
A New Stand-Alone MAC Construct Called
SMAC

Dachao Wang1, Alexander Maximov2, Patrik Ekdahl2 and Thomas
Johansson1

1 Dept. of Electrical and Information Technology, Lund University, Lund, Sweden
{dachao.wang,thomas.johansson}@eit.lth.se

2 Ericsson Research, Lund, Sweden
{alexander.maximov,patrik.ekdahl}@ericsson.com

Abstract. In this paper, we present a new efficient stand-alone MAC construct
named SMAC, based on processing using the Finite State Machine (FSM) part of the
stream cipher family SNOW, which in turn uses the AES round function. It offers
a combination of very high speed in software and hardware with a truncatable tag.
Three concrete base versions of SMAC are proposed, each offering a different security
level. SMAC can also be directly integrated with an external ciphering engine in an
AEAD mode. Every design decision is thoroughly justified and supported by the
results of our cryptanalysis and simulations. Additionally, we introduce an aggregated
mode version, SMAC-1×n, in which software performance reaches up to 925 Gbps
(around 0.038 cycles per byte) for long messages in a single thread. To the best of
our knowledge, SMAC achieves a record-breaking software performance compared to
all known MAC engines.
Keywords: MAC · SNOW · AES

1 Introduction
A Message Authentication Code (MAC) is a standard symmetric primitive for two parties
that share a secret key to verify that a received message originates from the sending party
and that it was not modified by an attacker when sent on a possibly insecure channel.

Traditionally, most existing MACs are built either from a block cipher or from cryp-
tographic hash functions. Common examples of constructs based on block ciphers are
CBC-MAC and CMAC [IK03]. A common hash-based construct is HMAC [BCK96]. An-
other common direction is to use universal hash functions (or equivalently unconditionally
secure authentication codes [BJKS94]) as a basis for constructs, resulting in schemes like
UMAC [BHK+99], Poly1305-AES [Ber05] and GMAC [Dwo07].

The widespread use of the AES encryption standard turned CPU vendors to introduce
an AES-NI set of instructions that de facto became a standard component. In order to
boost software performance, AES-NI is used as a 128-bit nonlinear S-box in many modern
cryptographic designs, for example, the ciphers [WP14, EJMY19, SLN+21] and the hash
and MAC algorithms [BÖS11, DR05, JN16, BBL+24], etc.

In this paper, we present a new efficient stand-alone class of MAC constructs, called
SMAC, that is based on processing using the Finite State Machine (FSM) part of the
stream cipher family SNOW, which in turn uses the AES round function. It offers a
combination of very high speed in software, efficiency in hardware, truncatable MAC, and
a decent robustness in a nonce-misuse scenario. We also introduce an aggregated mode,
SMAC-1×n, built on the base version SMAC-1, where speed reaches high performance in

mailto:{dachao.wang,thomas.johansson}@eit.lth.se
mailto:{alexander.maximov,patrik.ekdahl}@ericsson.com

Dachao Wang, Alexander Maximov, Patrik Ekdahl and Thomas Johansson 1

the interval 0.059-0.038 cycles per byte (cpb) in software in a single thread. The latter is a
clear way to utilise the parallelisation capabilities of modern CPUs and can be similarly
applied to the other two base variants SMAC-3/4 and SMAC-1/2.

The core of SMAC consists of only three 128-bit registers that are iterated through the
use of two AES round functions and an important byte-wise permutation on one register.
A block of the message enters as input in the processing of each register.

The design and security analysis considers Maximum Degree Monomial (MDM) tests
and cube attacks, Time-Memory Trade-Off (TMTO), Guess-and-Determine (GnD), nonce-
misuse, Key/IV/message differentials for MAC forgery, and study clustering effects of
differential trails as well as the number of active S-boxes for different choices of a particular
permutation through constraint programming (CP) modelling tools. Similar to [BBL+24],
the security analysis in this paper is based on simulations, instead of a formal security
proof, and every design choice is justified and supported by these results.

A valid question is how SMAC compares to existing state-of-the-art designs. In June
2024, two new ultra-fast MAC constructs based on AES-NI both offering 128-bit security,
called LeMac and PetitMac were published in ToSC [BBL+24]. The paper provides a
comprehensive overview of existing solutions, state of the art, and why these two new
MAC constructs are advantageous over prior work. Therefore, it seems justified in this
paper to provide a comparison of SMAC vs LeMac and PetitMac and demonstrate the
competitiveness of SMAC compared to these most recent designs.

PetitMac processes one 128-bit message block per round with the help of two sequential
AES-NI calls, plus some other XOR operations. PetitMAC has six 128-bit registers as its
internal state. The SMAC-1 construct presented in this paper also uses two AES-NI calls
to process a single message block, but these two calls are independent of each other which
allows the SMAC design to run much faster in software, which is a clear advantage. Also,
the state of SMAC-1 is only three 128-bit registers – half of the state of PetitMac. There
is, however, a minor drawback of SMAC-1 that the claimed security level is 118 bits for
tags larger than 118 bits, and full security for shorter tags – this is slightly less than the
128 bits with PetitMac. However, we believe it is a minor issue for real use cases as many
applications require short tags, and this can be compared to e.g. GHASH used in GCM
with a 128-bit tag, which provides only 96 bits of security while the tag is not truncatable
(the security degrades along the size of the tag). Furthermore, the security level of 118
bits represents a lower bound following the results of cluster analysis under worst-case
assumptions, and the real security level might actually be higher; we leave this for future
research.

LeMac is the design that aims to benefit from parallel calls to multiple AES cores
implemented in modern CPUs, as well as leveraging on interleaving effects and/or wider
ZMM registers from AVX-512. A single call to LeMac processes 4 message blocks by
having 8 calls to the AES round, and has the state of 12 128-bit registers, with a maximum
performance of 0.068 cpb, or 514 Gigabits per second (Gbps). A comparable instance to
LeMac would be the aggregated mode version SMAC-1× 4 which also processes 4 message
blocks per a call with 8 calls to AES round. The measured speed of SMAC-1× 4 is up to
0.059 cpb (590 Gbps), which is competitive.

An advantage of SMAC-1 × n is that n here can be any number from 1 to 16, thus
representing a class in the SMAC family. For instance, SMAC-1×8 achieves a performance
of 925 Gbps, which is twice as fast as LeMac. That property seems harder to achieve
with the Le/PetitMac approach as it would involve a new construct requiring additional
simulations and analysis. Also, if a higher security level is needed, one can pick SMAC-1/2
(or SMAC-3/4) and use it in the aggregated mode SMAC-1/2×n similarly to SMAC-1×n.
Finally, SMAC is supplied with fast initialisation and finalisation procedures and does not
require derivation and storage of e.g. round keys.

A key distinction of SMAC compared to previous AES-NI-based MAC designs is its

2 A New Stand-Alone MAC Construct Called SMAC

use of a byte-wise permutation. This enables the creation of secure constructs with a small
state and yet parallel AES-NI calls per round, where the small state facilitates an efficient
aggregated mode. These advantages bring SMAC much closer to the limits of current
software performance capabilities.

The paper is organised as follows. In Section 2 we present the details of the SMAC
design, its different versions and our security claims. Section 3 provides a thorough
security analysis of the design, focusing particularly on differential attacks, while also
considering other potential attack vectors. The conclusions drawn from these analyses are
also transferred to design justifications, explaining why parameters are chosen as they are.
In particular, the search for the most optimal byte-wise permutation used in the design is
given significant attention. Section 4 offers a short description of an aggregated version of
SMAC along with a brief analysis. Section 5 provides the software evaluation of different
SMAC versions.

2 The SMAC construct
We propose a new MAC engine called SMAC. It is derived from the finite state machine
part of the SNOW family [EJMY19], as depicted in Figure 1. The SMAC construct has
three 128-bit internal state registers (A1, A2, A3) and their values at time t are denoted
by (A1t, A2t, A3t). Given a 128-bit wide message word M t at time t, the internal registers
are updated by the compression function Π as follows:

(A1t+1, A2t+1, A3t+1)←Π(A1t, A2t, A3t, M t) :=


A1t+1 = σ(A2t ⊕A3t ⊕M t)
A2t+1 = AESR(A1t, M t)
A3t+1 = AESR(A2t, M t)

where σ is a fixed 16-byte permutation, and AESR(X, K) is the AES round function. A

mac.
A1

AES
Enc

Round
A2

AES
Enc

Round
A3

σ

A1 t

A2 t

A3 t A1 t+1

A2 t+1

A3 t+1

AESR

AESR

M t

σ

T2

the Π function

FSM of SNOW-V/Vi

0 0

Figure 1: SMAC compression function Π, derived from the FSM part of SNOW-V/Vi.

general way of usage of the compression function Π in the SMAC framework is shown in
Figure 2, and consists of three phases:

• Initialisation phase. In the initialisation phase, the three 128-bit registers
A1, A2, A3 are populated with the key material and any other relevant domain
separation parameters, for example a nonce and the MAC tag size. Next, the com-
pression function Π is iterated d times using a fixed M = 1⋆ (to be defined later), to

Dachao Wang, Alexander Maximov, Patrik Ekdahl and Thomas Johansson 3

transition the initial state into a pseudo-random state. The internal state at the end
of the initialisation phase is denoted by (A1t, A2t, A3t), t = 0.

• Compression phase. The next n clocks are used to compress the sequence of n
128-bit message blocks M0, . . . , Mn−1, where the last message block should contain
the actual length of the message in bits. The internal state after the compression
phase is denoted by (A1t, A2t, A3t), t = n.

• Finalisation phase. Before the MAC tag is produced, the SMAC engine does d
dummy calls to the compression function with M = 1⋆, similarly to the initialisation
phase. The output MAC tag is extracted from the state (A1t, A2t, A3t), t = n + d,
by taking the required number of bits.

K1

K0
Clock Π

d times

A1

A2

A3

M 0 M n-1

Π

A1

A2

A3

Π

A1

A2

A3

Clock Π

d times

τ bits

MAC

tag

...

...

Initialisation phase Compression phase Finalisation phase

IV

1* 1*

Figure 2: A general usage model of the SMAC framework.

2.1 Detailed description
The description is byte oriented and we will denote an array of bytes of length l by {N8}l,
where Nk denotes the natural numbers representable using k bits. The elements in an array
A ∈ {N8}l are referenced by A[0], A[1], . . . , A[l − 1], where A[0] is the first element in the
array and A[l−1] is the last. An assignment of an array A = B is done element by element,
as is the XOR (also denoted by ⊕) of two arrays C = A⊕B, where then C[0] = A[0]⊕B[0],
et cetera. The registers are considered byte arrays A1, A2, A3 ∈ {N8}16.

The concatenation of two arrays A, B is denoted by C = A ∥ B and the result C will
carry the elements of A in its first positions and the elements of B in its last positions.
Let σ(·) : {N8}16 → {N8}16 denote a byte permutation of an array of length 16. A specific
permutation is defined as σ = [π0, π1, . . . , π15], πk ∈ [0 . . . 15], πi ≠ πj ∀(i ̸= j). This should
be interpreted as the element at index π0 is moved to position 0, the element at index π1
is moved to position 1, and so on. For example, σ(A) will result in the permuted array
B = σ(A) = {A[π0], A[π1], . . . , A[π15]}. Furthermore, let

1⋆ = {1, 0, 0, . . . , 0}

denote the array of 16 bytes with a single one in the first position and zeros in the rest.
M = 1⋆ is the fixed constant value fed into Π during initialisation and finalisation phases. A
single instance of the AES round function is denoted by AESR(X, K) : ({N8}16, {N8}16)→
{N8}16, and defined as AESR(X, K) := MixColumns(ShiftRows(SubBytes(X)))⊕K. In
subsequent sections of this paper, we will also use the notation L ·X = MixColumn(X),
π ·X = ShiftRows(X), and S(X) = SubBytes(X), so that the AES round can be rewritten
in a shorter form as

AESR(X, K) = LπS(X)⊕K

4 A New Stand-Alone MAC Construct Called SMAC

The mapping between a byte array and the AES state X is done in the usual way as
defined in [oST01]. We can now formally define the compression function Π in Algorithm 1.
The initialisation and finalisation phases are identical in the proposed framework and
defined in Algorithm 2.

Algorithm 1 Π : ({N8}16, {N8}16, {N8}16, {N8}16)→ ({N8}16, {N8}16, {N8}16)
1: function Π(A1, A2, A3, M)→ (A1′, A2′, A3′)
2: A1′ = σ(A2⊕A3⊕M)
3: A2′ = AESR(A1, M)
4: A3′ = AESR(A2, M)

Algorithm 2 InitFinal : ({N8}16, {N8}16, {N8}16)→ ({N8}16, {N8}16, {N8}16)
1: function InitFinal(A1, A2, A3)→ (A1′, A2′, A3′)
2: (X1, X2, X3) = (A1, A2, A3)
3: for d times do ▷ In this specification d = 9
4: (A1, A2, A3) = Π(A1, A2, A3, 1⋆)
5: (A1′, A2′, A3′) = (A1, A2, A3)⊕ (X1, X2, X3)

Since Π given M is an invertible function, we prevent back-tracking of the state from
the exposed MAC tag by adding the starting state of the function to the ending state.
This is also done during the initialisation phase to achieve an instantiation of the FP(1)
property introduced in [HK18].

2.2 Three base instances SMAC-1, SMAC-3/4, and SMAC-1/2
While the previous subsection provides a more general description, we need some additional
specifications to instantiate an implementable algorithm. In this section we specify three
concrete base instances called SMAC-1, SMAC-3/4, and SMAC-1/2. They work as stand-
alone integrity algorithms that provide truncatable tags of size τ bits, where the upper
limit is τ ≤ {128, 160, 256} bits for these three instances, respectively.

The first instance, SMAC-1, has a lower security level but processes a new message
block for each round during the compression phase. The second variant, SMAC-3/4, has a
higher security level but only processes three message blocks every 3 out of 4 compression
rounds. It does so by running the compression function Π with M = 1⋆ every fourth round
of the compression phase. The resulting rate is 3/4 of the rate of SMAC-1, neglecting the
identical initialisation and finalisation phases. The third variant is the half-rate SMAC-1/2,
where every second clock of the compression phase is the dummy clock with M = 1⋆.

All three instances take a 256-bit key K ∈ {N8}32 and a 128-bit domain separation
value IV ∈ {N8}16 as inputs. Two 128-bit halves of the key to be referred as K0 and K1,
i.e. K = (K0 ∥ K1). If the original key is shorter then the 256-bit K is constructed from
the original shorter key by extending it to 256 bits with zeroes. Exactly how the domain
separation is to be done is left for the user of the algorithms, but separating different key
and tag sizes together with a nonce should probably be considered. The output tag of
SMAC-{1, 3/4, 1/2} is confined to a maximum of {16, 20, 32} bytes, and corresponds to
the first bytes of the registers (A2 ∥ A3) after the finalisation phase.

We define the SMAC versions such that they are directly suitable for use in AEAD
mode with an external cipher. For this, we assume the message is comprised of two parts –
one part with associated data (AD), and one part with ciphertext data. Let A ∈ {N8}LA

be the plaintext AD of length LA bytes, and let C ∈ {N8}LC be the ciphertext data of
length LC bytes. We form the input message to SMAC-{1, 3/4, 1/2} by firstly pad A and

Dachao Wang, Alexander Maximov, Patrik Ekdahl and Thomas Johansson 5

C to 16 bytes boundaries by inserting 0:s. Then the ciphertext array is concatenated to
the end of the AD array, followed by a 16 byte block consisting of the lengths in bits of
the messages. The conversion from integer to byte array is done in little endianness style
with the least significant byte in the first array element, and denoted by the conversion
function LittleEndian64(n). Finally, we fix the number of rounds during the initialisation
and finalisation phases (Algorithm 2) to d = 9. In Algorithm 3 we provide the complete
description of SMAC-{1, 3/4, 1/2}.

Algorithm 3 SMAC-r : ({N8}32, {N8}16, {N8}LA , {N8}LC)→ {N8}16/20

1: function SMAC-{1, 3/4, 1/2}(K, IV,A, C)→ Tag
2: Assign a 16-byte block L = LittleEndian64(8 · LA) ∥ LittleEndian64(8 · LC)
3: Add zeroes to A and C to align with 16-byte blocks, resulting in A∗ and C∗

4: M = A∗ ∥ C∗ ∥ L, and LM = 16 · (⌈LA/16⌉+ ⌈LC/16⌉+ 1)
5: Divide M into LM/16 sub-blocks M i of size 16 bytes, index starts from i = 0
6: (A1, A2, A3) = (K1, K0, IV) ▷ Note, the lower half of K is loaded into A2
7: (A1, A2, A3) = InitFinal(A1, A2, A3)
8: for all sub-block M i in M do
9: (A1, A2, A3) = Π(A1, A2, A3, M i)

10: if (SMAC-3/4 ∧ (i ≡ 2 mod 3)) or (SMAC-1/2) then
11: (A1, A2, A3) = Π(A1, A2, A3, 1⋆)
12: (A1, A2, A3) = InitFinal(A1, A2, A3)
13: Tag = (A2 ∥ A3)τ ▷ First pick tag bits from A2, then from A3 if τ > 128

The three instances use distinct permutations σ, which are defined as follows:

σ1 = {0, 7, 14, 11, 4, 13, 10, 1, 8, 15, 6, 3, 12, 5, 2, 9} for SMAC-1
σ42 = {7, 14, 15, 10, 12, 13, 3, 0, 4, 6, 1, 5, 8, 11, 2, 9} for SMAC-3/4
σ61 = {0, 11, 7, 14, 6, 4, 1, 15, 9, 3, 8, 5, 13, 2, 10, 12} for SMAC-1/2

SMAC-{1, 3/4, 1/2} only admit byte oriented inputs and hence we multiply the array
length by 8. If bit oriented inputs are needed, simply provide the total number of bits as
input and use those values in line 2. The input data arrays need to be byte aligned in any
case. The length encoding puts a restriction on the length of the plaintext and ciphertext
messages to be maximum 264 − 1 bits each.

