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Abstract. We introduce and formally define Multivariate Multi-Polynomial
(MMP) commitment, a commitment scheme on multiple multivariate
polynomials, and illustrate the concept with an efficient construction,
which enjoys constant commitment size and logarithmic proof size. We
further enhance our MMP scheme to achieve the zero-knowledge prop-
erty.
Additionally, combined with a novel zero-knowledge range proof for Ped-
ersen subvector commitment, we present a Zero-Knowledge Range Proof
(ZKRP) for MMP commitment.
We present two sample applications. Firstly, our MMP commitment can
be used for efficient aggregation of SNARK based on multivariate poly-
nomial commitments. As a showcase, we apply MMP commitment to
HyperPlonk and refer to this variant of HyperPlonk as aHyperPlonk.
For k instances, each with circuit size n, the communication and verifi-
cation complexity is reduced from O(k·logn) to O(log k+logn), while the
prover complexity remains the same. Secondly, we propose a novel zero-
knowledge proof for vehicle GPS traces based on ZKRP for MMP, which
allows vehicle owners to prove if a vehicle has/hasn’t passed through
some location during a specific time interval.

Keywords: Polynomial Commitment · Zero-Knowledge Range Proof ·
SNARK.

1 Introduction

Polynomial commitment schemes allow a prover to commit to a polynomial and
later convince the verifier of correct evaluations of the committed polynomial.
It has recently been widely used to compile Interactive Oracle Proofs (IOPs) [7]
into efficient cryptographic arguments [48,27,34,55,26,23]. The paradigm of poly-
nomial commitment in cryptographic arguments follows a commit-and-prove
structure, where the prover commits to a set of polynomials and later proves
the correctness of the evaluation of these polynomials at random points. This
scenario underscores the importance of constructing polynomial commitment
schemes where the proof size and verification time are sublinear in the number
of polynomials.
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Motivated by this, we propose a Multivariate Multi-Polynomial (MMP) com-
mitment scheme that allows for the commitment of multiple multivariate polyno-
mials with constant commitment size and logarithmic proof size and verification
time, w.r.t. the number of polynomials. Our MMP scheme can be applied to
SNARKs with multivariate polynomial commitment, e.g., Spartan [55] and Hy-
perPlonk [26], to enable efficient aggregation of instances.

Apart from SNARK aggregation, we have also developed a novel application
scenario for MMP commitment: a zero-knowledge proof system for vehicle GPS
traces. In this context, a prover can demonstrate that a vehicle has/has not
passed through a specific location without disclosing the full driving trajectory.
The scheme essentially functions as a Zero-Knowledge Range Proof (ZKRP) for
a zero-knowledge MMP commitment scheme. To accomplish this, we enhanced
the MMP commitment scheme to be zero-knowledge and introduced a novel
ZKRP for Pedersen subvector commitment [37].

The rest of the paper is organized as follows. We summarize our contribution
and related work in Sections 1.1 and 1.2. Section 2 introduces notations and
building blocks. In Section 3, we formally define MMP in Section 3.1 and describe
the construction of the MMP commitment in Section 3.2. We analyze the security
and evaluate the efficiency of the MMP commitment in Section 3.3 and 3.4.
Section 3.5 provides an enhanced version of MMP commitment: a variant of our
MMP commitment with zero-knowledge property. In Section 4, we propose a
zero-knowledge range proof protocol for Pedersen subvector commitment and
analyze its security and performance. Lastly, in Section 5, we demonstrate two
sample applications.

1.1 Contribution

The contribution of this paper is fivefold.

– MMP Commitment: Definition and Construction.We formally define
MMP commitment and present a specific construction. Our construction is
essentially powered by a two-tiered commitment scheme: the first tier is PST
commitment [51] for polynomials, and the second tier is AFGHO commit-
ment [1] for PST commitments from the first tier, yielding a commitment
of size O(1). Leveraging the homomorphic property of PST commitment
and our adapted GIPA protocol, for n polynomials with m variables and
maximum degree d, our scheme enjoys O((m + n) ·

(
m+d
d

)
) prover time (or

O((m + n) · 2m) for multilinear polynomials), O(m + log n) proof size, and
O(m+ log n) verifier time. Our work can be regarded as a natural extension
of the Univariate Multi-Polynomial (UMP) commitment developed by Am-
brona et al. in aPlonk [2]. Additionally, we improve the MMP protocol to be
zero-knowledge at the cost of efficiency. As a side work, we proposed a hiding
PST commitment in the batched setting, which is an nature extension of the
hiding KZG commitment in [41].

– ZKRP for Pedersen Subvector Commitment. We propose a ZKRP for
Pedersen subvector commitment. For n vectors of size l, the communication
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and verification complexity are both O(log(n · l)). As a comparison, the
only known ZKRP for vector commitment was presented in [46]. It was also
designed for Pedersen subvector commitment and has constant proof size
(only 3 group elements). But it only supports range proofs for vectors with
small norms, and its verification complexity is O(n · l). Besides, our ZKRP
scheme is also more flexible as it supports range proofs for any subset of
vector elements.

– SNARK Aggregation. With a similar methodology to embed UMP in
Plonk, our MMP commitment can be used to aggregate some recent SNARKs
based on multilinear polynomials [55,26]. To showcase this capability, we
introduce aHyperPlonk, a variant of HyperPlonk [26] that allows efficient
aggregation of multiple instances. For k instances with n constraints each,
our technique reduces the proof size and verification cost from O(k log n) to
O(log k + log n), while the prover complexity remains unchanged.

– Zero-Knowledge Proof for Vehicle GPS Traces. We introduce a novel
application scenario of MMP commitments: a zero-knowledge proof for vehi-
cle GPS traces. Specifically, we redefine the question of whether a vehicle has
passed through a specific GPS coordinate P as a point-in-rectangles/point-
out-of-rectangles problem, which can be transformed into determining whether
the evaluations of MMP commitments at P are greater than zero. As a re-
sult, the zero-knowledge proof for vehicle GPS traces is represented as a
zero-knowledge range proof for MMP commitment. It’s worth noting that
our scheme applies to any application scenario that can be abstracted as a
point-in-rectangles/point-out-of-rectangles problem.

– Implementation. We provide a reference implementation of our MMP
scheme and evaluate its performance. The evaluation results show that our
MMP scheme is highly practical: for 1024 polynomials of degree 3, each with
3 variables, the proof generation algorithm takes 536.99ms, and the verifica-
tion algorithm completes in 18.595ms.

1.2 Related Work

Polynomial Commitment. A polynomial commitment scheme (PCS) allows
the prover to commit to a polynomial and later convince the verifier of eval-
uations of the committed polynomial on a given point. The notion of polyno-
mial commitment schemes was first introduced by the seminal work of Kate
et al. [40], where the authors also proposed a PCS construction (referred to as
KZG commitment) for univariate polynomials. In a nutshell, for polynomials of
degree ≤ d, KZG commitment requires a trusted setup that produces a struc-
tured reference string (gτ

0

, gτ
1

, . . . , gτ
d

, g̃τ ), where g and g̃ are generators of two
pairing friendly groups. A commitment to a polynomial f(X) =

∑d
i=0 fiX

i is
computed as c = gf(τ) =

∏d
i=0(g

τ i)fi . The proof of evaluation at point x is
π = gq(τ) =

∏d
i=0(g

τ i)qi , where the quotient polynomial q(X) = f(X)−f(x)
X−x . The

verifier checks the proof by comparing if e(π, g̃τ−x) = e(c/gf(x), g̃).
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Later, various lines of research have been conducted to improve the func-
tionality, security, and efficiency of PCS. We list below several representative
works.

– Multivariate Polynomials. PST commitment [51] extended KZG commit-
ment to a multivariate setting. Later, Zhang et al. proposed vSQL [59], whose
underlying PCS is a variant of PST commitment that provides knowledge
soundness under the KoE assumption. Both these PCSs have logarithmic
(w.r.t. the size N of the polynomial) proof size and verification time.

– Transparent Setup. The first PCSs with transparent setup were intro-
duced in [11,12], which have square root proof size and verifier. Hyrax [57]
extended the ideas of [11,12] to multilinear polynomials. Bulletproofs [16]
could also be used to construct a multilinear PCS with transparent setup,
enjoying logarithmic proof size, but the verification time is linear. DARK [20]
and Dory [45] provided transparent-setup PCSs for multivariate polynomials
with logarithmic proof size and verification time, where the former is pow-
ered by groups of unknown order, while the latter works in a pairing-based
setting. Dew [4] made use of groups of unknown order as well and further
improved the efficiency of DARK, resulting in a PCS with constant proof
size and logarithmic verifier.

– Strictly Linear Time Prover. In Brakedown [36], the authors made im-
provements to the prover’s efficiency of previous polynomial commitments
and proposed a multilinear PCS with strictly linear time prover3, thanks
to their concretely efficient linear-time encodable linear code. Orion [58] re-
duced the proof size and verification time of [36] from O(

√
N) to O(log2N)

by leveraging proof composition. Orion+ [26] made various optimizations
and further shrank the proof size of Orion [58].

– Aggregation and Batching. There are also several works on aggregated
or batched polynomial commitments and evaluation proofs. In [40], a variant
of KZG commitment was also given, allowing for opening multiple evalua-
tions on a single polynomial succinctly. For multiple evaluations in multiple
polynomials,Plonk [34] and Marlin [27] batched pairing operations in their
verification algorithms using random linear combinations, but the proof size
is still linear in the number of polynomials. Subsequently, SHPlonk [9] ad-
dressed this issue and achieved constant proof size for multiple polynomials.
In addition, Boomy [44] explored opening multiple evaluations on one mul-
tivariate polynomial in a batched manner.
aPlonk [2] introduced the notion of multi-polynomial commitment and pro-
vided an efficient construction. With a two-tiered commitment algorithm
(first committing to the polynomials and then the commitments), aPlonk
achieved constant commitment size w.r.t. the number of polynomials. [2]
also deployed an IPA protocol [21], as well as a SNARK for meta verifica-
tion, to achieve logarithmic proof size and verification time.

3 Note that the authors of [36] regard multiexponentiation (MSM) as a superlinear
operation, since its complexity isO(N log |F|/ logN) with Pippenger’s algorithm [53],
where for security, F’s order should satisfy log |F| = ω(logN).
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– Zero-knowledge. In [60], the authors of built a zero-knowledge variant of
the PCS in vSQL [59], with only logarithmic overheads on prover’s side.
Zeromorph is also a multilinear PCS with zero-knowledge property, but it is
concretely more efficient than [60], as it avoids computing O(logN) pairings
in the verification algorithm.

SNARK. Polynomial commitment is also an important building block in
SNARKs. The general paradigm of constructing modern SNARKs is to com-
bine Interactive Oracle Proof (IOP) [7], an information-theoretic object, with
a functional commitment scheme. By plugging in a suitable polynomial com-
mitment scheme, one can compile Polynomial-IOPs into SNARKs. For instance,
Sonic [48], Marlin [27], and Plonk [34] are built upon univariate polynomial com-
mitment schemes, while more recent ones like Spartan [55], HyperPlonk [26], and
Testudo [23] are powered by multilinear polynomial commitment schemes.

