
PathGES: An Efficient and Secure Graph Encryption Scheme for
Shortest PathQueries∗

Francesca Falzon

ETH Zürich

Zürich, Switzerland

ffalzon@ethz.ch

Esha Ghosh

Microsoft Research

Redmond, USA

esha.ghosh@microsoft.com

Kenneth G. Paterson

ETH Zürich

Zürich, Switzerland

kenny.paterson@inf.ethz.ch

Roberto Tamassia

Brown University

Providence, Rhode Island

roberto@tamassia.net

ABSTRACT

The increasing importance of graph databases and cloud storage

services prompts the study of private queries on graphs.We propose

PathGES, a graph encryption scheme (GES) for single-pair shortest

path queries. PathGES is efficient and mitigates the state-of-the-

art attack by Falzon and Paterson (2022) on the GES by Ghosh,

Kamara, and Tamassia (2021), while only incurring an additional

logarithmic factor in storage overhead. PathGES leverages a novel

data structure that minimizes leakage and server computation.

We generalize what it means for one leakage function to leak

less than another by defining a relation with respect to a family of

query sequences and show that our scheme provably leaks less than

the GKT scheme when all queries have been issued. We comple-

ment our security proof with a cryptanalysis that demonstrates an

information-theoretic gap in the size of the query reconstruction

space of our scheme as compared to the GKT scheme and pro-

vide concrete examples of the gap for several graph families. Our

prototype implementation of PathGES is efficient in practice for

real-world social network and geographic data sets. In comparison

with the GKT scheme, PathGES has on average the same response

size and up to 1.5x faster round-trip query time.

KEYWORDS

Graph Databases; Encrypted Databases; Searchable Encryption

1 INTRODUCTION

Graphs model data in numerous large-scale real-world applications

ranging from fraud detection to biological networks to recommen-

dation systems. Plaintext graph databases have consequently been

heavily studied andwidely deployed in industry including Facebook

Tao [64], Amazon Neptune [1], GraphDB [55], and Neo4j [53].

When a graph database is outsourced to a cloud service, one

naive solution for privacy is to upload the encrypted database and

download it each time a query is issued. An alternative solution is

to use strong, but computationally expensive cryptographic tech-

niques such as fully-homomorphic encryption [24] or oblivious

RAM [29]. These approaches are either bandwidth inefficient or not

yet scalable, which begs the question of whether efficient server-

side query processing on an encrypted graph is possible.

Chase andKamara introduced structured encryption (STE) [14]

as a generalization of searchable symmetric encryption (SSE) [3,

6, 9, 10, 14, 17, 25, 33, 34, 52, 63]. STE enables the encryption of

structured data such that the data can be privately queried in sub-

linear time. STE gains its efficiency by sacrificing security to an

extent: these schemes leak some information about the queries

∗
This is the full version of work accepted to CCS 2024.

or underlying data. Security of STE is typically proven using the

real-ideal paradigm, which states that the scheme does not leak any

information beyond some well-defined leakage function. A long

line of work has shown that such leakage can be detrimental to the

security of schemes supporting key-word search (e.g., [8, 18, 56])

and range queries (e.g.[21, 30, 35, 38–40, 49]), emphasizing the im-

portance of cryptanalyzing proposed schemes.

A graph encryption scheme (GES) is a form of STE that en-

ables one to encrypt a graph, outsource it to an untrusted server,

and then process queries over the encrypted graph. These schemes

are efficient, often incurring only a constant overhead over plain-

text variants. Our understanding of GESs is still in its infancy, and

existing schemes typically support only a single query type, such as

adjacency queries [14], approximate shortest distance queries [50],

or single-pair shortest path queries [26].

A single-pair shortest path (SPSP) query on a graph𝐺 takes

as input a pair of vertices, 𝑢 and 𝑣 , of 𝐺 and outputs a shortest

path between 𝑢 and 𝑣 . SPSP queries have important applications to

social network analysis, routing, resource management, and biol-

ogy [67]. To support SPSP queries, one could use the trivial solution

of running the all-pairs-shortest-paths algorithm on 𝐺 , computing

a dictionary that maps each query to the corresponding shortest

path, and then using a standard encrypted multimap scheme (such

as [9]) to encrypt the dictionary. Although this approach is straight-

forward to implement and offers optimal bandwidth complexity, the

storage overhead is quadratic. As a result, alternative GES construc-

tions have been proposed to reduce this storage overhead, while

still offering similar security guarantees. One such work is the GES

by Ghosh, Kamara, and Tamassia [26] – hence forth referred to as

the GKT scheme – which supports SPSP queries.

While there are a variety of leakage abuse attacks against STE

schemes supporting range queries, work on attacks against GESs is

limited. Assuming a passive server-side honest-but-curious adver-

sary that knows the plaintext graph, 𝐺 , and observes SPSP queries

issued on the GKT scheme for𝐺 , Falzon and Paterson [23] recently

demonstrated an attack that aims at reconstructing the plaintext

queries issued by the client. Their attack is optimal in the absence

of auxiliary information. It recovers the plaintext queries up to

an equivalence set of queries that are indistinguishable from the

leakage. They show that this set can be as small as 3 to 5 queries

on real-world social network graphs.

We propose PathGES, a new GES supporting SPSP queries. Our

scheme has quantifiably less leakage for a large class of graphs

than the GKT scheme and is designed in light of the attack of

Falzon and Paterson [23]. The key to our reduced leakage is our

new data structure for SPSP queries that minimizes leakage and

server computation. First, we compute the spanning shortest-path

1

ePrint, May, 2024 Falzon et al.

Scheme

Scheme Complexity Attack Size of Query Reconstruction Space

Resp size Query time Space Citation 𝐾𝑛 𝐿𝑛 𝑆𝑛 𝐺𝑛

GKT [26] 𝑡 𝑡 𝑛2 [23] (𝑛!)𝑛+1 2
𝑛/2

1 ≤
(
2

7𝑛−2
√
𝑛+4

4

)
PathGES 2𝑡 log𝑛 + 2𝑡 𝑛2 log𝑛 – (𝑛2)! ≥ (𝑛!) log𝑛−1 ≥ 𝑛∏log(𝑛+1)−3

𝑖=0
(2𝑖 !) ≥

(√
𝑛

4
!

) √𝑛
2
𝑛

Table 1: Comparison of our PathGES scheme with the GKT scheme [26] for SPSP queries. Here, 𝑛 is the number of vertices of the graph, 𝑡 is the

length of the shortest path returned by a query, 𝐾𝑛 is the complete graph, 𝐿𝑛 is the line graph and 𝑆𝑛 is the “asymmetric star” with one central

vertex and log(𝑛 + 1) − 1 incident paths of lengths 2
1, . . . , 2log(𝑛+1)−1, and𝐺𝑛 is the grid graph of size

√
𝑛 ×
√
𝑛.

trees rooted at each node in the graph 𝐺 that we wish to encrypt.

These trees are decomposed into edge-disjoint paths, which are

further processed into a set of fragments and stored in a sequence

of two encrypted multimaps.

Unlike in the GKT scheme, PathGES prevents a server-side ad-

versary from computing the query trees (trees that are isomorphic

to spanning trees of the underlying graph𝐺 and whose paths corre-

spond to the queried shortest paths) in all but trivial cases, and thus

defends against the first essential step of the attack in [23]. Infor-

mally, the query reconstruction space of a GES is the number of

unique assignments of plaintext queries to each issued query that

produces that same leakage. We characterize the query reconstruc-

tion space of our scheme and show that for many graph families,

the gap in the size of the query reconstruction space between our

scheme and the GKT scheme is at least super-polynomial in the

number of vertices in𝐺 (See Table 1). We further explain why query

recovery against our scheme reduces to the graph isomorphism

problem, a problem which is not known to be polynomial-time

solvable for general graphs.

We generalize the order relation on leakage functions by Bost

and Fouque [5] to families of query sequences; our relation implies

an upper bound on the size of the query reconstruction space. We

then show that our scheme leaks less than the GKT scheme for

the family of query sequences in which each SPSP query has been

issued at least once. While this is a slightly weaker notion, we note

that many leakage functions are not directly comparable under

Bost and Fouque’s definition since the order relation on leakage

functions is a partial ordering [5]. This highlights the subtleties of

comparing two complex leakage functions.

Our scheme offers 𝑂 (𝑛2 log𝑛) storage overhead (vs. 𝑂 (𝑛3) for
the trivial solution). Compared to the GKT scheme, it offers a re-

duced leakage function at the expense of only a logarithmic factor

increase in storage and slightly longer setup times (i.e., at most

4.1× constant factor increase for the real-world datasets tested).

PathGES also achieves optimal asymptotic bandwidth complexity,

incurring no more than a 2x constant factor over the trivial solution.

We support our scheme with a proof of security, cryptanalysis,

and an implementation to demonstrate the scheme’s practicality

on real-world datasets. On average, the response size of PathGES
is similar to that of the GKT scheme, while its query time is up

to 1.5x faster for longer paths with the potential for further speed-up

through parallelism. In contrast, the GKT scheme’s query algorithm

cannot be parallelized due to its inherently sequential processing.

1.1 Prior work

Schemes. Meng et al. [50] present three schemes that leverage

sketch-based distance oracles to support shortest distance queries.

Liu et al. [47] and Shen et al. [61] also use distance oracles to pre-

compute the shortest distances between queries; the former uses

order-preserving encryption for efficiency at the expense of leaking

the orders of the distances at setup, and the latter only supports

constrained shortest path distance queries. Wang et al. [65] utilize

additive homomorphic encryption and garbled circuits to encrypt

graph data and support shortest distance queries, however, their

scheme relies on a third party, the proxy. Ghosh et al. [26] describe

a scheme based on the SP-matrix of the graph and whose setup

time, query time, and storage are asymptotically optimal. An attack

on this scheme was presented in [23].

Most recently, Chamani et al. [12] propose GraphOS; in contrast

to PathGES which preprocesses the shortest paths in a multimap

and then encrypts the data structure, GraphOS takes a more gen-

eral approach that uses a trusted server-side enclave and doubly-

oblivious primitives to access the vertices/edges of a graph and

execute graph queries in an online manner. Their scheme assumes

a different threat model and leaks less information than our scheme,

at the expense of multiple expensive oblivious look-ups. As an exam-

ple, querying for the shortest path using GraphOS requires running

Dijkstra’s algorithm on the encrypted graph and the query time is

thus orders of magnitude larger than the standard multimap lookup

of our scheme (e.g., 10
2.5

-10
3
s for a graph with 2

13
nodes, com-

pared to 10
2.9

-10
3.4𝜇s for a graph of 2

13.4
nodes for our scheme,

when run on broadly comparable hardware).

A number of STE schemes supporting other query types and

graphs have been described such as GES supporting top-𝑘-nearest

neighbors [46], STE for conceptual graphs [57], STE for knowledge

graphs [44], and dynamic STE for bipartite graphs [41, 45]. Solu-

tions for graph queries in other security models have also been

proposed, but are outside the scope of this work. These approaches

include SGX [20], private information retrieval [66], differential

privacy [60], and structural anonymization [7].

Attacks. Goetschmann [27] presents the first leakage abuse attack

on a GES, which succeeds against one of the schemes by Meng

et al. [50] by estimating distances between nodes of the graph

and then using this information to infer the issued queries. Falzon

and Paterson [23] give a query recovery attack against the GKT

scheme [26]. They show that a server-side adversary with knowl-

edge of the plaintext graph𝐺 and the leakage of certain queries can

recover the set of possible plaintext queries for each issued query.

2

PathGES: An Efficient and Secure Graph Encryption Scheme for Shortest PathQueries ePrint, May, 2024

1.2 Contributions

In this work, we let 𝐺 = (𝑉 , 𝐸) denote a graph, 𝑛 = |𝑉 | the number

of vertices, and𝑚 = |𝐸 | the number of edges. An SPSP query on

a graph can be answered online using a single-source shortest

path algorithm, such as Dijkstra’s algorithm which runs in time

𝑂 (𝑚 + 𝑛 log𝑛). This approach is very costly when multiple queries

are processed. To avoid such overhead, one can pre-process the

graph and store the shortest path information in a data structure

such as an SP-matrix [16] or distance oracle [15]. Existing attacks

are against GESs that use the SP-matrix or distance oracles. One

could instead use other pre-processing techniques for answering

SPSP queries e.g. [28]. However, a number of nearby nodes must

still be scanned; this could result in more leakage or require the use

of other cryptographic primitives and we leave this as future work.

We propose a new data structure that mitigates previous attacks.

This data structure enables our scheme to be non-interactive whilst

minimizing server computation, resulting in fast query time in

theory and practice. Let 𝐺 = (𝑉 , 𝐸) be the graph that we wish to

encrypt. At a high level, our GES works as follows. For each vertex

𝑣 ∈ 𝑉 we compute the shortest path tree rooted at 𝑣 whose paths

correspond to shortest paths in 𝐺 ; we denote this tree as 𝑇𝑣 . We

then decompose each tree 𝑇𝑣 into edge-disjoint paths.

We could stop here and store the disjoint paths, however, the

path returned might still have length 𝑂 (𝑛). Given a disjoint path 𝑝 ,

we extract subpaths of 𝑝 of lengths that are powers of two, called

canonical fragments. These fragments are stored in a multimap. A

second multimap associates SPSP queries with the identifiers of

fragments used to assemble the shortest path for the given query.

The multimaps are encrypted using standard encrypted multimap

schemes. The fragments ensure that the bandwidth is asymptoti-

cally optimal and the indirection keeps storage costs down by only

storing each fragment once.

To query the graph, the server computes one lookup to learn

the identifiers of the fragments and a second lookup to retrieve the

actual fragments. This is done non-interactively in one roundtrip be-

tween the client and server by using a response-revealing encrypted

multi-map (EMM) to encrypt the first multimap. Our approach is

computationally and bandwidth efficient, and mitigates the attack

from prior work [23].

Our contributions can be summarized as follows:

• We present PathGES, a non-interactive GES for SPSP queries

with reduced query leakage. (Section 4)

• We describe a new data structure for responding to SPSP queries.

This data structure contributes to the enhanced security ofPathGES
whilst maintaining optimal bandwidth complexity. (Section 4)

• We introduce a generalized relation on leakage functions with

respect to a family of query sequences and prove that our scheme

leaks less than the GKT scheme for the family of query sequences

in which each SPSP query is issued at least once. (Section 5)

• We support our scheme with a thorough cryptanalysis and prove

that for several graph families, the size of the reconstruction space

of PathGES is strictly greater (by a superpolynomial factor) than

that of GKT when all queries have been issued. (Section 5)

• We evaluate the performance of PathGES on a number of real-

world datasets and show improved round-trip query time over

the GKT scheme. (Section 6)

2 PRELIMINARIES

Notation. For an integer 𝑛, let [𝑛] = {1, 2, . . . , 𝑛}. We denote the

concatenation of strings 𝑎 and 𝑏 as 𝑎 | |𝑏. Given a set 𝑋 , we use

𝑥 ←$𝑋 to denote that the element 𝑥 was sampled uniformly at

random from 𝑋 . We denote the security parameter using 𝜆 and

the state using st. We denote a function negligible in 𝜆 by negl(𝜆).
Unless otherwise stated, we write log𝑛 for log

2
𝑛.

Graphs. A graph 𝐺 = (𝑉 , 𝐸) comprises of a set of vertices 𝑉 (of

size 𝑛) and a set of edges 𝐸 = 𝑉 × 𝑉 (of size 𝑚). If the graph is

simple then the pairs of vertices in 𝐸 are unordered and if the

graph is directed, then the pairs of vertices in 𝐸 are ordered. A

tree 𝑇 = (𝑉 , 𝐸) is a graph that is connected and contains no cycles.

A rooted tree 𝑇 = (𝑉 , 𝐸, 𝑟) is a tree in which a special (“labeled")

node 𝑟 ∈ 𝑉 is singled out; we refer to 𝑟 as the root of the tree.

A single pair shortest path (SPSP) queries on a graph 𝐺 =

(𝑉 , 𝐸). An SPSP query is the evaluation of a function SPSP that

takes as input two vertices 𝑢, 𝑣 ∈ 𝑉 , and outputs a path 𝑝𝑢,𝑣 =

(𝑢,𝑤1, . . . ,𝑤𝑡 , 𝑣) of minimal length in 𝐺 if 𝑢 and 𝑣 are connected,

and outputs ⊥ otherwise. For simplicity, we assume connected

graphs, however, our scheme applies directly to general graphs.

Dictionaries and Multimaps. A dictionary D is a map from a

label space L to a value space V. Amultimap is a generalization

of a dictionary in which each label may be associated with multiple

values. Formally, a multimap M is a map from a label space L to

the powerset of a value space 2
V
. If lab ↦→ val then we write val←

D[lab]. We denote the assignment of val to lab as D[lab] ← val
(and correspondingly for multimaps).

2.1 Graph Encryption Scheme

Definition 1. A graph encryption scheme is a tuple of algo-
rithms GES = (KeyGen, Encrypt, Token, Search,Reveal) with the
following syntax:

• KeyGen is probabilistic; it takes a security parameter 𝜆 and outputs
a secret key 𝐾 .
• Encrypt is probabilistic; it takes a secret key 𝐾 and a graph 𝐺 and
outputs an encrypted database ED.
• Token takes a key 𝐾 and query 𝑞 and returns a search token tk.
• Search takes an encrypted database ED and a search token tk and
outputs a response resp.
• Reveal takes a key 𝐾 and response resp and outputs plaintext𝑚.

This is a purely syntactical definition. In practice, algorithms

KeyGen, Encrypt, Token, and Reveal are executed by the client, and
Search is executed by the server.

A graph encryption scheme for SPSP queries GES is correct if

for all graphs 𝐺 = (𝑉 , 𝐸) and all SPSP queries 𝑞 = (𝑢, 𝑣) ∈ 𝑉 ×𝑉 ,
if 𝐾 ← GES.KeyGen(1𝜆) and ED ← GES.Encrypt(𝐾,𝐺), then
𝑚 ← GES.Reveal(𝐾, resp) is a shortest path from𝑢 to 𝑣 in𝐺 where

tk← GES.Token(𝐾,𝑞), resp← GES.Search(ED, tk).

2.1.1 Security. Security of GESs is parameterized by a leakage

function L = (LS,LQ) that specifies an upper bound on the in-

formation leaked at setup (LS) and at query time (LQ). We define

security using the real-ideal paradigmwith respect to passive persis-

tent adversaries who execute the protocol honestly and who learn

the output of the leakage functions. Such adversaries include an

3

ePrint, May, 2024 Falzon et al.