For the tag extraction, we assume τ to be a constant parameter representing the size
of the Tag in bits; recall that the tag size τ is at most 128, 160 or 256 bits, depending
on the SMAC variant. The extraction from the state is primarily done from register A2
where the bytes of Tag are assigned by the corresponding indices of A2. If τ > 128 the
Tag array is appended by bytes from register A3, starting with the first position.

2.3 Security claims and limitations
In the context of the current specification of SMAC-{1, 3/4, 1/2}, with d = 9 for both
the initialisation and finalisation phases, we summarise security claims and limitations as
given in Table 1.

The nonce-misuse using a sender oracle scenario discussed in Section 3.13 is highly
theoretical since if the goal is to send some selected malicious messages to the receiver, the
direct solution would be to ask the oracle for the correct tag, instead of using 259 queries
in order to recover the state. As will be discussed in Sections 3.7 and 3.9, a state recovery
does not directly translate into a key recovery so the state is only valid for that particular
(K, IV). The receiver oracle is more plausible in a practical scenario, since if the protocol
does not include some replay protection, the receiver can indeed be used to verify correctly

6 A New Stand-Alone MAC Construct Called SMAC

Table 1: Security claims and limitations. Q=Queries, T=Time, C=Time/Memory/Data.

Security and limitation aspects SMAC-1 SMAC-3/4 SMAC-1/2
Original key size in bits, κ κ ≤ 256 κ ≤ 256 κ ≤ 256
Truncated tag size in bits, τ τ ∈ [12..128] τ ∈ [12..160] τ ∈ [12..256]
Maximum length of AD and ciphertext in bits 264 − 1 264 − 1 264 − 1
Maximum number of messages with the same key 264 264 264

Security level against a single message forgery ≥ min{κ, τ, 118} ≥ min{κ, τ, 152} ≥ min{κ, τ, 252}
in a nonce-respecting setting, in bits (Sec.3.3)

Security level against input/output differentials ≥ min{κ, 56 · 6} ≥ min{κ, 49 · 6} ≥ min{κ, 54 · 6}
in InitFinal, in bits (Sec.3.11)

GnD to recover the key from a T = O(2κ) T = O(2κ) T = O(2κ)
known single state and IV (Sec.3.9)

GnD to recover the state from a known T = O(2384) T = O(2384) T = O(2384)
tag(s) when (K, IV) is fixed (Sec.3.9)

TMTO to recover the state with C = O(2192) C = O(2192) C = O(2192)
multiple known tags (Sec.3.7)

TMTO to recover the key with a fixed IV C = O(2κ/2) C = O(2κ/2) C = O(2κ/2)
and multiple known tags (Sec.3.7)

State recovery with nonce-misuse queries Q ≥ O(259+τ) Q ≥ O(276+τ) Q ≥ O(2126+τ)
to the receiver oracle (Sec.3.13)

guessed state collisions. From the table we conclude that even if the smallest allowed tag
size τ = 12 is used, the complexity of a receiver nonce-misuse attack is well above the
allowed number of messages to be MACed for that key.

As a sound security practice, we recommend that each pair (K, IV) be used only once
by the sender. In order to prevent receiver’s side nonce-misuse attacks in protocols that lack
replay protection, we suggest introducing a counter of the number of verification requests
per key. If this counter reaches the maximum allowed value (note the last row of Table 1),
the receiver should invalidate the key and, for instance, request a key renegotiation. In
scenarios with multiple independent receivers, say m, the upper limit of the counter should
be divided equally among the m receivers.

3 Design justifications and security analysis

3.1 Differential forgery attacks
For the sake of terminology, we call bit-level differential trails as bit-trails which depict
concrete differential trails in practical attacks. We also name a byte-level trail as a byte-trail
that indicates whether each differential byte value is zero or not. This type of trail is good
for e.g. counting the minimum number of active S-boxes. A bit-differential message is
denoted by ∆M , and its corresponding byte-differential is denoted by µ(∆M).

One of the main security concerns in such constructs comes from the second preimage
resistance, where an attacker given the first message M tries to construct a new message
M ′ such that the resulting tag would coincide. In this scenario, the attacker may query the
verification oracle to check if the tags for M and M ′ collide. Here we have two possibilities:
either two tags of size τ bits would collide by chance with probability 2−τ , or the attacker
carefully selects ∆M = M ⊕M ′ such that the internal state would collide with probability
p significantly larger than 2−τ .

A standard approach to estimate the state collision probability p is to find a differential
byte-trail µ(∆M) with the minimum number s of active S-boxes, then p can be upper
bounded by p ≤ 2−6s, since for the Rijndael S-box we have ∀δx, δy : Pr{S(x)⊕S(x⊕δx) =
δy} ≤ 2−6. In this estimate the basic assumption is that each of active differential S-boxes
would theoretically have a corresponding binary-trail with the maximum probability 2−6,

Dachao Wang, Alexander Maximov, Patrik Ekdahl and Thomas Johansson 7

which could not always be the case and such an optimal binary-trail may not exist, pushing
the actual p even lower. On the other hand, it is not always guaranteed that a byte-trail
would have a corresponding binary-trail with a nonzero probability. However, this estimate
was adopted by e.g. designers of AEGIS, Rocca, LeMac, PetitMac, etc.

Practically speaking, there are many well-known tools and methods for the search of
a minimum byte-trail, such as using MILP models [MWGP12], CP tools [SGL+17], and
custom programming like Matsui-style search [Mat95] – in our case, we also programmed
our own search in C++ for e.g. the case ∆t = 3, briefly described in Appendix B. Such
techniques are well-studied and have been utilised to analyse many other cryptographic
primitives, see e.g. [BBL+24, SLN+21] for more details.

As an example, one can easily derive the state expressions after 3 clocks for ∆t = 3,
where we introduce additional substitutions in order to make the expressions shorter
x = σ(LπS(A1t)⊕ LπS(A2t)), y = σ(A2t ⊕A3t), and z = LπS(A1t):

A1t+3 = σ(LπS(y ⊕ σM t)⊕ LπS(z ⊕M t)⊕M t+2)
A2t+3 = LπS(x⊕ σM t+1)⊕M t+2

A3t+3 = LπS(LπS(y ⊕ σM t)⊕M t+1)⊕M t+2
(1)

By introducing a nonzero differential ∆(M t, M t+1, M t+2) ̸= 0 the attacker wants to
maximise the probability p = Pr{∆(A1, A2, A3)t+3 = 0}. That probability may be smaller
or larger depending on the permutation σ. Therefore, we need to search for strong σ
candidates for the versions SMAC-{1, 3/4, 1/2}, as this will be described in more detail in
the next sections. For example, in our simulations we found that for SMAC-1 the strongest
found permutation σ1 ensures the minimum number of active S-boxes is 22 for the case
∆t = 3 (an exampled binary trail for this case is given in Appendix B).

3.2 Searching for a strong σ for SMAC-1 and SMAC-3/4
From the previous subsection it became evident that the minimum number of active
S-boxes highly depends on the exact permutation σ. Therefore, one of the goals in this
work was to find strong permutation candidates that offer as high level of security as
possible for the considered construct.

SMAC-1 vs. -3/4. Searching for a strong permutation for the instance SMAC-3/4 is
similar to searching for SMAC-1. We simply insert artificial message blocks with a fixed
value 1⋆, representing the dummy clocks that happen in SMAC-3/4. Thus, the analysis
for SMAC-1 and SMAC-3/4 can be carried out in the same way but with the additional
constraint that every 4th differential for SMAC-3/4 is zero, i.e. ∆M t = 0 for a dummy
clock. Note, depending on ∆t there can be distinct cases where those dummy clocks
occur.

There are 16! ≈ 244 possible permutations and in this work we aim at performing
cryptanalysis on all 244 instances of SMAC, each having a distinct permutation, to extract
the strongest candidates. Testing 244 permutations is a challenging task but we were able
to narrow it down using several steps of fast filtering and pattern matching1.

First round of filtering. We have written highly optimised filters for two time
frames ∆t = 3 and ∆t = 4 in C/C++. Given a permutation candidate σ, these filters
test whether there exists a byte-trail with less number of minimum S-boxes than some
preselected threshold. If the number of active S-boxes is below the threshold, the candidate
is removed. After the first round of filtering, we obtained the following results:

• SMAC-1. Filters for ∆t = 3 and ∆t = 4 with the threshold at least 20 active S-boxes
in an optimal differential trail resulted in 73073 remaining candidates out of 244.

1The feasibility of these simulations was ensured by leveraging two data centres, LUNARC at Lund
University and E2C at Ericsson, allowing for parallel testing of these permutation candidates.

8 A New Stand-Alone MAC Construct Called SMAC

• SMAC-3/4. Only one filter was applied in the first round – the case ∆t = 3 with at
least 26 active S-boxes, resulted in 1.6 billion candidates.

Second round of filtering. With a larger time frame ∆t > 4 it became more difficult
to code specialised filtering functions. We instead used a CP-SAT optimisation solver from
OR-Tools [PD] to perform cryptanalysis of the remaining candidates in larger time frames
up to ∆t = 9. A generic tool was constructed by utilising constraint programming models
to test one or a set of permutation candidates, searching for a differential byte-trail with
the minimum number of active S-boxes. The generic tool supports different parameters
such as the time frame ∆t, position(s) of the dummy message block(s), threshold for the
minimum number of S-boxes, et cetera. This tool can also be used to verify and/or test
permutations and experiment with SMAC rates other than {1, 3/4, 1/2}2.

Patterns. An additional technique to filter out candidates is to collect patterns of
weak permutations. If we test a concrete permutation and a filter finds a byte-trail that
has less active S-boxes than the desired threshold, we can further examine the permutation
indices to spot which indices are contributing to that weak behaviour. It turns out that in
many cases there is a particular set of indices that give rise to the low number of active
S-boxes, and those permutation indices form a group of candidates that instantly can be
skipped during further filtering. By saving such groups as patterns we can significantly
reduce the number of permutations we need to test. We collected ∼50 million of unique
patterns 3 that helped to significantly truncate the search space.

Simulation results. As the result, we found 20 permutations candidates for SMAC-1
and 40 for SMAC-3/4 (the complete list is given in Appendix A), analysed in the time
frame ∆t ≤ 9. For SMAC-1, there are only two permutations out of 244 that have at
least 20 active S-boxes, and for SMAC-3/4 the found candidates ensure at least 24 active
S-boxes.

3.3 Clustering effects
A differential trail typically contains an input difference, output difference, and differences
of intermediate variables. Usually, only the input and output differences are known to an
attacker. In this case, trails that have the same input and output differences but distinct
intermediate differences can cluster together to form a differential with a higher probability,
which is called clustering effect. Several previous works [BdSF+22, SII24, LPS21] have
shown the power of this effect on various ciphers. Therefore, we need to study the clustering
effect for the permutation candidates obtained in the previous step of filtering. We have
again utilised the CP-SAT solver [PD] from OR-Tools for this part of analysis.

Adaptation of byte-trails for analysis of bit-level clusters. For SMAC, an
attacker can prepare a new message that differs from another known message by ∆M , and
hope the internal state of SMAC would be the same after a number of clocks, thus resulting
in the same MAC value. All intermediate differential bit-trails that have the same ∆M
are in the same cluster. However, testing all possible clusters and identifying the strongest
one is difficult, since there is an exponential number of concrete input bit-differentials
∆M , and for each ∆M the analysis of its cluster requires enumeration of all intermediate
bit-trails. To make this analysis feasible, we study the clustering effect on the level of
byte-trails, instead. In particular, we aim to find upper bounds on probabilities of clusters
corresponding to only those message differentials that contain optimal byte-trails with the
minimum number of active S-boxes. As the result, these bounds apply to all bit-trails that
follow the same byte-trails.

2The tool, along with a reference implementation and test vectors, is available on GitHub: https:
//github.com/0NG/smac-tools

3As a side note, merging millions of patterns was not a trivial task; thus, we have developed optimised
algorithms for handling patterns such as collecting, sorting, merging, and checking for uniqueness, in time
O(N log N).

https://github.com/0NG/smac-tools
https://github.com/0NG/smac-tools

Dachao Wang, Alexander Maximov, Patrik Ekdahl and Thomas Johansson 9

Analysis of a single byte-level cluster. A single cluster C on the byte level is
identified by a concrete fixed byte-differential µ(∆M). Given µ(∆M), we enumerate all
intermediate byte-trails which match that certain µ(∆M). Let that set of byte-trails be
denoted by SC . Then the probability of the cluster C is upper bounded by

p(C) ≤
∑

Ψ∈SC

nΨ ·maxp(Ψ)

where nΨ is the number of possible bit-trails matching a certain intermediate byte-trail
Ψ ∈ SC , and maxp(Ψ) is the maximum probability of a single bit-trail that follows the
byte-trail Ψ.

In our analysis, we assume that all byte-trails from SC can be mapped to the same
∆M on the bit-level as well. Therefore, the resulting cluster C, in the way we construct it
and taking into account nΨs, cannot be smaller than a corresponding valid bit-level cluster,
and thus our bound of p(C) provides a theoretical upper bound for the forgery success
probability. This also means that in reality the forgery success probability on SMAC is
not greater, but likely smaller than what we have derived.

Method to compute nΨ. Let us for the moment assume that, given a byte-trail Ψ,
its corresponding byte-differential µ(∆M) is assigned with some (unknown to us) fixed
bit-level difference ∆M . We propose a simple method to determine whether all other
intermediate differential bytes of the byte-trail Ψ can be uniquely derived on the bit-level,
given a hypothetical fixed bit-differential value of ∆M . Recall that in each round the
differential propagates as

∆A1t+1 = σ(∆A2t ⊕∆A3t ⊕∆M t)
∆A2t+1 = LπS(∆A1t)⊕∆M t

∆A3t+1 = LπS(∆A2t)⊕∆M t

∆A1t+2 = σ(∆A2t+1 ⊕∆A3t+1 ⊕∆M t+1)

(2)

To simplify the analysis, the differential distribution table (DDT) of Rijndael S-box is
ignored, and we only consider whether involved S-boxes are active or not. Furthermore, we
assume that ∆A1t, ∆A2t, and ∆A3t are known, and thus ∆A1t+1 is uniquely determined
by ∆M on the bit-level due to Eq. (2). Following the given byte-trail Ψ, some bytes can
only take the value 0, and for non-zero bytes the following rules are applied repeatedly to
determine (most of) the remaining bytes of Ψ on the bit-level given Eq. (2), where ∆A2t+1

i

means the i-th byte of ∆A2t+1 and so on for other values.

1. If ∃i : ∆A2t+1
i is known, then LπS(∆A1t)i = ∆A2t+1

i ⊕∆M t
i .

2. If ∃i : ∆A3t+1
i is known, then LπS(∆A2t)i = ∆A3t+1

i ⊕∆M t
i .

3. If ∃i : σ−1(∆A1t+2)i = 0 and ∆A2t+1
i are known, then ∆A3t+1

i = ∆A2t+1
i ⊕∆M t+1

i .

4. If ∃i : σ−1(∆A1t+2)i = 0 and ∆A3t+1
i are known, then ∆A2t+1

i = ∆A3t+1
i ⊕∆M t+1

i .

5. If the number of unknown byte values in S(∆A1t) (resp. S(∆A2t)) is less than or
equal to the number of known byte values in LπS(∆A1t) (resp. LπS(∆A2t)), then
S(∆A1t) and LπS(∆A1t) (resp. S(∆A2t) and LπS(∆A2t)) are all determined.

Note that ∆A10 = ∆A20 = ∆A30 = 0. This way, this method propagates the differential
knowledge to intermediate bytes of Ψ round by round, and stops when no new differential
bytes can be determined on the bit-level. Although the above rules are described on the
bit-level when a hypothetical ∆M is known, in our simulations we perform the same steps
but on the byte-level where each variable is a binary known/unknown flag.

10 A New Stand-Alone MAC Construct Called SMAC

It is surprising that for almost every Ψ we have tested all intermediate bytes can
be uniquely determined after applying these rules, except for a few cases. I.e., given a
byte-trail Ψ, there is in most cases only one corresponding bit-trail, which means nΨ = 1.