A highly related line of research focuses on the composition of SNARKs [56,8,14,19,18,10,42,17],
among which aPlonk [2] achieves efficient aggregation for Plonk instances with-
out recursion overheads. The core idea behind aPlonk is a UMP commitment
scheme, which, for n polynomials, produces a proof of size log n that can be veri-
fied in log n time. Although the UMP commitment scheme in [2] is only designed
for Plonk, as we will show later, aPlonk’s approach is an excellent starting point
of a MMP commitment scheme that is suitable for these recent SNARKs based
on multivariate polynomials.

ZKRP. ZKRP allows a prover to convince a verifier that a committed
value lies in a given interval without revealing any other information. Zero-
knowledge range proof was first introduced by [15], and has been studied across
diverse applications like anonymous credential systems [22,6], confidential trans-
actions [50], among others. Efficient zero-knowledge range proof can be de-
rived from 1) square decomposition [13,47,38,30,29], 2) binary/n-ary decompo-
sition [22,16,49,32,5,46], and 3) hash-chain [25]. We refer the readers to [28] for
a comprehensive comparison between these schemes. Recently, Libert proposed
a range proof with a short proof size (only three group elements) tailored for
Pedersen subvector commitment in [46], attesting that the committed vector is
of small norm. On the downside, the verification time of this scheme is linear in
the number of bits being checked.

2 Building blocks

In this section, we briefly review the assumptions and models involved in this
paper. We also introduce the definition of vector and polynomial commitment
schemes, and give several constructions that underlie our MMP commitment
scheme. Before that, we first list below the notations used in the rest of this
paper.

Notation. We denote PoK{(y), (x) : f(x) = y} a proof of knowledge of secret
value x for public value y such that f(x) = y holds.

We define a group generation algorithm GGen:
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– (G, p) ← GGen(λ). On input security parameter λ, GGen generates cyclic
group G of prime order p (|p| = λ).

as well as a bilinear group generation algorithm BGGen,

– (e,G, G̃,GT , p)← BGGen(λ). On input security parameter λ, BGGen gener-
ates cyclic groups G, G̃, and GT of prime order p (|p| = λ) and a bilinear
mapping e : G× G̃→ GT .

We use bold font x to represent vectors. We denote

– |v| the number of elements of v, e.g. |v| = n,
– (vi)i∈[1,n] the vector (v1, ..., vn),
– (vi...j)i∈[0,n],...,j∈[0,n′] the vector (v0...0, v0...1, ..., vn...n′),
– v[:n′] = (v1, ..., vn′), v[n′:] = (vn′+1, ..., vn),
– vS the subvector of v indexed by set S ⊆ [1, n].

Let Gn, Znp be n-dimensional vector spaces over G, Zp, respectively. For
k ∈ Zp, a, b ∈ Znp , and g ∈ Gn, g̃ ∈ G̃n, we denote

– kn = (ki)i∈[0,n−1], k−n = (ki)i∈[0,−n+1],
– k · a = (k · a1, ..., k · an),
– 〈a, b〉 =

∑n
i=1 ai · bi the inner product of a, b,

– 〈a, g〉 =
∏n
i=1 g

ai
i the inner product of a, g,

– 〈g, g̃〉 =
∏n
i=1 e(gi, g̃i) the inner product of g, g̃,

– a ◦ b = (ai · bi)i∈[1,n] the Hadamard product of a, b,

where ai, bi, gi are the i-th element of a, b, g.

2.1 Hardness Assumption

Definition 1 ((m,n)-Discrete Logarithm Assumption). Let (G, G̃,GT ) be
asymmetric bilinear groups of order p. For G’s generator g and G̃’s generator
g̃, m,n ∈ Z, given (g, gx, gx

2

, ., ..., gx
m

) and (g̃, g̃x, ..., g̃x
n

), it is computationally
infeasible to find x ∈ Zp.

2.2 Proof System

Let R(u,w) be an efficiently decidable binary relation. Language L ⊂ Σ∗ (a
subset of finite strings) in the relation R is defined as

L = {u|∃w : R(u,w) = 1}

We call w a witness for statement u.
A pair of interactive probabilistic polynomial-time algorithms 〈P,V〉 for re-

lation R is defined as below:

– 〈P(u,w),V(u)〉. Taking as input w and u, this pair of algorithms outputs 1
if V accepts.
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Definition 2 (Proof System). (P,V) is a proof system for relation R if it
satisfies completeness and soundness.

– Completeness. (P,V) is complete if for any (u,w) such that R(u,w) = 1,

Pr
[
〈P(u,w),V(u)〉 = 1

]
= 1

– Soundness. (P,V) is sound if for any u 6∈ L and any cheating prover P∗,

Pr
[
〈P∗(u),V(u)〉 = 1

]
= negl

We further say (P,V) is an argument system if its soundness only holds for
probabilistic polynomial-time P∗.

Definition 3 (Argument of Knowledge). (P,V) is an argument of knowl-
edge for relation R if it satisfies completeness and computational witness-extended
emulation.

– Witness-Extended Emulation. (P,V) satisfies computational witness-
extended emulation if for all deterministic polynomial-time P∗, there ex-
ists an expected polynomial-time extractor B such that for any probabilistic
polynomial-time adversary A,

Pr

 (u, s)← A(λ);
tr ← 〈P∗(u, s),V(u)〉 :

A(tr) = 1

 ≈ Pr

 (u, s)← A(λ); (tr, w)← BO(u) :
A(tr) = 1

∧ (tr is accepting)→ (u,w) ∈ R


where the transcript oracle O = 〈P∗(u, s), V(u)〉, which allows to rewind P∗
to any point and continues with fresh randomness from V.

Definition 4 (Public Coin). A proof (or argument) system (P,V) is public
coin if the messages sent by the verifier are predetermined consecutive segments
of its random tape.

Definition 5 (Special Honest-Verifier Zero-Knowledge (SHVZK)). A
public coin proof (or argument) system (P,V) is SHVZK if there exists a prob-
abilistic polynomial-time simulator S such that for any probabilistic polynomial-
time adversary A,

Pr

 (u,w, η)← A(λ);
tr ← 〈P(u,w),V(u; η)〉 :

(u,w) ∈ R ∧ A(tr) = 1

 ≈ Pr

 (u,w, η)← A(srs);
tr ← S(u, η) :

(u,w) ∈ R ∧ A(tr) = 1


where η is the public coin randomness used by V.

Definition 6 (Non-interactive Zero-Knowledge (NIZK)). NIZK is a zero-
knowledge proof that requires no interaction between the prover and the verifier.

A SHVZK can be transformed into a NIZK using the Fiat-Shamir heuristic,
which replaces V with a hash of all previous transcripts.
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Construction 1 (Schnorr’s Protocol [54]) Let (G, p) ← GGen(λ) and g R←
G. Schnorr’s protocol is a SHVZK for the discrete logarithm relation R such that

R = PoK

{
(h ∈ G), (x ∈ Zp) :

h = gx

}
,

The protocol is defined as follows.

– P picks % R← Zp and sends D = g% to V.
– V picks η R← Zp and sends to P.
– P sends b = %− ηx to P.
– V accepts if gbhη = D.

Construction 2 (Generalized Inner Product Argument (GIPA) [21]) Inner
product argument is an Argument of Knowledge that allows for efficient verifi-
cation of the inner product of vectors. [21] proposed a GIPA protocol for the
following relation.

PoK

{
(n, Iab, c, Iac,d, Ibd), (a, b) :
Iab = 〈a, b〉, Iac = 〈a, c〉, Ibd = 〈b,d〉

}
,

It is referred to as “generalized” because it supports any combinations of the
following three types of inner product relations

〈·, ·〉 :


Fn × Fn → F (x,y) 7→ x1y1 + · · ·+ xnyn

Fn ×Gn → G (x, g) 7→ gx1
1 . . . gxnn

Gn × G̃n → GT (g,h) 7→ e(g1, h1) . . . e(gn, hn)

where x = (x1, . . . , xn), g = (g1, . . . , gn), etc.

Looking ahead, our ZKRP protocol for Pedersen subvector commitment
leverages the inner product arguments of Bulletproofs [16] as a black box, which
is essentially the GIPA protocol in [21] with a, b ∈ Znp and c,d ∈ Gn.

To fit our application, we present an adapted GIPA for the following inner
product relation.

PoK

{
(n, b, Iab, c, Iac, Idc), (a) :

Iab = 〈a, b〉, Iac = 〈a, c〉

}
.

The construction of the adapted GIPA scheme is defined in Figure 1. Note
that even if a is not a secret, GIPA protocol can be applied to reduce com-
munication complexity. As shown in the figure, the proof size is logarithmic to
vector length n, but the verification time is linear w.r.t n due to Steps 5 and
6, which computes b0 and c0 recursively. Many optimizations for b or c with
special arithmetic structure are proposed [31,21]. Taking b as an example, the
optimization techniques involved in this paper for achieving logarithmic verifi-
cation complexity are summarized as follows.
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1. Define η̂(X) =
∏κ
i=1(η

−1
i + ηiX

2κ−i). Let η̂ be the coefficient vector of
polynomial η̂(X). As pointed in [2], b0 can be rewritten as 〈η̂, b〉. Based on
this observation, we have the following conclusions.
(a) For b = (1, r1, ..., rn−1) where r ∈ Zp is a public parameter, b0 = η̂(r)

can be computed in logarithmic time by simply plugging r into η̂(X).
(b) For b = (g, gα, ..., gα

n−1

), b0 = gη̂(α) is a KZG commitment on polyno-
mial η̂(X). In this case, P can initiate a KZG evaluation proof with V to
prove that b0 is indeed a PST commitment to η̂(X). More specifically, P
adds b0 to π along with a KZG evaluation proof πkzg on a random input
ρ. Upon receiving b0 and πkzg, V computes η̂(ρ) and accepts b0 if only
e(b0/g

η̂(ρ), g̃) = e(πkzg, g
α/gρ).

(c) For b = (g, gr·α, ..., g(r·α)
n−1

) where r ∈ Zp is a public element, b0 =
η̂(r ·α) is a KZG commitment on polynomial η̂(r ·X). The remainder is
the same as in point 1.2.

2. For b: {b← (1), b← (b, ri · b)}i∈[0,κ−1] where ri ∈ Zp is public elements, for
i ∈ [0, κ− 1],

bi = η−1i · b[:2i] + ηi · b[2i:] = η−1i · b[:2i] + ηi · (ri · b[:2i]) = (η−1i + ηi · ri) · b[:2i],

which implies b0 =
∏κ
i=0(η

−1
i + ηi · ri).

