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Abstract. The BUFF transform, due to Cremers et al. (S&P’21), is a generic transformation for
digital signature scheme, with the purpose of obtaining additional security guarantees beyond unforge-
ability: exclusive ownership, message-bound signatures, and non-resignability. Non-resignability (which
essentially challenges an adversary to re-sign an unknown message for which it only obtains the sig-
nature) turned out to be a delicate matter, as recently Don et al. (CRYPTO’24) showed that the
initial definition is essentially unachievable; in particular, it is not achieved by the BUFF transform.
This led to the introduction of new, weakened versions of non-resignability, which are (potentially)
achievable. In particular, it was shown that a salted variant of the BUFF transform does achieves some
weakened version of non-resignability. However, the salting requires additional randomness and leads to
slightly larger signatures. Whether the original BUFF transform also achieves some meaningful notion
of non-resignability remained a natural open question.
In this work, we answer this question in the affirmative. We show that the BUFF transform satisfies
the (almost) strongest notions of non-resignability one can hope for, facing the known impossibility
results. Our results cover both the statistical and the computational case, and both the classical and
the quantum setting. At the core of our analysis lies a new security game for random oracles that we
call Hide-and-Seek. While seemingly innocent at first glance, it turns out to be surprisingly challenging
to rigorously analyze.

1 Introduction

Digital Signatures and the BUFF Transform. Digital signatures are at the very heart of modern
cryptography. The gold standard security notion for digital signature schemes is (strong) unforgeability
against chosen message attacks. However, in certain applications, additional security properties are desirable,
or even necessary. For example, [JCCS19] showed that the “Dynamically Recreatable Key” protocol [KBJ+14]
is insecure if the signature scheme used in the protocol does not additionally offer some sort of non-malleability
property that, informally, requires it to be hard to turn a signature for an unknown message into a signature
for the same message but under a different public key (with a possibly known secret key). This property was
named non-resignability in [JCCS19], and formally defined later in [CDF+21], along with two more properties:
exclusive ownership and message-bound signatures. On top, [CDF+21] introduced a generic transformation,
the BUFF transform, which can be applied to any signature scheme, and it was argued that the transformed
signature scheme then satisfies these three additional properties (in the random oracle model). The transform
is very simple: instead of signing the message m, a BUFF-transformed signature scheme signs the hash
H(pk,m) of the public key and the message, and this hash value is also appended to the signature.

Motivated by the fact that the NIST call for additional post-quantum signatures [NIST22] explicitly men-
tioned the above as “additional desirable security properties ”, several of the NIST post-quantum signature
submissions have the BUFF transform built in, or mention the possibility of applying the BUFF transform
to the proposed scheme.

Recent Development. Somewhat surprisingly given the apparently clear situation around the BUFF
transform, the recent work [DFHS24] showed that the question of defining and achieving non-resignability



is actually more subtle. Concretely, it was shown that non-resignability, as defined in [CDF+21], is almost
unachievable as a matter of fact, both in the plain model and in the random oracle model.5 In particular, it
follows that the BUFF transform does not achieve non-resignability (as defined in [CDF+21]). The apparent
contradiction to the positive claim from [CDF+21] comes from the fact that the proof in [CDF+21] relied
on a non-malleability claim for the random oracle that was taken from [BFS11], and which turned out to be
false.

Towards showing a positive result, [DFHS24] introduced NRH,⊥, a weaker version of the original def-
inition of non-resignability (in the ROM), and they showed that a salted version of the BUFF transform
satisfies NRH,⊥. The situation is actually more complicated in that the non-resignability definition involves
an entropy condition, of which one can consider a statistical or a computational variant. While the impossi-
bility of [DFHS24] holds for both, the positive result on NRH,⊥ for the salted BUFF transform holds for the
statistical variant only, and provably not for the computational variant.6

In reaction to the negative results from (an early version of) [DFHS24], the authors of [CDF+21] updated
their paper to [CDF+23] by weakening their definition of non-resignability and tried to argue that the (orig-
inal) BUFF transform satisfies their weakened definition; however, their argument relies on an assumption
that is shown to be false in [DFHS24].

Thus, the bottom line is that the following question has remained open:

Does the BUFF transform satisfy some non-trivial notion(s) of non-resignability?

Our Results. In this work, we answer the above question in the affirmative. Concretely, we introduce
yet another variant of non-resignability, sNRH,⊥, and we show that the (original) BUFF transform satis-
fies sNRH,⊥, both in the statistical setting, where the entropy condition holds statistically and adversaries
may be computationally unbounded, and in the computational setting, where the entropy condition holds
computationally and adversaries have bounded computing power only.

In the statistical setting, sNRH,⊥ is strictly stronger than NRH,⊥; in the computationally setting, the two
notions are (probably) incomparable, yet sNRH,⊥ is strictly stronger than the notion considered in [CDF+23].
Therefore, given that [DFHS24] showed that the BUFF transform does not satisfy NRH,⊥ in the computa-
tionally setting, our results appear to be the best we can hope for towards proving positive results on the
non-resignability of the BUFF transform.

Our approach is inspired by the proof in [DFHS24] for the salted BUFF transform. Indeed, on the
technical level, we can recycle and adjust some of the arguments, although we avoid the detour via some
tailor-made non-malleability property for the random oracle. The crucial part of course is when [DFHS24]
exploits the salt that originates from the salted BUFF transform, which we cannot do, given that we consider
the original, unsalted variant. Instead, we capture the crucial, missing piece in the form of a particular, simple
game in the random oracle model, which we call Hide-and-Seek, and we reduce the non-resignability property
of the BUFF transform to the hardness of winning Hide-and-Seek. In essence, the game asks to find x when
given H(x) and query-bounded access to H, where x may be chosen arbitrarily dependent on H subject to
the condition that it is hard to guess when given access to H only, i.e., without being given H(x).

Despite its simplicity and harmless appearance, this game turns out to be surprisingly tricky to analyze.
Thus, the technical core of this work is in analyzing Hide-and-Seek and showing that it is hard to win, both
in the statistical and in the computational setting, and both in the classical and in the quantum ROM.

Related Work. The relevance of the BUFF security notions can be traced to attacks [Aye15,JCCS19], which
exploit the absence of additional security properties like exclusive ownership, message-bound signatures,
and non-resignability. The former security notion (exclusive ownership) was first mentioned by Pornin and
Stern [PS05] which can further be traced back to [MS04,BWM99]. Along with defining exclusive ownership,

5 There are hypothetical signature schemes to which the attack from [DFHS24] does not apply, though we are not
aware of any natural scheme for which that is the case.

6 We note that the statistic and the computational variants of NRH,⊥ are incomparable: in the computational case,
the adversary is restricted in its computational power but is bound to a weaker entropy condition.
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Pornin and Stern also give three generic transformations that achieve exclusive ownership. The other security
notions (message-bound signatures and non-resignability) were formalized in [CDF+21].

