
Detecting Rogue Decryption in (Threshold) Encryption via
Self-Incriminating Proofs

James Hsin-yu Chiang1⋆, Bernardo David2⋆⋆, Tore Kasper Frederiksen, Arup Mondal4⋆ ⋆ ⋆†, and Esra
Yeniaras2⋆⋆†

1 Aarhus University
jachiang@cs.au.dk

2 IT University of Copenhagen
bernardo@bmdavid.com, esye@itu.dk

3 Zama
tore.frederiksen@zama.ai

4 Ashoka University
arup.mondal_phd19@ashoka.edu.in

Abstract. Keeping decrypting parties accountable in public key encryption is notoriously hard
since the secret key owner can decrypt any arbitrary ciphertext. Threshold encryption aims to
solve this issue by distributing the power to decrypt among a set of parties, who must interact
via a decryption protocol. However, such parties can employ cryptographic tools such as Multi-
party Computation (MPC) to decrypt arbitrary ciphertexts without being detected. We introduce
the notion of (threshold) encryption with Self-Incriminating Proofs, where parties must produce a
self-incriminating proof of decryption when decrypting every ciphertext. In the standard public key
encryption case, the adversary could destroy these proofs, so we strengthen our notion to guaran-
tee that the proofs are published when decryption succeeds. This creates a decryption audit trail,
which is useful in scenarios where decryption power is held by a single trusted party (e.g., a Trusted
Execution Environment) who must be kept accountable. In the threshold case, we ensure that at
least one of the parties who execute the decryption protocol will learn a self-incriminating proof,
even if they employ advanced tools such as MPC. The fact that a party learns the proof and may
leak it at any moment functions as a deterrent for parties who do not wish to be identified as
malicious decryptors (e.g., a commercial operator of a service based on threshold encryption). We
investigate the (im)possibility and applications of our notions while providing matching construc-
tions under appropriate assumptions. In the threshold case, we build on recent results on Individual
Cryptography (CRYPTO 2023).

1 Introduction

The now ubiquitous notion of public key encryption [25] gives full control over the privacy of a message
encrypted under a given public key to the party who knows the corresponding secret key. In other words,
whoever has the corresponding secret key has full discretion to decrypt ciphertexts generated under
a given public key, learning the plaintext message and deriving whatever utility it may afford. More
importantly, the secret key holder may do so at any time without being detected. Compared with the
other main public key primitive of digital signatures, observe that this problem is unique for decryption.
This is because a digital signature is in itself an unforgeable proof that a cryptographic operation has
been carried out, thus any use of an adversarially constructed signature will in itself provide detection of
the misuse.

Instead of giving the full power to decrypt a ciphertext to a single party who controls a secret key,
the notion of threshold public key encryption [23,24] distributes decryption power among a set of parties
(i.e., a decryption committee). In this setting, no single party can decide to decrypt a ciphertext and a set
of more than t out of n total parties must cooperate to successfully decrypt. Compared to the standard
public key encryption notion, threshold encryption allows the decryption committee to enforce rules
about what ciphertexts should be decrypted. However, this notion requires that no more than t parties
act maliciously. Otherwise, the same issue from the standard public key setting occurs as a sufficiently
⋆ This work was supported by SUI Foundation.

⋆⋆ This work was supported by the Independent Research Fund Denmark (IRFD) grant number 0165-00079B.
⋆ ⋆ ⋆ This work was done while visiting the IT University of Copenhagen with supported by Mphasis F1 Foundation.

† This work was supported by CPH Fintech.

large subset of corrupted parties in the decryption committee can easily decrypt any arbitrary ciphertext
without detection.

It is notoriously hard to achieve accountability for both standard and threshold encryption schemes
when the party (or parties) with the power to decrypt act maliciously. Despite decades of research on
public key cryptography, the majority of current encryption schemes still allow malicious parties with
knowledge of the secret key to perform “rogue” decryptions of arbitrary ciphertexts without ever being
detected. Even if we construct schemes that readily allow for detecting rogue decryptions through publicly
available information, powerful cryptographic tools such as anonymous channels [15] and Multiparty
Computation (MPC) [16, 32] can be employed by malicious parties to avoid detection. In this context,
we ask the following questions:

Is it possible to detect rogue decryptions in (threshold) public key encryption schemes? If yes, is that
still possible even when the secret key owner(s) employ cryptographic tools to avoid detection?

We answer both questions in the affirmative by proposing definitions and matching constructions of
both standard and threshold public key encryption schemes where the decryption process intrinsically
forces parties to produce proofs that decryption has happened. We call such proofs Self-Incriminating
Proofs (SIP), as they reveal that a party or committee of parties has acted to decrypt a given ciphertext.
Our notions guarantee security even against adversaries who may employ cryptographic tools such as
MPC to avoid producing a SIP, thus thwarting advanced “cryptovirological” attacks.

Besides settling a long-standing theoretical question, our solution also finds practical applications in
several real-world scenarios where public key cryptography is used. In general, any applications of public
key encryption where parties with the ability to decrypt must be kept accountable can benefit from
our new notions and constructions. In particular, in cases where the secret key for a standard public
key encryption is stored in a Trusted Execution Environment (TEE), our notions can help detect the
TEE’s malfunctioning (or malfeasance) if it performs rogue decryptions. On the other hand, in many
applications of threshold encryption, clients submit ciphertexts to be decrypted by committees that
provide threshold decryption as a service and are implicitly trusted by their clients, without any means
for detecting malfeasance.

One concrete example of where accountability in decryption can bring utility is in the case of “en-
crypted mempools”. In the blockchain space, a mempool is the set of transactions that are known, but
have not yet been persisted to the ledger. More specifically they are known to the miners/validators.
Thus allowing the miners/validators to “front-run” these during persistence, to gain financial profit via
so-called “miner extractable value” [19]. A common way of preventing this is to encrypt the mempools
until they are persisted [45] using standard public key encryption, executed by TEEs, or threshold encryp-
tion, executed as a service by committees. Thus when using encrypted mempools there is a clear incentive
for the TEE or the committee to misbehave and purposefully decrypt the pools to front-run. On the other
hand, if these rogue decryptions can be detected, clients can react to the malfeasance appropriately.

In other cases, the decrypting party (or parties) might not be incentivized to misbehave, but external
parties might be incentivized to bribe the decrypter to incorrectly decrypt and share the plaintext. This
for example occurs when encryption is used as part of a protocol facilitating computation on private data
from multiple clients. This happens in the threshold setting when using outsourced secure multi-party
computation [39] with a scheme based on homomorphic encryption [6, 21]. For example in the case of
loan benchmarking; where clients are banks who input customers’ confidential financial information [20],
which if revealed to competing banks, could give them a competitive advantage. In the blockchain space,
we see this in systems realizing privacy-preserving smart contracts, such as Oasis [44] (based on TEEs) or
Zama’s fhEVM [18] (based on fully homomorphic encryption with threshold decryption). While knowl-
edge of other client’s private information could in itself be valuable, certain smart contracts are more
vulnerable than others. Gambling contracts that require randomness computed from a seed are partic-
ularly vulnerable to malicious decryptions, as knowledge of the seed could yield knowledge of all future
values of “random” variables.

1.1 Our Contributions

We look at the issue of detecting rogue decryptions of arbitrary ciphertexts in standard and threshold
public key encryption schemes as a problem on its own and introduce the notion of “Self-Incriminating
Proof” (SIP) as a central tool to solve it. A SIP proves unequivocally to any third party that a given
ciphertext has been decrypted while providing unforgeability properties ensuring that it cannot be gen-
erated unless the ciphertext is indeed decrypted. Starting from this concept, we define the following

2

primitives: Encryption with Self-Incriminating Proof (SIPE), Encryption with Public Self-Incriminating
Proof (PSIPE), and Threshold Encryption with Self-Incriminating Proof (TSIPE). These new primitives
enrich standard public key encryption with the guarantees that a SIP must be produced (SIPE) or pub-
lished (PSIPE) during the decryption process, and enrich threshold encryption with the guarantee that
a SIP must be learned by one of the decrypting parties (TSIPE) if a ciphertext is decrypted. We pro-
vide concrete constructions of our proposed primitives and investigate the limits of these notions. We
summarize our main contributions as follows:

• Definitions for the notions of Encryption with Self-Incriminating Proof (SIPE), which guarantees that
a SIP is produced, and of Encryption with Public Self-Incriminating Proof (PSIPE), which guarantee
that a SIP is published, in the context of standard encryption.
• A construction of Encryption with Public Self-Incriminating Proof (PSIPE) building on a public ledger

to ensure publication of SIPs and to instantiate the witness encryption building block.
• Definitions and a matching construction for the notion of Threshold Encryption with Self-Incriminating

Proof (SIPE), building on Individual Cryptography by Dziembowski et al. [26].

In our SIPE notion, we model the guarantee that a party who decrypts a ciphertext must produce a
SIP. However, as we discuss later, this guarantee’s usefulness is questionable, since an adversary can always
erase the SIP that it has produced internally. Moreover, the SIPE notion seems intrinsically intertwined
with the notion of extractable witness encryption, leaving little hope for realizing it under standard
assumptions without setup.

The issues with the SIPE notion motivate us to investigate a stronger notion of standard public key
encryption with SIPs where we force the decrypting party to publish the SIP as part of the decryption
process. We call this notion PSIPE and define it for an underlying public ledger, which is assumed as a
setup. Notice that assuming this setup is necessary for capturing the guarantee that a SIP is published,
i.e., all honest parties learn the SIP. Although this notion requires setup, we show a construction based
on standard assumptions. This construction could trivially be generalized to the threshold setting, by
each party doing a partial decryption, and validating a quorum of proofs of partial decryption. Still, such
a construction would be expensive. Furthermore, if we can assume at least one honest party then there is
no need to force each party to post a proof to a public ledger (since an honest party would always publish
the necessary information according to the protocol). Thus we introduce a new protocol for the threshold
notion TSIPE, which does not require a public ledger, nor witness encryption. This protocol ensures that
at least one of the parties who cooperate in decrypting a given ciphertext will learn a SIP showing that
this ciphertext has been decrypted. This guarantee holds even if the parties performing rogue decryption
employ MPC to try and learn the plaintext, while hiding the SIP. The motivation for this notion is that
this SIP can be used as a deterrent to keep parties from joining rogue decryption operations, lest the
SIP be leaked and their collective malfeasance revealed. We show a construction build from a regular
threshold encryption scheme, a commitment scheme, and a non-interactive proof of knowledge, which we
prove secure in a similar model as the recent work on Individual Cryptography [26].

1.2 Technical Overview

We present a construction of a PSIPE scheme based on a public ledger realized by a Proof-of-Stake
blockchain, an extractable witness encryption (eWE) scheme for a specific language, and a signature
scheme. We later show that we can realize this eWE efficiently from standard assumptions using the
underlying blockchain via techniques from [37] suitably combined with a publicly verifiable secret sharing
scheme to enforce public proofs of malfeasance as proposed in [12]. We also present a construction of
TSIPE based on a (regular) threshold encryption scheme, a commitment scheme, a non-interactive zero-
knowledge proof, and an MPC-hard function, which cannot be feasibly computed by an MPC protocol
in the model from [26].

In our construction ΠPSIPE realizing the notion of PSIPE, the core idea is to force the decryptor to
generate and publish on the blockchain a signature σ on a reference message d that is valid under a given
public key pk to decrypt a ciphertext c. To do so, we encrypt a message m using an eWE scheme under
a statement pk, d, B for a random d, the prescribed pk and a current state of the blockchain B, obtaining
a ciphertext c′ and defining our PSIPE as c = (c′, d). Now c′ can only be decrypted by a party who has
a witness (σ, B̃) where B̃ is a future valid state of the blockchain that evolved from B containing σ such
that σ verifies as a valid signature on d under pk. Hence, the decryptor is forced to publish σ to obtain
a B̃ that allows it to decrypt c. We build on a Proof-of-Stake blockchain as it has been shown that it
is possible to non-interactively verify whether a blockchain B̃ evolved from a previous blockchain B via

3

an honest protocol execution [36]. We later also use the blockchain to realize the eWE scheme based on
standard assumptions using the “eWE on Blockchains” construction from [37], using techniques from [12]
to ensure that it cannot be abused to decrypt a ciphertext without generating a SIP.

In the threshold setting, we start from the distributed adversarial model and the concept of MPC-
hard function, both introduced in the recent work on Individual Cryptography [26]. In the distributed
adversary model, each corrupted party is a sub-adversary that acts individually, without being controlled
by a monolithic adversary. However, sub-adversaries can execute interactive protocols, including MPC-
based ones, to mount their attacks. Simply, a function is said to be MPC-hard if it is infeasible to
compute in MPC, but easy to compute in plain. This helps in reasoning that at least one of the sub-
adversaries must learn the entire input to the MPC-hard function to feasibly evaluate it. As shown in [26],
MPC-hard functions can be constructed from hash functions similarly to Proof-of-Work puzzles used in
blockchain-based consensus protocols, with careful analysis to avoid attacks that exploit the structure of
the underlying hash function and of the puzzle.

When constructing our protocol ΠTSIPE, which realizes the notion for TSIPE, we start with a regular
threshold encryption scheme and embed the computation of an MPC-hard function in the threshold
decryption process, using the input to this MPC-hard function to generate a SIP. The rationale is that
we prevent the sub-adversaries from executing the threshold decryption process within MPC to obtain
the message while discarding the SIP, which they cannot do as at least one sub-adversary must learn
the input to evaluate the MPC-hard function. To encrypt a message m we first sample an input in to an
MPC-hard function and compute it to obtain an output out, which is used to derive a one-time pad key
H(out) using a random oracle H. Our ciphertext is then composed by a commitment c1 to (in, out, m),
an encryption c2 of in with the underlying threshold encryption scheme and c3 = H(out)⊕m. To decrypt
c1, c2, c3, the sub-adversaries must first compute out, which requires at least one of them to learn in. Now
we can generate a SIP as a zero-knowledge proof showing knowledge of an opening to commitment c1
and of a secret key share for the underlying threshold encryption scheme, without revealing which secret
key share is used.

1.3 Related Work

The concept of identifying malicious decryptions carried out by a key-holder was initially considered
by Ryan [46] and dubbed accountable encryption. Later, it was more formally defined by Li et al. [42],
who showed security definitions and protocols for the identification of malicious decryptions when the
decryption key is stored and used through a single TEE.

Using cryptography for malicious purposes was first considered by Young and Yung [48] in 1996. They
studied the idea of “Cryptovirology”, which consists of using cryptographic tools maliciously. Specifically,
the work of [48] focuses on the malicious use of public-key encryption. For example, they show how cryp-
tographic tools can be used to mount extortion-based attacks that cause loss of access to information,
loss of confidentiality, and information leakage; tasks which cryptography typically prevents. In our case,
we initiate the study of Distributed Cryptovirology, specifically, we consider the use of distributed crypto-
graphic protocols (e.g., MPC) as a tool to subvert (threshold) encryption and investigate how to prevent
such attacks.

Another approach to prevent leaking secrets has been studied extensively in the context of traitor-
tracing [17,35,41]. Chor et al. [17] described traitor tracing as a method for providing personal decryption
keys to users, such that there is a single encryption key corresponding to all the decryption keys, and any
possible decryption key, even one that was generated by a coalition of corrupt users (traitors), identifies the
personal keys that were used to generate it. Recently, Boneh et al. [10] initiated the study of traitor-tracing
in the context of threshold decryption and showed several constructions for it. However, as mentioned
in [26], none of above approaches [10,17,41,48] considers a distributed adversarial model [26]. On the other
hand, we approach the problem of detecting when a distributed adversary performs (threshold) decryption
but does not necessarily require the identification of individual sub-adversaries (i.e., corrupted parties)
who take part in a decryption process.

The notions of collusion-free [1, 3] and collusion-preserving [2] MPC address the setting where cor-
rupted parties cannot collude. In other words, corrupted parties are not fully controlled by a monolithic
adversary but instead must act individually according to their own strategies without coordination. These
works investigate the construction of MPC protocols by leveraging that corrupted parties do not commu-
nicate (or have no incentive to communicate). In our setting, we assume instead that corrupted parties
act individually but can communicate, and have an incentive to do so but are disincentivized from sharing
their secret key shares in plain.

4

Recently, Dziembowski et al. [26] considered a distributed adversarial model and studied the malicious
use of MPC within it. More specifically, they introduced and studied the notion of individual cryptog-
raphy. They say an algorithm is individual if, in every implementation of that algorithm, there always
exists a single party with full knowledge of the input to that algorithm. They construct two individual
cryptographic primitives: (i) proof of individual knowledge (PoIK), a tool for proving that a given message
is fully known to a single “individual” machine, i.e., that the data is not shared among a group of parties;
and (ii) individual secret sharing (ISS), a scheme for sharing a secret between a group of parties so that
the parties do not know the secret as long as they do not reconstruct it, while reconstruction ensures
that if the shareholders attempt to collude, one of them will learn the entire secret. Concurrently, Kelkar
et al. [40] introduced the concept of proof of complete knowledge (PoCK) which is very similar to the
notion of PoCK in [26]. A PoCK guarantees that a single party has complete knowledge of its secret.
In particular, Kelkar et al. [40] showed a construction of PoCK that directly achieves a zero-knowledge
property.

1.4 Organization

The rest of the paper is organized as follows: Sec. 2 discusses our technical preliminaries. Sec. 3 introduces
the syntax and security definition of our SIPE notion. Sec. 4 presents the syntax, security definition, and
construction of our PSIPE notion. Sec. 5 presents the syntax, security definition, and construction of our
TSIPE notion. Sec. 6 concludes our work with some future research directions.

2 Preliminaries

In this section, we introduce the notation, building blocks, and models used in this paper. We refer the
reader to Appendix A for more details.

Basic Notation. We denote the security parameter by λ ∈ N. In threshold settings, we use n to denote
the number of parties and t the highest threshold of parties that cannot compromise security. Hence
0 < t < n. We use [a, b] for a, b ∈ Z, a ≤ b, to denote {a, a + 1, . . . , b− 1, b}. [b] denotes the set [1, b]. We
denote the concatenation of x and y by (x∥y). Given a set X , we denote by x

$← X the sampling of a value
x from the uniform distribution on X . A function negl : N→ R is negligible if it vanishes faster than any
polynomial. We denote by x = val or x← val the assignment of a value val to the variable x. We denote
evaluating a PPT algorithm A that produces an output out from an input in with randomness r

$← {0, 1}∗

as out ← A(in; r), omitting the randomness when it is obvious or not explicitly required. By AO
alg
param we

denote that we run A with oracle access to Oalg
param, i.e., O executes alg with parameters param on inputs

of A’s and returns the corresponding outputs. We will also use the notion of an extractor algorithm,
EXT, in connection with game-based security. EXT is a PPT algorithm that is queried on a transcript
and must produce an output of a specific format with a certain success probability. We typically use
this on the transcript of one or more adversarial algorithm executions, including their input, output, and
randomness.

2.1 Building Blocks

Digital Signatures. A digital signature scheme is a tuple of PPT algorithms SIG = (KG, Sign, Vf). The
key generation algorithm (pkSIG, skSIG)← KG(1λ) outputs a key-pair (pkSIG, skSIG). The signing algorithm
σ ← Sign(skSIG, m), outputs a signature σ on message m ∈ {0, 1}∗ under skSIG. The verification algorithm
1/0 ← Vf(pkSIG, m, σ), outputs 1 if and only if σ is a valid signature on m generated under skSIG. A
SIG scheme must satisfy the notions of correctness and existential unforgeability against adaptive chosen
message attacks (EUF-CMA) [34]), formalized in Appendix A.1.

Commitment Schemes. A commitment scheme CS consists of the tuple of PPT algorithms
(Setup, Commit). The setup algorithm ck ← Setup(1λ) outputs a commitment key ck, defining a mes-
sage space M and a randomness space R. The commitment algorithm cm ← Commit(ck, s; ρ) takes as
inputs ck, a message s ∈M and randomness ρ ∈ R, outputting a commitment cm. A commitment scheme
CS must satisfy the standard properties of computational binding and hiding, formalized in Appendix A.2.

5

Extractable Witness Encryption. We recall the concept of witness encryption from [30]. Let LeWE
be an NP language with witness relation ReWE. An extractable witness encryption scheme eWE for
language LeWE with message space M ⊆ {0, 1}∗ consists of PPT algorithms (Enc, Dec). The encryption
c ← Enc(1λ,LeWE, inst, m) takes as input the language LeWE, a statement inst and a message m ∈ M,
outputting a ciphertext c. The decryption algorithm m/⊥ ← Dec(c, wit) takes as input a ciphertext c
and a (witness) wit, outputting m if and only if (inst, wit) ∈ ReWE. We require an extractable witness
encryption scheme eWE to satisfy the properties of correctness and extractable security (i.e., it is possible
to extract wit from an adversary who distinguishes ciphertexts), formalized in Appendix A.3.

Threshold Encryption. A threshold encryption scheme TE consists of a tuple of PPT algorithms
(Setup, Enc, ParDec, Combine). The setup algorithm (pk, {ski}i∈[n]) ← Setup(1λ, n, t), it takes as input
the security parameter 1λ, the number of shares n and the threshold t, outputting a public key pk
and a threshold decryption key share ski for each party Pi. The encryption algorithm c ← Enc(pk, m),
takes as input pk and a message m, outputting a ciphertext c. The partial decryption algorithm µi ←
ParDec(pk, ski, c), it takes as input pk, ski and c, producing a partial decryption µi. The combine algorithm
m/⊥ ← Combine(pk, c, {µi}i∈T), takes as input pk, c and {µi}i∈T where |T | ≥ t + 1, and outputs the
plaintext message m. We require a threshold encryption scheme TE to satisfy the standard properties of
correctness and IND-CPA security, formalized in Appendix A.4.