In other cases where this method could not determine all values, we have noticed that
the remaining (undetermined) bytes are all in the last round and all output from active
S-boxes. By checking the number of free variables in the linear system during the 5-th rule,
the number of possible bit-trails can be upper bounded. Due to the DDT of the S-box,
the number of possible output differences is 27 given the input difference. Hence, every
free variable in the linear system can only take up to 27 possible values. If there are x free
variables, then nΨ is set to 27x.

Simulations and results. In the previous filtering stage we have derived a short
list of promising permutations. Due to an extremely high complexity of cluster analysis,
we picked 5 candidates for SMAC-1 and 9 for SMAC-3/4, such that they cover distinct
characteristics (the vector of minimum number of S-boxes for various ∆t-scenarios).

For every SMAC variant, permutation, and attack scenario ∆t and (∆t, k) (where k
defines dummy clocks), we first enumerate all clusters identified by distinct byte-differentials
µ(∆M) that include at least one optimal byte-trail with the minimum number of active
S-boxes. Then for each such cluster we compute the upper bound of the forgery attack
success probability by using the above method, where the enumeration of intermediate
byte-trails as well as computation of maxp(Ψ) was done with OR-Tools. In the end, we get
the maximum probability over all attack scenarios for each SMAC variant and permutation,
from where the most secure permutations are determined.

For SMAC-1, we found that σ1, σ11, and σ17 are the three strongest candidates with
similar forgery probabilities upper bounded by 2−118.95, 2−119.41, and 2−118.40, respectively.
Our preference goes to σ1 for the reason that it is one of only two permutations out of 244

that has at least 20 active S-boxes in all ∆t scenarios, while σ11 and σ17 ensures only 19
active S-boxes; also, both σ11 and σ17 are weaker than σ1 in respect to other analyses4.

For SMAC-3/4, we found that σ37 and σ42 are the strongest candidates with similar
forgery probabilities upper bounded by 2−151.21 and 2−152.29, respectively. However, in
this case, we would prefer σ42 with a slightly better security.

As the number of active S-boxes grows rapidly with larger ∆t, we believe that the
existence of a forgery differential attack with complexity much lower than the claimed
security level and time frame ∆t > 9 is not likely. More detailed results of the cluster
analysis on permutation candidates can be found in Appendix A.

3.4 Selection of σ for SMAC-1/2
In order to find decent permutation candidates for SMAC-1/2, we collected all permutations
that have been considered or filtered out in previous stages of this work (except that large
1.6 billion set collected for SMAC-3/4), and analysed around 180 million permutations5

resulting in 16 promising candidates that have at least 41 active S-boxes in ∆t ≤ 9.
Afterwords, we perform a cluster analysis on two of them, σ61 and σ69 (the full list of
candidates can be found in Appendix A).

For SMAC-1/2, we adopt a rough method to estimate a cluster probability such as,
when considering a single byte-trail we force the CP solver to maximise the number n6
of active S-boxes with the optimal probability 2−6. Upon reaching a timeout the solver
returns with the range of n6, from where we pick the maximum bound and assume all
other active S-boxes have probability 2−7, this way we upper bound the probability of
a particular trail. Note that if there are free variables in the trail then we should also
include these into the probability, same as we did in SMAC-{1, 3/4}. The estimates we

4For example, in GnD test G5 (Table 3) both σ11 and σ17 are not secure in all d < 9.
5It was, however, infeasible for us to test all 244 permutations in this rate, and a stronger candidate

might exist.

Dachao Wang, Alexander Maximov, Patrik Ekdahl and Thomas Johansson 11

receive for all trails are used to derive an upper bound for all clusters and therefore the
forgery success probability.

The two analysed permutations σ61 and σ69 have the forgery probabilities upper
bounded by 2−252.30 and 2−256.00, respectively. However, σ69 was identified to have some
weaknesses in respect to other analyses6, and for this reason we have selected σ61 for the
half-rate version.

3.5 Justification for the constant 1⋆

The MixColumn linear transformation has a specific property such as if the input bytes
are all equal, X = {x}16, then the result Y = MixColumn(X) preserves the same property
and Y = {y}16. All other operations, such as XOR, σ, ShiftRows, and SubBytes, also
preserve this property. I.e., if all three registers A1, A2, A3 have that property in some
certain time, then that property preserves over rounds if the message block M = 0, which
may, in particular, affect the randomness of the initialisation and finalisation phases. In
the initialisation phase, this property can further generate a weak key class. In order
to remove this property, we add 1⋆ as the round key to the state during the InitFinal
function, as well as for dummy clocks in SMAC-{3/4, 1/2}.

3.6 Arguments behind the PRP-PRF switch
The ending XOR with the input in the function InitFinal converts it from a pseudo-
random permutation (PRP) to a non-invertible pseudo-random function (PRF), similarly
to the FP(1) mode of operation in stream ciphers [HK15]. This protects both the secret
key and the state sequence. For example, suppose the state in some time instance is
recovered, say, through a side-channel attack. In that case, it is not possible to revert the
state back to the start of the initialisation phase and recover the secret key, the highest
asset to be protected. Moreover, since t bits of the internal state become the final MAC
tag value, it also makes sense to protect the final state.

The InitFinal procedure can be simplified as

Y = Πd(X)⊕X,

where X, Y are 384-bit variables and Π is the SMAC round function with 1⋆as the message.
The ending ⊕X converts the PRP Π into a PRF. This is a standard technique and is
used in many designs, for example, in MILENAGE for computing OPc from OP [3GP],
or in Grøstl [GKM+09] for the output transformation. The theoretical security of the
finalisation function may be derived from e.g. the security proof of Davies-Meyer construct
where g(k, m) = Ek(m)⊕m is proved to be a collision-resistant one-way function, given
that Ek is an ideal block cipher [BRS02] and the same applies when the key k is fixed.

3.7 Internal state size and TMTO attacks
Assume that an attacker can observe the full 384-bit output Y (and not just the tag that
is of maximum size 256 bits). What is the complexity of reverting Y into X? In case of
PRP that would be a 1-to-1 mapping and the reverting algorithm is trivial – just clock
backwards d times. However, in case of a PRF that mapping would in most cases have
between 0 to 2 solutions and it is not trivial how to revert it as ⊕X may be viewed as a
masking of Π(X). To revert that PRF, one may try a TMTO trade-off attack of complexity
T = M = D = O(2192) by just building a table of M = O(2192) (X, Y) pairs and then ask
for D = O(2192) different Y ’s. This is a state-recovery attack. The full Y is not available

6For example, in GnD test G5 (Table 3) σ69 is only partially secure in d = 7 (only 9 bytes of 48 are
secure) and d = 8 (36/48).

12 A New Stand-Alone MAC Construct Called SMAC

from the SMAC tag, but if the nonce is misused in the verification oracle one can combine
a few accepted tags from the same IV and fixed messages to form an output Y unique for
each X (e.g. see Section 3.13). If the tag size is 32 bits then 240 calls to the verification
oracle are sufficient to get on average 28 accepted tags.

Generic key-recovery TMTO attacks are similarly also valid for our construct. For
example, one can create a large table that maps a subset of the key and IV space to MAC
tags for a predefined set of messages, and when the attacker observes tags also found in
the table the full key is recovered. This TMTO attack would have a complexity around
T = M ≈ O(2192) with data D = O(2192) tags generated from different keys and IV
pairs. Better is to fix the IV and have the same TMTO attack on the key only, requiring
T = M = D ≈ O(2128). Allowing a large precomputation cost, one can reduce the memory
and data cost by Hellman’s approach [Hel80] and building Rainbow tables. It does not,
however, offer better performance than the generic case of a search for a 256-bit key.

The state size 3 × 128 bits ensures a high enough resistance against internal state
collision attacks in birthday paradox and TMTO settings. A single-state collision may
happen naturally among 2192 collected pseudo-random states.

3.8 Avalanche effect on full registers
A brief analysis of the initialisation/finalisation phases can also be given by the avalanche
effect on the level of registers depending on the number of clocks d. The results are given
in Table 2 where, for the sake of notation, by kx we denote that the initial value of Ak
has been involved x times in an expression for the resulting register after d clocks. As the
result, after d = 3 clocks the register A1 already involves all three initial values, and after
d = 5 clocks each of the three registers involves the whole initial state.

Table 2: The avalanche effect on registers depending on the number of clocks.

clocks, d 0 1 2 3 4 5 6 7 8 9
A1 11 2131 1121 112131 112231 122231 122332 132432 142533 152734

A2 21 11 2131 1121 112131 112231 122231 122332 132432 142533

A3 31 21 11 2131 1121 112131 112231 122231 122332 132432

3.9 Guess and determine attacks
In this section, we consider the InitFinal function

(A1′, A2′, A3′) = Πd(A1, A2, A3, 1⋆)⊕ (A1, A2, A3),

and study the complexity of a generic guess-and-determine attack for various scenarios
where some of the input/output register values are known, and we want to derive the
remaining values through guessing the smallest number of other unknown bytes. We
will model relations on the byte level, and while all operations are simple, it is only
MixColumn that is more complex to model which includes 56 relations per a single 4-to-4
byte MixColumn. In order to find a (almost) smallest guess base for our GnD attack
scenarios, we utilise the tool Autoguess from [HE22], as well as our own tool developed
solely for this project (a brief description can be found in Appendix D).

We have three sets of GnD scenarios. First of all, in G1 we would like to understand
how good that PRF function is, i.e., given the complete output, how many bytes need to
be guessed to revert that PRF back to the input. In G2 we consider the case when two
input states are related through, e.g., a known differential, and both output states are
fully available to the attacker. We see that the additional knowledge of an extra output

Dachao Wang, Alexander Maximov, Patrik Ekdahl and Thomas Johansson 13

state in G2 does not much help in a GnD attack as the complexity to recover the initial
state is similar to G1.

The next set of scenarios G3-5 addresses the security of the initialisation phase where,
as a hypothetical assumption, we let the whole state after initialisation to be known to the
attacker, as well as some values of the input registers. In these scenarios we are interested
in the minimum guess base to recover the missing input register (or even a single byte7),
where the secret key may actually be settled. These attack vectors may become realistic if
e.g. one device performs the initialisation and bypasses the computed output state to the
second device for actual MACing, but that second device may be compromised.

Table 3: The observed minimum sizes of guess bases for σ1, σ42, and σ61 under various
scenarios received from heuristic tools, in terms of the number of bytes to be guessed.

Scen- Trivial Known input/output Number of rounds, d
ario guess registers and bytes 1 2 3 4 5 6 7 8 9 10

General: how strong the stand-alone PRF function is.
G1 48 All output regs. A1′, A2′, A3′ 8 16 16 26 31 32 40 44 48 48

General: state recovery for two related input states given corresponding output states.
G2 48 All 2× 48 output bytes 8 16 16 26 31 32 40 46 48 48

Initialisation: key recovery (or even a single byte) given the complete state after
initialisation and some values at loading time.

G3 32 One of A1, A2, A3 and A1′, A2′, A3′ 0 0 0 10 15 16 24 28 32 32
G4 16 Two of A1, A2, A3 and A1′, A2′, A3′ 0 0 0 0 0 0 8 13 16 16
G5 1 Any 47 input bytes and A1′, A2′, A3′ 0 0 0 0 0 0 1 1 1 1

Finalisation: state recovery given a tag taken from various registers.
G6 48 One of output regs. A1′, A2′, A3′ 32 32 32 32 32 32 40 44 48 48
G7 48 Two of output regs. A1′, A2′, A3′ 16 16 16 26 31 32 40 44 48 48
G8 48 20 output bytes A1′, A2′

[0..3] 28 28 28 30 32 34 45 48 48 48
G9 48 20 output bytes A2′, A3′

[0..3] 28 28 28 29 32 32 45 48 48 48

In the third set of scenarios G6-9, we analyse the finalisation part where, given the
knowledge of one or more output bytes (e.g. through the MAC tag), we wonder about the
complexity to recover the internal state before the finalisation phase.

The absolute security level for all these scenarios is that guessing at most 1/16/32/48
bytes of the unknown input registers is enough to recover all other variables – we call it as
a trivial guess.

All GnD scenarios and the smallest size of the guess base that we managed to derive
and observe by using heuristic tools are given in Table 3. Since these tools are heuristic,
a smaller guess base may still exist. However, the results that we received are still good
indications on what the size of the guess base can be, and how it grows with the number
of rounds d.

Notably, the results of these simulations demonstrate that with d = 9 we seem getting
the absolute maximum possible security level in all GnD scenarios, although many of them
are only theoretical. To note, the highest security level of 384 bits is not really needed
as it is already much larger than it could be required for a possible SMAC use case, thus
the number of rounds d could actually be lower for certain applications, and may also be
different for the initialisation and finalisation phases.

7G5 simulates a scenario when all key bytes except one are guessed and the complete output is also
known; it demonstrates that with d ≥ 7 clocks that single byte is still an unknown variable and cannot be
determined through all other 95 known bytes.

14 A New Stand-Alone MAC Construct Called SMAC

3.10 MDM and cube tests
In this section, we perform the MDM test and cube attack on InitFinal to check how
many rounds are needed to fully mix the input bits. The initial state in time t = 0 is
supposed to be pseudo-random by the initial d clocks, which shuffles the input parameters
and the secret key. The first preimage resistance should be ensured by the ending d
clocks, which makes it hard to find a message that results in a particular hash value. Note
that practical distinguishers based on these two methods require fixing some input bits
to known values and enumerating another subset of input bits which is called a cube.
Meanwhile, both methods have to compute the summation of the outputs. However, these
requirements cannot be satisfied simultaneously for either the initialisation or finalisation
phase. Because the output of the initialisation phase and the input of the finalisation phase
are secret to attackers. To analyse both phases, we view them as the same stand-alone
function, InitFinal, and assume that all the inputs and outputs can be obtained.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 255

6

7

8

bit set sizes

N
on

-r
an

do
m

In
itF

in
al

ro
un

ds

σ1
σ42
σ61

Figure 3: MDM tests of InitFinal.

In MDM test for a Boolean function, one fixes values to the input bits outside the cube,
enumerating all possible values of the bits in the cube, and then sums the output values of
the function. For a random Boolean function, the result will be 1 with probability 1/2
while there is a bias for a non-random one. [Sta10] provides a greedy algorithm to find a
good cube that detects non-randomness through ciphers. We regard the 384 output bits of
InitFinal as 384 Boolean functions and take this algorithm to check their non-randomness.
Our test starts with the worst 2-bit set that shows the longest non-random rounds. In
each step, we add two new bits that give the worst randomness. When the size of the bit
set reaches 16, the time complexity of finding the next two bits is too high, so we have to
switch to adding one new bit in the next steps until the bit set has 24 bits. To test with a
larger bit set, a more powerful computer is needed. Our results are shown in Figure 3. It
can be seen that the first 7 rounds fail the MDM test, ensuring a good mixing effect.

Table 4: Cube attacks on reduced-round of the initialisation phase (the results are the
same for σ1, σ42, and σ61).

Rounds, d 3 4 5 6 7 8 9
cube size |I| 7 7 7 103 103 128 128

degree d 21 126 231 231 255 254 255
involved key size |J | 24 152 256 256 256 256 256

time complexity 230.99 2159 > 2256 > 2256 > 2256 > 2256 > 2256

In cube attack, by computing the summation of the outputs, attackers aim to recover the

Dachao Wang, Alexander Maximov, Patrik Ekdahl and Thomas Johansson 15

superpoly of the chosen cube. After the division property was proposed by Todo [Tod15],
it was further used in [TIHM17] to find the set of key bits J that are involved in the
superpoly of the given cube I. This method was improved by Wang et al. [WHT+18],
which reduces the time complexity of the attack to 2|I| ·

∑d
i=0

(|J|
i

)
where d is the degree

of the superpoly. We evaluate the security of InitFinal against cube attacks by using
the method described in these papers. Our model is a MILP model. The linear operations
can be described by the models of XOR and COPY from [XZBL16] while the model of
the Rijndael S-box is given by [Tod15]. Several different cubes were tested and Table 4
shows the best results found by our model. One can see that, after 8 rounds, the degree is
almost full which matches the result in Table 6. Meanwhile, all key bits are involved in
this superpoly and the time complexity of the cube attack is larger than 2256.

3.11 Differential attacks on initialisation
Another test that we performed is a differential analysis where the initial state after
loading (A1, A2, A3) may have a difference ∆(A1, A2, A3), then we check the minimum
number of active S-boxes after d initialisation rounds that bring the state to any other
difference ∆(A1′, A2′, A3′) (which may be zero or nonzero). One may argue that since IV
and IV′ for the pair of messages can be selected or even be fixed to certain values, it might
help the Key-differential to propagate through the initialisation phase more efficiently.
However, since the IV is loaded into A3, we see that the very first clock would compute
A3⊕A2 where A2 is the lower part of the secret key, thus making the intermediate result
unknown. This way, considering a differential over both IV and Key parts would be a
generic differential attack on the initialisation phase. This observation motivates to reserve
the lower part of the key for A2, then if the original key is larger than 128 bits, the
remaining bits to be placed into A1.