In very recent work, Aulbach et al. [ADM+24] analyzed the BUFF security of the schemes submitted to
the recent NIST standardization process for post-quantum signature schemes [NIST22], though considering
an even weaker notion of non-resignability than NRH,⊥ (where there is no auxiliary information at all).

Also very recently, Düzlü et al. [DFF24] reconsider the BUFF security notions for Falcon [PFH+20],
exploiting the particular form of a Falcon signature, and they argue that all that is needed is to replace the
hash H(r,m) in a Falcon signature computation by H(r, pk,m); thus, the hash can be “recycled” (this was
argued in [CDF+21] already), but also, it does not need to be appended to the signature as in the BUFF
transform (in line with the lighter transform by Pornin and Stern [PS05]). Regarding non-resignability, they
consider the variant from [CDF+23], which is weaker than NRH,⊥, but relax the HILL entropy requirement
to a bound on the computational unpredictability, which makes the definition stronger in that aspect. Thus,
strictly speaking, the considered variant is incomparable with the computational versions of NRH,⊥ and
sNRH,⊥.

2 Preliminary

We start by briefly spelling out the notions of guessing probability and min-entropy, and recalling the random
oracle model. Then, we introduce sNRH,⊥, the variant of non-resignability we consider in this paper. Finally,
we recall the BUFF transform, as introduced in [CDF+21].

2.1 Guessing probability and min-entropy

For a random variable X over a finite set X , the guessing probability and the min-entropy are respectively
defined as

guess(X) := max
x

Pr[X=x] and H∞(X) := − log
(
guess(X)

)
where here and in the remainder, log is the binary logarithm. For random variables X and Y over respective
finite sets X and Y, the conditional guessing probability is defined as

guess(X | Y ) :=
∑
y

Pr[Y =y] max
x

Pr[X=x | Y =y] .

It is well known that guess(X | Y ) = maxf Pr[X=f(Y )], where the maximization is over all (deterministic
or randomized) functions f : Y → X . In line with the unconditional case above, the conditional min-entropy
is then given by H∞(X | Y ) := − log

(
guess(X | Y )

)
.

2.2 The Random-Oracle model

Throughout, we consider the random oracle model (ROM) [BR93], i.e., we consider a uniformly randomly
function H : X → Y, where X and Y are suitably chosen, finite sets, and algorithms are (only) given oracle
access to H. By default, we consider algorithms to be classical and thus make classical queries to H; however,
we also consider the quantum setting, in which case we then explicitly refer to quantum queries and/or the
quantum random oracle model (QROM) [BDF+11]. In some case, we also consider an algorithm that can
make an unbounded number of queries to H, in which case it then is irrelevant if these are classical or
quantum.

2.3 Non-resignability

Let S = (KGenH ,SignH ,VrfyH) be a signature scheme, where we make explicit that we consider schemes in
the random oracle model, and thus key-generation, signing, and verification are given oracle access to H. As
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usual, we require KGenH , SignH , and VrfyH to be PPT, and it is understood that KGenH takes the unary
representation of λ as input, where λ is the security parameter. By default, we denote the message space
byM and the public-key and secret-key spaces by PK and SK, respectively. Without loss of generality, we
assume that the public key pk can be efficiently computed from its corresponding secret key sk.

In this work, we consider a new variant of non-resignability, denoted sNRH,⊥. It is similar in spirit as
NRH,⊥ introduced in [DFHS24]; in particular, a crucial aspect is that aux is not given access to H, but we
additionally provide the adversary with the secret key sk, and we adjust the entropy condition correspondingly
(see below for a more detailed comparison). The security game is shown in Fig. 1. It is played by randomized
oracle algorithms7,

DH : SK →M and AH : SK × SGN ×AUX → PK × SGN

given query access to H, referred to as adversaries, and a randomized algorithm aux : SK×M→ AUX with
no access to H, referred to as hint function.8

sNRH,⊥
S (D,A, aux):

1: (sk, pk)← KGenH

2: m← DH(sk)
3: σ ← SignH(sk,m)
4: (pk′, σ′)← AH(sk, σ, aux(m, sk))
5: return pk ̸= pk′ ∧ VrfyH(pk′,m, σ′) = 1

Fig. 1. Our new variant of the non-resignability game sNRH,⊥.

While playing sNRH,⊥, we consider restricted (S-dependent) classes of adversaries with a give bound h
on the entropy

H∞
(sk,pk)←KGenH

m←DH (sk)

(m | H, sk, aux(sk,m)) ≥ h . (1)

For now we only consider the statistical variant, where we take an arbitrary but fixed security parameter
for S, where D, A and aux may be computationally unbounded and we only limit their query complexity,
and where the entropy requirement holds statistically, i.e., as in (1). The computational setting is handled
later in Section 5; there, D,A and aux are restricted to be (uniform or non-uniform) PPT algorithms, and
the entropy requirement is expressed via HILL entropy (which causes some complications given that (1)
conditions on the entire function table of H).

Informally, we say that a signature scheme S = (KGen,Sign,Vrfy) is non-resignable if for all D, A and
any hint function aux that satisfy the statistical entropy condition (1) for sufficiently large h, the probability
of winning the sNRH,⊥ game, i.e.,

AdvsNRH,⊥
(D,A, aux) := Pr

[
1 = sNRH,⊥

S (D,A, aux)
]
,

is small.
The recent developments have shown that formalizing non-resignability is a non-trivial task, and different

weaker variants of the original (unachievable) version have been proposed. We quickly discuss here how
sNRH,⊥ relates to those variants; namely, we show that is stronger than the versions proposed in [DFHS24]
and [CDF+23].

7 Here and in the remainder, we borrow from set notation to indicate the input and output space of (oracle)
algorithms. In case of an algorithm that takes no input, we write the singleton set {⊥} as domain.

8 The hint function may be randomized, but we refer to it as a function for convenience.

4



Comparison with Non-Resignability from [DFHS24]. The difference to NRH,⊥ as defined in [DFHS24] is that
sNRH,⊥ provides the D, A and the hint function aux with the secret key sk, whereas NRH,⊥ only provides
the public key pk (recall that we assume that pk can be computed from sk). This of course gives more power
to the adversary. The other difference lies in the entropy requirement: for NRH,⊥, the message is required to
have high entropy conditioned on pk (and aux) only, i.e.,

H∞(m | H, pk, aux(pk,m)) ≥ h

whereas sNRH,⊥ requires (1) to hold, which conditions on sk instead; this seems to be a stronger restriction,
but we observe that for m← D(pk), produced by a D that only gets the public key as input (as in NRH,⊥),

H∞(m | H, pk, aux(pk,m)) = H∞(m | H, sk, aux(pk,m))

since sk→ (H, pk, aux(pk,m))→ m forms a Markov chain then. This implies that any attack against NRH,⊥

can be cast as an attack against sNRH,⊥ with the same entropy bound, making the latter a stronger security
notion.

