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Abstract. PLONK is a zk-SNARK system by Gabizon, Williamson,
and Ciobotaru with proofs of constant size (0.5 KB) and sublinear veri-
fication time. Its setup is circuit-independent supporting proofs of arbi-
trary statements up to a certain size bound.
Although deployed in several real-world applications, PLONK’s zero-
knowledge property had only been argued informally. Consequently, we
were able to find and fix a vulnerability in its original specification, lead-
ing to an update of PLONK in eprint version 20220629:105924.
In this work, we construct a simulator for the patched version of PLONK
and prove that it achieves statistical zero knowledge. Furthermore, we
give an attack on the previous version of PLONK showing that it does not
even satisfy the weaker notion of (statistical) witness indistinguishability.
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1 Introduction

First introduced by Goldwasser, Micali, and Rackoff [GMR85] as a theoretical
concept in the 1980s, zero-knowledge proofs have become efficient enough to
be used in practice over the subsequent decades. Informally speaking, a zero-
knowledge proof allows a party (the “prover”) to convince another party (the
“verifier”) that a statement is true, without revealing any information beyond
the validity of the statement. Moreover, such proofs need to be complete, i.e.,
the verifier accepts an honestly generated proof on a true statement, and sound,
i.e., a malicious prover cannot convince the verifier of a false statement.

The most widely used type of zero-knowledge proof systems are zk-SNARKs
(succinct non-interactive arguments of knowledge) [BCCT12]. An argument is
a proof system with computational soundness, i.e., both prover and verifier are
probabilistic polynomial-time algorithms. Furthermore, the prover must know a
witness whenever producing a valid proof (hence argument of knowledge). Non-
interactive means that only a single message, “the proof”, is sent during the
protocol. The term succinct refers to the proof size, in particular, zk-SNARKs
have proofs that are much shorter than the proved statement, in some cases even
of constant size.

Many of the currently most efficient zk-SNARKs are constructed using an
elliptic-curve group over a prime field Fp, i.e., their proofs are composed of
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elliptic-curve group elements and field elements. To prove arbitrary statements
in NP, they express them in the NP-complete language of arithmetic circuits.

Currently, the zk-SNARK with the shortest proof size is the construction by
Groth [Gro16]. Its proofs are independent of the size of the associated arithmetic
circuit and consist of just 3 group elements (≈ 128 bytes). Nevertheless, it comes
with the major drawback of requiring a circuit-specific common reference string,
limiting its usability in practice. To solve this issue, a recent development is to
construct zk-SNARKs with a universal structured reference string (SRS), i.e.,
once generated, it can be used to prove statements about any arithmetic circuit
up to a certain size bound.

The first construction with a universal SRS that scales linearly in size is Sonic
by Maller et al. [MBKM19], featuring a proof size of 20 group elements and 16
field elements (≈ 1152 bytes). Improving upon the efficiency of Sonic, PLONK
by Gabizon et al. [GWC19a] offers even shorter proofs consisting of only 9 group
elements and 6 field elements (≈ 480 bytes). Another universal zk-SNARK is
Marlin by Chiesa et al. [CHM+20] with a proof size of 13 group elements and 8
field elements (≈ 672 bytes). However, compared to PLONK, it has not found
such a wide adoption in practice.

Beyond that, other directions in constructing succinct non-interactive zero-
knowledge proofs include Bulletproofs [BBB+18] and zk-STARKs [BSBHR18],
short for zero-knowledge scalable transparent arguments of knowledge. At the
cost of having longer proofs—logarithmic (Bulletproofs) and polylogarithmic
(zk-STARKs) in the size of the proved statement—these constructions do not
require any trusted setup, i.e., they do not use a common reference string.1
On top of that, zk-STARKs are currently considered post-quantum secure as
opposed to proof systems which rely on the hardness of the discrete-logarithm
problem in elliptic-curve groups.

1.1 PLONK

This work focuses on the PLONK zk-SNARK by Gabizon et al. [GWC19a]. It has
constant-size proofs, sublinear proof verification time, and a circuit-independent
setup which produces a universal and updatable structured reference string.
Updatability means that the SRS can be rerandomized such that the honesty of
only one party from all updaters up to that point is required for soundness.

The original PLONK construction employs the KZG polynomial commitment
scheme by Kate, Zaverucha, and Goldberg [KZG10] due to its constant-size
commitments and opening proofs that only consist of single group elements.
This comes at the cost of a trusted setup which produces a structured reference
string of linear size O(d) group elements, where d is the maximum supported
degree of the committed polynomials. In general, PLONK can be instantiated
with any (extractable) polynomial commitment scheme.

1 More precisely, both rely on a collision-resistant hash function, with Bulletproofs
modeling it as a random oracle [BR93] and zk-STARKs using it directly.
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PLONK is deployed in various real-world projects, a prominent example of
which is the anonymous cryptocurrency Zcash [HBHW22]. Currently, Zcash uses
Halo 2 as its zk-SNARK [Ele22], which is built on top of the arithmetization
introduced by PLONK [GWC19a, Sec. 6].

There are several other extensions and variants of PLONK. This includes
support for custom gates [GW22], which can perform more complex operations
than just field addition/multiplication, such as elliptic-curve group addition.
Furthermore, using the plookup protocol of [GW20], PlonKup by Pearson et
al. [PFM+22] extends PLONK to incorporate lookup gates, which are used to
enforce that a value is contained in a predefined table.

The work by Chen et al. [CBBZ23] introduced HyperPlonk, which uses mul-
tilinear instead of univariate polynomial commitments. At the cost of longer
proofs, this avoids the need for an FFT during proof generation, achieving a
linear prover runtime as opposed to the quasilinear time required by PLONK.

1.2 Our contributions

Due to the lack of a formal security proof for PLONK’s zero-knowledge property,
we were able to identify a vulnerability in its original specification [GWC19b].
Consequently, we proposed a fix, and the PLONK protocol has been patched
accordingly in eprint version 20220629:105924.2 In this work, we give a formal
proof establishing that the resulting version of PLONK achieves statistical zero
knowledge. Towards this goal, we construct a simulator and argue why its out-
puts are distributed statistically close to real PLONK proofs.

Furthermore, we show that the previous specification of PLONK without our
fix does not satisfy statistical zero knowledge by devising an attack that breaks
its (statistical) witness indistinguishability. In this notion, which is weaker than
zero knowledge, the adversary defines a statement with two different witnesses
and then, given a proof computed under either of them, has to distinguish which
of the two witnesses was used.

2 Preliminaries

We use λ ∈ N to denote the security parameter, [n] for the set {1, . . . , n} ⊂ N,
and negl(·) for any negligible function negl(λ) = λ−ω(1). Let Fp[X] be the set
of univariate polynomials over Fp, and F(≤d)

p [X] its restriction to polynomials of
degree ≤ d.

