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Abstract

Doubly Efficient Private Information Retrieval (DEPIR) pertains to a Private Information
Retrieval (PIR) scheme with both near-linear server-side preprocessing time and sublinear query
time. Very recently, Lin et al. (STOC ’23) devised the first single-server DEPIR scheme from
standard assumptions. However, their work left one major question open: can we build a DEPIR
scheme in the multi-server setting, without relying on heavy cryptographic machinery?

In this work, we propose the first doubly efficient information-theoretic PIR scheme, in the
multi-server setting. For a database of size N , our scheme allows servers to answer an infinite
number of client queries in No(1) time, after a single preprocessing phase which takes N1+o(1)

time. Our result is only a No(1) factor from the lower bound proven by Persiano and Yeo (SODA
’22) for this setting.

In addition, we devise a second information-theoretic PIR scheme which pushes the state of
the art for the setting where the number of servers is more constrained. It achieves equally fast
query times as our first scheme above, and a preprocessing time of N2+o(1).

1 Introduction

Private Information Retrieval (PIR) was first introduced almost three decades ago by Chor et al.
[15] in the multi-server, information-theoretic setting. In this problem, a client holds an index
i ∈ [N ], and k, non-colluding servers hold the same database DB ∈ {0,1}N . The goal of the PIR
protocol (informally) is to devise a way for the client to learn DB[i] without either server learning
any information about the client’s desired index i.

Since the problem’s original inception, many works have pushed our understanding of the PIR
problem in this same setting [14, 14, 6, 39, 41] (a non-exhaustive list) as well as many different
scenarios; single-server computational PIR [29], two-server computational PIR [22, 12] among others
[8, 42, 9]. Aside from the number of servers and the computational assumption on the adversary, we
can also consider preprocessing or non-preprocessing schemes. Within preprocessing schemes, there
are two well-known approaches, which we will denote server preprocessing and client preprocessing.

In client preprocessing, the server and client run a joint preprocessing phase after which the
client stores a secret hint which can be used to perform queries to the server later in time sublinear
in the database size. This requires each client to run an expensive (linear time) preprocessing phase
with the server, which means the server work to server m clients is at least m ·N , where N is the
database size.

∗Authors are alphabetically ordered students followed by advisors.
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On the other hand, in server preprocessing, the server runs a one-time preprocessing phase by
itself and stores additional bits server-side, which it can then use to answer queries from any client
in time sublinear in the database size. In this work, we focus on the server preprocessing setting
(we cover a broad overview of the other settings in Section 1.2).

The server preprocessing phase has a clear advantage with respect to total server time, in the
sense that the overhead for serving many clients is considerably smaller. The first family of server
preprocessing schemes was introduced by Beimel et al. [6] in 2000 in the multi-server setting.
They present schemes for constant and polylogarithmic number of servers, with different trade-
offs, as well as a number of lower bounds. Notably, in its Journal of Cryptology version [7], the
authors present the first multi-server scheme (with a polylogarithmic number of servers) in the
server preprocessing model which achieves polylog(N) query time and polylog(N) communication
after a preprocessing phase running in time poly(N)

Persiano and Yeo [36] recently tighten the lower bounds shown by Beimel et al., showing that
any server preprocessing scheme in the single server setting with query time Ω(t) must have the
server store a hint of at least size Ω(N logN/t), for any number of servers.

Very recently, in a seminal paper by Lin et al. [31] which makes use of a polynomial prepro-
cessing algorithm by Kedlaya and Umans [27] to achieve a PIR scheme which preprocesses in time
Oλ(N

1+o(1)) and stores Oλ(N
1+o(1)) after which it can serve PIR queries in time No(1).1 They

refer this as the doubly efficient PIR: in particular, the server can preprocess the database once in
nearly linear time (e.g., N1+o(1)), and answer an infinite amount of queries from the clients very
quickly (e.g., No(1) time).

According to the bound by Persiano and Yeo, this is close to optimal asymptotically (only
No(1) factors away). After the work by Lin et al., two main questions were left open for server
preprocessing PIR:

1. Can we achieve similar asymptotics in the multi-server setting without the computational
assumption (i.e., information-theoretic) while minimizing the number of servers required?

2. Can we achieve doubly efficient PIR without the use heavy cryptographic primitives such as
fully homomorphic encryption (FHE)?

The first question is important theoretically due to the relationship of multi-server information-
theoretic PIR with other cryptographic primitives [41, 40] and to push our understanding of the
problem. The second question was also posed after a follow-up work by Okada et al. [35] showed
that the scheme by Lin et al., implemented as is, still incurs astronomic empirical costs despite the
very nice asymptotic efficiencies.

In this work, we answer both questions in the affirmative by providing a novel, multi-server
server preprocessing scheme with near-optimal asymptotics that does not use FHE. Furthermore,
since our constructions do not rely on heavy cryptographic machinery (e.g., FHE), we believe they
may pave the way towards building a truly practical doubly efficient PIR constructions.