RealGESA (1
𝜆)

Initalize(1𝜆)
1 : 𝐺 ← A
2 : 𝐾 ← GES.KeyGen(1𝜆)
3 : ED← GES.Encrypt(𝐾,𝐺)
4 : return ED
Query(𝑞)
5 : tk← GES.Token(𝐾,𝑞)
6 : return tk

Finalize(𝑏)
7 : return 𝑏

IdealGESA,S (1
𝜆)

Initalize(1𝜆)
1 : 𝐺 ← A
2 : (𝛼, stL) ← LS (𝐺)
3 : (ED, stS) ← S(𝛼)
4 : return ED
Query(𝑞)
5 : (𝛼, stL) ← LQ (𝐺,𝑞)
6 : (tk, stS) ← S(𝛼)
7 : return tk

Finalize(𝑏)
8 : return 𝑏

Figure 1: Games RealGESA and IdealGESA,S .

honest-but-curious server or a network adversary that has compro-

mised the communication channel. For the purpose of cryptanalysis

and to be comparable to previous attack works [23, 27], we are con-

cerned with query privacy, though we emphasize that the goal

of a GES is also to hide the graph. We assume that the adversary

knows or even chooses the graph 𝐺 and we wish to prevent the

adversary from inferring the plaintext queries from the leakage.

The public graph assumption is standard for schemes that support

private graph queries [26, 51, 60]. This setting is ideal for routing

scenarios in which the road network may be public (e.g., Google

Maps), but the routing information of users is sensitive.

Definition 2. Let GES be a graph encryption scheme and let
L = (LS,LQ) be a tuple of stateful algorithms. We say that GES
is L-secure if for all polynomial-time adversaries A, there exists a
polynomial-time simulator S such that

| Pr[RealGESA (1
𝜆) = 1] − Pr[IdealGESA,S (1

𝜆) = 1] | ≤ negl(𝜆) .

and games RealGESA (𝜆) and Ideal
GES
A,S (𝜆) are defined as in Figure 1.

2.2 Encrypted Multimap Scheme

Encrypted multimap schemes are a fundamental building block of

our GES. They allow one to encrypt and outsource a multimap, and

then later query labels in the multimap. EMM schemes can be ei-

ther response-revealing or response-hiding. Informally, a response-

revealing scheme reveals the plaintext answer of a query to the

server whereas a response-hiding scheme does not.

Definition 3. A response-hiding encryptedmultimap (EMM)
scheme is a tuple of algorithms EMM-RH = (KeyGen, Encrypt,
Token, Get, Reveal) with the following syntax:
• KeyGen is probabilistic and takes a security parameter 𝜆, and
outputs a secret key 𝐾 .
• Encrypt is probabilistic and takes a key 𝐾 and multimapM, and
outputs encrypted multimap EM.
• Token takes a key 𝐾 and a label lab, and outputs a search token tk.
• Get takes a search token tk and an encrypted multimap EM and
returns response resp.
• Reveal takes a key𝐾 and response resp and returns a set of plaintext
values {val𝑖 }𝑖∈[𝑘] .
A response-revealing EMM scheme EMM-RR comprises of

four algorithms (KeyGen, Encrypt, Token,Get) such that KeyGen,

Encrypt, and Token are as in Definition 3 and Get instead takes as

input an encrypted multimap EM and a search token tk and returns
a set of plaintext values {val𝑖 }𝑖∈[𝑘] . Our GES makes black-box use

of one response-revealing and one response-hiding EMM scheme.

We assume the storage complexity of the EMMs is linear in the

number of values in the plaintext multimap. We ignore the number

of bits needed to encode the actual values themselves as this is

typically smaller than the security parameter (which we can take

to be a large constant in practice).

Correctness requires that for all multimapsM and labels lab inM,

if 𝐾 ← EMM.KeyGen(𝜆), EM ← EMM.Encrypt(𝐾,M), then exe-

cuting EMM.Reveal(𝐾, resp) such that tk ← EMM.Token(𝐾, lab)
and resp← EMM.Get(EM, tk), results in the outputM[lab].

2.2.1 Security. The security of an EMM scheme is also defined

using the real-ideal paradigm. The RealEMM
A and IdealEMM

A games

are the same as in Figure 1, except that the adversary picks M,

Initialize is executed using EMM.KeyGen and EMM.Encrypt, and
Query is executed using EMM.Token.

2.2.2 Leakage Functions of EMMs. We consider EMM schemes

with the following standard leakage.

• Multimap size (Size): This setup leakage refers to the total

number of values in the multi-map. Formally, for a multimap M
with label space L, Size(M) = ∑

lab∈L |M[lab] |.
• Query pattern (QP): This reveals whether two queries are equal.
Let M be a multimap and lab1, . . . , lab𝑘 be a sequence of queries.

Then QP(M, (lab1, . . . , lab𝑘)) = 𝐴 where 𝐴 is a 𝑘 × 𝑘 matrix of

bits such that 𝐴[𝑖, 𝑗] = 1 if and only if lab𝑖 = lab𝑗 .
• Access pattern (AP): This reveals the individual values returned
for each query. Let M be a multimap and lab1, . . . , lab𝑘 be a se-

quence of queries. ThenAP(M, (lab1, . . . , lab𝑘)) = (M[lab𝑖])𝑖∈[𝑘] .
• Volume pattern (Vol): Reveals the number of values returned

per query. Let M be a multimap and lab1, . . . , lab𝑘 be a sequence

of queries. Then Vol(M, (lab1, . . . , lab𝑘)) = (|M[lab𝑖] |)𝑖∈[𝑘] .
Our GES requires two EMM schemes, EMM-RR and EMM-RH;

EMM-RR is response-revealing to make the GES non-interactive

and EMM-RH is response-hiding for added security. For concrete-

ness, we assume EMM-RR to be (Size, (QP,AP))-secure and EMM-RH
to be to be (Size, (QP,Vol))-secure.

3 TECHNICAL BACKGROUND

The leakage function of the GKT scheme leaks the edges along

which two paths with the same destination vertex intersect. This

leakage is detrimental to the security of the queries and Falzon

and Paterson [23] demonstrate how the plaintext queries can be

recovered from this leakage. Our goal is to reduce this leakage.

Let𝐺 = (𝑉 , 𝐸) be the graph that wewish to encrypt.We first com-

pute 𝑛 shortest path trees {𝑇𝑣}𝑣∈𝑉 e.g. using an all-pairs shortest

paths (APSP) algorithm: each tree𝑇𝑣 is rooted at a vertex 𝑣 ∈ 𝑉 and

the paths correspond to shortest paths in𝐺 . These trees are then de-

composed into edge-disjoint paths. Our scheme can be instantiated

using any algorithm that decomposes trees into edge-disjoint paths.

To concretize our schemes we employ a data-structure technique

called heavy-light decomposition (HLD) [62] to decompose the

trees (we describe the algorithm in detail in Appendix A). HLD is a

general and standard method for decomposing trees into disjoint

4

PathGES: An Efficient and Secure Graph Encryption Scheme for Shortest PathQueries ePrint, May, 2024

paths and answering graph queries. HLD is well-studied, easily

implementable, and offers good efficiency guarantees, thus making

it a good candidate for deployment.

We start by proving that many common APSP algorithms output

collections of paths from which spanning rooted shortest path trees

can be computed. This is a necessary condition, since we must

apply HLD to a rooted tree.

Definition 4. Let 𝐺 = (𝑉 , 𝐸) be a graph and 𝑃 be a collection of
paths of 𝐺 . The graph induced by 𝑃 is defined as 𝐺 |𝑃 = (𝑉𝑃 , 𝐸𝑃)
where 𝑉𝑃 = {𝑣 : 𝑣 ∈ 𝑒, 𝑒 ∈ 𝑝, 𝑝 ∈ 𝑃} and 𝐸𝑃 = {𝑒 : 𝑒 ∈ 𝑝, 𝑝 ∈ 𝑃}. By
definition, 𝑉𝑃 ⊆ 𝑉 and 𝐸𝑃 ⊆ 𝐸.

Lemma 5. Let 𝐺 = (𝑉 , 𝐸) be a graph and 𝑃 be the collection of
paths that results from running Floyd-Warshall on 𝐺 . 1 Let 𝑃𝑣 denote
the set of paths in 𝑃 that terminate at 𝑣 . Then for all 𝑣 ∈ 𝑉 , the graph
𝐺 |𝑃𝑣 forms a tree with 𝑣 as its root.

The proof can be found in Appendix B.1.

Corollary 6. Let 𝐺 = (𝑉 , 𝐸) be a graph and 𝑃 the collection of
paths resulting from running Floyd-Warshall on 𝐺 . For any vertex
𝑣 ∈ 𝑉 , if two paths 𝑝, 𝑝′ ∈ 𝑃𝑣 coincide at a vertex 𝑢, then they must
coincide at each vertex along the path from 𝑢 to 𝑣 .

We denote tree 𝐺 |𝑃𝑣 as 𝑇𝑣 and refer to it as the single destina-

tion shortest path (SDSP) tree for 𝑣 in 𝐺 .

After computing 𝑛 SDSP trees, one for each 𝑣 in 𝑉 , our scheme

decomposes each tree into edge-disjoint paths using HLD. At a high

level, HLD works by labeling edges in a tree 𝑇 as either “heavy” or

“light” such that the light edges demarcate where an edge-disjoint

path ends and a new path starts. HLD guarantees that any path

in 𝑇 crosses no more than log𝑛 disjoint paths. Applying HLD to a

tree may, in the worst case, result in an edge-disjoint path of length

𝑂 (𝑛). This happens when most edges are heavy e.g. when 𝐺 is a

path. To address this, our scheme computes and stores what we call

the canonical fragments of each edge-disjoint path. The canonical

fragments of a path 𝑝𝑢,𝑣 are the subpaths ending at 𝑣 whose lengths

are powers of two. This allows us to optimize bandwidth at the

expense of a small additional overhead in storage.

Definition 7. Let 𝑝𝑢,𝑣 be a path padded up to the next smallest
power of 2 such that the padding vertices are pre-pended to 𝑢. Let
𝑝
(𝑗)
𝑢,𝑣 denote the subpath comprised of the last 2𝑗 edges in 𝑝𝑢,𝑣 . The

canonical fragments of 𝑝𝑢,𝑣 are {𝑝 (𝑗)𝑢,𝑣 : 0 ≤ 𝑗 ≤ log
2
|𝑝𝑢,𝑣 |}.

The dummy vertices should be clearly demarcated from the real

ones so that they can be filtered out at decryption time. How this

is done would depend on the low-level representation used for the

vertices. For example, one could label the vertices of𝐺 with integers

in [𝑛] and the dummy vertices with 0.

4 PATHGES: A GES FOR SPSP QUERIES

We now present PathGES, a GES for SPSP queries that leverages

indirection to ensure non-interactivity and reduce leakage. The

pseudocode can be found in Figure 2.

4.1 Scheme Description

4.1.1 High-level Description. Given a graph 𝐺 = (𝑉 , 𝐸), we com-

pute the set of SDSP trees {𝑇𝑣}𝑣∈𝑉 and decompose each tree into

disjoint paths (e.g., using HLD). We then encode the shortest path

information as a set of fragments which can be retrieved using a se-

quence of look-ups to two multimaps. The first multimapM1 maps

each query to a set of search tokens derived from the fragment iden-

tifiers used to look up the corresponding canonical fragments in the

second multimap; this map is encrypted using a response-revealing

EMM scheme. The second multimap M2 maps each fragment iden-

tifier to the respective canonical fragment; it is encrypted using a

response-hiding EMM scheme. We denote the encrypted versions

ofM1 andM2 as EM1 and EM2, respectively.

To issue query (𝑢, 𝑣) ∈ 𝑉 × 𝑉 , the client computes a query-

specific search token tk𝑢,𝑣 which the server uses to retrieve the

token set 𝑇 from EM1. For each token tk ∈ 𝑇 , the server retrieves
the corresponding encrypted fragment from EM2 and adds it to the

response. By property of HLD, each shortest path is comprised of

no more than log𝑛 fragments and, thus, search requires at most

log𝑛 look-ups to EM2 (one look-up for each search token obtained

from EM1) to retrieve at most 2𝑡 edge where 𝑡 is the length of

the shortest path. Note that the 2x factor results from padding the

fragments up to the next power of 2. The server returns the set

of encrypted fragments to the client who then decrypts them to

recover the shortest path.

4.1.2 Formal description. KeyGen takes as input a security param-

eter 𝜆 and returns a pair of keys (𝐾1, 𝐾2), one each for EM1 and

EM2, respectively.

Encrypt takes as input key 𝐾 = (𝐾1, 𝐾2) and the graph 𝐺 =

(𝑉 , 𝐸) that the client wishes to encrypt. It initializes empty mul-

timapsM1 andM2. For each vertex 𝑟 ∈ 𝑉 it computes the SDSP tree

rooted at 𝑟 to obtain 𝑇𝑟 . For each 𝑇𝑟 , the client decomposes the tree

into edge-disjoint paths e.g. using the HLD algorithm (Algorithm 8).

We denote the decomposed tree as 𝑇𝐷𝑟 .

Importantly, the disjoint paths are processed in a breadth first

search (BFS) manner, so that the multimap can be computed in one

traversal of each tree. For each path 𝑝𝑢,𝑣 in 𝑇
𝐷
𝑟 , as it is discovered,

and for each canonical fragment 𝑝
(𝑗)
𝑢,𝑣 of 𝑝𝑢,𝑣 , the client:

(1) Generates token tk ← EMM-RH.Token(𝐾2, (𝑟,𝑢, 𝑣, 𝑗)) using
the response-hiding EMM;

(2) Sets M2 [(𝑟,𝑢, 𝑣, 𝑗)] ← 𝑝
(𝑗)
𝑢,𝑣 ;

(3) For each non-pad vertex𝑤 in 𝑝
(𝑗)
𝑢,𝑣 \ 𝑝

(𝑗−1)
𝑢,𝑣 , sets M1 [(𝑤, 𝑟)] ←

M1 [(𝑢, 𝑟)] ∪ {tk}.
The key is that the fragments needed to reconstruct the shortest

path from 𝑢 to 𝑟 comprises the fragment from 𝑢 to 𝑣 , and the frag-

ments of the shortest path from 𝑣 to 𝑟 . Since 𝑇𝐷𝑟 is processed in a

BFS manner,M1 [(𝑟,𝑢)] has already been computed. Each label in

M2 is associated with a set of values describing a canonical frag-

ment; each value consists of an edge in the fragment. How the

values are encrypted depends on the EMM scheme used.

Next, the multimaps are padded to prevent leaking informa-

tion about the underlying graph at setup. See Section 4.2 for a

discussion. M1 is padded up to 𝑛2 ⌊log𝑛⌋ entries where each entry

1
We prove this for the Floyd-Warshall algorithm, but this property holds for other

algorithms like those of Bellman-Ford and Dijkstra [16].

5

ePrint, May, 2024 Falzon et al.

1: // Generate secret key.

2: KeyGen(1𝜆)→ 𝐾

3: 𝐾1 ← EMM-RR.KeyGen(1𝜆)
4: 𝐾2 ← EMM-RH.KeyGen(1𝜆)
5: return (𝐾1, 𝐾2)

6: // Compute the encrypted database.

7: Encrypt(𝐾,𝐺)→ ED
8: Initialize multimapsM1 andM2

9: Parse (𝐾1, 𝐾2) ← 𝐾

10: for 𝑟 ∈ 𝑉 do

11: Compute SDSP tree 𝑇𝑟 rooted at 𝑟 in 𝐺

12: 𝑇𝐷𝑟 ← ComputeHld(𝑇𝑟 , 𝑟)
13: for each subpath 𝑝𝑢,𝑣 ∈ 𝑇𝐷𝑟 in BFS manner do

14: Let ℓ be the next power of 2 greater than |𝑝𝑢,𝑣 |
15: Pad 𝑝𝑢,𝑣 to length ℓ

16: for 𝑗 ∈ [0, ⌈log
2
ℓ⌉] do

17: // Compute fragment and add it toM2.

18: Let 𝑝
(𝑗)
𝑢,𝑣 comprise the last 2

𝑗
edges of 𝑝𝑢,𝑣

19: M2 [(𝑟,𝑢, 𝑣, 𝑗)] ← 𝑝
(𝑗)
𝑢,𝑣

20: if 𝑗 = 0 then

21: 𝑠 ← 𝑝
(0)
𝑢,𝑣

22: else 𝑠 ← 𝑝
(𝑗)
𝑢,𝑣 \ 𝑝

(𝑗−1)
𝑢,𝑣

23: for non-pad vertex𝑤 in 𝑠 do

24: // Add tokenset of query (𝑤, 𝑟) toM1

25: tk← EMM-RH.Token(𝐾2, (𝑟,𝑢, 𝑣, 𝑗))
26: M1 [(𝑤, 𝑟)] ← M1 [(𝑣, 𝑟)] ∪ {tk}
27: Permute M1 [(𝑤, 𝑟)]
28: PadM1 andM2 to 𝑛

2
log𝑛 and 4𝑛2, respectively.

29: EM1 ← EMM-RR.Encrypt(𝐾1,M1)
30: EM2 ← EMM-RH.Encrypt(𝐾2,M2)

31: return (EM1, EM2)

32: // Compute search token.

33: TokenC(𝐾, (𝑢, 𝑣))→ tk
34: Parse (𝐾1, 𝐾2) ← 𝐾

35: tk← EMM-RR.Token(𝐾1, (𝑢, 𝑣))
36: return tk

37: // Look up shortest path.

38: SearchS(ED, tk)→ resp
39: Initialize resp←⊥
40: Parse (EM1, EM2) ← ED
41: // Retrieve respective search tokens from EM1.

42: 𝑇 ← EMM-RR.Get(EM1, tk)
43: // Retrieve respective fragments from EM2.

44: for tk′ ∈ 𝑇 do

45: 𝑐 ← EMM-RH.Get(EM2, tk′)
46: resp← resp ∪ {𝑐}
47: return resp

48: // Recover the shortest path.

49: RevealC(𝐾, resp)→ 𝑝

50: Parse (𝐾1, 𝐾2) ← 𝐾

51: Initialize 𝑃 ← ∅
52: // Decrypt each fragment.

53: for 𝑐 ∈ resp do

54: 𝑚 ← EMM-RH.Reveal(𝐾2, 𝑐)
55: Unpad𝑚

56: 𝑃 ← 𝑃 ∪ {𝑚}
57: // Process the collection of fragments.