2.3 Algebraic Group Model

In this paper, the security of the PST commitment scheme in the batched setting
and our MMP protocol is analyzed in the Algebraic Group Model (AGM) [33], a
security model that lies between the standard security model and Generic Group
Model (GGM) in terms of the restrictions put on the adversary. In such a model,
whenever an algebraic adversary A outputs a group element in G or G̃, it must
also output the representation of the group element w.r.t the group elements it
has received so far. Following the definition of [34], algebraic adversary A in an
SRS-based protocol is defined as below.

Given input srs = {g = (gfi(x))i∈[1,n], g̃ = (g̃f̃i(x))i∈[1,n]}, where fi, f̃i ∈
F<d∈Z[X], when A outputs a group element E ∈ G, it also outputs its represen-
tation w.r.t g, which is, vector u such that 〈u, g〉 = E. A behaves in the same
manner for E ∈ G̃. In this paper, we use REPEsrs to represent such representation.

Now, denote the group elements output by A as (gaj )j∈[1,k], (g̃bj )j∈[1,l], and
their representations respectively as (u[j])j∈[1,k], (v[j])j∈[1,l]. Define Lj(X) =∑n
i=0 u

[j]
i fi(X), and analogously, Rj(X) =

∑n
i=0 v

[j]
i f̃i(X).

We set a = (aj)j∈[1,k], b = (bj)j∈[1,l], L = (Lj(X))j∈[1,k],R = (Rj(X))j∈[1,l].
For matrix M1 and M2 over F, we define the real pairing check and ideal check
as follows.

Real Pairing Check. (a ·M1) · (M2 · b) = 0
Ideal Check. (L ·M1) · (M2 ·R) ≡ 0
Regarding the real pairing check and ideal check, we have the following

lemma.
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P(n = 2κ, ηκ = ∅,a, b, Iab, c, Iac)

1: if n = 1 then
2: Return a0 = a
3: else n ≥ 2
4: n′ = n

2
, i = log2(n

′)

5: L
[i]
ab = 〈a[:n′], b[n′:]〉, R[i]

ab = 〈a[n′:], b[:n′]〉
6: L

[i]
ac = 〈a[:n′], c[n′:]〉, R[i]

ac = 〈a[n′:], c[:n′]〉
7: ηi = H(ηi+1, L

i
ab, R

i
ab, L

i
ac, R

i
ac)

8: a′ = ηi · a[:n′] + η−1
i · a[n′:]

9: b′ = η−1
i · b[:n′] + ηi · b[n′:]

10: c′ = η−1
i · c[:n′] + ηi · c[n′:]

11: I ′ab = η2i · Liab + Iab + η−2
i ·R

i
ab

12: I ′ac = η2i · Liac + Iac + η−2
i ·R

i
ac

13: Recursively call P(n′, ηi,a′, b′, I ′ab, c′, I ′ac)
14: Output π = (a0, {Liab, Riab, Liac, Riac}i∈[κ−1,0])

V(n, b, Iab, c, Iac, π)

1: Parse π = (a, {Liab, Riab, Liac, Riac}i∈[κ−1,0])
2: ηκ = ∅
3: for i ∈ [κ− 1, 0] do
4: ηi = H(ηi+1, L

i
ab, R

i
ab, L

i
ac, R

i
ac)

5: bi = η−1
i · b[:n′] + ηi · b[n′:]

6: ci = η−1
i · c[:n′] + ηi · c[n′:]

7: η̂(X) =
∏κ
i=1(η

−1
i + ηiX

2κ−i)

8: 〈a0, b0〉
?
= Iab +

∑κ
i=1(η

2
i · Liab + η−2

i Riab)

9: 〈a0, c0〉
?
= Iac +

∑κ
i=1(η

2
i · Liac + η−2

i Riac)

Fig. 1: Construction of GIPA Protocol.

Lemma 1. Given an algebraic adversary A with srs, the probability of any real
pairing check passing pass but ideal check fails is negligible.

Please refer to [34] for the proof of the lemma.

2.4 Vector commitment

We assume that the reader is familiar with the notion of commitment schemes.
A commitment scheme can be binding, or both binding and hiding. We refer to
the latter as a hiding commitment scheme. In the rest of the paper, we highlight
in red the parameters and operations used solely to achieve hiding property.

In general, various commitment schemes allow a prover to commit to a vector
of elements and later open the commitment. However, different schemes in the
literature may require the opening algorithm to achieve different functionalities,
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and its behavior depends on the concrete scheme or the application scenario.
For clarity, below we categorize the commitment schemes for vectors into three
categories, according to the behavior of the opening algorithm:

1. Commitment scheme. Open the entire vector (as well as the randomness,
if the commitment is hiding).

2. Vector commitment scheme [24]. Open the element at a specific index.
3. Subvector commitment scheme [43]. Open the elements at a specific

subset of indices.

We give the algorithm definition of subvector commitment and the construc-
tions of Pedersen commitment, AFGHO commitment, and (Hiding) Pedersen
subvector commitment in Appendix B.

2.5 Multivariate Polynomial Commitment

Amultivariate polynomial commitment scheme consists of four algorithms Setup,
Commit, Prove, and Eval.

– srs ← Setup(λ,m, d̂ = (d̂i)i∈[1,m]). On input a security parameter λ, the
number of variables m, and a degree bound vector d̂, Setup outputs struc-
tured reference string srs.

– cf ← Commit(srs, f ∈ F<d̂[X1, ...Xm]. Commit computes a commitment cf
on polynomial f .

– π ← Prove(srs,v, f, cf ). Prove generates a proof π for evaluation of f on
vector v.

– 1/0 ← Eval(srs,v, cf , ev, π). Eval checks if ev is the evaluation of the poly-
nomial committed in cf on vector v.

Please refer to Appendix C for the security properties of multivariate polynomial
commitments.

(Hiding) PST commitment [51]. We review the construction of (hid-
ing) PST commitment, and additionally, introduce a pair of commitment and
verification algorithms in the batched setting, i.e., BatchProve and BatchEval in
Figure 2. As mentioned, this hiding PST commitment in the batched setting can
be regarded as an extension of the hiding KZG commitment scheme proposed
in [41]. Please refer to Appendix D for the security proofs for PST commitment
and hiding PST commitment in the batched setting.

3 Multivariate Multi-Polynomial Commitment

3.1 Algorithm Definition

Following the definition of [2] on univariate multi-polynomial commitment, we
extend to include multivariate polynomials. Same as [2], we require verifica-
tion to be performed on a succinct commitment to the polynomial evaluations,
enjoying logarithmic proof size w.r.t the number of polynomials.
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srs← Setup(λ,m, d̂ = (d̂j)j∈[1,m])

1: (e,G, G̃,GT , p)← BGGen(λ)

2: g R← G, g̃ R← G̃
3: ∀j ∈ [1,m], βj

R← Zp, δ
R← Zp

4: h := gδ, h̃ := g̃δ

5: srs := (p, g = (g
∏m
j=1 β

dj
j )d1∈[0,d̂1],...,dm∈[0, ˆdm], g̃, (g̃

βj )j∈[1,m] , h, h̃)

cf ← Commit(srs, f)

1: f(X) =
∑

d1∈[0,d̂1]
...

dm∈[0,d̂m]

fd1...dm
∏m
j=1X

dj
j

2: w = {fd1...dm}d1∈[0,d̂1],...,dm∈[0,d̂m]

3: ρ R← Zp
4: cf = 〈w, g〉 +〈ρ, h〉

π ← Prove(srs,v, f, cf , ρ)

1: Compute {qj(X)}j∈[1,m] : f(X)− f(v) =
∑m

j=1 qj(X)(xj − vj)
2: ∀j ∈ [1,m], µj

R← Zp
3: π = {gqj(β)·hµj}j∈[1,m]

4: θ = g
∑m
j=1 vj ·µj+ρ/

∏m
j=1 g

βj ·µj

1/0← Eval(srs,v, cf , ev, π, θ)

1: Parse π as {Qj}j∈[1,m]

2: e(cf · g−ev , g̃) =
∏m
i=1 e(Qj , g̃

βi/gvi)·e(θ, h̃)

π ← BatchProve(srs,v, (cfi , fi, ρi)i∈[1,n])

1: r = H(v, (cfi)i∈[1,n])

2: ∀i ∈ [1, n], {qij(X)}j∈[1,m] : fi(X)− fi(v) =
∑m

j=1 q
i
j(X)(Xj − vj)

3: ∀j ∈ [1,m], qj(X) = (qij(X))i∈[1,n], q̂j(X) = 〈qj(X), rn〉
4: ∀j ∈ [1,m], µj

R← Zp
5: π = {gq̂j(β)·hµj}j∈[1,m]

6: θ = g
∑m
j=1 vj ·µj+

∑n
i=1 ρi·r

i−1

/
∏m
j=1 g

βj ·µj

1/0← BatchEval(srs,v, (cfi , e
[i]
v )i∈[1,n], π, θ)

1: Phase π as {Qj}j∈[1,n]
2: r = H(v, (cfi)i∈[1,n])
3: cf̂ = 〈(cfi)i∈[1,n], r

n〉
4: ev̂ = 〈(e[i]v )i∈[1,n], r

n〉
5: 1/0← Eval(srs,v, cf̂ , ev̂, π, θ)

Fig. 2: Construction of PST Commitment. For logarithmic proof size w.r.t. m,
Eval can be checked using GIPA protocol.
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Definition 7. A MMP commitment scheme consists of five algorithms: Setup,
Commit, CommitEval, Prove, and Eval.

– srs ← Setup(λ, n,m, d̂). On input a security parameter λ, the number of
polynomials n, the number of variables m per polynomial, and a degree bound
vector d̂ of polynomials, outputs a structed reference string srs.

– cf ← Commit(srs,f). Commit outputs a commitment cf on f .
– cv ← CommitEval(srs,v,f). CommitEval outputs a commitment cv on evalua-

tions f(v).
– π ← Prove(srs,v,f , cf ). Prove generates a proof π for evaluations of f on

vector v.
– 1/0← Eval(srs,v, cf , cv, π). Eval checks if ev is the evaluation of the polyno-

mial behind cf on v .

MMP commitment satisfies completeness, polynomial binding, evaluation bind-
ing, and optionally, knowledge soundness.

Completeness. For any n m-variate polynomials f with degree ≤ d̂ and
evaluation vectors v ∈ Fm,

Pr


srs← Setup(λ, n,m, d̂),
cf ← Commit(srs,f),
cv ← CommitEval(srs,v,f),
π ← Prove(srs,v,f , cf ) :

Eval(srs,v, cf , cv, π) = 1

 = 1

Polynomial Binding. A MMP commitment scheme is polynomial binding
if for all PPT adversary A,

Pr

 srs← Setup(λ,m, n, d̂),
(f ,f ′)← A(srs) :

Commit(srs,f) 6= Commit(srs,f ′)

 = negl

Evaluation Binding. A MMP commitment scheme is evaluation binding
if for all PPT adversary A,

Pr


srs← Setup(λ, n,m, d̂),
(v, cf , cv, π, c

′
v, π
′)← A(srs) :

Eval(srs,v, cf , cv, π) = 1
∧ Eval(srs,v, cf , c

′
v, π
′) = 1

 = negl

Knowledge Soundness. A MMP commitment scheme is knowledge sound
if for all PPT adversary A, there exists an extractor E such that

Pr



srs← Setup(λ, n,m, d̂),
(v, cf , cv, π)← A(srs),
(f , (e

[i]
v )ni=1)← E(srs) :
cv = CommitEval(srs,v,f)

∧ Eval(srs,v, cf , cv, π) = 1

∧ (e
[i]
v )ni=1 6= f(v)


= negl
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3.2 Construction

Our MMP commitment scheme combines PST commitment, AFGHO commit-
ment, Pedersen Commitment, and GIPA protocol such that

– the polynomial commitment cf is a two-tier commitment where the first tier
is a PST commitment, i.e., φ := (pst.Commit(srspst, fj))i∈[1,n] and the second
tier is a Pedersen commitment, i.e., cf = afg.Commit(srsafg,φ) .