NIZKs. A non-interactive zero-knowledge (NIZK) [9] proof system for an NP-language LNIZK with wit-
ness relation RNIZK is a tuple of PPT algorithms (Gen, P, V). Algorithm crs← Gen(1λ) outputs a common
random string crs, implicitly used by the other algorithms. The prover algorithm π ← P(crs, inst, wit),
the prover algorithm takes as input a statement inst ∈ LNIZK and a witness wit, outputting a proof π.
The verifier algorithm 1/0 ← V(crs, inst, π) takes as input a statement inst ∈ LNIZK and a proof π, out-
putting 1 if and only if it accepts the proof π. We require a NIZK proof system NIZK = (Gen, P, V)
to satisfy the properties of completeness, soundness, and zero-knowledge. Relations are written as
RNIZK = {(inst, wit) | R(inst, wit) = 1} where inst ∈ LNIZK is the statement, wit is the witness and R is
some predicate. Our construction uses non-interactive zero-knowledge proof for knowledge (NIZKPoK),
thus requiring the proof constructor to know the witness wit. We write NIZKPoK{wit | (inst, wit) ∈ RNIZK}
to denote a generic non-interactive zero-knowledge proof of knowledge for relation RNIZK. The syntax and
security definition are formalized in Appendix A.5.

2.2 Proof-of-Stake (PoS) Blockchains

In this section, we recall in almost verbatim form the overview given in [13] of the model for PoS blockchain
protocol execution of [36]. In PoS-based blockchains, each participant is associated with some stake in the
system, which could be measured as a positive rational value. These protocols rely on a lottery mechanism
that ensures (of all eligible parties) that each party succeeds in generating the next block with probability
proportional to its stake in the system. To formally argue about executions of such protocols, we start
with the framework of Goyal et al. [36] which, in turn, builds on the analysis done in [28, 43]. We refer
the reader to revisit the abstraction used in [36]. Below we present a summary of the framework and the
main properties we will use in this paper. Moreover, we note that in [36] it is proven that there exist PoS
blockchain protocols (e.g., Snow White [8], Ouroboros Praos [22]) with the properties described below.
We refer the reader to Appendix A.6 for a detailed description of blockchain protocol execution and its
properties.

Blockchain Structure. A genesis block B0 = {(SIG.pk1, aux1, stake1), . . . , (SIG.pkn, auxn, staken), aux}
associates each party Pi to a signature scheme public key SIG.pki, an amount of stake stakei and auxil-
iary information auxi (i.e., any other relevant information required by the blockchain protocol, such as
verifiable random function public keys). A blockchain B relative to a genesis block B0 is a sequence of
blocks B1, . . . , Bn associated with a strictly increasing sequence such that Bi = (H(Bi−1), d, aux)) where
H(Bi−1) is a collision-resistant hash of the previous block, d is data and aux is auxiliary information
required by the blockchain protocol. We denote by B⌈ℓ the chain (sequence of blocks) B where the last
ℓ blocks have been removed and if ℓ ≥ |B| then B⌈ℓ = ϵ (empty symbol). Also, if B1 is a prefix of B2 we
write B1 ⪯ B2. Each party participating in the protocol has public identity Pi and most messages will be
a transaction of the following form: m = (Pi, Pj , q, aux) where Pi transfers q coins to Pj along with some
optional, auxiliary information aux.

6

Blockchain Protocol Execution. A blockchain protocol Γ V consists of the following three polynomial-
time algorithms (UpdateStateV , GetRecords, Broadcast) with a validity predicate V . The update state
algorithm st ← UpdateState(1λ), takes as input the security parameter 1λ and outputs st which is the
local state of the blockchain along with metadata. The get records algorithm B ← GetRecords(1λ, st),
takes as input the security parameter 1λ and state st, and outputs the longest sequence of valid blocks B
(with respect to V). The broadcast algorithm Broadcast(1λ, m), takes as input the security parameter 1λ

and a message m, and broadcasts the message m over the network to all parties executing the blockchain
protocol.

More UC formally, we model the blockchain as a uniquely defined execution based on the inputs,
random coins, and messages received from all involved parties in line with the work of Goyal et al. [36].
More specifically, we define the execution as a random variable EXECΓ V

(A,Z, 1λ) when executing the
blockchain Γ V with security parameter 1λ with the UC environment Z and adversary A. The view of
each participating party Pi is then denoted as VIEWPi

(EXECΓ V

(A,Z, 1λ)), and the view of the adversary
A as VIEWA(EXECΓ V

(A,Z, 1λ)). We simplify this expression with VIEWi, respectively VIEWA, when it
does not lead to ambiguity.

Defining u-stakefrac. We denote the stake of party Pi as stakei = stake(B, i) which takes as input a
local blockchain B and a party Pi and outputs a number representing the stake of party Pi as per the
blockchain B. Here, stake(·, ·) is a polynomial time algorithm that takes as inputs the blockchain B and a
party’s public identity and outputs a rational value.

Let an adversary A that controls all parties with public identities in the set X , its sum of stake
controlled by the adversary as per blockchain B can computed as stakeA(B) =

∑
j∈X stake(B, j), and

the total stake held by all parties can be computed as staketotal(B) =
∑

i stake(B, j). We compute the
adversaries relative stake ratio as stake-ratioA(B) = stakeA(B)

staketotal(B) . Also, we will simply write stakeA, staketotal,
and stake-ratioA whenever B is clear from context.

We also consider the PoS-fraction u-stakefrac(B, ℓ) as the amount of unique stake whose proof is
provided in the last ℓ mined blocks. More precisely, let M be the index i corresponding to miners Pi of
the last ℓ blocks in B then we compute the PoS-fraction as follows,

u-stakefrac(B, ℓ) =
∑

i∈M stake(B, i)
staketotal

.

Evolving Blockchains. To define Encryption with Public Self-Incriminating Proofs scheme (in Defini-
tion 8), we need to be able to non-interactively verify that a blockchain has evolved from a previous state
such that the current state includes a certain message. In particular, we want to make sure that the initial
chain B has “correctly” evolved into the final chain B̃. A sufficiently long chain in an honest execution
can be distinguished from a fork generated by the adversary by looking at the combined amount of stake
proven in such a sequence of blocks. We encapsulate this property in a predicate called evolved(·, ·) defined
as follows.

Definition 1. Let Γ V = (UpdateStateV , GetRecords, Broadcast) be a blockchain protocol with validity
predicate V and where the (α, β, ℓ1, ℓ2)-distinguishable forking property (formally defined in Definition 37).
Also, let B← GetRecords(1λ, st) and B̃← GetRecords(1λ, s̃t). We define an evolved predicate as a polyno-
mial time function evolved that takes as input blockchains B and B̃, evolved(B, B̃) ∈ {0, 1} if and only if
all the following properties are satisfied: (i) V (B) = V (B̃) = 1, (ii) B and B̃ are consistent i.e., B⌈κ ⪯ B̃
where κ is the common prefix parameter, and (iii) Let ℓ′ = |B̃| − |B| then it holds that ℓ′ ≥ ℓ1 + ℓ2 and
u-stakefrac(B̃, ℓ′ − ℓ1) ≥ β

NP-Relation for Proof Inclusion on an Evolving Blockchains Assume a blockchain protocol
Γ = (UpdateStateV , GetRecords, Broadcast) with validity predicate V . We define a relation RΓ V that
captures the fact that a valid signature σ on a reference message d generated under pk is included in the
common prefix of a blockchain B̃ that has evolved from an initial blockchain B via a valid execution of
the protocol. This relation is formalized in Definition 2 below.

Definition 2 (NP-Relation for Proof Inclusion). Let Γ V = (UpdateStateV , GetRecords, Broadcast)
be a blockchain protocol with validity predicate V with the (α, β, ℓ1, ℓ2)-distinguishable forking property
(as in Definition 37) and associated predicate evolved(B, B̃) ∈ {0, 1} (as in Definition 1). Let SIG =

7

(KG, Sign, Vf) be an EUF-CMA secure signature scheme and d ∈ {0, 1}∗ is a reference message. We
define relation RΓ V as follows:

RΓ V :
{

((pk, d, B︸ ︷︷ ︸
inst

), (σ, B̃︸︷︷︸
wit

))

∣∣∣∣∣1← SIG.Vf(pk, d, σ) ∧ evolved(B, B̃) = 1

∧ (pk, d, σ) ∈ B∗ ∧B∗ ∈ B̃⌈ℓ1+ℓ2 ∧ u-stakefrac(B̃, ℓ2) ≥ β

}

Let LΓ V be the language specified by the relation RΓ V . This language is in NP because verification
of blockchains and signatures are polynomial time algorithms, as are the verification of the additional
chain predicates in Definition 2.

2.3 The Distributed Adversarial Model and MPC-hard Functions

In this section, we describe the distributed adversarial model and an MPC-hard function that we consider
for our proposed primitive TSIPE definition and construction. This description is taken almost verbatim
from [26].

The distributed adversary [26] is a tuple A1, . . . ,Aa of poly-time interactive machines (also called the
sub-adversaries) that can efficiently evaluate a cryptographic task via an MPC protocol or a similarly
distributed manner. Dziembowski et al. [26] define the notion of MPC-hard cryptographic tasks. Infor-
mally, a cryptographic task/function is MPC-hard if executing it securely in a distributed way takes a
significant amount of time. This implies that if a cryptographic task is MPC-hard, then to run it effi-
ciently, the parties need to execute it individually. In other words, by using an MPC-hard task, we want
to enforce that the distributed adversary must run the cryptographic task locally. More concretely, if the
adversaries manage to complete the cryptographic task within some specified time bound, then one of
the adversaries, say Aj , must know (or have “knowledge” of) some secret information s completely.

MPC-hard Functions and a (δ, Υ)-Distributed Adversary. The distributed adversary A1, . . . ,Aa

is given access to a special oracle OFun that allows evaluation of a fixed input-length function Fun :
{0, 1}α → {0, 1}β . The oracle accepts queries of the form (x, mode), where x ∈ {0, 1}λ and mode ∈
{fast, slow}. If mode = fast, then a query is called fast, otherwise, the query is called slow. Let us give
some intuition on these two modes:

1. The fast queries are Fun function evaluations that a sub-adversary Aj runs locally, in this case Aj

has to know (or have “knowledge”) the x entirely.
2. The slow queries model an evaluation of the Fun function using an MPC protocol. In particular, this

means that the sub-adversaries A1, . . . ,Aa can learn Fun(x) without knowing x.

Each query coming from any of the sub-adversary Aj is answered to Aj with Fun(x) (we also say that
Aj evaluated Fun on input x).

The execution of a protocol with a distributed adversary can now be divided into a preprocessing
phase (where the adversary does not know the relevant input) followed by an online phase where relevant
input is known. In the preprocessing phase, the sub-adversaries can send an arbitrary number of slow
queries to the oracle OFun. In the online phase, however, the sub-adversaries are limited in the number of
queries they can make to the oracle OFun. We observe that the notion of an independent preprocessing
phase is common to MPC protocols [6, 21].

More specifically, we say A1, . . . ,Aa is a (δ, Υ)-distributed adversary relative to a function Fun if the
total number of slow queries made by any sub-adversary Aj to OFun in the online phase is bounded by
Υ , for at most δ rounds. The total number of fast queries is only bounded by the time complexity of the
adversaries (i.e., it is polynomial in λ). The adversaries run in at most δ rounds, where each of them has
the following form: (1) each sub-adversary Aj performs some local computation, at the end of which Aj

outputs a string strj , and (2) each strj is delivered to every other sub-adversary.

Security Games for Distributed Adversary. To formalize “knowledge” in the distributed adversary
attack scenario, Dziembowski et al. [26] used the concept of a “knowledge extractor” proposed in [5].
Bellare and Rogaway [5] consider an adversary A with access to a function Fun (they assume that the Fun
is a hash function; which is modeled as a random oracle). It is assumed that if an adversary A evaluated
Fun on some input x, then A knows the input x and the corresponding output Fun(x). Technically, the

8

(input, output) pairs are later given to an algorithm kEXT called “knowledge extractor”. If kEXT outputs
some message s, then we assume that “A knows s” (since A could have computed s by observing the
oracle queries and corresponding replies).

Now, we define the information each party received as a result of the fast oracle queries at the end of
the execution of a protocol: We define the local transcript of a party Aj to be the sequence τj of function
inputs that OFun received from Aj (in the same order in which they were received). Let τ fast

j be the
sub-sequence of τj containing only the inputs corresponding to fast queries (call it a local fast-function
transcript of a party Aj). A knowledge extractor kEXT is a deterministic poly-time machine that takes
τ fast

j as input and produces as output a finite set kEXT(τ fast
j) ⊂ {0, 1}∗.

In the distributed adversary settings, Dziembowski et al. [26] use the concept of a knowledge extractor
but slightly adjust it in the following way:

1. There is a knowledge extractor kEXTj for each of the sub-adversaries Aj .
2. Each such knowledge extractor kEXTj takes as input the transcript of queries τ fast

j that Aj has made
to the oracle OFun only in mode = fast. Queries made by Aj in mode = slow (recall that these queries
model MPC evaluations of Fun with a potentially unknown input) are not given to kEXTj .

3. Finally, we say that an adversary Ap individually knows a secret s if there exists an efficient knowledge
extractor kEXTp such that s ∈ kEXTp(τ fast

j).

Instantiating an MPC-hard Function. Dziembowski et al. [26] defined an MPC-hard function based
on iterative hash function computation. They modeled the function Fun as the evaluation of a fixed input-
length hash function H : {0, 1}α → {0, 1}β (and the access of oracle OFun as OH). Since the evaluation
of a hash function using MPC technology is conceivably much slower than using a regular CPU or even
customized hardware, like an ASIC, we assume that the budget of the adversary for such queries is
comparably small, i.e., bounded by some parameter.

We reproduce the scratch function from [26] in Figure 1. The main idea behind scratch is that it forces
a party to sequentially compute d times H on every block sl of s = (s1∥s2∥ . . . ∥sn). The scratch procedure
takes as input two random s

$← {0, 1}n·(α−β−2) where each |sl| = α−β− 2 and z
$← {0, 1}β , and a nonce

w ∈ {0, 1}α−β−2, and then it sequentially computes d times hashes H on every block of s and finally
outputs a value q (refer to Figure 1(a) in [26] for a schematic overview of scratch procedure.). Note that
the scratch procedure computes nd + 1 hashes H in total.

For the purpose of our TSIPE construction (in Figure 11), we use scratch function and the goal is that
searches for β number of nonces w1, . . . , wβ ∈ {0, 1}α−β−2 such that the first ζ bits (where ζ can be a
function of β) of each qi ← scratch(s, z, wi) are zero, for all i ∈ [1, β]. We refer the reader to Sec. 4 in [26]
for a more detailed description, correctness, and security (MPC-hardness) of the scratch procedure.

MPC-hard Function: scratch

Parameters: α, β, d, n ∈ N.
Building block: A hash function H : {0, 1}α → {0, 1}β with α ≥ 2β is computed by accessing the special
oracle OH (where OH allows for evaluating a fixed input-length hash function H).
Input: s ∈ {0, 1}n·(α−β−2) and z ∈ {0, 1}β , w ∈ {0, 1}α−β−2.

scratch(s, z, w):

1. Parse s as (s1∥s2∥ . . . ∥sn) where |sl| = α− β − 2 for all l ∈ [n]
2. For k = 1 to d:

(a) For l = 1 to n:
i. If k = 1 and l = 1 then compute: qk

l = H(00∥z∥w)
ii. Else If k ̸= 1 and l = 1 then compute: qk

l = H(10∥sn∥qk−1
n)

iii. Else If l = 2 then compute: qk
l = H(01∥s1∥qk

1)
iv. Else If l > 2 then compute: qk

l = H(01∥sl−1∥qk
l−1)

3. Compute q = H(10∥sn∥qd
n).

4. Output q

Fig. 1: Construction of a MPC-hard Function from [26].

9

We use the MPC-hard function scratch in our constructions, our goal is to later extract the inputs to
scratch from one of the transcripts τ fast

j of fast queries made to OH by one of the sub-adversaries Aj . To
argue about this extractability, we derive Lemma 1 below from the proof of Theorem 1 in [26].

Now, before proceeding with the formal Lemma 1, let us comment on another parameter in the
lemma statement. We define a party P as a η-bounded party if we bound the total number of fast
queries made by the party P to the oracle OH in the online phase by η. Note that each computation
of the scratch procedure requires (nd + 1) hashes H. For a party, observe that each scratch attempt
succeeds with probability 2−ζ (by “succeeding” we mean finding a value that starts with ζ zeros). Since
the party needs to be successful β times, the party needs, on average, ⌊(nd + 1) · 2ζ · β/(nd + 1)⌋ = 2ζ · β
scratch attempts. We set η to be the double of this parameter, i.e., η = β · (nd + 1) · 2ζ+1, to make the
probability that the party is successful (refer to Definition 2 in [26] for the formal statement) less than
β times exponentially small. Note that this budget allows the η-bounded party P to evaluate scratch
⌊η/(nd + 1)⌋ = ⌊(nd + 1) · 2ζ+1 · β/(nd + 1)⌋ = 2ζ+1 · β times.

Lemma 1 (Derived from [26]). Let scratch be the function defined in Figure 1 with parameters d, n ∈
N, and also let α, β, ζ ∈ N be arbitrary parameters with α ≥ 2β (where ζ can be a function of β) and a
special oracle OH that allows for evaluating a fixed input-length hash function H : {0, 1}α → {0, 1}β. Let
A1, . . . ,Aa be a (δ, Υ)-distributed adversary where δ ≤ d− 1 and Υ ≤ β · 2ζ−3. Let η = β · (nd + 1) · 2ζ+1

and P be a η-bounded party. For random s ∈ {0, 1}n·(α−β−2) and z ∈ {0, 1}β, the following holds:

1. The η-bounded party P can compute β number of nonces w1, . . . , wβ ∈ {0, 1}α−β−2 by accessing the
oracle OH such that for all i ∈ [β] the qi ← scratch(s, z, wi) has its first ζ bits equal to 0 except with
negligible probability over the choice of s, z.

2. If (δ, Υ)-distributed adversary A1, . . . ,Aa can compute β number of nonces w1, . . . , wβ ∈ {0, 1}α−β−2

such that for all i ∈ [1, β] the qi ← scratch(s, z, wi) has its first ζ bits equal to 0 with access to an
oracle OH, then except with negligible probability over the choice of s, z, there exists an extractor
kEXT(τ fast

j) that outputs s for at least one j ∈ [1, a], where τ fast
j is transcript of the fast hash queries

made to OH by the sub-adversaries Aj.

Proof (Sketch). This lemma follows from Theorem 1 of [26], which proves the security of the Proof of
Individual Knowledge scheme introduced in that work. Point 1 follows from the completeness of the Proof
of Individual Knowledge. Intuitively, an η-bounded party for η = β · (nd + 1) ·2ζ+1 can compute scratch a
sufficient number of times to find such β number of nonces w1, . . . , wβ by accessing the oracle OH, except
with negligible probability. Point 2 follows from the soundness of the Proof of Individual Knowledge,
more specifically from the existence of an extractor that successfully extracts a malicious prover’s witness
from τ fast

j for a sub-adversary Aj given a (δ, Υ)-distributed adversary A1, . . . ,Aa where δ ≤ d − 1 and
Υ ≤ β · 2ζ−3 with access to OH.

3 Encryption with Self-Incriminating Proofs

In this section, we introduce the notion of public key Encryption with Self-Incriminating Proof (SIPE).
This notion captures the fact that a decryptor who knows a secret key must produce a Self-Incriminating
Proof (SIP) when they decrypt a ciphertext generated under the corresponding public key. We capture
this property by requiring the decryption algorithm to output a valid SIP that can be verified by a new
SIP-verification algorithm, Vf. We observe that a simple SIPE notion where the adversary may choose
never to output the SIP it has produced is not useful for applications, besides implying the strong notion
of extractable witness encryption. Based on this observation, we introduce the notion of a public key
Encryption with Public Self-Incriminating Proof (PSIPE), where the decryptor is forced to publish the
SIP to successfully decrypt a ciphertext. Notably, this notion requires an underlying public ledger (where
the proof is published). We show a PSIPE construction based on witness encryption but also describe how
the public ledger, used during setup, allows us to realize the witness encryption needed via techniques
from [37].

3.1 Formal Syntax and Security Definitions

Here, we describe the syntax of SIPE, followed by formal security definitions.

Definition 3 (Encryption with Self-Incriminating Proofs). An encryption with self-incriminating
proof scheme SIPE consists of the following PPT algorithms (KG, Enc, Dec, Vf), which have the following
syntax:

10

1. (pk, sk) ← KG(1λ), the key generation algorithm takes as input a security parameter 1λ and outputs
a key-pair (pk, sk) where pk is a public key and sk is a secret key.

2. c← Enc(pk, m), the encryption algorithm takes as input the public key pk and a message m ∈ {0, 1}λ,
and outputs a ciphertext c.

3. (π, m)/⊥ ← Dec(pk, sk, c), the decryption algorithm takes as input the public key pk, the secret key
sk and a ciphertext c. It outputs a self-incriminating proof π and a plaintext message m.

4. 1/0 ← Vf(pk, c, π), the verification algorithm takes as input the public key pk, a ciphertext c and
a self-incriminating proof π. It outputs 1 if π is a valid self-incriminating proof for c, otherwise, it
outputs 0.

An encryption with self-incriminating proof scheme SIPE must satisfy the following properties: Cor-
rectness (Definition 4), Unforgeability (Definition 5), IND-CPA Security (Definition 6) and Self-
Incriminating Proof Extractability (Definition 7).

Correctness: The notion of correctness ensures that for a ciphertext correctly generated under a given
public key, decryption using the corresponding secret key will always output: (1) a valid self-incriminating
proof, and (2) the original plaintext message.

