experiment with varying scaling
factors of 245 and 255, and a varying secret-key Hamming-weight: 2N/3 and 192.
We should expect an increase of ≈ 10 bits of precision when switching from the
scaling factor 245 to the scaling factor 255, as well as an increase in precision
of log2(

√
2N/3) − log2(

√
192) ≈ 3.9 bits when switching from the secret with

Hamming-weight 2N/3 to the secret with Hamming-weight 192. All statistics
were computed from data gathered over 128 runs (i.e. 215 · 27 = 222 slots).

I. High Degree Chebyshev Power In this experiment we evaluate T4096(ct), i.e.
the 212-th Chebyshev power of the first kind, on a ciphertext encrypting a vector
of 215 values uniformly distributed in the interval [−1, 1]. The total circuit depth
is 12. The results of this experiment can be found in Set I of Table 1.

II. High Degree Chebyshev Approximation of the Sigmoid In this experiment
we evaluate a Chebyshev approximation of 1/(e−x +1) in the interval [−32, 32],
on a ciphertext encrypting a vector of 215 values uniformly distributed in the
interval [−31, 31]. The total circuit depth is 8. The results of this experiment
can be found in Set II of Table 1.

6 https://github.com/tfhe/spqlios-arithmetic

22

https://github.com/tfhe/spqlios-arithmetic

Set log(Q) log(P) h L log(∆)
AVG STD

Est Enc Est Enc

I

595 183
2N/3

12

45
20.19 20.19 2.48 2.48

192 24.07 24.06 2.46 2.45

720 183
2N/3

55
30.19 30.19 2.48 2.48

192 34.07 34.07 2.45 2.45

II

460 183
2N/3

8

45
30.89 30.88 2.01 2.01

192 34.79 34.79 1.99 1.99

500 183
2N/3

55
40.88 40.88 2.01 2.02

192 44.78 44.78 1.99 1.99

III

505 183
2N/3

10

45
29.54 29.55 2.08 2.08

192 33.43 33.44 2.05 2.06

550 183
2N/3

55
39.54 39.54 2.08 2.08

192 43.44 43.43 2.06 2.05

IV

685 305
2N/3

14

45
30.89 30.89 2.01 2.01

192 35.08 35.08 1.88 1.88

830 305
2N/3

55
41.19 41.19 1.90 1.90

192 45.09 45.09 1.88 1.89

V

240 183
2N/3

4

45
31.20 31.18 1.80 1.79

192 35.09 35.08 1.79 1.78

280 183
2N/3

55
41.19 41.18 1.80 1.79

192 45.09 45.08 1.79 1.78

VI

240 183
2N/3

4

45
25.96 25.92 1.62 1.60

192 28.15 28.15 1.60 1.60

280 183
2N/3

55
35.96 35.93 1.62 1.60

192 38.15 38.15 1.60 1.60

VII 588 244
2N/3

9 45
32.32 32.32 1.86 1.86

192 36.09 36.06 2.01 1.99

VIII 920 244
2N/3

16 45
23.68 23.67 1.61 1.60

192 27.04 27.41 1.60 1.60

Table 1: Results for the experiments described in Section 4.3. All experiments
use ring degree N = 216, log(Q) is the base two logarithm of the ciphertext
modulus, log(P) the base two logarithm of the auxiliary prime (used during the
key-switching), h the Hamming weight of the secret, L the multiplicative depth
enabled by the parameters and log(∆) the base two logarithm of the scaling
factor. AVG and STD are the average and standard deviation of the bit-precision
predicted by the estimator (Est) and empirically verified (Enc).

III. Goldschmidt Division In this experiment we compute an approximate in-
verse using the Goldschmidt division algorithm with 10 iterations on a ciphertext
encrypting a vector of 215 values uniformly distributed in the interval [−0.1, 1.9].

23

The total circuit depth is 10. The results of this experiment can be found in Set
III of Table 1.

IV. Binary Values Cleaning In this experiment we clean binary values having
an error of ±0.2 by 7 sequential evaluations of the polynomial −2x3 + 3x2 on a
ciphertext encrypting a vector of 215 values uniformly distributed in the interval
[−0.2, 0.2]∪ [0.8, 1.2], according to the method proposed in [21]. The total circuit
depth is 14. Note that 7 sequential evaluations is more that what would be
needed to reach the maximum expected precision, however this enables to test
how our estimator behaves with iterated circuits that converge toward discrete
values. The results of this experiment can be found in Set IV of Table 1.

V. CoeffsToSlots In this experiment we homomorphically evaluate the map
τ−1(·) on a ciphertext encrypting a vector of 215 values uniformly distributed in
the interval [−1, 1] ∪ [−i, i]. This circuit can be regarded as evaluating a com-
plex inverse DFT of dimension 215. The inverse DFT matrix is factorized into
4 sparse complex matrices (depth 4 circuit) and is configured to return the real
and imaginary part into distinct ciphertexts (similarly to what is done in the
bootstrapping). The results of this experiment can be found in Set V of Table 1.

VI. SlotsToCoeffs In this experiment we homomorphically evaluate the map τ (·)

on a ciphertext encrypting a vector of 215 values uniformly distributed in the
interval [−1, 1] ∪ [−i, i]. This circuit can be regarded as evaluating a complex
DFT of dimension 215. The DFT matrix is factorized into 4 sparse complex
matrices (depth 4 circuit). The results of this experiment can be found in Set VI
of Table 1.

VII. EvalMod In this experiment we homomorphically evaluate the reduction
modulo Q/∆ on a ciphertext encrypting a vector of 215 values uniformly dis-
tributed in the interval [−1, 1], on which multiples k ·Q/∆ for k ∈ [−K+1,K−1]
and K = 16 were added. The homomorphic modular reduction is done by evalu-
ating (Q/(2π∆)) sin(2πx∆/Q), which approximated with a degree 30 Chebyshev
interpolant of the phase-shifted scaled cosine function, followed by 3 evaluations
of the double angle formula, for a total depth of 9 (one being used for the change
of basis to the Chebyshev polynomial). This circuit was not run with a scaling
factor of 255 for two reasons: (i) because it requires the initial message ratio
Q0/|m| to be at least 28 and the maximum prime size allowed by Lattigo is 61
and (ii) the scaling factor actually used during the circuit is 260 regardless of the
initial scaling factor. The results of this experiment can be found in Set VII of
Table 1.

VIII. Bootstrapping In this experiment we evaluate the bootstrapping circuit
on a ciphertext encrypting a vector of 215 values uniformly distributed in the

24

interval [−1, 1] ∪ [−i, i]. We used the default bootstrapping parameters of the
Lattigo library which notably uses an ephemeral secret of h̃ = 32 to provide
a failure probability of 2−138.7 and an expected average precision of 23.9-bits
for h = N/2 (since we use h = 2N/3 and compute the precision as the L2-
norm, we expect a precision slightly lower) and 27.4 for h = 192 [6]. The depth
of the default bootstrapping circuit is 15. Note that estimating the noise of
the bootstrapping requires more than composing the homomorphic step of the
bootstrapping (CoeffsToSlots, EvalMod, SlotsToCoeffs), as it also requires to
carefully match each low-level parameterization that the Lattigo library would
perform and that would have a direct or indirect impact on the final result but
also sample the polynomial I(X) according to the expected distribution. This
circuit was not run with a scaling factor of 255 for three reasons: (i) because
it requires the initial message ratio Q0/|m| to be at least 28 and the maximum
prime size allowed by Lattigo is 61, (ii) the scaling factor actually used during the
EvalMod step is 260 regardless of the initial scaling factor and (iii) it would not
affect the final precision since the error added during the bootstrapping circuit
is independent of the initial scaling factor. The results of this experiment can be
found in Set VIII of Table 1.

5 An Exact Version of the CKKS Scheme

In this section we prove the following theorem.

Theorem 1 (Advantage against q-IND-CPA-D of (δ, r)-exact CKKS). Let E be
the (δ, r)-exact CKKS scheme, and let A be an adversary against the IND-CPA
security of CKKS. Let n be the number of plaintext slots, and δ be the probability
that the noise bound holds. Let q be the maximum number of calls allowed to the
decryption oracle. Then we get for the advantage of an adversary B against the
q-IND-CPA-D security of (δ, r)-exact CKKS.

Advq−IND−CPA−D
(δ,r)-exact CKKS(B) ≤ 1− δq + AdvIND−CPA

CKKS (A).

We build on top of the results of [18], and prove that the bounds we de-
veloped in this work can be used to achieve a provably q-IND-CPA-D secure
(δ, r)-exact CKKS CKKS scheme. We give a formal definition of r-exact CKKS
and (δ, r)-exact CKKS.

Definition 7 (r-exact CKKS). Let E = (KeyGen, Enc, Decexact, Eval) be a fully
homomorphic encryption scheme, where KeyGen, Enc, and Eval are the same as
the algorithms with the same name in CKKS. The parameters of E are the same
as for CKKS. Let Dec′r be a decryption function, such that the following holds.

Let m be any message, b = log2(m), r some parameter, and m =
∑b−1

i=0 mi2
i be

its binary representation. If

Dec′r(ct, sk) = m′ =

b∑
i=r

mi2
i

25

for any ciphertext ct encrypting m, then we call E an r-exact CKKS scheme.

We encounter a further problem when defining an exact CKKS scheme: even
a small error can potentially change all the bits in the message, and rounding
can therefore lead to a different value than the one originally intended. This
requires the additional definition of a correctable circuit. We slightly modify the
definition in [18].

Definition 8 (Condition for ∆′-Correctability). Let pt ∈ Z[i]N be a plaintext,
and let ∆′ be some correction factor. Then we say that pt is ∆′-correctable, if
1
∆′ pt ∈ Z[i]N . We say that a circuit g : (Z[i]N)ℓ → Z[i]N is ∆′-correctable, if
g(pt1, . . . , ptℓ) is ∆′-correctable for all choices of inputs pti.

The reason for this definition is as follows: Let pt + e be a decryption result,
where pt is ∆′-correctable. For simplicity, we only consider one plaintext slot.
We cannot know the precise value of e, but we can bound its magnitude. By
choosing the correction factor as in the definition above, we can guarantee that∣∣∣∣ 1

∆′ e
∣∣∣∣
∞ ≤

1
2 . Since pt is ∆′-correctable, we know that 1

∆′ pt ∈ Z[i]. Therefore,
the rounding of 1

∆′ (pt+ e) only incurs a rounding error from the rounding of e,
but not from the rounding of pt. We thus know that 1

∆′ (pt + e) is not further
away from 1

∆′ pt than 1
2 in absolute value, and can therefore precisely predict

the outcome of the rounding. Now, suppose pt would not be ∆′-correctable,
that is 1

∆′ pt /∈ Z[i]. Then the distance between 1
∆′ (pt + e) and

⌈
1
∆′ pt

⌋
can

be larger than 1
2 . Therefore, the rounding of 1

∆′ (pt + e) can lead to a different
result than the rounding of 1

∆′ pt, which is not the case if pt is ∆′-correctable.
Since whether this happens or not is dependent on the plaintext, an attacker
will always be able to choose a plaintext such that the rounding of 1

∆′ (pt + e)
produces a different result than the rounding of 1

∆′ pt, no matter which rounding
function is used. Therefore, if pt is not ∆′-correctable, an attacker will always
be able to distinguish between an r-exact CKKS scheme, and an approximate
CKKS scheme that removes the noise through rounding the least significant bits
off.

Thus, without this condition we cannot achieve a r-exact CKKS scheme. We
will therefore continue by limiting the admissible circuits for r-exact CKKS to
the ∆′-correctable circuits.

We define (δ, r)-exact CKKS as follows. We then prove a bound on the ad-
vantage of a q-IND-CPA-D attacker against (δ, r)-exact CKKS.

Definition 9 ((δ, r)-exact CKKS). Let δ be probability of a noise bound B =

α
√
2n
√
σ2
n(ct)[0] +Nσ2

n(ct)[1]σ
2
s holding, for α ∈ R. Let r = ⌈log(B)⌉+1, and let

∆′ = 2r. Let E = (KeyGen, Enc, Decδ,r, Eval) be a fully homomorphic encryption
scheme, parameterized by the same parameters as CKKS, and the additional
parameters δ,B, r, and ∆′, where the algorithms KeyGen, Enc, Eval are the same
as in CKKS and Decδ,r is defined as follows

Decδ,r(ct, sk) : return ∆′
⌈

1

∆′ Decode([⟨ct, sk⟩]Q)
⌋
,

26

We define the set of admissible circuits of (δ, r)-exact CKKS to be the subset of
admissible circuits in CKKS that are ∆′-correctable.

We now prove Theorem 1.

Proof. We define the games G0,G1,G2 and G3 as in Figure 3. In the games, S is
the state that is kept in the q-IND-CPA-D game. We do not strictly need it in
the IND-CPA game, but it makes the hops between the games more evident. The
superscripts over the adversary declare to which oracles the adversary has access
in which games. q̃ keeps track of the current number of calls to the decryption
oracle. Then, we notice the following.

– Game G0 is the IND-CPA game for CKKS. We are additionally keeping a
state S, but this does not influence the advantage. We therefore have

AdvIND−CPA
CKKS (B) = AdvG0(B).

– The decryption oracle Dec′ in Game G1 is perfectly simulatable by any ad-
versary B against Game G0, since it does not require any information about
the secret key, except for its variance which is assumed to be publicly known.
Equally, the evaluation oracle is perfectly simulatable by any adversary B
against game G0, since the evaluation key is known to the adversary, and the
circuit is assumed to be public. Since the encryption oracle is the same as in
Game G0 we have

AdvG0(B) = AdvG1(B).
– Game G3 is the q-IND-CPA-D game for (δ, r)-exact CKKS. We therefore
have

Advq−IND−CPA−D
(δ,r)-exact CKKS(A) = AdvG3(A).

We next take a look at the relation between Games G1 and G2. Let m be a

message and m =
∑r+⌈log(∆′)⌉−1

i=0 mi2
i its binary representation for some ∆′.

Since the set of admissible circuits in (δ, r)-exact CKKS is limited to circuits
that return correctable messages, we have 1

∆′m ∈ Z[i]. This implies in particular
that mi = 0 for 0 ≤ i < r.