Comparison with Non-Resignability from [CDF+23]. We first note that [CDF+23] defines non-resignability
only in the computational setting, so we compare it with the computational version of sNRH,⊥. While we
have postponed the exact definition to Section 5, the high level reasoning can still be understood. First
of all, in [CDF+23] the side information on m (given by aux in our case) is required to be computationally
independent ofm, which is equivalent to allowing no side information at all when considering computationally
bounded adversaries. Furthermore, in line with sNRH,⊥, the entropy condition (though phrased in terms of
HILL entropy) is required to hold when conditioning on the secret key sk. But on the other hand and in the
spirit of NRH,⊥, the adversaries are only given pk as input, and not sk. Altogether, this makes their notion
weaker than our computational version of sNRH,⊥, which provided sk as input to the adversaries.

2.4 BUFF Transformation

The BUFF transform, as proposed in [CDF+21], transforms any signature scheme S into another signature
scheme BUFF[S, H]. The transformation is described in Fig. 2; in essence, BUFF[S, H] signs a message m by
signing the hash H(pk,m) and additionally appending this hash value to the signature.

KGen′H :

1: (sk, pk)← KGenH

2: return (sk, pk)

Sign′H(sk,m):

1: y := (pk,m)
2: σ ← SignH(sk, y)
3: σ′ := (σ, y)
4: return σ′

Vrfy′H(pk,m, σ′):

1: (σ, y) := σ′

2: return VrfyH(pk, y, σ) ∧
3: y = H(pk,m)

Fig. 2. The signature scheme BUFF[S, H] = (KGen′H , Sign′H ,Vrfy′H), obtained from applying the BUFF transform
to S = (KGenH ,SignH ,VrfyH).

Here and in the remainder when considering the BUFF transform, we take it as understood that the
random oracle H : X → Y has fitting domain and range, i.e., X ⊇ K ×M and Y ⊆ M, so that the BUFF
transform is well defined.

3 Hide-and-Seek and the Non-resignability of BUFF

Our goal is to prove the non-resignability (in the sense of sNRH,⊥) of the BUFF transform, which signs
a message m by signing H(pk,m), with the hash value then appended to the signature. Clearly, for this
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non-resignability to hold, it must necessarily be hard to recover m from H(pk,m). This hardness may look
trivial at first glance, since H is (typically) compressing, and modeled as a random oracle; however, it turns
out to be not trivial at all. The reason is that in the sNRH,⊥ game, m is produced arbitrarily and dependent
on H, with the only promise being that m is hard to guess from scratch (i.e., when H(pk,m) is not given).

In this section, we formally capture (a particular formulation of) this hardness via a game, which we
call Hide-and-Seek, and we show that hardness of winning Hide-and-Seek is sufficient for proving the non-
resignability of the BUFF transform. The main technical challenge then lies in proving that Hide-and-Seek
is hard to win, which we do in Sect. 4.

Throughout the remainder, let X ,Y, and Z be finite non-empty sets, and let H : X → Y be the random
oracle.

3.1 The Hide-and-Seek Game

The Hide-and-Seek game is played by two adversaries D and A: the (possibly query-unbounded) hider
DH : {⊥} → X × Z, and the query-bounded seeker AH : Y × Z → X that is allowed to make at most q
queries to H. First, DH chooses a challenge x ∈ X together with a hint z ∈ Z and “hides” x as H(x), and
then AH is supposed to find x from H(x) and z. The game is formally specified as follows:

HnSH(D,A):
1: (x, z)← DH

2: return x = AH(H(x), z)

In line with the entropy condition in sNRH,⊥, we require x to be statistically hidden given H and z. I.e., we
require that

guess(x |H, z) ≤ ϵ (2)

for some small ϵ > 0. Informally, we say that the random oracle H satisfies the Hide-and-Seek property, or
HnSH for short, if for every such pair of D,A as above, the winning probability, given as

AdvHnSH

(D,A) := Pr
[
1 = HnSH(D,A)

]
= Pr

(x,z)←DH

[
x = AH(H(x), z)

]
,

is small.
As mentioned above already, what is tricky about this game is that x (and z) may depend arbitrarily

on H, subject to the bound (2) on the guessing probability. Because of this, known results on inverting the
random oracle do not apply, and it may not be fully clear whether we can actually expect it to be hard to
win, i.e., that there is no sneaky way to win the game. We discuss this in more detail in Sect. 4, where we
then analyze Hide-and-Seek and prove that it is hard to win after all.

3.2 Reducing sNRH,⊥ of BUFF to Hide-and-Seek

In the following statement, we reduce the sNRH,⊥ security of the BUFF transform BUFF[S, H] of a signature
scheme S = (KGenH ,SignH ,VrfyH) to the hardness of winning the Hide-and-Seek game HnSH . In the lemma
statement, the parameters qK and qS refer to (an upper bound on) the number of queries to H that KGenH

and SignH perform.

Lemma 1. Let DH : SK →M and AH : SK × SGN ×AUX → PK× SGN be sNRH,⊥-adversaries against
BUFF[S, H] for some aux : SK ×M → AUX , making at most qD and qA queries to H, respectively. Then
there exists a hider D̄ : {⊥} → X × Z and a seeker Ā : Y × Z → X with Z = SK × AUX , where Ā makes
at most qA + qS queries to H, and such that

H∞
(x,z)←D̄H

(x | H, z) = H∞
(sk,pk)←KGenH

m←DH (sk)

(m | H, sk, aux(sk,m)) (3)

6



and

AdvsNRH,⊥

BUFF[S,H](D,A, aux) ≤ (qA + qS) ·AdvHnSH

(D̄, Ā) + qKϵ+
qD + 1

|Y|
. (4)

In the case A makes quantum queries to H, then

AdvsNRH,⊥

BUFF[S,H](D,A, aux) ≤ 2(qA + qS) ·
√
AdvHnSH

(D̄, Ā) + qKϵ+
qD + 1

|Y|
, (5)

holds in place of (4), and Ā then makes quantum queries as well.
Furthermore, in the computational setting when considering a non-fixed security parameter and PPT

algorithms D and A, then D̄ and Ā are PPT as well.

The intuition behind the proof is as follows. Consider the sNRH,⊥ game. Due to the assumed hardness
of Hide-and-Seek, A cannot recover m from its input and thus makes no query to H that has m as suffix.
But then it cannot gather any information on H(pk′,m) for any pk′, and thus it will not be able to output
y′ = H(pk′,m) for any pk′. Formally, we have to make sure that A gets no information on y′ via its input,
which is controlled by KGen and D, which may query H on H(pk′,m) for any pk′. This is taken care of in
our formal proof below.