1.1 Our Results

In this paper, we construct two k-server information-theoretic PIR construction with server-side
preprocessing. Both are compared with the state-of-the-art prior works in information-theoretic
PIR with server-side preprocessing [7, 39] and the concurrent work [21] in Table 1.

1Or alternatively preprocess in N1+ϵ time and query in polylog(N) time for some constant ϵ).
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Scheme Efficiency

# of Servers
Preprocessing

Time & Storage
Online
Time

Communication

[39] 2 poly(N) N/polylog(N) N1/3

[7] k poly(N) O(N1/k+ϵ) O(N1/k+ϵ)

[21] k poly(N) O(N1−γ(k−1)+ϵ) O(Nγ+ϵ)
[7, 21] O(polylog(N)) poly(N) polylogN polylogN

Theorem 4.1 Õ(log(N)) N1+o(1) No(1) No(1)

Theorem 5.2 o(log(N)) N2+o(1) No(1) No(1)

Table 1: Comparisons to prior works. N is the number of bits in a database, and k, ϵ are tunable
constants in [7]. γ is a tunable constant satisfying 1

k+1 ≤ γ ≤ 1
k in [21]. Our Õ(log(N)) =

log(N) log log(N)
log log log(N) .

In particular, our first scheme is the first doubly efficient PIR scheme (see Theorem 2.1) with
no computational assumptions where the server computation at query time is significantly smaller
than N , specifically, No(1). Also, in order to satisfy the definition of doubly efficient, it means
that each server’s preprocessing time is near-linear in the database size N (in particular, we have
N1+o(1)). These are achieved with roughly O(log(N)) servers.

In our second scheme, we demonstrate that one can further reduce the number of servers required
for the scheme, at the expensive of a more costly preprocessing phase, which is no longer near linear,
but N2+o(1). This is the first scheme to achieve No(1) query time with poly(N) preprocessing and
o(logN) servers. Note that such efficiency is also not achieved by any prior work with o(log(N))
servers (even any poly(N) preprocessing time).

To transfer the doubly efficient PIR scheme of Lin et al. [31] into the information-theoretic
setting, the first challenge is to find a way to hide the query without employing homomorphic
encryption. In the multi-server setting, secret sharing has been a solution to hide the client query
without the use of encryption [37, 4]. However, it is not immediately clear how to secret share the
input in a way that preserves the homomorphism necessary to evaluate the polynomial from the
server side without blowing up the cost.

We therefore take a slightly different approach, inspired by the elegant result of Woodruff and
Yekhanin [39], which removes the necessity for finding a secret sharing scheme with homomor-
phic properties. In particular, they ask each server to evaluate a single point on the polynomial
representing the database, and the client can recover the database point using these evaluations.
Following this work, we can apply the polynomial-preprocessing data structure considered in [31].
In more detail, we can let each server preprocess the polynomial in advance, and then evaluate the
preprocessed result online.

One immediate issue, however, is that using the result in [31], the resulting scheme has relatively
bad efficiency. In particular, we need the preprocessing time to be poly(N) or we need polylog(N)
servers with some large hidden factor in the exponent (i.e., logr(N) for some large r, i.e. r > 20).

Thus, instead, We also employ a different polynomial preprocessing technique [11] than the one
used in [31]. Such new result introduces some new constraints (e.g., the characteristic of Fq the
polynomial works over p needs to be do(1) where d is the individual degree of the polynomial), and
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thus we need to carefully balance how the parameters are chosen to make sure the preprocessing
works and achieve the desired efficiency. We expand on these in more detail in Sections 4 and 5.

Comparison with prior information-theoretic PIR works. As shown in Table 1, compared
to [7] with constant k number of servers, our construction achieves better efficiency (both for prepro-
cessing and online queries). A similar comparison can be drawn when compared to [39]. Compared
to [7] with polylogarithmic number of servers, our construction achieves better preprocessing ef-
ficiency, while requiring a smaller number of servers. On the other hand, our online efficiency is
slightly worse. Nonetheless, altogether, our work provides a preprocessing time and query time
trade off not achievable before.

Comparison with concurrent and independent work. A very recent work [21] also focuses
on information-theoretic multi-server PIR with server-side preprocessing.

In terms of results, in [21, Thm 1.3 & Appendix B], they achieve poly(N) preprocessing time
and storage, polylog(N) online costs (computation and communication) with polylog(N) servers,
which asymptotically is similar to [7, Thm 4.9] (summarized in Table 1, the fourth row).

Compared to our result, our result achieves better preprocessing time than both schemes (with
fewer servers), as seen in Table 1 (although our query time is slightly worse, it is not clear that
either scheme can achieve our preprocessing time, even at the sacrifice of their query time).

The other results in [21] provide alternative constructions for a constant number of servers
which allow finer tuning than prior works in terms of online computation and communication (see
Table 1, the third row): allowing better communication by trading-off some online computation
cost. On the other hand, our paper focuses on providing a tradeoff between the number of servers
and the preprocessing time, for a reasonably small number of servers (roughly or less than log(N)
servers), while still maintaining small online costs (i.e., No(1)).