– the evaluation commitment algorithm is a Pedersen commitment, i.e, cv =
ped.Commit(srsped,ϕ)) where ϕ = (fi(v))i∈[1,n] and

– the prover initiates a batched evaluation proof with polynomial commitments
φ on v. But different from the BatchEval algorithms of PST commitments,
the prover will compute the aggregated commitment cf̂ and aggregated eval-
uations ev̂ for the verifier, and proves that the aggregation is carried out
correctly using GIPA protocol. By doing so, the communication complexity
scale logarithmically w.r.t. the number of polynomials.

Denote

– (ped.Setup, ped.Commit, ped.Open) as Pedersen commitment,
– (afg.Setup, afg.Commit, afg.Open) as AFGHO commitment,
– (pst.Setup, pst.Commit, pst.Prove, pst.Eval) as PST commitment, and
– (gipa.Prove, gipa.Verify) as GIPA.

The construction of the MMP commitment scheme is described in 3. Observe
that

1. 〈η̂, rn〉 = η̂(r),
2. 〈η̂, gafg〉 = gη̂(γ) or 〈η̂, gped〉 = gη̂(α) is a KZG commitment to polynomial
η̂(X) with structure reference string gafg or gped.

The verification complexity of both GIPA protocols in 3 is logarithmic to n
by implementing the optimization methods mentioned in Section 2.2.

3.3 Security Analysis

Completeness follows from the construction of the scheme. We show below MMP
commitment scheme is 1) polynomial binding if AFGHO is binding and PST
commitment is polynomial binding, and 2) knowledge sound in AGM if Lemma 1
holds.

Theorem 1 (Polynomial Binding of MMP Commitment). Given an ad-
versary A against the polynomial binding property of the MMP commitment
scheme, there must exist an adversary A∗ that either

– breaks the binding property of the underlying AFGHO commitment scheme,
or

– breaks the polynomial binding property of the PST commitment scheme.
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srs← Setup(λ,m, n, d̂)

Combine pst.Setup, afg.Setup, and pst.Setup as follows:
1: (e,G, G̃,GT , p)← BGGen(λ)

2: α, β1, ..., βn, γ
R← Znp

3: srsped = (p, gped = (gα
j−1

)j∈[1,n])

4: srspst = (p, gpst = (g
∏m
i=1 β

di
i )d1∈[0,d̂1],...,dm∈[0,d̂m], g̃, (g̃

βj )j∈[1,m])

5: srsafg = (p, gafg = (g̃γ
j−1

)j∈[1,n])
6: srs = (srsped, srspst, srsafg)

cf ← Commit(srs,f)

1: φ← pst.Commit(srspst,f) . Shorthand for φ← (pst.Commit(srspst, fj))i∈[1,n]
2: cf ← afg.Commit(srsafg,φ) . cf = 〈φ, gafg〉

cv ← CommitEval(srs,v,f)

1: ϕ = (fj(v))j∈[1,n], cv = ped.Commit(srsped,ϕ) . cv = 〈ϕ, gped〉

π ← Prove(srs,f , cf ,v ∈ Zmp )

1: cv ← CommitEval(srs,v,f)
2: r = H(cf ,v, cv)
3: f̂ = 〈f , rn〉, cf̂ = 〈φ, rn〉, ev̂ = 〈ϕ, rn〉
4: πpst ← pst.Prove(srs, f̂ , cf̂ ,v)

5: π[1]
gipa ← gipa.Prove(n, ∅,φ, gafg, cf , rn, cf̂ )

6: π[2]
gipa ← gipa.Prove(n, ∅,ϕ, gped, cv, rn, ev̂)

7: π = (πpst, π
[1]
gipa, π

[2]
gipa, cf̂ , ev̂)

1/0← Eval(srs,v, cf , cv, π)

1: Parse π = (πpst, π
[1]
gipa, π

[2]
gipa, cf̂ , ev̂)

2: r = H(cf ,v, cv)
3: 1/0← pst.Eval(srspst, cf̂ , ef̂ ,v, πpst)

4: 1/0← gipa.Verify(n, gafg, cf , r
n, cf̂ , π

[1]
gipa)

5: 1/0← gipa.Verify(n, gped, cv, r
n, ef̂ , π

[2]
gipa)

Fig. 3: Construction of MMP Commitment Scheme

Proof. Denote φ = pst.Commit(srs,f) and φ′ = pst.Commit(srs,f ′). Commit(srs,f) =
Commit(srs,f ′) implies one of the following two cases.

Case 1. φ 6= φ′ ∧ afg.Commit(srs,φ) = afg.Commit(srs,φ′),
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Case 2. φ = φ′ .

Case 1 breaks the binding property of AFGHO commitment scheme. Case 2
breaks the polynomial binding property of the PST commitment scheme.

Theorem 2 (Knowledge Soundness of MMP Commitment). The knowl-
edge soundness of the MMP commitment scheme follows from the knowledge
soundness of the PST commitment scheme (in the batched setting) and witness-
extended emulation of the inner product argument.

Proof Sketch. The srspst is generated in the same way as in the PST knowledge
soundness game (Appendix D) using trapdoor x. Upon receiving srs, A out-
puts v, cf , cv, and π = (πpst, π

[1]
gipa, π

[2]
gipa, cf̂ , ev̂,v), along with REPcfsrs, REP

cv
srs, and

REPπsrs. With these, E can extract f̂ from REPπsrs. By the witness extended em-
ulation of GIPA protocol, we know that cf̂ = 〈ϕ, rn〉, f̂ = 〈f , rn〉, and ev̂ =

〈ϕ, rn〉. E rewinds the protocol with n different r and obtains f = (fi)i ∈[1,n],
φ = (cfi)i∈[1,n], ϕ = (e

[i]
v )i∈[1,n]. Finally, by the knowledge soundness of PST

commitment in the batched setting, ∀i ∈ [1, n], fi(v) = e
[i]
v if Lemma 1 holds.

3.4 Efficiency and Implementation

We first summarize the theoretical time complexity of our MMP scheme below,
where Zp is for field operations, G, G̃ and GT are for group scalar multiplications
in the corresponding group, and P is for pairing operation.

– Commit: n ·
(
m+d
d

)
G+ nP

– Prove: (n ·
(
m+d
d

)
+m ·

(
m+d
d

)
)Zp + (n+m ·

(
m+d
d

)
)G+ nG̃+ nP

– Eval: log nZp + log nG+mG̃+ log nGT +mP

The term
(
m+d
d

)
in the costs of Commit and Prove is due to the maximum

size of a polynomial of degree d with m variables, and in practice it could be
much smaller than this theoretical upper bound.

Now we provide the benchmark results of our implementation. We imple-
ment our MMP commitment scheme in ∼1k lines of Rust code by utilizing the
arkworks [3] library, where BN254 is chosen as the pairing-friendly elliptic curve.
We evaluate the performance of our implementation on a PC equipped with an
Intel i9-12900K CPU and 64GB of RAM. During the evaluation, we test against
multiple sets of parameters, where n, the number of polynomials, ranges from
20 to 211, and the number of variables m and highest degree d are from 1 to 5.
The benchmark results are given in Figure 4.

Since Setup is only a one-time procedure, we exclude its performance from
Figure 4 and instead briefly list its performance here: for all tested parameters,
Setup takes 10-20 ms to complete.

Finally, we report the (compressed) proof size. For BN254, |π| = 32m +
960 log n+384 bytes, and in general, |π| = (4+2 log n)|Zp|+(4+m+4 log n)|G|+
2|G̃|+ 2 log n|GT |.
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Fig. 4: Running time of Commit, Prove, and Eval (in milliseconds). The results
are grouped in three columns according to the algorithm, and we illustrate the
time complexity of these algorithms w.r.t. n, m, and d in the first, second and
third row, respectively.

3.5 Zero-Knowledge MMP protocol

Our MMP commitment is neither hiding nor zero-knowledge. However, by substi-
tuting the PST commitment scheme with the hiding PST commitment scheme,
we obtain hiding MMP as the hiding property of the first tier commitment
scheme will be preserved in the MMP commitment. To enable zero-knowledge,
we adopt the following measures.

– Encode the vector evaluations in the form of (gfi(v))i∈[1,n] and prove its
consistency with cv using the aggregation property of Pedersen Subvector
commitment,

– Prove (gfi(v))i∈[1,n] are committed evaluations for cf using batch techniques,
and
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srs← Setup(λ,m, n, d̂)

1: (e,G, G̃,GT , p)← BGGen(λ)

2: α, β1, ..., βm, γ, δ
R← Zp

3: h = gδ, h̃ = g̃δ

4: ∀i ∈ [1, 2n], gi = gα
i−1

5: ∀i ∈ [1, n], g̃i = gα
i

, hi = hα
i

6: srspsv = (p, gpsv = (gi)i∈[1,n], (gi)i∈[n+2,2n], (g̃i)i∈[1,n], h, (hi)i∈[1,n])

7: srshpst = (p, ghpst = (g
∏m
i=1 β

dj
i )d1∈[0,d̂1],...,dm∈[0,d̂m], g̃, (g̃

βj )j∈[1,m], h, h̃)

8: srsafg = (p, gafg = (g̃γ
i−1

)i∈[1,n])
9: srs = (srspst, srsafg, srspsv)

cf ← Commit(srs,f)

1: φ← hpst.Commit(srshpst,f ;ρ
R← Znp ) . Shorthand for φ = (hpst.Commit(srshpst, fi; ρj))i∈[1,n]

2: cf ← afg.Commit(srsafg,φ) . cf = 〈φ, gafg〉

cv ← CommitEval(srs,v,f)

1: ϕ = (fi(v))i∈[1,n]

2: cv ← psv.Commit(srs,ϕ; %′
R← Zp) . cv = 〈ϕ, gpsv〉·〈%′, h〉

π ← Prove(srs,f , cf ,v ∈ Zmp ,ρ = (ρi)i∈[1,n])

1: cv ← CommitEval(srs,v,f ; %
′ R← Zp)

2: r = H(cf ,v, cv)
3: cf̂ = 〈φ, rn〉 . Aggregation of polynomial commitments
4: πgipa ← gipa.Prove(n, ∅,φ, gafg, cf , rn, cf̂ ) . Proof for aggregation of polynomial commitments

