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Abstract. The Rasta design strategy allows building low-round ciphers
due to its efficient prevention of statistical attacks and algebraic attacks
by randomizing the cipher, which makes it especially suitable for hy-
brid homomorphic encryption (HHE), also known as transciphering. Such
randomization is obtained by pseudorandomly sampling new invertible
matrices for each round of each new cipher evaluation. However, naively
sampling a random invertible matrix for each round significantly impacts
the plain evaluation runtime, though it does not impact the homomor-
phic evaluation cost. To address this issue, DASTA was proposed at ToSC
2020 to reduce the cost of generating the random matrices.

In this work, we address this problem from a different perspective: How
far can the randomness in Rasta-like designs be reduced in order to
minimize the plain evaluation runtime without sacrificing the security?
To answer this question, we carefully studied the main threats to Rasta-
like ciphers and the role of random matrices in ensuring security. We
apply our results to the recently proposed cipher PASTA, proposing a
modified version called PASTA., instantiated with one initial random
matrix and fixed linear layers — obtained by combining two MDS matrices
with the Kronecker product — for the other rounds.

Compared with PAsTA, the state-of-the-art cipher for BGV- and BFV-
style HHE, our evaluation shows that PASTAys is up to 100 % faster in
plain while having the same homomorphic runtime in the SEAL ho-
momorphic encryption library and up to 30 % faster evaluation time in
HElib, respectively.
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1 Introduction

Privacy-preserving cryptographic protocols and primitives, such as homomor-
phic encryption (HE) and multi-party computation (MPC), have been applied
to increasingly more applications in the recent decade. However, applying them
to any given use case usually results in a huge performance penalty, both for
the runtime of the actual use case and for the communication between the in-
volved parties. Looking at applications involving HE, one can use symmetric
ciphers in so-called hybrid homomorphic encryption (HHE) (also called trans-
ciphering) [55] to address the large communication overhead between a client
encrypting the data and a server performing the homomorphic computations.
However, the reduced communication overhead then usually comes at the cost
of a larger server runtime overhead, which depends on the symmetric cipher used
in HHE. Thus, HHE allows to move the workload from a client to the server and
allows embedded devices with less computing power, RAM, and bandwidth to
securely outsource computations to a server.

HE-Friendly Schemes. In many HE schemes, such as BFV [10, 28], BGV [11],
and CKKS [14], the multiplicative depth of the evaluated circuit still is the
main bottleneck due to the absence of an efficient bootstrapping procedure.
Consequently, traditional symmetric ciphers, such as AES [19, 21|, which were
optimized for fast plain performance instead of reducing the multiplicative depth
are not well suited for HHE. More recently, the authors in [4] investigate the
applicability of the standardized Trivium cipher [12]. While the authors claim
an improvement of 2 orders in magnitude, they compare a highly parallelized
with a single-threaded implementation, with different levels of maturity in the
underlying HE implementation.

Given these problems with traditional encryption schemes, many new sym-
metric ciphers have been proposed in the literature optimized for HHE minimiz-
ing the noise induced by the decryption circuit. These ciphers include LowMC [2],
Rasta [24], DAsTA [42], Kreyvium [13], FLIP [27], FiLIP [53], FASTA [16], Elisabeth [17]
(broken in [30]), HERA [15] (some versions recently broken in [49]), Rubato [40]
(version operating over integer rings recently broken in [31]), Masta [39], PASTA [25],
and more recently YuX [48]. For the HE schemes we target, this means minimiz-
ing the multiplicative depth of decryption. Looking at the Benchmarks from [25],
ciphers based on the Rasta design strategy are especially well suited for HHE in
depth-bounded HE schemes, at the cost of slower plain performance.

Rasta and Rasta-Like Schemes. As the majority of the symmetric schemes
in the literature, Rasta and Rasta-like schemes, including DASTA, FASTA, Masta,
and PASTA, are iterated round function schemes. However, with respect to tradi-
tional symmetric cryptographic schemes, they are characterized by the following:

— they are instantiated via new randomly generated affine layers for each new
block to be encrypted, ensuring efficient protection against statistical at-
tacks;

— their states have huge sizes for preventing linearization attacks without in-
creasing the number of rounds, and so the depth.



We refer to Section 2 for a recap of the evolution of the Rasta-like designs.

Our Contribution

In this paper, we continue the evolution of the Rasta design strategy and opti-
mize it for better statistical security guarantees and faster plain performance.
Especially the latter point is important for the HHE use case since HHE is ex-
plicitly designed to remove workload from a client and allow embedded devices
to participate in secure outsourcing use cases. Hence, producing a cipher with
faster plain encryption runtime further reduces the workload of the beneficiary
of the whole HHE pipeline, i.e., the resource-constrained clients.

Minimize the Randomness: From PASTA to PASTA,,. In order to achieve
this result, we aim to minimize the randomness in such designs in a secure way.
We achieve this goal by proposing a new primitive called PASTA,,, which is based
on PASTA, but where only the first affine layer is randomly sampled, and the
remaining components are all fized, as detailed in Section 3. A detailed security
analysis of PASTA,, is proposed in Section 4. As one may expect, PASTA and
PAsTA,, are vulnerable to the same attack vectors, especially the linearization
attack. In there, we show that, even with a single random affine layer, PASTA,,
offers the same security as PASTA against such (and other) attack(s).
Moreover, to better understand why this is the optimal strategy for the mini-
mization of randomness, we also analyze the security of variants of such schemes,
including the case in which the first affine layer is fixed and any of the remaining
components (linear or nonlinear layers) is randomized, as discussed in Section 5.

Remark 1. While there could be some concerns regarding the fact that our new
scheme is still secure by only randomizing the first affine layer, we view this as
the first step to better understand the Rasta-like design strategy. Specifically, we
want to pose the question of whether current Rasta-like ciphers are over-designed
with too many random layers. Moreover, studying the security of PASTA,, can
also contribute to a better understanding of the security of Rasta-like ciphers,
with particular attention on how much randomness is needed for its security.

Interweaving Matrix: About the Statistical Security of PASTA,,. The
security of PASTA,, is also related to our new generic result proposed in Sec-
tion 7 regarding its new linear layer. It is defined as a matrix an'm)x(n'm) called
interweaving matriz obtained by combining two MDS matrices — one over Fy**™
and one over Fy*™ — via the Kronecker product. There, we prove that the branch
number of the obtained matrix is always n 4+ m, which refers to the fact that the
sum of the numbers of non-zero elements at the input and at the output of an
interweaving matrixover [Fy is always at least n 4+ m.

This result is also of independent interest due to the large use of the wide-
trail design strategy [20], which allows the designers to present a formal argument
regarding the security of an SPN construction against linear [52] and differen-
tial [7] attacks. As it is well known, the wide-trail strategy aims at designing
the round transformation(s) of a symmetric scheme in order to maximize the



minimum number of active S-Boxes over multiple rounds. The class of matrices
that maximize such parameters is called Mazimum Distance Separable (MDS).
At the current state of the art, a lot of effort has been spent by the community
looking for 4 x 4 (or slightly bigger/smaller) efficient MDS or almost-MDS ma-
trices for designing AES-like schemes. Apart from that, only a few strategies are
known for constructing MDS matrices of arbitrary size (as the Cauchy [60] or
the Vandermonde [46] matrices).

Our result aims to fill this gap by formally analyzing a way to construct
efficient matrices with a reasonable branch number. As a concrete impact, our
result could be of broader interest, not only for FHE-friendly designs, but also
for MPC- and ZK-friendly symmetric schemes. Since they operate over a huge
field (e.g. [1,3,9,26,33-36,44]) and make use of low-degree non-linear functions,
these SPN schemes often do not require a linear layer with a maximum branch
number in order to achieve security against statistical attacks. The interweaving
matrices could be crucial for achieving good performances and security against
statistical attacks as well.