58: Sort 𝑃 into path 𝑝 from 𝑢 to 𝑣

59: return 𝑝

Figure 2: Psuedocode for our scheme, PathGES, which supports single pair shortest path queries over an encrypted graph.

comprises of 𝜆 bits. One could implement this by adding suffi-

ciently many dummy pairs to M1 such that each pair consists of

a single dummy value, e.g. the all-zero bit string of length 𝜆. In

M2, each fragment is stored as a set of edges; these edges form

the set of values to be encrypted by EMM-RH.M2 is thus padded

by adding sufficiently many dummy single-edge fragments until

the total length of the fragments (real and dummy) in the mul-

timap is 4𝑛2. If the vertices in 𝐺 are represented as integers in [𝑛],
then the edges of the dummy fragments can be encoded as the

pair (0, 0) (recall that EMM-RH uses randomized encryption). The

maps are encrypted to obtain EM1 ← EMM-RR.Encrypt(𝐾1,M1)
and EM2 ← EMM-RH.Encrypt(𝐾2,M2).

To query for (𝑢, 𝑣) ∈ 𝑉 ×𝑉 , the client computes a search token

tk𝑢,𝑣 ← EMM-RR.Token(𝐾1, (𝑢, 𝑣)) which it sends to the server.

The server uses tk𝑢,𝑣 to look up the token set𝑇 inEM1 that is needed

to retrieve the corresponding encrypted canonical fragments in

EM2. The server initializes empty set resp and for each tk′ ∈ 𝑇
adds the encrypted fragment 𝑐 ← EMM-RH.Get(EM2, tk′) to resp.
Finally, resp is returned to the client who can then decrypt and sort

the fragments to recover the shortest path.

4.1.3 A remark on the use of Indirection. “Multimap chaining” was

first introduced by Chase and Kamara [14] and has been used in a

number of works to support various queries [11, 31, 54]. Using the

layered multimap approach to enable complex queries and reduce

storage costs is a standard technique in the structured encryption

literature. The technique uses at least two multimaps to index data

structures such that the tokens for accessing one multimap are

stored as values in another. Without this approach, our scheme

would require storing a copy of each fragment for each query that

the fragment corresponds to. Moreover, since we are able to encrypt

the first multimap using a response revealing EMM scheme, we are

able to make query processing completely non-interactive.

4.2 Complexity and Correctness

The run time of Encrypt is upper bounded by the time needed to

compute the SDSP trees, which for general graphs takes time𝑂 (𝑛3).
Token entails a single call to the EMM-RR.Token. Our chosen im-

plementation of EMM-RH only requires two PRF evaluations [9].

Assuming use of HLD to decompose the trees, Search takes time

𝑂 (log𝑛 + 𝑡), since any shortest path results in at most 1 + log𝑛
6

PathGES: An Efficient and Secure Graph Encryption Scheme for Shortest PathQueries ePrint, May, 2024

look-ups to the EMMs to retrieve at most 2𝑡 edges. In the worst

case, the server must return 2𝑡 edges, where 𝑡 is the length of the

shortest path and so Reveal takes time 𝑂 (𝑡).
Encrypted multimaps EM1 and EM2 use 𝑂 (𝑛2 log𝑛) and 𝑂 (𝑛2)

space, respectively, for a total storage complexity of𝑂 (𝑛2 log𝑛). We

pad the multimaps up to the worst case size to prevent additional

leakage. In particular, M1 must be padded up to 𝑛2 ⌊log𝑛⌋ values
and M2 must be padded up to 4𝑛2 values. The upper bounds for

the sizes of M1 and M2 are met by the binary tree and the cycle

graph, respectively, and thus our bounds are tight. The proofs of

these bounds can be found in Appendix B.2 and B.3.

Theorem 8. Let𝐺 = (𝑉 , 𝐸) be a graph on 𝑛 vertices, 𝜆 be the secu-
rity parameter, and ED be the result of encrypting 𝐺 using PathGES
(Figure 2). Executing Encrypt on 𝐺 takes 𝑂 (𝑛3) time and produces
an encrypted database of size 𝑂 (𝑛2 log𝑛). Generating a token tk for
a query (𝑢, 𝑣) ∈ 𝑉 ×𝑉 using Token requires 𝑂 (1) time, where tk is
of size 𝑂 (𝜆). Executing Search on tk and ED takes time 𝑂 (log𝑛 + 𝑡)
and produces a response resp of at most 2𝑡 encrypted edges, where
resp decrypts to the shortest path from 𝑢 to 𝑣 in 𝐺 and where 𝑡 is the
length of the queried shortest path. Reveal runs in 𝑂 (𝑡) time.

The proof can be found in Appendix B.4.

4.3 Leakage

The leakage of PathGES is a function of the leakage of the

underlying EMMs. For concreteness, we assume EMM-RR to be

(Size, (QP,AP))-secure and EMM-RH to be to be (Size, (QP,Vol))-
secure. Recall that the EMM schemes’ Encrypt algorithms are prob-

abilistic by definition and repeated values are not leaked at setup.

Setup leakage. At setup, the scheme leaks the size of the EMMs,

which is a function of 𝑛. We thus have that

LS (𝐺) = 𝑛.

Query leakage. Given a sequence of𝑘 SPSP queries, PathGES leaks
whether two queries are equal, whether two (encrypted) fragments

in a response are equal, and the length of each fragment. The query

pattern (QP) of a sequence of SPSP queries 𝑞1, . . . , 𝑞𝑘 is a matrix

𝐴 ∈ {0, 1}𝑘×𝑘 such that 𝐴[𝑖, 𝑗] = 1 if and only if 𝑞𝑖 and 𝑞 𝑗 have the

same source and destination vertex.

Our scheme also leaks which canonical fragments co-occur in the

response of each query. In their work on range search schemes over

encrypted multi-attribute data, Falzon et al. [22] identified a form of

leakage called structure pattern, i.e. the co-occurrence of subqueries
used to respond to each range query. The co-occurrence of sub-

ranges in the schemes of [22] is analogous to the co-occurrence of

fragments in our scheme, and thus a similar idea applies here.

Structure pattern can be viewed as a function of the underlying

EMM’s leakage and the underlying search data-structure. Formally,

the structure pattern (Str) of a sequence of SPSP queries𝑞1, . . . , 𝑞𝑘
can be viewed as a weighted bipartite graph 𝐻 = (𝐼 ∪ 𝐹, 𝐸′) where
𝐼 is the set of possible queries, 𝐹 is the set of fragment identifiers,

𝐸′ =
{
(𝑞, 𝑓) ∈ 𝐼 × 𝐹 :

Encrypted fragment 𝑓 is in

the response of query 𝑞.

}
and for each (𝑞, 𝑓) ∈ 𝐸′,𝑤𝑒𝑖𝑔ℎ𝑡 ((𝑞, 𝑓)) is the length of 𝑓 . As queries
are issued, the adversary can update 𝐻 online.

In total, the query leakage of PathGES (Figure 2) is

LQ (𝐺, ((𝑢1, 𝑣1), . . . , (𝑢𝑘 , 𝑣𝑘))) = (QP, Str) .

Discussion on leakage. Similar to previous schemes, the setup

leaks the number of vertices in the graph. The query leakage of our

scheme, however, is more nuanced. It leaks the set of encrypted
canonical fragments. SinceM2 is encrypted using a response-hiding

EMM scheme that leaks query and volume pattern, the encrypted

fragments only leak the search pattern (as a result of retrieving

each fragment) and the length of the fragment. Consider queries

𝑞 = (𝑢, 𝑣) and 𝑞′ = (𝑢′, 𝑣 ′) associated with shortest paths 𝑝 and 𝑝′.
If the responses to 𝑞 and 𝑞′ have one or more fragments in common,

then the following conditions hold:

(1) The destination nodes 𝑣 and 𝑣 ′ are equal.
(2) For some edge-disjoint path 𝑝′′ in 𝑇𝑣 and integer ℓ , 𝑝 and 𝑝′

intersect 𝑝′′ in ≥ ⌈ℓ/2⌉ and ≤ ℓ edges.
Note that condition (2) implies the underlying shortest paths inter-

sect in at least one edge.
In Figure 3d we depict the (encrypted) fragments produced when

encrypting the graph in Figure 3a with PathGES and querying all

queries with destination vertex 1. The path of length 3 is padded up

to length 4 (padding nodes are denoted with a dotted border). The

fragments’ search tokens are permuted before being adding to M1.

4.4 Security

Theorem 9. Let EMM-RR and EMM-RH be (Size, (QP,AP))-
secure and (Size, (QP,Vol))-secure encrypted multimap schemes, re-
spectively. If PathGES (Figure 2) is instantiated using EMM-RR and
EMM-RH, then it is (LS,LQ)-secure according to Definition 2 for
(LS,LQ) = (𝑛, (QP, Str)).

The proof can be found in Appendix B.5

5 CRYPTANALYSIS

We now describe the theoretical limitations of what an adversary

can learn from our scheme’s leakage. Our scheme mitigates the

attack described in [23], including for families of graphs that had

resulted in full query recovery.

Leakage abuse attacks can broadly be categorised into query
recovery attacks and database reconstruction attacks. In the context

of GESs, the goal of query recovery is to infer the plaintext value

of each issued query given the graph and the query leakage. The

goal of database reconstruction is to infer the graph given the setup

leakage and the query leakage of a set of 𝑘 queries. Because the goal

of our scheme is query privacy and we assume the graph is public,

we analyze the success of an attacker attempting query recovery

against our scheme. The adversary may attempt the attack using

all possible queries or a subset of them. The following definitions

have been adapted from [23] to follow the convention of [37].

Definition 10. (Structural Equivalence) Let 𝐺 = (𝑉 , 𝐸) be a
graph, and 𝑄 and 𝑄 ′ be sequences of SPSP queries on 𝐺 of the same
length. We say that𝑄 and𝑄 ′ are structurally equivalent if there is
a permutation 𝜋 : 𝑉 2 → 𝑉 2 such that LQ (𝐺, 𝜋 (𝑄)) = LQ (𝐺,𝑄 ′),
where 𝜋 (𝑄) replaces each query 𝑞 of sequence 𝑄 with 𝜋 (𝑞).

We say that 𝜋 is consistent with the leakage LQ (𝐺,𝑄).
7

ePrint, May, 2024 Falzon et al.

1 2 3

4 5

6 7

8 9 10

11

(a) Original graph𝐺 . (b) SDSP Tree𝑇1. (c) Decomposition of𝑇1. (d) Our scheme’s leakage.

Figure 3: (a) Graph𝐺 , (b) its SDSP tree rooted at vertex 1, and (c) the SDSP tree decomposed into edge-disjoint paths. The GKT scheme leaks trees

that are isomorphic to the SDSP trees. In contrast, our scheme only leaks edge-disjoint paths. In particular, it leaks (d) the set of minimal-length

canonical fragments comprising the queried path. These fragments may contain padding to pad lengths up to the next largest power of two;

padding vertices are depicted with a dotted border. Distinct queries may correspond to the same fragments.

In other words, the sequence of queries 𝜋 (𝑄) could have pro-

duced the observed leakage.

Definition 11. (QR) Let 𝐺 = (𝑉 , 𝐸) be a graph, 𝑄 be a sequence
of SPSP queries, and Π be the set of all permutations consistent with
L(𝐺,𝑄). The adversary achieves query recovery (QR) when it com-
putes and outputs a mapping: 𝑞 ↦→ {𝜋 (𝑞) : 𝜋 ∈ Π} for all 𝑞 ∈ 𝑉 2.

The goal of query recovery is to compute the set of all possible

queries for each query issued by the client.

Definition 12. (Query reconstruction space) Let𝐺 = (𝑉 , 𝐸) be a
graph and 𝑄 be a sequence of SPSP queries. The query reconstruc-
tion space of L(𝐺,𝑄) is the set of all permutations, Π, consistent
with L(𝐺,𝑄). The size of the query reconstruction space is |Π |.

We denote the query reconstruction space of a graph encryption

scheme GES with respect to a graph 𝐺 and query sequence 𝑄 as

QRSGES (𝐺,𝑄).

5.1 Comparing Leakage Functions

A natural question is to ask whether PathGES “leaks less” than

GKT. Bost and Fouque [4, 5] introduced the notion of order relation

on leakage which states that a leakage function L leaks less than

L′, denotedL ⪯Q L′, if and only if for any sequence of queries the
output of L can be simulated using the output of L′. See [4, 5] for
a formal statement; a similar notion was independently introduced

by Kamara et al. [32].

Bost and Fouque note that ⪯ is a partial order on the set of leakage
functions. Many leakage functions are not directly comparable

using this relation, as is the case for our scheme and GKT. Recall

that the GKT scheme leaks “query trees” that are isomorphic to the

plaintext SDSP trees. If only a subgraph of the query tree has been

observed (i.e. only a fraction of SPSP queries have been issued),

then one cannot compute an HLD decomposition of the tree and

transform the GKT’s leakage into the leakage of PathGES.
Conversely, our scheme dis-associates paths that do not share

an edge, so the full query tree is often not recoverable using the

observed leakage. Depending on the set of queries issued and the

decomposition algorithm used, our scheme may, however, leak

some information that the GKT scheme does not. For example,

if the server observes a response comprising of two encrypted

fragments each of size one, then it can infer that this path of length

2 is connected to a larger subtree; this is a consequence of HLD.

The leakage of our scheme is thus, in part, a function of the chosen

decomposition algorithm. Different tree decomposition algorithms

would provide different security and efficiency trade-offs. Exploring

this space will be interesting future work.

Although we cannot transform the leakage of GKT to that of

PathGES for any sequence of queries, we can prove a weaker form

of the statement when all possible queries have been issued. Many

prior attacks assume that all possible queries have been issued

(e.g., [21, 23, 30, 35]) and we believe that proving our scheme’s

leakage is less than that of GKT’s in the setting when all queries

have been issued is an important first step. Below, we introduce a

generalization of the order relation on leakage functions [5].

Definition 13. Define two leakage functions for a GES scheme
as L = (LS,LQ) and L′ = (L′S,L

′
Q). We say that L leaks

less than L′ under a family of query sequences Q (denoted
L ⪯Q L′) if there exists a pair of polynomial-time algorithms
T = (TSetup, Tquery), such that, for any graph 𝐺 and any query
sequence 𝑄 ∈ Q,
• LS (𝐺) = TSetup(L′S (𝐺)) and
• LQ (𝑄) = Tquery(L′Q (𝐺,𝑄)).

Relation ⪯Q is equivalent to relation ⪯ in [5] when Q is the

family of all query sequences.

Lemma 14. Let Q be a family of query sequences. Relation ⪯Q is
a partial ordering on the set of leakage functions with respect to Q.

Proof. In order to prove that ⪯Q is an order relation, we must

show that the following three properties hold: (i) reflexivity, (ii)

antisymmetry, and (iii) transitivity.

It is easy to see that (i) holds. That is, for any leakage function

L, we have that L ⪯Q L. One can define the trivial algorithm that

takes as input L and outputs the same function.

For a contradiction suppose that L ⪯Q L′ and L′ ⪯Q L, but
that L ≠ L′ with respect to Q. Then there exists some graph𝐺 and

some query sequence𝑄 ∈ Q such that, without loss of generality, no

pair of stateful poly-time algorithms T can simulate LS (𝐺) using
L′S (𝐺) (respecitively, LQ (𝐺,𝑄) using L′Q (𝐺,𝑄), respectively. But
this implies that L ⪯̸Q L′. Thus property (ii) must hold.

8

PathGES: An Efficient and Secure Graph Encryption Scheme for Shortest PathQueries ePrint, May, 2024

To show that property (iii) holds, assume that L ⪯Q L′ and
L′ ⪯Q L′′ for some functions L,L′, and L′′. By Definition 13,

there exist poly-time algorithms T and T ′ that transform L′ to L
and L′′ to L′, respectively. Define a new algorithm T ′ ◦ T which

takes as input the leakage L′′ and outputs L. Since both T and T ′
are poly-time, then so is their composition. □

Given any family of query sequences Q, the order ⪯Q between

leakage functions implies a reverse size relation between the cor-

responding query reconstruction spaces. This theorem extends to

database reconstruction and to all structured encryption schemes,

but we state it with respect to the query reconstruction space of

GESs since that is the focus of this work.

Theorem 15. Let GES and GES′ be GESs with leakage functions
L and L′, respectively. Let Q be a family of query sequences. If
L ⪯Q L′, then for all 𝑄 ∈ Q

|QRSGES (𝐺,𝑄) | ≥ |QRSGES′ (𝐺,𝑄) |.

Proof. (Sketch) Let 𝑄 ∈ Q. Suppose for a contradiction, that
there exists some assignment 𝜋 : 𝑉 2 → 𝑉 2

that is consistent with

leakage L(𝐺,𝑄) and not L′ (𝐺,𝑄), i.e., 𝜋 ∈ QRSGES (𝐺,𝑄) and
𝜋 ∉ QRSGES′ (𝐺,𝑄). But this implies that there is some additional

information leaked by L not leaked by L′ that cannot be derived
from L′ hence contradicting the existence of a pair of algorithms

T that transforms L′ to L. Thus, we have 𝜋 ∈ QRSGES′ (𝐺,𝑄) and
the theorem follows. □

An upper bound on the leakage of PathGES. We now formally

describe the leakage of the GKT scheme. We assume that the GKT

scheme is instantiated using a response-revealing EMM scheme

that is (Size, (QP,AP))-secure. At setup, the GKT scheme leaks the

number of pairs of vertices that are connected:

LGKT
S (𝐺) = |{(𝑢, 𝑣) ∈ 𝑉 ×𝑉 : 𝑢 and 𝑣 connected in 𝐺}|

For connected graphs, this is equal to the number of vertices. At

query time, the scheme leaks the query pattern (QP), the length of

the shortest path 𝑡 , and the path intersection, denoted as PIP (as

a consequence of the AP). In words, PIP reveals to the server the

edges that intersect along the shortest path. See [26] for a more

detailed description of the leakage. All together, we have that

LGKT
Q (𝐺, (𝑞1, . . . , 𝑞𝑘)) = (QP, PIP, t)

where t = (𝑡1, . . . , 𝑡𝑘) is a vector and 𝑡𝑖 is the length of the shortest

path returned in response to query 𝑞𝑖 .

Theorem 16. Let 𝐺 be a connected graph and let Q be the family
of query sequences in which each SPSP query is issued at least once.
Let LGKT and LPathGES denote the leakage functions of GKT [26]
and PathGES (Figure 2), respectively. Then LPathGES ⪯Q LGKT.

Given the query leakage of the GKT scheme when all queries

have been issued, one can construct 𝑛 query trees {𝑆𝑖 }𝑖∈[𝑛] . There
exists a 1-1 correspondence between {𝑆𝑖 }𝑖∈[𝑛] and the SDSP trees

{𝑇𝑖 }𝑖∈[𝑛] such that each pair of trees is isomorphic [23]. Our trans-

former T thus takes as input the leakage of GKT and computes

these query trees. From here, it can compute the edge-disjoint path

decomposition of each tree and the set of fragments for each path

in the decomposition. The proof can be found in Appendix B.6.