Definition 4 (Correctness). A scheme SIPE = (KG, Enc, Dec, Vf) is correct if for any security param-
eter λ and any message m ∈ {0, 1}λ, the following holds:

• Message decryption correctness:

Pr
[

Dec(pk, sk, c) = (π, m)

∣∣∣∣∣(pk, sk)← KG(1λ)
c← Enc(pk, m)

]
= 1

• Self-incriminating proof correctness:

Pr
[

Vf(pk, c, π) = 1
Dec(pk, sk, c) = (π, m)

∣∣∣∣∣(pk, sk)← KG(1λ)
c← Enc(pk, m)

]
= 1

Unforgeability: We define a notion of unforgeability for the self-incriminating proofs produced by our
primitive which is similar to the notion of existential unforgeability under chosen message attacks for
signatures [34]. This type of unforgeability ensures that an adversary should not be able to generate
self-incriminating proof for a ciphertext encrypted under a certain public key if they do not possess the
corresponding secret key. This holds even if the adversary is the one generating the ciphertext, which is
important to avoid falsely incriminating a decryptor. We formally define this notion in Definition 5 via a
game GameUnforge

SIPE,A, which is presented in Figure 2.

GameUnforge
SIPE,A

Game steps:

1. Initialize an empty list Q ← ∅
2. (pk, sk)← KG(1λ)
3. (c′, π′)← AODec

sk (1λ, pk)

Oracle:

ODec
sk (c) :

1. Q ← Q∪ c

2. (π, m)← Dec(pk, sk, c)
3. return (π, m)

The adversary’s advantage in this game is:

AdvUnforge
SIPE,A = Pr

[
Vf(pk, c′, π′) = 1 ∧ c′ /∈ Q

]
Fig. 2: Unforgeability Game for SIPE scheme executed between a challenger and an adversary A given
unlimited oracle access to ODec

sk (c).

11

Definition 5 (Unforgeability). A scheme SIPE = (KG, Enc, Dec, Vf) is unforgeable if for any security
parameter λ and for all PPT adversaries A given unlimited oracle access to ODec

sk (·), advantage AdvUnforge
SIPE,A

of the GameUnforge
SIPE,A (in Figure 2) is negligible.

IND-CPA Security: We define IND-CPA Security for Encryption with Self-Incriminating Proof in
the standard manner. This notion is formally defined in Definition 6 via a game GameIND-CPA

SIPE,A , which is
presented in Figure 3.

GameIND-CPA
SIPE,A

Game steps:

1. (pk, sk)← KG(1λ)
2. (st, m0, m1)← A1(1λ, pk)
3. Sample b

$← {0, 1}
4. cb ← Enc(pk, mb)
5. b′ ← A2(1λ, st, pk, cb)
6. return b′

As there are only two outcomes, there is a 1
2 probability that a random guess will be correct, the adversary’s

advantage in this game is:
AdvIND-CPA

SIPE,A =
∣∣∣Pr

[
b = b′]− 1

2

∣∣∣
Fig. 3: IND-CPA Security Game for SIPE scheme.

Definition 6 (IND-CPA Security). A scheme SIPE = (KG, Enc, Dec, Vf) is IND-CPA secure if for
any security parameter λ and for all PPT adversaries A = (A1,A2), advantage AdvIND-CPA

SIPE,A of A in
GameIND-CPA

SIPE,A (in Figure 3) is negligible.

Self-Incriminating Proof Extractability. This property guarantees that decryption always produces
a self-incriminating proof, i.e., there exists an extractor that can obtain this proof by interacting with
an adversary who succeeds in distinguishing between challenge ciphertexts. We formalize this notion in
Definition 7 via a game GameSIP-Ext

SIPE,A for self-incriminating proof extractability with a standard monolithic
adversary, shown in Figure 4.

GameSIP-Ext
SIPE,A

Game steps:

1. (pk, sk)← KG(1λ) ; // Guarantee that the keys are generated correctly.

2. (st, m0, m1)← A1(1λ, pk, sk)
3. Samples b

$← {0, 1}
4. cb ← Enc(pk, mb)
5. b′ ← A2(st, cb)

As there are only two outcomes, there is a 1
2 probability that a random guess will be correct, the adversary’s

advantage in this game is:

AdvSIP-Ext
SIPE,A =

∣∣∣Pr
[
b = b′]− 1

2

∣∣∣
The extractor EXT’s advantage in this game is:

SuccSIPE
EXT =

∣∣Pr
[
π ← EXT(A1(1λ, pk, sk),A2(st, cb)) | Vf(pk, cb, π) = 1

]∣∣
Fig. 4: Self-Incriminating Proof Extractability Game for SIPE scheme.

12

Definition 7 (Self-Incriminating Proof Extractability). A scheme SIPE = (KG, Enc, Dec, Vf) has
self-incriminating proof extractability if for any security parameter λ and for all polynomials p(·) and
PPT adversaries A = (A1(1λ, pk, sk),A2(st, cb)) with AdvSIP-Ext

SIPE,A in GameSIP-Ext
SIPE,A (Figure 4), there exist a

polynomial q(·) and PPT extractor EXT that outputs π ← EXT(A1,A2) such that Vf(pk, cb, π) = 1 with
success probability SuccSIPE

EXT such that the following holds:

AdvSIP-Ext
SIPE,A ≥

1
p(λ) ⇒ SuccSIPE

EXT ≥
1

q(λ)

3.2 Theoretical and Practical Issues with SIPE Notion

We introduce SIPE in the monolithic adversary setting (in Definition 3). This notion captures that a
decryptor who knows a secret key must produce a Self-Incriminating Proof (SIP) when they decrypt a
ciphertext, generated under the corresponding public key. However, we observe that a simple SIPE notion
in the monolithic adversary setting seems very hard to realize based on standard assumptions. Namely,
formalizing that a SIP must be produced by an adversary who knows the secret key, requires us to define
a notion of extractability akin to extractable witness encryption. Besides the seeming relationship of this
notion with very strong primitives, even if we could do it, its usefulness would be unclear. More specifically,
the adversary may just choose to erase the SIP that it is forced to produce during decryption. Hence, the
original SIPE notion is not very useful for any real-world applications. This is our main motivation for
investigating the stronger notion of Encryption with Public Self-Incriminating Proof, which we introduce
in Sec. 4. While this stronger notion requires a public ledger as a setup, it solves the significant practical
and theoretical shortcomings of our original SIPE notion.

4 Encryption with Public Self-Incriminating Proof

Since the notion of Self-Incriminating Proof Extractability has limited applicability and is strongly related
to extractable witness encryption, we investigate a variation of this notion that moreover requires the SIP
to be published. The notion of Encryption with Public Self-Incriminating Proof (PSIPE) is stronger than
the former notion but provides a more meaningful guarantee. While it must be defined with respect to
a public ledger (for publishing SIPs), this setup also helps realize it without resorting to strong building
blocks. We define PSIPE in Definition 8, followed by formal security properties. Then we provide a
construction of our PSIPE in Figure 6.

Intuitively, our primitive allows for creating ciphertexts that can only be decrypted by a party if the
party has published a SIP on the public ledger. To capture the notion of a public ledger in our security
games, we use the model of a PoS blockchain-based public ledger protocol execution introduced in [37]
and recalled in 2.2. In this model, algorithms are defined in the context of a blockchain Γ V , meaning that
parties executing these algorithms are also part of an execution of an underlying blockchain protocol.
This protocol is used to implement the public ledger we require, where parties that execute the protocol
can read/write messages. Given such a protocol execution, it is possible to non-interactively verify if a
future state B̃ of the ledger has evolved from an initial state B, which is crucial for our definitions and
constructions. This verification is captured by the evolving blockchain predicate (defined in Sec. 2.2), i.e.,
evolved(B, B̃) = 1 iff B̃ is obtained as a future state of executing the blockchain protocol starting from B.

We believe that a PoS blockchain is the minimal primitive we can use to fulfill our requirements since
it exactly affords an incorruptible, public append-only database, whose updates are validated based on
an NP-relation. All of these are features we require in our PSIPE solution.

Definition 8 (Encryption with Public Self-Incriminating Proof). An encryption with public self-
incriminating proof scheme PSIPE consists of the following PPT algorithms (KG, Enc, Dec, Vf, ProofExt)
in the context of a blockchain Γ V with evolved predicate evolved (as in Definition 1), which have the
following syntax:

1. (pk, sk)← KG(1λ): same as SIPE.KG(1λ).
2. c← Enc(pk, m): same as SIPE.Enc(pk, m).
3. (m, π)/⊥ ← Dec(pk, sk, c): same as SIPE.Dec(pk, sk, c).
4. 1/0← Vf(pk, c, π): same as SIPE.Vf(pk, c, π).

13

5. π/⊥ ← ProofExt(pk, c), the self-incriminating proof extraction algorithm takes as input the public key
pk and a ciphertext c. It extracts the self-incriminating proof π of the corresponding ciphertext c from
the underlying blockchain Γ V and outputs π, otherwise output ⊥.

An encryption with public self-incriminating proof PSIPE scheme must satisfy the following properties:
Correctness, Unforgeability, IND-CPA Security and Public Self-Incriminating Proof (Defi-
nition 9).

The Correctness, Unforgeability, and IND-CPA Security properties of our PSIPE primitive are
identical to those of SIPE (defined in Definition 3) as specified in Definition 4, Definition 5, and Defini-
tion 6, respectively.

Public Self-Incriminating Proof. We formalize the public self-incriminating proof property in the
context of a blockchain Γ in Definition 9 via a game GamePUB-SIP

PSIPE,A,Γ , presented in Figure 5. For this notion,
we need to ensure that the key pair has been generated correctly, rather than allowing the adversary to
generate an arbitrary key pair. In order to capture this requirement in the simplest way possible, the
challenger generates the key pair and gives it to the adversary. This can captured by requiring key
registration, i.e., each party must publish their public key on the public ledger together with a zero-
knowledge proof of knowledge of a valid corresponding secret key.

GamePUB-SIP
PSIPE,A,Γ

Game steps:

1. (pk, sk)← KG(1λ) ; // Guarantee that the keys are generated correctly.

2. VIEW← EXECΓ (A1(1λ, pk, sk),Z, 1λ) ; // Execute the blockchain protocol

3. (st1, m0, m1)← A2(1λ, pk, sk, VIEWA1) ; // Get adversary’s view VIEWA1 from VIEW

4. Samples b
$← {0, 1}

5. cb ← Enc(pk, mb)
6. st2 ← A3(st1, cb) ; // Allow the adversary to compute on cb

7. VIEW′ ← EXECΓ (A4(st2),Z, 1λ) ; // Execute the blockchain protocol

8. VIEW′
A4 ← VIEW′ ; // Get adversary’s view VIEW′

A4 from VIEW′

9. b′ ← A5(st2, VIEW′
A4)

As there are only two outcomes, there is a 1
2 probability that a random guess will be correct, the adversary’s

advantage in this game is:
AdvPUB-SIP

PSIPE,A,Γ =
∣∣∣Pr

[
b = b′]− 1

2

∣∣∣
The extractor EXT’s success probability in this game is:

SuccPSIPE
EXT,i = |Pr [π ← EXT(pk, cb, B̃i) | Vf(pk, cb, π) = 1]|

Where st ← UpdateState(1λ) and B̃i ← GetRecords(1λ, s̃t) are executed on honest party Pi’s view VIEW′
Pi

obtained from VIEW′.

Fig. 5: Public Self-Incriminating Proof game for PSIPE scheme.

Definition 9 (Public Self-Incriminating Proof). A scheme PSIPE in the context of a blockchain
protocol Γ executed by PPT machines A = (A1,A2,A3,A4,A5) and Z has the public self-incriminating
proof property if for any security parameter λ, any polynomial p(·), any Z and any A with advantage
AdvPUB-SIP

PSIPE,A,Γ in GamePUB-SIP
PSIPE,A,Γ , there exists a polynomial q(·) and a PPT extractor EXT that outputs

π ← EXT(pk, cb, B̃i) such that Vf(pk, cb, π) = 1 for B̃i ← GetRecords(1λ, s̃t) obtained by any honest party
Pi from s̃t← UpdateState(1λ) executed on its VIEW′Pi

∈ VIEW′ with success probability SuccPSIPE
EXT,i where

AdvPUB-SIP
PSIPE,A,Γ ≥

1
p(λ) ⇒ SuccPSIPE

EXT,i ≥
1

q(λ)

Remark 1 (On the requirement of Proof-of-Stake for PSIPE). The PSIPE definition requires a notion of
consensus that allows for third parties to non-interactively verify that a message is agreed upon without

14

participating in a protocol execution. This is the case because the decryption algorithm must make
sure that an adversary has indeed published a SIP as part of the decryption process. However, that
step in decryption is inherently non-interactive, precluding the use of an ideal bulletin board, which
requires interaction in order to verify that a message has been published. While non-interactive proofs
that a message has been agreed upon can be obtained for classical byzantine agreement protocols, their
guarantees under semi-synchrony or asynchrony are limited by fundamental impossibility results and their
scalability is limited by round/communication complexity lower bounds. Hence, we base our definition on
the weaker notion of blockchain-based consensus, which both circumvents such impossibility results over
semi-synchronous networks and allow for large scale executions of the consensus protocol. We specifically
base our definition on Proof-of-Stake (PoS) blockchains because in a Proof-of-Work (PoW) blockchain the
adversary can always simulate a chain where it generates all blocks. Notice, however, that while the PoS
blockchain model matches this requirement, it can also be obtained by alternative consensus protocols
with similar non-interactive proofs of agreement, e.g., HotStuff [47].

IND-CPA Security vs. Public Self-Incriminating Proofs. Notice that we do not formally require that a
published SIP for a decrypted ciphertext c leaks no information about the message contained in c (i.e.,
that IND-CPA Security holds even when the adversary has access to a SIP published when decrypting c).
While this is a desirable property for many applications, we aim at defining a notion of PSIPE that is as
general as possible, which includes potentially allowing for publishing a SIP that does reveal information
about plaintext messages in decrypted ciphertexts. We hope that presenting such a definition will allow
for obtaining potentially more efficient constructions based on weaker assumptions and simpler building
blocks. Notice, however, that the PSIPE construction presented in this section does guarantee that a SIP
leaks no information about the plaintext message in decrypted ciphertexts, since a SIP in this construction
is simply a signature on a random string chosen independently from the message.

4.1 Construction of PSIPE

In this section, we present a concrete construction of encryption with public self-incriminating proof
PSIPE = (KG, Enc, Dec, Vf, ProofExt), which we call ΠPSIPE. Our construction is described formally in
Figure 6. We require as setup a blockchain protocol Γ = (UpdateState, GetRecords, Broadcast) with validity
predicate V (discussed in Sec. 2.2). We realize the notion of PSIPE from a signature scheme SIG =
(KG, Sign, Vf) (in Definition 15) and an extractable witness encryption scheme eWE = (Enc, Dec) (in
Definition 21) for the language LΓ V specified by the relation RΓ V (in Definition 2).

In Sec. 4.3, we observe that since we assume a PoS blockchain as a setup, the witness encryption
scheme can be realized under standard assumptions via the extractable Witness Encryption on Blockchain
(eWEB) notion of [37] using techniques from [37] and [12].

Overview of our ΠPSIPE. At a high level, the core idea is to force the decryptor to produce and publish
on the blockchain a signature π on a reference signing message d for the message m, and the signature
must be valid under a given public key pk in order to decrypt a ciphertext c.

To achieve this, we encrypt a message m using a eWE scheme with respect to a statement (pk, d, B),
where d is the reference signing message d for the message m, pk is the prescribed public key and B
denotes the current state of the blockchain. This outputs a ciphertext ĉ and finally defining our PSIPE
ciphertext as c = (ĉ, d).

To decrypt ciphertext c = (ĉ, d), the decryptor must first generate a signature π on d, and then ĉ
can only be decrypted by a party who has a witness (π, B̃) where B̃ denotes a future valid state of the
blockchain that evolved from B containing π such that π verifies as a valid signature on d under pk.
Therefore, the decryptor is forced to publish π in order to obtain a B̃ that allows it to decrypt ĉ.

We build on a Proof-of-Stake blockchain as it has been shown that it is possible to non-interactively
verify whether a blockchain B̃ evolved from a previous blockchain B via an honest protocol execution [36]
and ensure that the protocol cannot be abused to decrypt a ciphertext without publishing a SIP.

4.2 Security Analysis

We formally state the security of ΠPSIPE in Theorem 1, which is proven in Appendix B.

Theorem 1. Assuming that: (i) Γ is a blockchain protocol (as in Definition 31) with validity predi-
cate V , the (α, β, ℓ1, ℓ2)-distinguishable forking property (as in Definition 37) and associated predicate

15

Construction of PSIPE Scheme: ΠPSIPE

Parameters: A security parameter λ.
Building-blocks: Our construction uses the following building blocks:

– A blockchain protocol Γ = (UpdateState, GetRecords, Broadcast) (as in Definition 31) with validity predicate
V and the (α, β, ℓ1, ℓ2)-distinguishable forking property (as in Definition 37) and associated predicate
evolved(B, B̃) ∈ {0, 1} (as in Definition 1).

– An extractable witness encryption scheme eWE = (Enc, Dec) (defined in Sec. 2.1) for the language LΓ V

specified by the relation RΓ V (defined in Definition 2).
– An EUF-CMA secure signature scheme SIG = (KG, Sign, Vf) (described in Sec. 2.1).

• KG(1λ):
1. Run (pk, sk)← SIG.KG(1λ).
2. Output (pk, sk).

• Enc(pk, m):
1. Run st← UpdateState(1λ) and B← GetRecords(1λ, st).
2. A randomly chosen d ∈ {0, 1}λ for the message m.
3. Encrypt the message m as ĉ← eWE.Enc(1λ,LΓ V , (pk, d, B), m), where (pk, d, B) ∈ LΓ V .
4. Output c = (ĉ, d).

• Dec(pk, sk, c):
1. Parse c as (ĉ, d).
2. Compute the self-incriminating proof as π ← SIG.Sign(pk, sk, d).
3. Publish the self-incriminating proof π on the blockchain Γ by executing Broadcast(1λ, (pk, d, π)).
4. Run s̃t ← UpdateState(1λ) and B̃ ← GetRecords(1λ, s̃t) until the message (pk, d, π) appears in a block

B∗ ∈ B̃ of blockchain B̃ such that the chain extends B∗ by ℓ1 + ℓ2 block.
5. Decrypt ĉ with self-incriminating proof π and B̃; m← eWE.Dec(ĉ, (π, B̃)).
6. Output (m, π).

• Vf(pk, c, π):
1. Parse c as (ĉ, d).
2. Output SIG.Vf(pk, d, π).

• ProofExt(pk, c):
1. Parse c as (ĉ, d).
2. Run s̃t← UpdateState(1λ) and B̃← GetRecords(1λ, s̃t).
3. Find a block B∗ ∈ B̃⌈ℓ1+ℓ2 containing the record (pk, d, π) ∈ B∗, and output π.
4. Otherwise, if (pk, d, π) /∈ B̃, then output ⊥.

Fig. 6: Construction of Encryption with Public Self-Incriminating Proof.

evolved(B, B̃) ∈ {0, 1} (as in Definition 1), (ii) eWE is an extractable witness encryption scheme (as in
Definition 21) for the language LΓ V specified by the relation RΓ V (Definition 2), (iii) SIG is a EUF-CMA
secure signature scheme as per Definition 15. Then our protocol ΠPSIPE in Figure 6 is a secure encryption
with public self-incriminating proof scheme PSIPE as per Definition 8.

4.3 Instantiating ΠPSIPE

In the construction of ΠPSIPE in Figure 6 we employ a extractable witness encryption (eWE) scheme as
a building block. Although we only require a eWE scheme that supports one specific language, it is an
arguably complex language and no such schemes are known under standard assumptions. Hence, in order
to obtain a concrete instantiation of ΠPSIPE, we build on the underlying blockchain-based public ledger
to instantiate a eWE scheme for the language we require while using only standard assumptions.

It has been shown in [37] that a flavor of (extractable) witness encryption can be realized using a Proof-
of-Stake (PoS) blockchain ledger as setup, which we already do in ΠPSIPE. This notion is called extractable
Witness Encryption on a Blockchain (eWEB) and provides the same functionality as a regular extractable
WE scheme, provided that the parties executing the eWEB scheme have access to the underlying PoS
ledger. The main idea of the eWEB construction of [37] is to use dynamic proactive secret sharing to store
the encrypted message in such a way that it can be re-shared towards new committees as parties join and
leave the PoS blockchain protocol execution. When a party who knows a witness to the instance under
which a ciphertext was generated wants to decrypt it, they publish a non-interactive zero knowledge proof

16

of knowledge of that witness, which allows the committee to verify whether the party indeed knows the
witness (also allowed the simulator to extract this witness). Extractable privacy for eWEB holds given
that the majority of the committee is honest, and thus refuses to help a party reconstruct an encrypted
message unless it publishes such a valid NIZKPoK.

In order to meaningfully employ eWEB in instantiating our ΠPSIPE construction, we must prevent
dynamic proactive secret sharing committees from leaking messages encrypted under eWEB without
being detected, which would circumvent the need to publish a self-incriminating proof. Notice that we
cannot prevent such a committee from leaking a message, but in our case it is sufficient that this leakage
is detected in public if it happens. We achieve this property via the techniques of [12] by storing each
message encrypted under eWEB as shares held by dynamic anonymous committees chosen at random.
Since each committee is anonymous, even an adaptive adversary does not know which parties to corrupt
to take control of a committee (as in the YOSO model [31]). We observe that this construction can be
instantiated with the efficient publicly verifiable secret sharing scheme for random anonymous committees
presented in [14], which also allows for the secret to be periodically re-shared towards a newly selected
dynamic anonymous committee.

The key observation of [12], is that since each secret message is held by a different anonymous com-
mittee chosen at random, adversarial committee members cannot leak the secret without communicat-
ing in public (e.g., announcing their shares, or their willingness to leak shares). Hence, we can modify
the eWEB construction of [37] to employ such publicly verifiable secret sharing with randomly chosen
dynamic anonymous committees to store messages encrypted under eWEB, instead of using standard
dynamic proactive secret sharing. Notice that this only modifies the encryption step of the construction
from [37], requiring encryptors to use this alternative secret sharing scheme, while the decryption remains
the same. As observed in [12], instead of requiring a new committee to hold shares of each encrypted
message, this solution can be instantiated by threshold encrypting under a public key whose correspond-
ing secret key shares are held by randomly chosen dynamic anonymous committees, who re-share this
secret key towards new committees whenever a decryption happens or when parties leave the protocol
execution (akin to a YOSO threshold encryption scheme [7]).