Table 5: Minimum number of active S-boxes in a differential trail through InitFinal.

Rounds, d 3 4 5 6 7 8 9 10
#S-boxes for σ1/σ42/σ61 5 6 13 30 32 40 56/49/54 70/64/69

In our simulations, we find optimal trails that activate the minimum number of S-boxes
in the initialisation phase for each value of d and the results are given in Table 5. As an
example, for d = 6 any differential trail involves at least 30 active S-boxes that makes the
trail probability upper bounded by 2−180, which is far smaller than the target 2−160 in
SMAC-3/4.

3.12 Output MAC tag registers
Finally, in order to determine which registers should serve as the source of the final tag,
we performed yet another MILP-aided analysis which resulted in the degree bounds of the
Boolean functions of the registers’ bits. This method comes from [WHT+18] where the
authors used it to determine degrees of superpolies. We emphasise that the maximum
degree is 383. This is because, without the PRP-PRF switch, InitFinal is a permutation
whose degree is upper bounded by 383 and the switch does not change the final degree.

Table 6: Degree bounds of Boolean functions of the registers.

Rounds, d 3 4 5 6 7 8 9 10
A1 28 49 196 280 [352, 356] 376 382 383
A2 49 133 280 [352, 356] 376 382 383 383
A3 28 196 232 [352, 356] 372 382 383 383

16 A New Stand-Alone MAC Construct Called SMAC

From the results given in Table 6, we see that the bound of the register A1 is always
slightly behind the other two registers A2 and A3, for different ds. An obvious reason is
that A1 is the linear combination of the previous A2 and A3 which does not increase the
degree. This motivates us to produce the output tag from A2 first, and if more bits are
needed, in SMAC-{3/4, 1/2} with τ > 128, then we take them from A3.

3.13 State recovery attack with nonce-misuse queries
Atomic step. As a simplified scenario, let us demonstrate feasibility of a state recovery
using nonce-misuse queries when (K, IV) is fixed. Recall a differential forgery success
probability as discussed in Sections 3.1 and 3.3. Let us take the case SMAC-1, ∆t = 3,
and assume we get two messages M and M ′ = M ⊕∆M where the message difference
∆M only happens during the time width [t..t + 2] and results in ∆(A1, A2, A3)t+3 = 0
after these 3 clocks. In this case we have a state collision. Now recall the middle equation
from Eq. (1) which is A2t+3 = LπS(x ⊕ σM t+1) ⊕M t+2, where x, y, z are one-to-one
substitutions from (A1, A2, A3)t. Since ∆A2t+3 = 0, and both M and M ′ are known to
us, we derive:

LπS(x⊕ σM t+1)⊕M t+2 = LπS(x⊕ σ(M t+1 ⊕∆M t+1))⊕ (M t+2 ⊕∆M t+2)
⇒ LπS(x′) = LπS(x′ ⊕ σ∆M t+1)⊕∆M t+2, where x′ = x⊕ σM t+1

⇒ S(x′) = S(x′ ⊕ a)⊕ b, where a = σ∆M t+1, b = (Lπ)−1∆M t+2

Due to the state collision, for any i ∈ [0..15] we get either ai = bi = 0 or ai ̸= 0 ∧ bi ≠ 0,
and these byte values are derived from the (M, M ′) pair and thus known. For the latter
case where ai and bi are both nonzero, the x′

i may have only 2 (in most cases) or 4 possible
values. In this way we learn about the internal state, represented by the substitution triple
(x, y, z). We can then take the other two equations from Eq. (1) and analyse these in a
similar way to learn about the unknown y, z. The idea of using a differential trail for the
state recovery is not new, see e.g. [HII+22], and here we extend that idea on SMAC-1.

Repeat the atomic step several times. In SMAC-1, the optimal byte trail involves
at least 20 active S-boxes, which means that from a single atomic step we learn around 20
bytes of the internal state. We can repeat the atomic step by using a different byte trail
with a different µ(∆M) (for the same time instance t in all repeated atomic steps, but
may involve different ∆t and distinct trails), and recover new bytes of the internal state.
After 3-4 such atomic steps, the complete 48-byte internal state can be derived.

State collision detection. To detect a true state collision, and not a random tag
collision, we can append a single block to both M and M ′ and query the oracle whether
the sequences (M ||1), (M ||2) . . . and (M ′||1), (M ′||2) . . . still produce the same tag. In
case of a random tag collision, this will not be the case.

Complexity to get a related pair (M, M ′). Assume for the moment that we can
make queries to the sender oracle (although this scenario is not realistic since in that
case the attacker already has access to the universal oracle). In a naïve approach, we
choose ∆M , pick a random M and derive M ′ = M ⊕∆M , then call the oracle to get the
sequence of tags, and thereby determine whether it is a state collision or not. If the success
probability of the state collision for the chosen ∆M is 2−s, then we need to make O(2s)
queries.

However, that complexity could be improved as follows. We pick a byte-differential
µ(∆M), then make around O(N =

√
2s) queries to the oracle with different messages

M1, . . . , MN , and get relevant tag-sequences T1, . . . , TN (each sequence of tags should
cumulatively have size at least s bits) for each message. Each message is constructed
to follow the chosen byte-differential µ(∆M) such that if for any byte index i we have
µ(∆M)[i] = 0 then in every message that byte Mk[i] is a constant value for all k ∈ [1..N]
(we can choose that constant byte at random); and when µ(∆M)[i] = 1 then Mk[i] is

Dachao Wang, Alexander Maximov, Patrik Ekdahl and Thomas Johansson 17

picked at random in every message independently. In the end, we would get 2s/2 pairs
{k ∈ [1..N] : (Mk, Tk)}, and due to the birthday paradox there should be a pair (Ma, Ta)
and (Mb, Tb) in the list such that Ta = Tb, meaning that we fall into the state collision.
The actual bit-differential is ∆M = Ma ⊕Mb, and the probability that this concrete
bit-differential value follows the chosen byte-differential µ(∆M) is high (we skip further
details at this point).

In order to find a related pair of messages among N collected, we can sort the list after
the tag-sequences in time O(N log N), then find a matching Ta = Tb in linear time. The
sorting complexity can be decreased by also using hash tables, thus we should conservatively
regard this step as the minimum O(2s/2).

The overall complexity of the state recovery attack by using nonce-misuse queries to the
sender oracle is at least O(2s/2) queries, or more. If the attacker can only use a verification
oracle, then the complexity is at least O(2s/2+τ). For SMAC-{1, 3/4, 1/2}, the minimum
values for s are {118, 152, 252}, respectively, thus the absolute lower bounds for this attack
is at least O(2{59,76,126}+τ) queries. These estimates are highly conservative.

Note also that this attack does not lead to a key recovery, and the universal forgery
can create messages only for a certain pair of (K, IV). Also, the above “birthday paradox”
improvement may not work if the space of valid bit-differentials ∆M that follow the
selected byte-differential µ(∆M) contains additional constraints on the bit-trails (e.g., not
all ∆M are possible for the state collision to happen), thus the attack complexity may
actually be much higher, up to O(2s+τ) queries. We leave this study as an open question
to refine the nonce-misuse attack complexity in the future.

4 Aggregated mode version SMAC-1×n

The SMAC compression function can be used in an aggregated mode of operation, where
multiple cores of SMAC compress the stream of message blocks in parallel, then their end
results are combined to produce a single output MAC tag. The mode of aggregation can
be compared to a parallelised implementation of GHASH.

Key

IV

idx

S0

S1

S2

S3

S0

S1

S2

S3

...

...

...

...

Π

Π

Π

Π

M 0..3
1* M 4k-4..4k-1

Π

Π

Π

S0

S1

S2

S3

...

...

...

...

S0

S1

S2

S3

...

...

...

1*

SΣ SΣ
...

1*

Initialisation phase

9 clocks

Compression phase Finalisation phase 1

6 clocks

Compression phase Finalisation phase 2

9 clocks

Π

Π

Π

Π

Π

Π

Π

Π Π

Π

Π

Π ...Π

Π

Π

Π

Π

[4, 0]

[4, 1]

[4, 2]

[4, 3]

for each of the 4 states individually

Figure 4: Exampled construct of SMAC-1×4 with 4 parallel compressions.

In this section we present the aggregated mode of SMAC-1, called SMAC-1×n, where
n is the level of aggregation, or, by other words, the number of parallel streams. Note that
parallel streams can be implemented efficiently in software by e.g. utilising wider SIMD

18 A New Stand-Alone MAC Construct Called SMAC

Algorithm 4 SMAC-1×n

1: function SMAC-1×n(n, τ, K0||K1, IV,A, C)→ Tag
2: Construct 16-byte block L = LittleEndian64(len(A))||LittleEndian64(len(C)).
3: Pad A and C with zeroes to align with full 16-byte blocks.
4: Concatenate M = (A||C||L) and pad with zeroes to align with 16n-byte blocks.
5: Create n states S0, . . . , Sn−1 each having three registers Sk.A1, Sk.A2, Sk.A3
6: Patch the IV as IV [15] = (n− 1) · 16.
7: Initialise Sk.A1 = K1, Sk.A2 = K0, Sk.A3 = IV ⊕ (k · 2120), ∀k ∈ [0..n− 1].
8: for i = 1..9 do ▷ Initialisation loop
9: ∀k ∈ [0..n− 1] : (Sk.A1, Sk.A2, Sk.A3) = Π(Sk.A1, Sk.A2, Sk.A3, 1⋆)

10: ∀k ∈ [0..n− 1] : (Sk.A1, Sk.A2, Sk.A3) = (Sk.A1, Sk.A2, Sk.A3)⊕ (K1, K0, IV)
11: Divide M into mn sub-blocks M i of size 16 bytes each ▷ Compression
12: for i = 0..m− 1 do
13: ∀k ∈ [0..n− 1] : (Sk.A1, Sk.A2, Sk.A3) = Π(Sk.A1, Sk.A2, Sk.A3, M i·n+k)
14: for i = 1..6 do ▷ Finalisation phase 1
15: ∀k ∈ [0..n− 1] : (Sk.A1, Sk.A2, Sk.A3) = Π(Sk.A1, Sk.A2, Sk.A3, 1⋆)
16: (A1, A2, A3) =

⊕
k∈[0..n−1](Sk.A1, Sk.A2, Sk.A3)

17: A2′ = A2 ▷ Finalisation phase 2
18: for i = 1..9 do
19: (A1, A2, A3) = Π(A1, A2, A3, 1⋆)
20: Tag = (A2⊕A2′)τ

registers such as 512-bit ZMM0..ZMM31, and modern instructions such as AVX-512, thus
making an aggregated mode as an attractive option for various cryptographic primitives.

As a concrete example, we present the design of SMAC-1×4 with four parallel com-
pression streams. The value of user-defined IV is limited to 15 bytes IV [0..14], while the
last byte of IV [15] is reserved by the scheme to encode the total number of streams (4 in
this case) and a corresponding stream index (from 0 to 3, in this case). The message M
is constructed by concatenation of zero-padded 16-byte blocks of AAD, ciphertext, and
the “lengths” block. The initialisation phase clocks 9 times in four parallel states, and
the same padding for every stream state (K1, K0, IV) using the patched IV of the first
stream. The finalisation step is, however, modified and split into two sub-phases. In the
first phase, all four parallel cores perform 6 dummy clocks. After that all states are bitwise
XORed together to form a single state. That single state is then finalised as SMAC-1 with
9 finalisation clocks with the ending PRP-PRF switch. The MAC tag is taken as A2τ ,
where τ ∈ [12..128]. Schematically, SMAC-1× 4 is depicted in Figure 4.

A more general scheme of SMAC-1×n is defined by Algorithm 4. The number of parallel
streams is n ∈ [1, 16] (i.e., the design allows maximum 16 streams), and a 1-byte encoding
is IV [15] = (n− 1) · 16 + i, for the ith stream, where the stream index is i ∈ [0, n− 1]. A
similar definition can be obtained for SMAC-{3/4, 1/2}×n.

4.1 Security arguments for the aggregated mode
In Section 3 we studied the security of SMAC-r that compresses a message using a single
state. In this section we consider possible security threats related to the use of the
aggregated mode. SMAC-r × n has four phases, each requiring an analysis of possible
attack landscapes.

Compression phase. Let the message be split into n (interleaved) chunks M0, . . . , Mn−1,
each is fed into corresponding compression stream. The aggregated mode assumes indepen-
dent random initial states S0, . . . , Sn−1 of these n streams. Obviously, each engine works
as an independent SMAC-r and its security was studied in previous sections.

Dachao Wang, Alexander Maximov, Patrik Ekdahl and Thomas Johansson 19

Initialisation phase. The source of initialisation for all initial states is a pair
(Key, IV). Clearly, S0, S1, . . . must be (pseudo-)independent from each other, which is the
assumption of the compression phase, and ordered. The latter requirement prevents trivial
attack vectors where the initial states are related such as (S′

0, S′
1) = (S1, S0), allowing for a

MAC collision by simply swapping M0 and M1. The order is achieved by the use of index.
Finalisation phase 2. This is a direct replica of the plain SMAC-r finalisation and

its security was also analysed earlier.
Finalisation phase 1. In a possible attack scenario, a forgery forms a message

difference that is mapped to state differences in n parallel compression streams. The goal
is for these state differences to cancel out and become zero after the XOR operation, as
illustrated in Figure 5, with a success probability larger than the security level anticipates.

Compression

 rounds

Compression

 rounds

...
...

Figure 5: Outline of a differential attack on aggregated mode.

The n message differences ∆Mi, i ∈ [0..n− 1], introduced in the last n1 compression
rounds, result in the state differences ∆ini in each of the n parallel engines. If any of them
is zero, then the analysis case is reduces to a smaller n. When all of them are zero, it is a
scenario as in Section 3.3. Thus, we can assume that all ∆ini are non-zero.

As a simplified argument, assume we only have two streams and a forgery can directly
insert ∆in0 and ∆in1. Based on Table 5, this would trigger at least 2 × 30 active S-
boxes meaning that the success probability of such a forgery attack bounded by around
2−6·60 = 2−360, excluding clustering effects.

It is, however, more challenging to analyse multiple streams in general, especially
considering clustering effects. Let the finalisation phase 1 contain n2 dummy clocks
(n2 = 6 in our case) and the output state differentials in the corresponding compression
streams are ∆outi, i ∈ [0..n−1]. Denote the probability of the differential trail over n1 +n2
rounds by p(∆outi), then the probability of the collision event

⊕n−1
i=0 ∆outi = 0 after the

XOR operation can be derived as

pcollision =
∑

∆out0,...,∆outn−2,

∆outn−1=
⊕n−2

i=0
∆outi

n−1∏
i=0

p(∆outi) (3)

Direct computation of Eq. (3) is infeasible since the state of SMAC-r has 384 bits
and it seems we have to consider all 2384 possibilities. However, following the analysis of
Farfalle [BDH+17] and our previous differential analysis of SMAC (especially the analysis
of clustering effects), we adopt the following presumption: The probability p(∆outi) is
dominated by those differential characteristics that have the minimum number of active
S-boxes. Let the number of dominating characteristics be upper bounded by c, and ω[n1, n2]
be the minimum number of active S-boxes over the final (n1 + n2) rounds processing for a
single stream. Then under the presumption, we have

n−1∏
i=0

p(∆outi) ≤
n−1∏
i=0

(
c · 2−6·ω[n1,n2]

)
= cn · 2−6n·ω[n1,n2]

20 A New Stand-Alone MAC Construct Called SMAC

The number of valid ∆outi can be estimated through the number of active S-boxes
in the last two rounds since each byte would then pass through an S-box at least once
(more details are given in Appendix E). Note that for dominating characteristics, the last
two rounds can only have at most ω[n1, n2] − ω[n1, n2 − 2] active S-boxes. Therefore,
the number of valid ∆outi can be roughly estimated as

∑ω[n1,n2]−ω[n1,n2−2]
k=1

(48
k

)
· 28k. By

combining all the discussed elements, we obtain

pcollision ⪅

ω[n1,n2]−ω[n1,n2−2]∑
k=1

(
48
k

)
· 28k

n−1

· cn · 2−6n·ω[n1,n2]

In order to find ω[n1, n2] under different n1 and n2, we utilise our tool mentioned in
Section 3.2. Based on enumerations in Section 3.3 we take c = 212, which results in the
collision probability upper bounded by 2−299.36. This offers a large security margin.

Based on the above analysis, we conclude that the security and limitations of SMAC-
r × n are similar to those of SMAC-r.

5 Software evaluation
The compression core function of SMAC can be implemented using only a few SIMD
instructions on modern CPUs, and our assessment is that SMAC is a fast and competitive
design in both software and hardware.
void SMAC_Compress (__m128i & A1 , __m128i & A2 , __m128i & A3 , __m128i * msg)
{ __m128i M = msg ? *msg : const1 ; // if msg=NULL then dummy clock

__m128i T = Sigma (Xor3(A2 , A3 , M));
A3 = AesRound (A2 , M);
A2 = AesRound (A1 , M);
A1 = T;

}

Listing 1: SMAC compression function (implementation sketch).