In terms of techniques, our works share similarities as both are based on [39] and both use
polynomial preprocessing. However, they use Hasse derivatives while we use normal derivatives, as
well as different techniques and a different polynomial preprocessing scheme.

1.2 Other Related Works

Client preprocessing PIR was first introduced in the two-server setting by Corrigan-Gibbs and
Kogan [18, 28]. As aforementioned, in this setting, the client and server jointly run a preprocessing
phase and the client stores a hint which it later uses to perform queries in time sublinear in the
database size. Although the server has to run one preprocessing phase per client, one big advantage
of this model is that the server stores no additional bits server-side other than the original database.
In contrast, server preprocessing schemes can require quite large server storage overheads, up to
100x the size of the original database [6, 31].The original work also showed a lower bound on the
efficiency of schemes in client preprocessing model. In specific, if the preprocessing phase outputs
a hint of size O(Q), then the query phase must at least in time O(N/Q).Several works have since
improved the original work by Corrigan-Gibbs et al. in terms of bandwidth [38], as well as devised
single-server client preprocessing schemes with similar techniques and asymptotics [17, 30, 43, 19].

One line of work in server preprocessing not mentioned above, by [13, 26] achieved PIR schemes
with Õ(poly(N)) preprocessing time and polylog(N) both client and server time per query from non-
standard assumptions, which have yet to see a formal security reduction to known hard problems.

Other works have studied preprocessing that does not reduce asymptotic server load but per-
forms extremely fast in practice in the single server setting [24, 32, 33, 1]
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PIR has been used as a building block for many different privacy-preserving applications, such
as meta-data hiding messaging [2], private streaming [23], private contact-tracing [25], and more
[3, 32].

2 Preliminary

In this section we will cover important primitives and definitions necessary for our work.

Notation. Fq defines a finite field of size q. The characteristic of a finite field is the smallest
positive number of copies of the field’s multiplicative identity (i.e., 1) that will sum to the additive
identity (i.e., 0). If q is a prime power (i.e., q = pα for some prime p and α ≥ 0), the characteristic
of Fq is p. We use Õ(log(N)) to represent O(log(N)poly log log(N)).

2.1 Private Information Retrieval

First, we define PIR formally. This definition captures the informal requirements of our client
always being able to reconstruct the desired database entry at the end of the protocol, as well as
the requirement that servers, individually, not learn anything about the query index picked by the
client.

Definition 2.1 (Multi-server Doubly Efficient Private Information Retrieval with server preprocess-
ing [15, 31]). A k-server, server preprocessing Private Information Retrieval scheme for a database
of length N consists of four PPT algorithms:

• A preprocessing function Preprocess: DB ∈ {0,1}N → D̃B;

• a query function Query : (i ∈ [N ], j ∈ [k])→ q;

• an answer functions Answer : (D̃B, q)→ A;

• a reconstruction function Reconstruct : A1, . . . , Ak → {0,1}.

These functions should satisfy the correctness and privacy defined below.
Correctness: For every DB ∈ {0,1}N , let D̃B = Preprocess(DB). For any i ∈ [N ], let qj ←
Query(i, j), and Aj ← Answer(D̃B, qj), where j ∈ [k], it holds that

Pr[Reconstruct(i, A1, . . . , Aj) = DB[i]] = 1

Privacy: For every i1,i2 ∈ [N ], j ∈ [k], and q ∈ Q where Q is the output space of Query,

Pr[Query(i1, j) = q] = Pr[Query(i2,j) = q]

Then, a PIR scheme is doubly-efficient if it satisfies the following property.
Doubly efficient: A PIR construction is doubly efficient if it is both Preprocessing efficient and
Query efficient, which are defined as follows:

• (Preprocessing efficient) For any database DB ∈ {0,1}N , the runtime of D̃B← Preprocess(DB)

and |D̃B| are both N1+o(1).
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• (Query efficient) For any i ∈ [N ], let qj ← Query(i,j), Aj ← Answer(D̃B, qj), for all j ∈ [k],
and Reconstruct(i, A1, . . . , Aj), it holds that:

1. The total runtime of the k calls of Query,Answer and the one call of Reconstruct in total
are No(1).

2. |(q1, . . . , qk, A1, . . . , Ak)| = No(1).

Note that this definition naturally captures the multi-query setting since it assumes correctness
for any query after the preprocessing. This definition is slightly modified from the original definition
presented in [15] (and adapted according to [31] to accommodate the doubly efficient definition).

2.2 Polynomial preprocessing

Polynomial preprocessing consists of two steps. The first step, preprocessing, takes in a polyno-
mial and outputs a datastructure. Subsequently, this data structure can be used to evaluate the
polynomial at any point in time much faster than the naive evaluation algorithm using only the
polynomial.