Notice that even when randomly chosen dynamic anonymous committees are employed, an attacker
may still offer to bribe committee members to leak their shares. Such a bribe proposition can be publicized
by the attacker, who is then contacted privately by each opportunistic committee member. This sort
of attack can be thwarted in our setting by choosing larger committees in way that providing such
bribes to sufficiently many committee members becomes economically infeasible. Analysing such incentive
structures is beyond the scope of this work. Providing such an analysis as well as alternative constructions
of eWEB that offer better resilience against such attacks is left for future works.

5 Threshold Encryption with Self-Incriminating Proof

In this section, we introduce a novel primitive called “threshold encryption with self-incriminating proof”
(TSIPE). A threshold encryption system assigns a key share to each of the n parties so that at least
t + 1 of these parties can decrypt a ciphertext. As in the standard public key encryption case, any set
of t parties can perform an out-of-band attack to decrypt a ciphertext without being detected. However,
since multiple parties need to cooperate in order to perform decryption, we do not necessarily need to
force the SIP to be published. Instead, our notion of TSIPE guarantees that one of the parties involved
in decryption learns a SIP; this party can then choose to leak the proof at any time5.

In order to argue about security in the threshold setting, we use the Distributed Adversary model and
the notion of MPC-hard computation introduced by Dziembowski et al. [26], which we recall in Sec. 2.3.
This model allows us to argue about security in a setting where all parties are potentially corrupted and
may collude in order to decrypt arbitrary ciphertexts but must do so by means of an interactive protocol
that evaluates a MPC-hard function. A distributed adversary is composed of multiple sub-adversaries
A1, . . . ,Aa who may interact with the others when performing an attack. When evaluating the MPC-
hard function within an MPC protocol, the communication and computational overhead are captured by
means of an oracle OH, which the parties must call via “slow” queries. While each sub-adversary has a
strict bound on the number of “slow” calls to this oracle, they may perform a much larger number of
“fast” calls only bounded by their runtime, which models computing the MPC-hard function in the clear.

We provide a formal syntax and security definition of our primitive TSIPE in Sec. 5.1. Finally, we
provide a construction of TSIPE in Sec. 5.2.
5 A rational party can be incentivized to publish this proof of decryption.

17

Obtaining a Threshold Version of PSIPE. The goal of our TSIPE notion is to ensure that one party
executing a threshold decryption protocol learns a SIP without requiring a public ledger as setup as in
our previous PSIPE notion. Notice, however, that it is possible to trivially obtain a threshold version
of our PSIPE construction, where the decryption power is shared among a number of parties and the
SIP generated by a threshold decryption operation is guaranteed to be published. This can be done by
realizing our PSIPE construction using a threshold signature protocol along with a suitable distributed
key generation protocol to distribute secret shares of the signing key to the set of parties performing
decryption. In this setting, a minimum number of parties must collaborate to generate the signature
π on d that is used as SIP and that must be published on the public ledger in order to decrypt the
eWE ciphertext containing the message. The rest of the construction does not need to be modified, since
composable threshold signature protocols and distributed key generation protocols can be obtained in
general for any signature scheme (in case efficient specific purpose protocols for a given signature scheme
do not exist, they can be obtained via general purpose secure multi-party computation). In the remainder
of this section, our goal is to obtain a notion of TSIPE where a public ledger is not required, and instead
obtain a weaker guarantee that at least one party obtains a SIP by exploring the fact that a set of
computationally constrained parties must execute an interactive threshold decryption protocol. While
this notion does not guarantee that this SIP will be learned by an honest party, it significantly relaxes
the setup assumptions we must rely on in the PSIPE setting.

5.1 Formal Syntax and Security Definitions

We first describe the syntax of TSIPE, followed by formal security definitions.

Definition 10 (Threshold Encryption with Self-Incriminating Proof). A threshold encryption
with self-incriminating proof scheme TSIPE consists of the following probabilistic polynomial-time (PPT)
algorithms (Setup, Enc, ParDec, Combine, Vf) with the following syntax:

1. (pk, {ski}i∈[n])← Setup(1λ, n, t), the key generation algorithm is executed by a trusted third party. It
takes as input the computational security parameter λ, the number of parties n, and the threshold t
and outputs (pk, {ski}i∈[n]) where pk is the public key and ski is threshold decryption key share for
party Pi. The trust third party distributes ski to each party Pi before execution starts.

2. c← Enc(pk, m), the encryption algorithm takes as input the public key pk and a message m ∈ {0, 1}λ.
It outputs a ciphertext c.

3. νi ← ParDec(ski, c), the partial decryption algorithm takes as input a secret key share ski and a
ciphertext c, outputting a partial decryption νi.

4. (m, π)/⊥ ← Combine(pk, ski, c, {νi}i∈T), the partial decryption combining algorithm that takes as
input the public key pk, a secret key share ski and the partial decryption {νi}i∈T for a set T where
|T | ≥ t + 1. It outputs a message m and a self-incriminating proof π, otherwise, it outputs ⊥.

5. 1/0 ← Vf(pk, c, π), the verification algorithm takes as input the public key pk, the ciphertext c, and
the self-incriminating proof π. It outputs 1 if π is a valid self-incriminating proof, otherwise outputs
0.

A threshold encryption scheme self-incriminating proof TSIPE scheme must satisfy the following prop-
erties: Correctness (Definition 11), Unforgeability (Definition 12), IND-CPA Security (Defini-
tion 13), and Self-Incriminating Proof Extractability (Definition 14).

Correctness The notion of correctness ensures that: (1) a set of at least t honestly generated partial de-
cryptions always produce the original message and a correct self-incriminating proof, and (2) an honestly
generated self-incriminating proof always verifies.

Definition 11 (Correctness). A threshold encryption scheme self-incriminating proof scheme TSIPE =
(Setup, Enc, ParDec, Combine, Vf) is correct if for any security parameter λ, any n, t ∈ N where 0 < t < n
and any message m ∈ {0, 1}λ, we have the following two following properties:

• Combined decryption correctness: for any T ⊆ {ski}i∈[n] with |T | ≥ t + 1 and i ∈ T and any
message m ∈ {0, 1}λ we have that,

Pr

Combine(pk, ski, c, {νi}i∈T) = (m, π)

∣∣∣∣∣∣∣
(pk, {ski}i∈[n])← Setup(1λ, n, t)
c← Enc(pk, m)
∀i ∈ T : νi ← ParDec(ski, c)

 = 1

18

• Self-incriminating proof correctness: for any T ⊆ {ski}i∈[n] with |T | ≥ t + 1 and i ∈ T and any
message m ∈ {0, 1}λ we have that,

Pr

Vf(pk, c, π) = 1
Combine(pk, ski, c, {νi}i∈T) = (m, π)

∣∣∣∣∣∣∣
(pk, {ski}i∈[n])← Setup(1λ, n, t)
c← Enc(pk, m)
∀i ∈ T : νi ← ParDec(ski, c)

 = 1

Unforgeability. The notion of unforgeability ensures that an adversary should not be able to forge
self-incriminating proofs for a ciphertext. In the threshold case, our notion of unforgeability holds only in
the case where the party generating a ciphertext is not part of the decryption committee, i.e., when the
forger does not possess a secret key share. While we do not guarantee unforgeability against a member of
the decryption committee, we argue that this notion is sufficient for many applications where threshold
decryption is provided as a service for ciphertexts given as input by clients who are not in the decryption
committee. In this case, a decryption committee member generating a “forged” SIP for an arbitrary
ciphertext that they generate locally does not imply misbehavior.

We wish to guarantee security against two different attacks: 1. An adversary who is not part of the
decryption committee and tries to forge a SIP against the decryption committee; 2. A subset T of the
decryption committee with |T | ≤ t (i.e., without the power to decrypt) who tries to forge a SIP against the
decryption committee. The first scenario is captured by a variation of the game for Unforgeability against a
monolithic adversary with has access to the public key and a decryption oracle that we have defined for the
standard public key encryption scenario. In the context of threshold schemes, we define game GameUnforge1

TSIPE,A,
presented in Figure 7, where a monolithic adversary has access to the public key and to a decryption
oracle that will decrypt any ciphertext under any sufficiently large set of secret key shares, generating
a SIP under any secret key share. The second scenario is formalized in GameUnforge2

TSIPE,A1,...,Aa
, presented

in Figure 8. In this game, a subset of the decryption committee has access to an oracle that generates
decryption shares and another oracle that generates ciphertexts encrypting arbitrary messages while
keeping the encryption randomness secret. This captures the guarantee that subsets of the decryption
committee are not able to forge a SIP for a ciphertext that was generated by a third party but not yet
decrypted.

Requiring that the adversaries have a negligible advantage in both aforementioned games captures
the fact that we guarantee unforgeability only against an adversary who does not collude with the
decryption committee (or is part of the decryption committee itself). We formalize self-incriminating
proof unforgeability in Definition 12 via games GameUnforge1

TSIPE,A and GameUnforge2
TSIPE,A1,...,Aa

presented in Figures 7
and 8, respectively.

GameUnforge1
TSIPE,A

Game steps:

1. Initialize an empty list Q ← ∅
2. The adversary A picks n and t.
3. (pk, {ski}i∈[n])← Setup(1λ, n, t)

4. (c′, π′)← A
ODec

ski∈[n] (1λ, pk)

Oracle:

ODec
ski∈[n]

(j, T, c) :
1. Q ← Q∪ c

2. For i ∈ T , νi ← ParDec(ski, c)
3. (π, m)← Combine(pk, skj , c, {νi}i∈T)
4. return (π, m)

The adversary’s advantage in this game is:

AdvUnforge1
TSIPE,A = Pr

[
Vf(pk, c′, π′) = 1 ∧ c′ /∈ Q

]
Fig. 7: Self-Incriminating Proof Unforgeability Game for TSIPE with a monolithic adversary (A) given pk
and oracle access to ODec

ski∈[n]
(j, T, c).

Definition 12 (Unforgeability). A threshold encryption scheme self-incriminating proof scheme
TSIPE = (Setup, Enc, ParDec, Combine, Vf) is unforgeable if for any security parameter λ, for any n, t ∈ N

19

GameUnforge2
TSIPE,A1,...,Aa

Game steps:

1. Initialize an empty list Q ← ∅
2. The (δ, Υ)-distributed adversary (A1, . . . ,Aa) picks n and t.
3. A1, . . . ,Aa chooses a subset T̃ ⊂ [n] of parties to corrupt, such that |T̃ | = a ≤ t.
4. (pk, {ski}i∈[n])← Setup(1λ, n, t)

5. The sub-adversaries A
OParDec

sk
i∈[n]\T̃

,OEnc
pk

1 (1λ, sk1), . . . ,A
OParDec

sk
i∈[n]\T̃

,OEnc
pk

a (1λ, ska) engage in an interactive proto-
col with access to oracles OParDec

ski∈[n]\T̃
and OEnc

pk , at the end of which, A1 outputs (c′, π′).

Oracles:

OParDec
ski∈[n]\T̃

(i, c) :
1. Q ← Q∪ c
2. νi ← ParDec(ski, c)
3. return νi

OEnc
pk (m) :

1. c← Enc(pk, m)
2. return c

The adversary’s advantage in this game is:

AdvUnforge2
TSIPE,A = Pr

[
Vf(pk, c′, π′) = 1 ∧ c′ /∈ Q

]
Fig. 8: Self-Incriminating Proof Unforgeability Game for TSIPE with a (δ, Υ)-distributed adversary
(A1, . . . ,Aa) given oracle access to OParDec

ski∈[n]\T̃
(i, c) and OEnc

pk (m).

where 0 < t < n, for all PPT monolithic adversaries A and for all PPT (δ, Υ)-distributed adversaries
(A1, . . . ,Aa), the advantage AdvUnforge1

TSIPE,A of A in GameUnforge1
TSIPE,A (Figure 7) and the advantage AdvUnforge2

TSIPE,A of
(A1, . . . ,Aa) in GameUnforge2

TSIPE,A1,...,Aa
(Figure 8) are negligible.

IND-CPA Security: In Definition 13, we formalize IND-CPA Security for TSIPE in the usual manner
via a game GameIND-CPA

TSIPE,A1,...,Aa
between a challenger and a (δ, Υ)-distributed adversary (A1, . . . ,Aa),

presented in Figure 9.

GameIND-CPA
TSIPE,A1,...,Aa

Game steps:

1. The (δ, Υ)-distributed adversary (A1, . . . ,Aa) picks n and t.
2. A1, . . . ,Aa chooses a subset T̃ ⊂ [n] of parties to corrupt, such that |T̃ | = a ≤ t.
3. (pk, {ski}i∈[n])← Setup(1λ, n, t)
4. The sub-adversaries A1(1λ, pk, sk1), . . . ,Aa(1λ, pk, ska) engage in an interactive protocol, at the end of

which, A1 outputs (st, m0, m1).
5. Sample b

$← {0, 1}
6. cb ← Enc(pk, mb)
7. The sub-adversaries A1

(
1λ, st, pk, sk1, cb

)
, . . . ,Aa

(
1λ, st, pk, ska, cb

)
engage in an interactive protocol,

at the end of which, A1 outputs b′.
8. return b′

As there are only two outcomes, there is a 1
2 probability that a random guess will be correct, the adversary’s

advantage in this game is:
AdvIND-CPA

TSIPE,A1,...,Aa
=

∣∣∣Pr
[
b = b′]− 1

2

∣∣∣
Fig. 9: IND-CPA Security Game for TSIPE scheme.

Definition 13 (IND-CPA Security). A threshold encryption scheme self-incriminating proof scheme
TSIPE = (Setup, Enc, ParDec, Combine, Vf) is IND-CPA secure if for any n, t ∈ N where 0 < t < n, and

20

for all PPT (δ, Υ)-distributed adversary (A1, . . . ,Aa) where |a| ≤ t, the advantage AdvIND-CPA
TSIPE,A1,...,Aa

of
(A1, . . . ,Aa) in GameIND-CPA

TSIPE,A1,...,Aa
(in Figure 9) is negligible.

Self-Incriminating Proof Extractability. We define self-incriminating proof extractability for
Threshold Encryption with Self-Incriminating Proof, via a game GameSIP-SEC

TSIPE,A1,...,Aa
between a challenger

and (δ, Υ)-distributed adversary A1, . . . ,Aa. The game is presented in Figure 10.

GameSIP−SEC
TSIPE,A1,...,Aa

Game steps:

1. The (δ, Υ)-distributed adversary (A1, . . . ,Aa) picks n and t.
2. A1, . . . ,Aa chooses a subset T̃ ⊂ [n] of parties to corrupt, such that |T̃ | = a ≥ t + 1.
3. (pk, {ski}i∈[n])← Setup(1λ, n, t)
4. The sub-adversaries A1(1λ, pk, sk1), . . . ,Aa(1λ, pk, ska) engage in an interactive protocol with δ-bounded

access to oracle OH, at the end of which, A1 outputs (st, m0, m1).
5. Sample b

$← {0, 1}
6. cb ← Enc(pk, mb)
7. The sub-adversaries A1

(
1λ, st, pk, sk1, cb

)
, . . . ,Aa

(
1λ, st, pk, ska, cb

)
engage in an interactive protocol

with δ-bounded access to oracle OH, at the end of which, A1 outputs, b′.
8. return b′

As there are only two outcomes, there is a 1
2 probability that a random guess will be correct, the adversary’s

advantage in this game is:
AdvSIP−SEC

TSIPE,A1,...,Aa
=

∣∣∣Pr
[
b = b′]− 1

2

∣∣∣
Define extractor πi ← kEXTi(pp, c, ski, τ fast

i) for i ∈ [a] taking as input the public Setup values pp =
(λ, n, t, pk), the ciphertext c, secret key share ski, transcript τ fast

i of fast queries to oracle OH from sub-
adversary Ai, and outputs a SIP πi with the following success probability:

SuccTSIPE
kEXT = Pr

[
∃i ∈ [a] s.t. πi ← kEXTi(pp, c, ski, τ fast

i) ∧ Vf(pk, cb, πi) = 1
]

Fig. 10: Self-Incriminating Proof Security Game for TSIPE scheme.

Observe that unlike the work of Dziembowski et al. [26] described in Sec. 2.3, we require an extractor
kEXTi to not only take as input the transcript of fast calls to OH for a party holding ski, but also the
public setup parameters along with the secret key share ski itself. While on the surface this might seem
like cheating, we point out that this does not make the extractor trivial. In particular, at least t+1 secret
key shares should be required by any reasonable protocol in order to allow decryption. Thus, since each
extractor is individual and unable to communicate with the other extractors, we are not giving it more
power than any minimal party participating in the protocol. Furthermore, the notion is closely related
to the idea of a knowledge extractor for soundness in zero-knowledge proofs. In practice, it is reasonable
to assume that the Setup procedure is either carried out by a trusted third party or a distributed key
generation protocol. Hence, parties will only be convinced of the correctness of the setup if there is a
maliciously secure interactive protocol that has executed the setup, which will imply that the secret key
shares can be extracted at the moment of setup.

Definition 14 (Self-Incriminating Proof Extractability). A threshold encryption scheme self-
incriminating proof scheme TSIPE = (Setup, Enc, ParDec, Combine, Vf) has self-incriminating proof ex-
tractability if for any λ and n, t ∈ N where 0 < t < n, there exist knowledge extractors kEXT1, . . . , kEXTa

such that for every PPT (δ, Υ)-distributed adversary (A1, . . . ,Aa) where |a| ≥ t + 1 we have that,

SuccTSIPE
kEXT ≥ AdvSIP−SEC

TSIPE,A1,...,Aa
− negl(λ)

where AdvSIP−SEC
TSIPE,A1,...,Aa

is the advantage of A1, . . . ,Aa and SuccTSIPE
kEXT is the extractors’ success probability

in the GameSIP−SEC
TSIPE,A1,...,Aa

defined in Figure 10 and τ fast
j is a transcript of the queries that the sub-adversary

Aj has made to the oracle OH only in mode = fast (defined in Sec. 2.3).

21

5.2 Construction

In this section, we present a concrete construction of our threshold encryption with self-incriminating
TSIPE = (KG, Enc, ParDec, Combine, Vf), which we call ΠTSIPE. The formal construction of our scheme
ΠTSIPE is described in Figure 11.

Threshold Encryption with Self-Incriminating Proof Scheme: ΠTSIPE

Parameters: Security parameter λ, number of parties n and threshold t such that 0 < t < n, value α, β, ζ ∈ N with α ≥ 2β
(and ζ can be a function of β).
Building-blocks: Our construction uses the following building blocks:

– A threshold encryption scheme TE = (Setup, Enc, ParDec, Combine) described in Sec. 2.1.
– A commitment scheme CS = (Setup, Commit) described in Sec. 2.1.
– An MPC-hard function scratch described in Figure 1.
– A NIZKPoK proof system described in Sec 2.1.
– Random Oracles:

- H1 : {0, 1}(n+β)·(α−β−2) → {0, 1}λ.
- H2 : {0, 1}(n+β)·(α−β−2)+β2

→ {0, 1}λ.
- H3 : {0, 1}∗ → {0, 1}α−β−2.
- H4 : {0, 1}∗ → {0, 1}λ.

• Setup Phase: A trusted third party executes the Setup(1λ, n, t) algorithm as follows:
1. Run

(
pkTE, {skTE

i }i∈[n]

)
← TE.Setup

(
1λ, n, t

)
and ck← CS.Setup(1λ)

2. Compute cmski
= CS.Commit(ck, skTE

i ; ρski
) where ρski

← H4(skTE
i) for i ∈ [n].

3. Set pk = (pkTE, ck, {cmski
}i∈[n])

4. Finally: (i) Output ski = (skTE
i , ρski

) to party Pi; and (ii) Output pk to all parties.
• Enc(pk, m):

1. Parse pk as (pkTE, ck, {cmski
}i∈[n])

2. Choose two random s and z as: s
$← {0, 1}n·(α−β−2) and z

$← {0, 1}β .
3. Search for β number of nonces by setting cnt = 1, w1 = H3(pk∥s∥z∥cnt) and i = 1, and proceeding as follows:

(a) While i ≤ β then do the following:
i. Compute qi ← scratch(s, z, wi)

ii. If the first ζ bits of qi are 0 then do the following:
A. Record wi.
B. Set cnt = cnt + 1, wi+1 = H3(pk∥s∥z∥cnt) and i = i + 1, and go to (a).

iii. Else, set cnt = cnt + 1 and wi = H3(pk∥s∥z∥cnt), and go to (i).
4. Set w = (w1∥ . . . ∥wβ) and q = (q1∥ . . . ∥qβ)
5. Compute ρ as ρ = H1(s∥w)
6. Compute the following values:

c1 ← CS.Commit(ck, (s∥m); ρ), c2 ← TE.Enc (pkTE, s) , c3 = H2(s∥w∥q)⊕m

7. Output c = (c1, c2, c3, z).
• ParDec(ski, c):

1. Parse c as (c1, c2, c3) and ski as (skTE
i , ρski

).
2. Compute partial decryption νi ← TE.ParDec(skTE

i , c2)
3. Output νi.