Efficiency of PASTA,,. To show the effectiveness of our proposal, we evaluate
its performance in Section 6. While PASTA accounts for special properties of
the BGV/BFV HE schemes to be the most efficient symmetric cipher for them
to date, its plain performance leaves room for improvements. As shown in [25],
encrypting 1.5 MB of data takes 16 s with PASTA compared to only 40 ms with
AES.5 Applying our improvements allows us to reduce the plain encryption
time of PASTA by at least 50% depending on the parameters while keeping its
advantages for fast HE decryption runtime.

Notation. Let t > 1. We represent elements of IE‘Z as vectors = (xg, T1,...,T¢—1).
For vectors x € Ff,t, we denote x := ||z g where 1,z € IF; are the left and the
right ¢ words, respectively. Further, we write rot;(y) to indicate a rotation of the
vector y € IF; by i steps to the left. With y©®m, we denote the element-wise prod-
uct (Hadamard product) between two vectors y, m € IF;. With diag(zq,...,2¢)
we denote a diagonal matrix of size ¢ x ¢t whose diagonal is (z1, ..., ;). Finally,
given matrices M € F"*"™ and N € F*", we denote M @ N € Fl(,m'n)x(m'n) as

the Kronecker product of two matrices.

2 Preliminary: Evolution of Rasta-like Primitives

A dedicated symmetric-key primitive for HHE should have a low AND-depth [29,
55]. At CRYPTO 2018, a family of FHE-friendly stream ciphers called Rasta was
proposed [24], and it sheds new insight into secure FHE-friendly symmetric-key
designs. The main novelty of the Rasta design strategy [24] comes from the re-
alization that a major class of attacks on symmetric ciphers, namely statistical
attacks [6-8, 23,43, 45,47, 52, 59|, depends on a large number of cipher eval-
uations (i.e., use many plaintext-ciphertext pairs) concerning the same cipher.

5 While AES is significantly faster in plain, its comparatively huge multiplicative depth
would lead to infeasible HHE server runtimes [25].
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Fig. 1: Constructions of existing Rasta-like primitives.

Consequently, these attacks can be mitigated by randomizing the cipher for each
evaluation.

Here, we recall and compare the main existing Rasta-like primitives, which
are depicted in Fig. 1. There, ¢;, v; are random vectors, M; are random matrices,
and S denotes the nonlinear layer.

Rasta. In Rasta, both the invertible matrices My,..., M, and the round-
constants ¢y, ..., ¢, are randomly generated via an Extendable-Output Function
(XOF) [56] seeded with a nonce N and a block counter i. Due to this special
structure, algebraic attacks become the main threats, and the most effective
one against Rasta is the linearization attack. However, due to the usage of the
quadratic x-transformation [18] for the nonlinear layer of Rasta, faster lineariza-
tion attack on Rasta can be achieved by exploiting a special property of its
inverse [50,51], though Rasta is still secure against this improved attack.

DAsTA. The follow-up work DASTA [42] focuses on the slow instance generation
of Rasta. In Rasta, random matrices are sampled until all (r 4 1) are invertible.
To reduce this overhead, DASTA generates the matrices (M;)o<;<, as follows:

Vje[0,r]: Mj(z)=My;; x P;(z),

where My ; is a fixed matrix, while P; is a structured bit permutation seeded
with the block counter 7. In this way, DASTA significantly outperforms Rasta in
the plain evaluation by a factor of 200 to 400 [42], while the performance in homo-
morphic evaluation remains almost the same (The instance generation runtime
is negligible compared to the homomorphic key-stream generation). However,
as shown in [50], such a way to generate the random matrix impacts the secu-
rity margin of DASTA, which is much smaller than the one of Rasta against the
linearization attack.



Primitives over Prime Fields: Masta, HERA and PASTA. Both Rasta and
DaAsTA are defined over Fy, which makes them less efficient in many FHE appli-
cations, though the AND-depths are relatively low. Therefore, new FHE-friendly
primitives have been proposed to address this issue. The ciphers Masta, HERA, and
PASTA are thus defined over IF,. First, Masta was introduced as a direct applica-
tion of the Rasta design strategy. The random matrices are now generated from
polynomials with coefficients in a prime field rather than Fs. The Masta client
side runtime achieved good results, but the scheme is not geared towards HE.
Thus, the homomorphic runtime is slow in many settings. For PASTA, the design-
ers proposed a relatively cheap way to generate a random matrix for each round
and prove high branch numbers with high probability. Moreover, to prevent effi-
cient attacks on the Rasta-like ciphers as in [50] which exploits the inverse of the
nonlinear layer, the designers of PASTA choose to truncate half of the permuta-
tion output to get the keystream. The design generally exploits properties of ho-
momorphic computation for fast decompression. However, their matrix sampling
method is still slow compared to the other ciphers. In HERA, on the other hand,
the matrices of the linear layers are fixed. However, each round, the round keys
are randomized by just element-wise multiplying a random vector v; (sampled
from an XOF seeded with a nonce and block counter) to the master key K. For
the input to the first nonlinear layer, it is My(vg ©®K+c¢g) = Mo(vo ®K) + My(co)
where ¢g is a known constant. Hence, we can interpret it from a different per-
spective: First, a fixed matrix is multiplied with a randomly generated diagonal
matrix. Then, multiply this new matrix with K, and finally, a constant is added.
In this sense, its first linear layer is also somehow randomized, but in a slightly
different way from Masta and PASTA. With a small state size and a limited
number of rounds, HERA generates the smallest number of random elements and
achieves the best client-side encryption time. However, by exploiting the special
feature of the randomized key schedule and the the small state size, an algebraic
attack on HERA using multiple collisions in round keys has been proposed in [49],
which can successfully peel off the last nonlinear layer of HERA and achieve a full-
round attack under the same assumption made by the designers. In Section 6,
we dive into the specifics of the performance trade-offs of the F,-HHE ciphers.

3 Description of PASTA,,

In this section, we introduce PASTA,5 as an evolution of the cipher PASTA.

3.1 PaAsta

PAsTA [25] is a family of stream ciphers proposed at TCHES 2023. Let p be a
prime such that log,(p) > 16 and ged(p — 1,3) = 1.7 Given a secret key K € F',
a nonce N and a counter 7, a PASTA encryption works as follows:

— the message m € Fy is first parsed as m = mg|mi| ... [|m, with m; € F.;

" The power map z — % is invertible over F, if and only if ged(p — 1,d) = 1.
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Fig.2: The truncated r-round PASTA-7 permutation to generate the keystream
Ky, for block ¢ under nonce N with affine layers A; . n .

— the ciphertext is defined as ¢ = ¢gl|e1]| - - - ||¢n, Where
¢; = m; + left, (PAsTA-7(K, N, 1))

where PASTA-7 is the PASTA permutation described in the following, and
where left;(-) returns the first ¢ words.

The keystream generation is shown in Fig. 2.
The permutation PASTA-7(z, N, ¢) on a vector x € Fff is defined as

PASTA'W(J:’ N, Z) = Ar,N,’i O Ocube © Ar—l,N,i 0 Steistel (1)
0A; 2N, ©...0 A1 N, O Steiste © Ao N,i(T),

where r > 1 is the number of rounds.
Steistel and Scupe are S-box layers defined as below:

— Steistel 1S an S-box layer defined as Steister1(x) = S’ (2 )||S’ (zr), where S’ over
IF; is a Feistel structure defined as

vie{0,1,....t—1}: (S = {yl it =0, @)

yi + (yi—1)®  otherwise,

where y = yolly1| -+ - [ly:—1 € F},, and where (S’(y)); with the index [ refers
to the [-th element after applying S”.
— Scube is an S-box defined as Seupe(r) = 23|23 - - - ||23,_;-

For each j € {0,...,r}, Aj N, is an affine layer
2.1 1 M;ni(zn) +ciong
Ajni(z) = . S
],N,z(x) |: I 2. I:| [Mj,R,N,i(xR) =+ Cj RN (3)

where I € F** is the identity matrix and where M; 1 i, Mjr N, € FL*" and
C¢j,L.Ni» Cj,RN,i € I}, are generated for each round from an XOF [56] seeded with
a nonce N and a counter 1.