We restate the results from Bhargava et al. [11] as follows.2

Theorem 2.2 (Thm 6.1 in [11]). For a m-variate polynomial P : Fm
q → Fq with individual degree

≤ d, over some finite field Fq such that q = pα for some prime p = do(1) and α > 0 then, there
exists an algorithm PolyPreProcess such that (1) the runtime of PolyPreProcess(P ) is (αdp)m · 4m ·
poly(α, d,m, p); (2) let P̃ ← PolyPreProcess(P ), for any x⃗ ∈ Fm

q , P̃ (x⃗) = P (x⃗) and that the runtime

of P̃ (x⃗) is 4m · poly(α, d,m, p).

With appropriate parameter choices, we will be able to find a polynomial P that represents our
database of N bits such that we can preprocess P into a data structure in time O(N1+o(1)) and
subsequently evaluate P at any point in time O(No(1)). We dive more into the exact details in
Section 4.

2.3 Polynomial Interpolation

Notice that to be able to use the polynomial preprocessing scheme mentioned above in a PIR
scheme, we need to find a polynomial that represents the database. For any x ∈ {0,1}N , we need
to find a polynomial P such that for any i ∈ [N ], P (encode(i)) = xi, for some encoding function
encode to be defined later. This is the problem of polynomial interpolation. Given a set of N
points, we need to fit a polynomial to these points. It is well-known that we can find a univariate
polynomial of degree N that interpolates N points in time O(N logN) [31, 20].This result is also
extended to the multi-variate polynomial setting, as seen in the theorem below. 3

Lemma 2.3 (Lemma B.1 in [31]). Let Fq be a finite field, and let m ∈ N be an integer. Let
{yx1,...,xm ∈ Fq}(x1,...,xm)∈Fm

d
be any set of dm values. Then, there is an algorithm that runs in time

2This is a follow-up work to [27] which is used by [31] in their PIR construction, with slightly different asymptotics
and tradeoffs. Note that [10] improves the result from [11] on some fronts, but some technical details make it unusable
for our use case.

3Note that in [31], their lemma is stated in a prime field. However, it easily extends to any finite field, as the
uni-variate polynomial interpolation used in its proof extending to multi-variate interpolation can be done in any
finite field as shown in [20].
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O(dm ·m·polylog(q)) and recoveres the coefficients of a polynomial f(X1, . . . , Xm) ∈ Fq[X1, . . . , Xm]
with individual degree less than d in each variable such that f(x1, . . . , xm) = yx1,...,mm for all
(x1, . . . , xm) ∈ Fm

q .

3 Multi-server PIR by Woodruff and Yekhanin [39]

We first recall in detail the scheme by Woodruff and Yekhanin [39] in the k-server, no prepro-
cessing PIR setting, which elegantly achieves large bandwidth improvements with respect to its
predecessors. Our construction greatly relies on this work.

Let h = 2k−1 where recall k is the number of non-colluding servers available in the PIR scheme.
We first define an encoding function used in [39] encode : [N ] → Fm

p where m = O(hN1/h) and
k < p < 2k. We define encode(1), . . . , encode(N) to be distinct points of hamming weight h in Fm

p

with each individual value restricted to {0,1} ⊂ Fp. Such encoding exists if C(m,h) ≥ N , where
C here denotes the number of combinations [5, 39]. (This is database-independent but depends on
public parameters such as the size of the database and the number of servers.)

Now, suppose the servers also are given along with the database an m-variate polynomial F
such that for each i ∈ [N ], F (encode(i)) = DB[i] (this can be interpolated in near-linear time).

Note F is a m-variate polynomial with a total degree of 2k−1 which maps Fm
p → Fp. Explicitly,

F can be written as:

F (z1, . . . ,zm) =

N∑
i=1

DB[i] ·
∏

encode(i)[ℓ]=1

zℓ

 ,

where encode(i)[ℓ] denotes the ℓ−th element of the output of encode(i). One can work out that
F (encode(i)) = DB[i]. Also, since each output of encode has weight h, it follows that also F has
total degree at most h (at most h variable are multiplied together per term). From this setup, the
client performs a query to an index i ∈ [N ] as follows:

1. Pick v⃗ uniformly at random from Fm
p .

2. To each server j ∈ [k], send qj = encode(i+λj v⃗), where each λj is a distinct non-zero element
from Fq.

3. Server j computes and returns F (qj) as well as
∂F
∂z1

(qj), . . . ,
∂F
∂zm

(qj).

The last part of item 3 refers to the partial derivative of F with respect to variable zi evaluated
at point qj , for each i ∈ [m].

First, note that we can define a function f : Fq → Fq such that f(λj) = F (i + λj v⃗). This
function has a degree at most h = 2k−1 because F has total degree h = 2k−1 as explained above.
Also note that f(0) = F (i) = DB[i] by construction.

If it were the case that h = k−1, we could recover the entire function f (and thus f(0) = DB[i])
with each server returning only F (encode(i)+λj v⃗) = f(λj) and then interpolating. However, since
h = 2k − 1, the max degree of our local polynomial f is at most 2k − 1 and therefore k points are
not enough to recover f(0). The observation by [39] is that we can use the fact that to interpolate
a polynomial of degree 2k − 1, it suffices to know k points of the polynomial and the derivative
at these same k points. Now, from the partial derivatives returned by each server, we can recover
f ′(λj) by applying the chain rule as follows:
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f ′(λj) =
∂F (i+ λj v⃗)

∂λ
=

m∑
ℓ=1

v⃗ℓ ·
∂F

∂zℓ
(encode(i) + λj v⃗).