A statement of the form y := A(x) denotes a deterministic assignment, while
y ← A(x) denotes a probabilistic assignment, i.e., running the algorithm A with
uniform randomness on input x. We also use y ← S for sampling y uniformly
at random from the set S. We write (y; z) ← (A ∥ E)(x) when A on input x
outputs y, and E on the same input (including A’s randomness) outputs z.

An indexed relation R is a set of index-statement-witness triples (i,x,w)
with the corresponding indexed language LR := {(i,x) | ∃w : (i,x,w) ∈ R}. For
2 https://twitter.com/rel_zeta_tech/status/1542474186664210432

https://twitter.com/rel_zeta_tech/status/1542474186664210432
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a size bound n ∈ N, we denote by Rn the restriction of R to triples (i,x,w)
with |i| ≤ n. For example, the indexed relation of satisfiable arithmetic circuits
consists of the triples where i is the description of an arithmetic circuit, x is a
partial assignment to its input wires, and w is an appropriate assignment to the
remaining wires such that the circuit outputs 0.

We implicitly assume all PPT algorithms described in this work run in
time polynomial in the security parameter λ. Furthermore, we assume there
is an efficient algorithm GGen which, on input 1λ, generates a bilinear group
G := (Fp,G1,G2,GT , e, g1, g2, gT ) where:

– Fp is a prime field of super-polynomial size |Fp| = λω(1), which admits certain
primitive n-th roots of unity (restricting the factorization of p− 1).

– G1,G2,GT are groups of prime order p with a pairing e : G1 ×G2 → GT .

– g1 ∈ G1, g2 ∈ G2 are uniformly chosen generators, and gT = e(g1, g2).

When instantiating a cryptographic scheme over G, we assume implicitly that
GGen(1λ) is run during the setup phase and its output is publicly available.

2.1 zk-SNARKs

In the following, we define universal, preprocessing zk-SNARKs, an example
of which is the PLONK system we focus on in this work. Our definitions are
inspired by [CBBZ23, Sec. 2.1] and [CHM+20, Sec. 7].

Definition 1 (zk-SNARK). A zk-SNARK for an indexed relation R is a tuple
of four PPT algorithms (Setup,Preproc,Prove,Verify) with the following syntax:
– srs← Setup(1λ, n), given the security parameter 1λ and a size bound n ∈ N

on indices in R, returns a structured reference string srs.

– (pp, vp) := Preproc(srs, i), given the srs (with implicit size bound n) and an
index i of size ≤ n, returns prover and verifier parameters pp and vp.

– π ← Prove(pp,x,w), given pp (with implicit index i), a statement x, and a
witness w, returns a proof π for (i,x,w) ∈ R.

– b := Verify(vp,x, π), given vp, a statement x, and a proof π, returns a bit
b ∈ {0, 1}, with 1 meaning accept and 0 reject.

This definition captures universal zk-SNARKs, because the structured reference
string srs generated by Setup supports proofs of any (i,x,w) ∈ R up to a selected
size bound n, as opposed to an index-specific reference string.

Moreover, we define preprocessing zk-SNARKs because Prove and Verify are
not directly run on the instance (i,x) ∈ LR. Instead, there is a non-interactive
preprocessing phase where anyone can use Preproc to publicly compute prover
and verifier parameters pp, vp for a given index i. This allows to compress the
srs and i significantly, enabling the prover and, especially, the verifier to check
different statements x in subsequent online phases more efficiently.

Furthermore, zk-SNARKs have to satisfy the following properties.
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Definition 2 (Completeness). For all n = poly(λ) and all (i,x,w) ∈ Rn:

Pr


srs← Setup(1λ, n);

(pp, vp) := Preproc(srs, i);
π ← Prove(pp,x,w);
b := Verify(vp,x, π) :

b = 1

 ≥ 1− negl(λ).

We define statistical completeness, which is the notion achieved by PLONK (see
Section 2.2). For perfect completeness, the above probability must be one.

Definition 3 (Knowledge Soundness). For all n = poly(λ) and every PPT
adversary A, there exists a PPT extractor E such that:

Pr


srs← Setup(1λ, n);(

(i,x, π);w
)
← (A ∥ E)(srs);

(pp, vp) := Preproc(srs, i);
b := Verify(vp,x, π) :

b = 1 ∧ (i,x,w) /∈ Rn

 ≤ negl(λ).

This is an adaptive definition, where the malicious prover A can choose the
statement (i,x) ∈ LR based on the structured reference string srs. Note that the
extractor E is given the adversary’s randomness, which allows it to rewind A.

Definition 4 (Succinctness). The proof size is sublinear in the size of the
proved statement (i,x,w) ∈ Rn: |π| = o(|i|+ |x|+ |w|).
Definition 5 (Zero Knowledge). There exists a PPT simulator S such that
for all n = poly(λ) and all adversaries A:∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr



srs← Setup(1λ, n);
(i,x,w, st)← A(srs);

(pp, vp) := Preproc(srs, i);
π ← Prove(pp,x,w);

b← A(st, π) :
b = 1 ∧ (i,x,w) ∈ Rn


− Pr



(srs, τ)← S(1λ, n);
(i,x,w, st)← A(srs);

(pp, vp) := Preproc(srs, i);
π ← S(τ, pp,x);
b← A(st, π) :

b = 1 ∧ (i,x,w) ∈ Rn



∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

This captures statistical zero knowledge. The weaker notion of computational
zero knowledge only considers PPT adversaries, while the stronger notion of
perfect zero knowledge requires the two probabilities to be equal.

Definition 6 (Witness Indistinguishability). For all n = poly(λ) and all
adversaries A:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr



srs← Setup(1λ, n);
(i,x,w0,w1, st)← A(srs);
(pp, vp) := Preproc(srs, i);
π ← Prove(pp,x,w0);

b← A(st, π) :
b = 1 ∧ (i,x,w0) ∈ Rn

∧ (i,x,w1) ∈ Rn


− Pr



srs← Setup(1λ, n);
(i,x,w0,w1, st)← A(srs);
(pp, vp) := Preproc(srs, i);
π ← Prove(pp,x,w1);

b← A(st, π) :
b = 1 ∧ (i,x,w0) ∈ Rn

∧ (i,x,w1) ∈ Rn



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).



6 M. Sefranek

Zero knowledge implies witness indistinguishability [FS90] (for a proof adapted
to our setting, see Appendix A.1). The notion we define here is again statistical.

2.2 The PLONK construction

We give a condensed summary of PLONK and its underlying constraint system.
For more details, refer to the original paper by Gabizon et al. [GWC19a, Sec. 8].