In the first step of performance evaluation we compare only the most critical compression
cores for various algorithms, excluding any precomputations, initialisation and finalisation
phases, and running on a random data of length 1 MB. The results are given in Table 7.
All tested critical cores, except GHASH/AES-GCM, were implemented by us, highly
optimised and partially unrolled to gain the maximum performance. Selected set of
algorithms for comparison is similar to that used in [BBL+24]. The core of the base
version SMAC-1 performs 64% faster than the base version PetitMac, and the version that
benefits from a high level of parallelisation SMAC-1× 16 runs 95% faster than LeMac, up
to the record 1 Tbps. All tests were performed on a user-grade laptop with Intel Core
i5-1145G72.60/4.40GHz, single threaded, and the performance numbers that we received
are similar to those from [BBL+24], which additionally confirms that our measurement
techniques and results are correct.

In the second step we evaluate complete SMAC implementations including all initial-
isation and finalisation steps, padding and aligning, given various lengths of data. The
results are given in Table 8. We include measurements for GHASH core implemented
in OpenSSL 3.0.0 (in an optimised assembly code) as a competitive reference. For the
evaluation of complete algorithms LeMac and PetitMac we took authors’ implementations8

and added minor improvements to speed them up further. The maximum performance
that we reached for the base version SMAC-1 is 156 Gbps, and for the aggregated version
SMAC-1× 8 it is 925 Gbps. These numbers are higher compared to those of Petit&LeMac,
respectively. Also note that SMAC demonstrated its competitiveness even with short
messages.

8Implementations of LeMac and PetitMac, provided by the authors of [BBL+24], can be found on
https://github.com/AugustinBariant/Implementations_LeMac_PetitMac.

https://github.com/AugustinBariant/Implementations_LeMac_PetitMac

Dachao Wang, Alexander Maximov, Patrik Ekdahl and Thomas Johansson 21

Table 7: Performance evaluation of critical compression cores on 1 MB of data, excluding
the initialisation, finalisation, and other routines.

Algorithm Characteristics, in blocks, per round Performance
State size AESR calls Messages Gbps cpb [BBL+24]

Constraint base designs that process one message per round
AEGIS-128(AD) [WP14] 5 5 1 93 0.376 0.389

PetitMac [BBL+24] 6 2 1 93 0.376 0.376
SMAC-1 (this paper) 3 2 1 156 0.226 —

Previous notable constructs that tend to utilise parallelisation
AEGIS-128L(AD) [WP14] 8 8 2 187 0.187 0.195
GHASH/GCM(AD) [NIS] — — — 213 0.165 0.286

Tiaoxin-346v2(AD) [Nik14] 11 6 2 228 0.154 0.121
Rocca-S(AD) [NFI24] 7 6 2 265 0.132 0.151
Rocca(AD) [SLN+21] 8 4 2 274 0.128 0.149
Jean-Nikolić [JN16] 12 6 3 278 0.126 0.113

New constructs with high level of parallelisation and speed
LeMac [BBL+24] 12 8 4 514 0.068 0.068

SMAC-1× 4 (this paper) 12 8 4 590 0.059 —
SMAC-1× 8 (this paper) 24 16 8 954 0.037 —
SMAC-1× 16 (this paper) 48 32 16 1005 0.035 —

Table 8: Performance evaluation of complete implementations with various data lengths.
Measurements of Le&PetitMac (a) include (b) exclude the computation time for subkeys.

Performance Claimed Length of the message, in bytes
in Gbps security 218 216 214 212 210 28 26

GHASH (OSSL 3.0.0) 96 213 212 202 153 81 78 22
PetitMac, full(a) 128 90 88 82 64 35 12 3.4
PetitMac, excl(b) 128 90 90 89 85 73 47 13.3
LeMac, full(a) 128 445 396 293 124 38 10 2.6
LeMac, excl(b) 128 455 431 410 251 104 31 8.2
SMAC-1 118 156 155 152 142 113 65 19.1
SMAC-3/4 152 109 109 108 104 90 58 18.4
SMAC-1/2 252 73 73 72 70 63 44 18.4
SMAC-1×4 118 579 564 493 315 134 41 10.6
SMAC-1×8 118 925 877 723 415 150 41 10.6

6 Conclusions

In this paper, we presented a new efficient stand-alone MAC scheme based on the processing
in the FSM part of the stream cipher family SNOW. The proposal offers a combination of
very high speed in software and hardware, a truncatable tag and resistance to nonce misuse.
Three concrete versions of SMAC are proposed with different security levels. SMAC can
be combined with an encryption scheme in an AEAD mode, with high performance and
robust security. Every design choice has been argued for through analysis and simulations.
The aggregated variant SMAC-1×n achieves the speed up to 925 Gbps which, to the best
of our knowledge, is faster than other polynomial and AES based MACs.

A direction for future work could be to examine the possibility of meaningful security
proofs for the construct. For example, one might investigate to what extent the InitFinal
algorithm with d = 9 is indistinguishable from a PRF. If so, this might be extended to
proofs for the full construct.

22 A New Stand-Alone MAC Construct Called SMAC

Acknowledgements
We thank the cloud teams of E2C and LUNARC for help in computing resources for our
simulations that made these results possible. We also thank John Preuß Mattsson, Erik
Thormarker, and anonymous reviewers for providing constructive comments. This work
was supported by the Swedish Foundation for Strategic Research (Grants No. RIT17-0005
and SM22-0050) and the ELLIIT program.

References
[3GP] 3GPP. 3GPP confidentiality and integrity algorithms. https://www.

3gpp.org/specifications-technologies/specifications-by-series/
confidentiality-algorithms.

[BBL+24] Augustin Bariant, Jules Baudrin, Gaëtan Leurent, Clara Pernot, Léo Perrin,
and Thomas Peyrin. Fast AES-Based Universal Hash Functions and MACs:
Featuring LeMac and PetitMac. IACR Transactions on Symmetric Cryptology,
2024(2):35–67, Jun. 2024.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for
message authentication. In Neal Koblitz, editor, CRYPTO’96, volume 1109
of LNCS, pages 1–15. Springer, Berlin, Heidelberg, August 1996.

[BDH+17] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. Farfalle: parallel permutation-based cryptography. IACR
Trans. Symm. Cryptol., 2017(4):1–38, 2017.

[BdSF+22] Alex Biryukov, Luan Cardoso dos Santos, Daniel Feher, Vesselin Velichkov,
and Giuseppe Vitto. Automated truncation of differential trails and trail
clustering in ARX. In Riham AlTawy and Andreas Hülsing, editors, SAC 2021,
volume 13203 of LNCS, pages 286–307. Springer, Cham, September / October
2022.

[Ber05] Daniel J. Bernstein. The poly1305-AES message-authentication code. In Henri
Gilbert and Helena Handschuh, editors, FSE 2005, volume 3557 of LNCS,
pages 32–49. Springer, Berlin, Heidelberg, February 2005.

[BHK+99] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway.
UMAC: Fast and secure message authentication. In Michael J. Wiener,
editor, CRYPTO’99, volume 1666 of LNCS, pages 216–233. Springer, Berlin,
Heidelberg, August 1999.

[BJKS94] Jürgen Bierbrauer, Thomas Johansson, Gregory Kabatianskii, and Ben Smeets.
On families of hash functions via geometric codes and concatenation. In
Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 331–342.
Springer, Berlin, Heidelberg, August 1994.

[BÖS11] Joppe W. Bos, Onur Özen, and Martijn Stam. Efficient hashing using the AES
instruction set. In Bart Preneel and Tsuyoshi Takagi, editors, CHES 2011,
volume 6917 of LNCS, pages 507–522. Springer, Berlin, Heidelberg, Septem-
ber / October 2011.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis
of the block-cipher-based hash-function constructions from PGV. In Moti
Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 320–335. Springer,
Berlin, Heidelberg, August 2002.

https://www.3gpp.org/specifications-technologies/specifications-by-series/confidentiality-algorithms
https://www.3gpp.org/specifications-technologies/specifications-by-series/confidentiality-algorithms
https://www.3gpp.org/specifications-technologies/specifications-by-series/confidentiality-algorithms

Dachao Wang, Alexander Maximov, Patrik Ekdahl and Thomas Johansson 23

[DR05] Joan Daemen and Vincent Rijmen. A new MAC construction ALRED and
a specific instance ALPHA-MAC. In Henri Gilbert and Helena Handschuh,
editors, FSE 2005, volume 3557 of LNCS, pages 1–17. Springer, Berlin,
Heidelberg, February 2005.

[Dwo07] Morris Dworkin. Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. NIST Special Publication 800-
38D, November 2007. https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-38d.pdf.

[EJMY19] Patrik Ekdahl, Thomas Johansson, Alexander Maximov, and Jing Yang. A
new SNOW stream cipher called SNOW-V. IACR Trans. Symm. Cryptol.,
2019(3):1–42, 2019.

[GKM+09] Praveen Gauravaram, Lars R Knudsen, Krystian Matusiewicz, Florian Mendel,
Christian Rechberger, Martin Schläffer, and Søren S Thomsen. Grøstl-a sha-3
candidate. Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2009.

[HE22] Hosein Hadipour and Maria Eichlseder. Autoguess: A tool for finding guess-
and-determine attacks and key bridges. In Giuseppe Ateniese and Daniele
Venturi, editors, ACNS 22International Conference on Applied Cryptography
and Network Security, volume 13269 of LNCS, pages 230–250. Springer, Cham,
June 2022.

[Hel80] Martin Hellman. A cryptanalytic time-memory trade-off. IEEE transactions
on Information Theory, 26(4):401–406, 1980.

[HII+22] Akinori Hosoyamada, Akiko Inoue, Ryoma Ito, Tetsu Iwata, Kazuhiko
Mimematsu, Ferdinand Sibleyras, and Yosuke Todo. Cryptanalysis of Rocca
and feasibility of its security claim. IACR Trans. Symm. Cryptol., 2022(3):123–
151, 2022.

[HK15] Matthias Hamann and Matthias Krause. Stream cipher operation modes with
improved security against generic collision attacks. Cryptology ePrint Archive,
Report 2015/757, 2015.

[HK18] Matthias Hamann and Matthias Krause. On stream ciphers with provable
beyond-the-birthday-bound security against time-memory-data tradeoff at-
tacks. Cryptography and Communications, 10(5):959–1012, 2018.

[IK03] Tetsu Iwata and Kaoru Kurosawa. OMAC: One-key CBC MAC. In Thomas
Johansson, editor, FSE 2003, volume 2887 of LNCS, pages 129–153. Springer,
Berlin, Heidelberg, February 2003.

[JN16] Jérémy Jean and Ivica Nikolic. Efficient design strategies based on the AES
round function. In Thomas Peyrin, editor, FSE 2016, volume 9783 of LNCS,
pages 334–353. Springer, Berlin, Heidelberg, March 2016.

[LPS21] Gaëtan Leurent, Clara Pernot, and André Schrottenloher. Clustering effect
in simon and simeck. In Mehdi Tibouchi and Huaxiong Wang, editors,
ASIACRYPT 2021, Part I, volume 13090 of LNCS, pages 272–302. Springer,
Cham, December 2021.

[Mat95] Mitsuru Matsui. On correlation between the order of S-boxes and the strength
of DES. In Alfredo De Santis, editor, EUROCRYPT’94, volume 950 of LNCS,
pages 366–375. Springer, Berlin, Heidelberg, May 1995.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

24 A New Stand-Alone MAC Construct Called SMAC

[MWGP12] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
linear cryptanalysis using mixed-integer linear programming. In Chuan-
Kun Wu, Moti Yung, and Dongdai Lin, editors, Information Security and
Cryptology, pages 57–76, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[NFI24] Yuto Nakano, Kazuhide Fukushima, and Takanori Isobe. Encryp-
tion algorithm Rocca-S, 2024. https://datatracker.ietf.org/doc/
draft-nakano-rocca-s/.

[Nik14] Ivica Nikolić. Tiaoxin-346. submission to CAESAR competition, 2014. https:
//competitions.cr.yp.to/round3/tiaoxinv21.pdf.

[NIS] NIST. The Galois/Counter Mode of Operation (GCM). https:
//csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/
gcm/gcm-spec.pdf.

[oST01] National Institute of Standards and Technology. Advanced encryption stan-
dard. NIST FIPS PUB 197, 2001.

[PD] Laurent Perron and Frédéric Didier. CP-SAT (v9.9). https://developers.
google.com/optimization/cp/.

[SGL+17] Siwei Sun, David Gerault, Pascal Lafourcade, Qianqian Yang, Yosuke Todo,
Kexin Qiao, and Lei Hu. Analysis of AES, SKINNY, and others with constraint
programming. IACR Trans. Symm. Cryptol., 2017(1):281–306, 2017.

[SII24] Kosei Sakamoto, Ryoma Ito, and Takanori Isobe. Parallel SAT framework to
find clustering of differential characteristics and its applications. In Claude
Carlet, Kalikinkar Mandal, and Vincent Rijmen, editors, SAC 2023, volume
14201 of LNCS, pages 409–428. Springer, Cham, August 2024.

[SLN+21] Kosei Sakamoto, Fukang Liu, Yuto Nakano, Shinsaku Kiyomoto, and Takanori
Isobe. Rocca: An efficient AES-based encryption scheme for beyond 5g. IACR
Trans. Symm. Cryptol., 2021(2):1–30, 2021.

[Sta10] Paul Stankovski. Greedy distinguishers and nonrandomness detectors. In
Guang Gong and Kishan Chand Gupta, editors, INDOCRYPT 2010, volume
6498 of LNCS, pages 210–226. Springer, Berlin, Heidelberg, December 2010.

[TIHM17] Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks on
non-blackbox polynomials based on division property. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS,
pages 250–279. Springer, Cham, August 2017.

[Tod15] Yosuke Todo. Structural evaluation by generalized integral property. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 287–314. Springer, Berlin, Heidelberg, April
2015.

[WHT+18] Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and
Willi Meier. Improved division property based cube attacks exploiting algebraic
properties of superpoly. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 275–305. Springer,
Cham, August 2018.

https://datatracker.ietf.org/doc/draft-nakano-rocca-s/
https://datatracker.ietf.org/doc/draft-nakano-rocca-s/
https://competitions.cr.yp.to/round3/tiaoxinv21.pdf
https://competitions.cr.yp.to/round3/tiaoxinv21.pdf
https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
https://developers.google.com/optimization/cp/
https://developers.google.com/optimization/cp/

Dachao Wang, Alexander Maximov, Patrik Ekdahl and Thomas Johansson 25

[WP14] Hongjun Wu and Bart Preneel. AEGIS: A fast authenticated encryption
algorithm. In Tanja Lange, Kristin Lauter, and Petr Lisonek, editors, SAC
2013, volume 8282 of LNCS, pages 185–201. Springer, Berlin, Heidelberg,
August 2014.

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying
MILP method to searching integral distinguishers based on division property
for 6 lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 648–678.
Springer, Berlin, Heidelberg, December 2016.

26 A New Stand-Alone MAC Construct Called SMAC

A Permutation candidates

Table 9: Strong permutation candidates found for SMAC-1.

SMAC-1. Minimum number of active S-boxes of a differential trail If used in FSM,
(∆M t, ..., ∆M t+∆t−1) where the first and the last ∆s are nonzero. min. number of

∆t = 3 ∆t = 4 ∆t = 5 ∆t = 6 ∆t = 7 ∆t = 8 ∆t = 9 active S-boxes
22 20 20 20 21 [22,23] [23,25] 18

σ1 ={0,7,14,11,4,13,10,1,8,15,6,3,12,5,2,9} σ2 ={0,9,6,13,4,11,2,15,8,1,14,5,12,3,10,7}
20 20 19 19 19 20 ≥22 18

σ3 ={4,9,2,13,0,11,6,15,12,1,14,5,8,3,10,7} σ4 ={4,9,6,13,0,11,2,15,12,1,10,5,8,3,14,7}
σ5 ={8,1,6,13,12,11,2,15,0,9,14,5,4,3,10,7} σ6 ={8,7,14,3,12,13,10,1,0,15,6,11,4,5,2,9}
σ7 ={8,7,14,11,12,5,10,1,0,15,6,3,4,13,2,9} σ8 ={8,9,6,13,12,11,2,7,0,1,14,5,4,3,10,15}
σ9 ={12,7,2,11,8,13,10,1,4,15,6,3,0,5,14,9} σ10 ={12,7,14,11,8,13,6,1,4,15,10,3,0,5,2,9}

24 20 19 20 22 24 ≥25 17
σ11 ={7,10,5,8,11,14,9,12,15,2,13,0,3,6,1,4} σ12 ={13,8,15,10,1,12,3,14,5,0,7,2,9,4,11,6}

20 20 19 19 19 20 22 16
σ13 ={4,1,14,11,0,13,10,7,12,15,6,3,8,5,2,9} σ14 ={4,7,14,11,0,13,10,1,12,9,6,3,8,5,2,15}
σ15 ={12,9,6,3,8,11,2,15,4,1,14,5,0,13,10,7} σ16 ={12,9,6,13,8,5,2,15,4,1,14,11,0,3,10,7}

24 19 19 20 22 24 ≥25 15
σ17 ={6,5,15,12,13,9,8,14,3,2,4,7,10,0,1,11} σ18 ={9,5,4,10,15,14,0,3,6,12,13,7,2,1,11,8}
σ19 ={11,10,12,15,2,8,9,3,14,13,7,4,5,1,0,6} σ20 ={14,4,5,15,10,9,3,0,1,13,12,2,7,6,8,11}

Table 10: Clusters of differential trails of SMAC-1. In this table, b is the number of
byte-trails, c is the number of clusters, p is the probability of the cluster, and s is the
minimum number of active S-boxes.