• Combine(pk, ski, c, {νi}i∈T):
1. Parse pk as (pkTE, ck, {cmski

}i∈[n]), ski as (skTE
i , ρski

) and c as (c1, c2, c3, z).
2. Decrypt c2 by computing as: s← TE.Combine (pkTE, {µi}i∈T).
3. Search for β number of nonces by setting cnt = 1, w1 = H3(pk∥s∥z∥cnt) and i = 1, and proceeding as follows:

(a) While i ≤ β then do the following:
i. Compute qi ← scratch(s, z, wi)

ii. If the first ζ bits of qi are 0 then do the following:
A. Record wi.
B. Set cnt = cnt + 1, wi+1 = H3(pk∥s∥z∥cnt) and i = i + 1, and go to (a).

iii. Else, set cnt = cnt + 1 and wi = H3(pk∥s∥z∥cnt), and go to (i).
4. Set w = (w1∥ . . . ∥wβ) and q = (q1∥ . . . ∥qβ)
5. Compute ρ = H1(s∥w)
6. Retrieve the plaintext message as: m = c3 ⊕H2(s∥w∥q).
7. Compute a self-incriminating proof πi with ski = (skTE

i , ρski
) as:a

πi ← NIZKPoK
{(

s, ρ, m, skTE
i , ρski

)∣∣CS.Commit(ck, (s∥m); ρ) = c1 ∧
(
∨j∈[n]CS.Commit(ck, skTE

i ; ρski
) = cmskj

)}
8. Output (m, πi)

• Vf(pk, c, π):
1. Parse pk as (pkTE, ck, {cmski

}i∈[n]) and c as (c1, c2, c3, z).
2. Output 1 if π is a valid NIZKPoK for the statement above, otherwise output 0.

a Observe that any party with any ski for i ∈ [n] can compute a valid proof π ∈ {π1, . . . , πn}.

Fig. 11: Construction of Threshold Encryption with Self-Incriminating Proof

22

Overview of ΠTSIPE. We show a TSIPE construction, starting from a regular threshold encryption
scheme and embed the computation of an MPC-hard function in the threshold decryption process, us-
ing the input to this MPC-hard function to generate a SIP. The rationale is that we prevent the sub-
adversaries from executing the threshold decryption process within MPC in order to obtain the message
while discarding the SIP, which they cannot do as at least one sub-adversary must learn the input in
order to evaluate the MPC-hard function. A brief sketch of our protocol ΠTSIPE is described below:

To encrypt a message m, we first sample two random s
$← {0, 1}n·(α−β−2) and z

$← {0, 1}β as an input
to an MPC-hard function scratch(s, z, ·) and then search for β number of nonces w1, . . . , wβ ∈ {0, 1}α−β−2

by computing qi ← scratch(s, z, wi) such that the first ζ bits of qi are zero, for all i ∈ [1, β] (as described
in Step 2 in Figure 11), and we use its outputs to derive a one-time pad key as H2(s∥w∥q) using a
random oracle H2 where w = (w1∥ . . . ∥wβ) and q = (q1∥ . . . ∥qβ). Our ciphertext c = (c1, c2, c3, z) is
then composed by a commitment to c1 to (s, m), an encryption c2 of s with the underlying threshold
encryption scheme and c3 = H2(s∥w∥q) ⊕ m, akin to the technique of [27] but using the MPC-hard
function to obtain the extra values w, q needed to derive the “one-time pad” key encrypting m.

In order to decrypt c = (c1, c2, c3, z), a set of t+1 or more parties first threshold decrypt c2 and output
s, then the sub-adversaries must first compute w = (w1∥ . . . ∥wβ) and q = (q1∥ . . . ∥qβ) by computing an
MPC-hard function scratch(s, z, ·), which requires at least one of them to learn s. Finally, we can retrieves
the message as m = c3 ⊕H2(s∥w∥q).

Now notice that we can generate a SIP as a zero-knowledge proof showing knowledge of an opening
(s, m) to commitment c1 and of a secret key share for the underlying threshold encryption scheme, without
revealing which secret key share is used. A party simply verifies that SIP is a valid zero-knowledge proof
for the statement above with respect to ciphertext c = (c1, c2, c3, z).

Detecting Key Share Leakage in the Distributed Adversary Model. We analyze the security
of ΠTSIPE in the Distributed Adversary model, where it is assumed that multiple independent malicious
parties collaborate via an interactive protocol in order to break the TSIPE security guarantees. Hence,
we focus on the worst case where each malicious party keeps their decryption key share secret while
executing an arbitrary interactive protocol to achieve decryption without generating a SIP. However,
malicious parties could still send their shares to a single party who locally performs decryption. In order
to make it possible to generate a SIP in this case, we set cmski

= CS.Commit(ck, skTE
i ; ρski

) such that
ρski
← H4(skTE

i) where H4 : {0, 1}∗ → {0, 1}λ is a random oracle. Since skTE
i has enough min-entropy (as

it is a secret share) and H4 is a random oracle, ρski is indistinguishable from a uniformly random string of
same length to a PPT adversary and the commitment cmski remains computationally binding and hiding.
Generating cmski

in this manner allows any party who learns ski to prove (potentially in zero knowledge)
that they have an opening to cmski

, i.e., proving that ski has leaked. Combining t + 1 such proofs for
different ski gives a SIP that any ciphertext generated under the corresponding pk may be decrypted. We
observe that a commitment cmski

can also be used in external mechanisms to disincentivize parties from
sharing their key shares, e.g., through the use of a smart contract where a proof of knowledge of ski can
be used to non-interactively extract value from party i.

5.3 Security Analysis

We formally state the security of ΠTSIPE in Theorem 2, which is proven in Appendix C.

Theorem 2. Assuming that: (i) TE is an IND-CPA threshold encryption scheme as per Definition 24,
(ii) CS is a secure commitment scheme as per Definition 18, (iii) scratch is a correct and secure MPC-
hard function as per Figure 1, (iv) NIZKPoK is a secure non-interactive zero-knowledge proof of knowledge
system as per Definition 27, and (v) H1, H2, and H3 are random oracles. Let d, α, β, ζ ∈ N with α ≥ 2β
and β ∗ (β− ζ) ≥ 2λ (where ζ can be a function of β), s ∈ {0, 1}n·(α−β−2). Also, let η = β · (nd+1) ·2ζ+1,
Υ ≤ β · 2ζ−3 and δ ≤ d − 1. Then our protocol ΠTSIPE is a secure threshold encryption with self-
incriminating proof scheme TSIPE as per Definition 10 with η-bounded parties against a (δ, Υ)-distributed
adversary A1,TSIPE, . . . ,Aa,TSIPE (as defined in Sec. 2.3).

6 Conclusion

In this work, we have started the foundational work on self-incriminating proofs of decryption; ensuring
that if a ciphertext has been decrypted, then there is a public proof of this fact. We have shown how

23

to do this both in the standard public-key encryption case with our scheme encryption with public self-
incrimination proof PSIPE construction, by leveraging a proof-of-stake based public ledger and in the
threshold public-key encryption case with our scheme threshold encryption with public self-incrimination
proof TSIPE construction, presenting a big step in the direction for trusting outsourcing of secret key
material for encryption schemes. However, in the threshold setting our work only presents the first step
in insuring that secure outsourcing of secret keys, as we have not considered tracing the leakage to any
specific party. A promising direction for identifying cheating parties is integrating recent research in traitor
tracing [17,35,41] or traceable secret sharing [11,38] into a TSIPE construction, which we leave as future
work. Moreover, it is desirable to get a stronger notion of SIP unforgeability in the threshold case, ensuring
that a non-qualified set of parties in the decryption committee cannot forge a SIP for a ciphertext even
if they know its plaintext message and randomness. We leave achieving this stronger notion as future
work. In both cases, future work also remains on how to incentivize parties to both be available and
provide appropriate threshold decryption when requested, along with how to incentivize them not to
misuse shares, something we believe to be achievable by means of financial incentives orchestrated by
smart contracts on a blockchain.

References

1. Alwen, J., Katz, J., Lindell, Y., Persiano, G., shelat, a., Visconti, I.: Collusion-free multiparty computation in
the mediated model. In: Halevi, S. (ed.) Advances in Cryptology – CRYPTO 2009. Lecture Notes in Computer
Science, vol. 5677, pp. 524–540. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20, 2009).
https://doi.org/10.1007/978-3-642-03356-8_31

2. Alwen, J., Katz, J., Maurer, U., Zikas, V.: Collusion-preserving computation. In: Safavi-Naini, R., Canetti, R.
(eds.) Advances in Cryptology – CRYPTO 2012. Lecture Notes in Computer Science, vol. 7417, pp. 124–143.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2012). https://doi.org/10.1007/978-3-
642-32009-5_9

3. Alwen, J., shelat, a., Visconti, I.: Collusion-free protocols in the mediated model. In: Wagner, D. (ed.) Ad-
vances in Cryptology – CRYPTO 2008. Lecture Notes in Computer Science, vol. 5157, pp. 497–514. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–21, 2008). https://doi.org/10.1007/978-3-540-85174-
5_28

4. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) Advances in Cryptology
– CRYPTO’92. Lecture Notes in Computer Science, vol. 740, pp. 390–420. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 16–20, 1993). https://doi.org/10.1007/3-540-48071-4_28

5. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: Santis, A.D. (ed.) Advances in Cryptology –
EUROCRYPT’94. Lecture Notes in Computer Science, vol. 950, pp. 92–111. Springer, Heidelberg, Germany,
Perugia, Italy (May 9–12, 1995). https://doi.org/10.1007/BFb0053428

6. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty com-
putation. In: Paterson, K.G. (ed.) Advances in Cryptology – EUROCRYPT 2011. Lecture Notes in Com-
puter Science, vol. 6632, pp. 169–188. Springer, Heidelberg, Germany, Tallinn, Estonia (May 15–19, 2011).
https://doi.org/10.1007/978-3-642-20465-4_11

7. Benhamouda, F., Halevi, S., Krawczyk, H., Miao, A., Rabin, T.: Threshold cryptography as a service (in the
multiserver and YOSO models). In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022: 29th
Conference on Computer and Communications Security. pp. 323–336. ACM Press, Los Angeles, CA, USA
(Nov 7–11, 2022). https://doi.org/10.1145/3548606.3559397

8. Bentov, I., Pass, R., Shi, E.: Snow white: Provably secure proofs of stake. Cryptology ePrint Archive, Report
2016/919 (2016), https://eprint.iacr.org/2016/919

9. Blum, M., Santis, A.D., Micali, S., Persiano, G.: Noninteractive zero-knowledge. SIAM J. Comput. 20(6),
1084–1118 (1991). https://doi.org/10.1137/0220068, https://doi.org/10.1137/0220068

10. Boneh, D., Partap, A., Rotem, L.: Accountability for misbehavior in threshold decryption via threshold traitor
tracing. Cryptology ePrint Archive (2023)

11. Boneh, D., Partap, A., Rotem, L.: Traceable secret sharing: Strong security and efficient constructions. IACR
Cryptol. ePrint Arch. p. 405 (2024), https://eprint.iacr.org/2024/405

12. Brorsson, J., David, B., Gentile, L., Pagnin, E., Wagner, P.S.: PAPR: Publicly auditable privacy revocation
for anonymous credentials. In: Rosulek, M. (ed.) Topics in Cryptology – CT-RSA 2023. Lecture Notes in
Computer Science, vol. 13871, pp. 163–190. Springer, Heidelberg, Germany, San Francisco, CA, USA (Apr 24–
27, 2023). https://doi.org/10.1007/978-3-031-30872-7_7

13. Campanelli, M., David, B., Khoshakhlagh, H., Konring, A., Nielsen, J.B.: Encryption to the future - A
paradigm for sending secret messages to future (anonymous) committees. In: Agrawal, S., Lin, D. (eds.)
Advances in Cryptology – ASIACRYPT 2022, Part III. Lecture Notes in Computer Science, vol. 13793, pp.
151–180. Springer, Heidelberg, Germany, Taipei, Taiwan (Dec 5–9, 2022). https://doi.org/10.1007/978-3-031-
22969-5_6

24

https://doi.org/10.1007/978-3-642-03356-8_31
https://doi.org/10.1007/978-3-642-32009-5_9
https://doi.org/10.1007/978-3-642-32009-5_9
https://doi.org/10.1007/978-3-540-85174-5_28
https://doi.org/10.1007/978-3-540-85174-5_28
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1145/3548606.3559397
https://eprint.iacr.org/2016/919
https://doi.org/10.1137/0220068
https://doi.org/10.1137/0220068
https://eprint.iacr.org/2024/405
https://doi.org/10.1007/978-3-031-30872-7_7
https://doi.org/10.1007/978-3-031-22969-5_6
https://doi.org/10.1007/978-3-031-22969-5_6

14. Cascudo, I., David, B., Garms, L., Konring, A.: YOLO YOSO: Fast and simple encryption and secret sharing
in the YOSO model. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology – ASIACRYPT 2022, Part I.
Lecture Notes in Computer Science, vol. 13791, pp. 651–680. Springer, Heidelberg, Germany, Taipei, Taiwan
(Dec 5–9, 2022). https://doi.org/10.1007/978-3-031-22963-3_22

15. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2),
84–88 (1981). https://doi.org/10.1145/358549.358563, https://doi.org/10.1145/358549.358563

16. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In:
20th Annual ACM Symposium on Theory of Computing. pp. 11–19. ACM Press, Chicago, IL, USA (May 2–4,
1988). https://doi.org/10.1145/62212.62214

17. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y. (ed.) Advances in Cryptology – CRYPTO’94.
Lecture Notes in Computer Science, vol. 839, pp. 257–270. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 21–25, 1994). https://doi.org/10.1007/3-540-48658-5_25

18. Dahl, M., Joye, M., Danjou, C., Rotaru, D., Demmler, D., Smart, N., Frederiksen, T., Ivanov, P., Thibault,
L.T.: fhevm - confidential evm smart contracts using fully homomorphic encryption. Tech. rep., Zama (2023),
https://github.com/zama-ai/fhevm/blob/main/fhevm-whitepaper.pdf

19. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L., Juels, A.: Flash boys 2.0:
Frontrunning in decentralized exchanges, miner extractable value, and consensus instability. In: 2020 IEEE
Symposium on Security and Privacy. pp. 910–927. IEEE Computer Society Press, San Francisco, CA, USA
(May 18–21, 2020). https://doi.org/10.1109/SP40000.2020.00040

20. Damgård, I., Damgård, K., Nielsen, K., Nordholt, P.S., Toft, T.: Confidential benchmarking based on multi-
party computation. In: Grossklags, J., Preneel, B. (eds.) FC 2016: 20th International Conference on Financial
Cryptography and Data Security. Lecture Notes in Computer Science, vol. 9603, pp. 169–187. Springer, Hei-
delberg, Germany, Christ Church, Barbados (Feb 22–26, 2016)

21. Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from somewhat homomorphic
encryption. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology – CRYPTO 2012. Lecture Notes in
Computer Science, vol. 7417, pp. 643–662. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–
23, 2012). https://doi.org/10.1007/978-3-642-32009-5_38

22. David, B., Gazi, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-secure, semi-synchronous proof-
of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2018, Part II.
Lecture Notes in Computer Science, vol. 10821, pp. 66–98. Springer, Heidelberg, Germany, Tel Aviv, Israel
(Apr 29 – May 3, 2018). https://doi.org/10.1007/978-3-319-78375-8_3

23. Desmedt, Y.: Society and group oriented cryptography: A new concept. In: Pomerance, C. (ed.) Advances in
Cryptology – CRYPTO’87. Lecture Notes in Computer Science, vol. 293, pp. 120–127. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 16–20, 1988). https://doi.org/10.1007/3-540-48184-2_8

24. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) Advances in Cryptology –
CRYPTO’89. Lecture Notes in Computer Science, vol. 435, pp. 307–315. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 20–24, 1990). https://doi.org/10.1007/0-387-34805-0_28

25. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22(6),
644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638

26. Dziembowski, S., Faust, S., Lizurej, T.: Individual cryptography. In: Handschuh, H., Lysyanskaya, A. (eds.)
Advances in Cryptology – CRYPTO 2023, Part II. Lecture Notes in Computer Science, vol. 14082, pp. 547–579.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 20–24, 2023). https://doi.org/10.1007/978-3-
031-38545-2_18

27. Fujisaki, E., Okamoto, T.: A practical and provably secure scheme for publicly verifiable secret sharing
and its applications. In: Nyberg, K. (ed.) Advances in Cryptology – EUROCRYPT’98. Lecture Notes in
Computer Science, vol. 1403, pp. 32–46. Springer, Heidelberg, Germany, Espoo, Finland (May 31 – Jun 4,
1998). https://doi.org/10.1007/BFb0054115

28. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and applications. In: Os-
wald, E., Fischlin, M. (eds.) Advances in Cryptology – EUROCRYPT 2015, Part II. Lecture Notes in Com-
puter Science, vol. 9057, pp. 281–310. Springer, Heidelberg, Germany, Sofia, Bulgaria (Apr 26–30, 2015).
https://doi.org/10.1007/978-3-662-46803-6_10

29. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs obfuscation and ex-
tractable witness encryption with auxiliary input. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology
– CRYPTO 2014, Part I. Lecture Notes in Computer Science, vol. 8616, pp. 518–535. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 17–21, 2014). https://doi.org/10.1007/978-3-662-44371-2_29

30. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Boneh, D., Roughgar-
den, T., Feigenbaum, J. (eds.) 45th Annual ACM Symposium on Theory of Computing. pp. 467–476. ACM
Press, Palo Alto, CA, USA (Jun 1–4, 2013). https://doi.org/10.1145/2488608.2488667

31. Gentry, C., Halevi, S., Krawczyk, H., Magri, B., Nielsen, J.B., Rabin, T., Yakoubov, S.: YOSO: You only speak
once - secure MPC with stateless ephemeral roles. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology
– CRYPTO 2021, Part II. Lecture Notes in Computer Science, vol. 12826, pp. 64–93. Springer, Heidelberg,
Germany, Virtual Event (Aug 16–20, 2021). https://doi.org/10.1007/978-3-030-84245-1_3

32. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for
protocols with honest majority. In: Aho, A. (ed.) 19th Annual ACM Symposium on Theory of Computing.
pp. 218–229. ACM Press, New York City, NY, USA (May 25–27, 1987). https://doi.org/10.1145/28395.28420

25

https://doi.org/10.1007/978-3-031-22963-3_22
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/62212.62214
https://doi.org/10.1007/3-540-48658-5_25
https://github.com/zama-ai/fhevm/blob/main/fhevm-whitepaper.pdf
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-031-38545-2_18
https://doi.org/10.1007/978-3-031-38545-2_18
https://doi.org/10.1007/BFb0054115
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-44371-2_29
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1145/28395.28420

33. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to run Turing machines on
encrypted data. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology – CRYPTO 2013, Part II. Lecture
Notes in Computer Science, vol. 8043, pp. 536–553. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 18–22, 2013). https://doi.org/10.1007/978-3-642-40084-1_30

34. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message
attacks. SIAM J. Comput. 17(2), 281–308 (1988). https://doi.org/10.1137/0217017, https://doi.org/10.1137/
0217017

35. Gong, J., Luo, J., Wee, H.: Traitor tracing with N1/3-size ciphertexts and O(1)-size keys from k-Lin. In:
Hazay, C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023, Part III. Lecture Notes in Com-
puter Science, vol. 14006, pp. 637–668. Springer, Heidelberg, Germany, Lyon, France (Apr 23–27, 2023).
https://doi.org/10.1007/978-3-031-30620-4_21

36. Goyal, R., Goyal, V.: Overcoming cryptographic impossibility results using blockchains. In: Kalai, Y., Reyzin,
L. (eds.) TCC 2017: 15th Theory of Cryptography Conference, Part I. Lecture Notes in Computer Sci-
ence, vol. 10677, pp. 529–561. Springer, Heidelberg, Germany, Baltimore, MD, USA (Nov 12–15, 2017).
https://doi.org/10.1007/978-3-319-70500-2_18

37. Goyal, V., Kothapalli, A., Masserova, E., Parno, B., Song, Y.: Storing and retrieving secrets on a blockchain.
In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022: 25th International Conference on Theory and
Practice of Public Key Cryptography, Part I. Lecture Notes in Computer Science, vol. 13177, pp. 252–282.
Springer, Heidelberg, Germany, Virtual Event (Mar 8–11, 2022). https://doi.org/10.1007/978-3-030-97121-
2_10

38. Goyal, V., Song, Y., Srinivasan, A.: Traceable secret sharing and applications. In: Malkin, T., Peikert, C.
(eds.) Advances in Cryptology – CRYPTO 2021, Part III. Lecture Notes in Computer Science, vol. 12827,
pp. 718–747. Springer, Heidelberg, Germany, Virtual Event (Aug 16–20, 2021). https://doi.org/10.1007/978-
3-030-84252-9_24

39. Jakobsen, T.P., Nielsen, J.B., Orlandi, C.: A framework for outsourcing of secure computation. In: Ahn,
G., Oprea, A., Safavi-Naini, R. (eds.) Proceedings of the 6th edition of the ACM Workshop on Cloud
Computing Security, CCSW ’14, Scottsdale, Arizona, USA, November 7, 2014. pp. 81–92. ACM (2014).
https://doi.org/10.1145/2664168.2664170, https://doi.org/10.1145/2664168.2664170

40. Kelkar, M., Babel, K., Daian, P., Austgen, J., Buterin, V., Juels, A.: Complete knowledge: Preventing en-
cumbrance of cryptographic secrets. Cryptology ePrint Archive, Report 2023/044 (2023), https://eprint.iacr.
org/2023/044

41. Kiayias, A., Tang, Q.: How to keep a secret: leakage deterring public-key cryptosystems. In: Sadeghi, A.R.,
Gligor, V.D., Yung, M. (eds.) ACM CCS 2013: 20th Conference on Computer and Communications Security.
pp. 943–954. ACM Press, Berlin, Germany (Nov 4–8, 2013). https://doi.org/10.1145/2508859.2516691

42. Li, R., Li, Y., Wang, Q., Duan, S., Wang, Q., Ryan, M.: Accountable decryption made formal and practical.
IACR Cryptol. ePrint Arch. p. 1519 (2023), https://eprint.iacr.org/2023/1519

43. Pass, R., Seeman, L., shelat, a.: Analysis of the blockchain protocol in asynchronous networks. In: Coron,
J.S., Nielsen, J.B. (eds.) Advances in Cryptology – EUROCRYPT 2017, Part II. Lecture Notes in Computer
Science, vol. 10211, pp. 643–673. Springer, Heidelberg, Germany, Paris, France (Apr 30 – May 4, 2017).
https://doi.org/10.1007/978-3-319-56614-6_22

44. Project, O.P.: The oasis blockchain platform. Tech. rep., Oasis Protocol Foundation (2020)
45. Rondelet, A., Kilbourn, Q.: Threshold encrypted mempools: Limitations and considerations. arXiv preprint

arXiv:2307.10878 (2023)
46. Ryan, M.D.: Making decryption accountable. In: Stajano, F., Anderson, J., Christianson, B., Matyás,

V. (eds.) Security Protocols XXV - 25th International Workshop, Cambridge, UK, March 20-22, 2017,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 10476, pp. 93–98. Springer (2017).
https://doi.org/10.1007/978-3-319-71075-4_11, https://doi.org/10.1007/978-3-319-71075-4_11

47. Yin, M., Malkhi, D., Reiter, M.K., Golan-Gueta, G., Abraham, I.: HotStuff: BFT consensus with linearity and
responsiveness. In: Robinson, P., Ellen, F. (eds.) 38th ACM Symposium Annual on Principles of Distributed
Computing. pp. 347–356. Association for Computing Machinery, Toronto, ON, Canada (Jul 29 – Aug 2, 2019).
https://doi.org/10.1145/3293611.3331591

48. Young, A.L., Yung, M.: Cryptovirology: Extortion-based security threats and countermeasures. In: 1996 IEEE
Symposium on Security and Privacy. pp. 129–140. IEEE Computer Society Press, Oakland, CA, USA (1996).
https://doi.org/10.1109/SECPRI.1996.502676

26

https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1137/0217017
https://doi.org/10.1137/0217017
https://doi.org/10.1137/0217017
https://doi.org/10.1007/978-3-031-30620-4_21
https://doi.org/10.1007/978-3-319-70500-2_18
https://doi.org/10.1007/978-3-030-97121-2_10
https://doi.org/10.1007/978-3-030-97121-2_10
https://doi.org/10.1007/978-3-030-84252-9_24
https://doi.org/10.1007/978-3-030-84252-9_24
https://doi.org/10.1145/2664168.2664170
https://doi.org/10.1145/2664168.2664170
https://eprint.iacr.org/2023/044
https://eprint.iacr.org/2023/044
https://doi.org/10.1145/2508859.2516691
https://eprint.iacr.org/2023/1519
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-71075-4_11
https://doi.org/10.1007/978-3-319-71075-4_11
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1109/SECPRI.1996.502676

Supplementary Material

A Additional Preliminaries

In this section, we provide our additional technical preliminaries.