Let C be an arithmetic circuit over Fp with fan-in two, unlimited fan-out,
n gates, and ℓ public inputs (which are also counted as gates). For simplicity,
assume the public inputs are associated with the first ℓ gates. Let (wi)i∈[3n] ∈ F3n

p

be a (redundant) wire assignment, where wi, wn+i, and w2n+i represent the
values assigned to the left input, right input, and output wire of the i-th gate,
respectively. Using the PLONK constraint system [GWC19a, Sec. 6], C is then
modeled as a combination of gate and copy constraints as follows:

1. The gate constraints ensure correctness of the individual gate operations.
Concretely, the i-th gate is associated with a constraint of the form

sLi · wi + sRi · wn+i + sOi · w2n+i + sMi · wi · wn+i + sCi = xi,

where xi ∈ Fp is a public input or 0 if i > ℓ, and the values of the selector
vectors sL, sR, sO, sM, sC ∈ Fn

p depend on the gate type as specified in Table 1.

Table 1. Selector vector assignment of PLONK.

Gate type sLi sRi sOi sMi sCi

Addition 1 1 −1 0 0
Multiplication 0 0 −1 1 0
Constant 1 0 0 0 −c

Public input 1 0 0 0 0

2. The copy constraints enforce that gate outputs are propagated correctly, e.g.,
if output wire w2n+i is the same as input wire wj , then both must be assigned
the same value. This is achieved by choosing a permutation σ : [3n] → [3n]
with appropriate cycles such that the statement “wi = wσ(i) for all i ∈ [3n]”
captures all the values in (wi)i∈[3n] that must be equal. In the previous
example, σ would contain the cycle (2n+ i, j) such that w2n+i = wj .

In combination, this results in the indexed relation RPLONK :=(i,x,w)

∣∣∣∣∣∣∣∣∣∣
i =

(
(sL, sR, sO, sM, sC) ∈ F5n

p , σ : [3n]→ [3n]
)
,

x = (x1, . . . , xℓ) ∈ Fℓ
p, w = (w1, . . . , w3n) ∈ F3n

p ,
∀i ∈ [ℓ] : sLiwi + sRiwn+i + sOiw2n+i + sMiwiwn+i + sCi = xi,
∀i ∈ (ℓ, n] : sLiwi + sRiwn+i + sOiw2n+i + sMiwiwn+i + sCi = 0,
∀i ∈ [3n] : wi = wσ(i)

 ,

where the index i is the arithmetic circuit C, the statement x its public inputs,
and the witness w a consistent wire assignment to C.
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Let ω be a primitive n-th root of unity in Fp and define H := ⟨ω⟩ as the
subgroup generated by ω. The core of the PLONK proof system is to express a
statement (i,x,w) ∈ RPLONK as an equivalent polynomial division of the form

gates(X) + α · copy1(X) + α2 · copy2(X)

ZH(X)
,

where ZH(X) := Xn − 1 is the vanishing polynomial over H, the polynomials
gates(X), copy1(X), copy2(X) depend on the given statement, and α ∈ Fp is
a randomly chosen challenge from the verifier. Leveraging the Schwartz–Zippel
lemma, the prover then convinces the verifier that this divisibility holds at a
random evaluation challenge δ ∈ Fp selected by the verifier.

To obtain non-interactive proofs, PLONK applies the Fiat–Shamir trans-
formation [FS87]. For this purpose, let H : {0, 1}∗ → Fp be a hash function
modeled as a random oracle [BR93], and let inputs denote all the public infor-
mation, i.e., the SRS, the common preprocessed input, and all the public circuit
inputs (xi)i∈[ℓ]. Each verifier challenge is then computed by evaluating H on
the concatenation of inputs and all the proof elements output by the prover up
to that point. Note that including all of this information in inputs is crucial to
prevent certain attacks on knowledge soundness [Mil22].

In the following, let Li ∈ F(<n)
p [X] denote the i-th Lagrange basis polynomial

over H, i.e., Li(ω
i) = 1 and Li(ω

j) = 0 for all j ̸= i ∈ [n]. Moreover, k1, k2 ∈ F∗
p

are chosen such that H, k1H, k2H are distinct cosets of H, and the permutation
σ : [3n] → [3n] is extended onto H ′ := H ∪ k1H ∪ k2H by defining the wire
permutation σ∗ : [3n]→ H ′ as

σ∗(i) :=


ωσ(i) if σ(i) ∈ [n]

k1 · ωσ(i) if σ(i) ∈ (n, 2n]

k2 · ωσ(i) if σ(i) ∈ (2n, 3n]

.

We now give a detailed description of the PLONK protocol in Construction 1,
including our fix of step 5 of the Prove algorithm highlighted in blue.

Construction 1: The PLONK zk-SNARK.

Setup(1λ, n): Choose random τ ← Fp and output

srs :=
(
g1, g

τ
1 , g

τ2

1 , . . . , gτ
n+2

1 , g2, g
τ
2

)
∈ Gn+3

1 ×G2
2.

Preproc(srs, i): Given the circuit size n, the wire permutation σ∗, and the
gate constraints (sLi, sRi, sOi, sMi, sCi)i∈[n], compute the polynomials

SL(X) :=
∑

i∈[n]
sLiLi(X), SR(X) :=

∑
i∈[n]

sRiLi(X),

SO(X) :=
∑

i∈[n]
sOiLi(X), SM(X) :=

∑
i∈[n]

sMiLi(X),
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SC(X) :=
∑

i∈[n]
sCiLi(X), Sσ,1(X) :=

∑
i∈[n]

σ∗(i)Li(X),

Sσ,2(X) :=
∑

i∈[n]
σ∗(n+ i)Li(X), Sσ,3(X) :=

∑
i∈[n]

σ∗(2n+ i)Li(X),

and their KZG commitments with respect to srs

cSL
:= g

SL(τ)
1 , cSR

:= g
SR(τ)
1 , cSO

:= g
SO(τ)
1 , cSM

:= g
SM(τ)
1 ,

cSC
:= g

SC(τ)
1 , cSσ,1

:= g
Sσ,1(τ)
1 , cSσ,2

:= g
Sσ,2(τ)
1 , cSσ,3

:= g
Sσ,3(τ)
1 .

Output the prover and verifier parameters

pp :=
(
srs, n, σ∗, SL, SR, SO, SM, SC, Sσ,1, Sσ,2, Sσ,3

)
,

vp :=
(
g1, g2, g

τ
2 , n, cSL

, cSR
, cSO

, cSM
, cSC

, cSσ,1
, cSσ,2

, cSσ,3

)
.

Prove
(
pp, (xi)i∈[ℓ], (wi)i∈[3n]

)
:

1. Choose random blinding scalars ρ1, . . . , ρ6 ← Fp and compute the wire
polynomials

A(X) := (ρ1X + ρ2)ZH(X) +
∑

i∈[n]
wiLi(X),

B(X) := (ρ3X + ρ4)ZH(X) +
∑

i∈[n]
wn+iLi(X),

C(X) := (ρ5X + ρ6)ZH(X) +
∑

i∈[n]
w2n+iLi(X).