Case A few selected permutations from Table 9 for SMAC-1
σ1 σ3 σ11 σ13 σ17

∆t = 3 b : c (s) 4:4 (22) 2:2 (20) 16:16 (24) 2:2 (20) 16:16 (24)
p 2−134 2−121 2−152 2−121 2−153

∆t = 4 b : c (s) 2496:192 (20) 534:192 (20) 60:44 (20) 382:80 (20) 2:2 (19)
p 2−121.21 2−120.44 2−124.41 2−120.83 2−122

∆t = 5 b : c (s) 4032:288 (20) 256:68 (19) 900:140 (19) 248:64 (19) 866:130 (19)
p 2−121.25 2−115.67 2−119.41 2−115.88 2−118.40

∆t = 6 b : c (s) 18321:96∗ (20) (19) 2352:232 (20) (19) (20)
p 2−118.95 — 2−123.56 — —

∆t = 7 b : c (s) 30264:46∗∗ (21) (19) (22) (19) (22)
p 2−129.27 — — — —

Max. p 2−118.95 2−115.67 2−119.41 2−115.88 2−118.40

* Only these clusters are found in practical time.
** Only trails that have up to 24 active S-boxes were enumerated.

Comments on simulation details for the clustering effect, relates to Table 10 and Table 12.
We skipped testing some scenarios for certain permutations since the maximum probability
was already larger than some other permutation candidate had at the time of simulations,
and thus unnecessary simulations on the already worse case would only take resources
with no influence on the final result. Also, some heavy cases such as (∆t = 6, k = 2)
and (∆t = 7, k = 1, 5) for SMAC-3/4 were also skipped, since all remained “good”
permutations have at least 27 and 31 active S-boxes in their best byte-trails for these
scenarios, respectively, which is already much larger than the minimum 24 and therefore

Dachao Wang, Alexander Maximov, Patrik Ekdahl and Thomas Johansson 27

would not cross the maximum probability that is already detected by testing other cases
of the same permutation. Finally, for a few cases where ∆t ≥ 6, the models in OR-Tools
became too big and the number of byte-trails was huge, so only those clusters with the
highest chance to break through the security level were checked thoroughly.

Comments on the search of the candidates for SMAC-3/4, relates to Table 11. We did
not include the filter for ∆t = 4 in the SMAC-3/4 search since the performance for this
filter at high thresholds wasn’t fast enough. Also, with the threshold of 26 we initially
hoped to get a minimum of 25 active S-boxes overall (also for ∆t > 3), but additional
analysis and simulations showed that there are no permutations that have a minimum of
25 active S-boxes. Then we settled for targeting 24 active S-boxes, while already having
1.6 B candidates from the first round, and received the short list of promising ones among
these candidates having at least 24 active S-boxes in ∆t > 3. Thus, a separate round of
first-phase heavy simulations for ∆t = 3 and threshold 24 could be done, but we assess it
would not be advantageous.

Table 11: Strong permutation candidates found for SMAC-3/4.

SMAC-3/4. Minimum number of active S-boxes of a differential trail If used
(∆M t, ..., ∆M t+∆t−1) where the first and the last ∆s are nonzero, in FSM,

encountering cases with dummy middle clock(s), i.e. where ∆M t+k = 0. minimum
∆t = 3 ∆t = 4 ∆t = 5 ∆t = 6 ∆t = 7 ∆t = 8 ∆t = 9 number

k = 1/2 k = 1/2/3 k = 2/3 k = 1, 5 k = 1, 5 k = 1, 5 of active
/3 /2, 6 /2, 6/3, 7 S-boxes

26 24/30 24/24/24 24/24 29/25 27/33 ≥29/29/35 20
σ21 ={7,9,0,12,15,8,2,13,6,1,14,11,5,3,10,4} σ22 ={9,7,14,8,11,13,4,0,3,12,6,1,10,5,2,15}
σ23 ={11,4,14,9,2,13,10,7,1,15,6,0,3,5,12,8} σ24 ={14,9,6,3,13,11,2,12,15,1,8,4,7,0,10,5}

26 26/32 24/26/26 26/≥24 32/25 30/≥37 30/35/≥35 18
σ25 ={4,2,10,11,0,13,14,6,12,7,9,5,8,3,15,1} σ26 ={4,15,1,13,0,11,7,9,12,10,2,3,8,5,6,14}
σ27 ={8,3,6,5,12,7,10,9,0,11,14,13,4,15,2,1} σ28 ={8,15,14,1,12,3,2,5,0,7,6,9,4,11,10,13}
σ29 ={12,7,3,5,8,6,14,15,4,1,2,10,0,11,13,9} σ30 ={12,9,10,2,8,3,5,1,4,15,11,13,0,14,6,7}

26 35/30 24/≥25/24 ≥24/24 30/25 28/35 31/34/≥35 17
σ31 ={4,9,11,6,8,13,15,10,12,1,3,14,0,5,7,2} σ32 ={4,13,14,7,12,11,15,10,0,6,1,5,8,9,2,3}
σ33 ={8,7,11,6,12,2,13,1,4,5,14,15,0,9,10,3} σ34 ={8,14,9,13,0,1,10,11,12,5,6,15,4,3,7,2}
σ35 ={12,13,6,7,8,1,2,11,0,15,3,14,4,10,5,9} σ36 ={12,14,9,11,0,2,13,15,4,6,1,3,8,10,5,7}

26 26/28 24/25/25 27/24 31/24 27/37 30/35/≥34 17
σ37 ={4,7,12,15,8,13,10,9,0,1,3,14,2,6,5,11} σ38 ={4,8,6,10,12,11,14,15,1,5,13,7,0,9,2,3}
σ39 ={4,9,6,5,12,13,15,10,14,2,1,7,0,3,8,11} σ40 ={4,13,6,7,8,12,10,14,0,15,2,3,5,9,1,11}
σ41 ={6,10,9,15,8,11,0,3,12,1,14,13,4,5,7,2} σ42 ={7,14,15,10,12,13,3,0,4,6,1,5,8,11,2,9}
σ43 ={8,7,10,11,13,1,9,3,12,5,14,15,0,4,2,6} σ44 ={8,9,10,13,0,14,2,12,4,5,6,15,7,1,11,3}
σ45 ={8,9,11,6,10,14,13,3,12,15,4,7,0,5,2,1} σ46 ={8,9,15,12,0,2,13,1,4,7,14,5,3,10,11,6}
σ47 ={8,14,9,11,0,3,2,15,4,13,12,5,10,1,7,6} σ48 ={9,13,5,15,8,1,10,11,12,0,14,2,4,3,6,7}
σ49 ={11,5,15,7,12,13,14,1,4,2,6,0,8,9,10,3} σ50 ={12,5,4,13,2,9,15,14,0,6,1,3,8,11,10,7}
σ51 ={12,10,14,8,0,1,2,11,3,13,7,15,4,5,6,9} σ52 ={12,13,14,7,15,9,3,11,0,1,2,5,8,6,10,4}
σ53 ={12,14,9,13,0,3,10,1,15,6,7,2,4,5,11,8} σ54 ={12,15,6,13,11,2,3,14,0,1,7,4,8,10,5,9}
σ55 ={12,15,14,11,0,9,8,1,6,13,3,2,4,10,5,7} σ56 ={14,5,11,10,12,2,13,15,4,7,6,3,8,1,0,9}

26 26/26 24/24/25 24/24 30/26 29/32 31/31/35 16
σ57 ={4,15,5,11,14,1,8,2,12,7,13,6,9,3,0,10} σ58 ={4,15,5,14,1,11,8,2,12,7,13,3,6,9,0,10}
σ59 ={10,13,4,14,8,3,9,2,5,15,12,6,0,11,1,7} σ60 ={13,7,4,14,8,3,9,15,2,5,12,6,0,11,1,10}

28 A New Stand-Alone MAC Construct Called SMAC

Table 12: Cluster characteristics of differential trails of SMAC-3/4.
C

as
e

A
fe

w
se

le
ct

ed
pe

rm
ut

at
io

ns
fro

m
Ta

bl
e

11
fo

r
SM

A
C

-3
/4

σ
21

σ
25

σ
27

σ
31

σ
32

σ
36

σ
37

σ
42

σ
57

∆
t

=
3

b
39

44
44

8
8

8
12

12
38

c
24

28
28

8
8

8
12

12
32

p
2−

15
9.

67
2−

16
2

2−
16

2.
41

2−
16

3
2−

16
3

2−
16

3
2−

16
2

2−
16

3
2−

16
0.

67

S-
bo

xe
s

#
26

26
26

26
26

26
26

26
26

∆
t

=
4

b
1/

2
4/

4
4/

4
23

6/
4

23
6/

4
23

6/
4

4/
4

4/
4

4/
5

c
1/

1
4/

4
4/

4
21

2/
4

21
2/

4
21

2/
4

4/
1

4/
1

4/
2

k
=

1
p

2−
15

1
2−

16
3

2−
16

4
2−

21
8.

41
2−

21
6.

41
2−

21
8.

41
2−

16
2

2−
16

3
2−

16
1

k
=

2
p

2−
19

5.
41

2−
20

8
2−

20
8

2−
19

4
2−

19
2

2−
19

3
2−

17
8.

19
2−

17
9.

67
2−

16
7.

83

S-
bo

xe
s

#
24

/3
0

26
/3

2
26

/3
2

35
/3

0
35

/3
0

35
/3

0
26

/2
8

26
/2

8
26

/2
6

∆
t

=
5

b
11

58
25

83
26

16
28

88
31

72
32

72
17

1
15

5
79

6
/3

/7
/5

2/
34

2
/9

8/
30

4
/1

02
/1

2
/8

/1
7

/1
02

/8
/5

/4
/5

/4
/1

4/
20

3
c

40
/2

/4
90

/1
9/

4
10

0/
32

/4
48

/3
6/

4
52

/1
/8

52
/3

6/
4

20
/5

/1
20

/5
/1

27
/4

/2
5

k
=

1
p

2−
14

6.
23

2−
14

5.
57

2−
14

6.
08

2−
13

9.
75

2−
13

9.
27

2−
13

7.
83

2−
15

1.
37

2−
15

2.
29

2−
14

6.
02

k
=

2
p

2−
14

9.
67

2−
16

4.
91

2−
16

5.
09

2−
16

5.
67

2−
16

0.
41

2−
16

4.
67

2−
16

4
2−

16
5

2−
15

2.
54

k
=

3
p

2−
15

7.
41

2−
15

9.
06

2−
15

2.
39

2−
15

6.
54

2−
15

6
2−

15
6.

83
2−

15
3.

83
2−

15
4.

83
2−

14
9.

21

S-
bo

xe
s

#
24

/2
4/

24
24

/2
6/

26
24

/2
6/

26
24

/2
6/

24
24

/2
5/

24
24

/2
6/

24
24

/2
5/

25
24

/2
5/

25
24

/2
4/

25
∆

t
=

6
b

4/
19

1
–/

31
6

–/
26

4
13

33
/1

12
c

1/
12

—
—

—
—

—
–/

45
–/

35
14

/6
k

=
2

p
2−

15
9.

83
–

–
2−

14
7.

86

k
=

3
p

2−
14

5.
79

2−
15

1.
21

2−
15

2.
86

2−
14

9.
04

S-
bo

xe
s

#
24

/2
4

26
/2

5
26

/2
4

24
/2

4
24

/2
4

25
/2

4
27

/2
4

27
/2

4
24

/2
4

∆
t

=
7

b
–/

5∗
–/

6∗

c
—

—
—

—
—

—
–/

2
–/

1
—

k
=

1,
5

p
–

–
k

=
3

p
2−

15
6.

60
2−

15
6.

83

S-
bo

xe
s

#
29

/2
5

32
/2

5
32

/2
5

30
/2

5
30

/2
5

30
/2

5
31

/2
4

31
/2

4
30

/2
6

M
ax

.
p

2−
14

5.
79

2−
14

5.
57

2−
14

6.
08

2−
13

9.
75

2−
13

9.
27

2−
13

7.
83

2−
15

1.
21

2−
15

2.
29

2−
14

6.
02

*
O

nl
y

si
gn

ifi
ca

nt
tr

ai
ls

th
at

ha
ve

at
m

os
t

57
ac

tiv
e

S-
bo

xe
s

we
re

en
um

er
at

ed
.

In
th

is
ta

bl
e,

b
is

th
e

nu
m

be
r

of
by

te
-t

ra
ils

,c
is

th
e

nu
m

be
r

of
cl

us
te

rs
,p

is
th

e
pr

ob
ab

ili
ty

of
th

e
cl

us
te

r,
an

d
va

-
lu

e(
s)

in
k

m
ea

n
th

at
∆

M
t+

k
=

0
ar

e
du

m
m

y
bl

oc
ks

.

Dachao Wang, Alexander Maximov, Patrik Ekdahl and Thomas Johansson 29

Table 13: Strong permutation candidates found for SMAC-1/2, and the analysis results
of the clustering effect. In this table, #S-boxes is minimum number of active S-boxes
of a differential trail (∆M t, ..., ∆M t+∆t−1) where the first and the last ∆s are nonzero,
encountering cases with dummy middle clock(s), i.e. where ∆M t+k = 0. For clustering
effect, b is the number of byte-trails; c is the number of clusters; and p is the upper bound
for all clusters’ probabilities. For all permutations, if used in FSM, the minimum number
of active S-boxes in a linear approximation is 18.

SMAC-1/2. Permutation, σ ∆t = 5, k = 1, 3 ∆t = 7, k = 1, 3, 5
b : c p b : c p

#S-boxes: 41 in ∆t = 5, k = 1, 3; 41 in ∆t = 7, k = 1, 3, 5; 49 in ∆t = 9, k = 1, 3, 5, 7
Clustering effect analysis for σ61 2838:266 2−256.22 15656:174* 2−252.30

σ61 ={0,11,7,14,6,4,1,15,9,3,8,5,13,2,10,12} σ62 ={1,6,14,0,4,15,11,2,10,8,5,3,13,7,12,9}
σ63 ={1,11,0,13,5,10,2,4,8,3,15,6,14,12,9,7} σ64 ={2,0,13,11,5,15,4,1,9,14,6,8,12,7,3,10}
* only significant trails with at most 51 active S-boxes were enumerated for ∆t = 7.

2854:267 — — —
σ65 ={0,6,13,9,7,4,10,2,11,15,8,1,14,5,3,12} σ66 ={2,9,7,0,4,10,1,13,11,8,14,6,15,3,12,5}
σ67 ={3,0,6,14,7,11,4,13,10,1,15,8,12,2,9,5} σ68 ={3,7,0,9,6,13,11,4,8,14,5,1,15,12,2,10}
#S-boxes: 41 in ∆t = 5, k = 1, 3; 43 in ∆t = 7, k = 1, 3, 5; 49 in ∆t = 9, k = 1, 3, 5, 7

Clustering effect analysis for σ69 4510:782 2−256.00 — —
σ69 ={0,5,15,10,14,8,1,13,7,3,12,6,11,2,9,4} σ70 ={10,4,13,9,3,15,8,2,7,14,5,0,12,1,11,6}
σ71 ={15,6,13,8,4,9,3,14,2,12,5,1,11,7,0,10} σ72 ={15,11,4,14,3,10,1,12,8,13,7,2,6,0,9,5}

4600:794 — — —
σ73 ={0,10,5,15,9,12,11,2,13,14,4,1,6,7,3,8} σ74 ={5,6,12,9,14,15,11,0,8,2,13,7,1,4,3,10}
σ75 ={5,8,7,14,9,10,0,13,2,3,15,4,12,6,1,11} σ76 ={10,11,7,12,4,14,9,3,13,0,15,6,1,2,8,5}

B On a binary differential trail for SMAC-1, ∆t = 3

We actually wrote our own program in C++ with the highest possible optimisation for
the case of SMAC-1, ∆t = 3 (as well as for a few other cases). The reason was that if we
aim to test 244 permutations then this filtering stage must be very fast. To comment, the
results that our custom program produced were double-verified by the MILP model and
CP tools, which we further used for ∆t > 3 cases.