Thus, by definition of ∆′-correctability, the decryption oracle in Game G1
returns the exact same result as Decr(ct, sk, ∆

′) for a given ciphertext ct en-
crypting m. Since Decr(·, sk) returns the same result no matter whether the
if-clause in Decsk is triggered or not, Dec′ in Game G1 and Decsk in Game G2
return the same results. The games are therefore equivalent, and we have

AdvG1(B) = AdvG2(B).

Lastly, we look at the relation between Games G2 and G3. The games are iden-
tical except for the decryption oracle. Assume that the bounds hold, that is
we have ||Decode([⟨S[i].ct, sk⟩ − S[i].mb]Q)||∞ < B. Then, we have by the ∆′-
correctability of m, the message encrypted by ct, for the output of Decδ,r(ct, sk)
the following

27

Game G0,G1,G2,G3
b← {0, 1}
(sk, pk, evk)← KeyGen(λ)

S ← ∅
i← 0

q̃ ← 0

b′ ← AEncpk(λ, pk, evk)

b′ ← AEncpk,Evalevk,Dec′(λ, pk, evk)

b′ ← AEncpk,Evalevk,Decexact,sk(λ, pk, evk)

b′ ← AEncpk,Evalevk,DecE,sk(λ, pk, evk)

return b′ = b

Encbpk(m0,m1)

ct← Enc(mb, pk)

σ2
n(ct) ←

(
1

6
,
1

12

)
S[i]← (m0,m1, ct, σ

2
n(ct))

i← i+ 1

return ct

Evalbevk(g, J = (j1, . . . , jℓ))

ct← Eval(g, S[j1].ct, . . . , S[jℓ].ct, evk)

σ2
n(ct) ← g(S[j1].σ

2
n(ct), . . . , S.[jℓ].σ

2
n(ct))

gm0 ← g(S[j1].m0, . . . , S[jℓ].m0)

gm1 ← g(S[j1].m1, . . . , S[jℓ].m1)

S[i]← (gm0 , gm1 , ct, σ
2
n(ct))

i← i+ 1

return ct

Dec′b(i)

If S[i].m0 = S[i].m1 ∧ q̃ ≤ q :

tabularB ← α
√
2n

√
σ2
n(ct)[0] +Nσ2

n(ct)[1]σ
2
s

tabularq̃ ← q̃ + 1

tabular∆′ ← 2⌈log(B)⌉+1

tabularreturn ∆′
⌈

1

∆′ S[i].mb

⌋
Else:

tabularreturn ⊥
Decbexact,sk(i)

If S[i].m0 = S[i].m1 and q̃ ≤ q :

tabularB ← α
√
2n

√
σ2
S[i].n(ct)[0] +Nσ2

S[i].n(ct)[1]σ
2
s

tabular∆′ ← 2⌈logB⌉+1

tabularq̃ ← q̃ + 1

tabularIf ||Decode([⟨S[i].ct, sk⟩]Q)− S[i].mb||∞ ≤ B :

tabulartabularreturn Decr(S[i].ct, sk)

tabularElse

tabulartabularBAD← true

tabulartabularreturn Decr(S[i].ct, sk)

Else:

tabularreturn ⊥

DecbE,sk(i)

If S[i].m0 = S[i].m1 and q̃ ≤ q :

tabularB ← α
√
2n

√
σ2
S[i].n(ct)[0] +Nσ2

S[i].n(ct)[1]σ
2
s

tabular∆′ ← 2⌈logB⌉+1

tabularq̃ ← q̃ + 1

tabularIf ||Decode([⟨S[i].ct, sk⟩]Q)− S[i].mb||∞ ≤ B :

tabulartabularreturn Decδ,r(S[i].ct, sk)

tabularElse

tabulartabularBAD← true

tabulartabularreturn Decδ,r(S[i].ct, sk)

Else:

tabularreturn ⊥
Fig. 3: Games and Oracles for the proof of Theorem 1.

Decδ,r(ct, sk) = ∆′
⌈

1

∆′ Decode([⟨S[i].ct, sk⟩]Q)
⌋
= ∆′

⌈
1

∆′ (S[i].mb + e)

⌋

28

= ∆′
⌈

1

∆′S[i].mb

⌋
= mr2

r + . . .+mr+⌈∆′⌉2
r+⌈∆′⌉

= Decr(ct, sk),

where the third step holds true since 1
∆′ ||e||∞ ≤ B

∆′ ≤ 2⌈log(B)⌉

2⌈log(B)⌉+1 = 1
2 , and

thus e does not change the value to which 1
∆′m is rounded, since due to its

∆′-correctability, m does not induce any additional rounding error. Therefore,
if the bounds hold, the games G2 and G3 are identical. Should the bounds not
hold, Decr(ct, sk) and Decδ,r(ct, sk) are no longer guaranteed to return the same
results. The Games G2 and G3 are therefore identical-until-bad-games. Thus we
have by the Difference Lemma 5 for their advantage

Adv(G2,G3) ≤ Pr(BADG2) = Pr(BADG3).

The probability of the flag BAD being set to true is exactly the probability
of the bounds failing. The bounds hold for each call to the decryption oracle

with probability δ = erf
(

α√
2

)2n
. They therefore hold during all q calls to the

decryption oracle with probability δq, and thus fail at least once with probability

Pr(BADG2
) = Pr(BADG3

) = 1− δq.

Piecing all of the above together, we obtain

Advq−IND−CPA−D
(δ,r)-exact CKKS(A)

=

∣∣∣∣Pr (q− IND− CPA− DA ⇒ 1|q− IND− CPA− DA ̸⇒⊥
)
− 1

2

∣∣∣∣
=

∣∣∣∣Pr (GA3 ⇒ 1|GA3 ̸⇒⊥
)
− 1

2

∣∣∣∣
=

∣∣∣∣Pr (GA3 ⇒ 1|GA3 ̸⇒⊥
)
+ Pr

(
GA2 ⇒ 1|GA2 ̸⇒⊥

)
− Pr

(
GA2 ⇒ 1|GA2 ̸⇒⊥

)
− 1

2

∣∣∣∣
≤
∣∣Pr (GA3 ⇒ 1|GA3 ̸⇒⊥

)
− Pr

(
GA2 ⇒ 1|GA2 ̸⇒⊥

)∣∣+ ∣∣∣∣Pr (GA2 ⇒ 1|GA2 ̸⇒⊥
)
− 1

2

∣∣∣∣
= Adv(GA2 ,GA3) + AdvG2(A) ≤ Pr(BADG3

) + AdvG2(A)

= 1− erf

(
α√
2

)2nq

+ AdvG2(A) = 1− erf

(
α√
2

)2nq

+ AdvG1(A)

= 1− δq + AdvG0(A) = 1− δq + AdvIND−CPA
CKKS (B),

which concludes the proof of the theorem. ⊓⊔

6 Discussion

In this paper we presented a construction for (δ, r)-exact CKKS and proved it
is IND-CPA-D secure, as long as the class of admissible circuits is reduced to

29

the class of correctable circuits. Our (δ, r)-exact CKKS construction is similar to
“plain” CKKS7. In terms of efficiency, the only difference in the parametrization
between (δ, r)-exact CKKS and plain CKKS lies in the chosen plaintext scale ∆.
Choosing the plaintext scale requires bounds on the noise, which determine how
many bits of the plaintext will be polluted by the noise. To obtain a result that
has a targeted precision∆target, the scale∆ needs to be chosen as∆ = ∆target+B,
where B is a bound on the noise. The tighter the noise bounds, the smaller the
∆, the smaller the overall parameters. Tighter (average-case) bounds come with
larger failure probabilities. A larger failure probability of the noise bounds is
acceptable in plain CKKS, since it affects correctness but not security. If the
noise bound is calculated using average-case analysis, then it is of the form

B = α
√
σ2
n(ct)[0] +Nσ2

n(ct)[1]σ
2
s , where α determines the tightness of the bound,

as well as the failure probability δ. For example a value of α = 10 leads to a failure

probability of 1− δ = 1−erf
(

α√
2

)N
= 2−68 for N = 8192. For correctness, this

failure probability may be acceptable.

For q-IND-CPA-D security, however, we need it to be negligible. Thus, we

need to choose a value of α ≥ 14, since we then have 1−erf
(

α√
2

)N
≤ 2−128 for

N ≤ 65536. We give an example of how this affects parameters: take Experiment
I. (High Degree Chebyshev Power) of Section 4.3, with the circuit C(X) =
T4096(x), the 4096-th power of a Chebyshev polynomial of the first kind, with
input values uniformly distributed in the interval [−1, 1]. This circuit is evaluated
with 12 successive evaluations of y = 2x2 − 1. With log(N) = 16, h = 2N/3 and
log(∆) = 45 we achieve a (predicted and experimental) precision of 20.19 bits
with a standard deviation of the error (with respect to the expected message) of
2.48 bits. Thus, if we wanted to achieve λ = 128 q-IND-CPA-D security while
keeping the original 20.19 bits of precision and with q = 215, we would have to
increase the scale from log(∆) = 45 to log(∆⋆) = ⌈45 + log(15) + 2.48⌉ = 52,
where we took α = 15 (see Table 2).

7 In this Section, we use the term “plain CKKS” to refer to the unmodified version of
CKKS [14, 13].

30

λ q n α λ q n α

80

1

4096 12

128

1

4096 14

8192 12 8192 14

16384 12 16384 14

32768 12 32768 14

65536 12 65536 14

25

4096 12

25

4096 14

8192 12 8192 15

16384 12 16384 15

32768 12 32768 15

65536 12 65536 15

215

4096 12

215

4096 15

8192 13 8192 15

16384 13 16384 15

32768 13 32768 15

65536 13 65536 15

Table 2: Parameter sets leading to an advantage smaller than 2−λ.

Our construction only works if we limit the admissible circuits to correctable
ones. Determining the class of correctable circuits exhaustively is outside of the
scope of this paper: this is an open question with application to other lattice-
based constructions, and we think it is of independent interest. However, we give
an example to illustrate the impact of this restriction. A circuit is correctable
if the result of its evaluation on plaintexts is in 1

∆Z[i]. This should always be
possible to achieve through scaling, since ∆ can be calculated offline by applying
our noise bounds. Take the example of the circuit g(x1, . . . , xn) = x1 + . . .+ xn.
Then g is correctable if, for all inputs xi, we have that g(x1, . . . , xn) is in

1
∆Z[i].

I.e., if g(x1, . . . , xn) = x1 + . . . + xn = ∆(a + bi), where a, b are integers. This
can be achieved by scaling the inputs xi by an additional scaling factor ∆′ and
truncating them to an integer. We conjecture that similar methods for turning
any circuit into a correctable circuit exist through scaling, but this needs further
investigation.

Acknowledgements

The authors would like to thank Tjerand Silde for feedback on earlier versions
of this manuscript.

References

[1] Lattigo v5. Online: https://github.com/tuneinsight/lattigo, November 2023.
EPFL-LDS, Tune Insight SA.

31

https://github.com/tuneinsight/lattigo

[2] Andreea Alexandru, Ahmad Al Badawi, Daniele Micciancio, and Yuriy Polyakov.
Application-aware approximate homomorphic encryption: Configuring fhe for
practical use. Cryptology ePrint Archive, Paper 2024/203, 2024. https://eprint.
iacr.org/2024/203.

[3] Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs and the
security of triple encryption. In Advances in Cryptology - Eurocrypt 2004, 2004.

[4] Mariya Georgieva Belorgey, Sergiu Carpov, Nicolas Gama, Sandra Guasch, and
Dimitar Jetchev. Revisiting key decomposition techniques for fhe: Simpler, faster
and more generic. Cryptology ePrint Archive, Paper 2023/771, 2023. https:

//eprint.iacr.org/2023/771.
[5] Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza, and Jean-

Pierre Hubaux. Efficient bootstrapping for approximate homomorphic encryption
with non-sparse keys. In Anne Canteaut and François-Xavier Standaert, edi-
tors, Advances in Cryptology – EUROCRYPT 2021, pages 587–617, Cham, 2021.
Springer International Publishing.

[6] Jean-Philippe Bossuat, Juan Troncoso-Pastoriza, and Jean-Pierre Hubaux. Boot-
strapping for approximate homomorphic encryption with negligible failure-
probability by using sparse-secret encapsulation. In Giuseppe Ateniese and
Daniele Venturi, editors, Applied Cryptography and Network Security, pages 521–
541, Cham, 2022. Springer International Publishing.

[7] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully Ho-
momorphic Encryption without Bootstrapping. In Proceedings of the 3rd Inno-
vations in Theoretical Computer Science Conference, ITCS ’12, New York, NY,
USA, 2012. Association for Computing Machinery.

[8] Marina Checri, Renaud Sirdey, Aymen Boudguiga, Jean-Paul Bultel, and Antoine
Choffrut. On the practical CPAD security of “exact” and threshold FHE schemes
and libraries. Cryptology ePrint Archive, Paper 2024/116, 2024. https://eprint.
iacr.org/2024/116.

[9] Hao Chen, Ilaria Chillotti, and Yongsoo Song. Improved bootstrapping for ap-
proximate homomorphic encryption. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2019, Cham, 2019. Springer Interna-
tional Publishing.

[10] Jung Hee Cheon, Hyeongmin Choe, Alain Passelègue, Damien Stehlé, and Elias
Suvanto. Attacks against the IND-CPA-D security of exact FHE schemes. Cryp-
tology ePrint Archive, Paper 2024/127, 2024. https://eprint.iacr.org/2024/

127.
[11] Jung Hee Cheon, Kyoohyung Han, and Minki Hhan. Faster homomorphic discrete

fourier transforms and improved FHE bootstrapping. Cryptology ePrint Archive,
Paper 2018/1073, 2018. https://eprint.iacr.org/2018/1073.

[12] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
Bootstrapping for approximate homomorphic encryption. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018,
Cham, 2018. Springer International Publishing.

[13] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
A full RNS variant of approximate homomorphic encryption. In Carlos Cid and
Michael J. Jacobson Jr., editors, Selected Areas in Cryptography – SAC 2018,
Cham, 2019. Springer International Publishing.

[14] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic
encryption for arithmetic of approximate numbers. In Tsuyoshi Takagi and
Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017, Cham,
2017. Springer International Publishing.