The first part of the proof are the commitments

cA := g
A(τ)
1 , cB := g

B(τ)
1 , cC := g

C(τ)
1 .

2. Compute the permutation challenges β, γ ∈ Fp as

β := H(inputs, cA, cB , cC , 0), γ := H(inputs, cA, cB , cC , 1).

3. Define the polynomials

f(X) := (A(X)+βSid,1(X)+γ)(B(X)+βSid,2(X)+γ)(C(X)+βSid,3(X)+γ),

g(X) := (A(X)+βSσ,1(X)+γ)(B(X)+βSσ,2(X)+γ)(C(X)+βSσ,3(X)+γ).

Choose random blinding scalars ρ7, ρ8, ρ9 ← Fp and compute the per-
mutation check polynomial

Φ(X) := (ρ7X
2 + ρ8X + ρ9)ZH(X) +

∑
i∈[n]

Li(X)

i−1∏
j=1

f(ωj)

g(ωj)
,
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where f(ωj)
g(ωj) =

(wj+βωj+γ)(wn+j+βk1ω
j+γ)(w2n+j+βk2ω

j+γ)
(wj+βσ∗(j)+γ)(wn+j+βσ∗(n+j)+γ)(w2n+j+βσ∗(2n+j)+γ) .

The second part of the proof is the commitment

cΦ := g
Φ(τ)
1 .

4. Compute the quotient challenge α ∈ Fp as

α := H(inputs, cA, cB , cC , cΦ).

5. Define the polynomials

gates(X) :=

(
SL(X)A(X) + SR(X)B(X) + SO(X)C(X)
+ SM(X)A(X)B(X) + SC(X) + SPI(X)

)
,

copy1(X) := Φ(X)f(X)− Φ(ωX)g(X),

copy2(X) := L1(X)(Φ(X)− 1).

Compute the quotient polynomial of degree ≤ 3n+ 5

T (X) :=
gates(X) + α · copy1(X) + α2 · copy2(X)

ZH(X)
,

and split it into 3 unique polynomials T ′
1, T

′
2, T

′
3 ∈ F(≤n+1)

p [X] such that

T (X) = T ′
1(X) +Xn+2 · T ′

2(X) +X2n+4 · T ′
3(X).

Then, choose random blinding scalars ρ10, ρ11 ← Fp and define

T1(X) := T ′
1(X) + ρ10X

n+2,

T2(X) := T ′
2(X)− ρ10 + ρ11X

n+2,

T3(X) := T ′
3(X)− ρ11.

Note that these polynomials still satisfy

T (X) = T1(X) +Xn+2 · T2(X) +X2n+4 · T3(X).

The third part of the proof are the commitments

cT1
:= g

T1(τ)
1 , cT2

:= g
T2(τ)
1 , cT3

:= g
T3(τ)
1 .

6. Compute the evaluation challenge δ ∈ Fp as

δ := H(inputs, cA, cB , cC , cΦ, cT1
, cT2

, cT3
).
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7. The fourth part of the proof are the evaluations

aδ := A(δ), bδ := B(δ), cδ := C(δ),

sσ1,δ := Sσ,1(δ), sσ2,δ := Sσ,2(δ), ϕδω := Φ(δω).

8. Compute the opening challenge ε ∈ Fp as

ε := H(inputs, cA, cB , cC , cΦ, cT1 , cT2 , cT3 , aδ, bδ, cδ, sσ1,δ, sσ2,δ, ϕδω).

9. Define the linearized polynomials

Lgates(X) :=

(
SL(X)A(δ) + SR(X)B(δ) + SO(X)C(δ)
+ SM(X)A(δ)B(δ) + SC(X) + SPI(δ)

)
,

Lcopy1(X) :=
(

Φ(X)(A(δ)+βδ+γ)(B(δ)+βk1δ+γ)(C(δ)+βk2δ+γ)
−Φ(δω)(A(δ)+βSσ,1(δ)+γ)(B(δ)+βSσ,2(δ)+γ)(C(δ)+βSσ,3(X)+γ)

)
,

Lcopy2(X) := L1(δ)(Φ(X)− 1),

Ldivision(X) := ZH(δ)
[
T1(X) + δn+2T2(X) + δ2n+4T3(X)

]
.

Compute the linearization polynomial

L(X) := Lgates(X) + α · Lcopy1(X) + α2 · Lcopy2(X)− Ldivision(X),

and the aggregated quotient polynomials

Q1(X) :=
1

X − δ

(
L(X)+ε

[
A(X)−A(δ)

]
+ε2
[
B(X)−B(δ)

]
+ε3
[
C(X)−C(δ)

]
+ε4
[
Sσ,1(X)−Sσ,1(δ)

]
+ε5
[
Sσ,2(X)−Sσ,2(δ)

] )
,

Q2(X) :=
Φ(X)− Φ(δω)

X − δω
.

The fifth part of the proof are the commitments

π1 := g
Q1(τ)
1 , π2 := g

Q2(τ)
1 .

Output the full proof

πPLONK :=

(
cA, cB , cC , cΦ, cT1

, cT2
, cT3

, π1, π2,
aδ, bδ, cδ, sσ1,δ, sσ2,δ, ϕδω

)
∈ G9

1 × F6
p.

Verify
(
vp, (xi)i∈[ℓ], πPLONK

)
: Compute the challenges β, γ, α, δ, ε ∈ Fp the

same way as the prover, and the multipoint evaluation challenge ζ ∈ Fp as

ζ := H(inputs, cA, cB , cC , cΦ, cT1
, cT2

, cT3
, aδ, bδ, cδ, sσ1,δ, sσ2,δ, ϕδω, π1, π2).
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Compute the commitments

cLgates
:= cSL

aδ · cSR

bδ · cSO

cδ · cSM

aδbδ · cSC
· gSPI(δ)

1 ,

cLcopy1
:=

cΦ
(aδ+βδ+γ)(bδ+βk1δ+γ)(cδ+βk2δ+γ)(

cSσ,3
β · gcδ+γ

1

)ϕδω(aδ+βsσ1,δ+γ)(bδ+βsσ2,δ+γ)
,

cLcopy2
:=
(
cΦ · g−1

1

)L1(δ)
,

cLdivision
:=
(
cT1
· cT2

δn+2

· cT3

δ2n+4
)ZH(δ)

,

cL := cLgates · (cLcopy1
)α · (cLcopy2

)α
2

· (cLdivision
)−1,

where ZH(δ) = δn − 1, Li(δ) =
ωi(δn − 1)

n(δ − ωi)
, SPI(δ) =

∑
i∈[ℓ]

−xiLi(δ).