Let us first derive the state expression after 3 clocks:

1st clock:


A1t+1 = σ(A2t ⊕A3t ⊕M t)
A2t+1 = LπS(A1t)⊕M t

A3t+1 = LπS(A2t)⊕M t

2nd clock:


A1t+2 = σ(LπS(A1t)⊕ LπS(A2t)⊕M t+1) = x⊕ σM t+1

A2t+2 = LπS(σ(A2t ⊕A3t ⊕M t))⊕M t+1 = LπS(y ⊕ σM t)⊕M t+1

A3t+2 = LπS(LπS(A1t)⊕M t)⊕M t+1 = LπS(z ⊕M t)⊕M t+1

where: x = σ(LπS(A1t)⊕ LπS(A2t)), y = σ(A2t ⊕A3t), z = LπS(A1t)

3rd clock:


A1t+3 = σ(LπS(y ⊕ σM t)⊕ LπS(z ⊕M t)⊕M t+2)
A2t+3 = LπS(x⊕ σM t+1)⊕M t+2

A3t+3 = LπS(LπS(y ⊕ σM t)⊕M t+1)⊕M t+2

We want to find a differential ∆(M t, M t+1, M t+2) such that ∆(A1, A2, A3)t+3 = 0, and
after the substitutions ∆M t+2 → Lπ∆M t+2, ∆M t+1 → σ−1∆M t+1, ∆M t → σ−1∆M t,

30 A New Stand-Alone MAC Construct Called SMAC

the system is simplified to


∆M t+2 = S(y ⊕∆M t)⊕ S(z ⊕ σ−1∆M t)
∆M t+2 = S(x⊕∆M t+1)
∆M t+2 = S(LπS(y ⊕∆M t)⊕ σ−1∆M t+1)

The attacker starts introducing the first differential in time t, and can introduce up
to 3 consecutive differentials, hoping that the state will recover in time t + 3. Note that,
since the compression function Π is reversible, the internal state may only collide in that
certain time t + 3, and not later.

From the second equation it is clear that µ(∆M t+2) = µ(∆M t+1), and thus that
equation can be virtually removed from consideration as follows:

{
∆M t+2 = S(y ⊕∆M t)⊕ S(z ⊕ σ−1∆M t)
∆M t+2 = S(LπS(y ⊕∆M t)⊕ σ−1S−1(x⊕∆M t+2))

In a naïve approach it is obviously possible just to loop over all 16-bit masks µ(∆M t) and
µ(∆M t+2) in time 232 and check for feasibility of the above system to have a solution.

In practice, we note that L operates on the groups of 4 bytes independently (now in
these byte-trails encoded as just 4 bits), so that when we test a new permutation candidate,
we can bring the above differential relation into four slices each of 4 bits width – this makes
it possible to create a precomputed table that contains whether a binary trail for these
4-bit slice may exist or not feasible. This way, once in the loop we have chosen µ(∆M t)
and µ(∆M t+2), the check for feasibility may be done almost instantly.

Table 14: An example trail for SMAC-1 in ∆t = 3.

Clocks Variables Intermediate differences
0 ∆A1 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00

∆A2 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00
∆A3 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00

1 ∆S(A1) 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00
∆S(A2) 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00

∆M t 80,00,00,00,00,00,59,00,00,0e,00,00,00,84,00,00
∆A1 80,00,00,00,00,84,00,00,00,00,59,00,00,00,00,0e
∆A2 80,00,00,00,00,00,59,00,00,0e,00,00,00,84,00,00
∆A3 80,00,00,00,00,00,59,00,00,0e,00,00,00,84,00,00

2 ∆S(A1) 39,00,00,00,00,a8,00,00,00,00,01,00,00,00,00,71
∆S(A2) 11,00,00,00,00,00,64,00,00,40,00,00,00,01,00,00
∆M t+1 ed,00,00,00,00,44,40,00,00,32,24,00,00,ac,00,10

∆A1 ed,00,00,00,00,ac,24,00,00,10,40,00,00,44,00,32
∆A2 0c,00,00,00,00,44,40,00,00,32,24,00,00,ac,00,10
∆A3 cf,11,11,33,c0,c4,00,40,03,30,25,01,64,00,c8,74

3 ∆S(A1) 28,00,00,00,00,a8,64,00,00,40,01,00,00,01,00,71
∆S(A2) 28,00,00,00,00,a8,64,00,00,40,01,00,00,01,00,71
∆M t+2 c3,11,11,33,c0,80,40,40,03,02,01,01,64,ac,c8,64

∆A1 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00
∆A2 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00
∆A3 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00

Dachao Wang, Alexander Maximov, Patrik Ekdahl and Thomas Johansson 31

If a solution to the system is feasible, then the total number of active S-boxes is 9:

S-boxes = 2 · [HW (µ(∆M t)) + HW (µ(∆M t+2))]

We can also include that metric into the truncation of the loop in the way we only loop
through µ(∆M t) and µ(∆M t+2) such that the number of active S-boxes is strictly less
than the already found best value.

For SMAC-1 with σ1 and ∆t = 3 we found the following byte differential whose trail
has 22 active S-boxes, which is the minimum in this scenario. Here, µ(∆M t+2) is the value
before the aforementioned substitutions on ∆Ms.

µ(∆M t) = (1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0)
µ(∆M t+1) = (1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1)
µ(∆M t+2) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

One of many possible bit-level differential vectors that correspond to the above byte
differential is given in Table 14.

C Altered instantiations of SMAC
Depending on the use case, the model can be altered. For example, when SMAC is used in
AEAD mode paired with an encryption algorithm, the initialisation phase can be skipped
by assigning the internal state in time t = 0 with three pseudo-random secret values
produced by the accompanying cipher.

There could be various other use cases for the SMAC framework, and the exact
instances we have provided here is partly to give concrete security bounds and advice
on sufficient number of dummy clocks in the initialisation and finalisation phases. If an
application needs a different security/performance trade-off, the number of clocks during
the initialisation/finalisation phase may be changed.

Minimum d. Depending on the use case, required performance, security demands,
the tag size etc., we advise the minimum number of rounds for the initialisation phase
must be dInit ≥ 6 (if not combined with an external cipher), and for the finalisation phase
it must be dFinal ≥ 4 rounds (the first time when the tag is influenced by all registers).
These absolute minimums are supported by the results of our analyses in Section 3.

C.1 Example of using SMAC-1 with AES in AEAD mode
Assume we are using AES-256-CTR with an IV value consisting of 12 bytes of nonce and
domain separation and 4 bytes of counter value, starting at zero with IV0. The subscript
of IV indicates the counter value. The first three keystream symbols are:

Z0 = AES-256K(IV0)
Z1 = AES-256K(IV1)
Z2 = AES-256K(IV2)

where AES-256K(P) denotes the application of AES-256 on the 16 byte plaintext array P
using the key K. These values can be directly loaded into the SMAC registers (A1, A2, A3)
and compression of the messages (AAD and ciphertext) can start immediately. This
scheme is depicted in Figure 6.

9Note that for ∆t = 3 the number of active S-boxes is always an even number. I.e., if we filter for 26
active S-boxes and do not find permutations giving at least 25 in other ∆t > 3, then the next step down
would be ∆t = 3 with 24 active S-boxes.

32 A New Stand-Alone MAC Construct Called SMAC

AES-256K AES-256K AES-256K

...

AES-256K AES-256K

... ...

Compression
phase

Finalisation
phase

Tag

...

...

Length of AAD and
ciphertext

Figure 6: Example of SMAC usage as AEAD integrity protection together with AES-256-
CTR.

D A fast heuristic algorithm to find a small guess base in
guess-and-determine attack scenarios

The main idea on describing relations between variables comes from [HE22], but since
Autoguess works very slow already for d ≥ 3, we decided to develop a simplified yet
powerful enough tool to solve GnD systems where all variables have the same weight
(weight 1 to all byte variables in our case) and only the basic type of relation supported.

A relation on n variables [x0, x1, . . . , xn−1] is added to the system when the knowledge
of any n− 1 variables results in the knowledge of the remaining unknown in the list. To
note, a new relation and new variables are added to the system only at the points of
branching. In our case, we have two such points.

Relations for XOR: Let us have a branching point such as c = a⊕ b, then the relation
here is simply [a, b, c], meaning that the knowledge of any 2 values (bytes) would result in
the knowledge of the third value. Note that here a new variable c is introduced into the
system.

Relations for MixColumn: Consider a 4-by-4 MixColumn operation from AES. The input
is four existing variables (x0, x1, x2, x3), and the output are new variables (y0, y1, y2, y3)
to be added to the system. The MixColumn linear transformation is such that knowing
any 4 values from 8 input and output variables would result in the knowledge of all
other 4 values. This can be described with 56 5-tuple relations (8 choose 5) such as
[x0, x1, x2, x3, y0], . . . , [y0, y1, y2, y3, x3].

Application of S-boxes and permutations of the array of variables do not create any
new relation nor introduce any new variable. This way, the complete system comprises a
set of v variables (some of which can be set as known) and a set of r relations between
these variables, and that system can be described by a binary matrix R of size r × v, e.g.:

Dachao Wang, Alexander Maximov, Patrik Ekdahl and Thomas Johansson 33

Rr,v =

x0 x1 ... xv−1
1 0 ... 1
1 1 ... 0
...
0 1 ... 1

where v columns represent variables and r rows are relations. Introduce the following v-bit
vectors:

• Kv – the vector of variables that are known from the start, such as observed output
bytes or those bytes where we insert IV, which are known, etc.

• Gv – the vector of the guess base, initialised as Gv = 0.

The target of the solver is to find G with the minimum Hamming weight such that
given only variables from the set (K ∨G) one can derive all other variables in time O(1)
by using the relation matrix R.

Let us now introduce a knowledge propagation function: FKP (Rr×v, Kv)→ K ′
v,

which is, given the relation matrix R and a vector of all known variables at the moment
K, derives a new vector of known variables K ′ after applying the matrix with relations R.
This function works as follows:

Algorithm 5 Knowledge propagation function.
1: function FKP : (R, K)→ K ′

2: Set K ′ = K
3: for all i = 0, 1, . . . , r − 1 do
4: if Hamming weight of (NOT(K ′) ∧R.row(i)) is 1 then
5: K ′ = K ′ ∨R.row(i)
6: If at least one bit was added to K ′ during the above for-loop, repeat that loop

again until no more new bits can be added to K ′.

The algorithm of finding the guess base consists of two phases – the Approximation
and Reduction phases, as briefly described below. The algorithm is a variation of a greedy
approach, but comparing to Autogess it works extremely fast and still gives quite good
results. Since it is still a heuristic algorithm, one should expect that the resulting guess
base may not be optimal, but hopefully close to the minimum.

Approximation phase. We start by computing Y = FKP (R, K ∨G), and then also
remove rows R.row(i) from R where Hamming weight of Y ∧R.row(i) is zero – i.e., these
relations become not helpful in the GnD flow.

Then, in each step of this phase we try all unknown variables one by one (those where
Y is ‘0’), and collect metrics for each of these unknowns – we will talk about various
metrics further. The unknown variable with the best metric is added to the guess base G,
and Y is updated as Y = FKP (Y ∨ x), while also removing rows from R that in this step
became covered by Y .

The phase ends when the Hamming weight of Y becomes equal to v, i.e., all variables
became known.

In an improved variant each step we test all possible pairs of unknown variables and
the one with best metrics is added to the guess base G, and Y is updated with two points
added. Testing a triple-point is more costly but still feasible time. However, we used the
3-points method only on few analysis cases.

Metrics. Let us pick one unknown variable x that is not in Y . We have identified two
main metrics:

34 A New Stand-Alone MAC Construct Called SMAC

(a) the Hamming weight of FKP (R, Y ∨ x) – the larger Hamming weight the more
variables become known if that particular x is added to the guess base.

(b) the Hamming weight of the column of (the truncated) R corresponding to x – the
more 1s are removed from R, the more new variables may be derived through the
knowledge propagation.

There can be any order of (a) and (b) metrics for the decision which candidate for the
base guess is better to adopt, and we have tried both orders in our simulations and finally
took the shorted guess base from both methods. In case of a tie-break decision, we apply
additional metrics:

(c) choose the best candidate between two equal options at random

(d) prioritise the candidate involving the unknown variable closer to other known variables
– i.e., in case of SMAC analysis we prefer to avoid guessing variables somewhere in
the middle of d rounds of InitFinal.

Reduction phase. After an approximate guess base is received, we then start the
last phase of reduction of the base. We simply try to remove two guessed variables from
the guess base, and see whether adding one other unknown would still give a valid guess
base. In an improved variant, one may also remove 3 variables, try to add 1 or 2 other
unknowns and check if the guess base is still valid. But this appeared to bee too timely
and thus we did not use 3-points reduction.

E Estimate of #∆out for a single stream
For every fixed ∆in and ∆out, the number of dominating characteristics over (n1 + n2)
rounds is upper bounded by c. In order to compute the total number of dominating
characteristics, we need to estimate the number of valid ∆out, applicable to any fixed
input differential.

Let us revert the last linear operations on ∆out until the last application of S-boxes.
I.e., if ∆out = ∆(A1t, A2t, A3t) for t = (n1 + n2) then the differential without the ending
linear operations is ∆out′ = ∆(A1′, A2′, A3′) and derived as

A1′ = S(A1t−2)⊕ S(A2t−2)
A2′ = S(A1t−1)
A3′ = S(A2t−1)

which are expressed via (A1t−1, A1t−2, A2t−1, A2t−2), such that

A1t = σ(L ·A1′ ⊕ 1⋆)
A2t = L ·A2′ ⊕ 1⋆

A3t = L ·A3′ ⊕ 1⋆

is a linear mapping between ∆out′ and ∆out, i.e., #∆out′ = #∆out.
Assume ∆out′ has exactly k active bytes, then the number of possible ∆out′ is less

than
(48

k

)
· 28k (each nonzero byte may have one of (28 − 1) values). Let wt(X) be the

number of nonzero bytes in a binary vector X, i.e. wt(X) = HW (µ(X)). The number
of active bytes in ∆out′ cannot be more than the number of active S-boxes in those four
registers, i.e.,

k = wt(∆A1′) + wt(∆A2′) + wt(∆A3′)
≤ wt(∆S(A1t−1)) + wt(∆S(A1t−2) + wt(∆S(A2t−1)) + wt(∆S(A2t−2)) = k′

Dachao Wang, Alexander Maximov, Patrik Ekdahl and Thomas Johansson 35

For the dominating characteristics, the number k′ can not be larger than the maximum
number of active S-boxes contained in the last two rounds κ = ω[n1, n2]−ω[n1, n2− 2], i.e.
k′ ≤ κ, since ∆out′ involves only registers and S-boxes from the last two rounds. Then we
get k ≤ k′ ≤ κ, and the range of k is k ∈ [1..κ]. Thus, the total number of valid ∆out can
be upper bounded by

#∆out <

ω[n1,n2]−ω[n1,n2−2]∑
k=1

(
48
k

)
· 28k

F Reference implementation (C/C++, SIMD)

define SMAC_VER 1 /* SMAC instance : {1 ,34 ,12} for SMAC -{1 ,3/4 ,1/2} resp.*/
define SIGMA (SMAC_VER == 1 ?\

_mm_setr_epi8 (0 ,7 ,14 ,11 ,4 ,13 ,10 ,1 ,8 ,15 ,6 ,3 ,12 ,5 ,2 ,9) /* SMAC -1 */\
: (SMAC_VER == 34?\

_mm_setr_epi8 (7 ,14 ,15 ,10 ,12 ,13 ,3 ,0 ,4 ,6 ,1 ,5 ,8 ,11 ,2 ,9) /* SMAC -3/4 */\
: _mm_setr_epi8 (0 ,11 ,7 ,14 ,6 ,4 ,1 ,15 ,9 ,3 ,8 ,5 ,13 ,2 ,10 ,12))) /* SMAC -1/2 */

define load(ptr) _mm_loadu_si128 ((__m128i *)(ptr))
define store (ptr , x) _mm_storeu_si128 ((__m128i *)(ptr), x)
define aes(a, k) _mm_aesenc_si128 (a, k)
define sigma (x) _mm_shuffle_epi8 (x, SIGMA)
define xor2(x, y) _mm_xor_si128 (x, y)
define xor3(x, y, z) xor2(xor2(x,y),z)

void SMAC_Compress (__m128i & A1 , __m128i & A2 , __m128i & A3 , uint8_t * msg)
{ __m128i M = msg ? load(msg) : _mm_cvtsi32_si128 (1);

__m128i T = sigma (xor3(A2 , A3 , M));
A3 = aes(A2 , M);
A2 = aes(A1 , M);
A1 = T;

}

void SMAC_InitFinal (__m128i & A1 , __m128i & A2 , __m128i & A3)
{ __m128i T1 = A1 , T2 = A2 , T3 = A3;

for (int i = 0; i < 9; i++)
SMAC_Compress (A1 , A2 , A3 , NULL);

A1 = xor2(A1 , T1);
A2 = xor2(A2 , T2);
A3 = xor2(A3 , T3);

}

// (!) In this implementation , aad/ct must reserve 16/32 extra bytes , resp.
void SMAC(uint8_t key [32] , uint8_t iv [16] , uint8_t * aad , int aad_sz ,

uint8_t * ct , int ct_sz , uint8_t * tag , int tag_sz)
{

// initialise with the key and iv
__m128i A1 = load(key + 16) , A2 = load(key), A3 = load(iv);
SMAC_InitFinal (A1 , A2 , A3);

// zeroise ending unaligned bytes , and add LEN - block
memset (aad + aad_sz , 0, 16);
memset (ct + ct_sz , 0, 16);
int aad_blocks = (aad_sz + 15) >> 4;
int ct_blocks = (ct_sz + 15) >> 4;
*(uint64_t *)(ct + (ct_blocks * 16) + 0) = aad_sz * 8;
*(uint64_t *)(ct + (ct_blocks * 16) + 8) = ct_sz * 8;

// compress full blocks , including the ending LEN - block to ct
for (int i = 0; i <= (aad_blocks + ct_blocks); i++)
{ uint8_t * msg = i < aad_blocks ? (aad + i * 16)

: (ct + (i - aad_blocks) * 16);
SMAC_Compress (A1 , A2 , A3 , msg), num_clocks ++;
if (SMAC_VER == 12 || (SMAC_VER == 34 && (i % 3) == 2))

SMAC_Compress (A1 , A2 , A3 , NULL);
}

// finalise and derive the MAC value
SMAC_InitFinal (A1 , A2 , A3);
memcpy (tag , (uint8_t *)&A2 , (tag_sz <= 16 ? tag_sz : 16));
if (tag_sz > 16)

36 A New Stand-Alone MAC Construct Called SMAC

memcpy (tag + 16, (uint8_t *)&A3 , tag_sz - 16);
}

Listing 2: Reference implementation of SMAC-{1, 3/4, 1/2} in C/C++.