Corollary 17. Let 𝐺 be a connected graph and Q be the family
of query sequences such that each SPSP query appears at least once.
Then for any sequence 𝑄 ∈ Q, it holds that |QRSPathGES (𝐺,𝑄) | ≥
|QRSGKT (𝐺,𝑄) |.

Since many schemes are not comparable under ⪯, Kornaropoulos
et al. [37] propose leakage inversion as a way to quantify the privacy
of schemes. They show how the size of the reconstruction space

and the distance of its members from the original plaintext database

are good metrics for quantifying scheme privacy. In the following

section, we characterize the query reconstruction space of our

PathGES scheme and show that its size is super-polynomially larger

than that of the GKT scheme for various graph families.

5.2 QR from the GKT scheme’s leakage

In remainder of this section, we assume that every possible query

in𝑉 ×𝑉 has been issued once. This represents the strongest passive

adversary without auxiliary information. Yet even in this strong

setting, we demonstrate an information theoretical gap between

what the adversary can reconstruct from the leakage of PathGES
versus that of the GKT scheme.

Recall that if all possible SPSP queries are issued to the GKT

scheme, then an adversary can construct a set of 𝑛 query trees;

these query trees are one-to-one with the SDSP trees. Each SDSP

tree is rooted at a vertex in 𝑉 and the paths correspond to the

shortest paths whose destination is the root. Thus, queries can be

recovered up to the possible isomorphisms that exist between the

query trees and the SDSP trees. This notion is formalized as follows.

Lemma 18 ([23]). Let𝐺 = (𝑉 , 𝐸) be a graph encrypted using GKT,
{𝑇𝑟 }𝑟 ∈𝑉 be the SDSP trees of 𝐺 , 𝑄 be any sequence in which each
SPSP query is issued once, and 𝑞 = (𝑢, 𝑣) be a query in 𝑄 . If there
exists a vertex 𝑤 ∈ 𝑉 such that there is a rooted tree isomorphism
𝜙 : 𝑇𝑣 → 𝑇𝑤 , then there exists an assignment 𝜋 : 𝑉 2 → 𝑉 2 consistent
with the leakage LQ (𝐺,𝑄) such that 𝜋 (𝑞) = (𝜙 (𝑢),𝑤).

What this theorem tells us, is that queries can be recovered up to

the possible isomorphisms between the query trees and the SDSP

trees. If there only exists one possible matching between the query

trees and the SDSP trees and there only exists one isomorphism

between each pair of trees, then queries can be uniquely recov-

ered. This strong form of recovery is called full query recovery

(FQR) [23]. Falzon and Paterson note that there exist families of

trees for which FQR is always possible. One such family is the

family of graphs that have one central vertex 𝑣 and paths of distinct

lengths incident to 𝑣 . Figure 4 depicts such a graph.

5.3 QR from the PathGES scheme’s leakage

In contrast to the GKT scheme, PathGES decomposes each SDSP

tree into edge-disjoint paths before encrypting the paths using a

response hiding EMM. As a result, an adversary cannot necessarily

associate the leakage of SPSP queries with the same destination

vertex whose paths are edge disjoint. Specifically, for each SDSP tree

𝑇𝑟 , an adversary can at most recover the queries up to isomorphism

of the trees rooted at the children of 𝑟 .

For a concrete example, consider the graph in Figure 4 and the

leakage resulting from the SPSP queries (1, 2), (5, 2), and (4, 3). The
GKT scheme leaks the fact that paths 𝑝1,2 and 𝑝5,2 share the same

9

ePrint, May, 2024 Falzon et al.

432

2 5 6

234

2 3

6

2

3 51

6

7

4

3

1
24

5

6

7

(b) SDSP Trees

7

1

4

5

2

3

…

4

1
2

3

5

67

3
4 2

1 5

6

7

2

1 3 5

4 6

7

(c) GKT Leakage

3

1

5

2

6

7

4

(a) Original Graph

6
7

1

5

2

6

3

4

2

3

4

1 5

67

1 2

4 3 2
3 2

27 6 5
6 5 2
5 2

4 3
1 2
2 3
5 2 3
7 6 5 2 3

(1,2)
(3,2)
(4,2)
(5,2)
(6,2)
(7,2)

(4,3)
(1,3)
(2,3)
(5,3)

6,3 , (7,3)

(d) Our Scheme’s Leakage

1 2

7 6
1 2
5 6
2 5 6
4 3 2 5 6

(1,4)
(3,4)
(2,4)

(7,4)

(7,6)
(1,6)
(5,6)
(2,6)

3,6 , (4,6)

5,4 , (6,4)

5
67

6 5 2 3 4
2 3 4
3 4

…

Figure 4: A comparison of the leakage of GKT versus PathGES. The attack in [23] against the (a) original graph results in full query recovery i.e.,

there exists a single isomorphism between each (b) SDSP tree and the (c) query trees computed from the GKT scheme’s leakage. Thus each

query can be uniquely recovered. In contrast, our scheme results in numerous fragments, with distinct queries potentially returning the same

fragment. For example, queries (6, 3) and (7, 3) result in the same response and hence cannot be distinguished.

234 5
67

6 5 2

5 2
4 3

2 3

5 2 3

7 6 5 2 3

(1,2)
(3,2)

(4,2)

(5,2)

(6,2) (7,2)

(4,3)

(1,3)

(2,3)

(5,3)

1 2(1,4)
(3,4)

(2,4)

(7,4)

(7,6)
(1,6)(5,6)

(2,6)

3,6 , (4,6)
5,4 , (6,4) 6 5 2 3 4

2 3 4
3 4

432

…

6,3 , (7,3)

Partition of Indistinguishable Queries

27 6 5

2 5 6

2 5 61 2

2 31 2

4 3 2 5 6

4 3 2

5 6
7 6

1 2
3 2

Figure 5: A partition of indistinguishable queries when encrypting

the graph in Figure 4(a) with our scheme. The leakage induced by

our scheme is depicted in Figure 4(d).

destination vertex and that path 𝑝4,3 has a different destination. In

contrast, our scheme does not leak anything beyond the lengths of

their respective fragments and which fragments appear together.

All three queries result in fragments of the same length and these

fragments cannot be distinguished.

We now formally prove that QR is only possible up to isomor-

phisms of subtrees rooted at the children of the SDSP trees’ roots.

Lemma 19. Let 𝐺 = (𝑉 , 𝐸) be a graph encrypted using PathGES,
{𝑇𝑟 }𝑟 ∈𝑉 be the SDSP trees of 𝐺 , 𝑄 be any sequence in which each
SPSP query was issued once, and 𝑞 = (𝑢, 𝑣) be a query in 𝑄 . If there
exists a vertex 𝑤 ∈ 𝑉 and children 𝑐 and 𝑑 of the roots in 𝑇𝑣 and
𝑇𝑤 , respectively, such that there is a rooted tree isomorphism 𝜙 :

𝑇𝑣 [𝑐]∪(𝑐, 𝑣) → 𝑇𝑤 [𝑑]∪(𝑑,𝑤), then there exists an edge-disjoint path
decomposition of {𝑇𝑟 }𝑟 ∈𝑉 and assignment 𝜋 : 𝑉 2 → 𝑉 2 consistent
with the leakage LQ (𝐺,𝑄) such that 𝜋 (𝑞) = (𝜙 (𝑢),𝑤).

The proof can be found in Appendix B.7.

If there are two isomorphic subtrees𝑇𝑣 [𝑐] and𝑇𝑤 [𝑑], then there

is a set of queries of the form (𝑎, 𝑏), 𝑎 ∈ 𝑇𝑣 [𝑐] that is indistinguish-
able from a set of queries (𝑎′, 𝑏′), 𝑎′ ∈ 𝑇𝑤 [𝑑]. In other words, if

there exists two isomorphic subtrees from non-isomorphic SDSP

trees, the queries associated with these subtrees cannot be distin-

guished. In contrast, the queries would be trivially distinguish-

able given leakage from the GKT scheme since the query trees

would be non-isomorphic. Thus, many queries that would other-

wise be uniquely recoverable when using the GKT scheme, cannot

be uniquely identified when using PathGES.
One important example is the asymmetric star which we recall

in Figure 4; whereas full query recovery can be achieved using

the leakage from GKT, our scheme’s leakage results in several

indistinguishable queries and strictly less leakage (see Figure 5).

The implication of Lemma 19 is that, in many cases, it is not

possible to construct complete query trees. This is especially true in

graphs in which the roots of the SDSP trees and their descendents

induce isomorphic subtrees. Recall, that the first step of the attack

in [23] is to construct the complete query trees from the query

leakage of the GKT scheme. Each query tree is isomorphic to some

spanning shortest path tree in 𝐺 and, importantly, computing such

isomorphisms between rooted trees can be done so efficiently. In

contrast to GKT, our use of edge-disjoint fragments ensures that

PathGES does not leak the entire query tree except in extreme cases

(e.g., the complete graph on 2 nodes). Instead, it leaks a collection

of fragments, many of which are computationally indistinguishable

without auxiliary knowledge (Figure 5).

5.4 Reconstruction Space

We now make some more general observations about the recon-

struction space of our scheme.

Lemma 20. Let𝐺 = (𝑉 , 𝐸), and fix a set of SDSP trees for𝐺 and a
decomposition of each tree into canonical fragments. For each canoni-
cal fragmentof length 𝐿, there are at least 𝐿/2 equivalent queries.

Proof. Let 𝑣 ∈ 𝑉 and 𝑓 be a fragment in SDSP tree 𝑇𝑣 . Let the

corresponding path of 𝑓 in 𝑇𝑣 be (𝑢0, 𝑢2, . . . , 𝑢𝑘2) where 𝑢𝑘2 is the
node closest to the root 𝑣 . Then the set of queries {(𝑢𝑖 , 𝑣) : 0 ≤ 𝑖 ≤
𝑘2/2} result in the same response. □

10

PathGES: An Efficient and Secure Graph Encryption Scheme for Shortest PathQueries ePrint, May, 2024

Corollary 21. Let 𝐹 be the set of all fragments. Then the recon-
struction space is of size at least

∏
𝑓 ∈𝐹, | 𝑓 | ≥2 (|𝑓 |/2)!

For concreteness, we compute the sizes of the reconstruction

spaces of the GKT scheme and PathGES for the following graph

families: (1) 𝐾𝑛 , the complete graph on 𝑛 vertices, (2) 𝐿𝑛 , the line

graph on 𝑛 vertices, (3) 𝑆𝑛 , the “asymmetric star” with one central

vertex and log(𝑛+1)−1 incident paths of lengths 21, . . . , 2log(𝑛+1)−1,
and (4) 𝐺𝑛 , the grid graph of size

√
𝑛 ×
√
𝑛. The results are sum-

marized in Table 1 and in Theorems 28 and 29. The reconstruction

space sizes for the GKT scheme are exact or upper bounds, and

the sizes for our scheme may be lowerbounds. For all four graph

families, the gap of the query reconstruction spaces is of size at least

super-polynomial in 𝑛. Thus, when all queries are issued, PathGES
leaks strictly less than GKT for these families.

We note that our cryptanalysis and results in Table 1 assume

that all queries have been issued at least once. However, notice

that Lemma 20 and Corollary 21 apply even when fewer than all

queries are issued. In particular, unlike the GKT scheme, distinct

SPSP queries may result in the same response, thus making query

recovery more challenging.

The above discussion demonstrates that QR is a challenging

problem for many graphs and we now explain why we believe

this problem to be hard even for general graphs. The query recon-

struction space can be characterized by identifying queries with

equivalent leakage. To do this, we introduce the notion of a closure

graph 𝐶 for leakage L(𝐺,𝑄), where 𝐺 is a graph and 𝑄 is a se-

quence containing each SPSP query. We note that the assumption of

observing all queries implies a strong adversary in a contrived and

unrealistic scenario; however, if even a strong adversary cannot

succeed, it suggests that a real world adversary cannot succeed

since it cannot observe as many queries.

Let the vertex set of 𝐶 be the set of fragment identifiers 𝐹 ob-

served in the leakage. The pair (𝑓 , 𝑓 ′) ∈ 𝐹 × 𝐹 is an edge in𝐶 if and

only if the fragments 𝑓 and 𝑓 ′ appear together in a response. Each

vertex 𝑓 ∈ 𝐹 is labeled with the length of the fragment 𝑓 . Each edge

(𝑓 , 𝑓 ′) is labeled with the number of distinct queries that the two

fragments appear in together.

Observe that this graph encodes information about what frag-

ments appear together and whether two fragments 𝑓 , 𝑓 ′ both ap-

pear in some response with another fragment 𝑓 ′′ (even if they

don’t directly appear in a response together). Two queries are dis-

tinguishable if and only if their fragments appear in non-isomorphic

components of the closure graph (here, we consider isomorphisms

that not only preserve edges, but also vertex and edge weights). For

a concrete example, consider queries (2, 6) and (5, 3) in Figure 4,

and their respective fragments 𝑓1 and 𝑓2. Although both 𝑓1 and

𝑓2 are of length 2, the fragment 𝑓1 is also returned as part of the

response of query (1, 6). Thus, 𝑓1 and 𝑓2 belong to non-isomorphic

components of the closure graph and they are thus distinguishable.

To compute the query reconstruction space using this approach,

an adversary must (1) compute the closure graph from the plaintext

graph, (2) construct the closure graph from the leakage, and (3)

find all possible isomorphisms between the two closure graphs and

derive the partition of equivalent queries. The graph isomorphism

problem is not known to be solvable in polynomial time for general

graphs, and the problem of determining whether an isomorphism

Dataset

Graph Characteristics

|𝑉 | |𝐸 | d
#

Comp.

Dia-

meter

Max Frag

Length

InternetRouting 35 323 0.543 1 2 2

CA-GrQc 46 1030 0.995 1 2 2

email-Eu-core 1005 16,706 0.0331 20 7 4

facebook 4039 88,234 0.011 1 8 4

p2p-Gnutella08 6301 20,777 0.001 2 9 8

p2p-Gnutella04 10,876 39,994 0.0006 1 10 8

Swiss 19,976 24,009 0.00012 1 311 512

Cali 21,693 21,693 0.00009 2 491 512

Table 2: Details about the real-world datasets used in our experi-

ments. |𝑉 | denotes the number of vertices, |𝐸 | the number of edges,

and 𝑑 = 2 |𝐸 |/(|𝑉 |2 − |𝑉 |) the density of the graph.

that preserves edges weights and vertex labels exists between two

graphs is at least as hard as the standard graph isomorphism prob-

lem. Generalizing further to the case where only a subset of queries

is observed or certain queries are issued multiple times, the problem

becomes one of finding subgraph isomorphisms.

We expect closure graphs to be dense non-trees, since fragments

that appear together in the response of an SPSP query are in one-

to-one correspondence with nodes in the closure graph that induce

a clique. The graph isomorphism problem is a long standing open

question and seeing how graph isomorphism algorithms perform

on closure graphs of real world data sets is interesting future work.

6 EMPIRICAL EVALUATION

We now evaluate our scheme’s performance on real world datasets

and compare its performance to the GKT scheme [26].

Experimental setup. We implemented our scheme using Python

3.8.10 and ran our experiments on a compute cluster with 2U Rack-

mount Chassis, 64 Core AMD EPYC 7742 2.25GHz Processor, and

512GB DDR4 3200MHz ECC Server Memory. For comparison, we

implemented the GKT scheme. Both implementations used the

same compute node for the client and the server, so our results do

not include network latency.

Due to memory constraints imposed by the compute cluster,

we wrote the plaintext and encrypted multimaps out to SQLite

databases. Writing the EMMs to disk incurs significant time over-

head compared to storing everything in main memory, but we

believe this is a better reflection of what would happen in practice

for realistic work loads.

Graphs. We used the NetworkX library version 3.1 [19] to represent
and manipulate graphs. We used our own implementation of the

HLD algorithm (Figure 8).

Cryptographic primitives. The cryptographic primitives were

implemented using the Cryptography library version 42.0.5 [58].

For symmetric encryption we used AES in CBC mode with 16B

block size and key length; for cryptographic hash functions we

used SHA-256; for search token generation we used HMAC with

SHA-256. We implemented the encrypted EMMs of PathGES using

the response-revealing scheme of [9] for EMM-RR and a straight-

forward response-hiding modification of this scheme for EMM-RH.
Encryption was parallelized across 20 cores.

11

ePrint, May, 2024 Falzon et al.

Dataset

GKT PathGES
M
Size

EM
Size

Encryption

Time

Total

Time

M1

Size

M1

% Pad

EM1

Size

M2

Size

M2

% Pad

EM2

Size

Encryption

Time

Total

Time

InternetRouting 102.4KB 180KB 93.9ms 344ms 147KB 87.3 213KB 86KB 30.4 369KB 264ms 442ms

CA-GrQc 172KB 303KB 100ms 423ms 246KB 85.3 365KB 147KB 30.2 631KB 312ms 537ms

email-Eu-core 79.6MB 138MB 10.1s 21.8s 188MB 64.8 244MB 84MB 29.8 299MB 40.2s 64.5s

facebook 1.39GB 2.31GB 2.94mins 5.07mins 3.64GB 60.7 4.47GB 1.53GB 30.2 4.87GB 11.8min 17.8min

p2p-Gnutella08 3.38GB 5.62GB 6.85mins 11.5mins 9.59GB 61.0 11.6GB 3.76GB 31.5 11.9GB 29.7mins 43.4mins

p2p-Gnutella04 10.1GB 16.8GB 20.5mins 34.7mins 30.4GB 58.3 37.4GB 11.7GB 31.6 35.6GB 1.70hr 2.42hr

Swiss 34.5GB 57.2GB 1.19hr 2.05hr 109GB 54.9 137GB 31.4GB 34.8 121GB 4.90hr 6.57hr

Cali 40.7GB 67.6GB 1.44 hr 2.80hr 129GB 53.6 161GB 32.4GB 32.7 143GB 5.56hr 8.65hr

Table 3: Setup results for both GKT and PathGES.

6.1 Datasets

We evaluated our scheme on the same social network datasets as

Ghosh et al. [26] and Falzon and Paterson [23], along with two

geographical datasets: the Swiss Federal Railway timetable [59] and

the California road network [43]. See Table 2 for more details.

• InternetRouting [42]: A dataset from the University of Oregon

Route Views Project. A dense subgraph (𝑛 = 35) was extracted
using the dense subset extraction algorithm by Charikar [13] as

implemented by Ambavi et al. [2].

• Ca-GrQc [42]:Anetwork of the General Relativity andQuantum

Cosmology arXiv collaborations from January 1993 to April 2003.

A subgraph (𝑛 = 46) was extracted using dense subset extraction.
• email-EU-core [42]: A network of internal emails sent between

members of a large European research institution. We parsed the

data as a non-directed graph, i.e. an edge (𝑢, 𝑣) exists if either 𝑢
sent 𝑣 an email or vice versa.