Then, compute

C1 := cL·

(
cA
gaδ
1

)ε

·

(
cB

gbδ1

)ε2

·

(
cC
gcδ1

)ε3

·

(
cSσ,1

g
sσ1,δ

1

)ε4

·

(
cSσ,2

g
sσ2,δ

1

)ε5

, C2 :=
cΦ

gϕδω

1

,

and accept iff

e
(
C1 · π1

δ ·
(
C2 · π2

δω
)ζ
, g2
)

?
= e
(
π1 · π2

ζ , gτ2

)
.

Statistical completeness. Note that in step 3 of PLONK’s prover algorithm, it is
possible that f(ωj)

g(ωj) is undefined due to g(ωj) = 0 for some j ∈ [n]. In this case,
the protocol has to be aborted. Fortunately, this can only happen with negligible
probability ≤ 3n/p over the choice of the permutation challenge γ ∈ Fp, i.e,
PLONK is statistically complete.

Vulnerability in a previous version of PLONK. Since the authors of PLONK
never constructed a simulator to formally prove that PLONK is zero-knowledge
(cf. [GWC19a, Sec. 8]), our attempt to do so led to the discovery of a vulnerability
in their original implementation of step 5 of the Prove algorithm [GWC19b].

In this step, the prover decomposes the computed quotient polynomial T (X)
of degree ≤ 3n+ 5 into three lower-degree polynomials as an optimization that
keeps the SRS size minimal with respect to the circuit size n and the degree of the
other polynomials committed to in a PLONK proof. In the original specification,
the prover directly commits to the polynomials T ′

1, T
′
2, T

′
3 ∈ F(≤n+1)

p [X] (instead
of the randomized polynomials T1, T2, T3 ∈ F(≤n+2)

p [X] used in the fixed version).
Even though a simulator is able to compute the correct evaluation of T (τ), it does
not have enough information to compute the correct values T ′

1(τ), T
′
2(τ), T

′
3(τ)

satisfying T (τ) = T ′
1(τ)+τn+2 ·T ′

2(τ)+τ2n+4 ·T ′
3(τ). While there are p2 possible
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triples in F3
p satisfying this equation, only one of them corresponds to the correct

distribution of T ′
1(τ), T

′
2(τ), T

′
3(τ) in the execution of the real protocol.

We fixed this issue in collaboration with the authors of PLONK by random-
izing these three polynomials in a way that preserves how they combine to T
while enabling a correct simulation. Essentially, they are randomized such that
the values of T1(τ), T2(τ), T3(τ) are distributed uniformly in F3

p conditioned on
satisfying T (τ) = T1(τ)+τn+2 ·T2(τ)+τ2n+4 ·T3(τ). We discuss this fix in more
detail in the next section, where we present our simulator.

3 PLONK is statistically zero-knowledge

As our main result we prove the following theorem by constructing a simulator
for PLONK and arguing that it has the correct output distribution.

Theorem 1. The patched version of PLONK (Construction 1) is statistically
zero-knowledge.

To show this, we will rely on the following lemma (for a proof, see Appendix A.2),
which explains why the prover’s witness polynomials are randomized by adding
the product of a random blinding polynomial and ZH .

Lemma 1. Let S ⊂ Fp and ZS(X) :=
∏

a∈S(X−a). Fix a polynomial f ∈ Fp[X]
and any distinct values x1, . . . , xk ∈ Fp \ S. Then the following distribution is
uniform in Fk

p:

1. Choose a random polynomial ρ← F(≤k−1)
p [X] of degree k − 1 and define

f̃(X) := f(X) + ZS(X)ρ(X).

2. Output
(
f̃(x1), . . . , f̃(xk)

)
∈ Fk

p.

As a consequence, the number of independent and uniform evaluations of a
polynomial randomized in this way depends on the degree of the used blinding
polynomial ρ(X), i.e., a constant blinding polynomial enables the simulation of a
single evaluation, a linear polynomial of two, etc. This also explains why the wire
polynomials A,B,C are randomized using linear blinding polynomials, while the
permutation check polynomial Φ uses a quadratic blinding polynomial: A,B,C,
and Φ have to account for their commitments (which correspond to evaluations
at τ) as well as the openings at the evaluation challenge δ (respectively δω in
the case of Φ), but Φ additionally has to compensate for the commitment to the
quotient polynomial T (or its decomposition into T1, T2, T3), since the value of
T (τ) depends on Φ(τω) (cf. step 5 of Prove in Construction 1).

An important condition of the lemma is that the evaluation points come from
Fp \H, which means that both the SRS trapdoor τ and the evaluation challenge
δ must not be in H. Since H := ⟨ω⟩ = {ω1, ω2, . . . , ωn} with n = poly(λ),
we have |H| / |Fp| = negl(λ), i.e., we can ignore this case when constructing
a simulator for PLONK and still obtain statistical zero knowledge. Also, since
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H is a multiplicative order-n subgroup of Fp, this ensures that the remaining
evaluation points τω and δω come from Fp \H as well.

In summary, as long as τ, δ ∈ Fp \H, the commitments to the witness poly-
nomials A,B,C,Φ using evaluations at τ as well as the evaluations of these
polynomials at the points δ and δω are distributed independently and uniformly
in Fp, hiding any information about the prover’s witness.

The simulator. We present our simulator S for PLONK in Construction 2. We
will assume that both the SRS trapdoor τ and the evaluation challenge δ come
from Fp\H. In this case, S perfectly simulates PLONK when ignoring the aborts
caused by denominators being zero in the computation of the permutation check
polynomial Φ, as well as the cases δ = τ or δω = τ , which is why we attain
statistical zero knowledge. Furthermore, we only give the second part of the
simulator from Definition 5, implicitly assuming it runs the Setup algorithm to
create a well-formed srs with a uniform trapdoor τ ∈ Fp \H as its first output.

Construction 2: Simulator for PLONK.

S
(
τ, pp, (xi)i∈[ℓ]

)
:

1. Choose random aτ , bτ , cτ ← Fp and compute the commitments

cA := gaτ
1 , cB := gbτ1 , cC := gcτ1 .

2. Compute the permutation challenges β, γ ∈ Fp.

3. Choose random ϕτ ← Fp and compute the commitment cΦ := gϕτ

1 .

4. Compute the quotient challenge α ∈ Fp.

5. Choose random ϕτω ← Fp (if τ = 0, set ϕτω := ϕτ instead) and compute
the evaluation of the quotient polynomial T at τ as

tτ :=
1

ZH(τ)


[
SL(τ)aτ+SR(τ)bτ+SO(τ)cτ+SM(τ)aτ bτ+SC(τ)+SPI(τ)

]
+α

[
ϕτ (aτ+βτ+γ)(bτ+βk1τ+γ)(cτ+βk2τ+γ)

−ϕτω(aτ+βSσ,1(τ)+γ)(bτ+βSσ,2(τ)+γ)(cτ+βSσ,3(τ)+γ)

]
+α2
[
L1(τ)(ϕτ−1)

]
.