To efficiently sample each invertible matrix M;xn; € FL**, they sample
sequential matrices following [37, 38]:

010--0
\ 001--0

M;eni = (Mgsz) ) Mj,k,N,i: : K (4)
00¢O0--1

Q1 Qg g -0 O

for each k € {L, R}, where a1,...,a; € F, \ {0}. In other words, M, n; is
an invertible matrix which can be built by sampling ¢ random elements and
performing ¢ - (¢ — 1) multiplications and (¢t — 1) - (¢ — 1) additions.

3.2 The Birth of PASTA,,

Next, we propose PASTA,, as a variant of PASTA, in which only the first affine
layer is randomized. We keep the main structure the same. Hence, for a prime p
such that loga(p) > 16 and ged(p—1, 3) = 1, the permutation PASTA -7 (z, N, 7)
on a vector x € ]Ff,t is defined as

PASTAVZ‘W(:I;; N7 7/) = Ar o Scube o Arfl o Sfeistel (5)
OA’I"—2 60...0 Sfcistcl © Al © Sfcistcl © AO,N,i(x)a

where r > 1 is the number of rounds. The differences from PASTA are:

— only the first affine layer Agn,; is randomized with the seed (N, );
— the remaining r affine layers Ay, ..., A, are fixed.

Fixed Affine Layers. We use a pre-defined MDS-matrix M € F?Xt to instan-

tiate the affine layers Ay, ..., A,, as shown below:
(= |21 M(zr) +cjL
Aj(z) = [ I 2'1} X |:M($R)+Cj,l?, ;

where I € F/*" is the identity matrix, and c; r,c; r € F, are fixed round con-
stants. To sample the MDS matrix M € F,**, we instantiate it as a random
Cauchy matrix [61]:

1

T +y;’

M;; =

where x;,y; are random elements in F,, such that (i) z; # z;, (ii) y; # y; and
(ili) ; + y; # O for each ¢ and j.

As we are going to prove in Section 7, the branch number of our fized linear
layers A is t + 2. The main differences to the affine layers in PASTA are the
following:



Table 1: Two instances of PASTA,, with 128-bit security (assuming log,(p) > 16
and ged(p — 1,3) = 1). We emphasize that PASTAy»-3 and PASTA,,-4 have the
same security level, but a different state-size ¢ implies a different number of
rounds (and so depth).

Instance ‘ r ‘ # Key Words 2t ‘ # Plain/Cipher Words ¢ ‘ XOF
PASTA2-3 ‘ 3 ‘ 256 128 Shake128

PAsTA-4 | 4 64 32 Shakel28

— the matrix M and the random round constants are chosen during instantia-
tion and not sampled from an XOF;

— there is only one matrix M which is the same for both PAsTA-branches and
for each round;

— the matrix M is instantiated to be an MDS matrix.

About the First Affine Layer. The first affine layer Ao ; is defined in the
same way as Eq. (3). In PASTAy, ¢o,zN,i, Co,RN,i € IF; are sampled using an
XOF seeded with (N,4). The matrices My rn,; and My rn, are constructed
as follows. First of all, we generate two matrices of the form (Eq. (4)) in F}**
denoted by My and My r and fix them, i.e., they will remain the same for
different (N, %). Then, using an XOF [56] seeded with (N, ¢), we sample 2¢ nonzero
random elements in F,,, denoted by (51,. .., S2:). Finally, we define:

Mo, N = My r, x diag(B1,...,06),
Mo rNi = My r < diag(Bes1, .- -, Bat)-

3.3 Concrete Parameters

Based on our security analysis proposed in the next sections, PASTA,, requires
the same statesize and number of rounds as PASTA for the same security level.
Thus, as shown in Table 1, we propose the 3-round and 4-round instances denoted
by PASTA»-3 and PASTA»-4, respectively. These instances provide at least 128
bits of security (with a security margin of at least 20 % [25]) for the prime fields
F, with log,(p) > 16 and ged(p — 1,3) = 1. (We refer to Section 6 for concrete
values of p, which depend on the considered application.)

4 Security Analysis of PASTA,,

The security analysis of PASTA,, is analogous to the one of PASTA. Here, we
focus on the effect of having only a single random affine layer in the first round.
As in PASTA, we show that chosen-plaintext attacks do not work. For this reason,
we mainly focus on known-ciphertext attacks, i.e., the attacker knows the output
of PASTA,,.



About Chosen-Plaintext Attacks. The input of PASTA,, is composed of a
secret key K, a nonce N and a counter ¢. In particular, (N, ) is set as the input
of an XOF, and the output of the XOF is used to construct the first affine layer.
In this sense, the attacker cannot control the first affine layer given that the
used XOF is secure, even though it can adversarially choose (N, ). On the other
hand, K remains unknown and uncontrolled. Therefore, chosen-plaintext attacks,
including differential [7], truncated differential [45], impossible differential [6],
and cube [23] attacks cannot work. In more detail, in the case of a differential
attack, the difference A after the first linear layer is given by

A= (My— M) K+ (co—¢p),

where My, M are random matrices over F2***" and ¢, ¢, € F3' are the constant
vectors. Since K is unknown, and since the probability that either (i) My = M|
or (ii) some rows of My and M are equal is much lower than 27128 it seems
not possible to set up such an attack.

Linear Cryptanalysis. Although the differential attack cannot work, the linear
attack [52] can work for Rasta-like ciphers in a slightly different way, as indicated
by the designers of HERA [15], i.e., it can be reduced to solving a Learning with
Errors (LWE) [57] like problem. This attack is equivalent to finding a linear ap-
proximation of the PASTA,, permutation holding with a high probability. Based
on the fact that the branch number of our fixed linear layers is ¢ + 2 (as we
are going to prove in Section 7), we have built a simple MILP model as in [54]
and found that the minimal number of active nonlinear operations = + z2 for
the first two rounds is 16 and 64 for PASTAy3-4 and PASTA,,-3, respectively. In
addition, according to Lemma 1 (Appendix B.5) in [15], the upper bounds of
the linear probability for the nonlinear transforms x — 22 over F), is %. Since

pt6 > 2128 for p > 216, we conjecture that PASTA,, is secure against this attack.

Algebraic Security against Linearization, Grébner basis and Interpo-
lation Attacks: Relation with HERA. Similar to PASTA, the most threatening
attack on PASTA,, is the linearization attack. In such an attack, the attacker can
set up many equations in terms of K according to the outputs of PASTA,, and
solve the equation system with Gaussian elimination by treating each different
monomial as an independent variable. The degree denoted by d of these equa-
tions is upper bounded by 12 and 24 for PASTA»-3 and PASTA,,-4, respectively.
In this way, the time complexity of the linearization attack is (Qt;d)w where
2 < w < 3. Our choice for the parameters has ensured that this complexity is
larger than 2!28 under w = 2.

For the above time complexity, we implicitly assume that all polynomial
equations in K describing PASTA,, are dense, i.e., almost all monomials appear
in the final representation. To verify this assumption, we have practically verified
the density of the polynomials for PASTA,,. To avoid the effect of cancellations,
we used prime numbers larger than 2'6. We observe that for the state sizes we
tested, the actual number of monomials in the output word with the smallest
number of monomials is always very close to the theoretic maximum number

10



of monomials (details in Fig. 5 — App. A), which is also the case for PAsTA
as shown in [25]. In this sense, PASTA,5 and PASTA provide equivalent security
against algebraic attacks, such as linearization, Grébner basis, and interpolation
attacks, whose time complexity is closely related to the degree and density of
the polynomial equations.