5: % R← Zp
6: cv̂ = 〈(gfi(v))i∈[1,n], r〉·〈%, h〉 = g

∑n
i=1 fi(v)·r

i−1

h% . Aggregation of evaluation commitments

7: c′ =
∏n
i=1

∏n
j=1,j 6=i g

fj(v)·ri−1

n+1−i+j ·
∏n
i=1 h

%′·ri−1

n+1−i /h
%
n

%1, %2
R← Zp, D = g%1h%2 , η = H(r, cv̂, c

′, D), b1 = %1 − η(
∑n
i=1 fi(v) · r

i−1), b2 = %2 − η · %
πagg = (cv̂, c

′, D, b1, b2) . Proof for aggregation of evaluation commitments
8: ∀i ∈ [1, n], {qij(X)}j∈[1,m] : fi(X)− fi(v) =

∑m
j=1 q

i
j(X)(Xj − vj)

∀j ∈ [1,m], qj(X) = (qij(X))i∈[1,n], qj(X) = 〈qj(X), rn〉
∀j ∈ [1,m], µj

R← Zp
πpst = (gqj(β)·h·µj )j∈[1,m]

θ = g
∑m
j=1 vj ·µj+

∑n
i=1 ρi·r

i−1−% ·
∏m
j=1 g

−βj ·µj . Batched proof for correct evaluations

1/0← Eval(srs,v, cf , cv, π)

1: gipa.Verify(cf , cf̂ , gafg, r
n, πgipa)

?
= 1

2: Parse πagg = (cv̂, c
′, D, b1, b2)

3: η = H(r, cv̂, c
′, D), gb1hb2cηv̂

?
= D, e(cv,

∏n
i=1 g̃

ri−1

n+1−i)
?
= e(c′, g̃) · e(cv̂, g̃n)

4: Parse πpst as (Qj)j∈[1,m]

5: e(cf̂/cv̂, g̃)
?
=

∏m
i=1 e(Qj , g̃

βj−vj )·e(θ, h̃)

Fig. 5: Construction of Zero-Knowledge MMP Commitment Scheme
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– Randomize all commitments and proof elements.

Denote

– (psv.Setup, psv.Commit, psv.Prove, psv.Eval) as Pedersen subvector commit-
ment

– (hpst.Setup, hpst.Commit, hpst.Prove, hpst.Eval) as hiding PST commitment.

A zero-knowledge MMP protocol is presented in 5, and we prove the security of
our scheme in Appendix E.

4 Range proof for Pedersen Subvector Commitment

From a very high level, our range proof for Pedersen vector commitment works
as follows. Given a Pedersen commitment cv =

∏n
i=1 g

vi
i g

ω, the prover com-

putes c = g̃
∑n
i=1 z

i+1·vi
l with challenge z and proves that c has the claimed form.

With c, the prover can use the technique of batched range proof for Pedersen
commitments in [16] to prove ∀i ∈ [1, n], vi ∈ [0, 2l − 1].

More specifically, as described in [16], to prove vi ∈ [0, 2l− 1] for i ∈ [1, n], it
is sufficient to demonstrate the knowledge of vectors a and a such that

a ◦ a = 0nl

a− a− 1nl = 0nl

〈a, V1〉 = v1

...

〈a, Vi〉 = vi

...

〈a, Vn〉 = vn

(1)

where Vi = (0, . . . , 0︸ ︷︷ ︸
(i−1)l

, 20, 21, . . . 2l−1︸ ︷︷ ︸
l

, 0, . . . , 0︸ ︷︷ ︸
(n−i)l

).

Choose y, z R← Zp, the above equations are aggregated as below. With only
negligible probability, Equation 1 holds while Equation 2 doesn’t.

〈l, r〉 = 〈v, z2 · zn〉+ ζ(y, z) (2)

where
l = a− z · 1nl,

r = ynl ◦ (a+ z · 1nl) +
n∑
i=1

zi+1 · Vi,

ζ(y, z) = (z − z2) · 〈1nl,ynl〉 −
n∑
i=1

zi+2 · 〈1l,2l〉.
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Based on equation 2, [16] introduced a batched range proof for n Pedersen
commitments c = (gvi)i∈[1,n] , which essentially checks

g〈l,r〉
?
= 〈c, z2 · z〉 · gζ(y,z) = g

∑n
i=1 z

i+1·vi · gζ(y,z).

However, as the vector elements are encoded in different public parameters (i.e.,
g1, ..., gn), Pedersen subvector commitment cannot straightforwardly aggregate
vectors as batched Pedersen commitments do (which is simply the inner product
of c and z2 · z). To fill in this gap, we introduce AoKagg, a proof for the correct
aggregation of elements of Pedersen subvector commitment. With a Pedersen
subvector commitment cv = 〈v, g〉, AoKagg between P and V is defined as below.

– Upon receiving challenge z from V, P computes a commitment on aggre-
gated elements of vS such that c = g

∑
i∈S z

σ(i)+1vi and a proof element

c′ =
∏
i∈S

n∏
j=1,j 6=i

g
zσ(i)+1·vj
n+1−i+j .

– V checks the correctness of aggregation by 1) checking e(cv,
∏
i∈S g̃

zσ(i)+1

n+1−i )
?
=

e(c′, g̃) · e(c, g̃n), and 2) runs Schnorr’s protocol on c with P:
• P picks % R← Zp and sends D = g% to V
• V sends η R← Zp to P.
• P sends b = %− η · (

∑
i∈S

zσ(i)+1 · vi) to V.

• V checks gb · cη ?
= D

Proof Sketch. This protocol satisfies completeness. The witness-extend
emulation can be proved in the AGM model by rewinding the protocol with at
most n′ different z and extracting v from REPc

′

srs. AoKagg can be transformed
into a zero-knowledge argument of knowledge by randomizing c and c′ as what
is done in Figure 6.

4.1 Construction

Our ZKRP protocol for Pedersen subvector commitment is a combination of
AoKagg and the batched ZKRP for Pedersen commitments in [16]. With a Ped-
ersen subvector commitment generated by

– srs← psv.Setup(λ, n) ,
– cv ← psv.Commit(srs,v).

Range proof for a Pedersen subvector commitment in asymmetric bilinear pairing
group (G, G̃,GT ) with order p can be formally expressed as

PoK

 (cv, srs, S) (v, ω) :
cv = 〈v, g〉·〈ω, h〉

∧ ∀i ∈ S, vi ∈ [0, 2l − 1]

 .

Construction of the range proof for Pedersen subvector commitment is shown
in Figure 6. Again, we highlight that which is required only to achieve hiding in
commitments and zero-knowledge in the protocols in red.
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P(srs,v, cv, S = {ij}j∈[1,n′]) V(srs, cv, S = {ij}j∈[1,n′])
σ : ∀ij ∈ S, σ(ij) = j

a ∈ {0, 1}n
′l s.t. ∀j ∈ [1, n′], 〈a,0(j−1)l||2l||0(n′−j)l〉 = vσ−1(j)

a = 1n
′
− a

J ,k
R← Gn

′l

ρl,ρr
R← Zn

′
p , ρ1, ρ2

R← Zp,
A = Jakahρ1 , B = JρlKρrhρ2

A,B−−−−−−−−→
y,z←−−−−−−−− y, z

R← Zp
l(X) = a− z · 1n

′l+ρl ·X
r(X) = yn

′l ◦ (a+ z · 1n
′l+ρr ·X)

+
∑n′

i=1 z
i+1 · (0(i−1)l||2l||0(n′−i)l)

t(X) = 〈l(X), r(X)〉 := t0+t1 ·X + t2 ·X2

τ1, τ2
R← Zp

T1 = gt1hτ1 , T2 = gt2hτ2

γ
R← Zp

c = g
∑
i∈S z

σ(i)+1vi ·hγ

c′ =
∏
i∈S

n∏
j=1,j 6=i

g
zσ(i)+1·vj
n+1−i+j

∏
i∈S

g
∑
i∈S z

σ(i)+1·w
n+1−i /hγn

%1, %2
R← Zp, D = g%1h%2

T1,T2,c,c
′,D−−−−−−−−→

η←−−−−−−−− η
R← Zp

b1 = %1 − η · (
∑
i∈S z

σ(i)+1 · vi)
b2 = %2 − η · γ

b1,b2−−−−−−−−→ e(cv,
∏
i∈S g̃

zσ(i)+1

n+1−i )
?
= e(c′, g̃) · e(c, g̃n)

D
?
= cηgb1hb2

x←−−−−−−−− x
R← Zp

lx = l(x), rx = r(x), tx = 〈lx, rx〉
ρx = ρ1 + ρ2 · x, τx = τ1 · x+ τ2 · x2 + γ

lx,rx,tx,ρx,τx−−−−−−−−−→ K′ :=Ky−n
′l

ζ(y, z) = (z − z2) · 〈1n
′l,yn

′l〉 −
∑n′

j=1 z
j+2 · 〈1l,2l〉

gtxhτx
?
= c · gζ(y,z)·T x1 · T x

2

2

P = ABxJ−zK′zy
n′l

n′∏
j=1

K
′zj−1·2l
[(j−1)·l,j·l−1]

P/hρx
?
= J lxK′rx

tx
?
= 〈lx, rx〉

Fig. 6: Range Proof for Pedersen Subvector Commitment. The proof size is linear
to n′l due to the transfer of lx and rx. As suggested in [16], P and V can
initiate an inner product argument to achieve logarithmic proof size. Please
refer to [16,21] for details.
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4.2 Security Analysis

The completeness holds by construction. The proof for witness extended emula-
tion is the same as that of batched range proof for Pedersen commitments, please
refer to [16, Appendix C]. The zero-knowledge simulator uses the trapdoor of
the common reference string srs, i.e., α, and simulates the protocol as below:

– Choose z, v̂, γ R← Zp
– Let c′ = c

∑n
i=1 α

n+1−i·zi+1

v · gαn·v̂ · hγn, c = gv̂hγ .
– Run Schnorr’s protocol on simulated c and obtain b1, b2, D.
– Choose all other proof elements and challenges randomly from their domains

except
T1 = (gtxhτx/(c · g̃ζ(y,z)·T x

2

2 ))x
−1

B = (J lx+zk′rx−z·y
n′l
hρx/(A ·

n′∏
i=1

k
′zj−1·2l
[(i−1)·n,j·n−1]))

x−1

)

– Run inner-product argument with the simulated lx and rx.

4.3 Optimization and Efficiency

Verification Optimization. The verification complexity can be improved at
the cost of communication efficiency. Instead of choosing J and K randomly
from Gn, we set J = (Jθ

i−1
1 )i∈[1,n′] and K = (Kθi−1

2 )i∈[1,n′] where J,K R←
G, θ1, θ2

R← Zp. With the optimization methods mentioned in Section 2.2, V can
outsource the underlying inner product operations to the prover, reducing the
verification complexity from O(nl) to O(n) +O(log(nl)).