Choose random t2, t3 ← Fp and compute t1 := tτ − τn+2 · t2− τ2n+4 · t3
such that tτ = t1 + τn+2 · t2 + τ2n+4 · t3. Compute the commitments

cT1
:= gt11 , cT2

:= gt21 , cT3
:= gt31 .

6. Compute the evaluation challenge δ ∈ Fp.

7. If δ = τ or δω = τ , abort. Otherwise, choose random aδ, bδ, cδ, ϕδω ← Fp

and compute the evaluations sσ1,δ := Sσ,1(δ), sσ2,δ := Sσ,2(δ).

8. Compute the opening challenge ε ∈ Fp.
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9. Compute the evaluation of the linearization polynomial L at τ as

lτ :=


[
aδSL(τ)+bδSR(τ)+cδSO(τ)+aδbδSM(τ)+SC(τ)+SPI(δ)

]
+α

[
ϕτ (aδ+βδ+γ)(bδ+βk1δ+γ)(cδ+βk2δ+γ)

−ϕδω(aδ+βSσ,1(δ)+γ)(bδ+βSσ,2(δ)+γ)(cδ+βSσ,3(τ)+γ)

]
+α2
[
L1(δ)(ϕτ−1)

]
−ZH(δ)

[
t1+δn+2t2+δ2n+4t3

]
.

Then, compute the opening proofs as

π1 := g

1
τ−δ

(
lτ+ε(aτ−aδ)+ε2(bτ−bδ)+ε3(cτ−cδ)

+ε4(Sσ,1(τ)−Sσ,1(δ))+ε5(Sσ,2(τ)−Sσ,2(δ))

)
1 , π2 := g

ϕτ−ϕδω
τ−δω

1 .

Output the simulated proof

π̃PLONK :=

(
cA, cB , cC , cΦ, cT1

, cT2
, cT3

, π1, π2,
aδ, bδ, cδ, sσ1,δ, sσ2,δ, ϕδω

)
∈ G9

1 × F6
p.

Proof. Let us argue why S perfectly simulates PLONK when ignoring the aborts
caused by Φ /∈ Fp[X], i.e., the permutation check polynomial being undefined as
discussed in Section 2.2, as well as the cases δ = τ or δω = τ . Specifically, we
will show that under these conditions all the elements in a real PLONK proof
πPLONK are either uniformly random or determined by the verifier equations,
and that a proof π̃PLONK generated by our simulator S has exactly the same
distribution.

To this end, we begin by analyzing the distribution of all the elements con-
tained in a real PLONK proof

πPLONK :=

(
g
A(τ)
1 , g

B(τ)
1 , g

C(τ)
1 , g

Φ(τ)
1 , g

T1(τ)
1 , g

T2(τ)
1 , g

T3(τ)
1 , g

Q1(τ)
1 , g

Q2(τ)
1 ,

A(δ), B(δ), C(δ), Sσ,1(δ), Sσ,2(δ),Φ(δω)

)
.

Note that Sσ,1(δ), Sσ,2(δ) are the evaluations of the public polynomials Sσ,1, Sσ,1

at the evaluation challenge δ, and hence trivially correctly simulated. Moreover,
g
A(τ)
1 , g

B(τ)
1 , g

C(τ)
1 , g

Φ(τ)
1 , A(δ), B(δ), C(δ),Φ(δω) are just uniform group and field

elements due to the randomization of the polynomials A,B,C,Φ according to
Lemma 1 and our assumption that τ, δ ∈ Fp \H. This is exactly how S chooses
aτ , bτ , cτ , ϕτ ∈ Fp in steps 1 and 3 to produce the commitments to the poly-
nomials A,B,C,Φ. The same is true in step 7, where S again outputs uniform
values aδ, bδ, cδ, ϕδω ∈ Fp as the evaluations A(δ), B(δ), C(δ),Φ(δω).

The commitment to the quotient polynomial gT (τ)
1 in step 5 can be simulated

directly, as T (τ) is a deterministic function in τ with all the necessary inputs
known to the simulator (cf. the computation of tτ in step 5 of S). On the contrary,
simulating the commitments to the decomposed polynomials T1, T2, T3 satisfying

T (X) = T1(X) +Xn+2 · T2(X) +X2n+4 · T3(X)

is more delicate. As explained in the previous section, this is exactly where the
specification of PLONK prior to our fix, which instead commits to the determin-
istic polynomials T ′

1, T
′
2, T

′
3, leaks information about the prover’s witness polyno-
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mials, and thus cannot be perfectly simulated. Instead, let us argue why S cor-
rectly simulates the commitments to the now randomized polynomials T1, T2, T3

in step 5. By the randomness of ρ10, ρ11 ∈ Fp, both T2(τ) = T ′
2(τ)−ρ10+ρ11·τn+2

and T3(τ) = T ′
3(τ)−ρ11 are distributed independently and uniformly in Fp. The

value of T1(τ) = T ′
1(τ) + ρ10 · τn+2 is then uniquely determined by the equality

T (τ) = T1(τ) + τn+2 · T2(τ) + τ2n+4 · T3(τ), which is precisely how S chooses
t1, t2, t3 to compute its commitments cT1

:= gt11 , cT2
:= gt21 , cT3

:= gt31 .
Lastly, S also correctly simulates the opening proofs g

Q1(τ)
1 , g

Q2(τ)
1 in step 9

when δ ̸= τ and δω ̸= τ , since both of them are deterministic functions in τ in
this case, with all the necessary inputs known to the simulator. For example,
see how S computes the value lτ , which is the evaluation of the linearization
polynomial L(τ) required for g

Q1(τ)
1 .

Having established that S perfectly simulates PLONK conditioned on the
event τ, δ ∈ Fp \ H, τ ̸= δ, τ ̸= δω, and Φ being well-defined, i.e., Φ ∈ Fp[X],
we can turn this into a formal proof of statistical zero knowledge as defined in
Definition 5. Let F denote the complementary event in which our simulator S is
unable to produce correctly distributed proofs. Recalling from Section 2.2 that
the abort probability due to Φ being undefined is at most 3n/p, we get

Pr[F] = Pr
[
τ ∈ H ∨ δ ∈ H ∨ τ = δ ∨ τ = δω ∨ Φ /∈ Fp[X]

]
≤ n+ n+ 1 + 1 + 3n

p
=

5n+ 2

p
.

With this, we can show that the difference of the two probabilities in Definition 5
is negligible as well. Using IP and IS to denote the respective two events from
the definition, i.e., the adversary interacting with the honest prover P or with
our simulator S, we have Pr[IP | F̄] = Pr[IS | F̄] by the arguments laid out
above, and thus Pr[IP ∧ F̄] = Pr[IS ∧ F̄]. From this we get∣∣Pr[IP ]− Pr[IS ]

∣∣ = ∣∣(Pr[IP ∧ F] + Pr[IP ∧ F̄]
)
−
(
Pr[IS ∧ F] + Pr[IS ∧ F̄]

)∣∣
=
∣∣Pr[IP ∧ F]− Pr[IS ∧ F]

∣∣ ≤ 5n+ 2

p
= negl(λ).