The crucial point is that the first nonlinear layer cannot be efficiently peeled
off by linearizing it. Specifically, to linearize the first round in this way, it would
be necessary to introduce (Qt;' 2) intermediate variables to represent each possible
term of degree smaller than 2 formed by the 2t key variables, which would
not improve the straightforward linearization attack. More details of this type
of attack can be referred to Section 5.1. Besides, note that the particular way
in which we construct the first random affine layer of PASTA,, is essentially
comparable to the one of PASTA or HERA, where the key is multiplied via a
random diagonal affine layer. Hence, if the first nonlinear layer can be peeled
off for PASTA,,, we can also peel it off for PASTA and HERA, which will directly
lead to a breakthrough in the analysis of these two ciphers. Still, to the best
of our knowledge, no attack that peels off the first non-linear layer has been
currently proposed against PASTA or HERA in the literature, which makes us
confident on the security of PASTA,, as well. (We refer to the next Section 5 for
a detailed analysis regarding the impact of the first random affine layer against
the linearization attacks.)

Algebraic Attack using Multiple Collisions. Recently, a new algebraic at-
tack on HERA has been proposed [49] by using multiple collisions in the random-
ized round keys. This attack on some parameters of HERA succeeds because one
could efficiently peel off the last nonlinear layer when the cost to find collisions
in round keys is low, i.e., when the state size p' is small. However, the PASTA,
state size is of about 2¢-log,p > 32-t > 1024 bits, which makes finding collisions
in the state too expensive (i.e., much larger than 2128). Therefore, our design is
secure against the algebraic attack proposed in [49].

Higher-order Differential Attack. For simplicity, let us denote the fixed
permutation after the first affine layer of PASTAy, by P(z) : F2f — FL. In this
way, the degree of P(z) is 12 and 24 for PASTA»-3 and PASTA-4, respectively.
Due to such a low degree, one may feel that a higher-order differential attack
over the prime fields [5] can be mounted in a different way. However, note that
the input z of P(z) is computed as x = My(K) 4 co, where both ¢y € F2 and
the matrix My over F%txzt are randomly generated. To mount a higher-order
differential attack over the prime field [5], the attacker needs to collect at least 13
inputs = (x1, ..., z2) such that there exists an index j such that x; travels in
a multiplicative subgroup of F,,, while the remaining (z1,...,%;_1,%j+1,.-.,T2t)
takes the same value. Due to the addition of the random vector cg, the input of
P(x) can be viewed to be random as well. Hence, the probability that there exists
a j such that (x1,...,2j_1,2;41,...,%2) takes the same value for 13 random x
is equal to W < 27128 Hence, PASTAy, is secure against this attack.

11



Meet-in-the-Middle and Guess-and-Determine Attacks. For the fixed
permutation P(x) after the first affine layer, the attacker can make many offline
queries to P(z) and collect many (x, P(x)) tuples. At the online phase, with each
random Ay ;, the attacker only knows ¢ words of the output of the fixed per-
mutation. Even if a match is found for these ¢ words of P(z’), the corresponding
2t words 7’ stored in the precomputed table is correct with probability 1/p’,
which means the time complexity of this attack is lower bounded by pt. Since
log,(p) > 16 and ¢ > 32 in PASTAy,, all the proposed instances have at least
128-bit security against this attack.

Similarly, assume that the attacker guesses the truncated part in order to
invert the permutation. Since each PASTA,, state is composed of 2¢ words and ¢
words are truncated, the time complexity of such a guess-and-determine attack
is lower bounded by O(p'). Since logy(p) > 16 and ¢ > 32, PASTA,, is secure
against this attack.

5 Design Rationale

In the previous section, we showed that PASTA,, is secure even with a single
randomized layer. Here, we explain the design rationale of this new updated
version of PASTA. The design PASTA,, is the result of our considerations/analysis
regarding the following questions:

1. which layer should we randomize to maximize the security?
2. what are the benefits of fixing the other layers from a security point of view?
3. what are the advantages of truncation with respect to feed-forward?

Since truncation is used in PASTA, we refer to Appendix B for a discussion on
question (3). here, we focus on questions (1) and (2).

5.1 Choice of the Randomized Layer from a Security Point of View

To minimize the randomness in Rasta-like designs, the optimal choice is obvi-
ously only to randomize one layer, i.e., either one linear layer or one nonlinear
layer. here, we explain our choice to randomize the first linear layer.

Randomizing Nonlinear Layers. First, can we simply randomize one non-
linear layer? Compared with randomizing the linear layer, using a random non-
linear layer implies the usage of a random S-box. One relatively cheap way to
randomize the S-box is to introduce some random constants. For example, for
the S-box S’(y) used in PASTA, which is specified in Eq. (2), we can introduce
2(t—1) random nonzero elements in F,, sampled with an XOF seeded with (N, ).
Denote these random nonzero elements by (a1,...,a;-1,b1,...,bi-1) € Fit_Q.
Then, this S-box can be randomized as follows:

(') = {yl -

yi+ai—1-yi—1- (yi—1 +b—1) otherwise.
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Similarly, given 4t non-zero random elements (ay, . .., a5 1,00, - .., bh_q) in Fp,
Scube an be randomized as follows:

Seube () = ag -+ (z0 +0p)°[| -+ llagy_y - (w2r—1 + by 1),

However, even if all nonlinear layers in PASTA are randomized in this way,
this choice impacts the security level of the scheme, which is reduced due to the
linearization attack. Specifically, since the first affine layer remains the same for
different (N, ), let us introduce the equivalent key X' = (Kj, . .., Kb, _; ) satisfying

K' = Ao(K),

where Aj is the first affine layer. Hence, the attacker can skip the first fixed linear
layer and look for X’ directly. Next, for the above way to randomize Sgeister, let

us further introduce 2(t — 1) variables (K{,...,K5,_5) defined as
Vi e [0,t—2]: K/ = (K1),
Viet—1,2t—3]: K/ = (K] ).

No matter what (N, %) are, the state after the first round will always be linear in
the 2t 4+ 2t — 2 = 4t — 2 variables (K, ...,Kb;_;) and (K{,..., K5, _3).

As a result, for 3-round PAsSTA and for each different (N,i), the attacker
can set up t equations in 4¢ — 2 variables whose degree is only 2 x 3 = 6. This

means that the attacker only needs to collect Z?:o (4’5_2;”_1) = (4t_62+6) such

equations with about (4t_62+6) /t different (N, ) to solve these variables with the
linearization technique. The time complexity is upper bounded by (4t_62+6)w
where 2 < w < 3. Usually, from the perspective of designers, w = 2 is chosen.
Similarly, for this new version of 4-round PASTA, the time complexity to break
it is upper bounded by (*"2F 12)w

For comparison, the time complexity to break 3 and 4 rounds of the original
PAsTA is upper bounded by (th'212)w and (2@_424)(07 respectively, because the
attackers cannot efficiently peel off the first nonlinear layer with this method
due to the first random affine layer. Such a property also holds for PASTA,,.
More specifically, although they can also introduce 2t — 2 intermediate variables
to linearize the first nonlinear layer for each different (N, ), these intermediate
variables are different for different (N,7) since the first affine layer varies for
different (N, ), that is, they will have different relations with the secret key K
for different (N,4). This is equivalent to the fact that the first round cannot be
efficiently peeled off, or (2t; 2) intermediate variables should be introduced to

linearize the first round.

b

Randomizing an Affine Layer in the Middle Rounds. Let’s consider r
rounds of PASTA. If the affine layer A; (for i > 0) is the only one to be ran-
domized, the attacker only needs to recover the input state of A;, since such
state remains the same for different (N, 7). Once it is found, it is possible to com-
pute backward to recover the secret key. In this way, attacking r-round PASTA
is reduced to attacking r — ¢ rounds of PASTA, which significantly reduces the
security of PASTA.
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5.2 Benefits of Having Fixed Layers from a Security Point of View

As stated Section 4, the input of the fixed permutation P(z) after the first affine
layer is random. If P(x) is malicious, e.g., instantiated with weak affine layers,
it may still weaken the security of PASTA,,, allowing for concrete attacks that
aim to recover the input of P(z). By choosing secure affine layers in the fixed
permutation, e.g., using MDS matrices, it is possible to avoid this scenario and
have a better security argument.