Proof. In Fig. 3 we define a hybrid sequence reducing the sNRH,⊥ property of BUFF[S, H] to the HnSH

property of H. To start with, we note that the adversary (D,B) playing G0 is identical to (D,A) playing

sNRH,⊥
BUFF[S,H].

The G0 to G1 hop. The only difference between G0 and G1 is whether B is given oracle access to the original
random oracle H, or the reprogrammed oracle H[(·,m) 7→ ⊥] and replies with ⊥ to any query that has suffix
m.

Consider the hider D̄ and seeker Ā, where D̄ samples (sk, pk)← KGenH and m← DH(sk) and returns

x := (pk,m) and z := (sk, aux(sk,m)) ,

and on input H(x) = H(pk,m) and z, the seeker Ā samples a random index i← [qA + qS ], runs

BH(sk, H(pk,m), aux(sk,m)) = AH
(
sk,
(
H(pk,m),SignH(sk, y)

)
, aux(sk,m)

)
internally, but then looks at / does a full measurement of the i-th query to obtain (pk∗i ,m

∗
i ), and returns

(pk,m∗i ). It is clear by construction that z ∈ SK ×AUX , and (3) immediately follows from the fact that pk
can be derived from sk, and so

H∞(x | H, z) = H∞(pk,m | H, sk, aux(sk,m)) = H∞(m | H, sk, aux(sk,m)) (6)

as claimed. It also follows from construction that D̄ and Ā preserve the efficiency of D and A. In terms of
query complexity, Ā makes at most qA + qS queries to H.

In the case where A makes classical queries, there is no difference in the two games when B makes no
query to a point where the two oracles differ, and thus

Pr [1← G0] ≤ Pr [1← G1] + Pr
[
∃ i ∈ [qA + qS ] s.t. m

∗
i = m

]
≤ Pr [1← G1] + qA ·AdvHnSH

(D̄, Ā) .

In the quantum case, the same kind of guarantee follows from the O2H lemma [AHU19, Theorem 3], which
gives us that

Pr [1← G0] ≤ Pr [1← G1] + 2(qA + qS) ·
√
Pr [m∗i = m]

≤ Pr [1← G1] + 2(qA + qS) ·
√
AdvHnSH

(D̄, Ā) .
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G0:

1: (sk, pk)← KGenH ; m← DH(sk)
2: (pk′, y′)← BH(sk, y, aux(sk,m))
3: return H(pk′,m) = y′ ∧ pk′ ̸= pk

BH(sk, y, a):

1: σ ← SignH(sk, y)
2: return (pk′, y′)← AH(sk, (σ, y), a)

G1:

1: (sk, pk)← KGenH ; m← DH(sk)

2: (pk′, y′)← BH[(·,m) 7→ ⊥](sk, H(pk,m), aux(sk,m))
3: return H(pk′,m) = y′ ∧ pk′ ̸= pk

G2:

1: (sk, pk)← KGenH ; m← DH(sk)
2: abort if KGen queried H(·,m)
3: (pk′, y′)← BH[(·,m)7→⊥](sk, H(pk,m), aux(sk,m))
4: return H(pk′,m) = y′ ∧ pk′ ̸= pk

Gi
3:

1: (sk, pk)← KGenH ; m← DH(sk)
2: abort if KGen queried H(·,m)
3: (pk′, y′)← BH[(·,m)7→⊥](sk, H(pk,m), aux(sk,m))
4: return H(pk′,m) = y′ ∧ pk′ ̸= pk ∧ (pk′,m) = (pki,mi)
5: {where (pki,mi) is D’s ith query.}

Gi
4:

1: (sk, pk)← KGenH ; m← DH(sk)
2: abort if KGen queried H(·,mi)
3: (pk′, y′)← BH[(·,mi)7→⊥](sk, H(pk,mi), aux(sk,mi))
4: return H(pki,mi) = y′ ∧ pki ̸= pk
5: {where (pki,mi) is D’s ith query.}

Fig. 3. Hybrid steps reducing sNRH,⊥
BUFF[S,H] to HnSH when D is classical, i.e., (5), (4). In the derivations below we

drop the parameter k for notational convenience.

The G1 to G2 hop. The difference between G1 and G2 is that the latter aborts if KGenH ever makes a query
of the form (·,m). Given that m is produced given (H, sk) but independent of KGen’s qK queries conditioned
on (H, sk), and m satisfies (1), we have

Pr [1← G1] ≤ Pr [1← G2] + Pr [G2 abort] ≤ Pr [1← G2] + qKϵ .

The G2 to Gi
3 hop. Assume without loss of generality that D never repeats its queries (k1,m1), . . . , (kqD ,mqD ).

Note that the queries of A in G1 are blocked at (·,m), and the game aborts if KGen ever queries (·,m).
Since, conditioned on KGen not querying with (·,m), k′ ̸= k and (k′,m) ̸= (ki,mi) for all i, the output
H(k′,m) is uniformly random and independent of A’s input (sk, H(pk,m), aux(sk,m)) together with the
oracle H[(·,m) 7→ ⊥] it has access to, we have

Pr [1← G2] ≤ Pr

[
∃i ∈ [qD] s.t. (k′,m) = (ki,mi)

1← G2

]
+ Pr

 1← G2

∣∣∣∣∣∣∣
KGen not querying (·,m)

(k′,m) ̸= (ki,mi) ∀i ∈ [qD]

k′ ̸= k


≤
∑

i∈[qD]

Pr
[
1← Gi

3

]
+ 1/|Y| .

The Gi
3 to Gi

4 hop. Because of the extra condition (pk′,m′) = (pki,mi) in Gi
3, replacing pk′ with pki and m′

withmi as in Gi
4, does not change the winning probability. We further drop the condition (pk′,m′) = (pki,mi),
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which does not decrease the winning probability.

Finally, it remains to upper bound the winning probability of Gi
4 for each i ∈ [qD]. By a lazy sam-

pling argument, we note that conditioned on KGen not querying with (·,mi) and pki ̸= pk, the output
H(ki,mi) is uniform and independent of (H[(·,mi) 7→ ⊥], k,H(k,mi), aux(mi)), and hence, y′ generated by
AH[(·,mi)7→⊥](k,H(k,mi), aux(mi)) is equal to H(ki,mi) with probability at most 1/|Y|, i.e.

Pr
[
1← Gi

4

]
≤ 1/|Y| ,

which concludes (4), (5).

Remark 1. We point out that the claim on D̄ and Ā be PPT if D and A are, fails to hold when aiming for a
variant of Lemma 1 that considers NRH,⊥ instead of sNRH,⊥. The reason is that, on input H(pk,m) and z,
the seeker Ā needs to run A on a signature of H(pk,m), which it can do efficiently if given sk (which is part
of z here, exploiting that D is given sk), but not if only given pk. This is the reason why in the computational
setting, treated in Sect. 5, our proof for showing that BUFF satisfies sNRH,⊥ does not carry over to NRH,⊥

(in line with the counter example given in [DFHS24]).