The final inequality follows from the fact that both Pr[IP ∧ F] and Pr[IS ∧ F]
are at most Pr[F], and so their difference cannot be any larger. This finishes the
proof of PLONK’s statistical zero knowledge. ⊓⊔

4 Old PLONK is not statistically zero-knowledge

We demonstrate that the previous version of PLONK [GWC19b], where the
prover directly commits to the polynomials T ′

1, T
′
2, T

′
3 ∈ F(≤n+1)

p [X] instead of
the randomized T1, T2, T3 ∈ F(≤n+2)

p [X] (cf. step 5 of Prove in Construction 1),
is not statistically zero-knowledge, aligning with our intuition of not being able
to find a way to simulate its proofs.

Theorem 2. The previous version of PLONK is not statistically zero-knowledge.
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We will prove this claim by showing that this old version of PLONK does not even
satisfy statistical witness indistinguishability, which by the discussion following
Definition 6 gives the result.

Proposition 1. The previous version of PLONK is not statistically witness-
indistinguishable.

Proof. We construct an adversary A (see Construction 3) that breaks witness
indistinguishability in the case of n = 1, concretely, for the statement of mul-
tiplying any two values w1, w2 ∈ Fp such that w3 = w1 · w2 (mod p). This
corresponds to a circuit with a single multiplication gate and no public inputs
as depicted in Figure 1. In the PLONK constraint system this is expressed as
the statement output by A in step 1.

×
w1 w2

w3

Fig. 1. A single multiplication gate with private values w1, w2, w3 ∈ Fp.

Since the adversary is unbounded, we will assume that whenever it gets a value
of the form gx1 , it implicitly recovers x ∈ Fp, e.g., when seeing a KZG [KZG10]
commitment g

f(τ)
1 to a polynomial f ∈ Fp[X], it learns f(τ).

Construction 3: Adversary breaking statistical witness indistin-
guishability of old PLONK.

A
(
srs
)
:

1. Choose all distinct w1, w2, w3, w
′
1, w

′
2, w

′
3 ∈ Fp such that w1 · w2 = w3

and w′
1 · w′

2 = w′
3. Define the identity permutation σ := (1)(2)(3),

i :=
(
(0, 0,−1, 1, 0), σ

)
, x := ∅, w0 := (w1, w2, w3), w1 := (w′

1, w
′
2, w

′
3),

and output (i,x,w0,w1).

2. Receive the proof

πPLONK :=

(
g
A(τ)
1 , g

B(τ)
1 , g

C(τ)
1 , g

Φ(τ)
1 , g

T ′
1(τ)

1 , g
T ′
2(τ)

1 , g
T ′
3(τ)

1 , π1, π2,
A(δ), B(δ), C(δ), Sσ,1(δ), Sσ,2(δ),Φ(δω)

)
.

3. Compute the following values over Fp as

ρ∗1 :=
[
(A(τ)− w1)(τ − 1)−1 − (A(δ)− w1)(δ − 1)−1

]
(τ − δ)−1,

ρ∗3 :=
[
(B(τ)− w2)(τ − 1)−1 − (B(δ)− w2)(δ − 1)−1

]
(τ − δ)−1.

If any of the inverses is undefined, or if ρ∗1 · ρ∗3 = T ′
2(τ), output 0;

otherwise, output 1.
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For this particular statement, the parameters involved in the computation of a
PLONK proof simplify to:

srs =
(
g1, g

τ
1 , g

τ2

1 , gτ
3

1 , g2, g
τ
2

)
, ω = 1, L1(X) = 1, ZH(X) = X − 1,

SL(X) = 0, SR(X) = 0, SO(X) = −1, SM(X) = 1, SC(X) = 0, SPI(X) = 0,

Sid,1(X) = Sσ,1(X) = 1, Sid,2(X) = Sσ,2(X) = k1, Sid,3(X) = Sσ,3(X) = k2,

A(X) = (ρ1X + ρ2)ZH(X) + w1,

B(X) = (ρ3X + ρ4)ZH(X) + w2,

C(X) = (ρ5X + ρ6)ZH(X) + w3,

f(X) = g(X) = (A(X) + β + γ)(B(X) + βk1 + γ)(C(X) + βk2 + γ),

Φ(X) = (ρ7X
2 + ρ8X + ρ9)ZH(X) + 1.

The quotient polynomial is computed as

T (X) :=
gates(X) + α · copy1(X) + α2 · copy2(X)

ZH(X)
,

where gates(X) :=
(

SL(X)A(X)+SR(X)B(X)+SO(X)C(X)
+SM(X)A(X)B(X)+SC(X)+SPI(X)

)
= A(X)B(X)− C(X),

copy1(X) := Φ(X)f(X)− Φ(Xω)g(X) = 0,

copy2(X) := L1(X)(Φ(X)− 1) = (ρ7X
2 + ρ8X + ρ9)ZH(X).

Concretely, this simplifies to:

T (X) = (ρ1ρ3)X
3 + (ρ1ρ4 + ρ2ρ3 − ρ1ρ3 + α2ρ7)X

2

+ (w1ρ3 + w2ρ1 + ρ2ρ4 − ρ1ρ4 − ρ2ρ3 − ρ5 + α2ρ8)X

+ w1ρ4 + w2ρ2 − ρ2ρ4 − ρ6 + α2ρ9

Recall that T ′
1, T

′
2, T

′
3 ∈ F(≤n+1)

p [X] and that n+ 1 = 2 here. Thus, we get

T ′
1(X) = T (X)− (ρ1ρ3)X

3, T ′
2(X) = ρ1ρ3, T ′

3(X) = 0.

Note, in particular, that the commitment to T ′
2 leaks the product of the blinding

scalars ρ1, ρ3. We will show how the adversary can recover the correct values
of ρ1, ρ3 assuming it chooses the correct witness for this computation. Finally,
the adversary just has to check if the resulting product matches the given value
T ′
2(τ) to distinguish the two witnesses.

Assume the proof was computed using the first witness w0 = (w1, w2, w3),
i.e., A(X) = (ρ1X + ρ2)(X − 1) + w1. Then, with the values τ, δ, A(τ), A(δ) all
known to A, it can solve the following system of 2 linear equations in the 2
unknowns ρ1, ρ2 over Fp:

τρ1 + ρ2 = (A(τ)− w1)(τ − 1)−1

δρ1 + ρ2 = (A(δ)− w1)(δ − 1)−1
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Concretely, A computes (A(τ)−w1)(τ−1)−1−(A(δ)−w1)(δ−1)−1 = (τ−δ)ρ1,
and then multiplies by (τ−δ)−1 to obtain ρ1. Note that the probability that any
of these inverses does not exist is negligible. Using the values τ, δ, B(τ), B(δ), the
adversary can recover ρ3 in an analogous fashion.