Since the client knows the first element in the sum and the server returns the second part, it
can therefore compute f ′(λj) for each j ∈ [k] and use these along with the set of {f(λj)}j∈[k] to
compute f(0) = F (encode(i) + 0 · v⃗) = DB[i].

With this, the client can recover f(0) = DB[i] the data point with k servers andO(k2 log kN1/(2k−1))
of communication cost.

This scheme is the starting point for our multi-server scheme with preprocessing. Note that
[39] do include mention of preprocessing PIR in their work as well, but the best they can achieve
is a query time of O(N/ logr N) for some constant r. In contrast, we will pair this technique with
the polynomial preprocessing techniques to achieve a query time of No(1).

Below is a lemma shown along the way in [39], which we will need for our correctness proof.
Essentially, it helps showing that f(λj) together of the derivatives f ′(λj), . . . , f

ℓ(λj) are enough to
uniquely determine a univariate function f with degree k · ℓ− 1 for j ∈ [k] and k ≥ 1.

Lemma 3.1 (Lemma 1 in [39]). Let f ∈ Fq[X] where q = pα for some prime p and α > 0, and
ℓ ≤ p− 1. Suppose f(X0) = f ′(X0) = · · · = f ℓ(X0) = 0, then (X −X0)

ℓ+1|f .

4 Our First Construction

We now move to construct our multi-server doubly efficient PIR scheme. Recall that doubly efficient
refers to almost linear server preprocessing time, and sublinear client query times. Note that the
scheme recalled in Section 3 does not fit the definition since the server performs Ω(N) work per
query.

Then, we pose the question of whether it is possible to utilize the recent idea in [31] to enhance
the scheme in [39] preprocessing the polynomial first, and the allow the servers to serve client
queries in time sublinear in the database size N . In particular, in [27], the authors show how to
construct a data structure that allows one to preprocess an m-variate polynomial with individual
degree < d such that the preprocessing takes Ω(dm ·mm) time (and storage) and the evaluation of
any arbitrary input can be done in poly(m, d, log(q)) time (used by Lin et al. in the PIR context
in [31]).

Unfortunately, naively applying this technique to the scheme by Woodruff and Yekhanin does
not achieve the desired results. Specifically, in the scheme presented, the preprocessing takes
roughly O(2N

1/k
), since m ≈ N1/k and d = 2 (each variable only has degree 1) for some constant

k, Therefore, the question is: can we achieve (almost) N total preprocessing time and server-side
storage while achieving (almost) constant online costs (computation and communication)?

4.1 Substituting the Function

As mentioned, the major issue is that the function evaluated by the server cannot be efficiently
preprocessed. Therefore, our first idea is to replace the underlying function.

As shown in [31, Claim 4.2.1], instead, we can first encode each index i ∈ [N ] into a d-ary vector
i⃗ such that i =

∑
j i⃗j · dj−1 (via some deterministic encoding algorithm encode(·)). Then, we can

interpolate a polynomial P with m variables and individual degree d over some finite field Fq for
q > d, where dm ≥ N , such that P (⃗i) = DB[i].
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In this case, the client instead needs to interpolate a function f with degree d ·m (since P has
m variables and each variable has degree at most d). To interpolate such a function, the client
needs d ·m+1 points, which can be obtained by d ·m+1 servers. In [31], they provide two sets of
parameter settings:

1. In the first setting, d = O(log2/ϵN) and m = O(ϵ log(N)/ log log(N)) for some constant
ϵ. In this case, the total number of servers needed is O(log2(N)) if we set ϵ = 2, and the
preprocessing takes N1+ϵ = N3, which is poly(N). Alternatively, ϵ can be set smaller (e.g.
1/10), and the preprocessing becomes N1.1 which is much closer to linear preprocessing.
However, in this case, the number of servers needed is then log21(N) which is quite large.

2. In the second setting, d = 2O(
√

log(N)) and m = O(
√

log(N)). Under this setting, the
preprocessing time remains N1+o(1) which is essentially linear. However, the total number of

servers required in this case is 2
√

log(N), which is super-polylogarithmic, and undesirable.

Then, using this framework, it seems impossible to achieve both a polylogarithmic number of
servers and an almost linear time preprocessing time. However, we notice that[11] (recalled in
Theorem 2.2) reduces the preprocessing time of the scheme used in [31] from dm ·mm to dm · 4m.
The requirement to use this scheme is that it only works with finite fields of small characteristic
(p = do(1)).

By leveraging this new result, with a careful parameters selection we can achieve all of our
desired asymptotics, (1) a polylogarithmic number of servers and (2) almost linear preprocessing
time and (3) fast query times.

Specifically, we show in Theorem 4.1 that with such a new technique, and careful parameter
selection, we can reduce the number of servers to Õ(log(N)), while keeping the preprocessing time
N1+o(1), and with a query time of No(1).