3.3 Main result

By means of the above reduction to HnS and the analysis of HnS in the upcoming section, we obtain the
following main result on the non-resignability of the BUFF transform BUFF[S, H] of any signature scheme
S = (KGenH ,SignH ,VrfyH). In the theorem statement, the parameters qK and qS refer to (an upper bound
on) the number of queries to H that KGenH and SignH perform. The theorem is obtained via plugging in
Theorem 2 and 3 into Lemma 1 with some simplification to the obtained upperbounds. For completeness,
we spell out its proof in Appendix A.

Theorem 1. Let DH : SK →M and AH : SK×SGN ×AUX → PK×SGN be sNRH,⊥-adversaries against
BUFF[S, H] for some aux : SK ×M → AUX , making at most qD and qA queries to H, respectively, where
(1) is satisfied for 0 < ϵ ≤ 1

2 . Then

AdvsNRH,⊥

BUFF[S,H](D,A, aux) ≤ 8(qA + qS + 1)2 log

(
|SK| · |AUX |

ϵ

)
ϵ+ qKϵ+

qD + 1

|Y|
,

and in the case A makes quantum queries to H, then

AdvsNRH,⊥

BUFF[S,H](D,A, aux) ≤ O

(√(
log
|SK| · |AUX |

ϵ
+ qA + qS

)
(qA + qS)3ϵ

)
+ qKϵ+

qD + 1

|Y|
,

where the asymptotic bound holds as min(1/ϵ, qA)→∞, and the constants are absolute constants.

Remark 2. In the case where D makes quantum queries to H, we expect a similar argument as in the proof
of [DFHS24, Theorem 15] applies.

4 Analyzing Hide-and-Seek

As explained above, the technical core of proving the non-resignability property of the BUFF transform
consists of analyzing the Hide-and-Seek game. Concretely, our goal is to show that the probability

Pr
[
x = AH(H(x), z)

]
is small, for any query-unbounded algorithm DH that produces a pair (x, z) such that guess(x | H, z) ≤ ϵ
holds, and for any query-bounded algorithm A.
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Below in Sect. 4.2, we first consider the case of an A that makes classical queries to the random oracle
H; later we also consider the case of quantum queries, which introduces additional challenges. We note that
since D has unbounded query complexity, it is irrelevant whether those are classical or quantum; D may
inspect the entire function table anyway.9 We also emphasize that we do not restrict the computational
complexity of D or A.

Before jumping into the analysis though, we discuss the game a bit further, and in particular we look
into the simple(r) variant where x is uniformly random and independent of H, and z is fixed.

4.1 Special Case: Uniform Challenges

What makes the game challenging to analyze is that the challenge x (and the hint z) may be arbitrarily
correlated with H, as long as guess(x | H, z) ≤ ϵ. For instance, given a function H : X → X , the hider D can
pick a challenge x that satisfies H(x) = x, and the seeker A can simply output H(x). Although this is not a
valid attack under the condition guess(x | H, z) ≤ ϵ, because a random function H : X → X typically does
not have many fixed points, this example suggests that one cannot argue that H(x) reveals no information
about x.

In the special case where x is uniform and independent of (H, z) and z is fixed, it is straightforward to
show that any A making at most q classical queries to the random oracle H satisfies

Pr
[
x = AH(H(x), z)

]
≤ (q + 1)

|X |
.

In addition, even if the hint z can depend on H, tight bounds are known in the literature: the probability
that a q-query seeker A succeeds is in the order of at most q log |Z|/|X | if A is classical [DGK17,CDGS18],
or in the order of at most q(q + log |Z|)/|X | if A can make quantum queries [CGLQ20].

However, in the general case, where the only guarantee about x is that guess(x | H, z) ≤ ϵ for some ϵ < 1,
the strong bounds above do not apply. Nevertheless, in the remaining of this section, we will show how to
reduce the tricky general case to the uniform-challenge case.

Inspired by [CGLQ20], we will actually reduce the general case to the “multi-instance” case with uniform
challenges and an independent hint. In particular, consider challenges xu

1 , . . . , x
u
k that are sampled uniformly

and independently from X , and a fixed hint z◦ ∈ Z that does not depend on xu
1 , . . . , x

u
k and H. Then for any

seeker that attempts to solve all k challenges with the hint z◦, it is not hard to prove the following lemma.
For completeness we give the proof in Appendix B.

Lemma 2. For every oracle algorithm AH : Y × Z → X that makes at most q classical queries to H,

Pr
[
∀i ∈ [k] : xu

i = AH(H(xu
i ), z

◦)
]
≤ k!

(q + 1)k

|X |k
,

where A is independently re-executed for each i.

The case where A can make quantum queries to H is more involved, but has been studied in [CGLQ20].

Lemma 3 (Corollary of [CGLQ20, Lemma 5.2]). For every oracle algorithm AH : Y × Z → X that
makes at most q quantum queries to H,

Pr
[
∀i ∈ [k] : xu

i = AH(H(xu
i ), z

◦)
]
≤ O

(
kq + q2

|X |

)k

as min(k, q, |X |)→∞ ,

where A is independently re-executed for each i, and the constants in the asymptotic bound are absolute
constants.

9 For the purpose of proving Thm. 1, it would be sufficient to restrict the seeker D to be query bounded as well;
however, interestingly, we need the result for a query unbounded D for the computational case (see Sect. 5 and
Remark 5).
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4.2 The Classical Case

The following provides a bound on the Hide-and-Seek property of the random oracle for a classical seeker A.

Theorem 2 (The RO satisfies HnSH , classically). Let D : {⊥} → X × Z and A : Y × Z → X be
HnSH-adversaries satisfying (2) for some 0 < ϵ < 1, where A makes q classical queries to H. Then we have

AdvHnSH

(D,A) ≤ 2(q + 1)
(
log |Z|+ log(1/ϵ) + 1

)
ϵ+ ϵ .

Our strategy is to turn a successful HnSH seeker A into a similarly successful guesser G that tries to
guess x from H and z. Since such a successful guesser cannot exist by (2), no successful A can exist.

Proof. Given that A is classical here, we may assume it to be deterministic. For any fixed choices H◦ and
z◦, we can thus define the set

S(H◦, z◦) := {x◦ ∈ X |AH◦(H◦(x◦), z◦) = x◦}

of all x◦ on which A succeeds.
Following the above strategy for proving the claimed statement, we consider the following guesser G. On

input H and z, it samples and outputs a uniformly random x̂ ∈ S(H, z) as guess for x (with the convention
that x̂ = ⊥ in case S is empty). We can then lower bound the success probability of G as follows, for any
positive T ∈ Z.