Let IA,w0
and IA,w1

denote the two events inside of the probabilities in
Definition 6, i.e.,A interacting with proofs generated under the witnessw0 orw1,
respectively. From the arguments laid out above, it follows that Pr[IA,w0 ] = 0.
So in order for A to break PLONK’s witness indistinguishability, it suffices to
show that Pr[IA,w1

] is non-negligible. We will argue that the only two events
making A output 0 in this case are negligible, concretely:

1. At least one of the elements (τ − 1), (δ − 1), (τ − δ) is not invertible.

2. It holds that ρ∗1 · ρ∗3 = T ′
2(τ).

The former can be trivially bounded by 3/p, while the latter requires some more
analysis. Assume the former event does not occur, i.e., (τ − 1), (δ − 1), (τ − δ)
are non-zero. Then we want to bound the probability that ρ∗1 · ρ∗3 = ρ1 · ρ3,
where ρ∗1, ρ

∗
3 are computed according to step 3 of Construction 3 and ρ1, ρ3 are

the correct blinding scalars, i.e., can be computed the same way as ρ∗1, ρ
∗
3 but

with w1, w2 replaced by w′
1, w

′
2. After doing some simplification, i.e., multiplying

both sides of ρ∗1 · ρ∗3 = ρ1 · ρ3 by (τ − δ)2(τ − 1)(δ − 1), we can look at this as a
polynomial equation in δ over Fp. One can verify (by expanding the respective
expressions) that the highest occurring degree of δ in this equation is at most 4.
Since δ ∈ Fp \ {1, τ}, we can apply the Schwartz–Zippel lemma to see that the
probability of ρ∗1 ·ρ∗3 = T ′

2(τ) is at most 4/(p−2) over the choice of δ. Altogether,
we get

Pr[IA,w1 ] ≥ 1− 3

p
− 4

p− 2
≥ 1− 7

p− 2
,

which is clearly non-negligible, finishing the proof. ⊓⊔

The general case. In general, it is possible for an unbounded adversary to re-
cover the values of all the blinding scalars ρ1, . . . , ρ9 used to mask the polyno-
mials A,B,C,Φ in a similar fashion as in the special case n = 1 above. The
values of ρ1, . . . , ρ6 can be obtained by solving the 3 systems of linear equations
resulting from the given evaluations {A(τ), A(δ)}, {B(τ), B(δ)}, {C(τ), C(δ)},
respectively. The values of ρ7, ρ8, ρ9 can be obtained using the given evaluations
Φ(τ),Φ(δω), as well as recovering the evaluation Φ(τω), which is used to com-
pute copy1(X) := Φ(X)f(X)−Φ(ωX)g(X) in step 5 of Prove in Construction 1.
More precisely, we compute T (τ) as T ′

1(τ) + τn+2T ′
2(τ) + τ2n+4T ′

3(τ), and then
apply some basic arithmetic involving the given values A(τ), B(τ), C(τ),Φ(τ)
to recover Φ(τω). This then results in a fully determined system of 3 linear
equations with 3 unknowns. Finally, it is again possible to compute candidate
values for T ′

1(τ), T
′
2(τ), T

′
3(τ) and check (with high probability) which of the two

witnesses was used to compute the proof.
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5 Conclusion

This work highlights the importance of rigorous security proofs in the design
of cryptographic schemes. In the case of PLONK, the lack thereof led to a vul-
nerability in its zero-knowledge implementation, which we discovered and fixed
as a result of this work. Moreover, we proved that the resulting specification of
PLONK achieves statistical zero knowledge.

On the contrary, we showed that the old specification does not satisfy this
claimed notion of zero knowledge. We leave it for future work to prove or disprove
whether the previous version of PLONK achieves computational zero knowledge.
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A Proofs

A.1 ZK implies WI

We prove that zero knowledge, as formalized in Definition 5, implies witness
indistinguishability, as formalized in Definition 6, for zk-SNARKs.

Proof. Assume Π = (Setup,Preproc,Prove,Verify) is zero-knowledge. Let A be
an arbitrary adversary against the witness indistinguishability of Π. Without
loss of generality, assume that w0 ̸= w1. Construct the two adversaries A0,A1

against zero knowledge of Π that behave exactly as A, but instead of returning
(i,x,w0,w1, st) as their first output, A0 only returns (i,x,w0, st), and A1 only
returns (i,x,w1, st).

For i ∈ {0, 1}, let IAi,P and IAi,S denote the two events from the definition
of zero knowledge, in which Ai is interacting with the honest prover P or the
simulator S, respectively. Then we have∣∣Pr[IA0,P ]− Pr[IA0,S ]

∣∣ ≤ negl(λ), (1)∣∣Pr[IA1,P ]− Pr[IA1,S ]
∣∣ ≤ negl(λ), (2)

which together implies ∣∣Pr[IA0,P ]− Pr[IA1,P ]
∣∣ ≤ negl(λ). (3)

Note that this expression is equivalent to A’s advantage in breaking the witness
indistinguishability of Π, which is therefore also negligible. ⊓⊔

A.2 Proof of Lemma 1

We give a proof of Lemma 1, which is used to blind the prover’s witness poly-
nomials in PLONK in a way that reveals no information about the witness.

Proof. For all i ∈ [k], we have

f̃(xi) = f(xi) + ZS(xi)ρ(xi),

where the values f(xi), ZS(xi) are fixed and ZS(xi) ̸= 0 (due to xi ∈ Fp \ S).
Since the product of any fixed a ∈ F∗

p and random b ∈ Fp is uniform in Fp, all we
need to show is that the values ρ(x1), . . . , ρ(xk) are distributed independently
and uniformly in Fp, which is a well-known claim for any random degree-(k− 1)
polynomial such as ρ ∈ F(≤k−1)

p [X]. One way to see this, is by fixing any distinct
x1, . . . , xk ∈ Fp and observing that for any choice of y1, . . . , yk ∈ Fp there is a
unique degree-(k − 1) polynomial interpolating the points (x1, y1), . . . , (xk, yk).
Formally, there are pk distinct degree-(k − 1) polynomials over Fp, which corre-
sponds to the number of choices for y1, . . . , yk ∈ Fp. Furthermore, there cannot
be any two distinct polynomials f1 ̸≡ f2 ∈ F(≤k−1)

p [X] interpolating the same
set of points (x1, y1), . . . , (xk, yk), since otherwise the non-zero, degree-(k − 1)
polynomial f1 − f2 would have at least k roots, which is a contradiction. ⊓⊔
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