A.1 Digital Signatures

Here, we describe the general syntax for digital signature in Definition 15.

Definition 15 (Digital Signature). A digital signature scheme is a tuple of PPT algorithms SIG =
(KG, Sign, Vf) defined as follows:

1. (pkSIG, skSIG) ← KG(1λ) is a randomized key generation algorithm that takes as input the security
parameter 1λ and outputs a key-pair (pkSIG, skSIG);

2. σ ← Sign(skSIG, m), the signing algorithm takes an input a a secret key skSIG and a message m ∈
{0, 1}λ, outputting a signature σ;

3. 1/0 ← Vf(pkSIG, m, σ), the verification algorithm outputs 1 if σ is a valid signature on m generated
with skSIG, and outputs 0 otherwise.

A signature scheme SIG must satisfy the standard notions of correctness (Definition 16) and unforge-
ability (Definition 17) (i.e., existentially unforgeable against adaptive chosen message attacks (EUF-
CMA) [34]) described below.

Definition 16 (Correctness). A signature scheme SIG = (KG, Sign, Vf) is correct if for any security
parameter λ and any message m ∈ {0, 1}λ, we have that

Pr
[

Vf(pkSIG, m, σ) = 1

∣∣∣∣∣(pkSIG, skSIG)← KG(1λ

σ ← Sign(pkSIG, skSIG, m)

]
= 1

Definition 17 (Unforgeability). A signature scheme SIG = (KG, Sign, Vf) is unforgeable if for any
security parameter λ and for all PPT adversaries A, advantage AdvUnforge

SIG,A of the GameUnforge
SIG,A (in Figure 12)

is negligible.

GameUnforge
SIG,A

Game steps:

1. Initialize an empty list Q ← ∅
2. (pkSIG, skSIG)← KG(1λ)
3. (m′, σ′)← AOSign

skSIG (1λ, pkSIG)

Oracle:

OSign
skSIG

(m) :
1. Q ← Q∪m
2. σ ← Sign(pkSIG, skSIG, m)
3. return σ

The adversary’s advantage in this game is:

AdvUnforge
SIG,A = Pr

[
Vf(pkSIG, m′, σ′) = 1 ∧m′ /∈ Q

]
Fig. 12: Unforgeability Game for SIG scheme executed between a challenger and an adversary A given
unlimited oracle access to OSign

skSIG
(m).

27

A.2 Commitment Scheme
Here, we recall the syntax for a commitment scheme.
Definition 18 (Commitment Scheme). A commitment scheme CS consists of the tuple of PPT algo-
rithms (Setup, Commit) defined as follows:
1. ck← Setup(1λ), is a randomized algorithm that takes as input the security parameter 1λ and outputs

a commitment key ck. The commitment key ck defines a message space M and a randomizer space
R.

2. cm ← Commit(ck, s; ρ), the commitment algorithm takes as inputs the commitment key ck, an input
message s ∈M and randomness ρ ∈ R, and outputs a commitment cm.

A commitment scheme CS must satisfy the standard properties of binding (Definition 19) and hiding
(Definition 20) described below.
Definition 19 (Binding). A commitment scheme CS = (Setup, Commit) is binding if for any secu-
rity parameter λ, if no PPT adversary can come up with two pairs (s, ρ), (s′, ρ′) such that s ̸= s′ and
Commit(ck, s; ρ) = Commit(ck, s′; ρ′) for ck← Setup(1λ).
Definition 20 (Hiding). A commitment scheme CS = (Setup, Commit) is hiding if for any security
parameter λ, for any PPT adversary A = (A1,A2), advantage AdvHIDE

CS,A of the GameHIDE
CS,A (in Figure 13)

is negligible.

GameHIDE
CS,A

Game steps:

1. ck← Setup(1λ)
2. (st, s0, s1)← A1(1λ, ck)
3. Sample b

$← {0, 1}
4. cmb ← Commit(ck, sb; ρ)
5. b′ ← A2(1λ, st, cmb)
6. return b′

As there are only two outcomes, there is a 1
2 probability that a random guess will be correct, the adversary’s

advantage in this game is:
AdvHIDE

CS,A =
∣∣∣Pr

[
b = b′]− 1

2

∣∣∣
Fig. 13: Hiding Game for CS scheme.

A.3 Extractable Witness Encryption: Syntax and Security
Here, we recall the syntax and security definition of extractable witness encryption following broadly the
definitions of [30,33] as presented in [29].
Definition 21 (Extractable Witness Encryption). Let LeWE be an NP language with witness re-
lation ReWE. An extractable witness encryption scheme eWE for language LeWE with message space
M⊆ {0, 1}∗ consists of the following two polynomial-time algorithms (Enc, Dec) are as follows:
1. c ← Enc(1λ,LeWE, inst, m), the encryption algorithm takes as input a security parameter 1λ, the

language LeWE, an unbounded-length string inst, and a message m ∈M, and outputs a ciphertext c.
2. m/⊥ ← Dec(c, wit), the decryption algorithm takes as input a ciphertext c and an unbounded-length

string (witness) wit, and outputs a message m, otherwise output ⊥.
A scheme eWE must satisfy the following properties: Correctness (Definition 22) and Extractable
Security (Definition 23) described below.
Definition 22 (Correctness). An extractable witness encryption scheme eWE = (Enc, Dec) for lan-
guage LeWE is correct if for any security parameter λ, for any message m ∈M, and for any inst ∈ LeWE
such that ReWE ∈ (inst, wit) holds, we have that,

Pr
[
Dec(wit, c) = m | Enc(1λ,LeWE, inst, m)

]
= 1

28

Extractable Security. An extractable witness encryption scheme is said to be extractable secure if an
adversary can learn some non-trivial information about the encrypted message only if it knows a witness
for the instance used during encryption. We define the formal extractable security in Definition 23.

Definition 23 (Extractable Security). An extractable witness encryption scheme eWE = (Enc, Dec)
for language LeWE with witness relation ReWE is extractable secure if for any security parameter λ and for
all PPT adversary A = (A1,A2) and polynomial p(·), there exists a PPT extractor EXT and polynomial
q(·) such that for every pair of messages m0, m1 ∈M and for any inst ∈ LeWE,

AdvEXT-SEC
eWE,A ≥ 1

2 + 1
p(λ)

⇒ SuccEXT-SEC
eWE,EXT ≥

1
q(λ)

where AdvEXT-SEC
eWE,A is advantage of an adversary A = (A1,A2) in GameEXT-SEC

eWE,A (in Figure 14) and
SuccEXT-SEC

eWE,EXT is the success probability of the extractor EXT for extracting the witness wit such that
(inst, wit) ∈ ReWE.

GameEXT-SEC
eWE,A

1. (st, inst, m0, m1)← A1(1λ,LeWE)
2. Sample b

$← {0, 1}
3. cb ← Enc(1λ,LeWE, inst, mb)
4. b′ ← A2(1λ, st, cb)
5. return b′

As there are only two outcomes, there is a 1
2 probability that a random guess will be correct, the adversary’s

advantage in this game is:
AdvEXT-SEC

eWE,A = Pr
[
b = b′]

The extractor EXT’s success probability is:

SuccEXT-SEC
eWE,EXT = Pr

[
(inst, wit) ∈ ReWE

∣∣wit← EXTA(·)(1λ,LeWE, inst, m0, m1)
]

Fig. 14: Extractable Security Game for eWE scheme.

A.4 Threshold Encryption

We here outline the formal algorithms and definitions we assume for threshold decryption.

Definition 24 (Threshold Encryption). A threshold encryption scheme TE consists of the tuple of
PPT algorithms (Setup, Enc, ParDec, Combine) with the following requirements:

1. (pk, {ski}i∈[n])← Setup(1λ, n, t), is a randomized algorithm that takes as input the security parameter
1λ, the number of shares n and the threshold t. It computes key parameters threshold encryption where
pk is the public encryption key and ski is threshold decryption key share for party Pi.

2. c ← Enc(pk, m), is a randomized algorithm that takes as input the public key pk and a message m,
outputting a ciphertext c.

3. µi ← ParDec(pk, ski, c), the partial decryption algorithm takes as input the public key pk, the secret
key share ski and a ciphertext c, producing a partial decryption µi.

4. m/⊥ ← Combine(pk, c, {µi}i∈T), the partial decryption combine algorithm that takes as input the
public key pk, the partial decryption {µi}i∈T for a set T where |T | ≥ t + 1. It outputs the original
message m which c encrypts, otherwise output ⊥.

We require a threshold encryption scheme TE satisfy the standard properties: Correctness (Definition 25)
and IND-CPA Security (Definition 26) below.

29

Definition 25 (Correctness). A threshold encryption scheme TE = (Setup, Enc, ParDec, Combine) is
correct for any security parameter λ with correctly generated keys (pk, {ski}i∈[n]) ← Setup(1λ, n, t) and
for any m ∈ {0, 1}λ (from the permissible domain) where c← Enc(pk, m), we have:

∀T ⊂ [n] with |T | ≥ t + 1 : Pr
[
Combine

(
pk, c, {ParDec(pk, ski, c)}i∈T

)
= m

]
= 1

Definition 26 (IND-CPA Security). A threshold encryption scheme TE =
(Setup, Enc, ParDec, Combine) is IND-CPA secure if for any n and t where 0 < t < n, and for all
PPT adversaries A, advantage AdvIND-CPA

TE,A of the GameIND-CPA
TE,A (in Figure 15) is negligible.

GameIND-CPA
TE,A

Game steps:

1. The adversary A picks n and t.
2. A chooses a subset T̃ ⊂ [n] of parties to corrupt, such that |T̃ | ≤ t.
3. (pk, {ski}i∈[n])← Setup(1λ, n, t)
4. (m0, m1)← A(1λ, pk, {ski}i∈T̃)
5. Sample b

$← {0, 1}
6. cb ← Enc(pk, mb)
7. b′ ← A(1λ, pk, {ski}i∈T̃ , cb, {µb,i}i∈T̃)
8. return b′

As there are only two outcomes, there is a 1
2 probability that a random guess will be correct, the adversary’s

advantage in this game is:
AdvIND-CPA

TE,A =
∣∣∣Pr

[
b = b′]− 1

2

∣∣∣
Fig. 15: IND-CPA Security Game for TE scheme.

A.5 NIZK Proof
We here outline the formal algorithms and definitions we assume for non-interactive zero-knowledge
(NIZK) [9] proof system.
Definition 27 (Non-Interactive Zero-Knowledge Proof). A non-interactive zero-knowledge proof
system NIZK for an NP-language LNIZK with witness relation RNIZK is a tuple of PPT algorithms
(Gen, P, V) such that:
1. crs ← Gen(1λ), is a randomized algorithm that takes as input the security parameter 1λ and outputs

a common random string crs.
2. π ← P(crs, inst, wit), the prover algorithm takes as input a common random string crs, a statement

inst ∈ LNIZK and a witness wit and outputs a proof π.
3. 1/0← V(crs, inst, π), the verifier algorithm takes as input a common random string crs, a statement

inst ∈ LNIZK and a proof π. It outputs 1 if it accepts the proof π, otherwise outputs 0.
We require a NIZK proof system NIZK = (Gen, P, V) must satisfy the following properties: Com-

pleteness, Soundness, and Zero-Knowledge described below. A NIZK proof system satisfying all
these properties is called a secure NIZK [9] proof system.
Definition 28 (Completeness). A NIZK proof system NIZK = (Gen, P, V) for an NP-language LNIZK
with witness relation RNIZK is correct if for any security parameter λ, and for any inst ∈ LNIZK such that
RNIZK ∈ (inst, wit) holds, we have that,

Pr
[
V(crs, inst, P(crs, inst, wit)) | crs← Gen(1λ)

]
= 1

Definition 29 (Soundness). A NIZK proof system NIZK = (Gen, P, V) for an NP-language LNIZK with
witness relation RNIZK is sound if for any security parameter λ, for all PPT provers P∗ and for any
inst /∈ LNIZK, then there exists a negligible function negl(·), such that,

Pr
[

V(crs, inst, π) = 1

∣∣∣∣∣crs← Gen(1λ)
π ← P∗(crs)

]
≤ negl(λ)

30

Definition 30 (Zero-Knowledge). A NIZK proof system NIZK = (Gen, P, V) for an NP-language
LNIZK with witness relation RNIZK is zero-knowledge if for any security parameter λ there exists a PPT
simulator S such that for every RNIZK ∈ (inst, wit), the following distribution ensembles are computation-
ally indistinguishable,{

(crs, π)

∣∣∣∣∣crs← Gen(1λ)
π ← P(crs, inst, wit)

}
λ∈N

≈

{
(crs, π)

∣∣∣∣∣crs← Gen(1λ)
π ← S(1λ, crs, inst)

}
λ∈N

NIZK Proof-of-Knowledge (NIZKPoK) [4]. A proof-of-knowledge is an additional property which a
NIZK proof system can have. We say that a zero-knowledge proof system is a NIZKPoK if an adversary
must “know” a witness wit to compute a proof for (inst, wit) ∈ RNIZK. More formally, a NIZK proof system
is said to be an NIZKPoK for the relation RNIZK, if the following are satisfied:

– Completeness: On common input statement inst ∈ LNIZK, if the honest prover P gets as private
witness wit such that (inst, wit) ∈ RNIZK, then the verifier V always accepts.

– Soundness: The soundness for proofs-of-knowledge is formalized by defining a prover P∗ which
outputs an accepted proof π and demonstrating an efficient algorithm EXT called the knowledge
extractor which can interact with P∗ and output a witness wit such that (inst, wit) ∈ RNIZK. Depending
on the proof construction, the extractor may need to rewind P∗ (a rewinding extractor) or inspect
P∗’s internal state (a non-black box extractor).

– Zero-Knowledge: A proof-of-knowledge is zero-knowledge if the proof π reveals nothing about the
witness wit. Formally, this is established by an efficient algorithm S called the simulator which is given
any statement inst ∈ LNIZK and the ability to program the random oracle to give specified responses,
can output simulated proofs π′ which is indistinguishable from real proofs such that the verifier V
accepts the proofs π′.

Throughout our paper, we write NIZKPoK{wit | (inst, wit) ∈ RNIZK} to denote a generic non-interactive
zero-knowledge proof of knowledge for relation RNIZK.

A.6 Proof-of-Stake (PoS) Blockchains

In this section, we give an overview of the framework from [36] for arguing about PoS blockchain protocol
security.

Blockchain Protocol Execution. We recall in almost verbatim form the overview given in [13] of the
blockchain execution model from [36].

Definition 31 (Blockchain Protocol Execution [36]). A blockchain protocol Γ V consists of the
following three polynomial-time algorithms (UpdateStateV , GetRecords, Broadcast) with a validity predicate
V , are described as follows:

• st← UpdateState(1λ), the algorithm takes as input the security parameter 1λ and outputs st which is
the local state of the blockchain along with metadata.

• B ← GetRecords(1λ, st), the algorithm takes as input the security parameter 1λ and state st, and
outputs the longest sequence of valid blocks B (with respect to V).

• Broadcast(1λ, m), the algorithm takes as input the security parameter 1λ and a message m, and
broadcast the message m over the network to all parties executing the blockchain protocol.

At a very high level, execution of a blockchain protocol Γ V is as follows: The participant in the
protocol runs the UpdateStateV algorithm to get the latest blockchain state, the GetRecords algorithm is
used to extract an ordered sequence of blocks encoded in the blockchain state variable and the Broadcast
algorithm is used by a party when it wants to post a new message on the blockchain if accepted by V .

The blockchain protocol Γ V execution is directed by the environment Z which classifies parties as
either honest or corrupt, and is also responsible for providing inputs/records to all parties in each round.
All honest parties execute Γ V on input 1λ with an empty local state st, and all corrupted parties are
controlled by the adversary A who also controls network including delivery of messages between all
parties. The execution of the protocol proceeds as follows (and the following description is mostly taken
from [13,36]).

31

• The execution proceeds in rounds that model time steps. In each round r, all the honest parties
potentially receive a message(s) m from the environment Z and potentially receive incoming network
messages delivered by the adversary A. The honest parties may perform any computation, broadcast
messages (using Broadcast algorithm), and/or update their local states.

• The adversary A is responsible for delivering all messages sent by honest parties to all other parties.
A cannot modify messages broadcast by honest parties but may delay and reorder messages on the
network.

• At any point Z can communicate with adversary A or use GetRecords to retrieve a view of the local
state of any party participating in the protocol.

The joint view of all parties (i.e., all inputs, random coins, and messages received) in the above protocol
execution can be denoted by the random variable EXECΓ V

(A,Z, 1λ). Note that the joint view of all parties
fully determines the execution. We define the view of the party Pi as VIEWPi(EXECΓ V

(A,Z, 1λ)) and the
view of the adversary A as VIEWA(EXECΓ V

(A,Z, 1λ)). If it is clear from the context which execution
the argument is referring to, then we just write VIEWi. We assume that it is possible to take a snapshot
i.e., a view of the protocol after the first r rounds have been executed. We denote that by VIEWr ←
EXECΓ V

r (A,Z, 1λ). Furthermore, we can resume the execution starts with this view and continue until
round r̃ resulting in the full view including round r̃ denoted by VIEWr̃ ← EXECΓ V

(VIEWr,r̃)(A,Z, 1λ).

Defining stake and u-stakefrac. We denote the stake of party Pi as stakei = stake(B, i) which takes as
input a local blockchain B and a party Pi and outputs a number representing the stake of party Pi as
per the blockchain B. Here, stake(·, ·) is a polynomial time algorithm that takes as inputs the blockchain
B and a party’s public identity and outputs a rational value.

Let an adversary A that controls all parties with public identities in the set X , its sum of stake
controlled by the adversary as per blockchain B can computed as stakeA(B) =

∑
j∈X stake(B, j), and

the total stake held by all parties can be computed as staketotal(B) =
∑

i stake(B, j). We compute the
adversaries relative stake ratio as stake-ratioA(B) = stakeA(B)

staketotal(B) . Also, we will simply write stakeA, staketotal,
and stake-ratioA whenever B is clear from context.

We also consider the PoS-fraction u-stakefrac(B, ℓ) as the amount of unique stake whose proof is
provided in the last ℓ mined blocks. More precisely, let M be the index i corresponding to miners Pi of
the last ℓ blocks in B then we compute the PoS-fraction as follows,

u-stakefrac(B, ℓ) =
∑

i∈M stake(B, i)
staketotal

A note on corruption. For simplicity in the above execution we restrict the environment to only allow
static corruption while the execution described in [43] supports adaptive corruption with erasures.

A note on admissible environments. Pass et al. [43] specifies a set of restrictions on A and Z such
that only compliant executions are considered and argues that certain security properties hold with
overwhelming probability for these executions. An example of such a restriction is that A should deliver
network messages to honest parties within ∆ rounds.

Blockchain Setup and Key Knowledge. As in [22], we assume that the genesis block is generated
by an initialization functionality FINIT that registers all parties’ keys. Moreover, we assume that prim-
itives specified in separate functionalities in [22] as incorporated into FINIT. FINIT is executed by the
environment Z as defined below and is parameterized by a stake distribution associating each party Pi

to an initial stake stakei. Upon being activated by Pi for the first time, FINIT generates a signature key
pair (SIG.pki, SIG.ski) and auxiliary information auxi, and sending (SIG.pki, SIG.ski, auxi, stakei) to Pi as
response. After all parties have activated FINIT, it responds to requests for a genesis block by providing
B0 = {(SIG.pk1, aux1, stake1), . . . , (SIG.pkn, auxn, staken), aux}, where aux is generated according to the
underlying blockchain consensus protocol.

Since FINIT generates keys for all parties, we capture the fact that even corrupted parties have regis-
tered public keys and auxiliary information such that they know the corresponding secret keys.