Pr[x̂ = x] ≥ Pr[x̂ = x ∧ |S| ≤ T ]

≥ 1

T
Pr[AH(H(x), z) = x ∧ |S| ≤ T ]

≥ 1

T

(
Pr[AH(H(x), z) = x]− Pr[|S| > T ]

)
,

where for the second inequality we exploit that for any fixed choices of H,x and z, if |S| ≤ T then Pr[x̂ =
x] = 1/T if x ∈ S, i.e., if AH(H(x), z) = x, and 0 otherwise, and so the inequality is obtained by averaging
over the choices of H, x, and z. The last inequality is by union bound. Rearranging the terms, we thus have

AdvHnSH

(D,A) ≤ T · Pr[x̂ = x] + Pr[|S| > T ] ≤ Tϵ+ Pr[|S| > T ] . (7)

In order to control Pr[|S| > T ], we introduce

σ(H◦, z◦) := Pr
[
xu = AH◦(H◦(xu), z◦)

]
=
|S(H◦, z◦)|
|X |

(8)

where xu ← X , and we observe that, for any positive k ∈ Z,

σ(H◦, z◦)k = Pr
[
xu
i = AH◦(H◦(xu

i ), z
◦) ∀i ∈ [k]

]
where xu

1 , . . . , x
u
k ← X . What we are actually interested in is the average over the choice of H and z. Towards

this end, we note that

E[σ(H, z)k] = Pr
[
xu
i = AH(H(xu

i ), z) ∀i ∈ [k]
]

=
∑
z◦

Pr
[
z = z◦ ∧ xu

i = AH(H(xu
i ), z

◦) ∀i ∈ [k]
]

≤
∑
z◦

Pr
[
xu
i = AH(H(xu

i ), z
◦) ∀i ∈ [k]

]
(9)

≤ |Z| · k!(q + 1)k

|X |k
,
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where the last inequality is by Lemma 2. Thus

E[|S(H, z)|k] = |X |k · E[σ(H, z)k] ≤ |Z| · k!(q + 1)k ,

and so by Markov’s inequality,

Pr
[
|S(H, z)| > 2k(q + 1)

]
≤
E
[
|S(H, z)|k

](
2k(q + 1)

)k ≤ |Z|2k
≤ ϵ

where the final inequality is achieved by choosing k =
⌈
log |Z|+ log(1/ϵ)

⌉
. Thus, setting T = 2k(q + 1) and

plugging into (7) we obtain that

AdvHnSH

(D,A) ≤ Tϵ+ Pr[|S| > T ]

≤ 2(q + 1)
(
log |Z|+ log(1/ϵ) + 1

)
ϵ+ ϵ .

This proves the claim.

4.3 A Bound for the Quantum Case

The following provides a bound on the Hide-and-Seek property of the random oracle for a quantum seeker A.

Theorem 3 (The RO satisfies HnSH , quantumly). Let D : {⊥} → X × Z and A : Y × Z → X be
HnSH-adversaries satisfying (2) for some 0 < ϵ < 1, where A makes q quantum queries to H. Then we have

AdvHnSH

(D,A) ≤ O
(
(log |Z|+ log(1/ϵ) + q)qϵ

)
as min(1/ϵ, |Z|, q)→∞, where the constants in the asymptotic bound are absolute constants.

The proof here follows very closely the proof for the classical case, except that we use Lemma 3 to bound
the multi-instance game for a quantum algorithm. Furthermore, some additional changes are needed since
we cannot assume A to be deterministic anymore.

Proof. Here, for any H◦ and z◦, we define the following “weighted set”

S∗(H◦, z◦) :=
{(

x◦, wH◦,z◦(x
◦)
) ∣∣x◦ ∈ X} ,

where each element x◦ comes with a weight, given by

wH◦,z◦(x
◦) := Pr

[
x◦ = AH◦(H◦(x◦), z◦)

]
.

The total weight of S∗(H◦, z◦) is defined as W (S∗(H◦, z◦)) :=
∑

x◦ wH◦,z◦(x
◦).

Here, we consider the guesser G that, on input H and z, chooses its guess x̂ by picking it from X according
to the renormalized weights, i.e., according to the distribution

pH,z(x̂) :=
wH,z(x̂)

W (S∗(H, z))
.

We observe that this generalizes the approach in the previous section where A may assumed to be
deterministic. All weights are then 0 or 1, giving rise to the set S in the proof of Theorem 2 when keeping
only the elements with weight 1, and the total weight of S∗ then matches up with |S|, and x̂ is then uniformly
random in S.

We proceed by following that approach, with obvious changes. Namely, first we note that

Pr[x̂ = x] ≥ Pr[x̂ = x ∧ W (S∗(H, z)) ≤ T ]

≥ 1

T
Pr[AH(H(x), z) = x ∧ W (S∗(H, z)) ≤ T ]

≥ 1

T

(
Pr[AH(H(x), z) = x]− Pr[W (S∗(H, z)) > T ]

)
,
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where here, for the second inequality, we exploit that for any fixed choices of H,x and z, if W (S∗(H, z)) ≤ T
then Pr[x̂ = x] = pH,z(x) ≥ wH,z(x)/T , and so the inequality is obtained by averaging over these choices.
Rearranging the terms, we have

AdvHnSH

(D,A) ≤ Tϵ+ Pr[W (S∗(H, z)) > T ] . (10)

In order to control Pr[W (S∗(H, z)) > T ], we introduce

σ(H◦, z◦) := Pr
[
xu = AH◦(H◦(xu), z◦)

]
=

W (S∗(H◦, z◦))

|X |
(11)

where xu ← X . Recycling the line of reasoning in the previous section, we observe that, for any positive
k ∈ Z,

σ(H◦, z◦)k = Pr
[
xu
i = AH◦(H◦(xu

i ), z
◦) ∀i ∈ [k]

]
where xu

1 , . . . , x
u
k ← X , and that

E[σ(H, z)k] = Pr
[
xu
i = AH(H(xu

i ), z) ∀i ∈ [k]
]

=
∑
z◦

Pr
[
z = z◦ ∧ xu

i = AH(H(xu
i ), z

◦) ∀i ∈ [k]
]

≤
∑
z◦

Pr
[
xu
i = AH(H(xu

i ), z
◦) ∀i ∈ [k]

]
(12)

≤ |Z| · Ck (k + q)kqk

|X |k
,

for some absolute constant C, and k, q, |X | large enough, where the last inequality is now by Lemma 3, given
that A is quantum. Thus

E[W (S∗(H, z))k] = |X |k · E[σ(H, z)k] ≤ |Z| · Ck(k + q)kqk ,

and so by Markov inequality,

Pr
[
W (S∗(H, z)) > 2C(k + q)q

]
≤
E
[
W (S∗(H, z))k

](
2C(k + q)q

)k ≤ |Z|
2k
≤ ϵ

where the final inequality is achieved by choosing the minimum possible k ≥ log |Z|+log(1/ϵ). Thus, setting
T = 2C(k + q)q and plugging into (10) we obtain that

AdvHnSH

(D,A) ≤ Tϵ+ Pr[W (S∗(H, z)) > T ]

≤ O
(
(log |Z|+ log(1/ϵ) + q)qϵ

)
.