We compared our ZKRP protocol, both with and without verifier optimiza-
tion, to the protocol presented in [44], in Table 1. Because [44] only provides
a range proof for all committed elements, we limit our comparison to the case
where n = n′. As shown in the table, [44] outperforms our construction in terms
of proof size, while our optimized version is better in terms of verification time.
Moreover, our scheme is also generic as [44] only supports proof for vectors with
small norms.

Table 1: Comparison of performance between [44] and our ZKRP protocol
Prover time Proof size Verifier time

[44] (2nl)G+ (n+ 1)G̃ 3G (2nl + 1)G+ (nl)G̃+ 4P

This paper (10nl + 4log(nl) + 2n+ 13)G (2log(nl) + 7)G+ 7Zp (6nl + 2log(nl) + n+ 11)G+ 3P

This paper+ V (10nl + 4log(nl) + 2n+ 13)G (2log(nl) + 7)G+ (9 + 2log(nl))Zp (8log(nl) + n+ 11)G+ 3P
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5 Applications

5.1 aHyperplonk

Our MMP scheme can also be applied to SNARK proof aggregation, producing a
single aggregated proof for k instances with sublinear proof size and verification
time in k. Unlike existing SNARK aggregation schemes like SnarkPack [35] solely
for Groth16 [39] and aPlonk [2] solely for Plonk [34], our scheme is applicable to
more recent SNARKs powered by multivariate polynomial commitments, such
as HyperPlonk [26], Spartan [55], etc. The key idea behind our aggregation
technique is similar to aPlonk [2]. When proving multiple instances, instead
of running the proof generation algorithm and committing to polynomials for
each instance individually, the prover generates a single commitment to all these
polynomials using MMP. Later, upon a challenge from the verifier, the prover
opens the committed polynomials at the challenge point in batches and produces
a proof attesting to the validity of all evaluation results.

Here we briefly review HyperPlonk and showcase aHyperPlonk, the integra-
tion of our MMP scheme with HyperPlonk. For clarity, we consider a mini-
mal (Hyper)Plonk arithmetization with 3 types of wires L,R,O (L,R for in-
puts and O for output) and 2 types of selectors A,M (A for addition and
M for multiplication). The i-th constraint (gate) in the circuit enforces that
Ai(Li +Ri) +Mi(Li ·Ri) = Oi.

In HyperPlonk, an indexer I is responsible for preprocessing the circuit.
Consider a circuit C with n = 2µ constraints. I needs to generate the selector
polynomials q0(X) and q1(X), which satisfy q0(〈x〉µ) = Ax and q1(〈x〉µ) = Mx

for all x ∈ [0, 2µ). Here, 〈x〉µ ∈ {0, 1}µ is the binary representation of x whose
maximal bit-length is µ. Moreover, a wiring polynomial σ(X) is also computed
in order to ensure the equality of witnesses across multiple constraints.

Then, when generating a proof for witnesses satisfying C, the prover de-
rives a witness polynomial w(X), such that for all x ∈ [0, 2µ), w(〈0〉2, 〈x〉µ) =
Lx, w(〈1〉2, 〈x〉µ) = Rx, and w(〈2〉2, 〈x〉µ) = Ox. We further partition w into 3
partial polynomials w0, w1 and w2, where wi := w(〈i〉2,X).
Gate Identity. In order to convince the verifier, the prover needs to first com-
pute the gate identity polynomial f(X) := q0(X)(w0(X)+w1(X))+q1(X)(w0(X)·
w1(X)) − w2(X) and then prove that f(〈x〉µ) = 0 for all x ∈ [0, 2µ), i.e., the
constraints hold for all witness assignments.
Wiring Identity. Furthermore, the prover should also prove the correctness of
wiring, i.e., the equality of witness assignments across multiple constraints. To
this end, the prover proves that w(〈x〉µ+2) = w(σ̂(〈x〉µ+2)) for all x ∈ [0, 2µ+2).

Now we are ready to describe how to aggregate k HyperPlonk instances using
our MMP commitment scheme. To achieve this, the prover P follows the steps
below.

1. Generate an MMP commitment cw := Commit(ck, {w[j]
0 , w

[j]
1 , w

[j]
2 }

k−1
j=0 ).

2. Get challenges β, γ, and δ from V.
3. Compute ŵi(X) :=

∑k−1
j=0 δ

jw
[j]
i (X) for all i ∈ [0, 2].
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4. Compute the product polynomial ṽ(X) such that ṽ(〈2µ−1〉µ, 0) = 1 and for
all x ∈ [0, 2µ),

ṽ(0, 〈x〉µ) =
2∏
i=0

ŵi(〈x〉µ) + βsid(〈i〉2, 〈x〉µ) + γ

ŵi(〈x〉µ) + βσi(〈x〉µ) + γ

ṽ(1, 〈x〉µ) = ṽ(〈x〉µ, 0) · ṽ(〈x〉µ, 1).

Define the partial polynomials of ṽ(X) as ṽ0(X) := ṽ(0,X), ṽ1(X) := ṽ(1,X).
Note that given ṽ0(X) and ṽ1(X), one can derive ṽ(X, b) := (1 − X0) ·
ṽ0(X1, . . . , Xµ−1, b) +X0 · ṽ1(X1, . . . , Xµ−1, b) for b ∈ {0, 1}.

5. Generate an MMP commitment cv := Commit(ck, {ṽ0, ṽ1}).
6. Get challenges α,ρ = {ρ0, . . . , ρµ−1} from V.
7. For the virtual polynomials below,

fj(X) := q0(X)(w
[j]
0 (X) + w

[j]
1 (X)) + q1(X)(w

[j]
0 (X) · w[j]

1 (X))− w[j]
2 (X)

Q1(X) := ṽ(1,X)− ṽ(X, 0)ṽ(X, 1)

Q2(X) :=

2∏
i=0

(ŵi(X) + βsid(〈i〉2,X) + γ)− ṽ(0,X)

2∏
i=0

(ŵi(X) + βσi(X) + γ)

prove that
∑2µ−1
x=0 F (〈x〉µ) · eq(〈x〉µ,ρ) = 0, where F (X) =

∑k−1
j=0 α

jfj(X)+

αkQ1(X) + αk+1Q2(X), eq(X,ρ) =
∏µ−1
i=0 (Xiρi + (1 −Xi)(1 − ρi)). This is

done iteratively for i = µ− 1 down to 0:
(a) Generate a univariate polynomial commitment (e.g., using KZG) cri :=

kzg.Commit(ckkzg, ri), where ri(X) =
∑2i−1
b=0 F (〈b〉i, X, ζi+1, . . . , ζµ−1) ·

eq(〈b〉i, X, ζi+1, . . . , ζµ−1,ρ).
(b) Get a challenge ζi from V.

8. Run the univariate batch-opening algorithm for evaluations {ri(0), ri(1), ri(ζi)}µ−1i=0 .
9. Compute the committed evaluations and the proofs below, where Prove′ is

a wrapper of Prove that also returns the result of CommitEval:

ηq,σ, πq,σ := Prove′(ck, {q0, q1, σ0, σ1, σ2}, cq,σ, {ζi}µ−1i=0 )

ηw, πw := Prove′(ck, {w[j]
0 , w

[j]
1 , w

[j]
2 }

k−1
j=0 , cw, {ζi}

µ−1
i=0 )

η[0]v , π
[0]
v := Prove′(ck, {ṽ0, ṽ1}, cv, {ζi}µ−1i=0 )

η[1]v , π
[1]
v := Prove′(ck, {ṽ0, ṽ1}, cv, {ζi}µ−1i=1 ∪ {0})

η[2]v , π
[2]
v := Prove′(ck, {ṽ0, ṽ1}, cv, {ζi}µ−1i=1 ∪ {1})

η[3]v , π
[3]
v := Prove′(ck, {ṽ0, ṽ1}, cv, {1}µ−1i=1 ∪ {0})

10. Define the meta-verification relation Rmeta(x,w), where

x := (β, γ, δ, α, {ρi}µ−1i=0 , {ζi}
µ−1
i=0 , ηq,σ, ηw, {η

[i]
v }3i=0, eF )

w := (eq0 , eq1 , eσ0 , eσ1 , eσ2 , {e[j]w0
, e[j]w1

, e[j]w2
}k−1j=0 , {e

[i]
v0 , e

[i]
v1}

3
i=0)
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Generate a SNARK proof πmeta for Rmeta, attesting that

eŵ0
:=

k−1∑
j=0

δje[j]w0
, eŵ1

:=

k−1∑
j=0

δje[j]w1
, eŵ2

:=

k−1∑
j=0

δje[j]w2
, id :=

µ−1∑
i=0

2iζi

efj := eq0(e
[j]
w0

+ e[j]w1
) + eq1(e

[j]
w0
· e[j]w1

)− e[j]w2

eQ1
:= e[0]v1 − ((1− ζ0)e[1]v0 + ζ0e

[1]
v1 )((1− ζ0)e

[2]
v0 + ζ0e

[2]
v1 )

eQ2
:=

2∏
i=0

(eŵi + β(i+ 22 · id) + γ)− e[0]v0
2∏
i=0

(eŵi + βeσi + γ)

ηq,σ = CommitEval(ck, {eq0 , eq1 , eσ0
, eσ1

, eσ2
})

∧ ηw = CommitEval(ck, {e[j]w0
, e[j]w1

, e[j]w2
}k−1j=0 )

∧ η[0]v = CommitEval(ck, {e[0]v0 , e
[0]
v1 })

∧ η[1]v = CommitEval(ck, {e[1]v0 , e
[1]
v1 })

∧ η[2]v = CommitEval(ck, {e[2]v0 , e
[2]
v1 })

∧ η[3]v = CommitEval(ck, {e[3]v0 , e
[3]
v1 })

∧ e[3]v1 = 1 ∧ eF =

k−1∑
j=0

αjefj + αkeQ1
+ αk+1eQ2

Note that we follow the meta-verification approach in [2] and require the
prover to generate a SNARK proof πmeta forRmeta, which is necessary for keeping
the final proof size and verifier time sublinear, as otherwise the verifier needs to
check all the k identities. Such a Rmeta costs O(k) constraints when encoded
as an arithmetic circuit. By choosing an appropriate SNARK (e.g., HyperPlonk
itself), the additional cost for proving this relation will be O(k), whereas the size
and verification cost of πmeta will be O(log k).

In Table 2 we compare the performance of HyperPlonk and aHyperPlonk for
multiple instances in terms of prover time, proof size, and verifier time.

Table 2: Performance of HyperPlonk and aHyperPlonk for k instances, each with
n constraints.