32

https://eprint.iacr.org/2024/203
https://eprint.iacr.org/2024/203
https://eprint.iacr.org/2023/771
https://eprint.iacr.org/2023/771
https://eprint.iacr.org/2024/116
https://eprint.iacr.org/2024/116
https://eprint.iacr.org/2024/127
https://eprint.iacr.org/2024/127
https://eprint.iacr.org/2018/1073

[15] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE:
Fast fully homomorphic encryption over the torus. J. Cryptol., 33(1), 2020.

[16] Ana Costache and Nigel P Smart. Which ring based somewhat homomorphic
encryption scheme is best? In Topics in Cryptology-CT-RSA 2016: The Cryptog-
raphers’ Track at the RSA Conference 2016, San Francisco, CA, USA, February
29-March 4, 2016, Proceedings, pages 325–340. Springer, 2016.

[17] Anamaria Costache, Benjamin R. Curtis, Erin Hales, Sean Murphy, Tabitha
Ogilvie, and Rachel Player. On the precision loss in approximate homomorphic
encryption. Cryptology ePrint Archive, Paper 2022/162, 2022.

[18] Anamaria Costache, Benjamin R. Curtis, Erin Hales, Sean Murphy, Tabitha
Ogilvie, and Rachel Player. On the precision loss in approximate homomorphic
encryption. To appear in the post-proceedings of Selected Areas of Cryptography
(SAC), 2023.

[19] Anamaria Costache, Kim Laine, and Rachel Player. Evaluating the effectiveness
of heuristic worst-case noise analysis in FHE. In Liqun Chen, Ninghui Li, Kaitai
Liang, and Steve Schneider, editors, Computer Security – ESORICS 2020, pages
546–565, Cham, 2020. Springer International Publishing.

[20] Anamaria Costache, Lea Nürnberger, and Rachel Player. Optimisations and trade-
offs for HElib. In Mike Rosulek, editor, Topics in Cryptology – CT-RSA 2023,
pages 29–53, Cham, 2023. Springer International Publishing.

[21] N. Drucker, G. Moshkowich, T. Pelleg, and H. Shaul. BLEACH: Cleaning errors
in discrete computations. Journal of Cryptology, 2024.

[22] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic en-
cryption in less than a second. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

[23] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. Cryptology ePrint Archive, Paper 2012/144, 2012. https://eprint.
iacr.org/2012/144.

[24] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In CRYPTO. Springer, 2013.

[25] Qian Guo, Denis Nabokov, Elias Suvanto, and Thomas Johansson. Key recovery
attacks on approximate homomorphic encryption with non-worst-case noise flood-
ing countermeasures, 2024. To be pulished at 33rd USENIX Security Symposium.

[26] Kyoohyung Han and Dohyeong Ki. Better bootstrapping for approximate homo-
morphic encryption. In Topics in Cryptology – CT-RSA 2020, 2020.

[27] Ilia Iliashenko. Optimisations of fully homomorphic encryption. 2019.
[28] Charanjit S. Jutla and Nathan Manohar. Sine series approximation of the mod

function for bootstrapping of approximate he. Springer-Verlag, 2022.
[29] Seonghak Kim, Minji Park, Jaehyung Kim, Taekyung Kim, and Chohong Min.

EvalRound algorithm in CKKS bootstrapping. Springer-Verlag, 2022.
[30] Joon-Woo Lee, Eunsang Lee, Yongwoo Lee, Young-Sik Kim, and Jong-Seon No.

High-precision bootstrapping of RNS-CKKS homomorphic encryption using op-
timal minimax polynomial approximation and inverse sine function. In Anne
Canteaut and François-Xavier Standaert, editors, Advances in Cryptology – EU-
ROCRYPT 2021, Cham, 2021. Springer International Publishing.

[31] Yongwoo Lee, Joon-Woo Lee, Young-Sik Kim, Yongjune Kim, Jong-Seon No,
and HyungChul Kang. High-precision bootstrapping for approximate homomor-
phic encryption by error variance minimization. In Orr Dunkelman and Stefan

33

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144

Dziembowski, editors, Advances in Cryptology – EUROCRYPT 2022, Cham, 2022.
Springer International Publishing.

[32] Yongwoo Lee, Joonwoo Lee, Young-Sik Kim, and Jong-Seon No. Near-optimal
polynomial for modulus reduction using l2-norm for approximate homomorphic
encryption. Cryptology ePrint Archive, Paper 2020/488, 2020. https://eprint.
iacr.org/2020/488.

[33] Baiyu Li and Daniele Micciancio. On the security of homomorphic encryption on
approximate numbers. In Anne Canteaut and François-Xavier Standaert, editors,
Advances in Cryptology – EUROCRYPT 2021, Cham, 2021. Springer Interna-
tional Publishing.

[34] Baiyu Li, Daniele Micciancio, Mark Schultz, and Jessica Sorrell. Securing approx-
imate homomorphic encryption using differential privacy. In Yevgeniy Dodis and
Thomas Shrimpton, editors, Advances in Cryptology – CRYPTO 2022, Cham,
2022. Springer Nature Switzerland.

[35] Sean Murphy and Rachel Player. A central limit framework for Ring-LWE de-
cryption. Cryptology ePrint Archive, Paper 2019/452, 2019. https://eprint.

iacr.org/2019/452.
[36] Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-

raphy. J. ACM, 56(6), sep 2009.

A The RNS-CKKS scheme

We present the RNS version [13] of the CKKS [14] scheme. We present it similarly
to [5]. We do not give the algorithms for Rotations, Conjugations and Matrix-
ciphertext products here, since we base this paper on more efficient versions of
those algorithms as they have been given in [5]. We therefore present them in
Section 3.

A.1 RNS-CKKS Bootstrapping

We give here a high level overview for CKKS bootstrapping ([9],[12],[26],[31])
and its RNS variant ([5],[31]).

The goal in CKKS is to transform a ciphertext at the lowest level to a ci-
phertext at a higher level. Before bootstrapping, CKKS ciphertexts are assumed
to have a low noise and are transformed into ciphertexts with respect to a bigger
ciphertext modulus, but with potentially more noise.

The steps of an (RNS-)CKKS bootstrapping can be summarized as follows.
Let ct be an RNS-CKKS ciphertext at the lowest level ℓ = 0, encrypting a plain-
text pt. Note that the encoding format of pt is irrelevant to the bootstrapping
circuit as the aim of the bootstrapping is to increase the level of the ciphertext
without changing the underlying plaintext.

1. Mod Raise In a first step the ciphertext is raised to a higher modulus QL,
through applying the map Rq0 → Rq0 × Rq1 × . . . × RqL . This map does
not apply any scaling to the ciphertext coefficients, but acts as an implicit
decryption. Since this decryption is done modulo QL and not Q0 = q0,
the new ciphertext ct′ will now encrypt pt + Iq0 where I is a small norm

34

https://eprint.iacr.org/2020/488
https://eprint.iacr.org/2020/488
https://eprint.iacr.org/2019/452
https://eprint.iacr.org/2019/452

SecKeyGen(λ) Sample s← S, where S is a distribution overRPQL producing elements
of small norm, where L is the multiplicative depth. Return sk := (1, s).

PubKeyGen(λ, s) Sample a
$← RPQL , e ← χ, where χ is some distribution over RPQL

with standard deviation σ0. Return pk := ([as+ e]PQL , [a]PQL).

EvalKeyGen(λ, s, s′) Let w be an integer decomposition base with β elements, designed

as follows wi = QL
qγi

[(
QL
qγi

)−1
]
qγi

, where qγi =
min(γ(i+1)−1,L)∏

j=γi

qj , for

0 ≤ i < β :=
⌈

L+1
γ

⌉
, and γ a positive integer. Let P be a modulus and

sample ai
$← RPQL , and ei ← χ for i ∈ {0, . . . , β − 1}. Compute(

evk
0
qγi ,s→s′ , evk

1
qγi ,s→s′

)
=

[−ais
′ + sP

QL

qγi

[(
QL

qγi

)−1
]
qγi

+ ei]PQL , [ai]PQL

∀i.
evk is needed for switching a ciphertext from being with respect to a
secret key component s to being with respect to a secret key component
s′. Return evk.

CtS(m ∈ Cn,∆) (En-
code a message m
from coefficients to
slots)

Let n be such that n|N . Compute m′ = DFT−1
n (m). Compute m′

0 =⌈
∆ 1

2
(m′ +m′)

⌋
,m′

1 =
⌈
∆−i

2
(m′ −m′)

⌋
. Return pt = m′

0||m′
1 ∈ R.

StC(pt ∈ R,∆) (De-
code a plaintext pt

from Slots to Coeffi-
cients)

Let pt = m′
0||m′

1. Return m = DFTn(∆
−1(m′

0 + i ·m′
1)).

Enc(pt, sk, ℓ) (Secret
key encryption)

Sample a
$←RQℓ , and e← χ. Return ct = ([−as+ e+ pt]Qℓ , a).

Enc(pt, pk, ℓ) (Public
key encryption)

Sample u← S, e(0), e(1) ← χ. Compute d = (pk[0] · u+ e(0), pk[1] · u+
e(1)) ∈ RPQℓ and return ct = (pt, 0) +

⌈
P−1 · d

⌋
∈ RQℓ .

Dec(ct, sk) Return pt = ct(sk) =
∑

i ct[i]sk
i.

Fig. 4: Overview over the RNS-CKKS scheme 1

35

KeySwitch({poly, Qℓ,∆},
s, s′, evks′→s)

Decompose poly base w into p, such that poly = ⟨p,w⟩ and
return

⌈
P−1⟨p, evks′→s

⌋
⟩ Add({ct(0), Qℓ0 ,∆0}, {ct(1), Qℓ1 ,∆1}).

Scale ct(0), ct(1) to max(∆0,∆1), and return {ct(0) +
ct(1),min(Qℓ0,Qℓ1

,max(∆0,∆1))}.

AddConst({ct, Qℓ,∆},
const = a+ bi)

Return {ct′ = ([ct[0] +
⌈
∆(a+ bX

n
2)

⌋
]Qℓ , ct[1]), Qℓ,∆}.

AddPlain({ct, Qℓ,∆},
{pt, Qℓ′ ,∆

′})
Scale ct and ptto max(∆,∆′) and return {ct′ = ([ct[0] +
pt]Qℓ , ct[1]),min(Qℓ, Qℓ′ ,max(∆,∆′))}.

MultConst({ct, Qℓ,∆},
const = a+ bi,∆′)

Return {⌈∆′a⌋ ct+ ⌈∆′b⌋ ctX
n
2 , Qℓ,∆∆′}.

MultPlain({ct, Qℓ,∆},
{pt, Qℓ′ ,∆

′})
Return {ct′ = ([ct[0]pt]Qi , [ct[1]pt]Qi ,min(Qℓ, Qℓ′),∆∆′}).

Tensor({ct(0), Qℓ0 ,∆0},
{ct(1), Qℓ1 ,∆1})

Compute ct′ = (ct(0)[0]ct(1)[0], ct(0)[1]ct(1)[0] +
ct(0)[0]ct(1)[1], ct(0)[1]ct(1)[1]). Return ct′.

Relinearization({ct =
(ct[0], ct[1], ct[2]), Qℓ,∆})

ct′ = (ct′[0], ct′[1]) + KeySwitch(ct[2], evks2→s).

Rescale({ct, Qℓ,∆}) Return {(
⌈
q−1
ℓ ct[0]

⌋
,
⌈
q−1
ℓ ct[1]

⌋
), Qℓ−1,

∆
qℓ
}.

DropLevel({ct, Qℓ,∆}, k)Return {ct, Qℓ−k,∆}.

Fig. 5: Overview over the RNS-CKKS scheme 2

36

polynomial representing the q0 overflows that were not removed. It will be
the purpose of the subsequent 3 steps to evaluate a reduction modulo q0 on
ct′.

2. Coefficients to Slots The new message pt + Iq0 is in the coefficient format,
thus does not support slot-wise arithmetic. The message pt+Iq0 is therefore
homomorphically transformed from the coefficients to the slots format to
allow for slot-wise evaluation of the modulus reduction. The coefficients to
slots algorithm is the same as the one used to encode a message from the
message space into the plaintext space (up to a bit-reversal permutation),
only that it is now evaluated homomorphically. This step returns DFT−1(pt+
Iq0).

3. Evaluate the Sine function The reduction modulo q0 is not a polynomial func-
tion and cannot be easily evaluated homomorphically. It is approximated by
a scaled sine function, which in turn is approximated by its polynomial inter-
polation. This step homomorphically evaluates the polynomial interpolation
of the scaled sine function on ct′, to obtain a ciphertext ct′′ encrypting only
DFT−1(pt).

4. Slots to coefficients The ciphertext ct′′ is transformed back into the coeffi-
cients format by homomorphically applying the decoding procedure, return-
ing an encryption of pt but at level ℓ > 0.

The steps 2,3, and 4 all add to the noise growth in the ciphertext and consume
levels, which is why the resulting bootstrapped ciphertext ct′′ may have slightly
higher noise than ct, and will be with respect to a level L − k where k is the
depth of the bootstrapping circuit. The precise growth of the noise is the subject
of this work.

B Proofs of the Lemmas in Sections 2 and 3

Lemma 2 (Squaring of Random Polynomials). Let f ∈ R be a polynomial of
even degree N, whose coefficients are drawn identically and independently from
a symmetric distribution D with standard deviation σf and expectation 0. Then
we have for the standard deviation of (f2)i, i ∈ {0, . . . , N − 1}{

σ(f2)i = σ2
f

√
2N + 1 , for i even

σ(f2)i = σ2
f

√
2N , for i odd.

Proof. Since f ∈ R = Z[X]/(XN + 1), following a result given by [27], we can
write the coefficients of f2 as follows

(f2)i =

i∑
k=0

fkfi−k −
N−1∑
k=i+1

fkfN−k+i.

Now, for i = 0 and n even we get

(f2)0 = (f0)
2 − f1fN−1 − f2fN−2 − . . .− fN−2f2 − fN−1f1.

37

We can write the above as

(f2)0 = (f0)
2 − (f1fN−1 + . . .+ fN−1f1)

= (f0)
2 −

N
2 −1∑
k=1

2fkfN−k + (fN
2
)2.

For i ̸= 0 and i even, we get

(f2)i =f0fi + f1fi−1 + . . .+ fi−1f1 + fif0 − fi+1fN−1 − fi+2fN−2

− . . .− fNfi+1

=

i
2∑

k=0

2fkfi−k +

N
2∑

k=i+1

2fkfN−k+i.