• facebook [42]: A social network derived from Facebook friends

lists; it includes all edges from the ego networks collected.

• p2p-Gnutella [42]: Two datatsets depicting the Gnutella peer-

to-peer network from August 4 and 8 2002.

• Swiss [59]: A timetable of the Swiss Railway from December 13,

2015 to December 10, 2016 parsed as a graph [48]. We extracted

the largest component from this graph.

• Cali [43]: A dataset of the California Road Network. It was used

in prior works on range schemes e.g. [22, 49].

6.2 Performance

Setup. Setup comprises of the KeyGen and Encrypt algorithms. We

report setup benchmarks in Table 2 including sizes of the plain-

text and encrypted multimaps, and total setup time. Sizes of the

multimaps were obtained using the os.path.getsize function to

measure the size of the corresponding database files.

Setup times were practical, ranging from as little as 442 ms

(𝑛 = 35) to 8.65 hours (𝑛 = 21, 693). Client-side storage required

only a 32B key: one 16B key for each of the two EMMs. Similar to the

GKT scheme, server-side storage is the most significant cost. Total

size of the encrypted database ranged from 582KB (𝑛 = 35) to 304GB

(𝑛 = 21, 693). Due to how the edges were stored and encryption

overhead, the sizes of EM1 and EM2 were at most 1.48 times and

4.41 times larger than the plaintext multimaps, respectively. Storage

is proportional to the number of nodes and independent of graph

density. In contrast, the GKT scheme’s encryption overhead varies

inversely with graph density.

Query. Querying involves executing 3 algorithms: Token (computa-

tion of the search token), Search (look-up of the encrypted records),

and Reveal (decryption of the response). We depict query bench-

marks in Figures 6 and 15. For each dataset we sampled 100,000

uniformly random queries, partitioned the queries based on path

length (Figure 6) or number of fragments (Figure 15), and averaged

the benchmarks within each set of the partition.

All three query algorithms are very efficient, measuring in at

most tens of milliseconds. Experimentally, the Search algorithm’s

run time increases linearly with respect to both path length and

number of fragments, since longer paths are likely to result in more

fragments. Similarly, the run time of Reveal increases linearly with

respect to both path length and number of fragments. However, we

see a closer correlation to length since response decryption is only

dependent on the number of edges returned. Response size varies

proportionally with the length of the path, with ∼100B increase for

each additional vertex in the queried path.

6.3 Comparison with GKT

In Table 3, we see that GKT requires less setup time overall and

that the encryption time of GKT constitutes a smaller percentage of

the overall setup time. In other words, building the multimap is the

more time-intensive part of setup forGKT as compared to PathGES.
PathGES leaks less information about the graph structure at setup,

but as a result, requires more storage overhead due to padding.

Figure 7 depicts query benchmarks for both schemes for p2p-

Gnutella04 and California. We issued 100,000 uniformly random

queries, partitioned the results with respect to path length, and av-

eraged the attribute for each length. Token is very efficient for both

schemes and takes approximately 0.043ms. Overall, Search runtime

is faster for our scheme despite its higher theoretical complexity.

The discrepancy between worst-case complexity and real-world

performance can be attributed to the difference in number of calls

to cryptographic primitives that our implementations of the EMM

schemes must make. A call to Search.EMM-RR requires computing

for each value: one hash evaluation (to obtain the encrypted label)

and one symmetric decryption (to reveal the value).

In contrast, a call to Search.EMM-RH only requires evaluat-

ing one hash for each value (to obtain the encrypted label). The

GKT scheme looks up 𝑡 edges in a dictionary encrypted using the

response-revealing scheme. Our scheme instead looks up 𝑡 + 𝛿
12

PathGES: An Efficient and Secure Graph Encryption Scheme for Shortest PathQueries ePrint, May, 2024

Social Network Datasets

1 2 4 8

10
2

10
2.5

Length of Path

R
e
s
p
o
n
s
e
S
i
z
e
(
B
)

1 2 4 8

0

5

10

15

Length of Path

%
P
a
d
d
i
n
g

1 2 4 8

10
2

10
3

Length of Path

S
e
a
r
c
h
T
i
m
e
(
𝜇
s
)

1 2 4 8

10
2

10
2.5

Length of Path

R
e
v
e
a
l
T
i
m
e
(
𝜇
s
)

Geographic Datasets

1 10 100

10
2

10
3

10
4

Length of Path

R
e
s
p
o
n
s
e
S
i
z
e
(
B
)

1 10 100

0

10

20

30

Length of Path

%
P
a
d
d
i
n
g

1 10 100

10
3

10
4

10
5

Length of Path

S
e
a
r
c
h
T
i
m
e
(
𝜇
s
)

1 10 100

10
2

10
3

10
4

Length of Path

R
e
v
e
a
l
T
i
m
e
(
𝜇
s
)

Figure 6: Query benchmarks with respect to the length of the path queried. We use the following symbols for the social network datasets:

InternetRouting (), Ca-GrQc (), email-EU-core (), facebook (), p2p-Gnutella08 (), p2p-Gnutella04 (). And the

following symbols for the geographic datasets: Swiss () and Cali (). For each dataset we issued 100,000 random queries, partitioned

them based on path length, and took the average of the respective attribute within each set of the partition. Since the queries were randomly

sampled, we do not necessarily observe all possible path lengths.

1 10 100

10
3

10
4

Length of Path (# edges)

S
e
a
r
c
h
T
i
m
e
(
𝜇
s
)

1 10 100

10
2

10
3

10
4

Length of Path (# edges)

R
e
v
e
a
l
T
i
m
e
(
𝜇
s
)

1 10 100

10
3

10
4

Length of Path (# edges)

T
o
t
a
l
Q
u
e
r
y
T
i
m
e
(
𝜇
s
)

1 10 100

10
2

10
3

10
4

Length of Path (# edges)
R
e
s
p
o
n
s
e
S
i
z
e
(
B
)

Figure 7: PathGES () and GKT () query benchmarks for the p2p-Gnutella04 (dashed) and California (solid) datasets. Results were

averaged over 100,000 uniformly random SPSP queries. For paths of length 10 or more, Search time takes approximately 3× more for GKT. For
longer paths, we also see that the total round-trip query time is faster for PathGES. On the other hand, Reveal is faster for GKT. The response
size is on average comparable to that of GKT.

edges using the response-hiding scheme, 𝛿 ∈ [1, 𝑡 + 1]. In practice,

𝛿 is closer to 1 for the social network graphs. These observations

were confirmed using a line-profiler [36] to compute the length of

time the search operation spent on each line of code. Our scheme’s

search time could be further decreased through parallelization. In

contrast, the GKT scheme’s search is intrinsically sequential.

Reveal is marginally faster for the GKT scheme, since it only

involves symmetric decryption of the vertices in the shortest path.

In our scheme, the returned fragments may include additional nodes

and padding vertices that are not in the shortest path. Moreover, the

Reveal algorithm of our response-hiding EMM implementation also

entailed a key-derivation step, hence the small additive increase in

decryption time required by PathGES.
Total round-trip query time is efficient and practical for both

schemes. However, as the length of the path increases, the total

query time of GKT overtakes that of PathGES. Response size in-
creases linearly with respect to the path length for both schemes

and both datasets. On average, the response size of PathGES al-

most matches that of GKT for the social network graphs, despite

the worst-case 2x constant factor overhead in bandwidth.

7 CONCLUSION

We present a new graph encryption scheme for single-pair short-

est path (SPSP) queries. We describe a new data structure that is

designed to optimize bandwidth and query time, whilst also increas-

ing security. Our scheme built upon this data structure achieves

optimal bandwidth complexity and mitigates the attack by Falzon

and Paterson [23]. We generalize the notion of what it means for

one leakage function to leak less than another leakage function [5]

to families of query sequences, and show that our scheme leaks less

than the GKT scheme [26] for all query sequences in which each

SPSP query is issued at least once. We support our scheme with a

proof of security and a thorough cryptanalysis. We then demon-

strate our scheme’s practicality by implementing and evaluating it

on a number of real-world social network and geographic datasets.

13

ePrint, May, 2024 Falzon et al.

ACKNOWLEDGMENTS

This research is supported by Armasuisse Science and Technology,

the U.S. National Science Foundation, and the James A. and Julie

N. Brown Professorship of Computer Science at Brown Univer-

sity. Francesca Falzon would like to thank Kien T. Truong for help

with optimizing the PathGES implementation. Francesca Falzon

and Roberto Tamassia would also like to thank Lilika Markatou

for insightful discussions on structured encryption schemes and

leakage abuse attacks. This work was done in part while Francesca

Falzon was at Brown University and at the University of Chicago.

REFERENCES

[1] Amazon. 2021. Amazon Neptune. https://aws.amazon.com/neptune/ Accessed

on September 10, 2022.

[2] Heer Ambavi, Mridul Sharma, and Varun Gohil. 2020. Densest-Subgraph-

Discovery. https://github.com/varungohil/Densest-Subgraph-Discovery.

[3] Raphaël Bost. 2016. Sophos: Forward Secure Searchable Encryption. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery, New

York, NY, USA, 1143–1154.

[4] Raphaël Bost. 2018. Searchable Encryption: New Constructions of Encrypted
Databases. Université de Rennes 1.

[5] Raphael Bost and Pierre-Alain Fouque. 2019. Security-Efficiency Tradeoffs in

Searchable Encryption. Proc. Priv. Enhancing Technol. 2019, 4 (2019), 132–151.
https://doi.org/10.2478/popets-2019-0062

[6] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. 2017. Forward and Backward

Private Searchable Encryption from Constrained Cryptographic Primitives. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (Dallas, Texas, USA) (CCS ’17). Association for Computing Machinery,

New York, NY, USA, 1465–1482. https://doi.org/10.1145/3133956.3133980

[7] Alina Campan, Yasmeen Alufaisan, and Traian Marius Truta. 2015. Preserving

Communities in Anonymized Social Networks. Trans. Data Privacy 8, 1 (dec

2015), 55–87.

[8] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-

Abuse Attacks Against Searchable Encryption. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security (Denver, Colorado,

USA) (CCS ’15). Association for Computing Machinery, New York, NY, USA,

668–679. https://doi.org/10.1145/2810103.2813700

[9] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo Krawczyk,

Marcel-Catalin Rosu, and Michael Steiner. 2014. Dynamic searchable encryption

in very-large databases: data structures and implementation. In 21st Annual
Network and Distributed System Security Symposium 2014 (NDSS 2014).

[10] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin

Roşu, and Michael Steiner. 2013. Highly-Scalable Searchable Symmetric Encryp-

tion with Support for Boolean Queries. In Advances in Cryptology (CRYPTO).
Springer, Lyon, France, 353–373.

[11] David Cash, Ruth Ng, and Adam Rivkin. 2021. Improved Structured Encryption

for SQL Databases via Hybrid Indexing. In Applied Cryptography and Network
Security, Kazue Sako and Nils Ole Tippenhauer (Eds.). Springer International

Publishing, Cham, 480–510.

[12] Javad Ghareh Chamani, Ioannis Demertzis, Dimitrios Papadopoulos, Char-

alampos Papamanthou, and Rasool Jalili. 2023. GraphOS: Towards Oblivious

Graph Processing. Proc. VLDB Endow. 16, 13 (sep 2023), 4324–4338. https:

//doi.org/10.14778/3625054.3625067

[13] Moses Charikar. 2000. Greedy Approximation Algorithms for Finding Dense

Components in a Graph. In Approximation Algorithms for Combinatorial Opti-
mization, Klaus Jansen and Samir Khuller (Eds.). Springer, Berlin, Heidelberg,

84–95. https://doi.org/10.1007/3-540-44436-x_10

[14] Melissa Chase and Seny Kamara. 2010. Structured Encryption and Controlled

Disclosure. In Advances in Cryptology - ASIACRYPT 2010 - 16th International
Conference on the Theory and Application of Cryptology and Information Security,
Singapore, December 5-9, 2010. Proceedings (Lecture Notes in Computer Science,
Vol. 6477), Masayuki Abe (Ed.). Springer, 577–594.

[15] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2002. Reachability

and Distance Queries via 2-Hop Labels. In Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (San Francisco, California) (SODA
’02). Society for Industrial and Applied Mathematics, USA, 937–946.

[16] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

[17] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Searchable

Symmetric Encryption: Improved Definitions and Efficient Constructions. In

Proceedings of the 13th ACMConference on Computer and Communications Security
(Alexandria, Virginia, USA) (CCS ’06). Association for Computing Machinery,

New York, NY, USA, 79–88. https://doi.org/10.1145/1180405.1180417

[18] Marc Damie, Florian Hahn, and Andreas Peter. 2021. A Highly Accurate Query-

Recovery Attack against Searchable Encryption using Non-Indexed Documents.

In 30th USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021,
Michael Bailey and Rachel Greenstadt (Eds.). USENIX Association, 143–160.

https://www.usenix.org/conference/usenixsecurity21/presentation/damie

[19] NetworkX Developers. 2021. NetworkX. https://networkx.org/ version 2.6.2.

[20] Minxin Du, Peipei Jiang, Qian Wang, Sherman S. M. Chow, and Lingchen Zhao.

2023. Shielding Graph for eXact Analytics with SGX. IEEE Transactions on
Dependable and Secure Computing 01 (jan 2023), 1–11. https://doi.org/10.1109/

TDSC.2023.3241164

[21] Francesca Falzon, Evangelia AnnaMarkatou, Akshima, David Cash, Adam Rivkin,

Jesse Stern, and Roberto Tamassia. 2020. Full Database Reconstruction in Two

Dimensions. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (Virtual Event, USA) (CCS ’20). Association for

Computing Machinery, New York, NY, USA, 443–460. https://doi.org/10.1145/

3372297.3417275

[22] Francesca Falzon, Evangelia Anna Markatou, Zachary Espiritu, and Roberto

Tamassia. 2022. Range Search over Encrypted Multi-Attribute Data. Proc. VLDB
Endow. 16, 4, 587–600.

[23] Francesca Falzon and Kenneth G. Paterson. 2022. An Efficient Query Recovery

Attack Against a Graph Encryption Scheme. In Computer Security – ESORICS
2022: 27th European Symposium on Research in Computer Security, Copenhagen,
Denmark, September 26–30, 2022, Proceedings, Part I (Copenhagen, Denmark).

Springer-Verlag, Berlin, Heidelberg, 325–345. https://doi.org/10.1007/978-3-031-

17140-6_16

[24] Craig Gentry and Dan Boneh. 2009. A fully homomorphic encryption scheme.
Vol. 20:09. Stanford university Stanford.

[25] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou,

and Rasool Jalili. 2018. New Constructions for Forward and Backward Pri-

vate Symmetric Searchable Encryption. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (Toronto, Canada) (CCS
’18). Association for Computing Machinery, New York, NY, USA, 1038–1055.

https://doi.org/10.1145/3243734.3243833

[26] Esha Ghosh, Seny Kamara, and Roberto Tamassia. 2021. Efficient Graph Encryption
Scheme for Shortest Path Queries. Association for Computing Machinery, New

York, NY, USA, 516–525.

[27] Anselme Goetschmann. 2020. Design and Analysis of Graph Encryption Schemes.
Master’s Thesis. ETH Zürich.

[28] Andrew V. Goldberg. 2007. Point-to-Point Shortest Path Algorithms with Pre-

processing. In SOFSEM 2007: Theory and Practice of Computer Science, 33rd Con-
ference on Current Trends in Theory and Practice of Computer Science, Harrachov,
Czech Republic, January 20-26, 2007, Proceedings (Lecture Notes in Computer Sci-
ence, Vol. 4362), Jan van Leeuwen, Giuseppe F. Italiano, Wiebe van der Hoek,

Christoph Meinel, Harald Sack, and Frantisek Plásil (Eds.). Springer, 88–102.

https://doi.org/10.1007/978-3-540-69507-3_6

[29] Oded Goldreich. 1987. Towards a Theory of Software Protection and Simulation

by Oblivious RAMs. In Proceedings of the Nineteenth Annual ACM Symposium
on Theory of Computing (New York, New York, USA) (STOC ’87). Association for

Computing Machinery, New York, NY, USA, 182–194.

[30] Paul Grubbs, Marie-Sarah Lacharite, Brice Minaud, and Kenneth G. Paterson.

2018. Pump up the Volume: Practical Database Reconstruction from Volume

Leakage on Range Queries. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 315–331. https://doi.org/10.

1145/3243734.3243864

[31] Seny Kamara and Tarik Moataz. 2018. SQL on Structurally-Encrypted Databases.

In Advances in Cryptology - ASIACRYPT 2018 - 24th International Conference
on the Theory and Application of Cryptology and Information Security, Brisbane,
QLD, Australia, December 2-6, 2018, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 11272), Thomas Peyrin and Steven D. Galbraith (Eds.). Springer,

149–180.

[32] Seny Kamara, Tarik Moataz, and Olya Ohrimenko. 2018. Structured Encryption

and Leakage Suppression. In Advances in Cryptology – CRYPTO 2018: 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19–23, 2018,
Proceedings, Part I (Santa Barbara, CA, USA). Springer-Verlag, Berlin, Heidelberg,
339–370. https://doi.org/10.1007/978-3-319-96884-1_12

[33] Seny Kamara and Charalampos Papamanthou. 2013. Parallel and Dynamic

Searchable Symmetric Encryption. In Financial Cryptography and Data Security,
Ahmad-Reza Sadeghi (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 258–

274.

[34] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012. Dynamic

Searchable Symmetric Encryption. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security (Raleigh, North Carolina, USA) (CCS
’12). Association for Computing Machinery, New York, NY, USA, 965–976. https:

//doi.org/10.1145/2382196.2382298

[35] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. 2016. Generic

Attacks on Secure Outsourced Databases. In Proceedings of the 2016 ACM SIGSAC

14

https://aws.amazon.com/neptune/
https://github.com/varungohil/Densest-Subgraph-Discovery
https://doi.org/10.2478/popets-2019-0062
https://doi.org/10.1145/3133956.3133980
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.14778/3625054.3625067
https://doi.org/10.14778/3625054.3625067
https://doi.org/10.1007/3-540-44436-x_10
https://doi.org/10.1145/1180405.1180417
https://www.usenix.org/conference/usenixsecurity21/presentation/damie
https://networkx.org/
https://doi.org/10.1109/TDSC.2023.3241164
https://doi.org/10.1109/TDSC.2023.3241164
https://doi.org/10.1145/3372297.3417275
https://doi.org/10.1145/3372297.3417275
https://doi.org/10.1007/978-3-031-17140-6_16
https://doi.org/10.1007/978-3-031-17140-6_16
https://doi.org/10.1145/3243734.3243833
https://doi.org/10.1007/978-3-540-69507-3_6
https://doi.org/10.1145/3243734.3243864
https://doi.org/10.1145/3243734.3243864
https://doi.org/10.1007/978-3-319-96884-1_12
https://doi.org/10.1145/2382196.2382298
https://doi.org/10.1145/2382196.2382298

PathGES: An Efficient and Secure Graph Encryption Scheme for Shortest PathQueries ePrint, May, 2024

Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 1329–1340.

https://doi.org/10.1145/2976749.2978386

[36] Robert Kern. 2023. line-profiler. https://pypi.org/project/line-profiler/ ver-

sion4.0.3.