G Test vectors
The MAC tag is taken as (A2||A3)τ after the finalisation phase.
=== TEST 1 ===

KEY = { 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 }

IV = { 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 }
AAD = { }

CIPHER = { }
For SMAC -1:

After initialisation :
A1 = { fa 4e 8b ba 5b a3 79 be 90 a7 ee d8 00 12 03 5b }
A2 = { 8c 99 e7 01 95 ba 79 b6 e1 3f 0f 56 6a d4 5c 60 }
A3 = { 59 ec 45 58 1d a5 08 9e e4 ad 8e 4d e2 da b1 08 }

After compression (1 clock):
A1 = { d5 28 ed 1b 88 0e 81 75 05 68 71 59 88 1f a2 92 }
A2 = { 55 78 3c 27 19 f8 94 9f 13 00 3a 13 60 9d 98 fe }
A3 = { 69 dd 17 95 fd 62 4f b9 e9 81 51 53 2a b5 53 27 }

After finalisation :
A1 = { aa 8c 58 31 e0 ce 87 91 08 b7 c2 63 1e 2e 9b f9 }
A2 = { d8 2c 49 ea 46 81 ca 1f ba 97 93 49 5f 9a 60 85 }
A3 = { 39 ce be 86 12 c8 0f 70 60 cf 18 41 2e 98 92 ee }

For SMAC -3/4:
After initialisation :

A1 = { 10 34 48 ab 43 0d ac c5 e1 b8 38 03 ed 27 fe 80 }
A2 = { 7c 90 c3 d8 c9 55 eb 3a 83 98 a1 5f 92 30 fb 56 }
A3 = { ae 25 80 ee 48 1a bd 5e b7 73 2f 62 a9 a6 ed 37 }

After compression (1 clock):
A1 = { 64 16 61 8e 3b 96 36 d2 81 56 b5 4f 34 3d 43 eb }
A2 = { 27 bb 5f 14 59 76 bd 3d 50 2b 61 da 68 b6 f9 80 }
A3 = { bc 14 40 87 05 21 26 f7 61 16 2f 1e 18 60 ac dd }

After finalisation :
A1 = { df a6 f5 9c 06 06 36 cf b5 85 9d 4c a5 ca bc f7 }
A2 = { 66 49 62 35 b1 7d 4c 42 2c ce 5f 42 9d 45 6c 91 }
A3 = { 3f 41 13 bc 6d 27 65 ac bb 5e 83 72 ca 99 41 f1 }

For SMAC -1/2:
After initialisation :

A1 = { 3a a2 52 41 82 fa 64 14 23 2e b7 fb f7 14 b6 76 }
A2 = { 57 a4 aa dd 99 2e 1e c7 44 c7 82 b8 51 8d c5 c5 }
A3 = { 3e 72 05 09 7f 54 e2 9d 30 e9 92 6c 0d f8 ea e2 }

After compression (2 clocks):
A1 = { ac 34 87 0d 07 49 a8 54 bb f7 18 69 6f 11 9d ae }
A2 = { b9 19 96 98 7c 70 48 63 9b d6 60 17 d5 d6 57 ad }
A3 = { 28 c3 fb b1 88 a8 1b 9a df 0e 28 cf 8d 4b da bb }

After finalisation :
A1 = { 88 49 95 3a 08 db 76 e3 4a dc c6 af c7 78 cc d0 }
A2 = { 67 06 22 e0 2a d6 85 85 b9 90 4c 1c 8f 33 45 51 }
A3 = { 7d 2b d8 95 62 6d 99 dd 40 c9 34 d9 85 13 3f 64 }

=== TEST 2 ===
KEY = { 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 }
IV = { 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 }

AAD = { 03 }
CIPHER = { }

For SMAC -1:
After initialisation :

A1 = { 42 e3 c1 df bd 96 9f a1 04 02 9a 30 c4 93 fa 26 }
A2 = { 3a fc c4 b7 10 45 50 5e b1 d1 09 49 f9 d6 de 13 }
A3 = { 25 c5 ff c2 ab 2b 5b 15 62 43 fc f0 e5 6a be 33 }

After compression (2 clocks):
A1 = { 61 dc 6e d4 a7 60 66 11 04 c3 c0 a7 5e 45 be a8 }
A2 = { e0 64 7e 6f b9 f4 78 dc b4 3a 74 c1 96 4d 44 cb }
A3 = { 48 34 ed 24 58 af a3 e2 9d 2e 4c ac 5b 10 07 52 }

After finalisation :
A1 = { 13 0e 94 2c 5b 1f 89 23 5e c6 9a c0 77 f6 9c 91 }
A2 = { a1 35 23 df 28 37 ed d8 0f 6b 56 aa 61 17 80 b3 }
A3 = { 8a 7b 4b e4 8f 4b 4b de b7 d5 af 8c 82 6d 81 6d }

For SMAC -3/4:

Dachao Wang, Alexander Maximov, Patrik Ekdahl and Thomas Johansson 37

After initialisation :
A1 = { a3 1a 8c d8 b9 c6 d7 24 d4 9b 5b 75 ff 67 41 64 }
A2 = { 5f db ff 2f c9 aa f4 3e 32 ef f5 a9 ff 07 42 33 }
A3 = { 1e eb df 0b eb e4 70 6b b8 3f f6 da cf 73 cf 24 }

After compression (2 clocks):
A1 = { 0a b0 36 58 d2 b0 88 ee 90 99 0f 98 e0 9c e3 f9 }
A2 = { 32 bf f6 69 25 03 a3 12 6b b1 93 89 02 b1 3e b7 }
A3 = { 39 57 c5 65 51 50 6a a6 c6 b8 8c 8f ea 46 eb 84 }

After finalisation :
A1 = { f2 33 7e b0 54 87 37 5b 6e f6 f3 64 67 07 93 80 }
A2 = { 39 bf fe 0e 2c 33 11 f7 51 69 8e 64 d0 4e 52 70 }
A3 = { c0 99 5e 83 54 a5 a8 22 57 94 06 c0 49 f2 0a 6f }

For SMAC -1/2:
After initialisation :

A1 = { e2 fc c5 64 a8 dd ed c1 53 57 50 cb a4 e4 15 7d }
A2 = { 60 e1 3c 40 92 1c 80 0c 91 dc 4c 1f b8 59 e6 d3 }
A3 = { 3e 18 80 f9 9a 46 60 fb b1 c3 7f ca 59 e6 7c 39 }

After compression (4 clocks):
A1 = { 25 c0 5f db 33 85 76 df c7 22 96 2f e2 fb 4d 36 }
A2 = { 10 b2 5a 50 03 32 3d 61 19 b8 39 16 e2 48 ff f2 }
A3 = { ad a1 eb 31 ff f9 e6 39 c9 7d dd 72 3b fe 90 66 }

After finalisation :
A1 = { 79 ee 8b fa 25 19 39 7d 64 f7 6a ec e6 9e 3f bb }
A2 = { e0 a3 33 94 3d 50 cd 2c 31 6d f0 a5 b6 4b 76 21 }
A3 = { 70 87 5c 28 5d 9b 39 be 56 4f 6b 9a 7a 0a d1 e8 }

=== TEST 3 ===
KEY = { b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf }
IV = { d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 da db dc dd de df }

AAD = { e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 ea eb ec dd de ef }
CIPHER = { f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff }

For SMAC -1:
After initialisation :

A1 = { db 1d 65 de 28 12 23 17 15 8d ab 00 04 5f 22 5c }
A2 = { e1 11 bc 2b c5 47 d0 19 15 83 6f 95 1f 47 5f 84 }
A3 = { 00 91 7c c9 66 f0 f3 84 07 b2 6d 48 cf 7c 06 f8 }

After compression (3 clocks):
A1 = { 0f 0f 18 4b 4a 3a 25 0a ef b3 82 01 ce 2c 59 9c }
A2 = { 0f 1a 78 a3 a9 a9 00 63 e8 21 f0 ed 82 52 80 12 }
A3 = { 56 b8 b1 7f 40 bf a9 16 e9 5a 19 9f dd b9 98 60 }

After finalisation :
A1 = { a9 d2 6c f8 c3 75 b6 6f b5 28 d3 e2 80 75 b8 cc }
A2 = { 61 3f ad 89 9e 94 51 48 1a eb d1 7a 5c 64 dd 18 }
A3 = { 9a c4 ac 2e 18 74 a4 e1 cf 9b 42 92 15 38 a9 a1 }

For SMAC -3/4:
After initialisation :

A1 = { 30 b2 8e a9 d7 6b 44 d1 74 21 21 c5 68 43 45 62 }
A2 = { 84 79 59 30 73 11 5b a2 bd 12 a3 85 66 66 43 20 }
A3 = { c6 56 7a de ff 9f 3e fa a0 fb a4 6f f2 73 b8 d3 }

After compression (4 clocks):
A1 = { 13 5b 81 4d 81 50 f1 cf 5a cf 7b cf e5 1e b0 7c }
A2 = { 72 13 2e cf 8b 8a f1 54 0c f2 8b 27 c4 66 b8 0d }
A3 = { 75 3b de a8 94 36 d3 da 52 49 e6 17 8c 92 78 7c }

After finalisation :
A1 = { 98 d5 fe f2 0c e2 c7 4d 74 2a ed b1 25 81 3e da }
A2 = { db 13 1c b3 ff bc a2 ed ae a4 78 93 58 18 67 5a }
A3 = { 6b b8 f5 a9 83 7b c5 9f 4d 45 fd a7 60 31 cf 53 }

For SMAC -1/2:
After initialisation :

A1 = { b5 eb ed ac 6b bd 4d ab 56 23 a6 ce 3b 0e dc 0e }
A2 = { b4 a2 75 44 a1 ac 33 d0 a7 96 f2 ff 3f ce c3 cd }
A3 = { 5b 81 96 5a ad 89 aa c2 28 54 a3 8c 43 f7 15 c9 }

After compression (6 clocks):
A1 = { f1 2a 8a 10 99 80 d7 bf ff 6d e3 e1 cf 4b 6d 22 }
A2 = { c0 16 59 c7 eb 5f b5 44 4c f5 27 82 b6 4c 42 e8 }
A3 = { c4 de c3 46 fe b3 e3 19 13 61 48 bf 3a 89 10 7f }

After finalisation :
A1 = { 4a b7 f0 63 c8 60 7f ca 08 4b 27 bb 1f 4a dc 70 }
A2 = { 80 ea 3b d5 07 42 40 bd 8e 66 ae 69 68 99 99 e7 }
A3 = { 53 e2 de f4 17 c1 6f 53 c4 ce c2 73 37 74 e9 3b }

=== TEST 4 ===
KEY = { 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f }
IV = { ff fe fd fc fb fa f9 f8 f7 f6 f5 f4 f3 f2 f1 f0 }

AAD = { 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10
11 12 13 }

38 A New Stand-Alone MAC Construct Called SMAC

CIPHER = { 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 }
For SMAC -1:

After initialisation :
A1 = { 5c f1 48 92 aa 70 1c 6c 0f 7b 8d 57 96 0c 39 4b }
A2 = { ee 31 08 25 85 30 fc 59 8e a6 c3 ec 57 2f dc 59 }
A3 = { 45 cc 6d 77 d2 56 28 a9 be 38 5a 78 4b a1 ba 14 }

After compression (4 clocks):
A1 = { 50 62 2a 64 fc 70 1b 1d 8e 6d 9f 12 dc f5 b7 7c }
A2 = { d8 9d 7b 14 68 94 59 74 51 74 60 c7 56 d2 16 3f }
A3 = { 45 73 4e 18 8e d3 4d ae 78 31 d3 59 6b fa 47 c7 }

After finalisation :
A1 = { 82 98 b1 ab 90 54 76 e4 24 76 b3 78 d6 14 e8 08 }
A2 = { c3 44 52 16 99 48 2d 93 28 3c 03 ec 7c 3d b8 b5 }
A3 = { c7 77 64 62 16 89 98 ee 28 03 06 f9 25 33 09 7c }

For SMAC -3/4:
After initialisation :

A1 = { b7 1a 78 eb a6 e1 a2 02 6f 0b 87 2d f3 82 29 93 }
A2 = { 06 46 fe a4 94 d8 20 18 e3 3d 52 b3 bd b7 19 5e }
A3 = { 34 55 a2 94 e7 11 e2 10 cc b8 89 fb c9 98 29 6d }

After compression (5 clocks):
A1 = { fa 9e 30 f3 39 72 e3 0b c3 57 f3 49 1f 76 cc c3 }
A2 = { cb db bb df 38 4f 34 f1 ef 48 fd 7f d3 1f 7d a7 }
A3 = { e9 cd ed 82 6b eb 7e e2 20 db 2f df 34 bf 8e 55 }

After finalisation :
A1 = { 84 9c ca a1 1b 55 64 ba 15 72 b2 b9 0d 73 ba d3 }
A2 = { 69 6e d0 a9 9e 04 84 3a 59 6d a5 b6 25 7d db de }
A3 = { 65 6d 19 04 1d bb 04 58 35 c3 42 3b c4 92 61 4f }

For SMAC -1/2:
After initialisation :

A1 = { 06 55 0f dc 34 89 87 c6 52 d3 cf 05 65 fb 6a 6a }
A2 = { fc fb 2c 8d 45 a3 0d 79 26 88 fd fa e2 ca 7d 06 }
A3 = { 45 3d 86 5e 1e 98 85 c5 0c 39 09 71 bb 99 c2 c0 }

After compression (8 clocks):
A1 = { 11 15 96 5f 0d 8f e9 d3 56 e6 4b 5d d6 4c 2a c7 }
A2 = { 96 e8 fa 24 65 d4 aa 40 73 8e 62 77 12 98 ff 2b }
A3 = { 69 12 b5 35 47 3e f8 00 eb 95 c3 7e dc 13 25 30 }

After finalisation :
A1 = { 81 db 76 2f 94 f8 c1 34 bb 37 48 2a fc 0f 0f 4f }
A2 = { f7 c3 6b bf 83 44 90 6e 17 ca cb 97 0e 37 50 26 }
A3 = { dc 06 99 2b 75 0e 08 66 f6 54 79 ed d0 2e 3c a4 }

Listing 3: Test vectors.

	Introduction
	The SMAC construct
	Detailed description
	Three base instances SMAC-1, SMAC-3/4, and SMAC-1/2
	Security claims and limitations

	Design justifications and security analysis
	Differential forgery attacks
	Searching for a strong for SMAC-1 and SMAC-3/4
	Clustering effects
	Selection of for SMAC-1/2
	Justification for the constant 1
	Arguments behind the PRP-PRF switch
	Internal state size and TMTO attacks
	Avalanche effect on full registers
	Guess and determine attacks
	MDM and cube tests
	Differential attacks on initialisation
	Output MAC tag registers
	State recovery attack with nonce-misuse queries

	Aggregated mode version SMAC-1n
	Security arguments for the aggregated mode

	Software evaluation
	Conclusions
	Permutation candidates
	On a binary differential trail for SMAC-1, t=3
	Altered instantiations of SMAC
	Example of using SMAC-1 with AES in AEAD mode

	A fast heuristic algorithm to find a small guess base in guess-and-determine attack scenarios
	Estimate of #out for a single stream
	Reference implementation (C/C++, SIMD)
	Test vectors