Prover time Proof size Verifier time

HyperPlonk O(kn) O(k logn) O(k logn)

aHyperPlonk O(kn) O(log k + logn) O(log k + logn)

5.2 Zero-Knowledge proof for Vehicle GPS Driving Trace

Vehicle owners sometimes need to provide their driving records to verify their
presence or absence at specific locations during certain times, raising significant
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privacy concerns. To protect privacy in such scenarios, we propose a ZKP system
for vehicle geolocation verification. As we will show later, it is essentially a
zero-knowledge proof for MMP commitment. We assume the vehicle has secure
hardware (a secure element such as e.g. TPM, TrustZone, SGX) and can securely
compute functions of its GPS coordinates. The vehicle owners can then generate
proofs of whether they have/have not passed through specific locations without
disclosing additional information.

A straightforward idea is to use a cryptographic accumulator to store all
GPS coordinate readings and then prove the membership/non-membership of a
specific location. However, this approach is not practical due to the large number
of GPS locations. Note that the accumulator not only has to record new GPS
coordinate readings, but also all GPS coordinates within error ranges ( typically
±10 m to ±30 m). Suppose we add a new GPS coordinate reading whenever the
forth decimal changes (which occurs every ≈ 10 meters), e.g., (66.6666, 88.8888),
we also need to include (66.6665, 88.8888), (66.6667, 88.8888), (66.6666, 88.8887),
(66.6667, 88.8889) if the errors is ±10. It is certainly not desirable to store all
these GPS coordinates in the accumulator.

Fig. 7: Determining whether a driver passed near a given location can be reduced
to a ‘point-in-rectangles’ problem.

Observing that, in general, the driveways are straight or nearly straight.
Therefore, a driving trace can be represented with a sequence of straight lines.
Considering the GPS errors, as shown in Fig. 7, the driving route can be trans-
formed into a set of rectangles with a certain width (e.g. 20 m if GPS errors
are 10 m). Therefore, to prove that if a vehicle has or has not passed through
some GPS coordinate P , it is sufficient to prove that if P falls into one of the
rectangles or not. We refer to the former "point-in-rectangles" and the latter
"point-out-of-rectangles" problems.

Below we show that these "point-in-rectangles" and "point-out-of-rectangles"
problems can be mathematically represented as evaluations of MMP commit-
ments.

Point-in-Rectangle.
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E0

E1

E2

x

y

Suppose an arbitrary vertex E0 = (x0, y0) of a rectangular and its two adja-
cent vertices, E1 = (x1, y1) and E2 = (x2, y2), a point P = (x, y) is inside the
rectangle if and only if

0 < E0P · E0E1 < E0E1 · E0E1 (3)
0 < E0P · E0E2 < E0E2 · E0E2 (4)

In these formulas, E0P is the vector between E0 and P , and the dot is the
scalar product of two vectors. These constraints can be equivalently4 expressed
as

(E0P · E0E1) (E0P · E0E1 − E0E1 · E0E1) < 0 (5)
(E0P · E0E2) (E0P · E0E2 − E0E2 · E0E2) < 0 (6)

For some fixed rectangle, the left hand side of either Equation 5 or Equation 6
can be regarded as two polynomials, denoted by f1 and f2, on variables x and y
such that for b = {1, 2},

fb(x, y) = f b00 + f b01x+ f b02x
2 + f b10y + f b11xy + f b20y

2

where the coefficients f b00, f b01, f b02, f b10, f b11, and f b20 are computed from x0, y0 xb,
yb. Therefore, a point P = (x, y) is inside the rectangle if and only if f1(x, y) <
0 ∧ f2(x, y) < 0. Hence, P is outside the rectangle if and only if f1(x, y) >
0 ∨ f2(x, y) > 0.

As such, the “point-in-rectangle” problem is transformed into a range proof
for MMP commitment scheme. The same method can be applied to the following
scenarios and more:

Point-in-M-Dimension-Hyper-Rectangle. For a m dimension Hyper-
rectangles, given an arbitrary vertex E0 and its adjacent vertices E1 ... Em, a
point P is inside the hyper-rectangles if and only if

(E0P · E0E1) · (E0P · E0E1 − E0E1 · E0E1) < 0

...

∧ (E0P · E0Em) · (E0P · E0Em − E0Em · E0Em) < 0.

4 It is straightforward to see that Formulas 3, 4 implies 5, 6. The converse also holds
because if, for example, 5 does not imply 3, then we must have E0E1 · E0E1 <
E0P · E0E1 < 0. However, E0E1 · E0E1 = (E0E1)

2 ≥ 0, leading to a contradiction.
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Point-in-Rectangles. For k rectangles, given an arbitrary vertex Ei0 for
i ∈ [1, k], and the adjacent vertices Ei1, Ei2 for i ∈ [1, n − 1], a point P is inside
one of theses rectangles if and only if ∃ i ∈ [1, k],

(Ei0P · Ei0Ei1) · (Ei0P · Ei0Ei1 − Ei0Ei1 · Ei0Ei1) < 0

∧ (Ei0P · Ei0Ei2) · (Ei0P · Ei0Ei2 − Ei0Ei2 · Ei0Ei2) < 0.

Point-out-of-Rectangles. For k rectangles, given an arbitrary vertex Ei0
for i ∈ [1, k], and the adjacent vertices Ei1, Ei2 for i ∈ [1, n − 1], a point P is
outside of these rectangles if and only if ∀ i ∈ [1, k],

(Ei0P · Ei0Ei1) · (Ei0P · Ei0Ei1 − Ei0Ei1 · Ei0Ei1) > 0

∨ (Ei0P · Ei0Ei2) · (Ei0P · Ei0Ei2 − Ei0Ei2 · Ei0Ei2) > 0.

We construct a zero-knowledge proof system for vehicle GPS traces below:

– Once vehicle GPS has recorded n/2 GPS coordinates, it calculates the corre-
sponding n polynomials f = (fi)i∈[1,n], and runs cf ← ZKMMP.Commit(f).

– Vehicle secure element computes a signature σ on cf with its embedded
signing key.

– When the vehicle owner needs to prove whether the vehicle has or has
not passed through a GPS location v = (v1, v2), they first execute cv ←
ZKMMP.CommitEval(f ,v), which generates a Pedersen subvector commit-
ment on f(v). They then prove: 1) that cv is of the claimed form using
ZKMMP.prove, and 2) that f(v) falls within the claimed range using ZKRP
for Pedersen subvector commitments. Specifically, if a vehicle has passed
through (v1, v2), then for some k ∈ [1, n2 ], f2k−1(v1, v2) ≤ 0 and f2k(v1, v2) ≤
0. A ZKRP protocol is run for cv with index set S = {2k−1, 2k}. If a vehicle
has not passed through (v1, v2), then for all k ∈ [1, n2 ], f2k−1 > 0 or f2k > 0.
We define I = {bk}k∈[1,n2 ] such that bk = 0 if fk > 0, and bk = 1 otherwise.
A ZKRP protocol is run on cv with index set S = {2(k − 1) + bk}k∈[1,n2 ].

To complete the account, the following points are needed to address:

– ZKRP protocols only apply to integers, but GPS coordinates are floating-
point numbers. We process GPS coordinates to four decimal places (match-
ing the GPS reading error range), and then multiply by 104, making all
coordinates integers.

– The ZKRP protocol cannot prove that the evaluation is greater than or
less than 0, but only if it falls within a finite interval. Fortunately, in our
application scenario, the polynomial coefficients are generated from GPS
coordinates, and the evaluation vectors are also GPS coordinates, both of
which have upper and lower limits. Hence, the polynomial evaluation also
has limits, e.g., ±L. In this case, > 0 is treated as the interval [0, |L|] and < 0
is the interval [λ− |L|, λ] where λ = |p| and p is the order of the underlying
prime field.
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Witness-Extended Emulation.
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We can see that Iab have the expected form:

〈a, b〉 =
3∑
i=1

vi〈h−1i · a
′
i, b[:n′]〉+

3∑
i=1

vi〈hi · a′i, b[n′:]〉

=

3∑
i=1

vi〈a′i, h−1i b[:n′] + hi · b[:n′]〉

=

3∑
i=1

vi〈a′i, b′i〉

=

3∑
i=1

vi(h
2
i ·Rab + Iab + h−2i · Lab)

=

3∑
i=1

vih
2
i ·Rab +

3∑
i=1

vi · Iab +
3∑
i=1

vi · h−2i · Lab

= Iab

Similarly for 〈a, c〉 = Iac.
– κ ≥ 2, Recursively apply extractor E1 κ times.

B More on Commitment Schemes

A subvector commitment scheme is a tuple of four algorithm (Setup,Commit,Open,Eval)
such that

– srs ← Setup(λ, n). On input security parameter λ and a vector length n,
Setup outputs structured reference string srs.

– cv ← Commit(srs,v). Commit computes a vector commitment cv on v.
– πS ← Prove(srs, cv, S,vS). Prove generates a proof πS such that vS are eval-

uations of cv on positions S.
– 1/0← Eval(srs, cv, S,vS , πS). Eval checks if the evaluation of cv on positions
S are vS .

and satisfies position binding property and, optionally, hiding property.
Position binding. For any PPT adversary A,

Pr


srs← Setup(λ, n),
(cv, S,vS ,v

′
S , π, π

′)← A(srs) :
Eval(srs, cv, S,vS , πS) = 1

∧ Eval(srs, cv, S,v
′
S , π

′
S) = 1

∧ vS 6= v′S

 = 1.

Hiding. For any PPT adversary A,
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Pr



srs← Setup(λ, n),
(v1,v2)← A(srs),
b
R← {0, 1},

cvb ← Commit(srs,vb),
b′ ← A(srs, cvb) :

b 6= b′

 = negl+
1

2

The construction of Pedersen commitment [52], AFGHO commitment [1]
(i.e., pairing variant of Pedersen commitment), and (hiding) Pedersen subvector
commitment [37] are in Figure 8, 9, and 10.

srs← Setup(λ, n)

1: (G, p)← GGen(λ)

2: g R← G, α, R← Zp
3: srs = (p, g = (gα

i−1

)i∈[1,n])

cv ← Commit(srs,v ∈ Znp )

1: cv = 〈v, g〉

1/0← Open(srs, cv,v)

1: cv
?
= 〈v, g〉

Fig. 8: Construction of Pedersen
Commitment.

srs← Setup(λ, n)

1: (e,G, G̃,GT , p)← BGGen(λ)

2: g̃ R← G̃
3: srs = (p, g̃ = (g̃γ

i−1

)i∈[1,n])

cv ← Commit(srs,v ∈ Gn;ω)

1: cv = 〈v, g̃〉

1/0← Open(srs, cv,v)

1: cv
?
= 〈v, g̃〉

Fig. 9: Construction of AFGHO
Commitment.

C Security Definition of Multivariate Polynomial
Commitment

A multivariate polynomial commitment scheme should satisfy completeness,
polynomial binding, evaluation binding, and optionally, knowledge soundness,
polynomial hiding.