[37] Evgenios M. Kornaropoulos, Nathaniel Moyer, Charalampos Papamanthou, and

Alexandros Psomas. 2022. Leakage Inversion: Towards Quantifying Privacy

in Searchable Encryption. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security (Los Angeles, CA, USA) (CCS ’22).
Association for Computing Machinery, New York, NY, USA, 1829–1842. https:

//doi.org/10.1145/3548606.3560593

[38] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.

2020. The State of the Uniform: Attacks on Encrypted Databases Beyond the

Uniform Query Distribution. In Proceedings IEEE Symposium on Security and
Privacy (S&P).

[39] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.

2021. Response-Hiding Encrypted Ranges: Revisiting Security via Parametrized

Leakage-Abuse Attacks. In Proceedings IEEE Symposium on Security and Privacy
(S&P).

[40] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson. 2018. Improved

reconstruction attacks on encrypted data using range query leakage. In Proceed-
ings of the IEEE Symposium on Security and Privacy 2018 (S&P 2018).

[41] Russell W. F. Lai and Sherman S. M. Chow. 2017. Forward-Secure Searchable

Encryption on Labeled Bipartite Graphs. In Applied Cryptography and Network
Security, Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi (Eds.). Springer

International Publishing, Cham, 478–497.

[42] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[43] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-Hua

Teng. 2005. On Trip Planning Queries in Spatial Databases. In Advances in Spatial
and Temporal Databases, Claudia Bauzer Medeiros, Max J. Egenhofer, and Elisa

Bertino (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 273–290.

[44] Mingyue Li, Chunfu Jia, RuizhongDu, andWei Shao. 2021. Forward and Backward

Secure Searchable Encryption Scheme Supporting Conjunctive Queries over

Bipartite Graphs. IEEE Transactions on Cloud Computing (2021), 1–1. https:

//doi.org/10.1109/TCC.2021.3131176

[45] Mingyue Li, Chunfu Jia, RuizhongDu, andWei Shao. 2021. Forward and Backward

Secure Searchable Encryption Scheme Supporting Conjunctive Queries over

Bipartite Graphs. IEEE Transactions on Cloud Computing (2021), 1–1. https:

//doi.org/10.1109/TCC.2021.3131176

[46] Chang Liu, Liehuang Zhu, and Jinjun Chen. 2017. Graph Encryption for Top-K

Nearest Keyword Search Queries on Cloud. IEEE Transactions on Sustainable
Computing 2, 4 (2017), 371–381. https://doi.org/10.1109/TSUSC.2017.2704163

[47] Chang Liu, Liehuang Zhu, Xiangjian He, and Jinjun Chen. 2021. Enabling Privacy-

Preserving Shortest Distance Queries on Encrypted Graph Data. IEEE Trans.
Dependable Secur. Comput. 18, 1 (jan 2021), 192–204. https://doi.org/10.1109/

TDSC.2018.2880981

[48] Kevin Scott Mader. 2019. Parsing SBB Routes as a Graph. https://www.kaggle.

com/code/kmader/parsing-sbb-routes-as-a-graph/notebook.

[49] Evangelia Anna Markatou, Francesca Falzon, Roberto Tamassia, and William

Schor. 2021. Reconstructing with Less: Leakage Abuse Attacks in Two Dimen-

sions. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security (Virtual Event, Republic of Korea) (CCS ’21). Asso-
ciation for Computing Machinery, New York, NY, USA, 2243–2261. https:

//doi.org/10.1145/3460120.3484552

[50] Xianrui Meng, Seny Kamara, Kobbi Nissim, and George Kollios. 2015. GRECS:

Graph Encryption for Approximate Shortest Distance Queries. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security
(Denver, Colorado, USA) (CCS ’15). Association for Computing Machinery, New

York, NY, USA, 504–517.

[51] KyriakosMouratidis andMan Lung Yiu. 2012. Shortest Path Computationwith No

Information Leakage. Proceedings of the VLDB Endowment 5, 8 (2012), 692–703.
[52] Muhammad Naveed, Manoj Prabhakaran, and Carl A. Gunter. 2014. Dynamic

Searchable Encryption via Blind Storage. In 2014 IEEE Symposium on Security
and Privacy. 639–654.

[53] Inc. Neo4j. 2021. Neo4j. https://neo4j.com/ Accessed on September 10, 2021.

[54] Ruth Ng, Alexander Hoover, David Cash, and Eileen Ee. 2023. Structured

Encryption for Indirect Addressing. IACR Cryptol. ePrint Arch. (2023), 1146.
https://eprint.iacr.org/2023/1146

[55] Ontotext. 2021. GraphDB. https://graphdb.ontotext.com/ Accessed on September

10, 2022.

[56] Simon Oya and Florian Kerschbaum. 2021. Hiding the Access Pattern is Not

Enough: Exploiting Search Pattern Leakage in Searchable Encryption. In 30th
USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021, Michael

Bailey and Rachel Greenstadt (Eds.). USENIX Association, 127–142. https://www.

usenix.org/conference/usenixsecurity21/presentation/oya

[57] Geong Sen Poh, Moesfa Soeheila Mohamad, and Muhammad Reza Z’aba. 2012.

Structured Encryption for Conceptual Graphs. In Advances in Information and

Computer Security, Goichiro Hanaoka and Toshihiro Yamauchi (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 105–122.

[58] PythonCryptographic Authority. 2023. pyca/cryptography. https://cryptography.

io/en/latest/ version 39.0.0.

[59] Open-Data-Plattform öV Schweiz. 2016. Fahrplan 2016 (GTFS). https://

opentransportdata.swiss/en/dataset/timetable-2016-gtfs.

[60] Adam Sealfon. 2016. Shortest Paths and Distances with Differential Privacy. In

Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems (San Francisco, California, USA) (PODS ’16). Association for

Computing Machinery, New York, NY, USA, 29–41.

[61] Meng Shen, Baoli Ma, Liehuang Zhu, Rashid Mijumbi, Xiaojiang Du, and Jiankun

Hu. 2018. Cloud-Based Approximate Constrained Shortest Distance Queries Over

Encrypted Graphs With Privacy Protection. IEEE Transactions on Information
Forensics and Security 13, 4 (2018), 940–953. https://doi.org/10.1109/TIFS.2017.

2774451

[62] Daniel D. Sleator and Robert Endre Tarjan. 1983. A Data Structure for Dynamic

Trees. J. Comput. Syst. Sci. 26, 3 (jun 1983), 362–391.

[63] Dawn Song, David Wagner, and Adrian Perrig. 2000. Practical techniques for

searches on encrypted data. In Proceeding 2000 IEEE Symposium on Security and
Privacy. S&P 2000. 44–55.

[64] Venkateshwaran Venkataramani, Zach Amsden, Nathan Bronson, George Cabr-

era III, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo,

Jeremy Hoon, Sachin Kulkarni, Nathan Lawrence, Mark Marchukov, Dmitri

Petrov, and Lovro Puzar. 2012. TAO: How Facebook Serves the Social Graph. In

Proceedings of the 2012 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’12). Association for Computing Machinery, New York, NY, USA,

791–792. https://doi.org/10.1145/2213836.2213957

[65] Qian Wang, Kui Ren, Minxin Du, Qi Li, and Aziz Mohaisen. 2017. SecGDB:

Graph Encryption for Exact Shortest Distance Queries with Efficient Updates.

In Financial Cryptography and Data Security - 21st International Conference, FC
2017, Sliema, Malta, April 3-7, 2017, Revised Selected Papers (Lecture Notes in
Computer Science, Vol. 10322), Aggelos Kiayias (Ed.). Springer, 79–97. https:

//doi.org/10.1007/978-3-319-70972-7_5

[66] David J. Wu, Joe Zimmerman, Jérémy Planul, and John C. Mitchell. 2016. Privacy-

Preserving Shortest Path Computation. In 23rd Annual Network and Distributed
System Security Symposium, NDSS 2016, San Diego, California, USA, February
21-24, 2016. The Internet Society. https://doi.org/10.14722/ndss.2016.23052

[67] Junhua Zhang, Wentao Li, Long Yuan, Lu Qin, Ying Zhang, and Lijun Chang.

2022. Shortest-Path Queries on Complex Networks: Experiments, Analyses,

and Improvement. Proc. VLDB Endow. 15, 11 (jul 2022), 2640–2652. https:

//doi.org/10.14778/3551793.3551820

15

https://doi.org/10.1145/2976749.2978386
https://pypi.org/project/line-profiler/
https://doi.org/10.1145/3548606.3560593
https://doi.org/10.1145/3548606.3560593
http://snap.stanford.edu/data
https://doi.org/10.1109/TCC.2021.3131176
https://doi.org/10.1109/TCC.2021.3131176
https://doi.org/10.1109/TCC.2021.3131176
https://doi.org/10.1109/TCC.2021.3131176
https://doi.org/10.1109/TSUSC.2017.2704163
https://doi.org/10.1109/TDSC.2018.2880981
https://doi.org/10.1109/TDSC.2018.2880981
https://www.kaggle.com/code/kmader/parsing-sbb-routes-as-a-graph/notebook
https://www.kaggle.com/code/kmader/parsing-sbb-routes-as-a-graph/notebook
https://doi.org/10.1145/3460120.3484552
https://doi.org/10.1145/3460120.3484552
https://neo4j.com/
https://eprint.iacr.org/2023/1146
https://graphdb.ontotext.com/
https://www.usenix.org/conference/usenixsecurity21/presentation/oya
https://www.usenix.org/conference/usenixsecurity21/presentation/oya
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/
https://opentransportdata.swiss/en/dataset/timetable-2016-gtfs
https://opentransportdata.swiss/en/dataset/timetable-2016-gtfs
https://doi.org/10.1109/TIFS.2017.2774451
https://doi.org/10.1109/TIFS.2017.2774451
https://doi.org/10.1145/2213836.2213957
https://doi.org/10.1007/978-3-319-70972-7_5
https://doi.org/10.1007/978-3-319-70972-7_5
https://doi.org/10.14722/ndss.2016.23052
https://doi.org/10.14778/3551793.3551820
https://doi.org/10.14778/3551793.3551820

ePrint, May, 2024 Falzon et al.

1: ComputeHLD(𝑇, 𝑣)→ |𝑇 [𝑣] |,𝑇𝐴
2: if 𝑣 is a leaf then

3: // The subtree rooted at 𝑣 is of size 1.

4: return 1,𝑇

5: else

6: 𝑣_𝑠𝑖𝑧𝑒 = 1

7: 𝑡𝑒𝑚𝑝 = {}
8: // Compute size of subtree rooted at 𝑣 .

9: for child𝑤 of 𝑣 do

10: 𝑤_𝑠𝑖𝑧𝑒,𝑇 ← ComputeHLD(𝑇,𝑤)
11: 𝑡𝑒𝑚𝑝 [𝑤] ← 𝑤_𝑠𝑖𝑧𝑒

12: 𝑣_𝑠𝑖𝑧𝑒 ← 𝑣_𝑠𝑖𝑧𝑒 +𝑤_𝑠𝑖𝑧𝑒

13: for (𝑤,𝑤_𝑠𝑖𝑧𝑒) in 𝑡𝑒𝑚𝑝 do

14: // Determine if (𝑤, 𝑣) is heavy or light.

15: if 𝑤_𝑠𝑖𝑧𝑒 < 𝑣_𝑠𝑖𝑧𝑒/2 then
16: Label (𝑤, 𝑣) in 𝑇 as “light”

17: else

18: Label (𝑤, 𝑣) in 𝑇 as “heavy”

19: return 𝑣_𝑠𝑖𝑧𝑒,𝑇

Figure 8: Psuedocode for ComputeHLD.

A HEAVY-LIGHT DECOMPOSITION

Heavy-light decomposition (HLD) was introduced by Sleator

and Tarjan in order to develop fast algorithms for a number of

tree problems, including computing nearest common ancestors and

various network flow problems [62].

Definition 22. Given a rooted tree 𝑇 , the size of a node 𝑣 in 𝑇 ,
size𝑇 (𝑣), is the number of nodes in the subtree rooted at node 𝑣 (the
size includes the node 𝑣 itself).

Definition 23. Let 𝑇 be a rooted tree. An edge between a node
𝑣 in 𝑇 and its parent is defined as heavy if and only if size𝑇 (𝑣) >
1

2
size𝑇 (parent(𝑣)). All other edges in the tree are light.

Note that, by definition, any node in a tree has at most one child

linked to by a heavy edge.

Definition 24. The heavy edges decompose the tree nodes of a
tree𝑇 into vertex disjoint paths which are called heavy chains. These
paths are connected to each other via light edges.

Theorem 25. ([62]) Let 𝑇 be a rooted tree with 𝑛 nodes. From any
node in 𝑇 , the number of light edges needed to reach the root of the
tree is at most log𝑛. Thus, the number of heavy chains along the path
from any node to the root is also 𝑂 (log𝑛).

Complexity. This algorithm marks each edge while exploring the

input tree 𝑇 using DFS. The run time is the same time and space as

running DFS on a tree i.e. 𝑂 (𝑛).

B PROOFS

B.1 Proof of Lemma 5

Proof. We must prove two properties: (1)𝐺 |𝑃𝑣 is connected and
(2) there are no cycles in 𝐺 |𝑃𝑣 . By definition of 𝑃𝑣 , all paths must

end at 𝑣 . Thus any two vertices 𝑢,𝑢′ ∈ 𝑉𝑃𝑣 are connected through

an undirected path via 𝑣 .

We now prove property (2). Let the vertices in𝑉 be labeled from

1 to 𝑛 and let 𝐴(𝑢, 𝑣, 𝑘) denote the shortest path from 𝑢 to 𝑣 using

only vertices 1 to 𝑘 . Recall the recurrence used by Floyd-Warshall.

𝐴(𝑢, 𝑣, 𝑘) = min

{
𝐴(𝑢, 𝑣, 𝑘 − 1)
𝐴(𝑢,𝑘, 𝑘 − 1) +𝐴(𝑘, 𝑣, 𝑘 − 1)

where 𝐴(𝑢, 𝑣, 0) = (𝑢, 𝑣). For a contradiction, suppose that the

recurrence produces a cycle in𝐺 |𝑃𝑣 . Then theremust be two distinct

paths between a pair of vertices in 𝑃𝑣 as depicted in Figure 9.

vw’wu’

u

Figure 9: A cycle in 𝑃𝑣 .

As 𝑘 iterates over [𝑛], we update the shortest path from 𝑢 to 𝑣

using only vertices 1, . . . , 𝑘 . Similarly for the shortest path from

𝑢′ to 𝑣 . However, a cycle as in Figure 9 would imply that for

𝑘 = 𝑤 we have 𝐴(𝑢, 𝑣, 𝑘) = 𝐴(𝑢, 𝑘, 𝑘 − 1) + 𝐴(𝑘, 𝑣, 𝑘 − 1) and
𝐴(𝑢′, 𝑣, 𝑘) = 𝐴(𝑢′, 𝑘, 𝑘 − 1) +𝐴(𝑘, 𝑣, 𝑘 − 1). Yet the path correspond-

ing to 𝐴(𝑘, 𝑣, 𝑘 − 1) in the two equations must have been distinct.

This is a contradiction. Thus 𝑃𝑣 cannot contain a cycle. □

B.2 Proof of Lemma 26

Lemma 26. Let 𝜆 be an integer and 𝐺 = (𝑉 , 𝐸) be a graph on
𝑛 vertices. Let 𝐾 ← PathGES.KeyGen(1𝜆) and (EM1, EM2) ←
PathGES.Encrypt(𝐾,𝐺). Before line 28 (Figure 2) is executed, M1

contains at most 𝑛2 log𝑛 values.

Proof. M1 maps each SDSP query to a token set, each token

corresponding to a fragment. By Theorem 25, a path from any

vertex 𝑢 to the root 𝑟 in an annotated tree𝑇𝐷𝑟 comprises of no more

than ⌊log𝑛⌋ disjoint paths. Since 𝑇𝐷𝑟 is a tree, the path from any

vertex 𝑣 to root 𝑟 cannot cross a disjoint path more than once. It

follows that each query corresponds to at most log𝑛 fragments.

There are𝑛2−𝑛 distinct SPSP queries. Thus, before executing line 28
(Figure 2), M1 contains at most 𝑛2 log𝑛 values. □

B.3 Proof of Lemma 27

Lemma 27. Let 𝜆 be an integer and 𝐺 = (𝑉 , 𝐸) be a graph on
𝑛 vertices. Let 𝐾 ← PathGES.KeyGen(1𝜆) and (EM1, EM2) ←
PathGES.Encrypt(𝐾,𝐺). Before line 28 (Figure 2) is executed, M2

contains at most 4𝑛2 values.

Proof. On line 15 (Figure 2), each edge-disjoint path of length ℓ

is padded to the next power of two. In the worst case ℓ = 2
𝑘 + 1 for

some integer 𝑘 , which results in padding the path up to 2 · 2𝑘 . The
length of the padded path is thus at most 2ℓ − 2. Moreover, storing

the canonical fragments of each path requires an additional 2
𝑘+1

16

PathGES: An Efficient and Secure Graph Encryption Scheme for Shortest PathQueries ePrint, May, 2024

storage. M2 maps fragment identifiers to fragments. Before line 28

is executed,M2 contains at most 4𝑛2 edges from the fragments. □

B.4 Proof of Theorem 8

Proof. First we show that the response is the shortest path from

𝑢 to 𝑟 . Let 𝑇𝐷𝑟 be the annotated SDSP tree rooted at 𝑟 . We proceed

by induction on the disjoint subpaths as they are discovered using

BFS. Let 𝑝𝑣0,𝑟 be the first disjoint path, and let {𝑝 (𝑗)𝑣0,𝑟 } 𝑗∈[0,ℓ] be its
set of canonical fragments. Then for every 𝑗 ∈ [1, ℓ] and every

non-pad vertex𝑤 in 𝑝
(𝑗)
𝑣0,𝑟 \ 𝑝

(𝑗−1)
𝑣0,𝑟 it is easy to see that M1 [(𝑤, 𝑟)]

corresponds to the fragment needed to recover the path from 𝑤

to 𝑟 . Suppose that this also holds true for the first 𝑘 − 1 subpaths.
Let 𝑝𝑢,𝑣 be the 𝑘-th path discovered. By the inductive hypothesis

and correctness of BFS, then M1 [(𝑢, 𝑟)] must have been computed

correctly. Thus for every 𝑗 ∈ [1, ℓ] and every non-pad vertex𝑤 in

𝑝
(𝑗)
𝑢,𝑣 \ 𝑝

(𝑗−1)
𝑢,𝑣 we have thatM1 [(𝑤, 𝑟)] can be computed using the

fragments comprising the path from 𝑢 to 𝑟 , plus the fragment 𝑝
(𝑗)
𝑢,𝑣 .