Specifically, the fixed affine layers in PASTA, provide full diffusion after only
one round and have a branch number of ¢t 4+ 2, as we are going to prove in Sec-
tion 7. Comparing this to PASTA, its branch number is only shown to be larger
than ¢/2 with a high probability. In summary, our changes allow us to keep all
the advantages of randomizing the cipher while fully eliminating the possibility
of weak matrices, which might compromise security in some instances. For exam-
ple, there are many instances of weak matrices making the MPC-friendly cipher
LowMC vulnerable to the interpolation attack [22, Sect. 1]: /... the designers of
LowMC allow to instantiate it using a pseudo-random source that is not crypto-
graphically secure. Our result shows that this is risky, as using an over-simplified
source for pseudo-randomness [...] allow finding weak instances [...]".

6 Benchmarks

In this section, we report on the practical performance of PASTA,, and the
consequences of only randomizing the first affine layer. We compare our imple-
mentation with the I, ciphers outlined in Section 2 based on a benchmarking
framework® provided by [25]. We separate our performance evaluation into plain
encryption and homomorphic evaluation times and evaluate our benchmarks
with 33-bit plaintext primes. The plaintext prime p defines the plaintext domain
F,. Increasing p has a negative impact on HE performance. Next to an overview
of the HE parameters, we present further tests, including different primes, in Ap-
pendix D. First, we reiterate the findings of previous performance comparisons.
In [25], the authors show that their HHE cipher PASTA is the fastest in the HE
domain with the 4 round version being the best for few low-precision numbers and
8 round version being the best when applied to bigger use cases. The advantages
are two-fold:

— a relatively fast homomorphic decompression, and
— a small number of rounds.

Having fewer rounds reduces the noise impact in HE computation and allows
for smaller, more efficient parameter settings. Having more efficient parameters
positively impacts the performance of subsequent use case evaluations. On the
other side, for performance on the client side, 3-round PASTA is outperformed
by all competitors, while the 4-round version is better but still far off compared
to HERA.

8 https://github.com/IAIK/hybrid-HE- framework/
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Fig.3: Comparison of the different IF,, ciphers. The two metrics are the runtime
in the homomorphic domain versus the CPU cycles for client-side encryption.
All ciphers are indicated with colors and tested with different plaintext prime
sizes indicated with shapes.

Plain Benchmarks. In Table 2, we report the performance numbers for the
most prominent IF,, HHE ciphers. This table depicts the runtime of the encryption
implementation with a 33-bit prime in CPU cycles averaged over 1000 times. This
metric allows us to show more minor differences in runtime and be independent
of the hardware used. We will discuss the HE benchmarks on the right side later.
With different plaintext primes, the numbers change, but the overall relations
between the ciphers remain the same. The plain performance section shows the
total cycles needed for the entire encryption process, then separated into nonce-
dependent instance generation and the computation of the key stream.

HERA is still the fastest cipher when evaluated in plain. On the one hand,
PASTA5 roughly halves the gap towards it. On the other hand, it retains the
advantages in the HE domain with similar speed for single blocks and lower noise
costs. In HE computation, higher noise costs are compensated with less efficient
parameter settings. We present practical consequences in Appendix D.

The other ciphers show a clear trade-off between round number and state
size performance. Smaller state sizes reduce the number of random elements,
reducing the high cost for the client side. Additional rounds, however, hurt HE
evaluation, sometimes enforcing less efficient parameter settings. Within this
trade-off, we compare the lower round instances of PASTA, PASTA,5, and Masta
and their higher round instances separately. For the higher round versions, PASTA
outperformed Masta in both domains and PASTA, further increases the gap by
doubling the plain encryption speed. Given the low-round versions, Masta was

15



Table 2: Detailed performance metrics. Plain encryption time is split into nonce-
dependent instance generation and generation of the key stream. HE performance
shows runtime for encrypting the secret key and decompressing ciphertexts.

Plain Performance [Cycles| HE Performance [s]

Cipher Total Instance Generation Encrypting | Enc. key Decomp.
Masta-4 1 862 325 712 804 1149 521 0.095 57.3
Masta-5 619 314 262 892 356 422 0.096 49.8
HERA 22 294 13 607 8 687 0.108 17.2
Pasta-3 3 978 645 2 312 924 1 665 721 0.037 17.7
Pasta-4 351 994 250 693 101 301 0.099 21.4
PASTA2-3 | 1 956 656 49 645 1907 011 0.033 15.0
PASTA2-4 169 632 14 353 155 279 0.094 18.2

two to three times faster than PASTA on the client side PASTA5 closes this gap
significantly down to 0-20% slower depending on the plaintext prime.

Having roughly twice the speed of PASTA follows from the new design. First,
we note that since PASTA, has the same number of rounds and the same S-boxes
as PAsTA, their multiplicative depth remains the same. To successfully encrypt
one block with statesize t, PASTA requires to sample 4 - ¢t random elements per
affine layer (2t for the round constants and ¢ for each of the two submatrices),
hence, a total of 4-¢- (r+ 1) random elements. PASTA,,, on the other hand, only
has one random affine layer. Hence, it is enough to sample 4 -t elements, which is
significantly smaller than required for PASTA. Further, in PASTA, these random
words must be transformed into the ¢ X ¢t matrices, which comprise each affine
layer branch. Each matrix generation requires ¢ - (¢t — 1) field multiplications and
(t—1)-(t —1) field additions. On the contrary, in PASTAy,, the random words
are only applied to the matrix’s main diagonal in the first round, resulting in ¢
field multiplications.

After the nonce-dependent instance is created, encryption timings are very
similar for both PASTA and PASTAy,. Given the slightly different implementa-
tions for measuring the instance generation, the encryption time of PASTA is
slightly faster. Overall, the speedup of instance generation far outweighs the
minor drawbacks in encryption time.

Homomorphic Benchmarks. To show the effect of our changes on the run-
time of HHE use cases, we redo the benchmarks from [25] using their open-source
benchmarking framework.” Hence, we benchmark the runtime of homomorphi-
cally evaluating the decryption circuit for one block of data (i.e., homomorphic
decompression).

We give benchmarks for two state-of-the-art HE libraries, namely SEAL [58]
and HElib [41], which implement the BFV [10, 28] and BGV [11] HE schemes,

9 We run all benchmarks on a Linux server with an AMD Ryzen 9 7900X CPU (4.7
GHz). Each benchmark only has access to one thread. The source code is available
at https://github.com/IAIK/hybrid-HE-framework

16


https://github.com/IAIK/hybrid-HE-framework

respectively. The homomorphic decompression implementations of PASTA and
PASTA,» have the following difference: The matrix in the affine layers is the same
for each round (after the first one) in PASTA,, but different in PASTA, one does
not have to encode this matrix every round into HE plaintext polynomials when
using PASTAy,. Similar or slightly cheaper results are expected for PASTA,,,
depending on the HE libraries implementation of encoding.

SEAL Benchmarks. It is found that our changes for PASTA barely affect the
benchmarks in the SEAL library. Consequently, less matrix encodings have no
real effect in SEAL and lead to practically equivalent benchmarks when using
PasTA and PASTA,,. We provide detailed benchmarks for the SEAL library in
Appendix D.2.

HEIlib Benchmarks. In Table 2, we evaluate the HE decompression and sym-
metric key encryption with different instances of the IF,, HHE ciphers in a 33-bit
prime field F,. We refer to Appendix D.3 for benchmarks with two other prime
fields and a more extensive discussion of HE parameters. Most importantly, for
the benchmarks discussed, we selected parameters that provide the necessary
noise budget and a security parameter A\’ such that A’ > 128 bit. Contrary to
the benchmarks in the SEAL library, our changes significantly impact the homo-
morphic decompression runtime in the HEIlib library. This speedup stems from
a more expensive matrix encoding in HElib. Fewer matrices have to be encoded
in PASTA,, since each affine layer (except the first one) uses the same matrix.
Depending on the parameters, these changes lead to a runtime advantage in
the range of 10 % to 30 %. Regarding noise budget, fluctuations in the range of
1bit can be observed, which are most likely caused by random Gaussian noise
samples.