This proves the claim.

5 Non-Resignability in the Computational Setting

Here, we want to extend our result on non-resignability of the BUFF transform to the computational setting,
where D,A and aux are polynomially bounded, and where the entropy requirement (1) holds computationally
only; the latter is the reason why the computational case does not follow directly from the statistical case.
In order to capture the entropy requirement (1) in the computational setting via HILL entropy, we need the
notion of the HILL entropy in the ROM, as introduced in [DFHS24], which we briefly recall below.

Here and for the remainder of this section, we take it as understood that the domain and co-domain
of H : X → Y may depend on the security parameter λ; for simplicity, we leave this dependency implicit.
Moreover, we assume the co-domain of H to be super-polynomially large, i.e., |Y| ≥ λω(1). For simplicity,
we restrict to asymptotic bounds below.
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5.1 HILL Entropy in the ROM

The HILL entropy [HILL99,HLR07] is introduced as a computational analogue of min-entropy. For a pair
of random variables (X,Y ), we say that X has high conditional HILL entropy given Y , if there is another
random variable Z, such that (X,Y ) and (Z, Y ) are computationally indistinguishable, and yet Z has high
min-entropy given Y .

However, expressing (1) naively using HILL entropy is problematic, since H, which is conditioned on,
is too large for a computationally bounded distinguisher to even read. Because of this reason, [DFHS24]
introduced the notion of HILL entropy in the ROM, where instead of conditioning on H, the distinguisher
(that tries to distinguish (X,Y ) and (Z, Y )) is given bounded oracle access to H. We recall (the asymptotic
version of) the formal definition.

Definition 1. Let (Xλ, Yλ) be a pair of (possibly H-dependent) random variables for each λ. We say that
X = {Xλ}λ has k(λ) bits of conditional HILL entropy given Y = {Yλ}λ in the ROM, denoted by

HILLH∞(X | Y ) ≥ k(λ) ,

if for every λ there exists a random variable Zλ with H∞(Zλ | Yλ, H) ≥ k(λ), and so that {(Xλ, Yλ)}λ and
{(Zλ, Yλ)}λ are computationally indistinguishable for oracle algorithms.

Remark 3. Following the standard definition, computationally indistinguishability holds for non-uniform
PPT distinguishers; this then allows us to consider non-uniform PPT (oracle) algorithms D and A below. If
instead we consider computationally indistinguishability for uniform PPT distinguishers only then below D
and A need to be restricted to uniform PPT algorithms as well. Similarly, if we allow the distinguisher to
be quantum, then D and A below may be quantum as well.

5.2 Achieving sNRH,⊥ in the Computational Setting

Here, we consider the computational variant of sNRH,⊥, where we restrict DH ,AH and aux to be PPT
(oracle) algorithms. Furthermore, the entropy requirement (1) is replaced by

HILLH∞
(sk,pk)←KGenH

m←DH (sk)

(m | sk, aux(sk,m)) ≥ ω(log λ) , (13)

and we then naturally demand that the game sNRH,⊥ can be won with negligible probability negl(λ) only.

Remark 4. Interestingly, and maybe somewhat surprisingly, in the computational setting sNRH,⊥ does not
imply NRH,⊥, in contrast to the statistical setting, as explained in Sect. 2.3. Indeed, [DFHS24] showed that
the BUFF transform does in general not satisfy NRH,⊥ in the computational setting, while below we show
that it does satisfy sNRH,⊥. See Remark 1 for why our proof does not carry over to NRH,⊥. We suspect that
the two notions are incomparable in the computational setting.

We get the following positive result on the computational sNRH,⊥ security of the BUFF transform
BUFF[S, H].

Theorem 4. Let S = (KGen,SignH ,VrfyH) be a signature scheme in ROM, where KGen makes no query to
H, and let BUFF[S, H] be the signature scheme obtained by applying the BUFF transform. Then for every

PPT hint function aux, and for any PPT adversaries DH ,AH against sNRH,⊥
BUFF[S,H] that satisfy (13), we

have
AdvsNRH,⊥

BUFF[S,H](D,A, aux) ≤ negl(λ) .

In spirit, we can recycle Lemma 1 to reduce the computational variant of sNRH,⊥ to the computational
variant of Hide-and-Seek, and then we show in Lemma 4 that the latter is hard as well, which follows rather
directly from the statistical hardness and the definition of the HILL entropy.
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Proof. Take (D̄, Ā) as in Lemma 1, for which

AdvsNRH,⊥

BUFF[S,H] ≤ poly(λ) ·AdvHnSH

(D̄, Ā) + negl(λ) ,

where we exploit that the numbers of queries made by Sign, D, and A are bounded by their (polynomial)
running times, respectively, and that the additive term qKϵ in (5) vanishes due to the assumption that KGen
makes no query to H. Hence it suffices to control the HnSH advantage of (D̄, Ā).

Towards this end, we first note that, by inspecting the construction of D̄ with x = (pk,m) and z =
(sk, aux(sk,m)), the HILL entropy variant of (3) follows:

HILLH∞
(x,z)←D̄H

(x | z) ≥ k(λ) ⇐⇒ HILLH∞
(sk,pk)←KGenH

m←DH (sk)

(m | sk, aux(sk,m)) ≥ k(λ) ,

where the equivalence is due to the public key pk being efficiently derivable from its corresponding secret
key sk, and so (6) also holds for the HILL entropy. Combining the above with (13), we obtain

HILLH∞
(x,z)←D̄H

(x | z) ≥ ω(log λ) .

Moreover, by Lemma 1, D̄ : {⊥} → X ×Z with Z = SK ×AUX . Hence

log |Z| = log |SK|+ log |AUX | ≤ poly(λ)

due to both KGen and aux being poly-time. Finally, Lemma 1 ensures that Ā is PPT whenever A is, which
is satisfied by assumption. Thus, the assumptions for Lemma 4 below (the hardness of Hide-and-Seek in the
computational setting) are all satisfied, and so

AdvHnSH

(D̄, Ā) ≤ negl(λ) ,

which concludes the proof.

The following provided the computational hardness of Hide-and-Seek.

Lemma 4. Let DH : {⊥} → X ×Z and AH : Y ×Z → X be adversaries against HnSH , with A being PPT,
log |Z| < poly(λ), and

HILLH∞
(x,z)←DH

(x | z) ≥ ω(log λ) .