Similarly, for i odd, we get

(f2)i =

⌊ i
2 ⌋∑

k=0

2fkfi−k −
N
2∑

k=i+1

2fkfN+i−k.

In the above form, all the terms are again independent. This is since the coef-
ficients are independently drawn, and there are no cross terms. We can therefore
calculate the coefficient variance (f2)i from the coefficient variance σ2

f of f as
follows.

Each of the terms fifj for i, j ∈ {0, . . . , N−1} has variance σ4
f . For i = 0, we

have N
2 terms of the form 2fifj with variance 4σ2

f , and one term which is not a

product of two terms and therefore has variance σ2
f . Therefore, for the variance

of (f2)0 we get

σ2
(f2)0

=
4N

2
σ4
f + σ4

f = (2N + 1)σ4
f .

When i is even and i ̸= 0, we have the same variances of the terms as above.
Before we rewrote the sum, there were N +1 additive terms. We have pulled the
term (fN

2
)2 out. Since each of the remaining terms appeared twice, we end up

with N
2 independent terms, each of which has variance 4σ4

f and the term (fN
2
)2,

which has variance σ4
f . Therefore, we get

σ2
(f2)i

= (2N + 1)σ4
f .

Lastly, for i odd we have N
2 with variance 4σ2

f and therefore get

38

σ2
(f2)i

= 2Nσ4
f .

Thus we get for the standard deviation for fi for i even σ(f2)i =
√
2N + 1σ2

f

and for i odd we get σ(f2)i =
√
2Nσ2

f . ⊓⊔

Lemma 6 (Rescaling). sLet {ct, Qℓ, ∆} be a ciphertext encrypting a plaintext
pt and let ct(1) = DropLevel({ct, Qℓ, ∆}, k) and ct(2) = Rescale({ct, Qℓ, ∆}),
both encrypting pt. Then we have for the standard deviation of the component-
wise noise

σn(ct(1)) = σn(ct)

σn(ct(2))i =
(√

q−2
ℓ σ2

(n(ct)[0]) +
1

12
,

√
q−2
ℓ σ2

(n(ct)[1]) +
1

12

)
.

In particular, if ||σ(n(ct)[i]))||∞ ≤ qℓ
2 , then σ(n(ct(2))[i])) ≈

√
1
12 , for i ∈ {0, 1}.

Proof. The noise estimate for ct(1) follows trivially from the definition of
DropLevel as given in Table 5. The ciphertext ct(1) is simply considered with re-
spect to a different ciphertext modulus, without being scaled. The noise therefore
remains the same. ct(2) is calculated as follows.

ct(2) =
⌈
q−1
ℓ ct

⌋
= q−1

ℓ ct+ (τ (0), τ (1)),

where the rounding errors τ (i) are polynomials with coefficients in
(
1
2 ,

1
2

]
. Since

their coefficients can be assumed to be continuously uniformly distributed in

that interval, they have coefficient standard deviation στ(i) =
√

1
12 .

If ct has some noise n(ct) it is merely scaled by q−1
ℓ , and some rounding noise

(τ (0), τ (1)) is added. Thus we have for the component-wise noise after rescaling
n(ct(2)) = q−1

ℓ n(ct) + (τ (0), τ (1)). It is then easy to calculate the coefficient
standard deviations of n(ct(2)) as

σn(ct(2)) =

(√
q−2
ℓ σ2

(n(ct)[0]) +
1

12
,

√
q−2
ℓ σ2

(n(ct)[1]) +
1

12

)
.

⊓⊔

Lemma 7 (Fresh Encryption) Let m be a message with scaling factor ∆,
and let pt ∈ RQℓ

be the encoding of m. Let ctpk be a public-key RNS-CKKS
ciphertext, and let ctsk be a secret key RNS-CKKS ciphertext, both encrypting
pt using the respective Encrypt() function. Let σ0 be the standard deviation
of the error distribution. Then we have for the coefficient standard deviation of
component-wise noise

σn(pt) =

√
1

12
σn(ctpk) =

(√
1

6
,

√
1

12

)
σn(ctsk) =

(√
σ2
0 , 0

)
.

39

Proof. The noise in the plaintext stems from the rounding operation after scaling
the plaintext. The rounding operation rounds each coefficient to the nearest
integer. The noise in each component is therefore the difference between the raw
value and the rounded value. The difference is a polynomial τ (j), with coefficients
that are continuously uniformly distributed in

[
1
2 ,

1
2

)
.

A public-key ciphertext is created as follows: first, a randomized encryption
of 0 is sampled with respect to a special modulus QP using pk. Here, Q is the
ciphertext modulus corresponding to the level of the ciphertext is encrypted,
and P is an auxiliary modulus. The ciphertext is then rescaled by P , and the
output is a ciphertext with respect to the ciphertext modulus Q. Finally, the
plaintext is added to the first component. Thus we have for the structure of a
freshly encrypted ciphertext

ct =
(⌈

P−1[pk[0]u+ e(0)]QP

⌋
+ pt+ n(pt),

⌈
P−1[pk[1]u+ e(1)]QP

⌋)
=
(⌈

P−1[−asu+ epku+ e(0)]QP

⌋
+ pt+ n(pt),

⌈
P−1[au+ e(1)]QP

⌋)
= ([−bs+ τ (0) + pt+ n(pt)]Q, [b+ τ (1)]Q).

All the terms that are multiplied by the mask b = P−1au will be cancelled out
during decryption, therefore the component-wise noise consists of

n(ct) = (τ (0) + n(pt), τ (1)),

as long as ||(epku+ e(0), e(1))||∞ ≤ P/2, which is the case with high probability
because epk, e

(0), e(1) are drawn from the error distribution and therefore have
standard deviations σ0 and u is drawn from the secret key distribution with

Hamming weight h and therefore has standard deviation
√

h
N .

By Lemma 1 and the additivity of variances we therefore have

σn(ct) =
(
σ(n(ct)[0]), σ(n(ct)[1])

)
=

(√
1
12 + σ2

n(pt),
√

1
12

)
=

(√
1
6 ,
√

1
12

)
.

The secret key ciphertext is created even more easily as ctsk = (−as+ e, a),

where a
$← RQ, and e ← χ is drawn from the error distribution with standard

deviation σ0. Since the terms multiplied by a cancel out, e is the only error term
left. The result follows. ⊓⊔

Lemma 8 (Addition by Plaintext). Let {ct(2), Qℓ2 , ∆2)} =
AddPlain({ct(0), Qℓ0 , ∆0}, {pt + n(pt), Q,∆}) be the result of a plaintext-
ciphertext addition. Then we have for the standard deviation of the component-
wise noise of ct(2), and for the standard deviation of a plaintext-plaintext
addition

σn(pt(0)+pt(1))) =
√

σ2
n(pt(0))

+ σ2
n(pt(1))

σn(ct(2)) =

(√
σ2
n(ct(0))[0]

+ σ2
n(pt), σn(ct(0))[1]

)
.

40

Proof. Adding two plaintexts results in their noise being added. The result fol-
lows.

When adding a plaintext to a ciphertext, we can set the plaintext’s scale
to be the same as the ciphertext’s, which is known. Therefore, we can consider
the plaintext and the ciphertext to be at the same scale, and there is no need
for scale-adaptation. A ciphertext ct(0) consists in the first component of the
plaintext pt(0), some mask a(00) that gets cancelled out during decryption and
the noise n(ct(0))[0]. Similarly, the second component also consists of some mask
a(01) and the noise n(ct(0))[1]. Adding those two gives

ct(2) = (pt(0) + pt+ (a(00) + n(ct(0))[0]) + n(pt), (a(01) + n(ct(0))[1])).

Since the masks are cancelled out during decryption, and we do not consider the
plaintexts as part of the component-wise noise, from the above it can easily be
seen that the component-wise noise of ct(2) is given by

n(ct(2)) =(n(ct(0))[0] + n(pt), n(ct(0))[1]).

Thus we obtain for the coefficient standard deviation of n(ct(2))

σn(ct(2)) = (
√
σ2
n(ct(0))[0]

+ σ2
n(pt), σn(ct(0))[1]).

⊓⊔

Lemma 9 (Addition by Constant). Let const ∈ Cn be a constant. Let
{ct(2), Qℓ2 , ∆2} = AddConst({ct(0), Qℓ0 , ∆0}, const) the result of a constant-
ciphertext addition. Then we have for the standard deviation of the component-
wise noise

σn(ct(2))
i=0, N

2

=

(√
σ2
n(ct(0))

i=0, N
2
[0]

+
1

12
, σn(ct(0))

i=0, N
2
[1]

)

Proof. ct(2) is calculated by directly adding a constant. A constant is a mono-
mial, and therefore its real part only gets added to the first coefficient encoding
the real parts (i = 0), and its imaginary part gets added to the first coefficient en-
coding the imaginary part (i = N

2). The constant gets scaled and rounded, there-
fore the rounding noise gets added along with the constant. Since the constant
only gets added to the first ciphertext component, the noise of ct(3)[0] consists
of the noise of ct(0)[0] and the rounding noise, whereas n(ct(3)[1]) = n(ct(0)[1]).

⊓⊔

Lemma 11 (Multiplication by Plaintext). Let pt× = (pt(0) +

n(pt(0)))(pt(1) + n(pt(1)) be the plaintext product, and {ct(2), Qℓ2 , ∆2} =

41

MultPlain({ct(0), Qℓ0 , ∆0}, {pt + n(pt), Q,∆})). Then we have for the coef-
ficient standard deviation of the component-wise noise

σn(pt×) =
√
N(σ2

n(pt(0))
σ2
pt(1)

+ σ2
n(pt(1))

σ2
pt(0)

+ σ2
n(pt(0))

σ2
n(pt(1))

)

σn(ct(2)) =

(√
Nσ2

n(ct(1))[0]
(σ2

pt×
+ σ2

n(pt×)),√
Nσ2

n(ct(1))i[1]
(σ2

pt×
+ σ2

n(pt×))

)
.

Proof. If we calculate a plaintext-plaintext product we can easily read of the
noise of the resulting plaintext.

pt× + n(pt×) = (pt(0) + n(pt(0))(pt(1) + n(pt(1)))

= pt(0)pt(1) + n(pt(0))pt(1) + n(pt(1))pt(0) + n(pt(0))n(pt(1)),

and therefore we have that n(pt×) = n(pt(0))pt(1) + n(pt(1))pt(0) +

n(pt(0))n(pt(1)).
Thus, we have for the coefficient standard deviation of n(pt×)

σn(pt×)i = σ(n(pt(0))pt(1))+(n(pt(1))pt(0))+(n(pt(0))n(pt(1)))

=
√
σ2
(n(pt(0))pt(1))

+ σ2
(n(pt(1))pt(0))

+ σ2
(n(pt(0))n(pt(1))

)

=
√
N(σ2

n(pt(0))
σ2
pt(1)

+ σ2
n(pt(1))

σ2
pt(0)

+ σ2
n(pt(0))

σ2
n(pt(1))

).

The plaintext-ciphertext product is computed as {ct(2), Qℓ2 , ∆2} =
{(ct(0)[0](pt + n(pt)), ct(0)[1](pt + n(pt))),min(Qℓ0 , Q), ∆0∆}. Therefore, the
ciphertext noise gets multiplied by both the plaintext and the plaintext noise,
and both become a part of the resulting noise. That is, we have

n(ct(2))[i] = n(ct(0)[i]pt)

= n(ct(0))[i]pt+ n(ct(0))[i]n(pt),

i ∈ {0, 1}, and then the result follows by Lemma 1. ⊓⊔

Lemma 12 (Multiplication by Constant). Let const = a+ bi ∈ Cn be a con-
stant. Let {ct(2), Qℓ0 , ∆0qℓ0} = MultConst({ct(0), Qℓ0 , ∆0}, const, qℓ0). Then
we have for the coefficient standard deviation

σn(ct(2)) =

(√
σ2
n(ct(0))[0]

(
(a2 + b2)qℓ0 +

1

6

)
,

√
σ2
n(ct(0))[1]

(
(a2 + b2)qℓ0 +

1

6

))
.

42

Proof. The product with a complex constant is computed as follows. The cipher-
text ct(0) gets scaled by both aqℓ0 and bqℓ0 separately. The product

⌈
bqℓ0ct

(0)
⌋
is

rotated by N
2 coefficients through multiplying it with X

N
2 . Thus

⌈
bqℓ0ct

(0)
⌋
X

N
2

now encrypts bIm(ci) in the first N
2 coefficients and bRe(ci) in the second half.

However, this rotation does not introduce any extra noise, since it merely per-
mutes the coefficients. The component-wise noise is therefore scaled by (a+b)qℓ0
and two times the rounding noise gets added. We therefore obtain the following
result

n(ct(2))i=0,N2
[j] = n(ct(0))i=0,N2

[j]aqℓ0 + τ (0) + n(ct(0))i=0,N2
[j]bqℓ0 + τ (1)

n(ct(2))i=0,N2
= n(ct(0))i=0,N2

[j]bqℓ0 + τ (2) + n(ct(0))i=0,N2
[j]aqℓ0 + τ (3),

j ∈ {0, 1} and τ (k) the rounding polynomials. Since we can assume them to have
coefficients continuously uniformly distributed in

(
− 1

2 ,
1
2

]
, they all have standard

deviation 1
12 . Thus we get the claimed results for the standard deviations.

σn(ct(2)) =

(√
σ2
n(ct(0))[0]

(
(a2 + b2)qℓ0 +

1

6

)
,

√
σ2
n(ct(0))[1]

(
(a2 + b2)qℓ0 +

1

6

))
.

⊓⊔

Lemma 13 (Tensor Product). Assume ct(0) ̸= ct(1). Let
{ct(2),min(Qℓ0 , Qℓ1), ∆0∆1} = Tensor({ct(0), Qℓ0 , ∆0}, {ct(1), Qℓ1 , ∆1}),
and let {ct(3), Qℓ0 , ∆

2
0} = Tensor({ct(0), Qℓ0 , ∆0}, {ct(0), Qℓ0 , ∆0}), the result

of a squaring. Then we have for the coefficient standard deviation of the
component-wise noise

σn(ct(2))

=

(√
N
(
σ2
pt(0)

σ2
n(ct(1))[0]

+ σ2
pt(1)

σ2
n(ct(0))[0]

+ σ2
n(ct(0))[0]

σ2
n(ct(1))[0]

)
,√

N
(
σ2
n(ct(0))[1]

(
σ2
pt(1)

+ σ2
n(ct(1))[1]

)
+ σ2

n(ct(1))[1]

(
σ2
pt(0)

+ σ2
n(ct(0))[1]

))
,

√
Nσn(ct(0))[1]σn(ct(1))[1]

)
.