We formally present our scheme in Fig. 1.

Theorem 4.1. The Private Information Retrieval scheme in Figure 1 satisfies Theorem 2.1 is
doubly-efficient. In particular, it runs with efficiencies:

• Number of servers: Õ(log(N)) = O( log(N) log log(N)
log log log(N) ).

• Preprocess time and server storage: N1+o(1).

• Total online time: No(1).

• Total online communication: No(1).

Proof. We prove the properties separately.

Correctness: For correctness, we simply need to argue that f(0) = P (i). This is simple since we
have dm+ 1 distinct points and are recovering a function f of degree dm.

Privacy: Privacy is also simple: since v⃗ is sampled uniformly at random from Fm
q , j · v⃗+encode(i) is

indistinguishable from a uniformly randomly drawn vector from Fm
q for any j ∈ [k] (for [k] denoting

k elements of Fq).

Efficiency: Now, to prove the efficiency, we first set the parameters accordingly.
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Public Parameters (set according to the proof of Theorem 4.1):

1. m: number of variables.

2. d: total degree of a polynomial function.

3. q: a prime power pα for some prime p and α ∈ Z+.

4. k = dm+ 1: number of servers.

5. encode(i)→ Fm
q : deterministic mapping for i ∈ [N ] to Zm

q .

Preprocess(DB):

1. Interpolate m-variate, d-degree polynomial P : Fm
q → Fq, such that P (encode(i)) = DB[i].

2. Compute P̃ ← PolyPreProcess(P ).

3. Return D̃B = P̃ .

Query(i ∈ [N ], j ∈ [k] ⊂ Fq):

1. Sample v⃗ ← Fm
q .

2. Compute qj ← j · v⃗+ encode(i). (For simplicity, we view [k] as the first k elements in Fq.)

3. Return qj .

Answer(D̃B, q) :

1. Return P̃ (q).

Reconstruct(A1, . . . , Ak) :

1. Use the answer to interpolate a function f : Fq → Fq of degree d · m, using f(j) =
P (j · v⃗ + encode(i)) (included in A) for j ∈ [k] where k = dm+ 1.

2. Return f(0).

Figure 1: Our multi-server doubly efficient PIR scheme.
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1. We set dm = N and d = log log(N) = 2log log log(N), which givesm = O(log(N)/ log log log(N)).

2. Then, we set p = O(log log log(N)) = do(1) (satisfying the requirement in Theorem 2.2).

3. Lastly, we set α such that pα = q ≥ k + 1, and thus:

α = O(logp(k)) = O(log log(N)1/ log log log log(N)).

With these parameters, we analyze each efficiency metrics separately.

• Number of servers: k = m · d = O(log(N) log log(N)/ log log log(N)) = Õ(log(N)).

• Preprocessing time: Let’s start with the preprocessing of the polynomial (line 2). Recall
that from Theorem 2.2, the preprocessing time for a degree-d and m-variate polynomial is:
(αdp)m · 4m · poly(α, d,m, p). We analyze this term by term.

– αm = (logp(k + 1))m = O(N1/ log log log log(N)) = No(1).

– dm = N .

– pm = N log log log log(N)/ log log log(N) = No(1).

– poly(α, d,m, p) = polylog(N).

Therefore, the total preprocessing time for a single function is N1+o(1). For dm + 1 =
polylog(N) servers, The total polynomial preprocessing time is thus N1+o(1).

Now, let us move to the interpolation of the functions (line 1). As introduced in Theorem 2.3,
the interpolation time is Npolylog(N). Putting all these together, the preprocessing time is

N1+o(1). Therefore, the extra storage (i.e., |D̃B|) is also trivially bounded by N1+o(1).

• Online time: The online time of the client query is simply the time for encoding, which
is O(log(N)). Then, for each server, the online time is to evaluate the preprocessed func-
tion. As in Theorem 2.2, each evaluation takes 4m · poly(α, d,m, p). Since 4m = No(1) and
poly(α, d,m, p) = polylog(N), the runtime of each server is No(1). Since there are only dm+1
servers, the total runtime is also No(1). Lastly, the reconstruction time is the time to recon-
struct f plus the evaluation of f , which is simply bounded by poly(dm) = polylog(N) [20].
The evaluation is also O(dm) = polylog(N) since the function has degree dm.

Note that the unit of the computation cost above is the number of Fq operations. Note that
since q = O(polylog(N)), each Fq operation costs at most polylog(N) bit operations and thus
does not affect the conclusion above.

• Online communication: The query size is simply m Fq elements, and thus polylog(N). The
answer size is bounded by the total runtime of all the servers, which is thus No(1). Thus, the
total online communication is also No(1).