Then AdvHnSH

(D,A) ≤ negl(λ).

Proof. Let (x, z) ← DH . Via the entropy condition, there is an (H-dependent) random variable x∗ ∈ X
such that guess(x∗ | H, z) ≤ negl(λ) and moreover (x∗, z) and (x, z) are computationally indistinguishable.
Without loss of generality, we may assume (x∗, z) is sampled via a (possibly unbounded) hider D∗H . Now,
inspect the displayed games HnSH(D,A) and HnSH(D∗,A) below.

HnSH(D,A)
1: (x, z)← DH

2: return x = AH(H(x), z)

HnSH(D∗,A):
1: (x∗, z)← D∗H
2: return x∗ = AH(H(x∗), z)

By the computational indistinguishability, it follows that

|AdvHnSH

(D,A)−AdvHnSH

(D∗,A)| ≤ negl(λ) .

Finally, we can apply Theorem 3 to the HnSH adversaries D∗ and A, which satisfy the statistical entropy
condition, and so we have AdvHnS(D∗,A) ≤ negl(λ). This concludes the proof.

Remark 5. Interestingly, towards proving sNRH,⊥ of the BUFF transform in the statistical setting, as we did
earlier in the paper, it would have been sufficient to show that the random oracle satisfies (the statistical
variant of) HnS for a query bounded hider D. However, for the above line of reasoning in the computational
setting, it is essential that Theorem 2 holds for a query unbounded hider; indeed, above, x∗ may be arbitrarily
dependent on H, and so might not be producible by a query bounded hider D∗.
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6 Conclusion

In the light of recent negative result on the notion of non-resignability in general, and the non-resignability
of the BUFF transform in particular, we re-establish the non-resignability property for the original BUFF
transform for the (almost) strongest notions of non-resignability that do not contradict any negative result.
Our results cover both the statistical and the computational case, and both the classical and the quantum
setting. This answers the pressing question left open in the recent works on the non-resignability of the
BUFF transform.

One small gap that remains open from our work is to weaken the HILL entropy requirement in the
computational setting to computational unpredictability, as considered in [DFF24]. Having large HILL entropy
implies computational unpredictability, but not the other way round. Thus, whether the BUFF transform
satisfies the computational variant of sNRH,⊥ when the HILL entropy requirement is relaxed to computational
unpredictability, remains open.
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A Proof of Theorem 1

Proof. In the classical case, combining Lemma 1 and Theorem 2, for Z = SK × AUX and q = qA + qS we
obtain

AdvsNRH,⊥

BUFF[S,H](D,A, aux) ≤ q · 4(q + 1)(log |Z|+ log(1/ϵ) + 1)ϵ+ qKϵ+
qD + 1

|Y|

≤ 8(q + 1)2
(
log |Z|+ log(1/ϵ)

)
ϵ+ qKϵ+

qD + 1

|Y|
,

where the second inequality exploits that log(1/ϵ) ≥ 1. This concludes the classical bound.

Similarly, in the quantum case, combining Lemma 1 and Theorem 3, for Z = SK×AUX and q = qA+qS
we obtain

AdvsNRH,⊥

BUFF[S,H](D,A, aux) ≤ 2q ·
√
O
(
(log |Z|+ log(1/ϵ) + q)qϵ

)
+ qKϵ+

qD + 1

|Y|

≤ O
(√

(log |Z|+ log(1/ϵ) + q)q3ϵ
)
+ qKϵ+

qD + 1

|Y|
as min(1/ϵ, |Z|, q)→∞,
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where the constants in the asymptotic bounds are absolute constants. Hence, there are absolute constants
n,C ≥ 2 such that

AdvsNRH,⊥

BUFF[S,H](D,A, aux) ≤ C
√
(log |Z|+ log(1/ϵ) + q)q3ϵ+ qKϵ+

qD + 1

|Y|
,

whenever min(1/ϵ, |Z|, q) ≥ n. In order to get a bound even when |Z| < n, we increase |AUX | to n|AUX |
without actually changing the algorithm aux, and so get

AdvsNRH,⊥

BUFF[S,H](D,A, aux) ≤ C ·

√(
log
|SK| · n|AUX |

ϵ
+ q

)
q3ϵ+ qKϵ+

qD + 1

|Y|

≤ C
√
2 ·

√(
log
|SK| · |AUX |

ϵ
+ q

)
q3ϵ+ qKϵ+

qD + 1

|Y|

whenever min(1/ϵ, q) ≥ n, where the second inequality is via q+log n ≤ q+n ≤ 2q. Finally, since q ≥ qA, the
boundary condition of the above inequality can be relaxed to min(1/ϵ, qA) ≥ n. This concludes the proof.

B Proof of Lemma 2

Proof. First, we note that the input z◦ can be omitted, as it can be hardwired into A.
For the case k = 1, consider H ′ to be a fresh random oracle, independent of H. Then, the distributions

of AH(H(xu)) and AH′(H(xu)) coincide, unless a query of A to H happens to be a query on xu, which
happens with probability at most q

|X | . Thus

Pr
[
xu = AH(H(xu))

]
≤ Pr

[
xu = AH′(H(xu))

]
+

q

|X |
≤ q + 1

|X |
.

For the case k > 1, instead of considering AH(H(xu
k)), the run of A on the k-th instance, we consider a run

of AH
k (H(xu

k), Tk−1), specified as follows. Ak is given as additional input the collection Tk−1 of transcripts of
the runs of A on the previous instances xu

1 , . . . , x
u
k−1; this includes each instance xu

i and its hash H(xu
i ), as

well as all the hash queries and responses of these k−1 runs of A. Ak then simply runs A, but whenever A is
about to query H on an input that is contained in Tk−1, it reads out the hash from there, instead of querying
H. AH

k (H(xu
k), Tk−1) then obviously behaves identically to AH(H(xu

k)). Furthermore, conditioned on any

fixed Tk−1, the distributions of AH
k (H(xu

k), Tk−1) and AH′

k (H ′(xu
k), Tk−1) coincide, where again H ′ is a fresh

random oracle, unless xu
k happens to be contained in Tk−1, which happens with probability (k−1)(q+1)

X . Thus,

Pr
[
xu
k = AH(H(xu

k)) | xu
i = AH(H(xu

i ))∀ i < k
]

= Pr
[
xu
k = AH

k (H(xu
k), Tk−1)

∣∣xu
i = AH(H(xu

i ))∀ i < k
]

≤ Pr
[
xu
k = AH′

k (H ′(xu
k), Tk−1)

∣∣xu
i = AH(H(xu

i ))∀ i < k
]
+ (k − 1)

q + 1

|X |

≤ k
q + 1

|X |

where the last inequality follows from the fact for any fixed choice of Tk−1, we are back to the case k = 1
due to the freshness of H ′. Multiplying these probability gives the claimed bound.
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