Completeness. For any m-variate polynomial f with degree ≤ d̂, and eval-
uation vector v ∈ Fm,

Pr


srs← Setup(λ,m, d̂),
cf ← Commit(srs, f),
π ← Prove(srs,v, f, cf ) :

Eval(srs,v, cf , ev, π) = 1

 = 1
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srs← Setup(λ, n)

1: (e,G, G̃,GT , p)← BGGen(λ)

2: g R← G, g̃ R← G̃,
3: α, δ R← Zp
4: h = gδ

5: ∀ i ∈ [1, 2n], gi = gα
i−1

,
6: ∀ i ∈ [1, n], g̃i = g̃α

i

, hi = hα
i

7: srs = (p, g, g = (gi)i∈[1,n], (gi)i∈[n+2,2n], g̃, (g̃i, )i∈[1,n] , h, (hi)i∈[1,n])

cv ← Commit(srs,v = (vi)i∈[1,n]

1: ω R← Zp
2: cv = 〈v, g〉 ·〈ω, h〉 . cv =

∏n
i=1 g

vi
i ·h

ω

πS ← Prove(srs, cv, S,v, ω)

1: z = H(cv, S,vS)

2: ∀i ∈ [1, n], πi =

n∏
j=1,j 6=i

g
vj
n+1−i+j h

ω
n+1−i

3: πS =
∏
i∈S

πz
i−1

i . πS =
∏
i∈S

n∏
j=1,j 6=i

g
zi−1·vj
n+1−i+j ·

∏
i∈S

hz
i−1·ω
n+1−i

1← Eval(srs, cv, S,vS , πS ; z)

1: z = H(cv, S,vS)

2: e(cv, g̃
∑
i∈S z

i−1

n+1−i )
?
= e(πS , g̃) · e(g

∑
i∈S z

i−1·vi , g̃n)

Fig. 10: Construction of Pedersen Subvector Commitment.

Polynomial Binding. For all PPT adversary A,

Pr

 srs← Setup(λ,m, d̂),
(f, f ′)← A(srs) :

Commit(srs, f) = Commit(srs, f ′)

 = negl

Evaluation Binding. For all PPT adversary A,

Pr


srs← Setup(λ,m, d̂),
(v, cf , ev, π, e

′
v, π
′)← A(srs) :

Eval(srs,v, cf , ev, π) = 1
∧ Eval(srs,v, cf , e

′
v, π
′) = 1

 = negl



Multivariate Multi-Polynomial Commitment and its Applications 37

Knowledge Soundness. For all PPT adversaryA, there exists an extractor
E such that

Pr


srs← Setup(λ,m, d̂),
(v, cf , ev, π)← A(srs),
f ← E(srs) :

Eval(srs,v, cf , ev, π) = 1
∧ ev 6= f(v)

 = negl

Remark. If a polynomial commitment scheme is knowledge sound in AGM, it
is also evaluation binding. Let AKS and AEB denote the adversary of the knowl-
edge soundness game and evaluation binding game, respectively. AKS can selec-
tively output whatever AEB outputs, and wins the knowledge soundness game
with the same probability as that of AEB. Looking ahead, the same conclusion
also applies to polynomial commitment in the batched setting and UMP/MMP
commitment. We therefore omit the proof for the polynomial binding property
in the rest of this paper.

Polynomial Hiding. For all PPT adversary A,

Pr



srs← Setup(λ,m, d̂),
(f0, f1)← A(srs),
b
R← {0, 1},

cfb ← Commit(srs, fb),
b′ ← A(srs, cfb) :

b 6= b′

 = negl+
1

2

Evaluation Binding (Batch). A polynomial commitment scheme in the
batched setting is evaluation binding if for all PPT adversary A,

Pr


srs← Setup(λ,m, d̂),

((cfi , e
[i]
v , e

[i]′

v )i∈[1,n],f ,v, π, π
′)← A(srs) :

BatchEval(srs,v, (cfi , e
[i]
v )i∈[1,n], π) = 1

∧ BatchEval(srs,v, (cfi , e
[i]′

v )i∈[1,n], π
′) = 1

 = negl

Knowledge Soundness (Batch). A polynomial commitment scheme in
the batched setting is knowledge sound in AGM model if for all PPT adversary
A, there exists an extractor E such that

Pr


srs← Setup(λ,m, d̂),

(v, (cfi , e
[i]
v )i∈[1,n], π)← A(srs),

f ← E(srs) :
BatchEval(srs,v, (cfi , e

[i]
v )i∈[1,n], π) = 1

∧ (e
[i]
v )i∈[1,n] 6= f(v)

 = negl

D Security Proof for PST Commitment

Theorem 3. The PST commitment scheme in the batched setting satisfies com-
pleteness, polynomial binding, knowledge soundness in AGM model.



38 Xiao Yang, Chengru Zhang, Mark Ryan, and Gao Meng

Proof. Completeness follows from the construction of the scheme. We show below
PST commitment scheme in the batched setting is knowledge sound in AGM if
Lemma 1 holds.

Polynomial Binding. Suppose there exists an adversary A against the
polynomial binding property, we build an adversary A∗ against (q, 1)-discrte log-
arithm assumption, on input a discrete logarithm problem instance (g, gx, ..., gx

q

, g̃, g̃x),
A∗ computes

– ∀j ∈ [1,m], aj , bj
R← Zp, define βj = ajx+ bj ,

– Compute g = (g
∏m
j=1 β

dj
j )d1∈[0,d̂1],...,dm∈[0,d̂m],

– Set srs = (g, g̃, (g̃βi)i∈[1,m])

and sends srs to A.
Set β := (ajx+bj)j∈[1,m]. The difference of f(β) and f ′(β) yields a univariate

polynomial f4(X) evaluated at x, i.e., f4(x) = f(β)−f ′(β). Finally, A∗ solves
f4(X) = 0 and returns the solution x, breaking the (q, 1)-discrete logarithm
assumption.

Knowledge Soundness in the Batched Setting. Given an algebraic
adversary A that wins the knowledge soundness game with non-negligible prob-
ability, we could break Lemma 1.

On input (g, gx, ..., gx
q

, g̃, g̃x), E initiates the knowledge soundness game with
srs same as the polynomial binding game above.

Upon receiving srs,A outputs v, (cfi , e
[i]
v )i∈[1,n] and π, along with REP

(cfi )i∈[1,n]
srs

and REPπsrs. With these, E can output polynomials f = (f1, ..., fn) and (q̂j(β))j∈[1,m].
Assume that ∃i ∈ [1, n], fi(v) 6= e

[i]
v . Let f̂(x) = 〈f , rn〉 and ev̂ = 〈ϕ, rn〉

where r = H(v, (cfi)i∈[1,n]) The ideal checking is in the form of f̂(β) − ev =∑m
j=1 q̂j(β)(βj − vj), which implies f̂(v) 6= ef̂ with probability ≤ p−n

p . Hence,
the ideal check passes with negligible probability. If the real pairing check passes
with non-negligible probability, E breaks Lemma 1. Therefore, A can only win
the knowledge soundness game with negligible probability.

Theorem 4. The hiding PST commitment inherits the security properties of
the PST commitment and additionally satisfies the polynomial hiding property.

Proof. The hiding PST commitment is correct and hiding by its construction.
The proof for polynomial binding and knowledge soundness works the same as
the PST commitment, except that A∗ has to pick δ R← Zp and compute h and h̃
accordingly.

Let cv = 〈v, g〉 and index set S = (ij)j∈[1,n′], to prove ∀i ∈ S,vi ∈ [0, 2l− 1].
Define function σ : σ(ij) = j,∀j ∈ [1, n′], and modify the AoKagg protocol as
follows.

– c = g̃
∑
i∈S z

σ(i)+1vi
n ·g̃γ

– c′ =
∏
i∈S

n′∏
j=1,j 6=i

g̃
zσ(i)+1·vj
n+1−i+j

∏
i∈S

g
∑
i∈S z

σ(i)+1·w
n+1−i /gγ1

– e(cv,
∑
i∈S g̃

zσ(i)+1

n+1−i )
?
= e(c′, g̃) · e(g1, c).
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E Security Proof for zero-knowledge MMP

Correctness. Correctness follows from the correctness of GIPA and the following
equations.

e(cv,

n∏
i=1

gr
i−1

n+1−i) = e(

n∏
i=1

g
fi(v)
i · h%

′
,

n∏
i=1

g̃r
i−1

n+1−i)

= e(

n∏
i=1

n∏
j=1,j 6=i

g
fj(v)·ri−1

n+1−i+j ·
n∏
i=1

h%
′·ri−1

n+1−i , g̃) · e(g
∑n
i=1 fi(v)·r

i−1

n+1 , g̃)

= e(

n∏
i=1

n∏
j=1,j 6=i

g
fj(v)·ri−1

n+1−i+j ·
n∏
i=1

h%
′·ri−1

n+1−i · h
−%
n , g̃) · e(g

∑n
i=1 fi(v)·r

i−1

· h%, g̃n)

= e(c′, g̃)e(cv̂, g̃)

gb1hb2cηv̂ = g%1−η·
∑n
i=1 fi(v)·r

i−1

h%2−η·% · (g
∑n
i=1 fi(v)·r

i−1

hρ)η

= g%1 · h%2

= D

e(cf̂/cv̂, g̃) = e(g
∑n
i=1(fi(β)−fi(v))·r

i−1

h
∑n
i=1 ρi·r

i−1−%, g̃)

=

m∏
j=1

e(gqj(β), g̃βj−vj ) · e(g
∑n
i=1 ρi·r

i−1−%, h̃)

=

m∏
j=1

e(gqj(β) · hµj , g̃βj−vj ) · e(g
∑n
i=1 ρi·r

i−1+
∑m
j=1(vj−βj)·µj−%, h̃)

=

m∏
j=1

e(Qj , g̃
βj−vj ) · e(θ, h̃)

Polynomial Binding (Proof Sketch). The polynomial binding property follows
from the binding property of AFGHO commitment and hiding PST commit-
ment. The proof is essentially the same as that of MMP commitment.

Knowledge Soundness (Proof Sketch). srspst is generated in the same way as in
the PST knowledge soundness game (Appendix D) using trapdoor x.

– The binding property of Pedersen commitment ensures a unique e[i]v for i ∈
[1, n] corresponding to cv being extracted by algebraic logarithm adversary
A.

– Similar to the knowledge soundness proof for MMP, the knowledge soundness
of PST commitment in the batched setting guarantees that ∀i ∈ [1, n], fi(v) =

e
[i]
v .
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SHVZK. A zero-knowledge simulator uses the trapdoor of srs, i.e., α, (β)i∈[1,m], η,
and simulates the protocols as below:

– Choose φ R← Gn and r R← Zp and compute cf = 〈φ, gpst〉 and cf̂ = 〈φ, rn〉,
and runs the GIPA protocol on the simulated cf and cf̂ .

– Choose cv
R← G and ev̂, %

R← Zp.
– Compute c′ = c

∑n
i=1 α

n+1−i·ri−1

v /(gev̂n+1h
%
n) and cv̂ = gev̂h%.

– Run Schnorr’s protocol on simulated cv̂ and obtains b1, b2, D.
– ∀j ∈ [1,m], choose Qj

R← G.
– Compute θ = cf̂/(cv̂ ·

∏m
j=1Q

(βj−vj)−1

j ).
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