Discussion. In general, PASTA can be seen as current state-of-the-art in HHE
for the BFV and BGV HE schemes. PASTA outperforms Masta in the HE domain.
Compared to HERA, noise consumption and multiplicative complexity ultimately
make it the better choice in many applications. We further display these scenar-
ios in Appendix D. Given these preconditions, PASTA,, is a straight improve-
ment over PASTA. Firstly, PASTA,; requires fewer random words, significantly
improving the client-side encryption. Given the BGV scheme and expensive ma-
trix encoding, PASTA, outperforms PASTA in HElib. Finally, the multiplicative
complexity is the same s.t. all parameter settings in the HE domain also apply.
In Fig. 3, we see clearly that PASTA,5 outperforms PASTA in the plain and HE
domains. Further, the concrete choice of p is determined by the concrete HE
use case. It should be set as the lowest possible value that does not lead to un-
wanted overflows in the arithmetic computations. Finally, in the case of a heavily
constrained client HERA might be the optimal choice depending on the concrete
capabilities. However, as mentioned before, higher multiplicative depth dimin-
ishes the advantages seen in Fig. 3, the results presented for the 60-bit prime were
computed with an HE security parameter of \' = 89-bit as increasing security
would increase runtime significantly.
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7 Branch Number of an Interweaving Matrix

As a final result, we analyze and generalize the design strategy used to set up the
internal matrices of PASTA and PASTA,5. The idea is to construct (n-m) x (n-m)
invertible matrices whose branch number is equal to n + m by combining two
MDS matrices of dimensions n xn and m xm. We call the result an “interweaving
matriz”. This strategy is not new in the literature since it is already used in
GRIFFIN, HERA, and Rubato, as discussed later. Still, a formal analysis is missing.
here, we aim to fill this gap.

Definition of an Interweaving Matrix. We start by defining an interweaving
matrix and continue with proving its branch number.

Definition 1. Given an m x m MDS matriz M and an n x n MDS matriz N,
we define the interweaving matriz Z € IFE,’”‘")X(”‘”)

the matrices M and N, given by

as the Kronecker product of

Moo N Mo1-N ... Mopm_y1-N
Myg-N M1-N ... Mygy1-N
Z:=M®@N = . . (6)
Mmfl,O -N Mmfl,l “N ... Mmfl,mfl -N
Moo-1 Mos-I ... Mogy-1 NO...O
Myg-I  Myy-T ... My -1 ON...0
- . . . X . . ) (7)
Myv10-1 Myyy1-1 ... Myy_y -1 00...N

where I € Fy*™ is the identity matriz.

Invertibility of an Interweaving Matrix. We first recall that an arbitrary
matrix M € Fy**™ is invertible if and only if its determinant det(M) is co-
prime with ¢, i.e., ged(det(M), ¢) = 1. The determinant of a Kronecker product
is given by det(M@N) = det(M)™-det(N)™. Given that both N and M are MDS
matrices (as by Definition 1) and hence invertible, it follows that ged(det(M &
N),q) = 1. Thus, an interweaving matrix is always invertible.

An Alternative Representation of an Interweaving Matrix. Roughly
speaking, multiplying a vector & € Fy™ by an interweaving matrix Z corre-
sponds to do the following:

L. re-arrange the vector & € IFj"™ into a 2-dimensional vector (or matrix) in
F™>" of n rows and m columns;

2. multiply each column of this 2-dimensional vector with the n x n matrix NV;

3. multiply each row of the obtained 2-dimensional vector with the m x m
matrix M.

MixCol MixR. .
In short: # % N x ¢ ——% (N x &) x M7 | where z is the 2-

dimensional vector. More formally, denoting that the diagonal matrix diag(A), :=
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diag(A4, ..., A), indicates z matrices A in the diagonal, we can further define a
shuffle (@) g F{mm*(mm) g
26 = (diag(eg”),, diag(e;”), . diag(e}),)",

1,’

where (z,y) = (m,n) or (n,m), 0 = (0,0,...,0) € Fy and e(r) € Fy is the
vector which contains zero apart from the i-th element which is equal to 1.

Lemma 1. Let Z € IFE]m'W(m'”) be defined as in Definition 1. It can be re-
written as
Z = 2™ % diag(M),, x 2™ x diag(N),p,. (8)

The proof is given in App. C.1.

Branch Number of an Interweaving Matrix. First, we recall that the
branch number of a matrix M is defined as

B(M):= min {hw(a)+hw(M x a)},
a€F7 ™ \{0}

where hw(-) is the Hamming weight of vector @ and is defined as the number
of nonzero elements. The branch number of an MDS matrix is m + 1. Next, we
compute the branch number of an interweaving matrix.

Theorem 1. Let Z € Fgm'”)x“”'") be as in FEq. (6). If M and N are both MDS
matrices (as required in Definition 1), then its branch number is n + m.

Proof. Given an input « = (xg,...,Zm-1) € g™ with a non-zero F-words, we
compute the minimum number of non-zero F,-words of the output Z xx =y =
(Yo, - -+ Yn—1) € Fy™ using the representation given in Eq. (6). For this goal, we
first remove the final shuffle X(™) since it does not change the number of active
words. We further define intermediate variables u = (wg, ®1,...,Upm—1),% =
(Wo, Uy, ...,Up—1) € Fg*™ as the input and output of the shuffle 3,

One Active Fyj-Word Case. Let’s start by considering the case in which the input

x contains at most o non-zero [F-words with the indices g, %1,...,74—1 of the
active (i.e., non-zero) F,-words in a set S§”) ={j-nj-n+1l,...,5-n+n—1}
for a certain j € {0,1,...,m — 1}. Without loss of generality, we assume iy <

i1 < -+ <4 (see Fig. 4).

We follow the notations in Lemma 1, i.e., diag(N),, = diag(N,N,...,N),
and diag(M),, = diag(M, M, ..., M),. Based on the representation of Z given
in Eq. (8), after the application of diag(N),, the number of active Fg-words 3
is

1<n4+l—-a<pg<n.
Indeed, n+1—a < 8 since the matrix N is MDS, and 8 < n follows from the fact
that only one matrix IV is active. In particular, the indices ko < k1 < ... < kg_1
of the active (i.e., non-zero) F,-words after the application of N are still in the

same set Sj(.n) for the same index j € {0,1,...,m — 1} as before.
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Fig. 4: Branch number for one active Fy-word case.

Next, the matrix X is applied. The number of active F,-words does not
change. However, we observe the following. For each | € {0,1,...,8 — 1}, there
existsa j € {0,1,...,n—1} such that i; € SJ(-m) ={jm,j-m+1,...,j-m+m—1}.
Then:

Vhe {0,1,.... 8-\ {l}: i ¢S,

that is, after shuffle X(")| elements in any [Fy-word of u cannot appear in the
same F¢'-word of u.

In such a case, after the application of diag(M),, the number v of active
F,-words are

v=B-m=m+l-a)-m.

Indeed, B -m < v is due to the facts that (i) 8 Fj'-words are active, (ii) each
of such words contains only one active F,-word, and (iii) M is MDS (hence, its
branch number is m +1). It follows that if one F;-word is active in an Fy'-word,
all m F -words are active after the application of the matrix M (see the last step
in Fig. 4).

It follows that the number of active words in inputs and in outputs is at least

at+y>nm+l—a)- m+a.
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This number is minimized by choosing o = n, which implies that the minimum
number of active Fg-words is n + m, as claimed.

Other Cases. In order to finish the proof, we have to consider the cases in which
we have more than a single active Fj-word in the input. Since the strategy to
analyze this case is equivalent to the one just proposed, and due to the page
limit, we present the details in App. C.2. In there, we show that also for this
case, the minimum number of active words in inputs and outputs is n + m.

|

Interweaving Matrix in GRIFFIN, HERA, and Rubato. Finally, we point out
that interweaving matrices are already used in the literature. For example, the
matrix used in the ZK-friendly scheme GRIFFIN [32] can also be seen as an in-
terweaving matrix for some parameters, and the branch number following our
proof matches the branch number given by the designers of GRIFFIN. The ma-
trix in the linear layers of GRIFFIN [32] for statesizes t = 4 -t > 8 is defined
as circ(2l,1,...,I) x diag(N,N,...,N)y, where I € ng‘l is the identity ma-
trix, and N = cire(3,2,1,1) is an 4 x 4 MDS matrix. Since both cire(2,1) and
circ(2,1,1) are MDS matrices, the final GRIFFIN matrix can be seen as an in-
terweaving matrix when ¢’ = 2 or t’ = 3. Thus, following our proof, the matrices
have a branch number of ¢’ + 4, which is 6 and 7, respectively. This matches the
proof given in [32].