σ2
n(ct(3))

=

(√
2N
(
2σ2

n(ct(0))[0]
σ2
pt(0)

+ σ4
n(ct(0))[0]

)
,

√
4N
(
σ2
n(ct(0))[1]

(
σ2
pt(0)

+ σ2
n(ct(0))[0]

))
,

43

√
2Nσ2

n(ct(0))[1]

)
.

Proof. ct(2) is calculated as (ct(0)[0]ct(1)[0], ct(0)[0]ct(1)[1] +
ct(0)[1]ct(1)[0], ct(0)[1]ct(1)[1]). We denote ct(i) as (pt(i) + a(i0) +
n(ct(i))[0], a(i1) + n(cti)[1]), where a(ij) is some mask that gets cancelled
out during decryption. Since ct(0), ct(1) are not necessarily fresh ciphertexts,
it no longer makes sense to consider the encoding noise n(pt(i)) separately.
Instead, this is a part of the component-wise ciphertext noise n(ct(i)[j]). Thus,
we have

ct(0)[0]ct(1)[0]

= (pt(0) + a(00) + n(ct(0))[0])(pt(1) + a(10) + n(ct(1))[0])

= pt(0)pt(1) + pt(0)a(10) + pt(0)n(ct(1))[0] + a(00)pt(1)

+ a(00)a(10) + a(00)n(ct(1))[0] + n(ct(0))[0]pt(1)

+ n(ct(0))[0]a(10) + n(ct(0))[0]n(ct(1))[0]

= pt× + a(0)× + pt(0)n(ct(1))[0] + pt(1)n(ct(0))[0] + n(ct(0))[0]n(ct(1))[0],

where a(0)× = pt(0)a(10)+a(00)pt(1)+a(00)a(10)+a(00)n(ct(1))[0]+a(10)n(ct(0))
is the collection of all the terms containing the mask, which will therefore be
cancelled out. Therefore, we get for the component-wise noise of n(ct(0)ct(1))[0]

n(ct(0)ct(1))[0] = n(pt×) + pt(0)n(ct(1))[0] + pt(1)n(ct(0))[0] + n(ct(0))[0]n(ct(1))[0].

Calculating the second component of the resulting ciphertext similarly gives

ct(0)[0]ct(1)[1] + ct(0)[1]ct(1)[0]

= (pt(0) + a(00) + n(ct0)[0])(a
(11) + n(ct(1))[1])

+ (a(01) + n(ct(0))[1])(pt(1) + a(10) + n(ct(1))[0])

= pt(0)a(11) + a(00)a(11) + n(ct(0))[0]a(11) + pt(0)n(ct(1))[1] + a(00)n(ct(1))[1]

+ n(ct(0))[0]n(ct(1))[1] + a(01)pt(1) + n(ct(0))[1]pt(1) + a(01)a(10)

+ n(ct(0))[1]a(10) + a(01)n(ct(1))[0] + n(ct(0))[1]n(ct(1))[1]

= a(1)× + pt(0)n(ct(1))[1] + pt(1)n(ct(0))[1] + n(ct(0))[0]n(ct(1))[1]

+ n(ct(0))[1]n(ct(1))[0],

where a(1)× again is the sum of all the terms containing the masks, and there-
fore is cancelled out. Then we get for the component-wise noise of the second
component of the multiplication result

n(ct(0)ct(1))[1] = pt(0)n(ct(1))[1] + pt(1)n(ct(0))[1] + n(ct(0))[1]n(ct(1))[0]

44

+ n(ct(0))[0]n(ct(1))[1].

For the last element in the ciphertext after the tensor product we get

ct(0)[1]ct(1)[1] = (a(01) + n(ct(0))[1])(a(11) + n(ct(1))[1])

= a(01)a(11) + a(10)n(ct(1))[1] + n(ct(0))[1]a(11) + n(ct(0))[1]n(ct(1))[1]

⇒ n(ct(0)ct(1))[2] = n(ct(0))[1]n(ct(1))[1],

where the last line follows from the component-wise noise consisting of all the
terms that do no have the mask a, which will be cancelled out during decryption.

Thus we get for the coefficients variances

σ2
n(ct(0)ct(1))[0] =σ2

(pt(0)n(ct(1))[0]) + σ2
(pt(1)n(ct(0))[0]) + σ2

(n(ct(0))[0]n(ct(1))[0])

=Nσ2
n(ct(1))[0]σ

2
pt(0) +Nσ2

n(ct(0))[0]σ
2
pt(1) +Nσ2

n(ct(0))[0]σ
2
n(ct(1))[0],

σ2
n(ct(0)ct(1))[1] =σ2

(pt(0)n(ct(1))[1]) + σ2
(pt(1)n(ct(0))[1]) + σ2

(n(ct(0))[0]n(ct(1))[1])

+ σ2
(n(ct(0))[1]n(ct(1))[0])

=N(σ2
n(ct(1))[1]σ

2
pt(0) + σ2

n(ct(0))[1]σ
2
pt(1) + σ2

n(ct(0))[0]σ
2
n(ct(1))[1]

+ σ2
n(ct(0))[1]σ

2
n(ct(1))[0]),

σ2
n(ct(0)ct(1))[2] =Nσ2

n(ct(0))[1]σ
2
n(ct(1))[1].

Lastly, for squaring we can calculate the component-wise noise similarly, using
the same way of denoting ct(0). We get

ct(0)[0]ct(0)[0]

= (pt(0))2 + (a(00))2 + (n(ct(0))[0])2 + 2a(00)(pt(0) + n(ct(0))[0]pt(0) + a(00)n(ct(0))[0])

⇒ n(ct(0)ct(0))[0] = n(ct(0))[0]2 + 2n(ct(0))[0]pt(0),

where the last line again follows from the fact that all terms that are a multiple
of a cancelling out during decryption.

2ct(0)[0]ct(0)[1] = 2(pt(0) + a(00) + n(ct(0))[0])(a(01) + n(ct(0))[1])

= 2pt(0)a(10) + 2pt(0)n(ct(0))[1] + 2a(00)a(01)

+ 2a(00)n(ct(0))[1] + 2n(ct(0))[0]a(01) + 2n(ct(0))[0]n(ct(0))[1],

45

⇒ n(ct(0)ct(0))[1] = 2pt(0)n(ct(0))[1] + 2n(ct(0))[0]n(ct(0))[1],

ct(0)[1]ct(0)[1] = (a(01) + n(ct(0))[1])2

= (a(01))2 + 2a(01)n(ct(0))[1] + n(ct(0))[1]2,

⇒ n(ct(0)ct(0))[2] = n(ct(0))[1]2.

Therefore, we get for the coefficient variances

σ2
n(ct(0)ct(0))i[0]

Lemma 2
= 2Nσ4

n(ct(0))i[0]
+ 4Nσ2

n(ct(0))i[0]
σ2

pt
(0)
i

+ 4Nσ2

pt
(0)
i

σ2
n(ct(0)ct(0))i[1]

= 4Nσ2
n(ct(0))i[1]

σ2

pt
(0)
i

+ 4Nσ2
n(ct(0))i[0]

σ2
n(ct(0))i[1]

σ2
n(ct(0)ct(0))i[2]

= 2Nσ4
n(ct(0))i[1]

.

⊓⊔

Lemma 14 (Key-Switch). Let ct′ = (ct′[0], ct′[1]) be a ciphertext with respect
to a secret key (1, s′) and let ct = (ct[0], ct[1]) = KeySwitch(ct′, s′, s) be the
key switched ciphertext now with respect to a secret key (1, s). Then we have for
the component-wise noise of ct

n(ct) = n(ct′) +

(
P−1

β∑
i=0

[ct′[1]]qγin(evk)[0] + τ0, τ1

)
,

and for the coefficient standard deviation of n(ct)

σn(ct)) =


√√√√√

σ2
n(ct′)[0] +

β∑
i=0

q2γi
σ2
0

12P 2
+

1

12
,

√
σ2
n(ct′)[1] +

1

12

 .

Proof. We calculate ct as follows: decompose ct′[1] into dig-

its [ct′[1]]qγi with respect to a basis
(

QL

qγi

)
0≤i≤β

, such that〈
[ct′[1]]qγ0≤i≤β

,

(
QL

qγi

[(
QL

qγi

)−1
]
qγi

)
0≤i≤β

〉
= ct′[1]. Then we calculate

ct[0] = ct′[0] +
⌈
P−1⟨[ct′[1]]qγ0≤i≤β

, evk[0]⟩
⌋

ct[1] =
⌈
P−1⟨[ct′[1]]qγ0≤i≤β

, evk[1]⟩
⌋
.

46

To see which parts of the ciphertext are being cancelled out, it is easier to
calculate the term ct[0] + ct[1]s and to retrieve the component-wise noise from
the result. We get

ct[0] + ct[1]s = ct′[0] +
⌈
P−1⟨[ct′[1]]qγ0≤i≤β

, evk[0]⟩
⌋
+
⌈
P−1⟨[ct′[1]]qγ0≤i≤β

, evk[1]⟩
⌋
s

= ct′[0] + P−1

β∑
i=0

[ct′[1]]qγievk[0][i] + τ0 + P−1

β∑
i=0

[ct′[1]]qγievk[1]s+ τ1s

= ct′[0] + P−1

β∑
i=0

[ct′[1]]qγi

−ais+ s′P
QL

qγi

[(
QL

qγi

)−1
]
qγi

+ ei


PQL

+ P−1

β∑
i=0

[ct′[1]]qγi [ai]PQL
s+ τ0 + τ1s

= ct′[0] + P−1

β∑
i=0

[ct′[1]]qγi

s′QL

qγi

[(
QL

qγi

)−1
]
qγi

+ ei


PQL

+ τ0 + τ1s

= ct′[0] +

 β∑
i=0

[ct′[1]]qγi
QL

qγi

[(
QL

qγi

)−1
]
qγi

+ P−1

β∑
i=0

[ct′[1]]qγi ei


PQL

+ τ0 + τ1s

= ct′[0] + ct′[1]s′ + [P−1

β∑
i=0

[ct′[1]]qγin(evk)[0]]PQL
+ τ0 + τ1s.

From this we can easily see that

n(ct) = n(ct′) +

(
P−1

β∑
i=0

[ct′[1]]qγi ei + τ0, τ1

)
.

Since we can assume the [ct′[1]]qγi to be uniformly randomly distributed in the
interval [qγi

], and since the ei = n(evk)[0] have standard deviation σ0 since they
are drawn from the error distribution χ, we get

σn(ct) =


√√√√σ2

n(ct′)[0] + P−2

β∑
i=0

Nq2γi
σ2
0

12P 2
+

1

12
,

√
σ2
n(ct′)[1] +

1

12

 .

⊓⊔

47

Lemma 15 (Relinearization). Let {ct, Qℓ, ∆} be a ciphertext resulting
from Tensor. Note that ct(0) = (ct[0], ct(0)[1], ct(0)[2]). Let {ct, Qℓ, ∆} =
Relin({ct, Qℓ, ∆0}) = (ct[0], ct[1]) + KeySwitch(ct[2], s2). Then we have for
the coefficient standard deviation of the component-wise noise

σn(Relin(ct))

=


√√√√√

σ2
n(ct[0]) +Nσ2

n(ct[2])σ
2
s2 +

N
β−1∑
i=0

q2γi
σ2
0

12P 2
+

1

12
,

√
σ2
n(ct[1]) +

1

12

 .

Proof. Let
evks2→s = ((evks2→s[0][0], . . . , evks2→s[β − 1][0]),
(evks2→s[0][1], . . . , evks2→s[β − 1][1])) be the evaluation key, where

evks2→s[i][0] =

ais+ s2P
QL

qγi

[(
QL

qγi

)−1
]
qγi

+ ei


PQL

evks2→s[i][0] =

ais+ s2P
QL

qγi

[(
QL

qγi

)−1
]
qγi

+ ei


PQL

evks2→s[i][1] = [−ai]PQL
.

By Algorithm 3 of [5] the ciphertext ct is calculated as

(ct[0], ct[1]) = (ct(0)[0] + ⌈P−1⟨([ct(0)[2]]qγ0 , . . . , [ct
(0)[2]]qγβ−1

),

(evks2→s[0][0], . . . , evks2→s[β − 1][0])⟩⌋,
ct(0)[1] + ⌈P−1⟨([ct(0)[2]]qγ0 , . . . , [ct

(0)[2]]qγβ−1
),

(evks2→s[0][1], . . . , evks2→s[β − 1][1])⟩⌋).

To determine which terms get cancelled out during decryption, and therefore
which terms are part of the component-wise noise, we calculate what the de-
cryption of ct minus pt(0) looks like

ct[0] + ct[1]s− pt(0) = ct(0)[0] +

⌈
P−1

β−1∑
i=0

[ct(0)[2]]qγievks2→s[j][0]

⌋

+ ct(0)[1]s+

⌈
P−1

β−1∑
i=0

[ct(0)[2]]qγievks2→s[i][1]

⌋
− pt(0)

48

= ct(0)[0] + ct(0)[1]s

+

⌈
P−1

β−1∑
i=0

[ct(0)[2]]qγi (evks2→s[i][0] + evks2→s[i][1]s)

⌋
− pt

= ct(0)[0] + ct(0)[1]s

+

⌈
P−1

β−1∑
i=0

[ct(0)[2]]qγi

(
ais+ s2P

QL

qγi

[(
QL

qγi

)]
qγi

+ ei − ais

)⌋
− pt(0)

= ct(0)[0] + ct(0)[1]s

+

⌈
P−1

β−1∑
i=0

[ct(0)[2]]qγi

(
s2P

QL

qγi

[(
QL

qγj

+ ei

)]
qγi

)⌋
− pt(0)

= ct(0)[0] + ct(0)[1]s

+ P−1

β−1∑
i=0

[ct(0)[2]]qγi

(
s2P

QL

qγi

[(
QL

qγi

+ ei

)]
qγi

)
− pt(0)

+ τ (0) + τ (1)s

= ct(0)[0] + ct(0)[1]s+ ct(0)[2]s2 − pt(0)

+ P−1

β−1∑
i=0

[ct(0)[2]]qγi ej + τ (0) + τ (1)s.