Blockchain Properties. We recall that running a blockchain protocol Γ V =
(UpdateStateV , GetRecords, Broadcast) with appropriate restrictions on A and Z will yield certain

32

compliant executions EXECΓ V

(A,Z, 1λ) where some security properties will hold with overwhelming
probability. The existing works, including [28, 43], have converged towards a few security properties
that characterizes blockchain protocols. These include: Common Prefix or Chain Consistency, Chain
Quality and Chain Growth. From these basic properties, a number of stronger properties were derived
in [36]. Among them, is the Distinguishable Forking property which will be the main requirement when
introducing the “Encryption with Self-Incriminating Proof” scheme (in Sec. 3).

Definition 32 (Common Prefix). Let κ ∈ N be the common prefix parameter. The chains B1, B2

possessed by two honest parties P1 and P2 satisfy B⌈κ1 ⪯ B2.

Definition 33 (Chain Growth). Let τ ∈ (0, 1], s ∈ N and let B1, B2 be as above, then len(B2) −
len(B1) ≥ τs where τ is the speed coefficient.

Definition 34 (Chain Quality). Let µ ∈ (0, 1] and κ ∈ N. Consider any set of consecutive blocks of
length at least κ from an honest party’s chain B1. The ratio of adversarial blocks in the set is 1−µ where
µ is the quality coefficient.

Stake Contribution Property. At a high level, the sufficient stake contribution property states that after
sufficiently many rounds, the total amount of proof-of-stake in mining the ℓ most recent blocks is at least
β fraction of the total stake in the system.

Definition 35 (Sufficient Stake Contribution). Let suf-stake-contr be the predicate such that
suf-stake-contrℓ(VIEW, β) = 1 iff for every round r ≥ ℓ, and each party i in VIEW such that i is honest at
round r with blockchain B, we have u-stakefrac(B, ℓ) > β. A blockchain protocol Γ has (β(·), ℓ0(·))-sufficient
stake contribution property with adversary sA in environment Z, if there is a negligible function negl(·)
such that for any λ ∈ N, ℓ ≥ ℓ0, it holds that,

Pr
[
suf-stake-contrℓ(VIEW, β(λ)) = 1 | VIEW← EXECΓ (A,Z, 1λ)

]
≥ 1− negl(λ)

Bounded Forking Property. Roughly speaking, the bounded forking property requires that no efficient
adversary can create a sufficiently long fork so that its total amount of proof of stake is higher than
a certain threshold. In more detail, it states that for property parameters α, ℓ1, ℓ2, the proof-of-stake
fraction in the last ℓ2 blocks in any adversarially created fork of length at least ℓ1 + ℓ2 should not be
more than α.

Definition 36 (Bounded Stake Forking). Let bd-stake-fork be the predicate such that
bd-stake-fork(ℓ1,ℓ2)(VIEW, α) = 1 iff for any round r ≥ r̃ and any pair of parties i, j in VIEW
such that i is honest at round r with blockchain B and j is corrupt in round r̃ with blockchain B̃, if there
exists ℓ′ ≥ ℓ1 + ℓ2 such that B̃⌈ℓ

′ ⪯ B and for all ℓ̃ < ℓ′, B̃⌈ℓ
′ ⪯̸ B then u-stakefrac(B̃, ℓ′ − ℓ1) ≤ α. A

blockchain protocol Γ has (α(·), ℓ1(·), ℓ2(·))-bounded forking property with adversary sA in environment
Z, if there is a negligible function negl(·) and δ(·) such that for any λ ∈ N, ℓ ≥ ℓ1(λ), ℓ̃ ≥ ℓ2(λ), it holds
that,

Pr
[
bd-stake-fork(ℓ,ℓ̃)(VIEW, α(λ) + δ(λ)) = 1 | VIEW← EXECΓ (A,Z, 1λ)

]
≥ 1− negl(λ)

Distinguishable Forking. At a high level, distinguishable forking asserts that a sufficiently long sequence
of blocks produced under honest protocol execution can consistently be distinguished from any fork
generated adversarially. Moreover, the total stake committed to these sequences (known as their proof-
of-stake fraction), which can be computed efficiently, serves as a distinguishing criterion. Formally, this
concept can be defined as follows:

Definition 37 (Distinguishable Forking). A blockchain protocol Γ satisfies (α(·), β(·), ℓ1(·), ℓ2(·))-
distinguishable forking with adversary A in environment Z, if there is a negligible function negl(·) and
δ(·) such that for any λ ∈ N, ℓ ≥ ℓ1(λ), ℓ̃ ≥ ℓ2(λ), it holds that,

Pr


α(λ) + δ(λ) < β(λ) ∧

suf-stake-contrℓ̃(VIEW, β(λ)) = 1 ∧

bd-stake-fork(ℓ,ℓ̃)(VIEW, α(λ) + δ(λ)) = 1

∣∣∣∣∣∣∣∣VIEW← EXECΓ (A,Z, 1λ)

 ≥ 1− negl(λ)

33

B Proof of Theorem 1 (ΠPSIPE Security Proof)

Proof. We prove the Theorem 1 by showing a proof for Correctness, Unforgeability, IND-CPA Security,
and Public Self-Incriminating Proof properties of our scheme ΠPSIPE as follows:

Correctness. The correctness of ΠPSIPE is immediate and can be proven by the correctness of the
underlying primitives.

Fix λ, ℓ1, ℓ2, and β and a correct blockchain protocol Γ with validity predicate V as described in
Sec. 2.2. Let ΠPSIPE.KG(1λ) as (pk, sk) ← SIG.KG(1λ) and for any message m ∈ {0, 1}λ, we encrypt
the message by ΠPSIPE.Enc(pk, m) as ĉ ← eWE.Enc(1λ,LΓ V , (pk, d, B), m) where d is a reference signing
message for the message m, and st ← UpdateState(1λ) and B ← GetRecords(1λ, st). Finally, output the
PSIPE ciphertext as c = (ĉ, d)

For decrypting a ciphertext c = (ĉ, d) by ΠPSIPE.Dec(pk, sk, c), a decryptor first needs to generate a
self-incriminating proof as π ← SIG.Sign(pk, sk, d), and then run the Broadcast algorithm to post (pk, d, π)
on the blockchain Γ . Let s̃t be the local state of the decryptor after message (pk, d, π) is posted on the
blockchain and it is extended by ℓ1 +ℓ2 blocks. At this point, it holds that evolved(B, B̃) = 1 and that there
exists a block B∗ ∈ B̃⌈ℓ1+ℓ2 such that (pk, d, σ) ∈ B∗, so that with all but negligible probability, B̃ and π can
be used as the witness to decrypt ciphertexts ĉ as m← eWE.Dec(ĉ, (π, B̃)) where ((pk, d, B), (π, B̃)) ∈ RΓ V .
Therefore, m ← eWE.Dec(c2, (π, B̃)) follows from the correctness of the extractable witness encryption
scheme as per Definition 21 and π ← SIG.Sign(pk, sk, d) follows from the correctness of the signature
scheme as per Definition 15. Therefore, ΠPSIPE satisfies the correctness condition.

Unforgeability. Assume, for the sake of contradiction, that we have an adversary APSIPE that wins the
game GameUnforge

PSIPE,APSIPE
(same as SIPE unforgeability game GameUnforge

PSIPE,ASIPE
described in Figure 2) with non-

negligible advantage when executing PSIPE from Figure 6. We then show how to use APSIPE to construct
another adversary ASIG with black-box access to APSIPE which breaks the unforgeability of the signature
scheme SIG, i.e., GameUnforge

SIG,ASIG
(defined in Figure 12), with asymptotically similar advantage.

We construct an adversary ASIG, who is talking with the challenger of GameUnforge
SIG,ASIG

and an internal
copy of APSIPE for which it simulates GameUnforge

PSIPE,APSIPE
. The adversary ASIG proceeds as follows:

1. ASIG receives (1λ, pk) from the challenger of GameUnforge
SIG,ASIG

and forwards this to APSIPE, pretending to
be the challenger of the GameUnforge

PSIPE,APSIPE
game.

2. Playing the role of challenger in GameUnforge
PSIPE,APSIPE

then ASIG receives back from APSIPE the value (c′, π′)
which has a non-negligible advantage in winning GameUnforge

PSIPE,APSIPE
.

3. Letting c′ = (ĉ, d) then ASIG returns (m′, σ′) = (d, π′) to the challenger of GameUnforge
SIG,ASIG

.

First observe that (pk, ·) ← SIG.KG(1λ), hence the pair (1λ, pk) that ASIG receives from GameUnforge
SIG,ASIG

is similarly distributed to the pair that APSIPE receive from the real challenger in the GameUnforge
PSIPE,APSIPE

game. Now see that c′ = (ĉ, d) for which π ← SIG.Sign(pk, sk, d) with (σ = π) = π′ with non-negligible
probability. Hence (m′, σ′) will be a valid output with similar probability.

IND-CPA Security. Assume by contradiction that there exists an adversary APSIPE with non-negligible
advantage in GameIND-CPA

PSIPE,APSIPE
for our PSIPE (same as SIPE IND-CPA security game GameUnforge

IND-CPA,ASIPE
described in Figure 3). We will show that this APSIPE can be used to construct adversaries breaking the
extractable security of the underlying extractable witness encryption scheme eWE or unforgeability of
the underlying signature scheme SIG.

We construct an adversary A who is talking with the challenger of GameEXT-SEC
eWE,A and GameUnforge

SIG,A , and
an internal copy of APSIPE for which it simulates GameIND-CPA

PSIPE,APSIPE
. Throughout this reduction, A acts as

Z in the execution of the blockchain protocol Γ , which it simulates towards APSIPE following the same
steps as the real protocol. The adversary A proceeds as follows:

1. A receives (1λ, pk) from the challenger of GameUnforge
SIG,A and forwards (1λ, pk) to APSIPE, acting as the

challenger of GameIND-CPA
PSIPE,APSIPE

.
2. A receives a tuple (m0, m1) from APSIPE and sets inst = (pk, d, B) ∈ LΓ V where d

$← {0, 1}λ, and st←
UpdateState(1λ) and B ← GetRecords(1λ, st). A forwards the tuple (·, inst, m0, m1) to the challenger
of GameEXT-SEC

eWE,A .

34

3. A receives the challenge ciphertext c′b from the challenger of GameEXT-SEC
eWE,A . Then A forwards cb = (ĉ, d)

to APSIPE, where d = d and ĉ = c′b.
4. A receives a guess b′ from APSIPE.
5. A executes the eWE extractor (as defined in the extractable security property) and obtains wit =

(π, B̃)← EXTAPSIPE(·)(1λ,LΓ V , inst, m0, m1).
6. Finally,A forwards the guess b′ to the challenger of GameEXT-SEC

eWE,A and (m′, σ′) = (d, π) to the challenger
of GameUnforge

SIG,A .

Notice that A simulates GameIND-CPA
PSIPE,APSIPE

exactly as in a real execution. Now assume that APSIPE

has non-negligible advantage AdvIND-CPA
PSIPE,APSIPE

in GameIND-CPA
PSIPE,APSIPE

, then A is able to distinguish extractable
witness encryption ciphertexts c0, c1 generated under the statement inst = (pk, d, B) such that inst ∈
LΓ V from messages m0, m1. Hence, A has non-negligible advantage in GameEXT-SEC

eWE,A , which means given
extractable security for the eWE scheme there is an extractor EXT that obtains wit = (π, B̃) from APSIPE,
where SIG.Vf(pk, d, π) = 1. Notice that π is a valid signature forgery on d, since APSIPE does not have the
signing key corresponding to pk. Hence, if APSIPE has non-negligible advantage in GameIND-CPA

PSIPE,APSIPE
and

extractable security holds for the eWE scheme, then A has non-negligible advantage in GameUnforge
SIG,A . On

the other hand, if APSIPE has non-negligible advantage in GameIND-CPA
PSIPE,APSIPE

but EXT fails to output such
(π, B̃) with non-negligible probability, we contradict the extractable security property of the eWE scheme.
Hence, given that eWE has extractable security and that SIG is EUF-CMA secure, we have that APSIPE
can only have negligible advantage AdvIND-CPA

PSIPE,APSIPE
in GameIND-CPA

PSIPE,A.

Public Self-Incriminating Proof. Assume by contradiction that an adversary APSIPE exists which
can win the GamePUB-SIP

PSIPE,APSIPE,Γ game with a non-negligible advantage AdvPUB-SIP
PSIPE,APSIPE,Γ while extractor

EXT(pk, cb, B̃) obtains π such that Vf(pk, cb, π) = 1 with probability SuccPSIPE
EXT < AdvPUB-SIP

PSIPE,APSIPE,Γ−negl(λ).
We argue that if this is the case, then it must be because either APSIPE breaks the underlying blockchain
protocol’s distinguishable forking and common prefix properties, or the adversary breaks the extractable
security of the extractable witness encryption scheme eWE. This leads to two distinct cases:

1. Assuming that the extractable witness encryption scheme is secure, if a valid π does not appear
on the common prefix of an honest party’s blockchain but APSIPE is able to produce B̃ such that
1← SIG.Vf(pk, d, π) ∧ evolved(B, B̃) = 1 ∧ (pk, d, π) ∈ B∗ ∧ B∗ ∈ B̃⌈ℓ1+ℓ2 ∧ u-stakefrac(B̃, ℓ2) ≥ β (i.e.,
((π, B̃), inst) ∈ RΓ V where inst = (pk, d, B) and inst ∈ LΓ V), thenAPSIPE is breaking the distinguishable
forking and common prefix properties of the blockchain protocol Γ .

2. Assuming that the blockchain protocol is secure, if the adversary APSIPE distinguishes the ciphertext
c0, c1 with a B such that inst = (pk, d, B) ∈ LΓ V and a valid B̃ evolved from B containing a valid π,
then there exists an extractor EXT can extract the π or APSIPE breaks the extractable security of the
extractable witness encryption scheme.

We first reason about case 1. Notice that if APSIPE successfully distinguishes the ciphertext c0, c1 without
allowing for the extractor to obtain a valid SIP π and without violating the extractable security of the
extractable witness encryption scheme, APSIPE must obtain a valid witness for the following relation:

RΓ V :
{

((pk, d, B︸ ︷︷ ︸
inst

), (σ, B̃︸︷︷︸
wit

))

∣∣∣∣∣1← SIG.Vf(pk, d, σ) ∧ evolved(B, B̃) = 1

∧ (pk, d, σ) ∈ B∗ ∧B∗ ∈ B̃⌈ℓ1+ℓ2 ∧ u-stakefrac(B̃, ℓ2) ≥ β

}

However, while obtaining a valid π is trivial for APSIPE since it holds sk, APSIPE must obtain a B̃ that
satisfies the relation without resulting in a blockchain execution where a valid SIP π is present in the
common prefix of every honest party’s blockchain at the moment of decryption. In order to do so, APSIPE
must produce a valid execution of the blockchain starting from the initial blockchain B used to generate
the ciphertext cb and arriving at an evolved blockchain B̃ such that 1← SIG.Vf(pk, d, π)∧ evolved(B, B̃) =
1∧(pk, d, π) ∈ B∗∧B∗ ∈ B̃⌈ℓ1+ℓ2∧u-stakefrac(B̃, ℓ2) ≥ β while preventing π from appearing in the common
prefix of an honest party’s blockchain given the view ofAPSIPE. However, since this contradicts the common
prefix property for the underlying blockchain protocol, APSIPE can only hope to produce B̃ locally, without
actually executing the blockchain protocol, in such a way that π never appears in the common prefix of
the blockchain (i.e., so that the extractor fails when run on the blockchain obtained by honest parties).
However, this would violate the distinguishable forking property of the blockchain protocol, since APSIPE

35

would need to obtain a B̃ that does not contain a valid π but that satisfies evolved(B, B̃) = 1. Hence,
we conclude that APSIPE is not able to produce a blockchain execution such that inst = (pk, d, B) and
inst ∈ LΓ V without allowing the extractor to obtain a valid π, except with the negligible probability
that APSIPE breaks the distinguishable forking or common prefix properties of the underlying blockchain
protocol Γ V . This leaves us with case 2, where APSIPE is able to distinguish extractable witness encryption
ciphertexts c0, c1 for inst = (pk, d, B) ∈ LΓ V without producing a valid witness (π, B̃), which is ruled out
by this reasoning.

To tackle case 2, we consider an adversary APSIPE = (A1,A2,A3,A4,A5) that has non-negligible advan-
tage in GamePUB-SIP

PSIPE,APSIPE,Γ but does not publish π on the blockchain, as that is ruled out by case 1. We
construct an adversary AeWE, using black-box access to APSIPE, which breaks the extractable security of
eWE. Throughout this reduction, AeWE acts as Z in the execution of the blockchain protocol Γ , which
it simulates towards APSIPE following the same steps as the real protocol. Specifically, AeWE proceeds as
follows:

1. AeWE starts GamePUB-SIP
PSIPE,APSIPE,Γ game acting as the challenger towards APSIPE, simulating an execution

of the blockchain protocol EXECΓ (A1(1λ, pk, sk),Z, 1λ) where (pk, sk) ← KG(1λ). AeWE proceeds
exactly as Z would until A1 stops and obtains a VIEW of the execution.

2. AeWE executes A2(1λ, pk, sk, VIEWA1) where VIEWA1 ∈ VIEW to obtain (st1, m0, m1).
3. AeWE sets inst = (pk, d, B), where d

$← {0, 1}λ, and B← GetRecords(1λ, st), given st← UpdateState(1λ)
obtained from A2’s view VIEW′A2

← VIEW′ of the simulated blockchain protocol execution. AeWE

sends (·, inst, m0, m1) to the challenger of the GameEXT-SEC
eWE,AeWE

game.
4. When AeWE receives ceWE

b from the challenger of GameEXT-SEC
eWE,AeWE

, it sets cb = (ceWE
b , d) and resumes

GamePUB-SIP
PSIPE,APSIPE,Γ . AWE executes st2 ← A3(st1, cb) and resumes the blockchain protocol execution

EXECΓ (A4(st2, cb),Z, 1λ) acting exactly as Z until A4 stops, obtaining VIEW′.
5. AeWE executes A5(st2, VIEW′A4

) where VIEW′A4
← VIEW′, obtaining output b′, which it returns to

the challenger in the GameEXT-SEC
eWE,A game.

Notice that AeWE simulates GamePUB-SIP
PSIPE,APSIPE,Γ and the blockchain execution towards APSIPE ex-

actly as in a real execution. Now assume that APSIPE has non-negligible advantage AdvPUB-SIP
PSIPE,APSIPE,Γ

in GamePUB-SIP
PSIPE,APSIPE,Γ , then AeWE is able to distinguish extractable witness encryption ciphertexts c0, c1

generated under the statement inst = (pk, d, B) ∈ LΓ V from messages m0, m1. Hence, AeWE has non-
negligible advantage AdvEXT-SEC

eWE,A in GameEXT-SEC
eWE,A , which means given extractable security for the eWE

scheme there is an extractor EXTAPSIPE(·)(1λ,LΓ V , inst, m0, m1) that obtains wit = (π, B̃) from APSIPE
with probability SuccEXT-SEC

eWE,EXT, where(wit, inst) ∈ RΓ V . Otherwise, if APSIPE has non-negligible advantage
in GamePUB-SIP

PSIPE,APSIPE,Γ while the extractor EXT(pk, cb, B̃) obtains SIP π such that Vf(pk, cb, π) = 1 with
negligible probability SuccPSIPE

EXT (i.e., fails to output such SIP π with non-negligible probability), we con-
tradict the extractable security property of the eWE scheme. Hence, given that the blockchain protocol
is secure and eWE has extractable security, we have that APSIPE can only have negligible advantage
AdvPUB-SIP

PSIPE,APSIPE,Γ in GamePUB-SIP
PSIPE,APSIPE,Γ while EXT fails to output SIP π.

C Proof of Theorem 2 (ΠTSIPE Security Proof)

Proof. We prove Theorem 2 by showing a proof for Correctness, Unforgeability, IND-CPA Security and
Self-Incriminating Proof Extractability properties of our scheme ΠTSIPE as follows:

Correctness. The correctness of our ΠTSIPE protocol is immediate and can be proven by the correctness
of the underlying primitives’ threshold encryption, MPC-hard function, commitment scheme and NIZK.

Fix a security parameter λ ∈ N, value α, β, ζ ∈ N with α ≥ 2β and β ∗ (β− ζ) ≥ 2λ (where ζ can be a
function of β) and parameters (n, t) such that 0 < t < n. The setup algorithm ΠTSIPE.Setup(1λ, n, t) works
as follows: a trusted third party who computes a public key and secret shares for a threshold encryption
scheme

(
pkTE, {skTE

i }i∈[n]

)
← TE.Setup

(
1λ, n, t

)
and public parameters for a commitment scheme ck←

CS.Setup(1λ). For all i ∈ [n], compute commitments to skTE
i as: cmski = CS.Commit(ck, skTE

i ; ρski) where
ρski ← H4(skTE

i). The trusted third party distributes the public key pk = (pkTE, ck, {cmski}i∈[n]) to all
parties, and a pair of secret key share and random ski = (skTE

i , ρski
) to each party Pi. In practice, this is

36

substituted by a suitable distributed key generation protocol but we treat this as a trusted setup for the
sake of simplicity.

For any message m ∈ {0, 1}λ, we encrypt the message by ΠTSIPE.Enc(pk, m) by sampling s
$←

{0, 1}n·(α−β−2) and z
$← {0, 1}β , and searching for β number of nonces {w1, . . . , wβ} ∈ {0, 1}α−β−2

(as described in step 2 in Figure 11) such that the first ζ bits of each qi ← scratch(s, z, wi) are
zero. Given Lemma 1, this succeeds except with negligible probability. Finally, we compute the cipher-
text c = (c1, c2, c3, z) as: c1 ← CS.Commit(ck, (s∥m); ρ) where ρ = H1(s∥w) and w = (w1∥ . . . ∥wβ),
c2 ← TE.Enc (pkTE, s) and c3 = H2(s∥w∥q)⊕m where q = (q1∥ . . . ∥qβ).