In a similar way, the linear layer used in the HE-friendly schemes HERA [15]
and Rubato [40] corresponds to an interweaving matrix. Indeed, each row of the
FZQ state of HERA and Rubato is first multiplied by a v x v MDS matrix, and then
each column of the obtained state is multiplied by another v x v MDS matrix.
Based on the result just given, we can easily deduce that the branch number of
the (v-v) x (v-v) interweaving matrix of HERA and Rubato is 2 - v which also
matches the proofs by the designers.
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A About Number of Monomials in PASTA,,
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Fig. 5: Estimated number of monomials in each of the output words of PASTA,,
versus lowest number of monomials found in a practical evaluation.

B On Truncation

In PASTA,5, we adopt truncation rather than feed-forward operation as in Rasta
to compute the keystream words. What if the feed-forward operation is used? In
this case, we show an efficient guess-and-determine (GnD) attack. Let us focus on
one output of Seupe denoted by x = (zg, ..., z2—1). Then, for the feed-forward
operation, according to the keystream word W, we have

Ar(z) =W —K.

Since A, remains the same for different (N, ), we can always find the inverse of
A, denoted by A ! such that

r=AYW -X).

Hence, we can guess, say x(, and compute the corresponding input of this S-box
at the last round. This guess can be reused for different (N,4) under the same
key K since A~ is fixed and W is known. Hence, the attacker can efficiently peel
off the last nonlinear layer by guessing the input of one S-box. Then, it only
needs to solve a system of equations in 2¢ variables of degree 2"~!. The total
time complexity is p - (2t+22,7,v:11_1)w for r round of the new version of PASTA,
which also significantly reduces the security of the original PASTA. To prevent
this attack, A, also needs to be randomized, and this contradicts our original
goal to minimize the randomness in Rasta-like designs.
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C Detailed Proofs — Sect. 7

In this section, we provide the full proofs of the results proposed in Sect. 7.

C.1 Proof of Lemma 1

Denote the i-th row of matrix M as M, .. From the observation egm) XM = M, ,,
we obtain

2 diag(M),, = (diag(Mo . )n, diag(My . )n, - - ., diag(Mp_1.)n) T (9)
Similarly, N; . denotes the i-th row of matrix N. We have
2™ % diag(N), = (diag(No «)m, diag(Ni «)m, - - - diag(Np_1.4)m)T.  (10)

Finally, by multiplying Eq. (9) and Eq. (10), we get matrix Z in Eq. (6).

C.2 Proof of Theorem 1 (cont.)

In order to finish the proof started in Sect. 7, we have to consider the cases in
which we have more than a single active Fg-word in the input. For this goal,
we introduce 1 < o’ < m as the number of IFZ—words with at least one active
F,-word:

—

o =m— Z 80,015
=
where ¢; 5, is the Kronecker delta (that is, d; 5, = 0 if I # h, and 1 otherwise).
For each j € {0,1,...,m — 1}, let 0 < a; < n be the number of active F-

words in #;. Working as before, we define §; as the number of active Fy-words
(in the same index set Sj(")) after the application of diag(N),,. Since N is a
MDS matrix:

— B; = 0if and only if o; = 0;

— otherwise, 1 <n+1—-a; <B; <n.

It follows that the number 3’ of active F/-words does not change, that is, 5’ = o/.
Moreover, let

Bmax = max ﬂj )

j€{0,1,...,m—1}
that is, the maximum number of active F,-word in each active Fj-word u; for
je{0,1,...,m}.

Next, we apply ("), Since we are interested in the minimum number of active
words in inputs and in outputs, we look for the configuration that minimizes the
number of Fi*-words. By the definition of (") suppose that two input F,-words
up,; and uy, ; are active such that ¢,j € S}(Ln) ={h-n,h-n+1,...,h-n+n—1}
for a certain h € {0,1,...,m — 1}. After applying xm) up,; and up ; cannot
appear in the same Fy'-word. This is exactly the same as in one active Fj-word
case. Due to this consideration, after the application of X(™):
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— at least Pmax ]Fg”—words are active;
— each active Fj'-word contains at most B active Fy words.

After the application of diag(M),, where M is an MDS matrix, we have that
the number of active wordsis 1 < (m+1— ') Bmax < v < n-m. As a result,
the number of active words in inputs and outputs are at least

m—1 m—1 m—1
7—1—Zaj2(m+1—ﬁ’)~6max+Zaj:(m-i-l—o/)-ﬁmax—i—Zaj.
§=0 §=0 §=0

Let’s start by considering the simplest case Bmax = 1. In such a case, «; is
either 0 or n for each j € {0,1,...,m — 1} (due to the relation between a; and
Bj, keeping in mind that M is a MDS matrix). In such a case, we have that

m—1 m—1
Y @ zmAl—a) fuat Y. @ - (n-1)+m+1.
=0 =1 J=0 e?{;}

By simple computation, o’ - (n—1)+m+1 < n+m (hence, o - (n—1) < n—1)
if and only if o/ < 1, which is not possible since o/ > 1. It follows that the
minimum number of active words in inputs and in outputs cannot be smaller
than n + m.

More generally, if Smax > 1, then a; € {0,n +1 — Bmax, 7 + 2 — Bmax, - . ., 1}
for each j € {0,1,...,m —1} (due to the relation between «; and 3;, keeping in
mind that M is a MDS matrix). In such a case, we have that

m—1 m—1

v+ Z (e% Z(m—l—l _Oé,)',anax+ Z Qi
3=0 3=0 €{0,n}

Z(m‘i'l_a/)',@max‘i‘a/'(n+1_6max)-
By simple computation:

(m+1—0a) Bumax + & - (n+ 1= Bmax) <n+m “
(m_al)'(ﬁmax_1)+(n_ﬁmax)'(a/_1) <0.

Note that

— o/ < m by definition, and that SBp.x > 1. Hence, the first term is never
negative;

— Bmax < n by definition, and that o/ > 1. Hence, the second term is never
negative.

It follows that the previous inequality never occurs, which means that the min-
imum number of active words in inputs and in outputs cannot be smaller than
n + m. It follows that the branch number is n + m.
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D Benchmarks (cont.)

In this section, we give the full overview of our benchmark results from Section 6
comparing PASTA,, and other HHE ciphers in a 17, 33, and 60-bit prime field [Fp,.
First, we provide plain benchmarks in all fields in Table 3. After that, we give the
HE benchmarks in the SEAL and HELib homomorphic encryption libraries. Next
to the evaluation of homomorphic decompression, we evaluate the use case as
proposed in [25] to illustrate the importance of efficient HE parameters. As a use
case, we apply three affine layers to a vector of 200 elements ( (z; = M; - x; + b,
where 2, 2},b; € F2°0, M; € F09%2%) interleaved with element-wise squaring
on a homomorphically encrypted vector z € F2°°. This generic use case can be
seen as a small 3-layer neural network with squaring activation functions.

HE Parameter Settings. On a high level, we can set three parameters in
m

the BFV and BGV schemes. The polynomial degree N = 3+ as a power of two
N = 2" the ciphertext coefficient modulus ¢, and the plaintext modulus p.
The ciphertexts have a noise budget, mostly depleted by multiplications and
a security level \' governed by N and q. When setting parameters, we set p
as the minimum modulus feasible as an increasing p adversely affects noise.
Increasing ¢ increases our noise budget but diminishes the security parameter,
which is compensated by increasing N. Ultimately, increasing the parameters ¢
or N negatively impacts performance. Consequently, minimizing noise expansion

during homomorphic decompression is paramount.