Therefore, we have for the component-wise noise

n(ct)[0] = n(ct(0))[0] + n(ct(0))[2]s2 +

⌈
P−1

β−1∑
i=0

[ct(0)[2]]qγi ei

⌋
+ τ (0)

= n(ct(0))[0] + nks−add

n(ct)[1] = n(ct(0))[1] + τ (1).

We can assume the [ct(0)[2]]qγi to be uniformly randomly distributed in Rqγi
.

They therefore have coefficient standard deviation
q2γi
12 . Then by Lemma 1 we

have for the coefficient standard deviation of the component-wise noise.

σn(ct) =


√√√√√

σ2
n(ct(0))[0]

+Nσ2
n(ct(0))

σ2
s2 +

N
β−1∑
i=0

q2γi
σ2
0

12P 2
+

1

12
,

√
σ2
n(ct(0))[1]

+
1

12


=

(√
σ2
n(ct(0))[0]

+ σ2
ks−add(β,P),

√
σ2
n(ct′)[1] +

1

12

)
.

⊓⊔

49

Lemma 16 (Rotations). Let {ct(0), Qℓ0 , ∆0} be a ciphertext encrypt-
ing pt(0) with respect to a secret key sk = (1, s). Let {ct, Qℓ0 , ∆0} =
Rotate({ct(0), Qℓ0 , ∆0}, k) be a ciphertext encrypting Φk(mct) with respect to
Φk(sk) = (1, Φk(s)). Then we have for the coefficient standard deviation of the
component-wise noise

σrot(ct) =

(√
σ2
n(ct[0]) + σ2

ks−add,
√
σn(ct[1]) +

1
12

)
.

Proof. The proof is very similar to the proof of Lemma 14. We have as evaluation
keys evks→Φ−1

k (s) = ((evks→Φ−1
k (s)[0][0], . . . , evks→Φ−1

k (s)[β][0]),

(evks→Φ−1
k (s)[0][1], . . . , evks→Φ−1

k (s)[β][1])), where

evks→Φ−1
k (s)[i][0] =

aiΦ−1
k (s) + sP

QL

qγi

[(
QL

qγi

)−1
]
qγi

+ ei


PQL

evks→Φ−1
k (s)[i][1] = [−ai]PQL

.

By Algorithm 4 in [5] the ciphertext after rotation is then calculated as

ct =(Φk(ct
(0)[0] + ⌈P−1⟨([ct(0)[1]]qγ0 , . . . , [ct

(0)[1]]qγβ),

(evks→Φ−1
k (s)[0][0], . . . , evks→Φ−1

k (s)[β − 1][0])⟩⌋),

ϕk(⌈P−1⟨([ct(0)[1]]qγ0 , . . . , [ct
(0)[1]]qγβ−1

),

(evks→Φ−1
k (s)[0][1], . . . , evks→Φ−1

k (s)[β − 1][1])⟩⌋)).

And therefore,

ct[0] + ct[1]s− Φk(pt
(0)) = Φk(ct

(0)[0] + ⌈P−1⟨([ct(0)[1]]qγ0 , . . . , [ct
(0)[1]]qγβ−1

)

(evks→Φ−1
k (s)[0][0], . . . , evks→Φ−1

k (s)[β − 1][0])⟩⌋)

+ Φk(⌈P−1⟨([ct(0)[1]]qγ0 , . . . , [ct
(0)[1]]qγβ−1

),

(evks→Φ−1
k (s)[0][1], . . . , evks→Φ−1

k (s)[β − 1][1])⟩⌋))s− Φk(pt
(0))

= Φk(ct
(0)[0] + ⌈P−1⟨([ct(0)[1]]qγ0 , . . . , [ct

(0)[1]]qγβ−1
)

(evks→Φ−1
k (s)[0][0], . . . , evks→Φ−1

k (s)[β − 1][0])⟩⌋

+ ⌈P−1⟨([ct(0)[1]]qγ0 , . . . , [ct
(0)[1]]qγβ−1

),

(evks→Φ−1
k (s)[0][1], . . . , evks→Φ−1

k (s)[β − 1][1])⟩⌋Φ−1
k (s)− pt(0))

= Φk

(
ct(0)[0] + P−1

β−1∑
j=0

[ct(0)[1]]qγj

50

(
evks→Φ−1

k (s)[j][0] + evks→Φ−1
k (s)[j][1]Φ

−1(s)
)

− pt(0) + τ (0) + τ (1)s

)
= Φk

(
ct(0)[0] + P−1

β−1∑
j=0

[ct(0)[1]]qγjsP
QL

qγj

[(
QL

qγj

)−1
]
qγj

+ ej

+ τ (0) + τ (1)s− pt(0)
)

= Φk

(
ct(0)[0] + ct(0)[1]s− pt(0) + P−1

β−1∑
j=0

[ct(0)[1]]qγj ej

+ τ (0) + τ (1)s

)
= Φk(ct

(0)[0] + ct(0)[1]s− pt(0)) + Φk(P
−1

β−1∑
j=0

[ct(0)[1]]qγj ej)ct

+ Φk(τ
(0) + τ (1)s).

Applying Φ(k0,k1) : X
i → Xi(−1)k05k1

mod (XN + 1) permutes the coefficients
with at most a sign change since XN ≡ −1 mod (XN +1). Although the struc-
ture of the ciphertext is changed, the standard deviation of its noise remains the
same. Therefore, the standard deviations of the component-wise noise are the
same as in the case of key switching. ⊓⊔

Lemma 17 (Conjugations). Let ct(0) be a ciphertext encrypting pt(0), which is
an encoding of m0 and let ct = Conjugation(ct(0)) be the ciphertext encrypting
pt, encoding m0. Then we have for the coefficient standard deviation of the
component-wise noise

σconj(ct) =

(√
σ2
n(ct[0])i

+ σ2
ks−add,

√
σn(ct[1]) +

1
12

)
.

Proof. Conjugation of a ciphertext is calculated by rotating the ciphertext by
one slot. Therefore the component-wise noise is the same as that of a rotation
by −1 slots. ⊓⊔

C Noise Standard Deviations for Bootstrapping

C.1 Noise Standard Deviation for Homomorphic En-and Decoding

In this section we show how to build up expressions for the coefficient stan-
dard deviation of the component-wise noise after evaluation of the bootstrap-
ping circuit, from the estimates given in Section 3. We first give expressions for

51

the coefficient standard deviation of the component-wise noise after a matrix-
ciphertext product. This allows us to give expressions for the standard deviation
after homomorphic encoding and decoding. We focus on the improved matrix-
ciphertext product as it has been presented in Algorithm 6 in [5], stated again
in Algorithm 3 in Appendix D since this is the algorithm that is implemented in
Lattigo.

Lemma 18 (Matrix-ciphertext Product). Let M ∈ Cn×n be an n × n ma-
trix and M i

diag be its i−th encoded diagonal. Let {ct(0), Qℓ0 , ∆0} be a cipher-
text. Let {ctpre-rot(i), Qℓ0 , P∆0} be the ciphertext resulting from the pre-rotation
step in lines 1 − 6 of Algorithm 6 in [5]. Let {ctn1−loop,j , Qℓ0 , P∆0} be the
j−th intermediary result of the summing step in lines 9 − 12 of Algorithm 3.
Let {ctn2−loop, Qℓ0 , ∆0} be the ciphertext resulting from the rotations in lines
7−17 in Algorithm 6 in [5]. Finally, let {ct, Qℓ, ∆} = {MCtxt(ct(0),M)0ct(0)×
M,Qℓ0−1, ∆} be the result of the homomorphic evaluation of the ciphertext-
matrix product. Choose n1, n2 such that n1n2 = N . Then the component-wise
noise of ct is built up as follows.

σn(ctpre-rot(0)) =P (σn(ct(0))[0], σn(ct(0))[1])

σn(ctpre-rot(i≥1)) =P


√√√√√

σ2
n(ct(0))[0]

+

N
β−1∑
k=0

qγk
σ2
0

12P 2
, σn(ct(0))[1]


σn(ctn1−loop,j) =

(√√√√n1−1∑
i=0

σ2
n(ctpre-rot(i))[0]

(
Mn1j+i

diag +
1

12

)
,

√√√√n1−1∑
i=0

σ2
n(ctpre-rot(i))[1]

(
Mn1j+i

diag +
1

12

))

σn(ctn2−loop) =

(√√√√n2−1∑
j=0

σ2
n(Rotate(ctn1−loop,j ,n1j))[0]

,

√√√√n2−1∑
j=0

σ2
n(Rotate(ctn1−loop,j ,n1j))[1]

)

σn(ct) =

(√
q−2
ℓ0

(
P−2σ2

n(ctn2−loop)[0]
+

1

12

)
+

1

12
,√

q−2
ℓ0

(
P−2σ2

n(ctn2−loop)[1]
+

1

12

)
+

1

12

)
Proof. We have ctpre-rot(0) = Pct(0), the statement about the component-wise
noise follows. Furthermore, we have

ctpre−rot(i≥1)[0]

52

= Φi(Pct
(0)[0] + ⟨([ct(0)[1]]qγ0 , . . . , [ct

(0)[1]]qγβ),

(evkrot[0][0], . . . , evkrot[β][0])⟩)
= PΦi(ct

(0)[0] + P−1⟨([ct(0)[1]]qγ0 , . . . , [ct
(0)[1]]qγβ),

(evkrot[0][0], . . . , evkrot[β][0])⟩)
ctpre−rot(i≥1)[1]

= Φi(⟨([ct(0)[1]]qγ0 , . . . , [ct
(0)[1]]qγβ),

(evkrot[0][1], . . . , evkrot[β][1])⟩)
= PΦi(P

−1⟨([ct(0)[1]]qγ0 , . . . , [ct
(0)[1]]qγβ),

(evkrot[0][1], . . . , evkrot[β][1])⟩).

The summing step in lines 9 − 12 of the algorithm sums the pre-rotations for
all i and multiplies it with the corresponding diagonal of M . Let Mn1j+i

diag be the
(n1j + i)−th diagonal. Since the coefficients of M are deterministic, we do not
need to consider a random rounding error. Therefore, the component-wise noise
of ctn1−loop,j is the sum of the component-wise noises of ctpre−rot(i) multiplied
by Mn1j+i. That is we get

σn(ctn1−loop) =

(√√√√n1−1∑
i=0

σ2
n(ctpre−rot(i))[0]

Mn1j+i
diag ,

√√√√n1−1∑
i=0

σ2
n(ctpre−rot(i))[1]

Mn1j+i
diag

)
.

We get for the ciphertext after the n2−loop

ctn2−loop[0] =

n2−1∑
j=0

Φn1j(ctn1−loop,j [0] + ⟨([
⌈
P−1ctn1−loop,j [1]

⌋
]qγ0 ,

. . . , [
⌈
P−1ctn1−loop,j [1]

⌋
]qγβ−1

), (evkrot[0][0], . . . , evkrot[β][0])⟩),

=

n2−1∑
j=0

Φn1j(ctn1−loop,j [0] + ⌈P−1⟨([ctn1−loop,j [1]]qγ0 ,

. . . , [ctn1−loop,j [1]]qγβ)(evkrot[0][0], . . . , evkrot[β][0])⟩⌋),

=

n2−1∑
j=0

Rotate(ctn1−loop,j)[0].

ctn2−loop[1] =

n2−1∑
j=0

Φn1j(⟨([
⌈
P−1ctn1−loop,j [1]

⌋
]qγ0 , . . . , [

⌈
P−1ctn1−loop,j [1]

⌋
]qγβ),

53

(evkrot[0][1], . . . , evkrot[β][1])⟩),

=

n2−1∑
j=0

Φn1j(⌈P−1⟨([ctn1−loop,j [1]]qγ0 , . . . , [ctn1−loop,j [1]]qγβ),

(evkrot[0][1], . . . , evkrot[β][1])⟩⌋),

=

n2−1∑
j=0

Rotate(ctn1−loop,j)[1].

Therefore, the standard deviation of the component-wise noise of ctn2−loop is just
a sum of n2 rotations. The stated results thus follow from Lemmas 10 and 16.
ct is then calculated as Rescale(

⌈
P−1ctn2−loop

⌋
). Thus we have

n(ct)[i] = q−1
ℓ0

n(
⌈
P−1n(ctn2−loop

⌋
)[i]) + τ (i0)

= q−1
ℓ0

(P−1n(ctn2−loop)[i] + τ (i1)) + τ (i1),

where i ∈ {0, 1}. The stated result for the standard deviation follows. ⊓⊔

From these elements we can then build up the noise estimates for the Coefficients
to Slots transformation CoeffToSlots, and the Slots to Coefficients transforma-
tion SlotsToCoeff.

Combining the results from Section 3 with Lemma 18, we can get a noise
estimate for the homomorphic encoding and decoding operations “coefficients to
slots”and“slots to coefficients”. We give the noise estimates based on Algorithm 4
and 1 as stated in Appendix D.

Lemma 19 (Coefficients to Slots). Let {ct(0), Qℓ0 , ∆0} be a ciphertext
encrypting a plaintext pt and let ({ct(1), Qℓ−k, ∆}, {ct(2), Qℓ−k, ∆}) =
CtS({ct(0), Qℓ, ∆}) be its transformation from coefficient representation into
slots representation. The coefficients to slots representation outputs two cipher-
texts on one input. Let SF−1 be the inverse of the Special Fourier Transform.

Let 1
2SF

−1 =
k−1∏
i=0

(
1
2

) 1
k SF−1

i , a decomposition of the matrix SF−1 into sub-

matrices. Let Ei :=
⌈
∆τ−1(

(
1
2

) 1
k SF−1

i)
⌋
be the diagonal-wise encoding of the(

1
2

) 1
k SF−1

i . Then following Algorithm 4, we have for the coefficient standard
deviation of the component-wise noise

σn(ct(1)) =

(√
2
(
σ2
n(MCtxt(...,(MCtxt(ct(0),Ek−1),Ek−2),...,E0))[0]

+ nks−add(β,P,ct(0)[1],s)

)
,

√
2

(
σ2
n(MCtxt(...,(MCtxt(ct(0),Ek),Ek−1),...,E0))[0]

+
1

12

))

54

σn(ct(2)) =

(√
2
(
σ2
n(MCtxt(...,(MCtxt(ct(0),Ek−1),Ek−2),...,E0))[0]

+ nks−add(β,P,ct(0)[1],s)

)
,

√
2

(
σ2
n(MCtxt(...,(MCtxt(ct(0),Ek),Ek−1),...,E0))[0]

+
1

12

))
.