With all these efficiency metrics proven, our construction indeed satisfies the definition of being
doubly efficient.
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5 Our Second Construction

Next, we explore whether we reduce the number of servers needed even further.
Recall that in [39], each server evaluates not only the interpolated function, but also the deriva-

tives of the functions. While they only use one level of derivatives, we can naturally extend their
idea to work over L levels of derivatives. In more detail, [39] shows that for an (odd) degree 2k− 1
univariate function f , it suffices to have k unique points f(xi) = yi for i ∈ [k] and k unique deriva-
tives f ′(xi) = zi to uniquely determine f . We further extend their insight and show that with k
points, k first derivatives, k second derivatives, and so on, up to k L-th derivatives, to uniquely
determine the function with degree k(L+ 1)− 1, as formally proven in the following lemma.

Lemma 5.1. Suppose {xi}, {y0,i}, . . . , {yL,i} are elements of some finite field Fq, where i ∈ [I]
for some I greater than 0 and the set {xi} has size I; then there exists at most one polynomial
f(x) ∈ Fq[x] of degree less than or equal to (L + 1) · I − 1 such that f(xi) = y0,i and f ℓ(xi) = yℓ,i
for ℓ ∈ [L− 1] and f ℓ denotes the ℓ-th derivative of f , where Fq has characteristics p greater than
or equal to L+ 1.

Proof. If there exist two such polynomials f1(x), f2(x), then let f = f1 − f2. Then, it is clear that
f(xi) = · · · = fL(xi) = 0 for all i ∈ [I]. Thus, by Theorem 3.1, it holds that

∏
i∈[I](x−xi)

L+1|f(x),
implying f(x) = 0 since the degree of f is at most |L+ 1|I − 1.

With this in mind, instead, each server calculates the partial derivatives of the interpolated
polynomial P , and preprocess these derivatives as a polynomial as well. More formally, each server
computes ∂ℓP

∂xz1 ,...xzℓ
, for all z1, . . . , zℓ ∈ [m]ℓ.

With L levels of derivatives, we then only need approximately dm/L servers. However, note
that for each level of derivative, the number of functions that are stored at the server grows by
a factor of m (as z1, . . . , zℓ ∈ [m]ℓ). Thus, for L levels, there are O(mL) functions. To make the
preprocessing time and online costs reasonable, we need to tune the parameters accordingly.

In Theorem 5.2, we show that with the careful parameter setup, we can achieve o(log(N))
servers, while maintaining the online cost to be No(1) and preprocessing time to be poly(N).

We formally present our construction in Fig. 2.

Theorem 5.2. The Private Information Retrieval scheme in Figure 2 satisfies Theorem 2.1 that
is query efficient. In particular, it runs with efficiencies:

• Number of servers: o(log(N)).

• Preprocess time and server storage: N2+o(1).

• Total online time: No(1).

• Total online communication: No(1).

Proof. We prove the properties separately. We start with the privacy and efficiency, since the
correctness depends on the parameters setup analyzed in detail in the efficiency analysis.

Privacy: Privacy is exactly the same as in Theorem 4.1.

Efficiency: Now, to prove the efficiency, we first set the parameters accordingly.
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Public Parameters (set according to the proof of Theorem 5.2):

1. m: number of variables.

2. d: total degree of a polynomial function.

3. q: a prime power pα for some prime p and α ∈ Z+.

4. k: number of servers.

5. encode(i)→ Fm
q : deterministic mapping for i ∈ [N ] to Zm

q .

6. L: levels of derivatives we need.

Preprocess(DB):

1. Interpolate m-variate, d-degree polynomial P : Fm
q → Fq, such that P (encode(i)) = DB[i].

2. Compute P̃ ← PolyPreProcess(P ).

3. Compute Pxz1 ,...,xzℓ
,ℓ ← ∂ℓP

∂xz1 ,...,∂xzℓ
for every ℓ ∈ [L], for all (z1, . . . , zℓ) ∈ [m]ℓ.

4. Compute P̃xz1 ,...,xzℓ
,ℓ ← PolyPreProcess(Pxz1 ,...,xzℓ

,ℓ).

5. Return D̃B = (P̃ , P̃xz1 ,...,xzℓ
,ℓ) for all (z1, . . . , zℓ) ∈ [m]ℓ and ℓ ∈ [L].

Query(i ∈ [N ], j ∈ [k] ⊂ Fq):

1. Sample v⃗ ← Fm
q .

2. Compute qj ← j · v⃗+ encode(i). (For simplicity, we view [k] as the first k elements in Fq.)

3. Return qj .

Answer(D̃B, q) :

1. Retruen P̃ (q) and P̃z1,...,zℓ,ℓ(q) for all (z1, . . . , zℓ) ∈ [m]ℓ and ℓ ∈ [L].

Reconstruct(A1, . . . , Ak) :

1. Use the answer to interpolate a function f : Fq → Fq of degree d ·m, as follows: f(j) =
P (j · v⃗ + encode(i)) (included in Aj); and

f ℓ(j) =
∑

z1,...,zℓ∈[m]ℓ

∂ℓP

∂xz1 , . . . , ∂xzℓ
(j · v⃗ + encode(i))

∏
i∈[ℓ]

v⃗zi (1)

2. Return f(0).

Figure 2: Our recursive PIR scheme.
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1. We set dd = N which gives d = log(N)
W (log(N)) where W (·) is the Lambert W function [16].