D.1 Plain Benchmarks

In Table 3, we present our plain benchmarks in all considered prime fields. The
speedup of PASTA,, compared to pasta is across all primes at least 100%. The rest
of the data confirms our points in the main benchmark discussion in Section 6.

D.2 SEAL Benchmarks

First, we discuss the benchmarks in the SEAL library for a 17, 33, and 60-bit
prime field F,,. In Table 4, we compare the runtime for homomorphic decom-
pression and the HHE use case when using different instances of PASTA and
PASTA5. In these benchmarks, BFV is parameterized by the degree of the cy-
clotomic reduction polynomial N = 2", such that the scheme provides at least
128 bit security and can evaluate the whole circuit without decryption error.
One can observe that our changes barely affect the benchmarks in the SEAL
library. Runtime differences between PASTA and PASTA, are =~ 1%, most likely
caused by timing differences from running the benchmarks on a real CPU. Con-
sequently, the additional homomorphic additions and fewer matrix encodings do
not significantly affect SEAL and lead to practically equivalent benchmarks when
using PASTA or the versions of PASTA,,. In the HHE use case, we sometimes see
performance jumps between PASTA,5, PASTA, and the remaining ciphers. These
substantial differences occur when the lower required noise budget allows for a
smaller polynomial degree, drastically impacting performance.
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Table 3: Cycles for encrypting one block in plain, averaged over 1000 executions.

Cipher

Total

Instance Generation Encrypting

p = 65537 (17 bit):

Masta-4 1 970 769 847 971 1122 798
Masta-5 679 259 328 556 350 703
HERA 31 874 23 536 8 338
PAsTA-3 4 054 965 2473 015 1 581 950
PasTa-4 399 284 293 409 105 875
PAsTA»-3 1 950 782 90 735 1 860 047
PAsTA2-4 176 999 24 388 152 611
p = 8088322049 (33 bit):

Masta-4 1 862 325 712 804 1 149 521
Masta-5 619 314 262 892 356 422
HERA 22 294 13 607 8 687
PasTa-3 3 978 645 2 312 924 1665 721
Pasta-4 351 994 250 693 101 301
PASTA-3 1 956 656 49 645 1907 011
PASTA2-4 169 632 14 353 155 279
p = 1096486890805657601 (60 bit):

Masta-4 2 317 877 704 746 1613 131
Masta-5 755 497 258 697 496 800
HERA 21 691 13 305 8 386
PasTa-3 5 376 040 2 966 305 2 409 735
PasTa-4 457 585 295 013 162 572
PASTA2-3 2 696 096 49 546 2 646 550
PASTA2-4 227 427 13 967 213 460

D.3 HEIlib Benchmarks

In Table 5, we compare the runtime for homomorphic decompression and the
HHE use case when using different instances of PASTA and PASTA,,. Additionally
to the data in Section 6, we display the selected modulus degree m = 2 - N and
the computed HE security parameter \’. Several things can be seen in this table.
First, the performance benefit of PASTA5 spans across all plaintext parameters.
Second, the increased noise of the HElib rotation implementation further empha-
sizes the relevance of a low multiplicative depth. Finally, the Masta-5 and HERA
use cases in the 33-bit prime setting, the basic HERA and Masta-5 decompression,
and all the HHE use case evaluations in the 60-bit prime setting yielded inse-
cure parameters. Increasing m further would lead to polynomials with 131072
coefficients. Necessary RNS decomposition of the large ciphertext modulus then
leads to large encryptions of the secret key and infeasible memory consumption
on the server side.

29



Table 4: Benchmarks for the SEAL library.

1 Block HHE use case
Cipher N  Enc. Key Decomp.| N Enc. Key Decomp. Use Case
S s S S S

p = 65537 (17 bit):
PasTa-3 16384 0.008 4.44|32768 0.031 43.4 22.1
Pasta-4 16384 0.008 2.02|32768 0.029 69.9 20.9
Masta-4 |16384 0.008 5.59|32768 0.029 51.8 20.9
Masta-5 |32768 0.033 19.7(32768 0.028 74.3 20.9
HERA 32768 0.030 8.20(32768 0.028 105.6 20.8
PASTA»-3|16384 0.008 4.63|32768 0.031 43.1 22.1
PAsTA,2-4]16384 0.008 2.12|32768 0.031 73.9 22.3
p = 8088322049 (33 bit):
Pasta-3 32768 0.033 21.8|32768 0.029 43.4 22.2
Pasta-4 [32768 0.031 10.1{65536 0.118 414.1 109.8
Masta-4 |32768 0.031 25.9/65536 0.111 273.1 109.7
Masta-5 |32768 0.028 19.1{65536 0.111 406.2 1104
HERA 32768 0.026 8.16/65536 0.112 592.6 105.6
PASTA,2-3[32768 0.032 21.6/32768 0.028 43.0 22.0
PASTAy2-4[32768 0.032 10.6|65536 0.117 410.5 109.4
p = 1096486890805657601 (60 bit):
PasTAa-3 [32768 0.029 29.2|65536 0.125 223.0 109.8
Pasta-4 65536 0.118 56.0/65536 0.112 414.7 110.0
Masta-4 |65536 0.118 132.6/65536 0.111 272.5 103.0
Masta-5 |65536 0.118 99.5|65536 0.111 423.4 109.9
HERA 65536 0.119 46.4|65536 0.112 610.4 109.9
PASTA2-3[32768 0.028 28.9/65536 0.124 221.4 109.4
PASTA2-4(65536 0.125 58.9/65536 0.111 411.3 109.4
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Table 5: Benchmarks for the HEIlib library.

Cipher m X' Enc. Key Decomp.| m A Enc. Key Decomp. Use Case
bit s s bit s s s

p = 65537 (17 bit):
Pasta-3 65536 184 0.033 14.7| 65536 128 0.035 33.8 11.5
Pasta-4 65536 163 0.033 6.93| 131072 229 0.065 116.0 21.4
Masta-4 65536 163 0.038 20.0| 131072 229 0.063 84.2 24.6
Masta-5 65536 133 0.045 16.5| 131072 199 0.073 140.8 28.0
HERA 131072 254 0.071 11.5| 131072 189 0.072 178.4 28.0
PAsTA.-3| 65536 184 0.031 12.3| 65536 128 0.040 27.0 11.6
PAsTAy,-4| 65536 163 0.033 5.95| 131072 229 0.068 102.1 21.5
p = 8088322049 (33 bit):
PasTa-3 65536 125 0.037 17.7| 131072 162 0.106 112.3 38.1
Pasta-4 | 131072 204 0.099 21.4| 131072 144 0.112 182.7 34.3
Masta-4 131072 196 0.095 57.3| 131072 144 0.101 150.4 40.7
Masta-5 131072 166 0.096 49.8|131072* 117 0.131 250.9 45.4
HERA 131072 150 0.108 17.2|131072* 110 0.145 307.6 51.8
PAsTA2-3| 65536 125 0.033 15.0| 131072 162 0.099 97.2 36.5
PAsTA-4| 131072 204 0.094 18.2] 131072 144 0.118 163.8 34.9
p = 1096486890805657601 (60 bit):
Pasta-3 | 131072 162 0.118 57.4|131072* 97 0.151 162.6 51.0
PasTa-4 | 131072 129 0.130 29.3|131072* 83 0.167 276.3 50.1
Masta-4 131072 129 0.107 84.3|131072* 83 0.161 217.3 56.8
Masta-5 [131072* 99 0.132 71.2{131072* 70 0.186 354.0 64.6
HERA 131072* 89 0.147 26.4|131072* 60 0.200 466.7 75.5
PAsTA,-3| 131072 162 0.113 48.9|131072* 97 0.151 138.9 45.7
PAsTAy,-4| 131072 129 0.116 26.9|131072* 83 0.165 251.1 50.1

# Further increasing m for security resulted in infeasibly long runtimes.
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