Moreover, since these fragments form paths in the SDSP tree 𝑇𝑟 ,

then the path is a shortest path in 𝐺 .

We now claim that each fragment contains no more than 2 times

the edges contained in the true shortest path. Let 𝑝𝑢,𝑣 be a subpath

covering the queried shortest path. Let 𝑝 = (𝑤0,𝑤1, . . . ,𝑤𝑘 , 𝑣) in
𝑝𝑢,𝑣 be the vertices precisely contained in the queried shortest path.

Let 2
𝑘
be the smallest power of two at least as large as the length

of 𝑝 . Then there exists fragment 𝑝
(𝑘)
𝑢,𝑣 that covers 𝑝 and is at most 2

times the length of 𝑝 . The for loop on line 23 of Encrypt ensures
that each query is mapped to the minimum length fragment.

Storage complexity follows from the fact that we pad M1 and

M2 up to 𝑛2 log𝑛 and 4𝑛2 values, respectively. Recall that we take

the overhead of the encrypted EMM to be linear in the number

of values. Computing the SDSP trees takes time 𝑂 (𝑛3) for general
graphs. Each tree in {𝑇𝑟 }𝑟 ∈𝑉 is traversed once and has a maximum

size of𝑂 (𝑛). The total set of fragments for a given SDSP tree require

no more than 2 times the space of the original tree. For each tree,

computing the fragments and the multimaps can be done in time

linear in 𝑛. Thus the total time to encrypt is 𝑂 (𝑛3).
Issuing a query requires computing a single token using the

EMM-RR.Token. This takes 𝑂 (1) time and returns a single token

of size linear in 𝜆. Any call to Search results in one look-up to EM1,

⌊log𝑛⌋ look-ups to EM2, and the retrieval of at most 2𝑡 encrypted

edges, for a total running time of 𝑂 (log𝑛 + 𝑡). Executing Reveal
to decrypt the fragments is linear in the number of edges in the

response, and thus takes 𝑂 (𝑡) time. □

B.5 Proof of Theorem 9

Proof. In Figure 10, we describe a stateful algorithm S that

simulates the view of the adversary in the Ideal game. We use the

simulators of EMM-RR and EMM-RH to achieve this and denote

them as SRR and SRH, respectively. We now use the following hy-

brid sequence to prove computational indistinguishability between

the output of the simulator and PathGES.
Hyb 0: This is equal to the Real game.

Hyb 1: Identical toHyb 0, except instead of invoking algorithms

EMM-RH.KeyGen and EMM-RH.Setup, invokeSRH .SimS on input
4𝑛2. An adversary cannot distinguish between these two sequential

1: SimS(1𝜆,LS (𝐺))→ (ED, st)
2: (EM1, st1) ← SRR .SimS(1𝜆, 𝑛2 log𝑛)
3: (EM2, st2) ← SRH .SimS(1𝜆, 4𝑛2)
4: Initialize empty matrix 𝐴′

5: Initialize empty sequences 𝐵,𝐶

6: Initialize empty tables 𝑇,𝑇 ′

7: return ((EM1, EM2), (𝐴′, 𝐵,𝐶,𝑇 ,𝑇 ′))

8: SimQ(1
𝜆,LQ (𝐺, (𝑞1, . . . , 𝑞𝑘)))→ (tk, st)

9: // Parse leakage as matrix 𝐴 and graph 𝐻 = (𝐼 ∪ 𝐹, 𝐸′)
10: (𝐴,𝐻) ← LQ (𝐺, (𝑞1, . . . , 𝑞𝑘))
11: // Update state for 𝑘th query

12: (𝐴′, 𝐵,𝐶,𝑇 ,𝑇 ′) ← st
13: Let 𝑐 be the neighborhood size of vertex 𝑘 ∈ 𝐼
14: Let𝑚 = |𝐸′ | be the number of edges in 𝐻 ′.
15: 𝑇𝑜𝑘𝑒𝑛𝑠 ← ∅
16: for 𝑖 =𝑚 − 𝑐 + 1, . . . ,𝑚 do

17: // Derive leakage of EMM-RH.
18: Append a column and row to 𝐴′

19: for 𝑗 ≤ 𝑖 do
𝐴′ [𝑖, 𝑗] = 𝐴′ [𝑗, 𝑖]

=

{
1 if 𝑒𝑖 , 𝑒 𝑗 ∈ 𝐸′incident
0 otherwise.

20: Append𝑤𝑒𝑖𝑔ℎ𝑡 (𝑒𝑖) to 𝐵
21: if 𝐴′ [𝑖, 𝑗] = 1 for some 𝑗 < 𝑖 then

22: // Add previous fragment token.

23: tk′ ← 𝑇 ′ [𝑗]
24: 𝑇 ′ [𝑖] ← tk′

25: else

26: // Invoke SRH to generate new fragment token.

27: (tk′, st2) ← SRH .SimQ (1𝜆, (𝐴′, 𝐵))
28: 𝑇 ′ [𝑖] ← tk′

29: 𝑇𝑜𝑘𝑒𝑛𝑠 ← 𝑇𝑜𝑘𝑒𝑛𝑠 ∪ {tk′}
30: Append 𝑇𝑜𝑘𝑒𝑛𝑠 to 𝐶

31: if 𝐴[𝑘, 𝑗] = 1 for some 𝑗 < 𝑘 then

32: // Return token using state.

33: 𝑇 [𝑘] ← 𝑇 [𝑗]
34: st← (𝐴′, 𝐵,𝐶,𝑇 ,𝑇 ′)
35: return (𝑇 [𝑘], st)
36: // Else invoke SRR to generate new token for 𝑘-th query.

37: (tk, st2) ← SRR .SimQ (1𝜆, (𝐴,𝐶))
38: 𝑇 [𝑘] ← tk
39: st← (𝐴′, 𝐵,𝐶,𝑇 ,𝑇 ′)
40: return (𝑇 [𝑘], st)

Figure 10: Psuedocode for simulator S = (SimS, SimQ) .

hybrids with more than non-negligible advantage, otherwise it

would break the adaptive security of EMM-RH.
Hyb 2: Identical to Hyb 1, except instead of invoking algo-

rithms EMM-RR.KeyGen and EMM-RR.Setup, invoke SRR .SimS
on input 𝑛2 log𝑛. An adversary cannot distinguish between these

17

ePrint, May, 2024 Falzon et al.

two sequential hybrids with more than non-negligible advantage,

otherwise it would break the adaptive security of EMM-RR.
Hyb 3: Identical to Hyb 2, except maintain some additional

state. First, construct a bipartite graph 𝐻 = (𝐼 ∪ 𝐹, 𝐸′) such that

𝐼 = [𝑘] is the set of query indices and 𝐹 is the set of identifiers

of encrypted fragments returned in response to the 𝑘 queries. For

each 𝑖 ∈ 𝐼 and 𝑓 ∈ 𝐹 , if fragment 𝑓 is in the response to the 𝑖-th

query, then add edge (𝑖, 𝑓) to𝐻 and set𝑤𝑒𝑖𝑔ℎ𝑡 ((𝑗, 𝑓)) to the length
of 𝑓 . Then construct a 𝑘 × 𝑘 binary matrix 𝐴 such that 𝐴[𝑖, 𝑗] = 1

iff the 𝑖-th query corresponds to the same search token as the 𝑗-th

query. Additionally, initialize an empty matrix𝐴′, empty sequences

𝐵,𝐶 , and empty tables 𝑇,𝑇 ′. Because this hybrid is only storing

additional internal state as compared to Hyb 2, the distributions of

the two hybrids are equal.

Hyb (4, 𝑥) for 𝑥 ∈ [𝑘]: Identical to the previous hybrid, except

for the 𝑥-th query, invoke the simulator SRH using the search and

volume pattern of EM2 derived from graph 𝐻 . In particular, instead

of invoking EMM-RH.Token, update𝐴′ and 𝐵 using𝐻 and simulate

the tokens used to query EM2 by invoking SRH .SimQ as described

in Figure 11 .

1: Let 𝐻 ′ ⊆ 𝐻 be the subgraph induced by nodes [𝑥] × 𝐹 .
2: Let 𝑐 be the neighborhood size of vertex 𝑥 in 𝐻 ′.
3: Let𝑚 be the number of edges in 𝐻 ′.
4: 𝑇𝑜𝑘𝑒𝑛𝑠 ← ∅
5: for 𝑖 =𝑚 − 𝑐 + 1, . . . ,𝑚 do

6: // Derive leakage of EMM-RH.
7: Append a column and row to 𝐴′

8: for 𝑗 ≤ 𝑖 do

𝐴′ [𝑖, 𝑗] = 𝐴′ [𝑗, 𝑖] =
{
1 if 𝑒𝑖 , 𝑒 𝑗 ∈ 𝐸′incident
0 otherwise.

9: Append𝑤𝑒𝑖𝑔ℎ𝑡 (𝑒𝑖) to 𝐵
10: if 𝐴′ [𝑖, 𝑗] = 1 for some 𝑗 < 𝑖 then

11: // Add previous fragment token.

12: tk′ ← 𝑇 ′ [𝑗]
13: 𝑇 ′ [𝑖] ← tk′

14: else

15: // Invoke SRH to generate new fragment token.

16: (tk′, st2) ← SRH .SimQ (1𝜆, (𝐴′, 𝐵))
17: 𝑇 ′ [𝑖] ← tk′

18: 𝑇𝑜𝑘𝑒𝑛𝑠 ← 𝑇𝑜𝑘𝑒𝑛𝑠 ∪ {tk′}
19: Append 𝑇𝑜𝑘𝑒𝑛𝑠 to 𝐶

Figure 11: Psuedocode for Hyb (4, 𝑖).

An adversary cannot distinguish betweenHyb (4, 𝑥) andHyb (4,

𝑥 − 1) (orHyb 3 when 𝑥 = 1) with more than non-negligible advan-

tage, otherwise it would break the adaptive security of EMM-RH.
Hyb (5, 𝑥) for 𝑥 ∈ [𝑘]:. Identical to the previous hybrid, except

invoke SRR for the 𝑥-th query. Each query to PathGES results in a

look up to EM1 using the same token used to initiate the SPSP query.

Moreover, the response of EM1 is exactly the set of tokens used to

query and retrieve the fragments from EM2. Let 𝐴[1 : 𝑖, 1 : 𝑖] be a
submatrix of𝐴 and𝐶 be the sequence of token sets computed in the

previous hybrids. Instead of invoking EMM-RR.Token – simulate

the token using SRR .SimQ on the leakage (𝐴[0 : 𝑖, 0 : 𝑖],𝐶) as
described in Figure 12.

1: if 𝐴[𝑥, 𝑗] = 1 for some 𝑗 < 𝑥 then

2: // Return token using state.

3: 𝑇 [𝑥] ← 𝑇 [𝑗]
4: st← (𝐴′, 𝐵,𝐶,𝑇 ,𝑇 ′)
5: return (𝑇 [𝑥], st)
6: // Else invoke SRR to generate new token for 𝑥-th query.

7: (tk, st2) ← SRR .SimQ (1𝜆, (𝐴[1 : 𝑥, 1 : 𝑥],𝐶))
8: 𝑇 [𝑥] ← tk
9: st← (𝐴′, 𝐵,𝐶,𝑇 ,𝑇 ′)
10: return (𝑇 [𝑥], st)

Figure 12: Psuedocode for Hyb (5, 𝑖).

An adversary cannot distinguish between Hyb (5, 𝑥) and Hyb

(5, 𝑥 − 1) (or Hyb (4, 𝑘) when 𝑥 = 1), otherwise it would break the

adaptive security of EMM-RR.
Hyb 6: Identical toHyb (5,𝑘), except runS.SimQ on the leakage

LQ (𝐺, (𝑞1, . . . , 𝑞𝑘)) when a query is issued. We note that given the

search pattern 𝐴 and structure pattern graph 𝐻 of PathGES, we
can run lines 9-39 of Figure 10. Moreover, the 𝐴 and 𝐻 obtained

from the leakage of PathGES are equal to those computed by the

previous hybrid. Thus Hyb (5, 𝑘) and Hyb 6 are computationally

indistinguishable.

Since the distribution of Hyb 6 is identical to that of S, then the

Real and Ideal worlds are computationally indistinguishable and

the proof follows. □

B.6 Proof of Theorem 16

Proof. Let (𝑞1, . . . , 𝑞𝑘) ∈ 𝑄 such that 𝑄 ∈ Q. In Figure 13,

we describe a stateful algorithm T that transforms the leakage of

GKT to that of PathGES. This algorithm runs in poly-time and the

theorem follows. □

Our proof makes the implicit assumption that the decomposition

is known to the transformation algorithm T .

B.7 Proof of Lemma 19

Proof. Let 𝑄 = (𝑞1, . . . , 𝑞𝑘). We first define 𝜋 . Let 𝐴 be the set

of queries (𝑎, 𝑏) in 𝑄 such that 𝑎 ∈ 𝑇𝑣 [𝑐] and 𝑏 = 𝑣 . Similarly, let 𝐵

be the set of queries (𝑎, 𝑏) in 𝑄 such that 𝑎 ∈ 𝑇𝑤 [𝑑] and 𝑏 = 𝑤 .

• If (𝑎, 𝑏) ∈ 𝐴, then set 𝜋 ((𝑎, 𝑏)) = (𝜙 (𝑎), 𝜙 (𝑏)).
• If (𝑎, 𝑏) ∈ 𝐵, then set 𝜋 ((𝑎, 𝑏)) = (𝜙−1 (𝑎), 𝜙−1 (𝑏)).
• Else set 𝜋 ((𝑎, 𝑏)) = (𝑎, 𝑏).

We now show that 𝜋 is consistent with the leakage i.e., that

LQ (𝐺, 𝜋 (𝑄)) = LQ (𝐺,𝑄). Since 𝜋 is a permutation and each query

in𝑄 is issued once, then 𝜋 (𝑄) is a sequence of distinct queries. Thus
the query pattern for both leakage functions is a |𝑄 | × |𝑄 | matrix

with 1’s along the diagonal and 0’s everywhere else.

Let 𝐻 = (𝐼 , 𝐹) and 𝐻 ′ = (𝐼 ′, 𝐹 ′) be the structure pattern graphs

of LQ (𝐺,𝑄) and LQ (𝐺, 𝜋 (𝑄)), respectively. It remains to show

that the structure pattern is equal, i.e. that there is an edge-weight

preserving isomorphism 𝜑 : 𝐻 → 𝐻 ′. Observe that the subgraph
of 𝐻 induced by 𝐴 and its neighbors is disconnected from the rest

18

PathGES: An Efficient and Secure Graph Encryption Scheme for Shortest PathQueries ePrint, May, 2024

1: TSetup(1𝜆,LGKT
S (𝐺))→ LPathGES

S (𝐺)
2: 𝑛 ← LGKT

S (𝐺)
3: return 𝑛

4: Tquery(1𝜆,LGKT
Q (𝐺,𝑄))→ LPathGES

Q (𝐺,𝑄)
5: (QP, PIP, t) ← LGKT

Q (𝑞1, ..., 𝑞𝑘)
6: Compute the query trees {𝑆𝑖 }𝑖∈[𝑛] .
7: Compute the HLD of each query tree in {𝑆𝐷

𝑖
}

8: Compute fragments of each path in {𝑆𝐷
𝑖
}.

9: Let 𝐼 = [𝑘] and 𝐹 be the set of fragments.

10: Define graph 𝐻 = (𝐼 ∪ 𝐹, 𝐸′) such that 𝐸′ = ∅
11: for 𝑗 = 1, ..., 𝑘 : do

12: // Add each fragment associated with 𝑞 𝑗 .

13: Using PIP find path 𝑝 in {𝑆𝐷
𝑖
}𝑖∈[𝑛] returned.

14: Let 𝐹 ′ ⊆ 𝐹 be the set of fragments or minimal length

that cover 𝑝 .

15: Add {(𝑗, 𝑓) : 𝑓 ∈ 𝐹 ′} to 𝐻
16: Str← 𝐻

17: return (QP, Str)

Figure 13: Psuedocode for transformer T = (TSetup, Tquery) . We let

𝑄 = (𝑞1, . . . , 𝑞𝑘) denote a sequence of queries.

of the graph. Similarly for 𝐵. This is because all shortest paths in

𝑇𝑣 [𝑐] ∪ (𝑐, 𝑣) are edge disjoint from all other shortest paths and

thus do not share fragments with any other queries.

We now define 𝜑 for each of these components of 𝐻 . Consider

the queries 𝑞 ∈ 𝐴. Any edge-disjoint decomposition of𝑇𝑣 must be a

decomposition for the subtree 𝑇𝑣 [𝑐]. Since the rooted-tree isomor-

phism 𝜙 is edge-preserving, then any edge-disjoint decomposition

of𝑇𝑣 [𝑐] must also be a decomposition for𝑇𝑤 [𝑑] under 𝜙 . Moreover,

𝜙 maps shortest paths to shortest paths and fragments of a particu-

lar length to fragments of the same length. We abuse notation of

𝜙 (𝑓) to mean the image of the vertices in fragment 𝑓 under 𝜙 .