2. Then, we set m = d.

3. And we set L = log(N)
W (log(N))1.5

.

4. Then, set k = m · d/L.

5. Furthermore, we set prime p to be the smallest prime such that p ≥ L + 1 (by Bertrand’s
postulate [34], p = O(L)).

6. Lastly, we set α such that pα = q ≥ k + 1, which means:

α = O(logp(k)) = logp(p ·W (log(N))) = 1 + logp(W (log(N))) = 1 + o(1) = O(1).

With these parameters, we analyze the efficiency metrics accordingly.

• Number of servers: k = m · d/L = O( log(N)√
W (log(N))

) = o(log(N)).

• Preprocessing time: Let’s start with the preprocessing of each polynomial (line 2 and 4).
Recall that from Theorem 2.2, the preprocessing time for a single function is: (αdp)m · 4m ·
poly(α, d,m, p). We analyze this term by term.

– αm = O(1)m = No(1).

– dm = N as parametrized above.

– pm = O(N) (since mm = O(N), p = O(L) and L = o(m)).

– poly(α, d,m, p) = polylog(N).

Therefore, the total preprocessing time for a single function is N2+o(1). In total, there are at
most:

mL + 1 = O(N1/
√

W (log(N))) = No(1)

functions. Then, the total preprocessing time is N2+o(1).

Now, let us move to the interpolation of the functions and the calculations of the derivatives
(line 1 and 3). As introduced in Theorem 2.3, the interpolation time is N · polylog(N).
Furthermore, computing the partial derivative over a single variable of a function is trivially
bounded by O(N), and since there are at most No(1) partial derivatives (as calculated above),
the cost is N1+o(1). Putting all these together, the preprocessing time is N1+o(1). Therefore,
the extra storage is also trivially bounded by N2+o(1).

• Online time: The online time of the client query is trivially the time for encoding, which
is log(N) Then, for each server, the online time is to evaluate the preprocessed function.
As in Theorem 2.2, each evaluation takes 4m · poly(α, d,m, p). Since 4m = No(1) and
poly(α, d,m, p) = polylog(N), and there are a total of mL = No(1) evaluations, the run-
time of each server is No(1). Since there are only o(log(N)) servers, the total runtime is also
No(1). Lastly, the reconstruction time is the time to reconstruct f plus the evaluation of f .
Note that there are at most No(1) points, we can thus recover f(j), f ′(j), f ′′(j), . . . , fL(j)
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within time No(1). Lastly, using n points, we can recover function f with time poly(n) [20],
and n = No(1). The evaluation is also O(dm) = polylog(N) since the function has degree dm.

Again, the unit of the computation cost above is the number of Fq operations. However, since
q = O(polylog(N)), each Fq operation costs at most polylog(N) bit operations and thus does
not affect the calculation above.

• Online communication: The query size is simply m Fq elements, and thus polylog(N). The
answer size is bounded by the total runtime of all the servers, which is No(1). Therefore, the
total online communication for the scheme is also No(1).

Correctness: Lastly, with the parameters setup, we need to argue that f(0) = P (i). It is a simple
application of chain rule as described in Section 3.

As shown in Theorem 5.1 (note that we set p ≥ L + 1 and thus Fq has characteristics p ≥
L + 1), since we have k unique points of f , k corresponding first derivatives of f , and so on,
up to k corresponding L-th derivatives of f , we can uniquely determine a function f with degree
d ·m ≤ k(L+1)−1. The derivatives are obtained by a simple application of the chain rule (Eq. (1)).

Therefore, f(0) = P (encode(i)).

6 Conclusion and Future Directions

In this paper, we introduce two information-theoretic PIR constructions. Our first construction is
first doubly-efficient information-theoretic PIR construction: it allows the servers to preprocess a
database of size N in time N1+o(1), and answer an infinite amount of queries in No(1) time (and
bandwidth), with about O(log(N)) non-colluding servers. Our second construction reduces the
number of needed servers to o(log(N)) at the cost of increasing the preprocessing cost to N2+o(1).

For future work, we find the following questions to be compelling:

• (Reducing the number of servers) Can we reduce the number of non-colluding servers required
to a constant number (or ideally 2 servers), while maintaining our current asymptotics (or
slightly relaxing the current asymptotics, e.g., allowing the preprocessing time to be O(N1+ϵ)
for some constant ϵ)? We know of no negative results in this regard. Nevertheless, there are
no known constructions even given some that achieve even close to the asymptotics above
with a small, constant number of servers.

• (Computational PIR) Can introducing (lightweight) computational assumptions (e.g. OWF)
help reduce either the number of servers or the online query time for our family of schemes?
In non-preprocessing PIR, distributed point functions have enabled two-server computational
PIR with O(logN) communication, which has yet to be achieved for two-server information-
theoretic PIR. We think it is probable that likewise, some computational assumption may help
further improve the current known asymptotics for multi-server server-preprocessing PIR.
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