Remark 3. The Special Fourier matrices are decomposed for better efficiency. A
description of the decomposition can be found in [11].

Proof. The coefficients to slots operation is calculated following [5] as follows

ct(1) = (E × ct+ E × ct)

= (E0 × . . .× Ek × ct+ E0 × . . .× Ek × ct)

ct(2) = −i(E × ct− E × ct)

= −i(E0 × . . .× Ek × ct+ E0 × . . .× Ek × ct).

That is we have

ct(1) =Add(MCtxt(. . . , (MCtxt(ct(0), Ek), Ek−1), . . . , E0),

Conjugate(MCtxt(. . . , (MCtxt(ct(0), Ek), Ek−1), . . . , E0)))

ct(2) =MultConst

(
Add(MCtxt(. . . , (MCtxt(ct(0), Ek), Ek−1), . . . , E0),

Conjugate(MCtxt(. . . , (MCtxt(ct(0), Ek), Ek−1), . . . , E0))),−i
)

By Lemmas 10, 12, 17, and 18. Thus we get

σn(ct(0))[0] =

(
σ2
n(MCtxt(...,(MCtxt(ct(0),Ek),Ek−1),...,E0))[0]

+ σ2
n(Conjugate(MCtxt(...,(MCtxt(ct(0),Ek),Ek−1),...,E0)))[0]

) 1
2

=

(
σ2
n(MCtxt(...,(MCtxt(ct(0),Ek),Ek−1),...,E0))[0]

+ σ2
n(MCtxt(...,(MCtxt(ct(0),Ek),Ek−1),...,E0))[0]

+ σ2
ks−add[0]

) 1
2

=

(
2σ2

n(MCtxt(...,(MCtxt(ct(0),Ek),Ek−1),...,E0))[0]
+ σks−add[0]

) 1
2

55

σn(ct(0))[1] =

(
2σ2

n(MCtxt(...,(MCtxt(ct(0),Ek),Ek−1),...,E0))[0]
+

1

12

) 1
2

σn(ct(2))[0] =

(
2σ2

n(MCtxt(...,(MCtxt(ct(0),Ek),Ek−1),...,E0))[0]
+ σ2

ks−add[0]]

) 1
2

σn(ct(2))[1] =

(
2σ2

n(MCtxt(...,(MCtxt(ct(0),Ek),Ek−1),...,E0))[1]
+

1

12

) 1
2

.

⊓⊔

Algorithm 1 Slots To Coefficients

Require: ct(0), ct(1), SF =
∏k−1

i=0 SFi.

1: ct← ct(0) + i · ct(1)
2: for i← 0 to k − 1 do
3: ct← MatMul(ct, SFi)
4: ct← Rescale(ct)
5: end for
6: return ct

Lemma 20 (Slots to Coefficients). Let ({ct(1), Qℓ, ∆}, {ct(2), Qℓ, ∆}) be
two ciphertexts in slots format, each encoding n real coefficients. Let
{ct(0), Qℓ−k, ∆0} = StC({ct(1), Qℓ, ∆}, {ct(2), Qℓ, ∆}) be the ciphertext that
has been transformed from Slots to Coefficient format. Let SF be the special
Fourier transform matrix and let SF =

∏k−1
i=0 SFi be its decomposition. Let

Ei ←
⌈
∆τ−1(SFi)

⌋
be its encoding. Then we have for the coefficient standard

deviation of the component-wise noise

σn(ct(1)) =

(√
σ2
n(MCtxt(...,(MCtxt(ct(0)+ct(1),Ek−1),Ek−2),...,E0))[0]

,
√
σ2
n(MCtxt(...,(MCtxt(ct(0)+ct(1),Ek−1),Ek−2),...,E0))[1]

)
.

Proof. Following [5], the Slots to Coefficient operation is evaluated as

ct =Add(MCtxt(. . . (MCtxt(ct(1), E0), . . .), Ek),

MultConst(MCtxt(. . . (MCtxt(ct(2), E0), . . .), Ek), i)).

56

W get for the coefficient variance of the component-wise noise

σ2
n(ct) = σ2

n(A(MC(...(MC(ct(1),E0),...),Ek),MCons(MC(...(MC(ct(2),E0),...),Ek),i)))

= σ2
n(MCtxt(...(MCtxt(ct(1),E0),...),Ek))

+ σ2
n(MultConst(MCtxt(...(MCtxt(ct(2),E0),...),Ek),i))

,

and further

σ2
n(ct) =σ2

n(MCtxt(...(MCtxt(ct(1),E0),...),Ek))

+ σ2
n(MCtxt(...(MCtxt(ct(2),E0),...),Ek),i)

.

The Lemma follows directly from this. ⊓⊔

C.2 Noise Standard Deviation for Polynomial Evaluation

We proceed by giving expressions for the standard deviation that build up
to a noise estimate of the EvalMod1 Algorithm 5, which is the third step in
the bootstrapping circuit. The EvalMod1 algorithm consists of approximating
the function fmod1 : x mod 1. Many works have proposed solutions for this
step [12, 9, 31, 30, 32, ?, 28, 29]. We choose the approach of [26] as it provides
in practice the best overall performance in term of precision and depth con-
sumption and is the default approach in Lattigo, among the ones proposed. It
approximates fmod1 with a phase-shifted scaled cosine function, which enables an
HE friendly evaluation of the double angle formula. The scaled cosine function
is itself approximated through polynomial interpolation using a powerful basis
consisting of Chebyshev polynomials. Afterwards, it calls the EvaluatePolyno-
mial algorithm, which evaluates the polynomial that has been interpolated to
approximate the fmod1 function. In this section, we give expressions for the stan-
dard deviation after polynomial evaluation. We use the EvaluatePolynomial

algorithm currently implemented in Lattigo [1] for our analysis and we recall it
in Algorithm 6 in Appendix D.

We first give the noise estimates for the power basis. Chebyshev polynomials
can be defined via the following recursion

T0(t) := 1

T1(t) := t

Tn+1(t) := 2T1(t)Tn(t)− Tn−1(t).

57

However, as [26] pointed out, when evaluated homomorphically we have a bet-
ter noise growth when computing the Chebyshev polynomials via the follow-
ing recursion. Tj=a+b = 2Ta(t)Tb(t) + T|a−b|(t), where a = 2⌊log(i)⌋ − 1 and

b = j + 1 − 2⌊log(i)⌋ if j is not a power of two, else a = b = j/2 (else it is
not depth optimal). We give the noise estimates recursively and not in a closed
form for the following reason: in FHE, the order in which operations are applied
matters; (x+y)z and xz+yz may have different noise growth, even though they
are mathematically equivalent. Since the computation of the Chebyshev polyno-
mials is mostly implemented recursively in practice, giving the noise estimates
theoretically non-recursively would lead to a large difference between theory and
practice of noise growth.

Lemma 21 (Power Basis). Let Tj(t) be the j−th Chebyshev polynomial, defined
via the following recursion.

T0(t) = 1

T1(t) = t

Tj=a+b(t) = 2Ta(t)Tb(t) + T|a−b|(t).

Then we have for the coefficient standard deviation of the component-wise noise

σn(T0(t)) =(0, 0)

σn(T1(t)) =σn(t)i

σn(Ta+b(t)) =

((
q−2

ℓ̃

(
4σ2

n(Tensor(Ta(t),Tb(t))[0])i
+ σ2

ks−add

+

⌈
∆a∆b

∆|a−b|

⌋
σ2
n(T|a−b|(t)[0])i

+
1

12

)
+

1

12

) 1
2

,(
q−2

ℓ̃

(
4σ2

n(Tensor(Ta(t),Tb(t))[1])
+

⌈
∆a∆b

∆|a−b|

⌋
σ2
n(T|a−b|(t)[1])

+
1

3

)
+

1

12

) 1
2

)
,

where qℓ̃ is the top most factor of the decomposition of Qℓ̃ = min(QTa(t), QTb(t))
and ∆a, ∆b, ∆|a−b| the scaling factors of the corresponding Chebyshev polynomi-
als.

Proof. The first part of the proof is trivial: T0(t) = 1, therefore it is deterministic
and does not have a noise standard deviation. T1(t) = t, thus the component-wise
noise of T1(t) is the same as of t.

Ti(t) is calculated from a tensor product, followed by a relinearization and a
rescaling, a multiplication by constant and an addition. We therefore get for the
component-wise noise of Ti(t)

58

n(Ta+b(t))[0] =n(Rescale(Add(MultConst(Relin(Tensor({Ta, QTa(t), ∆a},
{Tb, QTb(t), ∆b})), 2), {T|a−b|(t), QT|a−b|(t), ∆|a−b|})))[0]

=q−1

ℓ̃
n(Add(MultConst(Relin(Tensor({Ta, QTa(t), ∆a},

{Tb, QTb(t), ∆b})), 2), {T|a−b|(t), QT|a−b|(t), ∆|a−b|})))[0] + τ0

=q−1

ℓ̃
(n(MultConst(Relin(Tensor({Ta, QTa(t), ∆a},

{Tb, QTb(t), ∆b})), 2))[0] +
⌈
∆a∆b

∆|a−b|

⌋
n(T|a−b|(t))[0] + τ1) + τ0

=q−1

ℓ̃
(2n(Relin(Tensor({Ta, QTa(t), ∆a}, {Tb, QTb(t), ∆b})))[0]

+

⌈
∆a∆b

∆|a−b|

⌋
n(T|a−b|(t))[0] + τ1) + τ0

=q−1

ℓ̃
(2n(Tensor({Ta, QTa(t), ∆a}, {Tb, QTb(t), ∆b}))[0]

+ 2nrelin−add +

⌈
∆a∆b

∆|a−b|

⌋
n(T|a−b|(t))[0] + τ1) + τ0.

Similarly, we get for n(Ta+b(t))[1]

n(Ta+b(t))[1] =q−1

ℓ̃
(2n(Relin(Tensor({Ta, QTa(t), ∆a}, {Tb, QTb(t), ∆b})))[1]

+

⌈
∆a∆b

∆|a−b|

⌋
n(T|a−b|(t))[1] + τ1) + τ0

=q−1

ℓ̃
(2n(Tensor({Ta, QTa(t), ∆a}, {Tb, QTb(t), ∆b}))[1]

+ 2τ2 +

⌈
∆a∆b

∆|a−b|

⌋
n(T|a−b|(t))[0] + τ1) + τ0.

The standard deviations of the component-wise noise follow directly from the
above, by again modelling the τi as being uniform random with variance 1

12 . ⊓⊔

Let p(t) be the a degree d polynomial that we want to evaluate on ct, and
let T = {{T0, T1, . . . , T2l−1}, {T2l , T2l+1 , . . . , T2m}} be a power basis with m =

⌈log(d)⌉ and l = ⌊m/2⌋. Let ci be coefficients, such that p(t) =
∑d

i=0 ciTi(t).

Lemma 22 (BabyStep). Let p(t) =
∑d

i=0 ciTi(t) a polynomial with ci ∈ C, T =
{1, ct, T2(ct), . . . , Td(ct)} a pre-computed power-basis and ∆ a target scaling
factor and let {Td(ct), Qℓ, ∆

′}. Then we have for the standard deviation of the
component-wise after evaluating p(t) on ct using Algorithm 8

σn(BabyStep(p(t),T,∆) =

√√√√ d∑
j=0

σ2
n(MultConst(c′j ,Tj))

,

where c′j =
⌈
cj · ∆·qℓ

∆′

⌋
where qℓ = Qℓ/Qℓ−1.

59

Proof. The proof follows directly from Algorithm 8. The algorithm multiplies

the ciphertexts Ti(ct) by c′j =
⌈
cj

∆qℓ
∆′

⌋
and adds the results for i from 0 to d−1.

The noise estimate therefore is a direct consequence of Lemmas 10 and 12. ⊓⊔

Lemma 23 (GiantStep). Let {ct0, ℓ − 1, ∆0 = ∆1∆2}, {ct1, ℓ,∆1qℓ} and
{ct2, ℓ−1, ∆2} be ciphertexts satisfying the input requirements of the GiantStep
(Algorithm 9) encrypting pt0, pt1 and pt2 respectively. Then we have for the
standard deviation of the component-wise noise after evaluating Algorithm 9

σ2
n(ct′1)

= σ2
n(Rescale(Relinearize(ct1)))

=

(
q−2
ℓ

(
σ2
n(ct1[0])

+ σ2
ks-add

)
+

1

12
, q−2

ℓ

(
σ2
n(ct0[1])

+
1

12

)
+

1

12

)
σn(GiantStep(ct0,ct1,ct2) =

(√
σ2
n(ct0[0])

+N
(
σ2
pt1

+ σ2
n(ct′1[0])

)(
σ2
pt2

+ σ2
n(ct2[0])

)
,√

σ2
n(ct0)[1]

+N
(
σ2
n(ct2)[1]

(
σ2
pt1

+ σ2
n(ct1)[0]

)
+ σ2

n(ct1)[1]

(
σ2
pt2

+ σ2
n(ct2)[0]

))
,

√
Nσ2

n(ct1)[1]
σ2
n(ct2)[1]

)
Proof. The proof follows directly from Lemmas 6,10,13,15. ⊓⊔

Lemma 24 (Polynomial Evaluation). Let {ct, Qℓ, ∆} be a ciphertext, and p(t) =
d∑

i=0

ciTi(t) be a polynomial. Let pi(t) be such that p(t) =
2m−ℓ−1∑

i=0

pi(t)Ti2ℓ(t).