For the decryption of a ciphertext c = (c1, c2, c3, z) by ΠTSIPE.Combine(pk, ski, c, {νi}i∈[T]), a set of
t + 1 or more parties do the following: (i) first, decrypt c2 as s ← TE.Combine (pkTE, {µi}i∈T) and the
correctness of it follows from the correctness of the threshold encryption scheme (as per Definition 24);
(ii) then, search for β number of nonces {w1, . . . , wβ} ∈ {0, 1}α−β−2 (as described in step 2 in Figure 11)
by computing qi ← scratch(s, z, wi) such that the first ζ bits of each qi are 0, and retrieve the original
message as m = c3 ⊕ H2(s∥w∥q) where ρ = H1(s∥w), w = (w1∥ . . . ∥wβ) and q = (q1∥ . . . ∥qβ), and
the correctness of it follows from the correctness of the MPC-hard function scratch (in Figure 1) as per
Lemma 1. Now, notice that for a party Pi who has access of the ski = (skTE

i , ρski
) and (s, ρ, m) which is

sufficient to generate a self-incriminating proof πi computed as a NIZKPoK with witness (s, ρ, m, skTE
i , ρski)

showing CS.Commit(ck, (s∥m); ρ) = c1 ∧
(
∨j∈[n]CS.Commit(ck, skTE

i ; ρski) = cmskj

)
, and the correctness

of self-incriminating proof π follows from the underlying NIZKPoK scheme (as per Definition 27) and
commitment scheme CS (as per Definition 18). Therefore, ΠTSIPE satisfies the correctness properties.

IND-CPA Security. IND-CPA security of TSIPE can be proven via the following sequence of hybrid
arguments where start with the original GameIND-CPA

TSIPE,A1,...,Aa
and finish at a hybrid where the ciphertext

contains no information about the message:

H0: The first hybrid is A1,TSIPE, . . . ,Aa,TSIPE’s view in the real-world game GameIND-CPA
TSIPE,A1,...,Aa

for the
TSIPE.

H1: Recall the threshold encryption from our ΠTSIPE construction proceeds by sampling two ran-
dom as s

$← {0, 1}n·(α−β−2) and z
$← {0, 1}β and then compute a threshold encryption as

c2 = TE.Enc (pkTE, s). The hybrid H1 is the same as hybrid H0 except that instead of generat-
ing a thresholds encryption according to the above process, we just sample a random string in
{0, 1}n·(α−β−2) and use that to generate the encryption. We show that the two hybrids H0 and
H1 are indistinguishable unless A1,TSIPE, . . . ,Aa,TSIPE breaks the IND-CPA security of the underlying
threshold encryption scheme TE.

H2: Recall the commitment process from our ΠTSIPE construction proceeds by sampling two random
as s

$← {0, 1}n·(α−β−2) and z
$← {0, 1}β . Next, it searches for β number of nonces {w1, . . . , wβ} ∈

{0, 1}α−β−2 such that the first ζ bits of each qi ← scratch(s, z, wi) are 0. Then it computes a commit-
ment as c1 = CS.Commit(ck, (s∥m); ρ) where ρ = H1(s∥w) and w = (w1∥ . . . ∥wβ). The hybrid H2 is
the same as hybrid H1 except that instead of generating a commitment according to the above pro-
cess, we just sample a random string in {0, 1}n·(α−β−2)+λ and use that to generate the commitment.
We show that the two hybrids H1 and H2 are indistinguishable unless A1,TSIPE, . . . ,Aa,TSIPE breaks
the hiding property of the underlying commitment scheme CS.

H3: Recall the message encryption c3 = H2(s∥w∥q) ⊕ m from our ΠTSIPE, construction proceeds by
sampling two random as s

$← {0, 1}n·(α−β−2) and z
$← {0, 1}β , and next, it searches for β number of

nonces {w1, . . . , wβ} ∈ {0, 1}α−β−2 such that the first ζ bits of each qi ← scratch(s, z, wi) are 0. Then
it encrypt the message m as c3 = H2(s∥w∥q)⊕m where w = (w1∥ . . . ∥wβ) and q = (q1∥ . . . ∥qβ). The
hybrid H3 is the same as hybrid H2 except that instead of generating an encryption according to the
above process, we just sample a random string r3 ∈ {0, 1}λ and use that to compute the encryption
as c3 = r3⊕m. We show that two hybrids H2 and H3 are indistinguishable until A1,TSIPE, . . . ,Aa,TSIPE
breaks the computational indistinguishability in the random oracle model.

Assume by contradiction that there exists a (δ, Υ)-distributed adversary A1,TSIPE, . . . ,Aa,TSIPE with
non-negligible advantage in GameIND-CPA

TSIPE,A1,...,Aa
when executing TSIPE from Figure 11. Such an ad-

versary is able to distinguish between the hybrids in the sequence above. We will show that this
A1,TSIPE, . . . ,Aa,TSIPE can be used to construct adversaries breaking the hiding property of the com-
mitment scheme and the IND-CPA property of the threshold encryption scheme.

37

In hybrid H1, we use the threshold encryption to encrypt a randomly chosen string. Hence, the advantage
of A1,TSIPE, . . . ,Aa,TSIPE in hybrid H1 can be directly reduced to IND-CPA security of the underlying
threshold encryption scheme. We construct an adversary ATE who is talking with the challenger of
GameIND-CPA

TE,A and an internal copy of A1,TSIPE, . . . ,Aa,TSIPE for which it simulates GameIND-CPA
TSIPE,A1,...,Aa

. The
adversary ATE proceeds as follows:

1. ATE picks the threshold parameter (n, t) and choose a subset T̃ ⊂ [n] of parties to corrupt, such that
|T̃ | = |a| ≤ t.

2. ATE generates (1λ, pk, {skj}j∈T̃) by (pk, {ski}i∈[n])← Setup(1λ, n, t) and forwards a pair (pk, skj) to
Aj,TSIPE for all j ∈ T̃ , acting as the challenger of GameIND-CPA

TSIPE,A1,...,Aa
.

3. ATE receives a tuple (m0, m1) from A1,TSIPE. The ATE forwards the tuple (s0, s1) to the challenger
of GameIND-CPA

TE,A where s0
$← {0, 1}n·(α−β−2) and s1

$← {0, 1}n·(α−β−2). Next, sample z0
$← {0, 1}β

and z1
$← {0, 1}β , and searches for β number of nonces {w0,1, . . . , w0,β} ∈ {0, 1}α−β−2 and

{w1,1, . . . , w1,β} ∈ {0, 1}α−β−2 such that the first ζ bits of:

q0,i ← scratch(s, z0, w0,i) are zero, for all i ∈ [β]

q1,i ← scratch(s, z1, w1,i) are zero, for all i ∈ [β]

and set w0, w1 and q0, q1 as:

w0 = (w0,1∥ . . . ∥w0,β), w1 = (w1,1∥ . . . ∥w1,β)

q0 = (q0,1∥ . . . ∥q0,β), q1 = (q1,1∥ . . . ∥q1,β)

4. ATE receives the challenge ciphertext c′b from the challenger of GameIND-CPA
TE,A . Then, ATE forwards

cb = (c1, c2, c3, z) to A1,TSIPE, . . . ,Aa,TSIPE where: c2 = c′b and guess b∗ to construct,

c1 ← CS.Commit(ck, (sb∗∥mb∗); ρ), c3 = H2(sb∗∥wb∗∥qb∗)⊕mb∗ , z = zb∗

where ρ = H1(sb∗∥wb∗).
5. Finally, ATE receives a guess b′ from A1,TSIPE. ATE forwards the guess b′ to the GameIND-CPA

TE,A .

Notice that ATE simulates GameIND-CPA
TSIPE,A1,...,Aa

exactly as in a real execution but guesses b∗. Since b∗

is guessed at random, ATE’s advantage in GameIND-CPA
TE,A in negligibly close to half of the advantage of

A1,TSIPE, . . . ,Aa,TSIPE in GameIND-CPA
TSIPE,A1,...,Aa

. Hence, if A1,TSIPE, . . . ,Aa,TSIPE has non-negligible advantage
in GameIND-CPA

TSIPE,A1,...,Aa
, then ATE has non-negligible advantage in GameIND-CPA

TE,A .

In hybrid H2, we use the commitment scheme to commit to a randomly chosen string. Hence, the advantage
of A1,TSIPE, . . . ,Aa,TSIPE in hybrid H2 can be directly reduced to the hiding property of the underlying
commitment scheme. We construct an adversary ACS who is talking with the challenger of GameHIDE

CS,A and
an internal copy of A1,TSIPE, . . . ,Aa,TSIPE for which it simulates GameIND-CPA

TSIPE,A1,...,Aa
. The adversary ACS

proceeds as follows:

1. ACS picks the threshold parameter (n, t) and choose a subset T̃ ⊂ [n] of parties to corrupt, such that
|T̃ | = |a| ≤ t.

2. ACS generates (1λ, pk, {skj}j∈T̃) by (pk, {ski}i∈[n]) ← Setup(1λ, n, t) and forwards a pair (pk, skj) to
Aj,TSIPE for all j ∈ T̃ , acting as the challenger of GameIND-CPA

TSIPE,A1,...,Aa
.

3. ACS receives a tuple (m0, m1) from A1,TSIPE. Then, ACS forwards the tuple ((s0, m0)0, (s1, m1)1) to
the challenger of GameHIDE

CS,A where s0
$← {0, 1}n·(α−β−2) and s1

$← {0, 1}n·(α−β−2)). Next, sample
z0

$← {0, 1}β and z1
$← {0, 1}β , and searches for β number of nonces {w0,1, . . . , w0,β} ∈ {0, 1}α−β−2

and {w1,1, . . . , w1,β} ∈ {0, 1}α−β−2 such that the first ζ bits of:

q0,i ← scratch(s, z0, w0,i) are zero, for all i ∈ [β]

q1,i ← scratch(s, z1, w1,i) are zero, for all i ∈ [β]

and set w0, w1 and q0, q1 as:

w0 = (w0,1∥ . . . ∥w0,β), w1 = (w1,1∥ . . . ∥w1,β)

q0 = (q0,1∥ . . . ∥q0,β), q1 = (q1,1∥ . . . ∥q1,β)

38

4. ACS receives the challenge commitment cmb from the challenger of GameHIDE
CS,A. Then, ACS and

forwards cb = (c1, c2, c3, z) to A1,TSIPE, . . . ,Aa,TSIPE where: c1 = cmb; choose a random from
r2 ∈ {0, 1}n·(α−β−2)+λ and construct c2 ← TE.Enc(pkTE, (r2)); and choose a random r3 ∈ {0, 1}λ

and construct c3 = r3 ⊕mb; and guess b∗ to construct z = zb∗

5. Finally, ACS receives a guess b′ from A1,TSIPE. ACS forwards the guess b′ to the GameHIDE
CS,A.

Now, notice that ACS simulates GameIND-CPA
TSIPE,A1,...,Aa

exactly as in H1 but guesses b∗. Since, c2 and
c3 are computed using random value, ACS’s advantage in GameHIDE

CS,A is negligibly close to the advan-
tage of A1,TSIPE, . . . ,Aa,TSIPE in GameIND-CPA

TSIPE,A1,...,Aa
, and b∗ is guessed at random, ACS’s advantage in

GameHIDE
CS,A in negligibly close to half of the advantage of A1,TSIPE, . . . ,Aa,TSIPE in GameIND-CPA

TSIPE,A1,...,Aa
.

Hence, if A1,TSIPE, . . . ,Aa,TSIPE has non-negligible advantage in GameIND-CPA
TSIPE,A1,...,Aa

, then ACS has non-
negligible advantage in GameHIDE

CS,A.

In hybrid H3, instead of generating an encryption c3 = H2(s∥w∥q)⊕m, we use a randomly chosen string
r3 ∈ {0, 1}λ to encrypt the message as c3 = r3 ⊕m. Now, we have computational indistinguishability in
the random oracle model, since A1,TSIPE, . . . ,Aa,TSIPE cannot guess the random r3 except with probability
poly(λ)/2λ since it can only make λ queries to H2 and there are 2λ possible outputs. A1,TSIPE, . . . ,Aa,TSIPE
can only guess (s, w, q) since s are no longer in c1 or c2. Hence, we simulate GameIND-CPA

TSIPE,A1,...,Aa
exactly

as in H2 except with the negligible probability that A1,TSIPE, . . . ,Aa,TSIPE guesses (s, w, q).

We conclude the proof by observing that in the above hybrid argument, we reach a contradiction and
thus our assumption of the existence of A1,TSIPE, . . . ,Aa,TSIPE against the IND-CPA of ΠTSIPE cannot be
true.

Unforgeability. If there exists an adversary A with non-negligible advantage in GameUnforge1
TSIPE,A or a (δ, Υ)-

distributed adversary A1,TSIPE, . . . ,Aa,TSIPE with non-negligible advantage in GameUnforge2
TSIPE,A1,...,Aa

for our
scheme TSIPE, we show that these adversaries can be used to construct an adversary ANIZK breaking
the soundness property of the NIZKPoK proof system used to generate the SIP π. We analyze each case
separately.

Assume by contradiction that there exists a (δ, Υ)-distributed adversary A1,TSIPE, . . . ,Aa,TSIPE
with non-negligible advantage in GameUnforge2

TSIPE,A1,...,Aa
when executing TSIPE from Figure 11. Such

a A1,TSIPE, . . . ,Aa,TSIPE is able to generate a valid SIP π, which is a NIZKPoK taking as witness
(s, ρ, m, skTE

i , ρski). Hence, this adversary is generating π for a ciphertext cb it cannot decrypt in order to
obtain the encryption randomness and message (s, ρ, m). We construct an efficient adversary ANIZK with
black-box access to A1,TSIPE, . . . ,Aa,TSIPE that has a non-negligible advantage in breaking soundness (in
Definition 29) property of the NIZK scheme as per Definition 27 or the IND-CPA security of TSIPE.

We construct an adversary ANIZK who breaks the soundness property of the NIZKPoK proof sys-
tem with non-negligible probability given an internal copy of A1,TSIPE, . . . ,Aa,TSIPE with non-negligible
advantage in GameUnforge2

TSIPE,A1,...,Aa
. ANIZK proceeds as follows:

1. A1,TSIPE, . . . ,Aa,TSIPE picks the threshold parameter (n, t) and chooses a subset T̃ ⊂ [n] of parties to
corrupt, such that |T̃ | = |a| ≤ t.

2. ANIZK computes (pk, {ski}i∈[n])← Setup(1λ, n, t) and forwards a (skj to Aj,TSIPE for all j ∈ T̃ , acting
as the challenger of GameUnforge2

TSIPE,A1,...,Aa
.

3. When A1,TSIPE, . . . ,Aa,TSIPE queries OParDec
ski,i∈[n]\T̃ with (i, c), ANIZK sets Q ← Q∪ c (where Q initially

empty) and answers the query with νi ← ParDec(ski, c) (which it can do since it has computed
{ski}i∈[n]). When A1,TSIPE, . . . ,Aa,TSIPE queries OEnc

pk with m, ANIZK answers with c← Enc(pk, m).
4. ANIZK receives a tuple (c′, π′) from A1,TSIPE, . . . ,Aa,TSIPE.
5. ANIZK returns π′.

It is clear that the (δ, Υ)-distributed adversary A1,TSIPE, . . . ,Aa,TSIPE’s view in the game
GameUnforge2

TSIPE,A1,...,Aa
is indistinguishable from the view simulated by ANIZK, since ANIZK executes

Setup(1λ, n, t) and simulates OParDec
ski,i∈[n]\T̃ and OEnc

pk exactly as in the game. Since we assume that
A1,TSIPE, . . . ,Aa,TSIPE has non-negligible advantage in GameUnforge2

TSIPE,A1,...,Aa
, it is able to generate (c′, π′)

such that 1 ← Vf(pk, c′, π′) where c′ /∈ Q. Hence, π is a valid NIZKPoK for the SIP statement of TSIPE
that is generated without knowledge of the witness (s, ρ, m, skTE

i , ρski
), which violates the soundness and

39

proof of knowledge properties of the NIZKPoK proof system. Thus, the existence of A1,TSIPE, . . . ,Aa,TSIPE
that has non-negligible advantage in GameUnforge2

TSIPE,A1,...,Aa
contradicts the security properties of NIZKPoK.

Assume by contradiction that there exists an adversary A with non-negligible advantage in
GameUnforge1

TSIPE,A. This adversary is able to generate a valid π for a ciphertext for which it knows (s, ρ, m) (i.e.,
the encryption randomness and plaintext message) without knowing a pair (skTE

i , ρski
). Once again, we

can use A to construct an adversary ANIZK that breaks the soundness and proof of knowledge properties
of the NIZKPoK proof system that is used to generate the SIP π with non-negligible probability given A.
ANIZK proceeds as follows:

1. A picks the threshold parameter (n, t).
2. ANIZK computes (pk, {ski}i∈[n])← Setup(1λ, n, t).
3. ANIZK executes (c′, π′)← AODec

sk (1λ, pk).
4. When A1,TSIPE, . . . ,Aa,TSIPE queries ODec

ski,i∈[n] with (T, j, c), ANIZK computes νi ← ParDec(ski, c) for
i ∈ T and returns (π, m) ← Combine(pk, skj , c, {νi}i∈T) (which it can do since it has computed
{ski}i∈[n]).

5. ANIZK returns π′.

It is clear that A’s view in the game GameUnforge1
TSIPE,A1,...,Aa

is indistinguishable from the view simulated
by ANIZK, since ANIZK executes Setup(1λ, n, t) and simulates ODec

ski,i∈[n] exactly as in the game. Since we
assume that A has non-negligible advantage in GameUnforge1

TSIPE,A, it is able to generate (c′, π′) such that
1 ← Vf(pk, c′, π′) where c′ /∈ Q. Hence, π is a valid NIZKPoK for the SIP statement of TSIPE that is
generated without knowledge of the witness (s, ρ, m, skTE

i , ρski
), which violates the soundness and proof

of knowledge properties of the NIZKPoK proof system. Thus, the existence of A with non-negligible
advantage in GameUnforge1

TSIPE,A contradicts the security properties of NIZKPoK.

Self-Incriminating Proof Extractability. Assume for the sake of contradiction that the proto-
col does not offer self-incriminating proof extractability. In that case, there exists a (δ, Υ)-distributed
adversary A1,TSIPE, . . . ,Aa,TSIPE that has advantage AdvSIP−SEC

TSIPE,A1,...,Aa
such that there does not exist

an extractor kEXTi for at least one i ∈ [a] that can output a value πi s.t. Vf(pk, c, πi) = 1 with
SuccTSIPE

kEXT ≥ AdvSIP−SEC
TSIPE,A1,...,Aa

− negl(λ). If this is the case, then it must be because no valid πi can
be produced with non-negligible probability from (pk, c, ski, τ fast

i) even when A1,TSIPE, . . . ,Aa,TSIPE is able
to distinguish the challenge ciphertext cb. Observe that if this is the case, then it implies that no adver-
sary Ai,TSIPE for i ∈ [a] has executed scratch correctly. However, this is not possible as it contradicts the
IND-CPA security of TSIPE (as described above in TSIPE IND-CPA security proof). To see this, first,
observe that the adversary needs to be able to learn a non-negligible amount of information about the
message mb encrypted by the challenger. However, the message mb can only be derived by computing
H2(s∥w∥q) where w = (w1∥ . . . ∥wβ) and q = (q1∥ . . . ∥qβ), for values s∥w∥q that have high entropy and
thus cannot be brute forced by a polynomial time adversary. More specifically, this input to the random
oracle H2 has at least β ∗ (α−β− 2) + β ∗ (β− ζ) = β ∗ (α− 2− ζ) bit of entropy due to the computation
qj ← scratch(s, z, wj) for all j ∈ [β] containing β ∗ (α− 2− ζ) bits of entropy (as each wj is (α− β − 2)
bits and each qj is β bits but it has first ζ bits are 0). Now, since α ≥ 2β (as defined in Figure 1) and
β ∗ (β − ζ) ≥ 2λ, we get that,

β ∗ (α− 2− ζ) ≥ β ∗ (2β − 2− ζ)
= 2β2 − 2β − βζ

= β2 − βζ + β2 − 2β

= β ∗ (β − ζ) + β2 − 2β

= 2λ + β2 − 2β

≈ 2λ

for the security parameter λ. Hence, no polynomial-time adversary can brute-force these. Furthermore,
observe that these are all derived using random oracles, and hence no, non-brute-force attack is possible.
Thus, each qj must be computed using scratch taking as input the values s, z and wj , for all j ∈ [β]. This
means that for some adversary Ai,TSIPE to learn mb it must have executed scratch correctly in which case
Lemma 1 guarantees that there exists an extractor kEXTi that obtains the s from τ fast

i for at least one
sub-adversary Ai,TSIPE.

40

Now, notice that the extractor kEXTi has obtained s from τ fast
i , and each extractor kEXTi is also

given c = (c1, c2, c3, z) and the public key pk; so the Lemma 1 guarantees that the extractor kEXTi can
correctly compute β number of nonces {w1, . . . , wβ} in polynomial-time by running qj ← scratch(s, z, wj)
such that the first ζ bits of qj are zero (as described in Figure 1), for all j ∈ [β]. Then the extractor
kEXTi can compute ρ = H1(s∥w) using (s, w) where w = (w1∥ . . . ∥wβ). Finally, the extractor kEXTi can
compute m = c3 ⊕H2(s∥w∥q) where q = (q1∥ . . . ∥qβ). Next, see that the last values needed construct a
valid πi using NIZKPoK is the public key pk and the secret share ski of the sub-adversary Ai,TSIPE. Since
kEXTi is also given ski = (skTE

i , ρski
), hence it can compute a valid proof πi. Thus we can conclude that

ΠTSIPE has Self-Incriminating Proof Extractability when scratch is MPC-hard as per defined in Figure 1.

41

	Detecting Rogue Decryption in (Threshold) Encryption via Self-Incriminating Proofs