• For edge (𝑞, 𝑓) ∈ 𝐼 × 𝐹 such that 𝑞 = (𝑎, 𝑏) ∈ 𝐴, set 𝜑 (𝑞) =
(𝜙 (𝑎), 𝜙 (𝑏)). Since all queries have been issued, (𝜙 (𝑎), 𝜙 (𝑏))
must exist. Also set 𝜑 (𝑓) = 𝜙 (𝑓).
• For edge (𝑞, 𝑓) ∈ 𝐼 × 𝐹 such that 𝑞 = (𝑎, 𝑏) ∈ 𝐵, set 𝜑 (𝑞) =
(𝜙−1 (𝑎), 𝜙−1 (𝑏)). Set 𝜑 (𝑓) = 𝜙−1 (𝑓).
• For edge (𝑞, 𝑓) ∈ 𝐼 × 𝐹 such that 𝑞 ∉ 𝐴 ∪ 𝐵, then set 𝜑 as the

identity, i.e. 𝜑 (𝑞) = 𝑞 and 𝜑 (𝑓) = 𝑓 .
Since 𝜑 maps fragments under the identity or 𝜙 , then it is edge-

weight preserving (the edge weights of 𝐻 and 𝐻 ′ correspond to

the lengths of the incident fragments). To see that 𝜑 is also edge-

preserving, let (𝑞, 𝑓) be any edge in 𝐻 where 𝑞 = (𝑎, 𝑏). If 𝑞 ∈ 𝐴 or

𝑞 ∈ 𝐵, then by isomorphism of 𝜙 either ((𝜙 (𝑎), 𝜙 (𝑏)), 𝜙 (𝑓)) ∈ 𝐻 ′
or ((𝜙−1 (𝑎), 𝜙−1 (𝑏)), 𝜙−1 (𝑓)) ∈ 𝐻 ′, respectively. Else 𝑞 ∉ (𝐴 ∪ 𝐵),
in which case (𝜑 (𝑞), 𝜑 (𝑓)) = (𝑞, 𝑓) ∈ 𝐻 ′. Thus 𝐻 � 𝐻 ′ and 𝜋 is

consistent with LQ (𝐺,𝑄). □

C RECONSTRUCTION SPACE BOUNDS

Theorem 28. Let 𝑛 ≥ 5. Let 𝐾𝑛 be the complete graph, 𝐿𝑛 the
line graph, 𝑆𝑛 the asymmetric star, and 𝐺𝑛 be the square grid graph.
Let 𝑄 be any sequence in which each SPSP is issued exactly once. Let
𝐾𝑛, 𝐿𝑛, 𝑆𝑛 and 𝐺𝑛 all be encrypted using GKT [26]. Then we have
that following bounds:
(1) |QRSGKT (𝐾𝑛, 𝑄) | = (𝑛!)𝑛+1
(2) |QRSGKT (𝐿𝑛, 𝑄) | = 2

𝑛/2

(3) |QRSGKT (𝑆𝑛, 𝑄) | = 1

(4) |QRSGKT (𝐺𝑛, 𝑄) | ≤
(
2

7𝑛−2
√
𝑛+4

4

)
Theorem 29. Let 𝑛 ≥ 5. Let 𝐾𝑛 be the complete graph, 𝐿𝑛 the

line graph, 𝑆𝑛 the asymmetric star, and 𝐺𝑛 be the square grid graph.
Let 𝑄 be any sequence in which each SPSP is issued exactly once. Let
𝐾𝑛, 𝐿𝑛, 𝑆𝑛 and 𝐺𝑛 all be encrypted using PathGES (Figure 2). Then
we have that following bounds:
(1) |QRSPathGES (𝐾𝑛, 𝑄) | = (𝑛2)!
(2) |QRSPathGES (𝐿𝑛, 𝑄) | ≥ (𝑛!)log𝑛−1

(3) |QRSPathGES (𝑆𝑛, 𝑄) | ≥ 𝑛
∏log(𝑛+1)−3
𝑖=0

(2𝑖 !)

(4) |QRSPathGES (𝐺𝑛, 𝑄) | ≥
(√
𝑛
4
!

) √𝑛
2
𝑛

C.1 Complete Graph

Lemma 30. Let 𝐺 = (𝑉 , 𝐸) be a complete graph on 𝑛 vertices and
𝑄 be any sequence in which each SPSP is issued exactly once. Let𝐺 be
encrypted using the GKT scheme. Then |QRSGKT (𝐺,𝑄) | = (𝑛!)𝑛+1.

Proof. Given the query leakage, one can build 𝑛 complete SDSP

trees [23]. The SDSP trees of a complete graph are 𝑛 stars, each

rooted at a different node of 𝐺 . Each star comprises 𝑛 nodes. There

are also𝑛 query trees, all of which are isomorphic stars. There are 𝑛!

ways to match the query trees and SDSP trees. For each query-SDSP

tree pair, there are 𝑛! isomorphisms between the two trees. Since

there are 𝑛 such pairs, the total size of the query reconstruction

space is 𝑛! · (𝑛!)𝑛 . □

Lemma 31. Let 𝐺 = (𝑉 , 𝐸) be a complete graph on 𝑛 vertices and
𝑄 be any sequence in which each SPSP is issued exactly once. Let 𝐺
be encrypted using PathGES (Figure 2). Then |QRSPathGES (𝐺,𝑄) | =
(𝑛2)!.

Proof. The SDSP trees are 𝑛 stars. Each tree results in 𝑛 edge-

disjoint paths each of length 1. In total there are 𝑛2 fragments all

of which are indistinguishable. There are (𝑛2)! bijections between
𝑉 ×𝑉 and the set of 𝑛2 fragments and the lemma follows. □

C.2 Line Graph

Lemma 32. Let 𝐺 = (𝑉 , 𝐸) be a line graph on 𝑛 vertices and 𝑄
be any sequence in which each SPSP is issued exactly once. Let 𝐺 be
encrypted using the GKT scheme. Then |QRSGKT (𝐺,𝑄) | = 2

𝑛/2.

Proof. Denote the path as (1, 2, 3 . . . , 𝑛) and let 𝑛 be even; a

similar argument holds for odd 𝑛. Given the query leakage, one can

build 𝑛 complete SDSP trees [23]. The SDSP tree rooted at node

𝑖 ∈ 𝑉 is isomorphic to the SDSP tree rooted at 𝑛 − 𝑖 + 1. Given the

set of 𝑛 query trees, each query tree is isomorphic to exactly two

19

ePrint, May, 2024 Falzon et al.

SDSP trees. There exists only one isomorphism from any query tree

to an SDSP tree. This is because each tree has at most two paths

of differing lengths descending from the root, so the isomorphism

is determined. The reconstruction space is the number of ways to

pair the SDSP trees with isomorphic query trees multiplied by the

number of isomorphisms between each pair, i.e. 2
𝑛/2

.

□

Lemma 33. Let 𝐺 = (𝑉 , 𝐸) be a line graph on 𝑛 vertices and 𝑄
be any sequence in which each SPSP is issued exactly once. Let 𝐺
be encrypted using PathGES (Figure 2). Then |QRSPathGES (𝐺,𝑄) | =
Ω((𝑛!)log𝑛−1).

Proof. Let 𝐺 be the path (1, 2, 3 . . . , 𝑛). Each SDSP tree com-

prises at most two paths descending from the root. When the SDSP

tree is decomposed, each path becomes disjoint. Any query results

in a response comprised of a single canonical fragment. Thus, each

canonical fragment of the same length and which does not com-

prise of any padding vertices are indistinguishable. To obtain this

lower bound we will count the number of canonical fragments

of the same length. There are at least 𝑛 canonical fragments of

each length 1, 2, 22, . . . , 2log𝑛−1. Each canonical fragment of length

ℓ length is indistinguishable from any other fragment of the same

length. This gives us a lowerbound of (𝑛!)log𝑛−1. □

C.3 Asymmetric Star

We define the asymmetric star 𝑆𝑘1,...,𝑘ℓ as the graph with one

central vertex and ℓ paths of distinct lengths 𝑘1 . . . , 𝑘ℓ which are

incident to the central vertex. For convenience, we consider the

asymmetric star 𝑆
2
1,...,2𝑁 for integer 𝑁 .

Lemma 34 ([23]). Let 𝐺 = (𝑉 , 𝐸) be an asymmetric star 𝑆
2
1,...,2𝑁

on 𝑛 = 2
𝑁+1−1 vertices and𝑄 be any sequence in which each SPSP is

issued exactly once. Let 𝐺 be encrypted using the GKT scheme. Then
|QRSGKT (𝐺,𝑄) | = 1.

More generally, under the leakage of the GKT scheme, all asym-

metric stars are fully query recoverable.

Lemma 35. Let 𝐺 = (𝑉 , 𝐸) be the asymmetric star 𝑆
2
1,...,2𝑁 on

𝑛 = 2
𝑁+1 − 1 vertices and 𝑄 be any sequence in which each SPSP

is issued exactly once. Let 𝐺 be encrypted using PathGES (Figure 2).
Then |QRSPathGES (𝐺,𝑄) | = Ω(𝑛∏log(𝑛+1)−3

𝑖=0
(2𝑖 !)).

Proof. Let 𝑗 ∈ [𝑁] and consider an SDSP tree rooted at a ver-

tex along the path of length 2
𝑗
. This tree consists of the other

paths of lengths {2𝑖 } 𝑗≠𝑖,𝑖∈[𝑁] all descending from the fixed root.

Each path of length 2
𝑖
gives rise to a fragment of length at least

2
𝑖
. Applying Corollary 21, each such fragment results in 2

𝑖−1
in-

distinguishable queries. Because these queries are indistinguish-

able, the assignment can permute these in any way possible i.e.

there exist at least

∏𝑁
𝑖=1,𝑖≠𝑗 (2𝑖−1!) distinct assignments. Thus each

SDSP tree results in

∏𝑁
𝑖=1,𝑖≠𝑗 (2𝑖−1!) ≥

∏𝑁−2
𝑖=0 (2𝑖 !) possible as-

signments consistent with the leakage. There are 𝑛 SDSP trees

(one rooted at each vertex in 𝐺). This yields a lower bound of

𝑛
∏𝑁−2
𝑖=0 (2𝑖 !) = 𝑛

∏log(𝑛+1)−3
𝑖=0

(2𝑖 !) on the size of the query recon-

struction space. □

C.4 Grid Graph

In this section, we explore the reconstruction space of an 𝑛 = 𝑁 ×𝑁
grid graph, which we denote as 𝐺𝑁×𝑁 . This graph is insightful as

it approximates the geographic graph of a grid-like city such as

New York. Note that for any given graph 𝐺𝑁×𝑁 = (𝑉 , 𝐸) and any

vertex 𝑣 ∈ 𝑉 , there are a number of possible SDSP trees and we

thus we make an additional assumption about how the SDSP trees

are computed. In particular, for any node 𝑣 ∈ 𝑉 , the SDSP tree is

computed by drawing one vertical path the length of the grid and

then drawing horizon paths branching off the vertical path in either

direction (See Figure 14). We will prove our theorems with respect

to odd 𝑁 as more symmetries arise in grids of odd length.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a) (b) (c)

Figure 14: (a) A 4 × 4 grid graph, (b) its SDSP graph rooted at vertex

1, and (c) its corresponding edge-disjoint decomposition.

Lemma 36. Let 𝐺 = (𝑉 , 𝐸) be a grid graph on 𝑛 = 𝑁 × 𝑁 vertices
and 𝑄 be any sequence in which each SPSP is issued exactly once. Let
𝐺 be encrypted using GKT with SDSP trees computed as described

above. Then |QRSGKT (𝐺,𝑄) | ≤
(
2

7𝑛−2
√
𝑛+4

4

)
.

Proof. Let 𝑁 ≥ 5 be odd; a similar argument holds for even

𝑁 . For convenience, assume a fixed orientation of 𝐺 such that its

edges are oriented either horizontally or vertically. Given the query

leakage, one can build 𝑛 complete SDSP trees [23]. Note that any

vertex 𝑣 ∈ 𝑉 falls in one of the following 5 categories: (1) 𝑣 is the

center node, (2) 𝑣 lies along the central vertical axis but is not the

center node, (3) 𝑣 lies along the central horizontal axis but is not

the center node, (4) 𝑣 is along a diagonal but is not the center node,

or (5) none of the above.

Case (1): there is no 𝑤 ∈ 𝑉 \ {𝑣} such that 𝑇𝑣 � 𝑇𝑤 . Given 𝑇𝑣 ,
one can reflect each of the 𝑁 horizontal paths independently of

each other, giving rise to 2
𝑁

isomorphisms between the query tree

𝑆𝑣 and the SDSP tree 𝑇𝑣 . Rotating 𝑆𝑣 180
◦
also results in another

2
𝑁

possible isomorphisms.

Case (2): there are 𝑁 − 1 such nodes. For each such 𝑣 there

exists 1 node𝑤 ∈ 𝑉 \ {𝑣} such that 𝑇𝑣 � 𝑇𝑤 . There are 2 ways to
match the query trees and SDSP trees. As before, each horizontal

path can be independently reflected of the others giving rise to 2
𝑁

isomorphisms between each query-plaintext tree pair.

Case (3): there are 𝑁 − 1 such nodes. For such 𝑣 there exists 1

node𝑤 ∈ 𝑉 \ {𝑣} such that 𝑇𝑣 � 𝑇𝑤 . There are 2 ways to pair the

query trees and the SDSP trees, and 2 isomorphisms between each

pair of trees obtained by reflecting across the horizontal axis.

Case (4): there exist 2(𝑁 − 1) such nodes. For each node 𝑤 ∈
𝑉 \ {𝑣} there exist 3 other nodes 𝑤 ∈ 𝑉 \ {𝑣} such that 𝑇𝑣 � 𝑇𝑤 .
There are 4! ways to pair the query trees with the SPSP trees. For

each pair, the isomorphism is unique.

20

PathGES: An Efficient and Secure Graph Encryption Scheme for Shortest PathQueries ePrint, May, 2024

Social Network Datasets

1 2 4 8

10
2

10
2.5

Number of Fragments

R
e
s
p
o
n
s
e
S
i
z
e
(
B
)

1 2 4 8

0

1

2

Number of Fragments

%
P
a
d
d
i
n
g

1 2 4 8

10
2

10
3

Number of Fragments

S
e
a
r
c
h
T
i
m
e
(
𝜇
s
)

1 2 4 8

10
2

10
2.5

Number of Fragments

R
e
v
e
a
l
T
i
m
e
(
𝜇
s
)

Geographic Datasets

1 2 4 8
10

3.5

10
4

10
4.5

Number of Fragments

R
e
s
p
o
n
s
e
S
i
z
e
(
B
)

1 2 4 8

20

25

30

35

Number of Fragments

%
P
a
d
d
i
n
g

1 2 4 8

10
4

10
4.2

Number of Fragments

S
e
a
r
c
h
T
i
m
e
(
𝜇
s
)

1 2 4 8

10
3.5

10
4

Number of Fragments

R
e
v
e
a
l
T
i
m
e
(
𝜇
s
)

Figure 15: Query benchmarks with respect to the number of fragments. We use the following symbols for the social network datasets:

InternetRouting (), Ca-GrQc (), email-EU-core (), facebook (), p2p-Gnutella08 (), p2p-Gnutella04 (). And the

following symbols for the geographic datasets: Swiss () and Cali (). For each dataset we issued 100,000 random queries, partitioned

them based on number of fragments, and took the average of the respective attribute of each set in the partition.

Case (5): there exist 𝑁 2 − 1 − (4𝑛 − 4) such nodes. For each 𝑣

there exist 3 other 𝑤 ∈ 𝑉 \ {𝑣} such that 𝑇𝑣 � 𝑇𝑤 . There are 4!
ways to match the query trees and SDSP trees, and for each pair

the isomorphism is unique.

Lastly we note that reflecting the grid across either diagonal

gives us an additional 4 different configurations in total. Putting all

this together yields a query reconstruction space of size:

4

(
2
𝑁+1 · (2𝑁+1)

𝑁 −1
2 · 4

𝑁 −1
2 · (4!)

𝑁 −1
2 · (4!)

𝑁 2−1−(4𝑁 −4)
4

)
≤

(
2

7𝑛−2
√
𝑛+4

4

)
□

Lemma 37. Let 𝐺 = (𝑉 , 𝐸) be a grid graph on 𝑛 = 𝑁 × 𝑁 vertices
and 𝑄 be any sequence in which each SPSP is issued exactly once. Let
𝐺 be encrypted using PathGES (Figure 2) with SDSP trees computed
as described above. Then

|QRSPathGES (𝐺,𝑄) | ≥
(√
𝑛

4

!

) √𝑛
2
𝑛

(1)

Proof. Let 𝑣 ∈ 𝑉 and 𝑇𝑣 be the SDSP tree rooted at 𝑣 ; this tree

can be divided into 4 quadrants with 𝑣 at the center. The largest

of these quadrants is at least
𝑁
2
× 𝑁

2
vertices. For any 𝑣 , the HLD

decomposition induces the horizontal paths in the largest quadrant

to all be disjoint. Each of these disjoint paths is of length
𝑁
2
and

results in log
𝑁
2
fragments of lengths 1, 2, 22 . . . , 2log

𝑁
2 .

Each fragment of length 2
𝑘
for some 𝑘 results in at least 2

𝑘−1
in-

distinguishable queries. An assignment consistent with the leakage

can permute the queries associated with a fragment of length 2
𝑘−1

in (2𝑘−1)!. Note that it must be a permutation since we assumed

that each query was issued exactly once. A single path of length
𝑁
2

thus results in at least

∏log
𝑁
2

𝑖=1
(2𝑖−1)! assignments.

There are at least
𝑁
2
such paths in any SDSP tree and 𝑛 possible

SDSP trees. Putting this together and replacing 𝑁 with

√
𝑛 yields a

lower bound of

©­­«
log

√
𝑛

2∏
𝑖=1

(
2
𝑖−1

)
!

ª®®¬
√
𝑛

2
𝑛

≥
(√
𝑛

4

!

) √𝑛
2
𝑛

□

D ADDITIONAL EMPIRICAL RESULTS

In Figure 15, we depict the query benchmarks for all datasets, parti-

tioned by the number of fragments. We find that, in general, the

query benchmarks of the social network datasets vary linearly with

the number of fragments. In contrast, for the geographic datasets,

the query benchmarks level off for responses comprised of more

than one fragment. This is likely because the paths in the social

network graphs consist of small fragments and path lengths in-

crease relative to the number of fragments, whereas the fragment

lengths of the geographic graphs are much longer. Queries on the

geographic graphs comprised of few fragments may still correspond

to long paths, resulting in larger response sizes, more padding, and

increased query time.

21

	Abstract
	1 Introduction
	1.1 Prior work
	1.2 Contributions

	2 Preliminaries
	2.1 Graph Encryption Scheme
	2.2 Encrypted Multimap Scheme

	3 Technical Background
	4 PathGES: A GES for SPSP Queries
	4.1 Scheme Description
	4.2 Complexity and Correctness
	4.3 Leakage
	4.4 Security

	5 Cryptanalysis
	5.1 Comparing Leakage Functions
	5.2 QR from the GKT scheme's leakage
	5.3 QR from the PathGES scheme's leakage
	5.4 Reconstruction Space

	6 Empirical Evaluation
	6.1 Datasets
	6.2 Performance
	6.3 Comparison with GKT

	7 Conclusion
	References
	A Heavy-Light Decomposition
	B Proofs
	B.1 Proof of Lemma 5
	B.2 Proof of Lemma 26
	B.3 Proof of Lemma 27
	B.4 Proof of Theorem 8
	B.5 Proof of Theorem 9
	B.6 Proof of Theorem 16
	B.7 Proof of Lemma 19

	C Reconstruction Space Bounds
	C.1 Complete Graph
	C.2 Line Graph
	C.3 Asymmetric Star
	C.4 Grid Graph

	D Additional Empirical Results