Let bi = Babystep(pi(t), T,∆
′
i), b

(0)
j = GiantStep(b2j , b2j+1, T2ℓ), and

b
(i)
j = GiantStep(b

(i−1)
2j , b

(i−1)
2j+1 , T2ℓ+i), for 0 < i ≤ m − ℓ − 1. Then we

get for the coefficient standard deviation of the component-wise noise of
{p(ct), Qℓ−⌈log(d)⌉, ∆

′} = EvaluatePolynomial({ct, Qℓ, ∆}, p(t)), for ∆′ a tar-
get scale

σn(p(ct)) =

√
q−2
ℓ−⌈log(d)⌉σ

2
n(Relin(bm−ℓ−1

0)) +

(
1

12
,
1

12

)
,

where

σ
n(b

(i)
j)

= σ
n(GiantStep(b

(i−1)
2j ,b

(i−1)
2j+1 ,T

2ℓ+i))

σn(bj)(0) = σn(GiantStep(b2j ,b2j+1,T2ℓ
))

σn(bj) = σn(BabyStep)(pi(t),T,∆′
i)
.

Proof. The proof of the noise estimates of bj , b
(0)
j , b

(i)
j , i > 0 follows trivially

from the definitions. Upon finishing iterating through the outer loop, we have

60

i = m − ℓ − 1, and therefore the inner loop iterates through j = 0 to j =
2m−ℓ

2i−1 − 1 = 2m−ℓ

2m−ℓ−1+1 − 1 = 0. Therefore, the result of the iteration through the
two loops is

b
(m−ℓ−1)
0 = GiantSteps(b

(m−ℓ−2)
0 , b

(m−ℓ−2)
1 , T2m−1).

This result is relinearized and rescaled by qℓ−⌈log(d)⌉, since the algorithm con-
sumes depth ⌈log(d)⌉. This is returned as p(ct). Therefore, we obtain

σn(p(ct)) =

√
q−2
ℓ−⌈log(d)⌉σ

2
n(Relin(b

(m−ℓ−1)
0))

+

(
1

12
,
1

12

)
.

⊓⊔

C.3 Noise Standard Deviation for the Homomorphic Modulus Reduction

Lastly, we give an expression for the standard deviaiton of the component-wise
noise after homomorphic modulus reduction, which is the last building block
that remains to get the standard deviation and therefore a noise estimate of the
bootstrapping circuit.

Lemma 25 (EvalMod1). Let {ct, Qℓ+1, ∆} be a ciphertext, p(t) a de-

gree d Chebyshev implementation of
(

q0
2⌈log(q0)⌋

1
2π

)2−r

cos
(
2π−0.25

2r

)
, and K

the range of interpolation. Let ctfinal = EvalMod1({ct, Qℓ−r, ∆}, p(t),K)
be the result of Algorithm 5. Let ct(j) be the result after the
j−th iteration of the loop in lines 10 − −16 in Algorithm 5. Let
{ct′, Qℓ−⌈log(d)⌉, ∆r} = EvaluatePolynomial({ct′′, Qℓ, ∆}, p(t)), and

{ct′′, Qℓ, ∆} = AddConst(Rescale(MultConst({ct, Qℓ+1, ∆}, 2)),−
(−0.25

2rK

)
).

Then we have for the coefficient standard deviation of the component-wise noise
of ctfinal

σn(ctfinal) =

√
q−2
ℓ−rσ

2
n(ct(r−1)) +

(
1

12
,
1

12

)
,

where

σn(ct(j)) =

√√√√4σ2
n(Relin(Tensor(ct(j−1),ct(j−1)))) +

(
q−2
ℓ−1 + 1

12
,
q−2
ℓ−1 + 1

12

)
,

for 0 < j ≤ r − 1, and

σn(ct(0)) =

√√√√4σ2
n(Relin(Tensor(ct′,ct′))) +

(
q−2
ℓ−1 + 1

12
,
q−2
ℓ−1 + 1

12

)

61

σn(ct′′) = σn(EvaluatePolynomial(ct′′,p))

σn(ct′) =

√
2

2⌈log(q0)⌋
q0 σ2

n(ct) +

(
q−2
ℓ + 1

12
,
q−2
ℓ + 1

12

)
.

Proof. We build the noise estimates up from bottom to top. First we see that

n(ct′′) = n(AddConst(Rescale(MultConst(ct, 2
⌈log(q0)⌋

q0)),
−0.25
2rK

))

= n(Rescale(MultConst(ct, 2
⌈log(q0)⌋

q0)))

= q−1
ℓ n(MultConst(ct, 2

⌈log(q0)⌋
q0)) + (τ00, τ01)

= q−1
ℓ

(
2

⌈log(q0)⌋
q0 qℓn(ct) + (τ10, τ11)

)
+ (τ00, τ01)

= 2
⌈log(q0)⌋

q0 n(ct) + q−1
ℓ (τ10, τ11) + (τ00, τ01).

Thus,

σn(ct′′) =

√(
2

⌈log(q0)⌋
q0

)2

σ2
n(ct) +

(
q−2
ℓ

1

12
, q−2

ℓ

1

12

)
+

(
1

12
,
1

12

)

=

√
2

2⌈log(q0)⌋
q0 σ2

n(ct) +

(
q−2
ℓ + 1

12
,
q−2
ℓ + 1

12

)
.

The result for n(ct′) can directly be seen from the definition of ct′. For
n(ct(j)), 0 < j ≤ r − 1 we get

n(ct(j)) = n(Rescale(AddConst(MultConst(Relin(Tensor(ct(j−1),ct(j−1)

))), 2),−
(

1

2π

)2

−r + j))

= q−1
ℓ−jn(MultConst(Relin(Tensor(ct

(j−1),ct(j−1)

)), 2)) + (τ00, τ01)

= q−1
ℓ−j(2qℓ−jn(Relin(Tensor(ct

(j−1), ct(j−1)))) + (τ10, τ11)) + (τ00, τ01)

= 2n(RelinTensor(ct(j−1),ct(j−1)

)) + q−1
ℓ−j(τ10, τ11) + (τ00, τ01),

from which both the standard deviation for n(ct(j)) and for n(ct(0)) easily
follow. Finally, we have

n(ctfinal) = n(Rescale(ct(r−1)))

= q−1
ℓ−rn(ct

(r−1)) + (τ00, τ01),

from which the claimed standard deviation easily follows. ⊓⊔

62

C.4 Noise Standard Deviation for Bootstrapping

We now finally have all the ingredients that we need to give a noise estimate for
bootstrapping. RNS-CKKS bootstrapping consists of taking the ciphertext with
respect to a bigger modulus Q, then applying the coefficients to slots transforma-
tion, then evaluating the sine function on the ciphertext that is approximating
the reduction modulo Q and is in turn being approximated by a polynomial
interpolation, and lastly applying the slots to coefficients transformation. The
mod-up operation does not introduce extra noise, since the ciphertext is not
scaled up, but merely considered with respect to a higher modulus. We therefore
easily can see the following Lemma.

Lemma 26 (Bootstrapping). Let ct be bootstrapped ciphertext, and let c̃t be the
ciphertext before bootstrapping. Then we can give the component-wise noise of
ct as

n(ct) = n(StC(EvalSine(CtS(c̃t)))).

Proof. The proof is trivial. ⊓⊔

D Algorithms

Algorithm 2 Optimized Hoisting Rotations (Algorithm 4 in [5])

Require: ct = (ct[0], ct[1]) ∈ R2
Qℓ

and a set of rotation keys evk
s→Φ−1

k
(s)

.

Ensure: v a list containing each k rotation of ct.
1: d← [[ct[1]qγ0≤i<β

]]PQℓ ▷ Decompose

2: for all k do
3: (a, b)← (⟨d, evk(0)

s→Φ−1
k

(s)
⟩, ⟨d, evk(1)

s→Φ−1
k

(s)
⟩)

4: (a, b)← (
⌈
P−1a

⌋ ⌈
P−1b

⌋
)

5: vk ← (Φk(ct[0] + a, Φk(b)))
6: end for
7: return v

63

Algorithm 3 Double-hoisting BSGS matrix-ciphertext algorithm (Algorithm 6
in [5])

Require: ct = (ct[0], ct[1]) ∈ R2
Qi

, Mdiag ∈ RPQ⟩ the pre-rotated diagonals of Mn×n,

where n = n1n2. (rot
0
qγi ,Φk

, rot1qγi ,Φk
) set of necessary rotation keys.

Ensure: ct′ = M × ct

1: d← [[ct[1]qγi]0≤i<β]PQi

2: (a(0), b(0))← (Pct[0], Pct[1])
3: for i = 1; i < n1; i++ do
4: a(i) ← Φi(a

(0) + ⟨d, rot0qγi ,Φk
⟩)

5: b(i) ← Φi(⟨d, rot1qγi ,Φk
⟩)

6: end for
7: (ct[0], ct[1])← (0, 0)
8: for j = 0; j < n2; j ++ do
9: (u(0), u(1))← (0, 0)
10: for i = 0; i < n1; i++ do
11: (u(0), u(1))← (u(0), u(1)) + (a(i), b(i))M

(n1j+i)
diag

12: end for
13: u(1) ←

⌈
P−1u(1)

⌋
14: d← [[u(1)]qγ0≤i<β

]PQi

15: ct[0]← ct[0] + Φn1j(u
(0) + ⟨d, rot0qγi ,Φk

⟩)
16: ct[1]← ct[1] + Φn1j(⟨d, rot1qγi ,Φk

⟩)
17: end for
18: ct← (

⌈
P−1ct[0]

⌋
,
⌈
P−1ct[1]

⌋
)

19: return Rescale(ct)

Algorithm 4 Coefficients To Slots

Require: ct, SF−1 =
∏k−1

i=0 SF−1
i .

1: for i← 0 to k − 1 do
2: ct← MatMul(ct, ((1

2
)

1
k SF−1

i))
3: ct← Rescale(ct)
4: end for
5: ctconj ← Conjugate(ct)
6: return ct+ ctconj,−i(ct− ctconj)

64

Algorithm 5 EvalMod1

Require: {ct, ℓ + 1,∆} a ciphertext, p(t) a degree d Chebyshev interpolant of(
q0

2⌈log(q0)⌋
1
2π

)2−r

cos
(
2π (x−0.25)

2r

)
, K the range of the interpolation.

Ensure: The evaluation {ct = q0 · p(ct/q0), ℓ− ⌈log(d)⌉ − r,∆}
1: {ct, ℓ+ 1,∆ · qℓ+1} ← MultConst(ct, 2⌈log(q0)⌋/q0)
2: {ct, ℓ,∆} ← Rescale(ct)
3: ct← AddConst(ct,−0.25/(2rK))
4: ∆0 ← ∆
5: for i← 0 to r − 1 do
6: ∆i+1 ←

√
∆i · qℓ−log(d−1)−r+i

7: end for
8: {ct, ℓ− ⌈log(d)⌉,∆r} ← EvaluatePolynomial({ct, ℓ,∆}, p(t),∆r)

9: δ ← (1/2π)2
−r

10: for i← 0 to r − 1 do
11: δ ← δ2

12: {ct, ℓ − log(d − 1) − i,∆2
r−i = ∆r−i−1 · qℓ−log(d−1)−i} ← Relinearize(

Tensor(ct, ct))
13: ct← MultConst(ct, 2)
14: ct← AddConst(ct,−δ)
15: {ct, ℓ− log(d− 1)− (i+ 1),∆r−i−1} ← Rescale(ct)
16: end for
17: return {ct, ℓ− log(d− 1)− r,∆0 = ∆}

Algorithm 6 EvaluatePolynomial

Require: A target scale ∆′, a ciphertext {ct, ℓ,∆} and a polynomial p(t) =∑d
i=0 ciTi(t).

Ensure: {p(ct), ℓ− ⌈log(d)⌉,∆′}.
1: m← ⌈log(d)⌉
2: l← ⌊m/2⌋
3: T (ct)← {{1, ct, T2(ct), . . . , T2l−1(ct)}, {T2l(ct), T2l+1(ct), . . . , T2m−1(ct)}}
4: Express p(t) as

∑2m−l−1
i=0 pi(t) · Ti2l(t)

5: ∆′ ← GetScalingFactors(p(t), T (ct),∆′) // Algorithm 7
6: b← {∅}
7: for i← 0 to 2m−l − 1 do
8: bi ← BabyStep(pi(t), T,∆

′
i) // Algorithm 8

9: end for
10: for i← 0 to m− l − 1 do
11: for j ← 0 to (2m−l)/(2i+1)− 1 do
12: bj ← GiantStep(b2j , b2j+1, T2l+i) // Algorithm 9
13: end for
14: end for
15: return Rescale(Relinearize(b0))

65

Algorithm 7 GetScalingFactors

Require: A polynomial p(t) =
∑2m−1−1

i=0 pi(t)Ti2l(t), a pre-computed power-basis
T = {{T1(ct), T2(ct), . . . , T2l−1(ct), T2l(ct), T2l+1(ct), . . . , T2m−1(ct)}} and a tar-
get scale ∆′.

Ensure: ∆ = {∆′
0,∆

′
1, . . . ,∆

′
2m−1−1} the vector of target scaling factor for the

BabyStep such that each call of EvaluateMonomial in GiangStep has valid inputs
and the final scale of EvaluatePolynomial is ∆′.

Algorithm 8 BabyStep

Require: A polynomial p(t) =
∑d

i=0 ciTi(t), a power basis T =
{T1(ct), ct, T2(ct), . . . , Td(ct)} and a polynomial and target scale ∆.

Ensure: ct′ = {p(ct), ℓTd(ct),∆ · qℓTd(ct)
}.

1: ct′ ←
⌈
c0 ·∆ · qℓTd

⌋
// Set to be at level ℓ

2: for i← 1 to d− 1 do

3: ct′′ ← MultConst
(

ci∆
∆Ti(ct)

, Ti(ct)
)
// MultConst scales ci by qℓTd

4: ct′ ← Add (ct′, ct′′) // ct′ and a both have scaling factor ∆ · qℓTd

5: return ct′

Algorithm 9 GiantStep

Require: Ciphertexts {ct0, ℓ− 1,∆0 = ∆1∆2}, {ct1, ℓ,∆1qℓ}, {ct2, ℓ− 1,∆2}.
Ensure: {ct′ = ct0 + ct1ct2, ℓ− 1, ℓ2),∆0}
1: ct1 ← Relinearize(ct1) //∆1qℓ1
2: ct1 ← Rescale(ct1) //∆1qℓ1 → ∆1

3: ct1 ← Tensor(ct1, ct2) //∆1 → ∆1∆2

4: ct1 ← Add(ct1, ct0) //∆0 = ∆1∆2

5: return ct1

66

	Practical q-IND-CPA-D-Secure Approximate Homomorphic Encryption

